


Numerical Methods in Physics with Python

Bringing together idiomatic Python programming, foundational numerical methods, and
physics applications, this is an ideal standalone textbook for courses on computational
physics. All the frequently used numerical methods in physics are explained, including
foundational techniques and hidden gems on topics such as linear algebra, differential
equations, root-finding, interpolation, and integration. Accompanying the mathematical
derivations are full implementations of dozens of numerical methods in Python, as well as
more than 250 end-of-chapter problems. Numerical methods and physics examples are
clearly separated, allowing this introductory book to be later used as a reference; the
penultimate section in each chapter is an in-depth project, tackling physics problems that
cannot be solved without the use of a computer. Written primarily for students studying
computational physics, this textbook brings the non-specialist quickly up to speed with
Python before looking in detail at the numerical methods often used in the subject.

Alex Gezerlis is Associate Professor of Physics at the University of Guelph. Before moving
to Canada, he worked in Germany, the United States, and Greece. He has received several
research awards, grants, and allocations on supercomputing facilities and is active in
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“I enthusiastically recommend Numerical Methods in Physics with Python by Professor
Gezerlis to any advanced undergraduate or graduate student who would like to acquire
a solid understanding of the basic numerical methods used in physics. The methods are
demonstrated with Python, a relatively compact, accessible computer language, allowing
the reader to focus on understanding how the methods work rather than on how to program
them. Each chapter offers a self-contained, clear, and engaging presentation of the relevant
numerical methods, and captivates the reader with well-motivated physics examples and
interesting physics projects. Written by a leading expert in computational physics, this
outstanding textbook is unique in that it focuses on teaching basic numerical methods while
also including a number of modern numerical techniques that are usually not covered in
computational physics textbooks.”

Yoram Alhassid, Yale University

“In Numerical Methods in Physics with Python by Gezerlis, one finds a resource that has
been sorely missing! As the usage of Python has become widespread, it is too often the
case that students take libraries, functions, and codes and apply them without a solid
understanding of what is truly being done ‘under the hood’ and why. Gezerlis’ book fills
this gap with clarity and rigor by covering a broad number of topics relevant for physics,
describing the underlying techniques and implementing them in detail. It should be an
important resource for anyone applying numerical techniques to study physics.”

Luis Lehner, Perimeter Institute

“Gezerlis’ text takes a venerable subject – numerical techniques in physics – and brings it
up to date and makes it accessible to modern undergraduate curricula through a popular,
open-source programming language. Although the focus remains squarely on numerical
techniques, each new lesson is motivated by topics commonly encountered in physics and
concludes with a practical hands-on project to help cement the students’ understanding.
The net result is a textbook which fills an important and unique niche in pedagogy and
scope, as well as a valuable reference for advanced students and practicing scientists.”

Brian Metzger, Columbia University
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For Marcos

A human is a shadow’s dream.
But when radiance from the heavens comes,
a glowing splendor upon mankind, and serene life.

Pindar
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Preface

What we have loved,
Others will love, and we will teach them how.

William Wordsworth

This is a textbook for advanced undergraduate (or beginning graduate) courses on subjects
such as Computational Physics, Computational Methods in Physics and Astrophysics, and
so on. This could mean a number of things, so I start by going over what this book is not.

First, this is not a text that focuses mainly on physics applications and basic program-
ming, only bringing up numerical methods as the need arises. It’s true that such an ap-
proach would have the benefit of giving rise to beautiful visualizations and helping students
gain confidence in using computers to study science. The disadvantage of this approach is
that it tends to rely on external libraries, i.e., “black boxes”. To make an analogy with
non-computational physics, we teach students calculus before seeing how it helps us do
physics. In other words, an instructor would not claim that derivatives are important but al-
ready well-studied, so we’ll just employ a package that takes care of them. That being said,
a physics-applications-first approach may be appropriate for a more introductory course
(the type with a textbook that has the answers in the back) or perhaps as a computational
addendum to an existing text on mechanics, electromagnetism, and so on.

Second, this is not a simulation-oriented textbook, revolving around the technology used
in modern computational methods (e.g., molecular dynamics or Monte Carlo). This would
have had the advantage of being intimately connected to actual research, but the disad-
vantage that it would assume students have picked up the necessary foundational material
from elsewhere. To return to the analogy with non-computational physics, an introductory
course on electromagnetism would never skip over things like basic electrostatics to get
directly to, say, the Yang–Mills Lagrangian (assuming students will learn any necessary
background material on their own) just because non-abelian gauge theory is more “cur-
rent”. Even so, an approach that focuses on modern computational technology is relevant
to a more advanced course: once students have mastered the foundations, they can turn to
state-of-the-art methods that tackle research problems.

The present text attempts to strike a happy medium: elementary numerical methods are
studied in detail and then applied to questions from undergraduate physics, via idiomatic
implementations in the Python programming language. When selecting and discussing top-
ics, I have tried to prioritize pedagogy over novelty; this is reflected in the chapter titles,
which are pretty standard. Of course, my views on what is pedagogically superior are mine
alone, so the end result also happens to be original in certain aspects. Below, I touch upon
some of the main features of this book, with a view to orienting the reader.

xiii
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• Idiomatic Python: the book employs Python 3, which is a popular, open-source pro-
gramming language. A pedagogical choice I have made is to start out with standard
Python, use it for a few chapters, and only then turn to the NumPy library; I have
found that this helps students who are new to programming in Python effectively dis-
tinguish between lists and NumPy arrays. The first chapter includes a discussion of
modern programming idioms, which allow me to write shorter codes in the following
chapters, thereby emphasizing the numerical method over programming details. This
is somewhat counterintuitive: teaching more “advanced” programming than is usual in
computational-physics books, allows the programming to recede into the background.
In other words, not having to fight with the programming language every step of the
way makes it easier to focus on the physics (or the math).

• Modern numerical analysis techniques: I devote an entire chapter to questions of nu-
merical precision and roundoff error; I hope that the lessons learned there will pay off
when studying the following chapters, which typically focus more on approximation-
error themes. While this is not a volume on numerical analysis, it does contain a
bit more on applied math than is typical: in addition to standard topics, this also in-
cludes modern techniques that haven’t made it to computational-physics books before
(e.g., compensated summation, automatic differentiation, or interpolation at Cheby-
shev points). Similarly, the section on errors in linear algebra glances toward mono-
graphs on matrix perturbation theory. To paraphrase Forman Acton [2], the idea here
is to ensure that the next generation does not think that an obligatory decimal point is
slightly demeaning.

• Methods “from scratch”: chapters typically start with a pedagogical discussion of a
crude algorithm and then advance to more complex methods, in several cases also cov-
ering state-of-the-art techniques (when they do not require elaborate bookkeeping).
Considerable effort is expended toward motivating and explaining each technique as
it is being introduced. Similarly, the chapters are ordered in such a way that the pre-
sentation is cumulative. Thus, the book attempts to discuss things “from scratch”, i.e.,
without referring to specialized background or more advanced references; physicists
do not expect theorems and lemmas, but do expect to be convinced.1 Throughout the
text, the phrases “it can be shown”2 and “stated without proof” are actively avoided,
so this book may also be used in a flipped classroom, perhaps even for self-study. As
part of this approach, I frequently cover things like convergence properties, operation
counts, and the error scaling of different numerical methods. When space constraints
imposed a choice between not explaining a method well or omitting it entirely, I opted
in favor of omission. This is intended as a “first book” on the subject, which should
enable students to confidently move on to more advanced expositions.

• Methods implemented: while the equations and figures help explain why a method
should work, the insight that can be gleaned by examining (and modifying) an ex-
isting implementation of a given algorithm is crucial. I have worked hard to ensure
that these code listings are embedded in the main discussion, not tossed aside at the

1 Nullius in verba, the motto of the Royal Society, comes to mind. The idea, though not the wording, can clearly
be traced to Heraclitus’s Fragment 50: “Listen, not to me, but to reason”.

2 An instance of proof by omission, but still better than “it can be easily shown” (proof by intimidation).
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end of the chapter or in an online supplement. Even so, each implementation is typ-
ically given its own subsection, in order to help instructors who are pressed for time
in their selection of material. Since I wanted to keep the example programs easy to
talk about, they are quite short, never longer than a page. In an attempt to avoid the
use of black boxes, I list and discuss implementations of methods that are sometimes
considered advanced (e.g., the QR eigenvalue method or the fast Fourier transform).
While high-quality libraries like NumPy and SciPy contain implementations of such
methods, the point of a book like this one is precisely to teach students how and why
a given method works. The programs provided can function as templates for further
code development on the student’s part, e.g., when solving the end-of-chapter prob-
lems. Speaking of the problems, these usually probe conceptual issues, edge cases,
alternative implementations, or other numerical methods; instructors can get access
to the solutions of more than 170 problems.

• Clear separation between numerical method and physics problem: each chapter fo-
cuses on a given numerical theme. The first section always discusses physics scenarios
that touch upon the relevant tools; these “motivational” topics are part of the standard
undergrad physics curriculum, ranging from classical mechanics, through electromag-
netism and statistical mechanics, to quantum mechanics. The bulk of the chapter then
focuses on several numerical methods and their implementation, typically without
bringing up physics examples. The penultimate section in each chapter is a Project:
in addition to involving topics that were introduced in earlier sections (or chapters),
these physics projects allow students to carry out (classical or quantum) calculations
that they wouldn’t attempt without the help of a computer. These projects also pro-
vide a first taste of “programming-in-the-large”. As a result of this design choice, the
book may also be useful to beginning physics students or even students in other areas
of science and engineering (with a more limited physics background). Even the pri-
mary audience may benefit from the structure of the text in the future, when tackling
different physics problems.

Conscious efforts have been made to ensure this volume is reasonably priced: all figures
are in grayscale, the page-count has been reduced by moving most of the introductory
Python material to www.numphyspy.org, and a (relatively) inexpensive paperback version
is also being published. In keeping with Wordsworth’s verses, this book is dear to my heart;
I hope the reader gets to share some of my excitement for the subject.

On the Epigraphs

I have translated 12 of the quotes appearing as epigraphs myself. In two more instances the
original was in English and in the remaining case the translator is explicitly listed. All 15
quotes are not protected by copyright. The sources are as follows:

• Dedication: Pindar, Pythian 8, Lines 95–97 (446 BCE)
• Preface: William Wordsworth, The Prelude, Book Fourteenth (1850 CE)

www.numphyspy.org


xvi Preface

• Chapter 1: Johann Wolfgang von Goethe, Faust, Part I, Lines 681–682 (1808 CE)
• Chapter 2: Aristotle, Nicomachean Ethics, Book I, Chapter III, 1094b (∼330 BCE)
• Chapter 3: William Shakespeare, King Lear, Act I, Scene IV (∼1605 CE)
• Chapter 4: Hesiod, Works and Days, Line 643 (∼700 BCE)
• Chapter 5: Heraclitus, Fragment 84 (∼500 BCE)
• Chapter 6: Vergil, Aeneid, Book 7, Lines 310–311 (∼19 BCE, translated 1697 CE)
• Chapter 7: Sophocles, Ajax, Lines 485–486 (∼441 BCE)
• Chapter 8: Sophocles, Oedipus Tyrannus, Lines 120–121 (∼429 BCE)
• P.S.: Diogenes Laërtius, Lives and Opinions of Eminent Philosophers, Book 6 (∼220

CE)
• Appendix A: Plato, The Republic, Book 5, 453d (∼380 BCE)
• Appendix B: Immanuel Kant, Groundwork for the Metaphysics of Morals, 2nd Section

(1785 CE)
• Appendix C: Friedrich Nietzsche, The Gay Science, 381 (1877 CE)
• Bibliography: Plato, Phaedrus, 235d (∼370 BCE)
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Idiomatic Python 1
Idiomatic

That which you inherit from your forefathers,
you must make your own in order to truly possess it.

Johann Wolfgang von Goethe

This chapter is not intended as an introduction to programming in general or to program-
ming with Python. A tutorial on the Python programming language can be found in the
online supplement to this book; if you’re still learning what variables, loops, and functions
are, we recommend you go to our tutorial (see Appendix A) before proceeding with the
rest of this chapter. You might also want to have a look at the (official) Python Tutorial at
www.python.org. Another introduction to Python, with nice material on visualization, is
Ref. [41]. Programming, like most other activities, is something you learn by doing. Thus,
you should always try out programming-related material as you read it: there is no royal
road to programming. Even if you have solid programming skills but no familiarity with
Python, we recommend you work your way through one of the above resources, to famil-
iarize yourself with the basic syntax. In what follows, we will take it for granted that you
have worked through our tutorial and have modified the different examples to carry out
further tasks. This includes solving many of the programming problems we pose there.

What this chapter does provide is a quick summary of Python features, with an emphasis
on those which the reader is more likely not to have encountered in the past. In other words,
even if you are already familiar with the Python programming language, you will most
likely still benefit from reading this short chapter. Observe that the title at the top of this
page is Idiomatic Python: this refers to coding in a Pythonic manner. The motive is not to
proselytize but, rather, to let the reader work with the language (i.e., not against it); we aim
to show how to write Python code that feels “natural”. If this book was using, say, Go or
Julia instead of Python, we would still be making the same point: one should try to do the
best job possible with the tools at one’s disposal. As noted in the Preface, the use of idioms
allows us to write shorter codes in the rest of the book, thereby emphasizing the numerical
method over programming details; this is not merely an aesthetic concern but a question of
cognitive consonance.

At a more mundane level, this chapter contains all the Python-related reference material
we will need in this volume: reserved words, library functions, tables, and figures. Keep-
ing the present chapter short is intended to help you when you’re working through the
following chapters and need to quickly look something up.

1



2 Idiomatic Python

1.1 Why Python?

Since computational physics is a fun subject, it is only appropriate that the programming
involved should also be as pleasant as possible. In this book, we use Python 3, a popular,
open-source programming language that has been described as “pseudocode that executes”.
Python is especially nice in that it doesn’t require lots of boilerplate code, making it easy to
write new programs; this is great from a pedagogical perspective, since it allows a begin-
ner to start using the language without having to first study lengthy volumes. Importantly,
Python’s syntax is reasonably simple and leads to very readable code. Even so, Python is
very expressive, allowing you to do more in a single line than is possible in many other
languages. Furthermore, Python is cross-platform, providing a similar experience on Win-
dows and Unix-like systems. Finally, Python comes with “batteries included”: its standard
library allows you to do a lot of useful work, without having to implement basic things
(e.g., sorting a list of numbers) yourself.

In addition to the functionality contained in core Python and in the standard library,
Python is associated with a wider ecosystem, which includes libraries like Matplotlib, used
to visualize data. Another member of the Python ecosystem, especially relevant to us, is
the NumPy library (NumPy stands for “Numerical Python”); containing numerical arrays
and several related functions, NumPy is one of the main reasons Python is so attractive for
computational work. Another fundamental library is SciPy (“Scientific Python”), which
provides many routines that carry out tasks like numerical integration and optimization in
an efficient manner. A pedagogical choice we have made in this book is to start out with
standard Python, use it for a few chapters, and only then turn to the numpy library; this
is done in order to help students who are new to Python (or to programming in general)
effectively distinguish between Python lists and numpy arrays. The latter are then used in
the context of linear algebra (chapter 4), where they are indispensable, both in terms of
expressiveness and in terms of efficiency.

Speaking of which, it’s worth noting at the outset that, since our programs are intended
to be easy to read, in some cases we have to sacrifice efficiency.1 Our implementations are
intended to be pedagogical, i.e., they are meant to teach you how and why a given numer-
ical method works; thus, we almost never employ NumPy or SciPy functionality (other
than numpy arrays), but produce our own functions, instead. We make some comments on
alternative implementations here and there, but the general assumption is that you will be
able to write your own codes using different approaches (or programming languages) once
you’ve understood the underlying numerical method. If all you are interested in is a quick
calculation, then Python along with its ecosystem is likely going to be your one-stop shop.
As your work becomes more computationally challenging, you may need to switch to a
compiled language; most work on supercomputers is carried out using languages like For-
tran or C++ (or sometimes even C). Of course, even if you need to produce a hyper-efficient
code for your research, the insight you may gain from building a prototype in Python could
be invaluable; similarly, you could write most of your code in Python and re-express a few

1 Thus, we do not talk about things like Python’s Global Interpreter Lock, cache misses, page faults, and so on.



1.2 Code Quality 3

performance-critical components using a compiled language. We hope that the lessons you
pick up here (both on the numerical methods and on programming in general) will serve
you well if you need to employ another environment in the future.

The decision to focus on Python (and NumPy) idioms is coupled to the aforementioned
points on Python’s expressiveness and readability: idiomatic code makes it easier to con-
quer the complexity that arises when developing software. (Of course, it does require you
to first become comfortable with the idioms.) That being said, our presentation will be se-
lective; Python has many other features that we will not go into. Most notably, we don’t
discuss how to define classes of your own or how to handle exceptions; the list of omit-
ted features is actually very long.2 While many features we leave out are very important,
discussing them would interfere with the learning process for students who are still mas-
tering the basics of programming. Even so, we do introduce topics that haven’t often made
it into computational-science texts (e.g., list comprehensions, dictionaries, for-else, array
manipulation via slicing and @) and use them repeatedly in the rest of the book.

When deemed necessary, we point to further functionality in Python. For more, have a
look at the bibliography and at The Python Language Reference (as well as The Python
Standard Library Reference). Once you have mastered the basics of core Python, you may
find books like Ref. [75] and Ref. [84] a worthwhile investment. On the wider theme of de-
veloping good programming skills, volumes like Ref. [65] can be enriching, as is also true
of any book written by Brian Kernighan. Here we provide only the briefest of summaries.

1.2 Code Quality

We will not be too strict in this book about coding guidelines. Issues like code layout can
be important, but most of the programs we will write are so short that this won’t matter too
much. If you’d like to learn more about this topic, your first point of reference should be
PEP 8 – Style Guide for Python Code. Often more important than issues of code layout3

are questions about how you write and check your programs. Here is some general advice:

• Code readability matters Make sure to target your program to humans, not the com-
puter. This means that you should avoid using “clever” tricks. Thus, you should use
good variable names and write comments that add value (instead of repeating the
code). The human code reader that will benefit from this is first and foremost your-
self, when you come back to your programs some months later.

• Be careful, not swift, when coding Debugging is typically more difficult than coding
itself. Instead of spending two minutes writing a program that doesn’t work and then
requires you to spend two hours fixing it up, try to spend 10 minutes on designing the
code and then carefully converting your ideas into program lines. It doesn’t hurt to
also use Python interactively (while building the program file) to test out components
of the code one-by-one or to fuse different parts together.

2 For example: decorators, coroutines, or type hints.
3 You should look up the term “bikeshedding”.
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• Untested code is wrong code Make sure your program is working correctly. If you
have an example where you already know the answer, make sure your code gives that
answer. Manually step through a number of cases (i.e., mentally, or on paper, do the
calculations the program is supposed to carry out). This, combined with judiciously
placed print-outs of intermediate variables, can go a long way toward ensuring that
everything is as it should be. When modifying your program, ensure it still gives the
original answer when you specialize the problem to the one you started with.

• Write functions that do one thing well Instead of carrying out a bunch of unrelated
operations in sequence, you should structure your code so that it makes use of well-
named (and well-thought-out) functions that do one thing and do it well. You should
break down the tasks to be carried out and logically separate those into distinct func-
tions. If you design these well, in the future you will be able to modify your programs
to carry out much more challenging tasks, by only adding a few lines of new code
(instead of having to change dozens of lines in an existing “spaghetti” code).

• Use trusted libraries In most of this book we are “reinventing the wheel”, because we
want to understand how things work (or don’t work). Later in life, you should not have
to always use “hand-made” versions of standard algorithms. As mentioned, there exist
good (widely employed and tested) libraries like numpy that you should learn to make
use of. The same thing holds, obviously, for the standard Python library: you should
generally employ its features instead of “rolling your own”.

One could add (much) more advice along these lines. Since our scope here is much more
limited, we conclude by pointing out that in the Python ecosystem (or around it) there’s
extensive infrastructure [82] to carry out version control (e.g., git), testing (e.g., doctest
and unittest), as well as debugging (e.g., pdb), program profiling and optimization,
among other things. You should also have a look at the pylint tool.

1.3 Summary of Python Features

1.3.1 Basics

Python can be used interactively: this is when you see the Python prompt >>>, also known
as a chevron. You don’t need to use Python interactively: like other programming lan-
guages, the most common way of writing and running programs is to store the code in
a file. Linear combinations of these two ways of using Python are also available, fusing
interactive sessions and program files. In any case, your program is always executed by the
Python interpreter. Appendix A points you in the direction of tools you could employ.

Like other languages (e.g., C or Fortran), Python employs variables, which can be inte-
gers, complex numbers, etc. Unlike those languages, Python is a dynamically typed lan-
guage, so variables get their type from their value, e.g., x = 0.5 creates a floating-point
variable (a “float”). It may help you to think of Python values as being produced first
and labels being attached to them after that. Numbers like 0.5 or strings like "Hello",
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are known as literals. If you wish to print the value of a variable, you use the print()
built-in function, i.e., print(x). Further functionality is available in the form of standard-
library modules, e.g., you can import the sqrt function that is to be found in the math
module. Users can define their own modules: we will do so repeatedly. You can carry out
arithmetic with variables, e.g., x**y raises x to the y-th power or x//y does “floor divi-
sion”. It’s usually a good idea to group related operations using parentheses. Python also
supports augmented assignment, e.g., x += 1 or even multiple assignment, e.g., x, y =
0.5, "Hello". This gives rise to a nifty way to swap two variables: x, y = y, x.

Comments are an important feature of programming languages: they are text that is ig-
nored by the computer but can be very helpful to humans reading the code. That human
may be yourself in a few months, at which point you may have forgotten the purpose or de-
tails of the code you’re inspecting. Python allows you to write both single-line comments,
via #, or docstrings (short for “documentation strings”), via the use of triple quotation
marks. Crucially, we don’t include explanatory comments in our code examples, since this
is a book which explicitly discusses programming features in the main text. That being
said, in your own codes (which are not embedded in a book discussing them) you should
always include comments.

1.3.2 Control Flow

Control flow refers to programming constructs where not every line of code gets executed
in order. A classic example is conditional execution via the if statement:

>>> if x!=0:

... print("x is non-zero")

Indentation is important in Python: the line after if is indented, reflecting the fact that it
belongs to the corresponding scenario. Similarly, the colon, :, at the end of the line contain-
ing the if is also syntactically important. If you wanted to take care of other possibilities,
you could use another indented block starting with else: or elif x==0:. In the case of
boolean variables, a common idiom is to write: if flag: instead of if flag==True:.

Another concept in control flow is the loop, i.e., the repetition of a code block. You can
do this via while, which is typically used when you don’t know ahead of time how many
iterations you are going to need, e.g., while x>0:. Like conditional expressions, a while
loop tests a condition; it then keeps repeating the body of the loop until the condition is
no longer true, in which case the body of the block is jumped over and execution resumes
from the following (non-indented) line. We sometimes like to be able to break out of a
loop: if a condition in the middle of the loop body is met, then: a) if we use break we
will proceed to the first statement after the loop, or b) if we use continue we skip not the
entire loop, but the rest of the loop body for the present iteration.

A third control-flow construct is a for loop: this arises when you need to repeat a certain
action a fixed number of times. For example, by saying for i in range(3): you will
repeat whatever follows (and is indented) three times. Like C, Python uses 0-indexing,
meaning that the indices go as 0, 1, 2 in this case. In general, range(n) gives the integers
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from 0 to n-1 and, similarly, range(m, n, i) gives the integers from m to n-1 in steps of
i. Above, we mentioned how to use print() to produce output; this can be placed inside a
loop to print out many numbers, each on a separate line; if you want to place all the output
on the same line you do:

>>> for i in range(1,15,2):

... print(0.01*i, end=" ")

that is, we’ve said end=" " after passing in the argument we wish to print. As we’ll discuss
in the following section, Python’s for loop is incredibly versatile.

1.3.3 Data Structures

Python supports container entities, called data structures; we will mainly be using lists.

Lists A list is a container of elements; it can can grow when you need it to. Elements can
have different types. You use square brackets and comma-separated elements when creating
a list, e.g., zs = [5, 1+2j, -2.0]. You also use square brackets when indexing into a
list, e.g., zs[0] is the first element and zs[-1] the last one. Lists are mutable sequences,
meaning we can change their elements, e.g., zs[1] = 9, or introduce new elements, via
append(). The combination of for loops and range() provides us with a powerful way
to populate a list. For example:

>>> xs = []

>>> for i in range(20):

... xs.append(0.1*i)

where we started with an empty list. In the following section, we’ll see a more idiomatic
way of accomplishing the same task. You can concatenate two lists via the addition oper-
ator, e.g., zs = xs + ys; the logical consequence of this is the idiom whereby a list can
be populated with several (identical) elements using a one-liner, xs = 10*[0]. There are
several built-in functions (applicable to lists) that often come in handy, most notably sum()
and len().

Python supports a feature called slicing, which allows us to take a slice out of an existing
list. Slicing, like indexing, uses square brackets: the difference is that slicing uses two
integers, with a colon in between, e.g., ws[2:5] gives you the elements ws[2] up to (but
not including) the element ws[5]. Slicing obeys convenient defaults, in that we can omit
one of the integers in ws[m:n] without adverse consequences. Omitting the first index is
interpreted as using a first index of 0, and omitting the second index is interpreted as using
a second index equal to the number of elements. You can also include a third index: in
ws[m:n:i] we go in steps of i. Note that list slicing uses colons, whereas the arguments
of range() are comma separated. Except for that, the pattern of start, end, stride is
the same.

We are now in a position to discuss how copying works. In Python a new list, which is
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Labelling and modifying a mutable object (in this case, a list) �Fig. 1.1

assigned to be equal to an old list, is simply the old list by another name. This is illustrated
in Fig. 1.1, which corresponds to the three steps xs = [1,2,3], followed by ys = xs,
and then ys[0] = 7. In other words, in Python we’re not really dealing with variables,
but with labels attached to values, since xs and ys are just different names for the same
entity. When we type ys[0] = 7 we are not creating a new value, simply modifying the
underlying entity that both the xs and ys labels are attached to. Incidentally, things are
different for simpler variables, e.g., x=1; y=x; y=7; print(x) prints 1 since 7 is a new
value, not a modification of the value x is attached to. This is illustrated in Fig. 1.2, where
we see that, while initially both variable names were labelling the same value, when we
type y=7 we create a new value (since the number 7 is a new entity, not a modification of
the number 1) and then attach the y label to it.

Crucially, when you slice you get a new list, meaning that if you give a new name to
a slice of a list and then modify that, then the original list is unaffected. For example,
xs = [1,2,3], followed by ys = xs[1:], and then ys[0] = 7 does not affect xs. This
fact (namely, that slices don’t provide views on the original list but can be manipulated
separately) can be combined with another nice feature (namely, that when slicing one can
actually omit both indices) to create a copy of the entire list, e.g., ys = xs[:]. This is a
shallow copy, so if you need a deep copy, you should use the function deepcopy() from
the standard module copy; the difference is immaterial here.

Tuples Tuples can be (somewhat unfairly) described as immutable lists. They are se-
quences that can neither change nor grow. They are defined using parentheses instead of
square brackets, e.g., xs = (1,2,3), but you can even omit the parentheses, xs = 1,2,3.
Tuple elements are accessed the same way that list elements are, namely with square brack-
ets, e.g., xs[2].

Strings Strings can also be viewed as sequences, e.g., if name = "Mary" then name[-1]
is the character ‘y’. Note that you can use either single or double quotation marks. Like
tuples, strings are immutable. As with tuples, we can use + to concatenate two strings. A

Labelling immutable objects (in this case, integers) �Fig. 1.2
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useful function that acts on strings is format(): it uses positional arguments, numbered
starting from 0, within curly braces. For example:

>>> x, y = 3.1, -2.5

>>> "{0} {1}".format(x, y)
‘3.1 -2.5’

The overall structure is string-dot-format-arguments. This can lead to powerful ways of
formatting strings, e.g.,

>>> "{0:1.15f} {1}".format(x, y)
‘3.100000000000000 -2.5’

Here we also introduced a colon, this time followed by 1.15f, where 1 gives the number
of digits before the decimal point, 15 gives the number of digits after the decimal point,
and f is a type specifier (that leads to the result shown for floats).

Dictionaries Python also supports dictionaries, which are called associative arrays in com-
puter science (they’re called maps in C++). You can think of dictionaries as being similar
to lists or tuples, but instead of being limited to integer indices, with a dictionary you can
use strings or floats as keys. In other words, dictionaries contain key and value pairs. The
syntax for creating them involves curly braces (compare with square brackets for lists and
parentheses for tuples), with the key-value pair being separated by a colon. For example,
htow = {1.41: 31.3, 1.45: 36.7, 1.48: 42.4} is a dictionary associating heights
to weights. In this case both the keys and the values are floats. We access a dictionary
value (for a specific key) by using the name of the dictionary, square brackets, and the key
we’re interested in: this returns the value associated with that key, e.g., htow[1.45]. In
other words, indexing uses square brackets for lists, tuples, strings, and dictionaries. If the
specific key is not present, then we get an error. Note, however, that accessing a key that
is not present and then assigning actually works: this is a standard way key:value pairs are
introduced into a dictionary, e.g., htow[1.43] = 32.9.

1.3.4 User-Defined Functions

If our programs simply carried out a bunch of operations in sequence, inside several loops,
their logic would soon become unwieldy. Instead, we are able to group together logically
related operations and create what are called user-defined functions: just as in our earlier
section on control flow, this refers to lines of code that are not necessarily executed in the
order in which they appear inside the program file. For example, while the math module
contains a function called exp(), we could create our own function called, say, nexp(),
which, e.g., uses a different algorithm to get to the answer. The way we introduce our own
functions is via the def keyword, along with a function name and a colon at the end of the
line, as well as (the by now expected) indentation of the code block that follows. Here’s a
function that computes the sum from 1 up to some integer:
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>>> def sumofints(nmax):

... val = sum(range(1,nmax+1))

... return val

We are taking in the integer up to which we’re summing as a parameter. We then ensure
that range() goes up to (but not including) nmax+1 (i.e., it includes nmax). We split the
body of the function into two lines: first we define a new variable and then we return it,
though we could have simply used a single line, return sum(range(1,nmax+1)). This
function can be called (in the rest of the program) by saying x = sumofints(42).

The function we just defined took in one parameter and returned one value. It could
have, instead, taken in no parameters, e.g., summing the integers up to some constant; we
would then call it by x = sumofints(). Similarly, it could have printed out the result,
inside the function body, instead of returning it to the external world; in that case, where
no return statement was used, the x in x = sumofints(42) would have the value None.
Analogously, we could be dealing with several input parameters, or several return values,
expressed by def sumofints(nmin,nmax):, or return val1, val2, respectively. The
latter case is implicitly making use of a tuple.

We say that a variable that’s either a parameter of a function or is defined inside the func-
tion is local to that function. If you’re familiar with the terminology other languages use
(pass-by-value or pass-by-reference), then note that Python employs pass-by-assignment,
which for immutable objects behaves like pass-by-value (you can’t change what’s outside)
and for mutable objects behaves like pass-by-reference (you can change what’s outside),
if you’re not re-assigning. It’s often a bad idea to change the external world from inside
a function: it’s best simply to return a value that contains what you need to communicate
to the external world. This can become wasteful, but here we opt for conceptual clarity,
always returning values without changing the external world. This is a style inspired by
functional programming, which aims at avoiding side effects, i.e., changes that are not vis-
ible in the return value. (Unless you’re a purist, input/output is fine.) Python also supports
nested functions and closures: though we won’t use these, it’s good to know they exist. On
a related note, Python contains the keywords global and nonlocal as well as function
one-liners via lambda, but we won’t be using them.

A related feature of Python is the ability to provide default parameter values:

>>> def cosder(x, h=0.01):

... return (cos(x+h) - cos(x))/h

You can call this function with either cosder(0.) or cosder(0., 0.001); in the former
case, h has the value 0.01. Basically, the second argument here is optional. As a matter of
good practice, you should make sure to always use immutable default parameter values.
Finally, note that in Python one has the ability to define a function that deals with an
indefinite number of positional or keyword arguments. The syntax for this is *args and
**kwargs, but a detailed discussion would take us too far afield.

A pleasant feature of Python is that functions are first-class objects. As a result, we
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can pass them in as arguments to other functions; for example, instead of hard-coding the
cosine as in our previous function, we could say:

>>> def der(f, x, h=0.01):

... return (f(x+h) - f(x))/h

which is called by passing in as the first argument the function of your choice, e.g.,
der(sin, 0., 0.05). Note how f is a regular parameter, but is used inside the func-
tion the same way we use functions (by passing arguments to them inside parentheses). We
passed in the name of the function, sin, as the first argument and the x as the second argu-
ment.4 As a rule of thumb, you should pass a function in as an argument if you foresee that
you might be passing in another function in its place in the future. If you basically expect
to always keep carrying out the same task, there’s no need to add yet another parameter to
your function definition. Incidentally, we really meant it when we said that in Python func-
tions are first-class objects. You could even have a list whose elements are functions, e.g.,
funcs = [sumofints, cos]. Similarly, a problem explores a dictionary that contains
functions as values (or keys).

1.4 Core-Python Idioms

We are now in a position to discuss Pythonic idioms: these are syntactic features that allow
us to perform tasks more straightforwardly than would have been possible with the syn-
tax introduced above. Using such alternative syntax to make the code more concise and
expressive helps write new programs, but also makes the lives of future readers easier. Of
course, you do have to exercise your judgement.5

1.4.1 List Comprehensions

At the start of section 1.3.3, we saw how to populate a list: start with an empty one and
use append() inside a for loop to add the elements you need. List comprehensions (often
shortened to listcomps) provide us with another way of setting up lists. The earlier example
can be replaced by xs = [0.1*i for i in range(20)]. This is much more compact
(one line vs three). Note that when using a list comprehension the loop that steps through
the elements of some other sequence (in this case, the result of stepping through range())
is placed inside the list we are creating! This particular syntax is at first sight a bit unusual,
but very convenient and strongly recommended.

It’s a worthwhile exercise to replace hand-rolled versions of code using listcomps. For
example, if you need a new list whose elements are two times the value of each element in
xs, you should not say ys = 2*xs: as mentioned earlier, this concatenates the two lists,
which is not what we are after. Instead, what does work is ys = [2*x for x in xs].

4 This means that we did not pass in sin() or sin(x), as those wouldn’t work.
5 As Emerson put it in his 1841 essay on Self-Reliance, “A foolish consistency is the hobgoblin of little minds”.
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More generally, if you need to apply a function to every element of a list, you could simply
do so on the fly: ws = [f(x) for x in xs]. Another powerful feature lets you “prune”
a list as you’re creating it, e.g., zs = [2*x for x in xs if x>0.3]; this doubles an
element only if that element is greater than 0.3 (otherwise it doesn’t even introduce it).

1.4.2 Iterating Idiomatically

Our earlier example, ys = [2*x for x in xs], is an instance of a significant syntactic
feature: a for loop is not limited to iterating through a collection of integers in fixed steps
(as in our earlier for i in range(20)) but can iterate through the list elements them-
selves directly.6 This is a general aspect of iterating in Python, a topic we now turn to; the
following advice applies to all loops (i.e., not only to listcomps).

One list Assuming the list xs already exists, you may be tempted to iterate through its ele-
ments via something like for i in range(len(xs)): then in the loop body you would
get a specific element by indexing, i.e., xs[i]. The Pythonic alternative is to step through
the elements themselves, i.e., for x in xs: and then simply use x in the loop body. In-
stead of iterating through an index, which is what the error-prone syntax range(len(xs))
is doing, this uses Python’s in to iterate directly through the list elements.

Sometimes, you need to iterate through the elements of a list xs in reverse: the old-school
(C-influenced) way to do this is for i in range(len(xs)-1, -1, -1):, followed by
indexing, i.e., xs[i]. This does the right thing, but all those -1’s don’t make for light
reading. You can achieve the same goal via Python’s built-in reversed() function, saying
for x in reversed(xs): and then using x directly. A final use case: you often need
access to both the index showing an element’s place in the list, and the element itself. The
“traditional” solution would involve for i in range(len(xs)): followed by using i
and xs[i] in the loop body. The Pythonic alternative is to use the built-in enumerate()
function, for i, x in enumerate(xs): and then use i and x directly. This solution is
more readable and less error-prone.

Two lists We sometimes want to iterate through two lists, xs and ys, in parallel. You should
be getting the hang of things by now; the unPythonic way to achieve our goal would be
for i in range(len(xs)):, followed by using xs[i] and ys[i] in the loop body. The
Pythonic solution is to say for x, y in zip(xs,ys): and then use x and y directly.
The zip() built-in function creates an iterable entity consisting of tuples, fusing the 0th
element in xs with the 0th element in ys, the 1st element in xs with the 1st element7 in ys,
and so on.

Dictionaries We can use for to iterate Pythonically through more than just lists; in the
tutorial you have learned that it also works for lines in a file. Similarly, we can iterate
through the keys of a dictionary; for our earlier height-to-weight dictionary, you could say
for h in htow: and then use h and htow[h] in the loop body. An even more Pythonic

6 In other words, Python’s for is similar to the foreach that some other languages have.
7 In English we say “first”, “second”, etc. We’ll use numbers, e.g., 0th, when using the 0-indexing convention.
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Code 1.1 forelse.py Code 1.1

def look(target,names):

for name in names:

if name==target:

val = name

break

else:

val = None

return val

names = ["Alice", "Bob", "Eve"]

print(look("Eve", names))

print(look("Jack", names))

way of doing the same thing uses the items() method of dictionaries to produce all the
key-value pairs, i.e., for h,w in htow.items(): allows you to use h and w inside the
loop body.

For-else In this section we’ve spent some time discussing the line where for appears. We
now turn to a way of using for loops that is different altogether: similarly to if statements,
you can follow a for loop by an else (!). This is somewhat counterintuitive, but can be
very helpful. The way this works is that the for loop is run as usual: if no break is
encountered during execution of the for block, then control proceeds to the else block. If
a break is encountered during execution of the for block, then the else block is not run.
(Try re-reading the last two sentences after you study Code 1.1).

The else in a for loop is nice when we are looking for an item within a sequence and
we need to do one thing if we find it and a different thing if we don’t. An example is given in
Code 1.1, the first full program in the book. We list such codes in boxes with the filename at
the top; we strongly recommend you download these Python codes and use them in parallel
to reading the main text; you would run this by typing python forelse.py or something
along those lines; note that, unlike other languages you may have used in the past, there
is no compilation stage. This specific code uses several of the Python features mentioned
in this chapter: it starts with defining a function, look(), which we will discuss in more
detail below. The main program uses a listcomp to produce a list of strings and then calls
the look() function twice, passing in a different first argument each time; we don’t even
need a variable to hold the first argument(s), using string literal(s) directly. Since we are no
longer using Python interactively, we employ print() to ensure that the output is printed
on the screen (instead of being evaluated and then thrown away).

Turning to the look() function itself, it takes in two parameters: one is (supposed to
be) a target string and the other one is a list of strings. The latter could be very long,
e.g., the first names listed in a phone book. Note that there are three levels of indentation
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involved here: the function body gets indented, the for loop body gets indented, and then
the conditional expression body also gets indented. Incidentally, our for loop is iterating
through the list elements directly, as per our earlier admonition, instead of using error-
prone indices. You should spend some time ensuring that you understand what’s going on.
Crucially, the else is indented at the level of the for, not at the level of the if. We also
took the opportunity to employ another idiom mentioned above: None is used to denote the
absence of a value. The two possibilities that are at play (target in sequence or target not
in sequence) are probed by the two function calls in the main program. When the target
is found, a break is executed, so the else is not run. When the target is not found, the
else is run. It might help you to think of this else as being equivalent to nobreak: the
code in that block is only executed when no break is encountered in the main part of the
for loop. (Of course, this is only a mnemonic, since nobreak is not a reserved word in
Python.) We will use the for-else idiom repeatedly in this volume (especially in chapter 5),
whenever we are faced with an iterative task which may plausibly fail, in which case we
wish to communicate that fact to the rest of the program.

1.5 Basic Plotting with matplotlib

The Python ecosystem gives us the option of visualizing relationships between numbers
via matplotlib, a plotting library (i.e., not part of core Python) which can produce
quality figures: all the plots in this book were created using matplotlib. Inside the
matplotlib package is the matplotlib.pyplot module, which is used to produce fig-
ures in a MATLAB-like environment.

A simple example is given in Code 1.2. This starts by importing matplotlib.pyplot
in the (standard) way which allows us to use it below without repeated typing of unnec-
essary characters. We then define a function, plotex(), that takes care of the plotting,
whereas the main program simply introduces four list comprehensions and then calls our
function. The listcomps also employ idiomatic iteration, in the spirit of applying what you
learned in the previous section. If you’re still a beginner, you may be wondering why we
defined a Python function in this code. An important design principle in computer science
goes by the name of separation of concerns (or sometimes information hiding or encapsu-
lation): each aspect of the program should be handled separately. In our case, this means
that each component of our task should be handled in a separate function.

Let’s discuss this function in more detail. Its parameters are (meant to be) four lists,
namely two pairs of xi and yi values. The function body starts by using xlabel() and
ylabel() to provide labels for the x and y axes. It then creates individual curves/sets of
points by using matplotlib’s function plot(), passing in the x-axis values as the first
argument and the y-axis values as the second argument. The third positional argument to
plot() is the format string: this corresponds to the color and point/line type. In the first
case, we used r for red and - for a solid line. Of course, figures in this book are printed
in black and white, but you can produce the color version using the corresponding Python
code. In order to help you interpret this and other format strings, we list allowed colors and



14 Idiomatic Python

Code 1.2 plotex.py Code 1.2

import matplotlib.pyplot as plt

def plotex(cxs,cys,dxs,dys):

plt.xlabel(‘x’, fontsize=20)

plt.ylabel(‘f(x)’, fontsize=20)

plt.plot(cxs, cys, ‘r-’, label=‘quadratic’)

plt.plot(dxs, dys, ‘b--ˆ’, label=‘other function’)

plt.legend()

plt.show()

cxs = [0.1*i for i in range(60)]

cys = [x**2 for x in cxs]

dxs = [i for i in range(7)]

dys = [x**1.8 - 0.5 for x in dxs]

plotex(cxs, cys, dxs, dys)

some of the most important line styles/markers in Table 1.1. The fourth argument to plot()
is a keyword argument containing the label corresponding to the curve. In the second call
to plot() we pass in a different format string and label (and, obviously, different lists);
observe that we used two style options in the format string: -- to denote a dashed line and ˆ
to denote the points with a triangle marker. The function concludes by calling legend(),
which is responsible for making the legend appear, and show(), which makes the plot
actually appear on our screen.

Table 1.1 Color, line styles, and markers in matplotlib

Character Color Character Description

‘b’ blue ‘-’ solid line style

‘g’ green ‘--’ dashed line style

‘r’ red ‘-.’ dash-dot line style

‘c’ cyan ‘:’ dotted line style

‘m’ magenta ‘o’ circle marker

‘y’ yellow ‘s’ square marker

‘k’ black ‘D’ diamond marker

‘w’ white ‘ˆ’ triangle-up marker
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Examples of figures produced using matplotlib �Fig. 1.3

The result of running this program is in the left panel of Fig. 1.3. A scenario that pops
up very often in practice involves plotting points with error bars:

dyerrs = [0.1*y for y in dys]

plt.errorbar(dxs, dys, dyerrs, fmt=‘b:D’, label=‘with errors’)

where we have called errorbar() to plot the points with error bars: the three positional
arguments here are the x values, the y values, and the errors in the y values. After that,
we pass in the format string using the keyword argument fmt and the label as usual. We
thereby produce the right panel of Fig. 1.3.

We could fine-tune almost all aspects of our plots, including basic things like line width,
font size, and so on. For example, we could get TeX-like equations by putting dollar signs
inside our string, e.g., ‘$x i$’ appears as xi. We could control which values are displayed
via xlim() and ylim(), we could employ a log-scale for one or both of the axes (using
xscale() or yscale()), and much more. The online documentation can help you go
beyond these basic features. Finally, we note that instead of providing matplotlib with
Python lists as input, you could be using NumPy arrays; this is the topic we now turn to.

1.6 NumPy Idioms

NumPy arrays are not used in chapters 2 and 3 so, if you are still new to Python, you should
focus on mastering Python lists: how to grow them, modify them, etc. Thus, you should
skip this section and the corresponding NumPy tutorial for now and come back when you
are about to start reading chapter 4. If you’re feeling brave you can keep reading, but know
that it is important to distinguish between Python lists and NumPy arrays.

In our list-based codes, we typically carry out the same operation over and over again,
a fixed number of times, e.g., contribs = [w*f(x) for w,x in zip(ws,xs)]; this
list comprehension uses the zip() built-in to step through two lists in parallel. Similarly,
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Table 1.2 Commonly used numpy data types

Type Variants

Integer int8, int16, int32, int64

Float float16, float32, float64, longdouble

Complex complex64, complex128, complex256

our Python lists are almost always “homogeneous”, in the sense that they contain elements
of only one type. This raises the natural question: wouldn’t it make more sense to carry
out such tasks using a homogeneous, fixed-length container? This is precisely what the
Numerical Python (NumPy) array object does: as a result, it is fast and space-efficient. It
also allows us to avoid, for the most part, having to write loops: even in our listcomps,
which are more concise than standard loops, there is a need to explicitly step through each
element one by one. Numerical Python arrays often obviate such syntax, letting us carry
out mathematical operations on entire blocks of data in one step.8 The standard convention
is to import numpy with a shortened name: import numpy as np.
One-dimensional arrays One-dimensional arrays are direct replacements for lists. The
easiest way to make an array is via the array() function, which takes in a sequence and
returns an array containing the data that was passed in, e.g., ys = np.array(contribs);
the array() function is part of numpy, so we had to say np.array() to access it. There is
both an array() function and an array object involved here: the former created the latter.
Printing out an array, the commas are stripped, so you can focus on the numbers. If you
want to see how many elements are in the array ys, use the size attribute, via ys.size.
Remember: NumPy arrays are fixed-length, so the total number of elements cannot change.
Another very useful attribute arrays have is dtype, namely the data type of the elements;
Table 1.2 collects several important data types. When creating an array, the data type can
also be explicitly provided, e.g., zs = np.array([5, 8], dtype=np.float32).

NumPy contains several handy functions that help you produce pre-populated arrays,
e.g., np.zeros(5), np.ones(4), or np.arange(5). The latter also works with float
arguments, however, as we will learn in the following chapter, this invites trouble. For
example, np.arange(1.5,1.75,0.05) and np.arange(1.5,1.8,0.05) behave quite
differently. Instead, use the linspace() function, which returns a specified number of
evenly spaced elements over a specified interval, e.g., np.linspace(1.5,1.75,6) or
np.linspace(1.5,1.8,7). There also exists a function called logspace(), which pro-
duces a logarithmically spaced grid of points.

Indexing for arrays works as for lists, namely with square brackets, e.g., zs[2]. Slicing
appears, at first sight, to also be identical to how slicing of lists works. However, there is
a crucial difference, namely that array slices are views on the original array; let’s revisit
our earlier example. For arrays, xs = np.array([1,2,3]), followed by ys = xs[1:],

8 From here onward, we will not keep referring to these new containers as numpy arrays: they’ll simply be called
arrays, the same way the core-Python lists are simply called lists.
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and then ys[0] = 7 does affect xs. NumPy arrays are efficient, eliminating the need to
copy data: of course, one should always be mindful that different slices all refer to the
same underlying array. For the few cases where you do need a true copy, you can use
np.copy(), e.g., ys = np.copy(xs[1:]) followed by ys[0] = 7 does not affect xs.
We could, just as well, copy the entire array over, without impacting the original. In what
follows, we frequently make copies of arrays inside functions, in the spirit of impacting
the external world only through the return value of a function.

Another difference between lists and arrays has to with broadcasting. Qualitatively, this
means that NumPy often knows how to handle entities whose dimensionalities don’t quite
match. For example, xs = np.zeros(5) followed by xs[:] = 7, leads to an array of
five sevens. Remember, since array slices are views on the original array, xs[:] cannot
be used to create a copy of the array, but it can be used to broadcast one number onto
many slots; this syntax is known as an “everything slice”. Without it, xs = 7 leads to xs
becoming an integer (number) variable, not an array, which isn’t what we want.

The real strength of arrays is that they let you carry out operations such as xs + ys: if
these were lists, you would be concatenating them, but for arrays addition is interpreted as
an elementwise operation (i.e., each pair of elements is added together).9 If you wanted to
do the same thing with lists you would need a listcomp and zip(). This ability to carry
out such batch operations on all the elements of an array (or two) at once is often called
vectorization. You could also use other operations, e.g., to sum the results of pairwise mul-
tiplication you simply say np.sum(xs*ys). This is simply evaluating the scalar product
of two vectors, in one short expression. Equally interesting is the ability NumPy has to
also combine an array with a scalar: this follows from the aforementioned broadcasting,
whereby NumPy knows how to interpret entities with different (but compatible) shapes.
For example, 2*xs doubles each array element; this is very different from what we saw in
the case of lists. You can think of what’s happening here as the value 2 being “stretched”
into an array with the same size as xs and then an elementwise multiplication taking place.
Needless to say, you could carry out several other operations with scalars, e.g., 1/xs. Such
combinations of broadcasting (whereby you can carry out operations between scalars and
arrays) and vectorization (whereby you write one expression but the calculation is carried
out for all elements) can be hard to grasp at first, but are very powerful (both expressive
and efficient) once you get used to them.

Another very useful function, np.where(), helps you find specific indices where a con-
dition is met, e.g., np.where(2 == xs) returns a tuple of arrays, so we would be in-
terested in its 0th element. NumPy also contains several functions that look similar to
corresponding math functions, e.g., np.sqrt(); these are are designed to take in entire
arrays so they are almost always faster. NumPy also has functions that take in an array and
return a scalar, like the np.sum() we encountered above. Another very helpful function is
np.argmax(), which returns the index of the maximum value. You can also use NumPy’s
functionality to create your own functions that can handle arrays. For example, our ear-
lier contribs = [w*f(x) for w,x in zip(ws,xs)] can be condensed into the much

9 Conversely, if you wish to concatenate two arrays you cannot use addition; use np.concatenate().
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Table 1.3 Important attributes of numpy arrays

Attribute Description

dtype Data type of array elements

ndim Number of dimensions of array

shape Tuple with number of elements for each dimension

size Total number of elements in array

cleaner contribs = ws*fa(xs), where fa() is designed to take in arrays (so, e.g., it
uses np.sqrt() instead of math.sqrt()).

Two-dimensional arrays In core Python, matrices can be represented by lists of lists
which are, however, quite clunky (as you’ll further experience in the following section).
In Python a list-of-lists is introduced by, e.g., LL = [[11,12], [13,14], [15,16]].
Just like for one-dimensional arrays, we can say A = np.array(LL) to produce a two-
dimensional array that contains the elements in LL. If you type print(A) the Python in-
terpreter knows how to strip the commas and split the output over three rows, making it
easy to see that it’s a two-dimensional entity, similar to a mathematical matrix.

Much of what we saw on creating one-dimensional arrays carries over to the two-
dimensional case. For example, A.size is 6: this is the total number of elements, including
both rows and columns. Another attribute is ndim, which tells us the dimensionality of the
array: A.ndim is 2 for our example. The number of dimensions can be thought of as the
number of distinct “axes” according to which we are listing elements. Incidentally, our ter-
minology may be confusing to those coming from a linear-algebra background. In linear
algebra, we say that a matrix A with m rows and n columns has “dimensions” m and n,
or sometimes that it has dimensions m × n. In contradistinction to this, the NumPy con-
vention is to refer to an array like A as having “dimension 2”, since it’s made up of rows
and columns (i.e., how many elements are in each row and in each column doesn’t mat-
ter). There exists yet another attribute, shape, which returns a tuple containing the number
of elements in each dimension, e.g., A.shape is (3, 2). Table 1.3 collects the attributes
we’ll need. You can also create two-dimensional arrays by passing a tuple with the desired
shape to the appropriate function, e.g., np.zeros((3,2)) or np.ones((4,6)). Another
function helps you make a square identity matrix via, e.g., np.identity(4). All of these
functions produce floats, by default.

If you want to produce an array starting from a hand-rolled list, but wish to avoid the
Python list-of-lists syntax (with double square brackets, as well as several commas), you
can start from a one-dimensional list, which is then converted into a one-dimensional ar-
ray, which in its turn is re-shaped into a two-dimensional array via the reshape() func-
tion, e.g., A = np.array([11,12,13,14,15,16]).reshape(3,2). Here’s another ex-
ample: A = np.arange(11,23).reshape(3,4). Observe how conveniently we’ve ob-
viated the multitude of square brackets and commas of LL.
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Examples of slicing a 3 × 4 two-dimensional array �Fig. 1.4

It is now time to see one of the nicer features of two-dimensional arrays in NumPy:
the intuitive way to access elements. To access a specific element of LL, you have to say,
e.g., LL[2][1]. Recall that we are using Python 0-indexing, so the rows are numbered
0th, 1st, 2nd, and analogously for the columns. This double pair of brackets, separating the
numbers from each other, is quite cumbersome and also different from how matrix notation
is usually done, i.e., Ai j or Ai, j. Thus, it comes as a relief to see that NumPy array elements
can be indexed simply by using only one pair of square brackets and a comma separated
pair of numbers, e.g., A[2, 1].

Slicing is equally intuitive, e.g., A[1,:] picks a specific row and uses an everything-
slice for the columns, and therefore leads to that entire row. Figure 1.4 shows a few other
examples: the highlighting shows the elements that are chosen by the slice shown at the
top of each matrix. The most interesting of these is probably A[:2,1:-1], which employs
the Python convention of using -1 to denote the last element, in order to slice the “mid-
dle” columns: 1:-1 avoids the first/0th column and the last column. We also show a few
examples that employ a stride when slicing. To summarize, when we use two numbers
to index (such as A[2,1]), we go from a two-dimensional array to a number. When we
use one number to index/slice (such as A[:,2]), we go from a two-dimensional array to
a one-dimensional array. When we use slices (such as A[::2,:]), we get collections of
rows, columns, individual elements, etc. We can combine what we just learned about slic-
ing two-dimensional arrays with what we already know about NumPy broadcasting. For
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example, A[:,:] = 7 overwrites the entire matrix and you could do something analogous
for selected rows, columns, etc.

Similarly to the one-dimensional case, vectorized operations for two-dimensional arrays
allow us to, say, add together (elementwise) two square matrices, A + B. On the other
hand, a simple multiplication is also carried out elementwise, i.e., each element in A is
multiplied by the corresponding element in B when saying A*B. This may be unexpected
behavior, if you were looking for a matrix multiplication. To repeat, array operations are
always carried out elementwise, so when you multiply two two-dimensional arrays you get
the Hadamard product, (A � B)i j = Ai jBi j. The matrix multiplication that you know from
linear algebra follows from a different formula, namely (AB)i j =

∑
k AikBk j, see Eq. (C.10).

From Python 3.5 and onward10 you can multiply two matrices using the @ infix operator,
i.e., A@B. In older versions you had to say np.dot(A,B), which was not as intuitive as
one would have liked. There are many other operations one could carry out, e.g., we can
multiply together a two-dimensional and a one-dimensional matrix, A@xs or xs@A. It’s easy
to come up with more convoluted examples; here’s another one: xs@A@ys is much easier to
write (and read) than np.dot(xs,np.dot(A,ys)). A problem studies the dot product of
two one-dimensional arrays in detail: the main takeaway is that we compute it via xs@ys.11

In a math course, to take the dot product of two vectors you had to first take the transpose
of the first vector (to have the dimensions match); conveniently, NumPy takes care of all of
that for us, allowing us to simply say xs@ys.12 Finally, broadcasting with two-dimensional
arrays works just as you’d expect, e.g., A/2 halves all the matrix elements.

NumPy contains several other important functions, with self-explanatory names. Since
we just mentioned the (potential) need to take the transpose, you may not be surprised to
hear that NumPy has a function called transpose(); we prefer to access the transpose
as an array attribute, i.e., A.T. You may recall our singing the praises of the for loop
in Python; well, another handy idiom involves iterating over rows via for row in A: or
over columns via for column in A.T:; marvel at how expressive both these options are.
Iterating over columns will come in very handy in section 4.4.4 when we will be handling
eigenvectors of a matrix.

You may recall that in linear algebra the product of an n × 1 column vector and a 1 × n
row vector produces an n × n matrix. If you try to do this “naively” in NumPy, you will
be disappointed: both xs@ys and xs@(ys.T) give a number (the same one). Inspect the
shape attribute of ys and of ys.T to see what’s going on. What you really need is the
function np.outer(), which computes the outer product, e.g., np.outer(xs, ys).

All the NumPy functions we mentioned earlier, such as np.sqrt(), also work on two-
dimensional arrays, and the same holds for subtraction, powers, etc. Intriguingly, functions
like np.sum(), np.amin(), and np.amax() also take in an (optional) argument axis: if
you set axis = 0 you operate along rows and axis = 1 operates along columns. Sim-
ilarly, we can create our own user-defined functions that know how to handle an entire
two-dimensional array/matrix at once. There are also several handy functions that are in-
tuitively easier to grasp for the case of two-dimensional arrays, e.g., np.diag() to get the

10 Python 3.5 was already 5 years old when the present textbook came out.
11 Make sure not to get confused by the fact that A@B produces a matrix but xs@ys produces a number.
12 Similarly, when multiplying a vector with a matrix, xs@A is just as simple to write as A@xs.
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diagonal elements, or np.tril() to get the lower triangle of an array and np.triu() to
get the upper triangle. In chapter 8 we will also need to use np.meshgrid(), which takes
in two coordinate vectors and returns coordinate matrices. Another very helpful function
is np.fill diagonal() which allows you to efficiently update the diagonal of a matrix
you’ve already created. Finally, np.trace() often comes in handy.

The default storage-format for a NumPy array in memory is row major: as a beginner,
you shouldn’t worry about this too much, but it means that rows are stored in order, one
after the other. This is the same format used by the C programming language. If you wish
to use, instead, Fortran’s column-major format, presumably in order to interoperate with
code in that language, you simply pass in an appropriate keyword argument when creating
the array. If you structure your code in the “natural” way, i.e., first looping through rows
and then through columns, all should be well, so you can ignore this paragraph.

1.7 Project: Visualizing Electric Fields

Each chapter concludes with a physical application of techniques introduced up to that
point. Since this is only the first chapter, we haven’t covered any numerical methods yet.
Even so, we can already start to look at some physics that is not so accessible without
a computer by using matplotlib for more than just basic plotting. We will visualize a
vector field, i.e., draw field lines for the electric field produced by several point charges.

1.7.1 Electric Field of a Distribution of Point Charges

Very briefly, let us recall Coulomb’s law: the force on a test charge Q located at point P (at
the position r), coming from a single point charge q0 located at r0 is given by:

F0 = k
q0Q

(r − r0)2

r − r0

|r − r0|
(1.1)

where Coulomb’s constant is k = 1/(4πε0) in SI units (and ε0 is the permittivity of free
space). The force is proportional to the product of the two charges, inversely proportional
to the square of the distance between the two charges, and points along the line from charge
q0 to charge Q. The electric field is then the ratio of the force F0 with the test charge Q in
the limit where the magnitude of the test charge goes to zero. In practice, this gives us:

E0(r) = kq0
r − r0

|r − r0|3
(1.2)

where we cancelled out the Q and also took the opportunity to combine the two denomi-
nators. This is the electric field at the location r due to the point charge q0 at r0.

If we were faced with more than one point charge, we could apply the principle of
superposition: the total force on Q is made up of the vector sum of the individual forces
acting on Q. As a result, if we were dealing with the n point charges q0, q1, . . . , qn−1 located
at r0, r1, . . . , rn−1 (respectively) then the situation would be that shown in Fig. 1.5. Our
figure is in two dimensions for ease of viewing, but the formalism applies equally well to
three dimensions. The total electric field at the location r is:
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�Fig. 1.5 Physical configuration made up of n point charges

E(r) =
n−1∑
i=0

Ei(r) =
n−1∑
i=0

kqi
r − ri

|r − ri|3
(1.3)

namely, a sum of the individual electric field contributions, Ei(r). Note that you can con-
sider this total electric field at any point in space, r. Note, also, that the electric field is a
vector quantity: at any point in space this E has a magnitude and a direction. One way of
visualizing vector fields consists of drawing field lines, namely imaginary curves that help
us keep track of the direction of the field. More specifically, the tangent of a field line at a
given point gives us the direction of the electric field at that point. Field lines do not cross;
they start at positive charges (“sources”) and end at negative charges (“sinks”).

1.7.2 Plotting Field Lines

We will plot the electric field lines in Python; while more sophisticated ways of visual-
izing a vector field exist (e.g., line integral convolution), what we describe below should
be enough to give you a qualitative feel for things. While plotting functions (or even li-
braries) tend to change much faster than other aspects of the programming infrastructure,
the principles discussed apply no matter what the specific implementation looks like.

We are faced with two tasks: first, we need to produce the electric field (vector) at several
points near the charges as per Eq. (1.3) and, second, we need to plot the field lines in such a
way that we can physically interpret what is happening. As in the previous code, we make
a Python function for each task. For simplicity, we start from a problem with only two
point charges (of equal magnitude and opposite sign). Also, we restrict ourselves to two
dimensions (the Cartesian x and y).

Code 1.3 is a Python implementation, where Coulomb’s constant is divided out for sim-
plicity. We start by importing numpy and matplotlib, since the heavy lifting will be done
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vectorfield.py Code 1.3

import numpy as np

import matplotlib.pyplot as plt

from math import sqrt

from copy import deepcopy

def makefield(xs, ys):

qtopos = {1: (-1,0), -1: (1,0)}
n = len(xs)

Exs = [[0. for k in range(n)] for j in range(n)]

Eys = deepcopy(Exs)

for j,x in enumerate(xs):

for k,y in enumerate(ys):

for q,pos in qtopos.items():

posx, posy = pos

R = sqrt((x - posx)**2 + (y - posy)**2)

Exs[k][j] += q*(x - posx)/R**3

Eys[k][j] += q*(y - posy)/R**3

return Exs, Eys

def plotfield(boxl,n):

xs = [-boxl + i*2*boxl/(n-1) for i in range(n)]

ys = xs[:]

Exs, Eys = makefield(xs, ys)

xs=np.array(xs); ys=np.array(ys)

Exs=np.array(Exs); Eys=np.array(Eys)

plt.streamplot(xs, ys, Exs, Eys, density=1.5, color=‘m’)

plt.xlabel(‘$x$’)

plt.ylabel(‘$y$’)

plt.show()

plotfield(2.,20)

by the function streamplot(), which expects NumPy arrays as input. We also import the
square root and the deepcopy() function, which can create a distinct list-of-lists.

The function makefield() takes in two lists, xs and ys, corresponding to the coordi-
nates at which we wish to evaluate the electric field (x and y together make up r). We also
need some way of storing the ri at which the point charges are located. We have opted to
store these in a dictionary, which maps from charge qi to position ri. For each position r
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we need to evaluate E(r): in two dimensions, this is made up of Ex(r) and Ey(r), namely
the two Cartesian components of the total electric field. Focusing on only one of these for
the moment, say Ex(r), we realize that we need to store its value for any possible r, i.e., for
any possible x and y values. We decide to use a list-of-lists, produced by a nested list com-
prehension. We then create another list-of-lists, for Ey(r). We need to map out (i.e., store)
the value of the x and y components of the total electric field, at all the desired values of the
vector r, namely, on a two-dimensional grid made up of xs and ys. This entails computing
the electric field (contribution from a given point charge qi) at all possible y’s for a given
x, and then iterating over all possible x’s. We also need to iterate over our point charges qi

and their locations ri (i.e., the different terms in the sum of Eq. (1.3)); we do this by saying
for q, pos in qtopos.items(): at which point we unpack pos into posx and posy.

We thus end up with three nested loops: one over possible x values, one over possible y
values, and one over i. All three of these are written idiomatically, employing items() and
enumerate(). The latter was used to ensure that we won’t only have access to the x and
the y values, which are needed for the right-hand side of Eq. (1.3), but also to two indices
( j and k) that will help us store the electric-field components in the appropriate list-of-lists
entry, e.g., Exs[k][j].13 This storing is carried out after defining a helper variable to keep
track of the vector magnitude that appears in the denominator in Eq. (1.3). You should
think about the += a little bit: since the left-hand side is for given j and k, the summation
is carried out only when we iterate over the qi (and ri). Incidentally, our idiomatic iteration
over the point charges means that we don’t even need an explicit i index.

Our second function, plotfield(), is where we build our two-dimensional grid for
the xs and ys.14 We take in as parameters the length L and the number of points n we
wish to use in each dimension and create our xs using a list comprehension; all we’re
doing is picking x’s from −L to L. We then create a copy of xs and name it ys. After this,
we call our very own makefield() to produce the two lists-of-lists containing Ex(r) and
Ey(r) for many different choices of r. The core of the present function consists of a call
to matplotlib’s function streamplot(); this expects NumPy arrays instead of Python
lists, so we convert everything over. If you skipped section 1.6, as you were instructed
to do, you should relax: this call to np.array() is all you need to know for now (and
until chapter 4). We also pass in to streamplot() two (optional) arguments, to ensure
that we have a larger density of field lines and to choose the color. Most importantly,
streamplot() knows how to take in Exs and Eys and output a plot containing curves
with arrows, exactly like what we are trying to do. We also introduce x and y labels, using
dollar signs to make the symbols look nicer.

The result of running this code is shown in the left panel of Fig. 1.6. Despite the fact that
the charges are not represented by a symbol in this plot, you can easily tell that you are
dealing with a positive charge on the left and a negative charge on the right. At this point,
we realize that a proper graphic representation of field lines also has another feature: the
density of field lines should correspond to the strength of the field (i.e., its magnitude). Our

13 The order of the indices is a bit confusing, but we are merely following streamplot()’s documentation.
14 This would all be much easier with two-dimensional arrays, but you skipped that section.
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Visualizing the electric fields resulting from two and four point charges �Fig. 1.6

figure has discarded that information: the density argument we passed in had a constant
value. This is a limitation of the streamplot() function.

However, there is a way to represent both the direction (as we already did) and the
strength of the field using streamplot(): this involves using the optional linewidth
parameter. The argument passed in to linewidth can be a two-dimensional NumPy array,
which keeps track of the strength at each point on the grid; it’s probably better to pass
in, instead, the logarithm of the magnitude at each point (possibly also using an offset).
We show the result of extending our code to also include line width in the right panel of
Fig. 1.6, where a stronger field is shown using a thicker line. This clearly shows that the
field strength is larger near the charges (and in between them) than it is as you go far away
from them. To make things interesting, this shows a different situation than the previous
plot did: we are now dealing with four charges (two positive and two negative, all of equal
magnitude). We also took the opportunity to employ symbols representing the position of
the point charges themselves.

1.8 Problems

1. Study the following program, meant to evaluate the factorial of a positive integer:

def fact(n):

if n==0:

val = 1

else:

val = n*fact(n-1)

return val

print(fact(10))
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This uses recursion: essentially, we are writing the solution to our problem in terms of
the solution of a smaller version of the same problem. The function then calls itself re-
peatedly. At some point we reach the base case, where the answer can be directly given.
Recursion is really helpful when the problem you are solving is amenable to a “divide-
and-conquer” approach, as we will see in chapter 6. For the example above, recursion
is quite unnecessary: write a Python function that evaluates the factorial iteratively.

2. Solve this problem without a computer. This program suffers from at least one error:

from math import *

one = (log10, sin, log, exp)

other = {}
for o in one[1:]:

other[o.] = o(1.)

print(other)

Explain what this code is doing and what will get printed out after you fix it up.
3. Produce a function, descr(), which describes properties of the function and argument

value that are passed in to it. Define it using def descr(f, x):.

(a) Write the function body; this should separately print out f, x, and f(x). Now call
it repeatedly, for a number of user-defined and Python standard library functions.
Notice that when you print out f the output is not human friendly.

(b) Pass in as the first argument not the function but a string containing the function
name. You now need a mechanism that converts the string you passed in to a func-
tion (since you still need to print out f(x)). Knowing the list of possibilities, create
a dictionary that uses strings as keys and functions as values.

(c) Modify the previous program so that the first argument that is passed in to descr()
is a function, not a string. In order to produce the same output, you must also modify
the body of the function since your dictionary will now be different.

4. Iterate through a list xs in reverse, printing out both the index (which will be decreasing)
and each element itself. Try to come up with both Pythonic and unPythonic solutions.

5. Investigate the relative efficiency of multiplying two one-dimensional NumPy arrays,
as and bs; these should be large and with non-constant content. Do this in four distinct
ways: (a) sum(as*bs), (b) np.sum(as*bs), (c) np.dot(as,bs), and (d) as@bs. You
may wish to use the default timer() function from the timeit module. To produce
meaningful timing results, repeat such calculations thousands of times (at least).

6. Take two matrices, A and B, which are n × m′ and m′ × m, respectively. Implement
matrix multiplication, without relying on numpy’s @ or dot() as applied to matrices.

(a) Write the most obvious implementation you can think of, which takes in A and B
and returns a new C. Use three loops.

(b) Write a function without the third loop by applying @ to vectors.
(c) Write a third function that takes in A and B and returns C, but this time these are

lists-of-lists, instead of arrays.
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(d) Test the above three functions by employing specific examples for A and B, say
3 × 4 and 4 × 2, respectively.

7. Write your own functions that implement functionality similar to:

(a) np.argmax()
(b) np.where()

where the input will be a one-dimensional NumPy array. Note that np.where() is
equivalent to np.nonzero() for this case.

8. Rewrite Code 5.7, i.e., action.py, such that:

(a) The two lines involving arr[1:-1] now use an explicit loop and index.
(b) The calls to np.fill diagonal() are replaced by explicit loop(s) and indices.

Compare the expressiveness (and total line-count) in your code vs that in action.py.
9. We now help you produce the right panel of Fig. 1.6:

(a) First try to produce the curves themselves. You’ll need to appropriately place two
positive and two negative charges and plot the resulting field lines. (Remember that
dictionaries don’t let you use duplicate keys, for good reason.)

(b) Introduce line width, by producing a list of lists containing the logarithm of the
square root of the sum of the squares of the components of the electric field at that
point, i.e., log

[ √
(Ex(r))2 + (Ey(r))2

]
at each r.

(c) Figure out how to add circles/dots (of color corresponding to the charge sign).
(d) Re-do this plot for the case of four positive (and equal) charges.

10. The previous problem was made somewhat easier by the fact that you knew what the
answer had to look like. You will now need to produce a plot for the field lines (including
line width) for the case of four alternating charges on a line. Place all four charges on
the x axis, and give their xi positions the values −1, −0.5, 0.5, and 1. The leftmost
charge should be positive and the next one negative, and so on (they are all of equal
magnitude).
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An educated mind expects only the precision which a given subject admits.
Aristotle

2.1 Motivation

We don’t really have to provide a motivation regarding the importance of numbers in
physics: both experimental measurements and theoretical calculations produce specific
numbers. Preferably, one also estimates the experimental or theoretical uncertainty associ-
ated with these values.

We have, semi-arbitrarily, chosen to discuss a staple of undergrad physics education, the
photoelectric effect. This arises when a metal surface is illuminated with electromagnetic
radiation of a given frequency ν and electrons come out. In 1905 Einstein posited that
quantization is a feature of the radiation itself. Thus, a light quantum (a photon) gives up
its energy (hν, where h is now known as Planck’s constant) to an electron, which has to
break free of the material, coming out with a kinetic energy of:

E = hν −W (2.1)

where W is the work function that relates to the specific material. The maximum kinetic
energy E of the photoelectrons could be extracted from the potential energy of the electric
field needed to stop them, via E = eVs, where Vs is the stopping potential and e is the
charge of the electron. Together, these two relations give us:

eVs = hν −W (2.2)

Thus, if one produces data relating Vs with ν, the slope would give us h/e.
In 1916, R. A. Millikan published a paper [67] titled “A direct photoelectric determi-

nation of Planck’s h”, where he did precisely that. Millikan’s device included a remotely
controlled knife that would shave a thin surface off the metal; this led to considerably en-
hanced photocurrents. It’s easy to see why Millikan described his entire experimental setup
as a “machine shop in vacuo”. Results from this paper are shown in Fig. 2.1. Having ex-
tracted the slope h/e, the author then proceeded to compute h by “inserting my value of
e”.1 The value Millikan extracted for Planck’s constant was:

h = 6.56 × 10−27erg s (2.3)
1 If you are surprised by this turn of phrase, you should recall that Millikan had measured e very accurately with

his oil-drop experiment in 1913.

28
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Millikan’s data on the photoelectric effect. Reprinted figure with permission from R. A.
Millikan, Phys. Rev. 7, 355 (1916), Copyright 1916 by the American Physical Society.

�Fig. 2.1

In his discussion of Fig. 2.1, Millikan stated that “it is a conservative estimate to place
the maximum uncertainty in the slope at about 1 in 200 or 0.5 per cent”.2 Translating this
to the above units, we find an uncertainty estimate of 0.03 × 10−27erg s. It’s worth noting
that Richardson and Compton’s earlier experimental results [78] had a slope uncertainty
that was larger than 60 percent. The above extraction is to be compared with the mod-
ern determination of h = 6.626070040(81) × 10−27erg s. Overall, Millikan’s result was a
huge improvement on earlier works and turned out to be important in the acceptance of
Einstein’s work and of light quanta.3

For the sake of completeness, we note that the aforementioned error estimate follows
from assuming a linear relationship. It would have probably been best to start from Mil-
likan’s earlier comment that “the maximum possible error in locating any of the intercepts
is say two hundredths of a volt” and then do a least-squares fit, as explained in chapter 6.
This isolated example already serves to highlight that even individual experimental mea-
surements have associated uncertainties; nowadays, experimental data points are always
given along with a corresponding error bar. Instead of multiplying the examples where
experiment and theory interact fruitfully, we now turn to the main theme of this chapter,
which is the presence of errors when storing and computing numbers.

2.2 Errors

In this text we use the word accuracy to describe the match of a value with the (possibly
unknown) true value. On the other hand, we use the word precision to denote how many

2 Reprinted excerpts with permission from R. A. Millikan, Phys. Rev. 7, 355 (1916), Copyright 1916 by the
American Physical Society.

3 Intriguingly, Millikan himself was far from being convinced that quantum theory was relevant here, speaking
of “the bold, not to say the reckless, hypothesis of an electro-magnetic light corpuscle”.
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digits we can use in a mathematical operation, whether these digits are correct or not. An
inaccurate result arises when we have an error. This can happen for a variety of reasons,
only one of which is limited precision. Excluding “human error” and measurement un-
certainty in the input data, there are typically two types of errors we have to deal with in
numerical computing: approximation error and rounding error. In more detail:

• Approximation errors Here’s an example. You are trying to approximate the exponen-
tial, ex, using its Taylor series:

y =
nmax∑
n=0

xn

n!
(2.4)

Obviously, we are limiting the sum to the terms up to nmax (i.e., we are including the
terms labelled 0, 1, . . . , nmax and dropping the terms from nmax + 1 to∞). As a result,
it’s fairly obvious that the value of y for a given x may depend on nmax. In principle,
at the mere cost of running one’s calculation longer, one can get a better answer.4

• Roundoff errors These are also known as rounding errors. This type of error appears
every time a calculation is carried out using floating-point numbers: since these don’t
have infinite precision, some information is lost. Here’s an example: using real num-
bers, it is easy to see that (

√
2)2 − 2 = 0. However, when carrying out the same

operation in Python we get a non-zero answer:

>>> (sqrt(2))**2 - 2

4.440892098500626e-16

This is because
√

2 cannot be evaluated with infinitely many digits on the computer.
Thus, the (slightly inaccurate) result for sqrt(2) is then used to carry out a second
calculation, namely the squaring. Finally, the subtraction is yet another mathematical
operation that can lead to rounding error.5 Often, roundoff errors do not go away even
if you run the calculation longer.

In the present chapter we will talk quite a bit about roundoff errors. In the next chapter
we talk about the combined effect of approximation and roundoff errors. The chapters after
that typically focus only on approximation errors, i.e., on estimating how well a specific
method performs in principle. Before we get that far, however, let us first try to introduce
some basic concepts, without limiting ourselves to any one kind of error.

2.2.1 Absolute and Relative Error

Assume we are studying a quantity whose exact value is x. If x̃ is an approximate value for
it, then we can define the absolute error as follows:6

4 But keep reading, since roundoff error becomes important here, too.
5 Again, this is discussed much more thoroughly in the rest of the chapter.
6 Other authors employ a different definition of the absolute error, which differs by an overall minus sign.
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Δx = x̃ − x (2.5)

We don’t specify at this point the source of this absolute error: it could be uncertainties in
the input data, an inaccuracy introduced by our imperfect earlier calculation, or the result
of roundoff error (possibly accumulated over several computations). For example:

x0 = 1.000, x̃0 = 0.999 (2.6)

corresponds to an absolute error ofΔx0 = −10−3. This also allows us to see that the absolute
error, as defined, can be either positive or negative. If you need it to be positive (say, in
order to take its logarithm), simply take the absolute value.

We are usually interested in defining an error bound of the form:

|Δx| ≤ ε (2.7)

or, equivalently:

|x̃ − x| ≤ ε (2.8)

where we hope that ε is “small”. Having access to such an error bound means that we can
state something very specific regarding the (unknown) exact value x:

x̃ − ε ≤ x ≤ x̃ + ε (2.9)

This means that, even though we don’t know the exact value x, we do know that it could
be at most x̃ + ε and at the least x̃ − ε. Keep in mind that if you know the actual absolute
error, as in our Δx0 = −10−3 example above, then, from Eq. (2.5), you know that:

x = x̃ − Δx (2.10)

and there’s no need for inequalities. The inequalities come into the picture when you don’t
know the actual value of the absolute error and only know a bound for the magnitude of
the error. The error bound notation |Δx| ≤ ε is sometimes rewritten in the form x = x̃ ± ε,
though you should be careful: this employs our definition of maximal error (i.e., the worst-
case scenario) as above, not the usual standard error (i.e., the statistical concept you may
have encountered in a lab course).

Of course, even at this early stage, one should think about exactly what we mean by
“small”. Our earlier case of Δx0 = −10−3 probably fits the bill. But what about:

x1 = 1 000 000 000.0, x̃1 = 999 999 999.0 (2.11)

which corresponds to an absolute error of Δx1 = −1? Obviously, this absolute error is
larger (in magnitude) than Δx0 = −10−3. On the other hand, it’s not too far-fetched to
say that there’s something wrong with this comparison: x1 is much larger (in magnitude)
than x0, so even though our approximate value x̃1 is off by a unit, it “feels” closer to the
corresponding exact value than x̃0 was.
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This is resolved by introducing a new definition. As before, we are interested in a quan-
tity whose exact value is x and an approximate value for it is x̃. Assuming x � 0, we can
define the relative error as follows:

δx =
Δx
x
=

x̃ − x
x

(2.12)

Obviously, this is simply the absolute error Δx divided by the exact value x. As before, we
are not specifying the source of this relative error (input-data uncertainties, roundoff, etc.).
Another way to express the relative error is:

x̃ = x(1 + δx) (2.13)

You should convince yourself that this directly follows from Eq. (2.12). We will use this
formulation repeatedly in what follows.7

Let’s apply our definition of the relative error to the earlier examples:

δx0 =
0.999 − 1.000

1.000
= −10−3, δx1 =

999 999 999.0 − 1 000 000 000.0
1 000 000 000.0

= −10−9

(2.14)
The definition of the relative error is consistent with our intuition: x̃1 is, indeed, a much
better estimate of x1 than x̃0 is of x0. Quite frequently, the relative error is given as a
percentage: δx0 is a relative error of −0.1% whereas δx1 is a relative error of −10−7%.

In physics the values of an observable can vary by several orders of magnitude (ac-
cording to density, temperature, and so on), so it is wise to employ the scale-independent
concept of the relative error, when possible.8 Just like for the case of the absolute error, we
can also introduce a bound for the relative error:

|δx| =
∣∣∣∣∣Δx

x

∣∣∣∣∣ ≤ ε (2.15)

where now the phrase “ε is small” is unambiguous (since it doesn’t depend on whether or
not x is large). Finally, we note that the definiton of the relative error in Eq. (2.12) involves
x in the denominator. If we have access to the exact value (as in our examples with x0 and
x1 above), all is well. However, if we don’t actually know the exact value, it is sometimes
more convenient to use, instead, the approximate value x̃ in the denominator. A problem
discusses this alternative definition and its connection with what we discussed above.

2.2.2 Error Propagation

So far, we have examined the concepts of the absolute error and of the relative error (as
well as the corresponding error bounds). These were discussed in general, without any

7 You can also expand the parentheses and identify xδx = Δx, to see that this leads to x̃ = x + Δx.
8 Once again, if you need the relative error to be positive, simply take the absolute value.
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details provided regarding the mathematical operations carried out using these numbers.
We now proceed to discuss the elementary operations (addition, subtraction, multiplica-
tion, division), which will hopefully give you some insights into combining approximate
values together. One of our goals is to see what happens when we put together the error
bounds for two numbers a and b to produce an error bound for a third number, x. In other
words, we will study error propagation. Near the end of the section, we will study more
general scenarios, in which one is faced with more complicated mathematical operations
(and possibly more than two numbers being operated on). In what follows, it’s important to
keep in mind that these are maximal errors, so our results will be different (and likely more
pessimistic) than what you may have encountered in a standard course on experimental
measurements.

Addition or Subtraction

We are faced with two real numbers a and b, and wish to take their difference:

x = a − b (2.16)

As usual, we don’t know the exact values, but only the approximate values ã and b̃, so what
we form instead is the difference of these:

x̃ = ã − b̃ (2.17)

Let us now apply Eq. (2.10) twice:

ã = a + Δa, b̃ = b + Δb (2.18)

Plugging the last four equations into the definition of the absolute error, Eq. (2.5), we have:

Δx = x̃ − x = (a + Δa) − (b + Δb) − (a − b) = Δa − Δb (2.19)

In the third equality we cancelled what we could.
We now recall that we are interested in finding relations between error bounds. Thus, we

take the absolute value and then use the triangle inequality to find:

|Δx| ≤ |Δa| + |Δb| (2.20)

You should convince yourself that a fully analogous derivation leads to exactly the same
result for the case of addition of the two numbers a and b. Thus, our main conclusion so
far is that in addition and subtraction adding together the bounds for the absolute errors
in the two numbers gives us the bound for the absolute error in the result.

Let’s look at an example. Assume that we have:

|4.56 − a| ≤ 0.14, |1.23 − b| ≤ 0.03 (2.21)

(If you are in any way confused by this notation, look up Eq. (2.7) or Eq. (2.8).) Our finding
in Eq. (2.20) implies that the following relation will hold, when x = a − b:

|3.33 − x| ≤ 0.17 (2.22)



34 Numbers

It’s easy to see that this error bound, simply the sum of the two error bounds we started
with, is larger than either of them. If we didn’t have access to Eq. (2.20), we could have
arrived at the same result the long way: (a) when a has the greatest possible value (4.70)
and b has the smallest possible value (1.20), we get the greatest possible value for a − b,
namely 3.50, and (b) when a has the smallest possible value (4.42) and b has the greatest
possible value (1.26), we get the smallest possible value for a − b, namely 3.16.

As the form of our main result in Eq. (2.20), applied just now in a specific example,
shows, we simply add up the absolute error bounds. As mentioned earlier, this is different
from what you do when you are faced with “standard errrors” (namely, standard deviations
of the sampling distribution): in that case, the absolute errors add “in quadrature”. We
repeat that our result is more pessimistic (i.e., tries to account for the worst-case scenario).
We won’t keep repeating this warning below.

Catastrophic Cancellation

Let us examine the most interesting special case: a ≈ b (for which case x = a− b is small).
Dividing our result in Eq. (2.20) with x gives us the relative error (bound) in x:

|δx| =
∣∣∣∣∣Δx

x

∣∣∣∣∣ ≤ |Δa| + |Δb|
|a − b| (2.23)

Now, express Δa and Δb in terms of the corresponding relative error: Δa = aδa and Δb =
bδb. Since a ≈ b, you can factor |a| out:

|δx| ≤ (|δa| + |δb|) |a||a − b| (2.24)

It’s easy to see that if a ≈ b then |a − b| will be much smaller than |a| so, since the fraction
will be large, the relative errors δa and δb will be magnified.9

Let’s look at an example. Assume that we have:

|1.25 − a| ≤ 0.03, |1.20 − b| ≤ 0.03 (2.25)

that is, a relative error (bound) δa ≈ 0.03/1.25 = 0.024 or roughly 2.4% (this is approx-
imate, because we divided with ã, not with the, unknown, a). Similarly, the other relative
error (bound) is δb ≈ 0.03/1.20 = 0.025 or roughly 2.5%. From Eq. (2.24) we see that the
relative error for the difference will obey:

|δx| ≤ (0.024 + 0.025)
1.25
0.05

= 1.225 (2.26)

where the right-hand side is an approximation (using ã and x̃). This shows us that two
numbers with roughly 2.5% relative errors were subtracted and the result has a relative
error which is more than one hundred percent! This is sometimes known as subtractive
or catastrophic cancellation. For the purists, we note that catastrophic cancellation refers
to the case where the two numbers we are subtracting are themselves subject to errors, as

9 This specific issue doesn’t arise in the case of addition, since there the denominator doesn’t have to be tiny.
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above. There also exists the scenario of benign cancellation which shows up when you sub-
tract quantities that are exactly known (though that is rarely the case in practice) or when
the result of the subtraction does not need to be too accurate for what follows. The dis-
tinction between catastrophic and benign cancellation is further explained in the problems
(including the classic example of a simple quadratic equation) and in section 2.4 below.

Multiplication or Division

We are faced with two real numbers a and b, and wish to take their product:

x = ab (2.27)

As usual, we don’t know the exact values, but only the approximate values ã and b̃, so what
we form instead is the product of these:

x̃ = ãb̃ (2.28)

With some foresight, we will now apply Eq. (2.13) twice:

ã = a(1 + δa), b̃ = b(1 + δb) (2.29)

Plugging the last four equations into the definition of the relative error, Eq. (2.12), we have:

δx =
x̃ − x

x
=

ãb̃ − ab
ab

=
a(1 + δa)b(1 + δb) − ab

ab
= 1 + δa + δb + δaδb − 1 = δa + δb

(2.30)

In the fourth equality we cancelled the ab. In the fifth equality we cancelled the unit and
we dropped δaδb since this is a higher-order term (it is the product of two small terms).

We now recall that we are interested in finding relations between error bounds. Thus, we
take the absolute value and then use the triangle inequality to find:

|δx| ≤ |δa| + |δb| (2.31)

In one of the problems you will carry out the analogous derivation for the case of division of
the two numbers a and b, finding exactly the same result. Thus, our new conclusion is that
in multiplication and division adding together the bounds for the relative errors in the two
numbers gives us the bound for the relative error in the result. Observe that for addition
or subtraction we were summing absolute error bounds, whereas here we are summing
relative error bounds. This distinction between the two is the source of the conclusion that
typically multiplication and division don’t cause too much trouble, whereas addition and
(especially) subtraction can cause headaches.

Let’s look at an example. Assume that we have the same numbers as in the section on
catastrophic cancellation:

|1.25 − a| ≤ 0.03, |1.20 − b| ≤ 0.03 (2.32)
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that is, a relative error δa ≈ 0.03/1.25 = 0.024 of roughly 2.4% and a relative error
δb ≈ 0.03/1.20 = 0.025 of roughly 2.5%. Our finding in Eq. (2.31) implies that:

|1.5 − x|
|x| ≤ 0.049 (2.33)

namely a relative error bound of roughly 4.9%. It’s easy to see that this error bound, while
larger than either of the relative error bounds we started with, is nowhere near as dramatic
as what we found when we subtracted the same two numbers.

General Error Propagation: Functions of One Variable

We have studied (maximal) error propagation for a couple of simple cases of combining
two numbers (subtraction and multiplication). But what about the error when you do some-
thing more complicated to a single number, e.g., take its square root or its logarithm?

Let us go over some notation. The absolute error in a variable x is defined as per
Eq. (2.5):

Δx = x̃ − x (2.34)

We are now interested in a more involved quantity, namely y = f (x). We start from the
absolute error. We wish to calculate:

Δy = ỹ − y = f (x̃) − f (x) (2.35)

What we’ll do is to Taylor expand f (x̃) around x. This gives us:

Δy = f (x + Δx) − f (x)

= f (x) +
d f (x)

dx
(x̃ − x) +

1
2

d2 f (x)
dx2

(x̃ − x)2 + · · · − f (x)

≈ d f (x)
dx

(x̃ − x) (2.36)

In the third line we cancelled the f (x) and disregarded the (x̃ − x)2 term and higher-order
contributions: assuming x̃ − x is small, this is legitimate. We now identify the term in
parentheses from Eq. (2.34), leading to:

Δy ≈ d f (x)
dx
Δx (2.37)

In words, we see that d f (x)/dx determines how strongly the absolute error in x will affect
the absolute error in y. To be specific, if you were faced with, say, y = x3, then you could
estimate the absolute error in y simply by taking a derivative: Δy ≈ 3x2Δx. Obviously,
when x is large the absolute error Δx gets amplified due to the presence of 3x2 in front.

It is straightforward to use Eq. (2.37) to get an estimate for the relative error in y:

δy =
Δy
y
≈ 1

f (x)
d f (x)

dx
Δx (2.38)

If we now multiply by and divide with x (assuming, of course, that x � 0) we find:
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δy ≈ x
f (x)

d f (x)
dx

δx (2.39)

which is our desired relation connecting δy with δx. Analogously to what we saw for the
case of the absolute error, our finding here shows us that the coefficient in front of δx de-
termines how strongly the relative error in x will affect the relative error in y. For example,
if you were faced with y = x4, then you could estimate the relative error in y as follows:

δy ≈ x
x4

4x3δx = 4δx (2.40)

that is, the relative error in y is worse than the relative error in x, but not dramatically so.10

General Error Propagation: Functions of Many Variables

For future reference, we oberve that it is reasonably straightforward to generalize our ap-
proach above to the case of a function of many variables, i.e., y = f (x0, x1, . . . , xn−1): the
total error Δy would then have contributions from each Δxi and each partial derivative:

Δy ≈
n−1∑
i=0

∂ f
∂xi
Δxi (2.41)

This is a general formula, which can be applied to functions of varying complexity. As a
trivial check, we consider the case:

y = x0 − x1 (2.42)

which a moment’s consideration will convince you is nothing other than the subtraction of
two numbers, as per Eq. (2.16). Applying our new general result to this simple case:

Δy ≈ Δx0 − Δx1 (2.43)

which is precisely the result we found in Eq. (2.19).
Equation (2.41) can now be used to produce a relationship for the relative error:

δy ≈
n−1∑
i=0

xi

f (x0, x1, . . . , xn−1)
∂ f
∂xi

δxi (2.44)

You should be able to see that this formula can be applied to almost all possible scenarios.11

An elementary test would be to take:

y = x0x1 (2.45)

10 You will apply both Eq. (2.37) and Eq. (2.39) to other functions when you solve the relevant problem.
11 Of course, in deriving our last result we assumed that y � 0 and that xi � 0.
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which is simply the multiplication of two numbers, as per Eq. (2.27). Applying our new
general result for the relative error to this simple case, we find:

δy ≈ x0

x0x1
x1δx0 +

x1

x0x1
x0δx1 = δx0 + δx1 (2.46)

which is precisely the result in Eq. (2.30).
You will benefit from trying out more complicated cases, e.g., y =

√
x0+ x3

1− log(x2). In
your resulting expression for δy, the coefficient in front of each δxi tells you by how much
(or if) the corresponding relative error is amplified.

2.3 Representing Real Numbers

Our discussion so far has been general: the source of the error, leading to an absolute or
relative error or error bound, has not been specified. At this point, we will turn our attention
to roundoff errors. In order to do that, we first go over the representation of real numbers on
the computer and then discuss simple examples of mathematical operations. For the rest of
the chapter, we will work on roundoff error alone: this will result from the representation
of a number (i.e., storing that number) or the representation of an operation (e.g., carrying
out a subtraction).

2.3.1 Basics

Computers use electrical circuits, which communicate using signals. The simplest such
signals are on and off. These two possibilities are encoded in what is known as a binary
digit or bit: bits can take on only two possible values, by convention 0 or 1.12 All types of
numbers are stored in binary form, i.e., as collections of 0s and 1s.

Python integers actually have unlimited precision, so we won’t have to worry about them
too much. In this book, we mainly deal with real numbers, so let’s briefly see how those are
represented on the computer. Most commonly, real numbers are stored using floating-point
representation. This has the general form:

± mantissa × 10exponent (2.47)

For example, the speed of light in scientific notation is +2.997 924 58 × 108 m/s.
Computers only store a finite number of bits, so cannot store exactly all possible real

numbers. In other words, there are “only” finitely many exact representations/machine
numbers.13 These come in two varieties: normal and subnormal numbers. There are three
ways of losing precision, as shown qualitatively in Fig. 2.2: underflow for very small num-
bers, overflow for very large numbers, and rounding for decimal numbers whose value falls

12 You can contrast this to decimal digits, which can take on 10 different values, from 0 to 9.
13 That is, finitely many decimal numbers that can be stored exactly using a floating-point representation.
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Illustration of exactly representable floating-point numbers �Fig. 2.2

between two exactly representable numbers. For more on these topics, you should look at
Appendix B; here we limit ourselves to simply quoting some results.

Python employs what are known as double-precision floating point numbers, also called
doubles; their storage uses 64 bits in total. Doubles can represent:

± 4.9 × 10−324 ↔ ±1.8 × 10308 (2.48)

This refers to the ability to store very large or very small numbers. Most of this ability
is found in the term corresponding to the exponent. For doubles, if we try to represent a
number that’s larger than 1.8 × 10308 we get overflow. Similarly, if we try to represent a
number that’s smaller than 4.9 × 10−324 we get underflow. Keep in mind that being able to
represent 4.9 × 10−324 does not mean that we are able to store 324 significant figures in a
double. The number of significant figures (and the related concept of precision) is found
in the coefficient in front (e.g., 1.8 or 1.234567). For doubles, the precision is 1 part in
252 ≈ 2.2 × 10−16, which amounts to 15 or 16 decimal digits.

2.3.2 Overflow

We can explore the above results programmatically. We will start from an appropriately
large value, in order to shorten the number of output lines:

>>> large = 2.**1021

for i in range(3):

... large *= 2

... print(i, large)

0 4.49423283715579e+307

1 8.98846567431158e+307

2 inf

This is what we expected: from 21024 ≈ 1.7976 × 10308 and onward we are no longer able
to store the result in a double. You can check this by saying:
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>>> 8.98846567431158e+307*1.999999999999999

1.797693134862315e+308

Multiplying by 2 would have led to inf, as above. Explicitly seeing when we get underflow
is left as a problem.

2.3.3 Machine Precision

We already mentioned that the precision for doubles is limited to ≈2.2 × 10−16. The pre-
cision is related to the distance between two vertical lines in the figure above for a given
region of interest: as we noted, anything between the two lines gets rounded, either to the
left or to the right. We now turn to the question of carrying out arithmetic operations us-
ing such numbers: this gives rise to the all-important question of rounding. This question
arises every time we are trying to combine two floating-point numbers but the answer is
not an exactly representable floating-point number. For example, 1 and 10 can be exactly
represented as doubles, but 1/10 cannot.

We first address an even simpler problem: five-digit decimal arithmetic. Let’s assume we
want to add together the two numbers 0.12345 and 1.2345. One could notice that 1.2345 =
0.12345× 101 while 0.12345 = 0.12345× 100, i.e., in an (imagined) system that used five-
digit decimal arithmetic these two numbers would have the same mantissa and different
exponents. However, that doesn’t help us when adding: to add two mantissas we have to
be sure they correspond to the same exponent (since that’s how addition works). Adding
them as real numbers (i.e., not five-digit decimal numbers) we get:

0.12345 + 1.2345 = 1.35795 (2.49)

But our answer now contains six decimal digits, 1.35795. Since we’re limited to five-digit
decimal numbers, this leaves us with the option of chopping the result down to 1.3579 or
rounding it up to 1.3580. Problems like this one also appear in other arithmetic operations
and for other representational systems (like binary).

Turning back to the question of the machine representation of doubles, we try to make
the concept of “precision” more specific. We define the machine precision εm as follows:
it is the gap between the number 1.0, on the one hand, and the smallest possible number
x̃ that is larger than 1.0 (x̃ > 1.0), on the other hand. If you have read Appendix B, you
should know that (given the form of the mantissa for normal doubles) the smallest number
we can represent obeying x̃ > 1.0 is 1 + 2−52. The gap between this number and 1 is
2−52 ≈ 2.2 × 10−16. In other words:

εm ≈ 2.2 × 10−16 (2.50)

We will make use of this repeatedly in what follows.
Instead of delving into a study of binary arithmetic (analogous to what we did above for

five-digit decimal arithmetic), let us investigate the definition of machine precision using
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Python. We start with a small number and keep halving it, after which operation we add it
on to 1.0: at some point, this is going to give us back 1.0: we then call the gap between
1.0 and the last number > 1 the machine precision. Explicitly:

>>> small = 1/2**50

>>> for i in range(3):

... small /= 2

... print(i, 1 + small, small)

0 1.0000000000000004 4.440892098500626e-16

1 1.0000000000000002 2.220446049250313e-16

2 1.0 1.1102230246251565e-16

As you can see, we started small at an appropriately small value, in order to shorten the
number of output lines. We can further explore this topic interactively. At first sight, the
results below might be confusing:

>>> 1. + 2.3e-16

1.0000000000000002

>>> 1. + 1.6e-16

1.0000000000000002

>>> 1. + 1.12e-16

1.0000000000000002

>>> 1. + 1.1e-16

1.0

We found that there exist numbers smaller than 2.2e-16 that when added to 1 lead to a
result that is larger than 1. If you pay close attention, you will notice that 1. + 1.6e-16
or 1. + 1.12e-16 are rounded to the same number that 1. + 2.22e-16 corresponds to
(namely, 1.0000000000000002). However, below a certain point, we start rounding down
to 1. In other words, for some values of small below the machine precision, we have a
computed value of 1.+small that is not 1, but corresponds to 1 + εm.14

Take a moment to appreciate that you can use a double to store a tiny number like 10−300,
but this doesn’t mean that you can store 1 + 10−300: to do so, you would need 301 digits of
precision (and all you have is 16).

2.3.4 Revisiting Subtraction

We discussed in an earlier section how bad catastrophic cancellation can be. At the time,
we were investigating general errors, which could have come from several sources. Let
us try to specifically investigate what happens in the case of subtraction when the only
errors involved are those due to roundoff, i.e., let us assume that the relative error δx is a
consequence of the fact that, generally speaking, x cannot be represented exactly on the

14 Some authors call the smallest value of small for which 1.+small doesn’t round down to 1 the unit roundoff
u: it is easy to see that this is related to the machine precision by εm = 2u.
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computer (i.e., it is typically not a machine number). Thus, when replacing x by its nearest
double-precision floating-point number, we make a roundoff error: without getting into
more detail, we will estimate the error’s magnitude using the machine precision, which as
we saw earlier is εm ≈ 2.2 × 10−16.15 Obviously, this is only an estimate: for example, the
error made when rounding to a subnormal number may be smaller (since subnormals are
more closely spaced). Another example: if x is a machine number, then it can be exactly
represented by x̃, so the relative error is actually 0. Our point in using εm is simply that one
should typically not trust floating-point numbers for more than 15–16 (relative) decimal
digits of precision.16 If you think of εm as an error bound, then the fact that sometimes the
error is smaller is OK.

Since we will estimate the relative error δx using εm, we see that the absolute error can
be considerably larger: from Eq. (2.12) we know that Δx = xδx, so if x is very large then
since we are taking εm ≈ 2.2 × 10−16 as being fixed at that value, it’s obvious that Δx can
become quite large. Let’s take a specific example: given a relative error ≈10−16, a specific
double of magnitude ≈1022 will have an absolute error in its last digit, of order 106.

Given that we use εm to find a general relative error in representing a real number via the
use of a floating-point number, we can re-express our result for catastrophic cancellation
from Eq. (2.24) as:

|δx| ≤ |a|
|a − b| 2εm (2.51)

Thus, due to the presence of |a|/|a−b|, the relative error when subtracting two nearly equal
numbers can be much larger than εm.

It might be worth making a distinction at this point between: (a) the loss of significant
figures when subtracting two nearly equal numbers, and (b) the loss of even more digits
when carrying out the subtraction using floating-point numbers (which have finite preci-
sion). Let’s start from the first case. Subtract two nearly equal numbers, each of which has
20 significant figures:

1.2345678912345678912−1.2345678900000000000 = 0.0000000012345678912 (2.52)

Note that here we subtracted real numbers (not floating-point representations) and wrote
out the answer explicitly. It’s easy to see that we started with 20 significant figures and
ended up with 11 significant figures, even though we’re dealing with real numbers/infinite
precision. We now turn to the second case, which is the carrying out of this subtraction
using floating-point numbers. We can use Python (doubles) to be explicit. We have:

>>> 1.2345678912345678912 - 1.2345678900000000000

1.234568003383174e-09

Comparing to the answer we had above (for real numbers), we see that we only match the
first 6 (out of 11) significant figures. This is partly a result of the fact that each of our initial

15 Note, however, that εm was defined in a related but slighty different context.
16 Incidentally, though we loosely use the term significant figures here and elsewhere, it’s better to keep in mind

the relative error, instead, which is a more precise and base-independent measure.
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numbers is not represented on the computer using the full 20 significant figures, but only
at most 16 digits. Explicitly:

>>> 1.2345678912345678912

1.234567891234568

>>> 1.2345678900000000000

1.23456789

>>> 1.234567891234568 - 1.23456789

1.234568003383174e-09

This shows that we lose precision in the first number, which then has to lead to loss of
precision in the result for the subtraction.

It’s easy to see that things are even worse than that, though: using real numbers, the
subtraction 1.234567891234568−1.23456789 would give us 0.000000001234568. Instead
of that, we get 1.234568003383174e-09. This is not hard to understand: a number like
1.234567891234568 typically has an absolute error in the last digit, i.e., of the order of
10−15, so the result of the subtraction generally cannot be trusted beyond that absolute
order (1.234568003383174e-09 can be rewritten as 1234568.003383174e-15). This
is a result of the fact that in addition or subtraction the absolute error in the result comes
from adding the absolute errors in the two numbers.

Just in case the conclusion is still not “clicking”, let us try to discuss what’s going on
using relative errors. Here the exact number is x = 0.0000000012345678912 while the
approximate value is x̃ = 0.000000001234568003383174. Since this is one of those situ-
ations where we can actually evaluate the error, let us do so. The definition in Eq. (2.12)
gives us δx ≈ 9.08684 × 10−8. Again, observe that we started with two numbers with rel-
ative errors of order 10−16, but subtracting them led to a relative error of order roughly
10−7. Another way to look at this result is to say that we have explicitly evaluated the left-
hand side of Eq. (2.51), δx. Now, let us evaluate the right-hand side of that equation. Here
a = 1.2345678912345678912 and a − b = 0.0000000012345678912. The right-hand side
comes out to be |a| 2εm/|a− b| ≈ 2.2× 10−7. Thus, we find that the inequality is obeyed (of
course), but the actual relative error is a factor of a few smaller than what the error bound
would lead us to believe. This isn’t too hard to explain: most obviously, the right-hand side
of Eq. (2.51) contains a 2, stemming from the assumption that both ã and b̃ have a relative
error of εm, but in our case b didn’t change when we typed it into the Python interpreter.

You should repeat the above exercise (or something like it) for the cases of addition,
multiplication, or division. It’s easy to come up with examples where you add two num-
bers, one of which is poorly constrained, and then you get a large absolute error in the
result (but still not as dramatic as in catastrophic cancellation). On the other hand, since in
multiplication and division only the relative errors add up, you can convince yourself that
since your starting numbers each have a relative error bound of roughly 10−16, the error
bound for the result is at worst twice that, which is typically not that bad.
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2.3.5 Comparing Floats

Since only machine numbers can be represented exactly (other numbers are rounded to the
nearest machine number), we have to be careful when comparing floating-point numbers.
We won’t go into the question of how operations with floating-point numbers are actually
implemented, but some examples may help explain the core issues.

Specifically, you should (almost) never compare two floating point variables x̃ and ỹ for
equality: you might have an analytical expectation that the corresponding two real numbers
x and y should be the same, but if the values of x̃ and ỹ are arrived at via different routes,
their floating-point representations may well be different. A famous example:

>>> xt = 0.1 + 0.2

>>> yt = 0.3

>>> xt == yt

False

>>> xt

0.30000000000000004

>>> yt

0.3

The solution is to (almost) never compare two floating-point variables for equality: instead,
take the absolute value of their difference, and check if that is smaller than some acceptable
threshold, e.g., 10−10 or 10−12. To apply this to our example above:

>>> abs(xt-yt)

5.551115123125783e-17

>>> abs(xt-yt) < 1.e-12

True

which behaves as one would expect.17

The above recipe (called an absolute epsilon) is fine when comparing natural-sized num-
bers. However, there are situations where it can lead us astray. For example:

>>> xt = 12345678912.345

>>> yt = 12345678912.346

>>> abs(xt-yt)

0.0010013580322265625

>>> abs(xt-yt) < 1.e-12

False

This makes it look like these two numbers are really different from each other, though

17 Well, almost: if you were carrying out the subtraction between 0.30000000000000004 and 0.3 using real
numbers, you would expect their difference to be 0.00000000000000004. Instead, since they are floats, the
answer turns out to be 5.551115123125783e-17.
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it’s plain to see that they aren’t. The solution is to employ a relative epsilon: instead of
comparing the two numbers to check whether they match up to a given small number, take
into account the magnitude of the numbers themselves, thereby making the comparison
relative. To do so, we first introduce a helper function:

>>> def findmax(x,y):

... return max(abs(x),abs(y))

This picks the largest magnitude, which we then use to carry out our comparison:

>>> xt = 12345678912.345

>>> yt = 12345678912.346

>>> abs(xt-yt)/findmax(xt,yt) < 1.e-12

True

Finally, note that there are situations where it’s perfectly fine to compare two floats for
equality, e.g., while 1.+small != 1.:. This specific comparison works: 1.0 is exactly
representable in double-precision, so the only scenario where 1.+small is equal to 1.0 is
when the result gets rounded to 1.0. Of course, this codicil to our rule (you can’t compare
two floats for equality, except when you can) in practice appears most often when compar-
ing a variable to a literal: there’s nothing wrong with saying if xt == 10.0: since 10.0
is a machine number and xt can plausibly round up or down to that value.

2.4 Rounding Errors in the Wild

Most of what we’ve had to say about roundoff error up to this point has focused on a single
elementary mathematical operation (e.g., one subtraction or one addition). Of course, in
actual applications one is faced with many more calculations (e.g., taking the square root,
exponentiating), often carried out in sequence. It is often said that rounding error for the
case where many iterations are involved leads to roundoff error buildup. This is not incor-
rect, but more often than not we are faced with one or two iterations that cause a problem,
which can typically not be undone after that point. Thus, in the present section we turn to
a study of more involved cases of rounding error.

2.4.1 Are Roundoff Errors Random?

At this point, many texts on computational science discuss a standard problem, that of
roundoff error propagation when trying to evaluate the sum of n numbers x0, x1, . . ., xn−1.
One way to go about this is by applying our discussion from section 2.2.2. If each number
has the same error bound ε, it’s easy to convince yourself that since the absolute errors
will add up, you will be left with a total error bound that is nε. This is most likely too
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pessimistic: it’s hard to believe that the errors for n numbers would never cancel, i.e., they
would all have the same sign and maximal magnitude.

What’s frequently done, instead, is to assume that the errors in the different terms are
independent, use the theory of random variables, and derive a result for the scaling with n
of the absolute or relative error for the sum

∑n−1
i=0 xi. We will address essentially the same

problem when we introduce Monte Carlo integration in chapter 7. There we will find that,
if ε is the standard deviation for one number, then the standard error for the sum turns out
to be

√
nε. For large n, it’s clear that

√
n grows much more slowly than n. Of course, this

is comparing apples (maximal errors) with oranges (standard errors).
One has to pause, for a minute, however, to think about the assumption that the errors of

these x0, x1, . . ., xn−1 are stochastically independent in general. As it so happens, many of
the examples we will discuss in the rest of this chapter would have been impossible if the
errors were independent. To take one case, the next contribution in a Taylor expansion is
clearly correlated to the previous contribution. Rounding errors are not random, are often
correlated, and usually look like discrete (i.e., not continuous) variables. These are points
that, while known to experts (see, e.g., N. Higham’s book [39]), are too often obscured
in introductory textbooks. The confusion may arise from the fact that the roundoff error
in the finite-precision representation of a real number may be modelled using a simple
distribution; this is wholly different from the roundoff error in a computation involving
floating-point numbers, which is most certainly not random.

Perhaps it’s best to consider a specific example. Let’s look at the rational function:

r(x) =
4x4 − 59x3 + 324x2 − 751x + 622

x4 − 14x3 + 72x2 − 151x + 112
(2.53)

In the problem set you will learn to code up polynomials using an efficient and accurate
approach known as Horner’s rule. In the following problem, you will apply what you’ve
learned to this specific rational function. You will find what’s shown in Fig. 2.3: this is
clear evidence that our method of evaluating the function is sensitive to roundoff error: the
typical error is ≈10−13. What’s more, the roundoff error follows striking patterns: the left
panel shows that the error is not uniformly random.18 To highlight the fact that the pattern
on the left panel is not simply a fluke, the right panel picks a different region and finds a
different pattern (again, a mostly non-random one). In the aforementioned problem, you
will not only reproduce these results, but also see how one could do better.

Where does this leave us? Since assuming totally independent standard errors is not war-
ranted and assuming maximal errors is too pessimistic, how do we proceed? The answer is
that one has to approach each problem separately, so there is no general result for the scal-
ing with n (beyond the formal relation in Eq. (2.44)). As noted, often only a few rounding
errors are the dominant contributions to the final error, so the question of finding a scaling
with n is moot. We hope that by seeing several cases of things going wrong (and how to fix
them), the reader will learn to identify the main classes of potential problems.

18 In which case we would be seeing “noise” instead of straight lines.
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Value of rational function discussed in the main text, at two different regions �Fig. 2.3

2.4.2 Compensated Summation

We now turn to a crucial issue regarding operations with floats; in short, due to roundoff
errors, when you’re dealing with floating-point numbers the associative law of algebra does
not necessarily hold. You know that 0.1 added to 0.2 does not give 0.3, but things are
even worse than that: the result of operations involving floating-point numbers may depend
on the order in which these operations are carried out. Here’s a simple example:

>>> (0.7 + 0.1) + 0.3

1.0999999999999999

>>> 0.7 + (0.1 + 0.3)

1.1

It’s pretty clear from the above example that, once again, operations that “should” give the
same answers (i.e., that do give the same answer when dealing with real numbers) may not.
This behavior is more than just a curiosity: it can have real-world consequences. In fact,
here’s an even more dramatic example:

>>> xt = 1.e20; yt = -1.e20; zt = 1.

>>> (xt + yt) + zt

1.0

>>> xt + (yt + zt)

0.0

In the first case, the two large numbers, xt and yt, cancel each other and we are left with the
unit as the answer. In the second case, we face a situation similar to that in subsection 2.3.3:
adding 1 to the (negative) large number yt simply rounds to yt; this is analogous to the 1.
+ small we encountered earlier, only this time we’re faced with big + 1. and it is the
unit that is dropped. Then, xt and yt cancel each other out (as before). If you’re finding
these examples a bit disconcerting, you are in good company.

Once you think about the problem more carefully, you might reach the conclusion that
the issue that arose here is not too problematic: you were summing up numbers of wildly
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Code 2.1 kahansum.py Code 2.1

def kahansum(xs):

s = 0.; e = 0.

for x in xs:

temp = s

y = x + e

s = temp + y

e = (temp - s) + y

return s

if name == ‘ main ’:

xs = [0.7, 0.1, 0.3]

print(sum(xs), kahansum(xs))

varying magnitudes, so you cannot trust the final answer too much. Unfortunately, as we’ll
see in section 2.4.4, sometimes you may not even be aware of the fact that the interme-
diate values in a calculation are large and of opposite signs (leading to cancellations), in
which case you might not even know how much you should trust the final answer. A lesson
that keeps recurring in this chapter is that you should get used to reasoning about your
calculation, in contradistinction to blindly trusting whatever the computer produces.

We don’t want to sound too pessimistic, so we will now see how to sum up numbers
very accurately. Our task is simply to sum up the elements of a list. In the problem set, we
will see that often one can simply sort the numbers and then add them up starting with the
smallest one. There are, however, scenarios where sorting the numbers to be summed is
not only costly but goes against the task you need to carry out. Most notably, when solving
initial-value problems in the study of ordinary differential equations (see chapter 8), the
terms have to be added in the same order as that in which they are produced.

Here we will employ a nice trick, called compensated summation or Kahan summation.
Qualitatively, what this does is to estimate the rounding error in each addition and then
compensate for it with a correction term. More specifically, if you are adding together two
numbers (a and b) and s̃ is your best floating-point representation for the sum, then if:

e = (a − s̃) + b (2.54)

we can compute ẽ to get an estimate of the error (a+b)− s̃, namely the information that was
lost when we evaluated s̃. While this doesn’t help us when all we’re doing is summing two
numbers19 it can really help when we are summing many numbers: add in this correction
to the next term in your series, before adding that term to the partial sum.

Typically, compensated summation is more accurate when you are adding a large num-
ber of terms, but it can also be applied to the case we encountered at the start of the present

19 s̃ + ẽ doesn’t get you anywhere, since s̃ was already the best we could do!
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section. Code 2.1 provides a Python implementation. This does what we described around
Eq. (2.54): it estimates the error in the previous addition and then compensates for it. Note
how our new function does not need any “length” arguments, since it simply steps through
the elements of the list. We then encounter a major new syntactic feature of Python: the line
if name == ‘ main ’: checks to see if we’re running the present file as the main
program (which we are). In this case, including this extra check is actually unnecessary:
we could have just defined our function and then called it. We will see the importance of
this further check later, when we wish to call kahansum() without running the rest of the
code. The output is:

1.0999999999999999 1.1

Thus, this simple function turns out to cure the problem we encountered earlier on. We
don’t want to spend too much time on the topic, but you should play around with compen-
sated summation, trying to find cases where the direct sum does a poor job (here’s another
example: xs = [123456789 + 0.01*i for i in range(10)]).

Even our progress has its limitations: if you take xs = [1.e20, 1., -1.e20], which
is (a modified version of) the second example from the start of this section, you will see
that compensated summation doesn’t lead to improved accuracy. In general, if:

∑
i

|xi| 


∣∣∣∣∣∣∣
∑

i

xi

∣∣∣∣∣∣∣ (2.55)

then compensated summation is not guaranteed to give a small relative error. On a different
note, Kahan summation requires more computations than regular summation: this perfor-
mance penalty won’t matter to us in this book, but it may matter in real-world applications.

2.4.3 Naive vs Manipulated Expressions

We now go over a simple example showing how easy it is to lose accuracy if one is not
careful; at the same time, we will see how straightforward it is to carry out an analytical
manipulation that avoids the problem. The task at hand is to evaluate the function:

f (x) =
1

√
x2 + 1 − x

(2.56)

for large values of x. A Python implementation using list comprehensions is given in
Code 2.2. The output of running this code is:

10000 19999.99977764674

100000 200000.22333140278

1000000 1999984.77112922

10000000 19884107.85185185

The answer appears to be getting increasingly worse as the x is increased. Well, maybe:
this all depends on what we expect the correct answer to be. On the other hand, the
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Code 2.2 naiveval.py Code 2.2

from math import sqrt

def naiveval(x):

return 1/(sqrt(x**2 + 1) - x)

xs = [10**i for i in range(4,8)]

ys = [naiveval(x) for x in xs]

for x, y in zip(xs, ys):

print(x, y)

code/expression we are using is certainly not robust, as you can easily see by running
the test case of x = 108. In Python this leads to a ZeroDivisionError since the terms in
the denominator are evaluated as being equal. This is happening because for large values
of x, we know that x2 + 1 ≈ x2. We need to evaluate the square root very accurately if we
want to be able to subtract a nearly equal number from it.

An easy way to avoid this problem consists of rewriting the starting expression:

f (x) =
1

√
x2 + 1 − x

=

√
x2 + 1 + x

(
√

x2 + 1 − x)(
√

x2 + 1 + x)
=

√
x2 + 1 + x

x2 + 1 − x2
=
√

x2 + 1 + x

(2.57)

In the second equality we multiplied numerator and denominator with the same expression.
In the third equality we used a well-known identity in the denominator. In the fourth equal-
ity we cancelled terms in the denominator. Notice that this expression no longer requires a
subtraction. If you implement the new expression, you will get the output:

10000 20000.000050000002

100000 200000.00000499998

1000000 2000000.0000005001

10000000 20000000.000000052

The errors now behave much better: for x 
 1 we have x2 + 1 ≈ x2, so we are essen-
tially printing out 2x. There are several other cases where a simple rewriting of the initial
expression can avoid bad numerical accuracy issues (often by avoiding a subtraction).

2.4.4 Computing the Exponential Function

We now turn to an example where several calculations are carried out in sequence. Thus, if
something goes wrong we must carefully sift through intermediate results to see what went
wrong (and when). We focus on the task of computing the exponential function (assuming
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we have no access to a math library), by using the Taylor/Maclaurin series:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · (2.58)

We’re clearly not going to sum infinitely many terms, so we approximate this expansion
by keeping only the terms up to nmax:

ex ≈
nmax∑
n=0

xn

n!
(2.59)

A naive implementation of this algorithm would divide x raised to increasingly large pow-
ers with increasingly large factorials, summing the result of such divisions up to a specified
point. This approach suffers from (at least) two problems: (a) calculating the power and the
factorial is costly,20 and (b) both xn and n! can become very large numbers (potentially
overflowing) even though their ratio can be quite small.

Instead of calculating the power and factorial (only to divide them away), we take ad-
vantage of the fact that the n-th term in the expansion can be related to the (n − 1)-th term:

xn

n!
=

x
n

xn−1

(n − 1)!
(2.60)

Thus, we can get a new term by multiplying the old term by x/n. This leads to a straightfor-
ward implementation that obviates the calculation of powers and factorials. Incidentally, it
is easy to see that the magnitude of the terms grows, if x > n holds; we will later examine
the consequences of this fact.

Before turning to an implementation in Python, let us think about when to terminate our
summation loop. There are generally two possibilities: (a) either we test for when the new
term is “small”, or (b) we test for when the running total has reached a desirable value. At
first sight, it is difficult to implement (b), since we don’t know the correct answer for the
sum, so we turn to (a): this in its turn can be accomplished in (at least) two ways. First,
we could terminate when the n-th term is a small fraction of the running total (say, less
than 10−8). This, however, seems needlessly restrictive, bringing us to: second, we could
simply terminate when the n-th term underflows to zero. A moment’s reflection, however,
brings us back to point (b): at the end of the calculation, we’re not really interested in the
n-th term, but in the total sum. Thus, a better approach is to terminate the loop when it is
determined that adding the n-th term to the running total doesn’t change the sum.21

The above ideas are straightforwardly implemented in Python in Code 2.3. Clearly, the
test of terminating the loop when the latest term doesn’t change the answer takes the form
while newsum != oldsum: and the production of the latest term using Eq. (2.60) is
given by term *= x/n. We also print a counter, the running sum, and the latest term; you
can comment this line out later on. The loop in the main program calls our function for
three different values of x, which we now discuss one at a time. The output for x = 0.1 is:

20 Not to mention that the latter would have to be coded up separately, if we’re not using a math library.
21 Take some time to understand this: we care about whether the latest term changes the answer or not, regardless

of whether or not the last term on its own underflows to zero.
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Code 2.3 compexp.py Code 2.3

from math import exp

def compexp(x):

n = 0

oldsum, newsum, term = 0., 1., 1.

while newsum != oldsum:

oldsum = newsum

n += 1

term *= x/n

newsum += term

print(n, newsum, term)

return newsum

for x in (0.1, 20., -20.):

print("x, library exp(x):", x, exp(x))

val = compexp(x)

x, library exp(x): 0.1 1.1051709180756477

1 1.1 0.1

2 1.105 0.005000000000000001

3 1.1051666666666666 0.0001666666666666667

. . .

8 1.1051709180756446 2.480158730158731e-13

9 1.1051709180756473 2.75573192239859e-15

10 1.1051709180756473 2.75573192239859e-17

where we suppressed part of the output (as we will continue to do below). Note that if we
limit ourselves to nmax = 2 then the answer we get is 1.105. Using the language introduced
around Eq. (2.4), this result suffers only from approximation error, not from roundoff error
(and obviously not from any roundoff error buildup): even if we were using real numbers
(of infinite precision) to do the calculation for nmax = 2, we would have found 1.105.

In this case, since x is small, we observe that the value of term is decreasing with each
new iteration. As advertised, the loop terminates when the value of term is small enough
that it doesn’t change the value of newsum. Comparing our final answer for e0.1 with that
provided by the math module’s exp() function, we find agreement in 16 decimal digits,
which is all one can hope for when dealing with double-precision floating-point numbers.
We note, finally, that the convergence was achieved after only 10 steps.

We next turn to the output for x = 20:
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x, library exp(x): 20.0 485165195.4097903

1 21.0 20.0

2 221.0 200.0

3 1554.3333333333335 1333.3333333333335

. . .

18 185052654.63711208 40944813.9157307

19 228152458.75893387 43099804.12182178

20 271252262.88075566 43099804.12182178

21 312299695.3777288 41047432.49697313

. . .

66 485165195.4097904 1.3555187344975148e-07

67 485165195.40979046 4.046324580589596e-08

68 485165195.40979046 1.1900954648792928e-08

We immediately observe that this case required considerably more iterations to reach con-
vergence: here the final value of the sum is ≈5 × 108 and the smallest term is ≈1 × 10−8.22

In both cases, there are 16 or 17 orders of magnitude separating the final answer for the
sum from the smallest term. Observe that the magnitude of term here first increases until
a maximum, at which point it starts decreasing. We know from our discussion of Eq. (2.60)
that the terms grow as long as x > n; since x = 20 here, we see that n = 20 is the turning
point after which the terms start decreasing in magnitude.

Comparing our final answer for e20 with that provided by the math module’s exp()
function, we find agreement in 15 decimal digits. This is certainly not disappointing, given
that we are dealing with doubles. We observe, for now, that the error in the final answer
stems from the last digit in the 20th term; we will further elucidate this statement below.

Up to this point, we’ve seen very good agreement between the library function and our
numerical sum of the Taylor expansion, for both small and large values of x. We now turn
to the case of negative x. The output for x = −20 is:

x, library exp(x): -20.0 2.061153622438558e-09

1 -19.0 -20.0

2 181.0 200.0

3 -1152.3333333333335 -1333.3333333333335

. . .

18 21277210.34254431 40944813.9157307

19 -21822593.779277474 -43099804.12182178

20 21277210.34254431 43099804.12182178

21 -19770222.154428817 -41047432.49697313

. . .

93 6.147561828914624e-09 -8.56133790667976e-24

94 6.147561828914626e-09 1.8215612567403748e-24

22 Compare with the case of x = 0.1, where the sum was of order 1 and the smallest term was ≈2 × 10−17.
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95 6.147561828914626e-09 -3.8348658036639467e-25

In this case, too, we observe that the code required considerably more iterations to reach
convergence (even more than what was needed for x = 20). The final answer for the sum
here is much smaller than before (≈6 × 10−9), so we need to wait until term becomes
roughly 16 orders of magnitude smaller than that (≈4 × 10−25). Again, observe that the
magnitude of term here first increases until a maximum, at which point it starts decreasing.
Just like in the previous case, the magnitude of term stops increasing after n = 20. As a
matter of fact, the absolute value of every single term here is the same as it was for x = 20,
as can be seen here by comparing the output for lines 1–3 and 18–21 to our earlier output.

Comparing our final answer for e−20 with that provided by the math module’s exp()
function, we find (the right order of magnitude, but) absolutely no decimal digits agreeing!
In other words, for x = −20 our sum of the Taylor series is totally wrong.

Let us try to figure out what went wrong. We observe that the magnitude of newsum in
the first several iterations is clearly smaller than the magnitude of term: this means that in
addition to the absolute value of term growing, it’s growing faster than the absolute value
of newsum. This difference in the speed of growth becomes more dramatic in the 20th
iteration, where term is more than two times bigger than the absolute value of newsum.
What is the difference between the present case and that of x = 20? Clearly, it’s related to
the fact that the sign of term here oscillates from iteration to iteration. This is a result of
the fact that (−20)n = −20n for n odd (take Eq. (2.59) and set x = −20). Since the terms
have alternating signs, they cancel each other and at some point newsum (which itself also
oscillated in sign for a while) starts to get smaller and smaller.

We’ve now seen why the negative x case is different: there is cancellation between num-
bers of comparable magnitude. We can do even better than this handwaving explanation,
though. Each term is accurate to at most 16 decimal digits (since it’s a double-precision
floating-point number). Thus, the largest-magnitude term has an absolute error in its last
digit, of order 10−8. (Another way to say this is that every double has a relative error of
roughly 10−16 and since this specific double has magnitude 108 it has an absolute error of
roughly 10−8.) Note that we are not here talking about the smallest term (adding which
leaves newsum unchanged) but about the largest term (which has the largest error of all
terms): as we keep adding more terms to newsum, this largest error is not reduced but is
actually propagated over! Actually, things are even worse than that: the final answer for
newsum has magnitude ≈6×10−9 and is therefore even smaller than the error of ≈10−8 that
we’ve been carrying along. Thus, the final answer has no correct significant digits! In the
case of positive x (namely the x = 20 we studied above), the largest term also had an error
of ≈10−8, but since in that case there were no cancellations, the final value of the sum was
≈5 × 108, leading to no error for the first 15 decimal digits.

We thus see that our algorithm for calculating ex for negative x (via the Taylor expansion)
is unstable because it introduces cancellation. As a matter of fact, in this specific case the
cancellation was needless: we could have just as easily taken advantage of ex = 1/e−x and
then carried out the sum for a positive value of x (which would not have suffered from
cancellation issues) and then proceeded to invert the answer at the end. In our example, we
can estimate e−20 by summing the Taylor series for e20 and then inverting the answer:
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>>> 1/485165195.40979046

2.061153622438557e-09

We have 15 digits of agreement! This shouldn’t come as a surprise: the Taylor expansion
for positive x doesn’t contain any cancellations and leads to 15–16 correct significant digits.
After that, dividing 1 with a large number with 15–16 correct significant digits leads to an
answer with 15–16 correct significant digits. Of course, it’s obvious that this quick fix does
not necessarily apply to all Taylor expansions: some of them have the alternating signs
built-in.23 Those cases, too, however, can typically benefit from analytical manipulations
that make the problem better-behaved numerically.

You should keep in mind that there are situations where the result blows up in unexpected
ways, despite the fact that we weren’t carrying out any subtractions. We revisit this in the
problems at the end of the chapter.

2.4.5 An Even Worse Case: Recursion

In the previous subsection we examined a case where adding together several correlated
numbers leads to an error (in the largest one) being propagated unchanged to the final
answer, thereby making it inaccurate. In this subsection, we will examine the problem
of recursion, where even a tiny error in the starting expression can be multiplied by the
factorial of a large number, thereby causing major headaches.

Our task is to evaluate integrals of the form:

f (n) =
∫ 1

0
xne−xdx (2.61)

for different (integer) values of n, i.e., for n = 0, 1, 2, . . .. To see how this becomes a
recursive problem, we analytically evaluate the indefinite integral for the first few values
of n: ∫

e−xdx = −e−x,

∫
xe−xdx = −e−x(x + 1),∫

x2e−xdx = −e−x(x2 + 2x + 2),
∫

x3e−xdx = −e−x(x3 + 3x2 + 6x + 6)
(2.62)

where we used integration by parts. This leads us to a way of relating the indefinite integral
for the n-th power to the indefinite integral for the (n − 1)-th power:∫

xne−xdx = n
∫

xn−1e−xdx − xne−x (2.63)

It is now trivial to use this result in order to arrive at a recursive expression for the definite
integral f (n) in Eq. (2.61):

f (n) = n f (n − 1) − e−1 (2.64)

This works for n = 1, 2, 3, . . . and we already have the result f (0) = 1 − e−1.

23 For example, that for sin x or cos x, which you will encounter in a problem.
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Code 2.4 recforw.py Code 2.4

from math import exp

def forward(nmax=22):

oldint = 1 - exp(-1)

for n in range(1,nmax):

print(n-1, oldint)

newint = n*oldint - exp(-1)

oldint = newint

print("n = 20 answer is 0.0183504676972562")

print("n, f[n]")

forward()

We code this up in the most straightforward way possible in Code 2.4.24 This clearly
shows that we only need to keep track of two numbers at any point in time: the previous
one and the current one. We start at the known result f (0) = 1 − e−1 and then simply step
through Eq. (2.64); note that our function is simply printing things out, not returning a final
value. We start at n = 0 and the last value we print out is for n = 20; we’re also providing
the correct answer, arrived at via other means. We immediately notice the difference be-
tween the algorithm coded up in the previous subsection (where we were simply adding in
an extra number) and what’s going on here: even if we ignore any possible subtractive can-
cellation, Eq. (2.64) contains n f (n− 1) which means that any error in determining f (n− 1)
is multiplied by n when producing the next number. If n is large, that can be a big problem.
Since the expression we’re dealing with is recursive, even if we start with a tiny error, this
is compounded by being multiplied by n every time through the loop. We get:

n = 20 answer is 0.0183504676972562

n, f[n]

0 0.6321205588285577

1 0.26424111765711533

2 0.16060279414278833

. . .

16 0.022201910404060943

17 0.009553035697593693

18 -0.19592479861475587

19 -4.090450614851804

20 -82.17689173820752

24 Note that we chose not to employ a recursive Python function to implement Eq. (2.64).
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recback.py Code 2.5

from math import exp

def backward(nmax=31):

oldint = 0.01

for n in reversed(range(20,nmax)):

print(n, oldint)

newint = (oldint + exp(-1))/n

oldint = newint

print("n = 20 answer is 0.0183504676972562")

print("n, f[n]")

backward()

Clearly, that escalated fast. Even though for the first 15 or so terms we see a gradual decline
in magnitude, after that the pace picks up pretty fast. We are dealing with a numerical
instability, which ends up giving us garbage for f (20). It’s not hard to see why: since f (0)
is stored as a double-precision floating-point number, it has an absolute error in its last
digit, of order 10−16. Focusing only on the n f (n − 1) term in Eq. (2.64), we see that by
the time we get up to n = 20, our 10−16 error will have been multiplied by 20!: given that
20! × 10−16 ≈ 243, this completely overwhelms our expected answer of ≈0.018.

The process we followed in the code above, starting at n = 0 and building up to a finite
n, is called forward recursion. We will eliminate our headaches by a simple trick, namely
the use of backward recursion: solve Eq. (2.64) for f (n − 1) in terms of f (n):

f (n − 1) =
f (n) + e−1

n
(2.65)

The way to implement this new equation is to start at some large value of n, say n = 30,
and then step down one integer at a time. We immediately realize that we don’t actually
know the value of f (30). However, the algorithm implied by Eq. (2.65) is much better
behaved than what we were dealing with before: even if we start with a bad estimate of
f (30), say with an error of 0.01, the error will be reduced with each iteration, since we are
now dividing with n. Thus, by the time we get down to n = 20, the error will have turned
into 0.01/(30 × 29 × 28 × · · · × 22 × 21) ≈ 9 × 10−17 ≈ 10−16, which happens to be quite
good. Code 2.5 shows an implementation of backward recursion; running this, we get:

n = 20 answer is 0.0183504676972562

n, f[n]

30 0.01

29 0.012595981372381411

28 0.013119842156683579
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. . .

22 0.016688929189184395

21 0.01748038047093758

20 0.018350467697256186

We have agreement in the first 14 significant figures, which means that the fifteenth signif-
icant figure is off. This is a result of the aforementioned absolute error of ≈10−16; notice
how the first significant figure is of order 10−2.

2.4.6 When Rounding Errors Cancel

We now turn to a slightly more complicated example, which shows how function evalua-
tions can be rather counterintuitive. The moral to be drawn from our discussion is that there
is no substitute for thinking. As a matter of fact, this is a case where an approximation that
seems to be bad at first sight ends up performing much better than we had expected.

Our goal is to examine the behavior of the function f (x) = (ex−1)/x at small (or perhaps
intermediate) x. We start from coding this up in Python in the obvious (naive) way, see the
function f() in Code 2.6. The output of running this code is:

1e-14 0.9992007221626409 1.000000000000005

1e-15 1.1102230246251565 1.0000000000000004

1e-16 0.0 1.0

-1e-15 0.9992007221626408 0.9999999999999994

-1e-16 1.1102230246251565 1.0

-1e-17 -0.0 1.0

Ignore the function g() and the last number in each row, for now. We see that for small
x (whether negative or positive) the naive function gives not-very-accurate results, until at
some point for even smaller x the answer is absolutely wrong.25 It’s obvious that our code
is plagued by catastrophic cancellation.

One way to go about improving the solution would be to use the Maclaurin series for ex:

ex − 1
x
≈ 1 +

x
2!
+

x2

3!
+ · · · (2.66)

The problem with this is that to get a desired accuracy we need to keep many terms (and the
number of terms depends on the desired accuracy). The trick in the function g(), instead,
nicely makes use of standard rounding properties: it compares a float to a float-literal for
equality. This is perfectly fine, as the relevant lines of code are there precisely to catch
the cases where w is rounded to 1 or to 0. In the former case (ex rounding to 1), it returns
the analytical answer by construction. In the latter case (ex rounding to 0, when x is large
and negative), it plugs in the value for the rest of the expression. That leaves us with the
crucial expression (w-1)/log(w), which is equivalent to (exp(x)-1)/log(exp(x)),
for all other cases.
25 In the limit x→ 0 we know the answer must be 1, from L’Hôpital’s rule.



2.4 Rounding Errors in the Wild 59

cancel.py Code 2.6

from math import exp, log

def f(x):

return (exp(x) - 1)/x

def g(x):

w = exp(x)

if w==0.:

val = -1/x

elif w==1.:

val = 1.

else:

val = (w-1)/log(w)

return val

xs = [10**(-i) for i in (14, 15, 16)]

xs += [-10**(-i) for i in (15, 16, 17)]

fvals = [f(x) for x in xs]

gvals = [g(x) for x in xs]

for x, fval, gval in zip(xs, fvals, gvals):

print(x, fval, gval)

Let us now look at the last number printed on each row, which corresponds to g(). It’s
obvious that the revised version is much better than the naive one. The reason this new
function works so well is because it makes the exponential appear in both the numerator
and the denominator: (exp(x)-1)/log(exp(x)). As a result, the roundoff error in the
evaluation of the exponential exp(x) in the numerator is cancelled by the presence of the
same roundoff error in the exponential exp(x) in the denominator.

This result is sufficiently striking that it should be repeated: our updated function works
better because it plays off the error in exp(x) in the numerator, against the same error in
exp(x) in the denominator. Let’s study the case of x = 9 × 10−16 in detail. The algorithm
in f() does the following calculation:

ex − 1
x
=
8.881784197001252e − 16

9e − 16 = 0.9868649107779169 (2.67)

where we are also showing the intermediate results that Python produces. Similarly, the
algorithm in g() does the following calculation:

ex − 1
log(ex)

=
8.881784197001252e − 16
8.881784197001248e − 16 = 1.0000000000000004 (2.68)
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Given the earlier outputs, you should not be suprised that the final answer is more accurate.
But look at the same calculation as that in g(), this time carried out using real numbers:

ex − 1
log(ex)

=
9.000000000000004050 . . . × 10−16

9.000000000000000000 . . . × 10−16
= 1.000000000000000450 . . . (2.69)

The algorithm in g(), when employing floating-point numbers, produces an inaccurate
numerator (ex − 1) and an inaccurate denominator (log(ex)) that are divided to produce an
accurate ratio. There is a lesson to learn here: we usually only look at intermediate results
when something goes wrong. In the case under study, we found that the intermediate results
are actually bad, but end up leading to desired behavior in the end.

The reasonably simple example we’ve been discussing here provides us with the oppor-
tunity to note a general lesson regarding numerical accuracy: it is quite common that math-
ematically elegant expressions, like f(), are numerically unreliable. On the other hand, nu-
merically more accurate approaches, like g(), are often messier, containing several (ugly)
cases. There’s often no way around that.

2.5 Project: the Multipole Expansion in
Electromagnetism

Our physics project involves a configuration of several point charges and the resulting
electrostatic potential; we will then introduce what is known as the multipole expansion,
whereby the complications in a problem are abstracted away and a handful of numbers are
sufficient to give a good approximation to physical properties. We will be applying this to
the Coulomb potential but, unsurprisingly, the same approach has also been very fruitful in
the context of the Newton potential, i.e., the gravitational field of planets and stars.

Since this chapter has focused on numerics, so will our project: we will encounter se-
ries convergence as well as recurrence relations. We use as our starting point the electric-
field-visualization machinery that we introduced in section 1.7. In our discussion of the
multipole expansion we will introduce what are known as Legendre polynomials. In addi-
tion to helping us simplify the study of electrostatics in what follows, these will also make
appearances in later chapters.

2.5.1 Potential of a Distribution of Point Charges

General Case

In the project at the end of the previous chapter we focused on the electric field, which is a
vector quantity. In most of the present section, we will, instead, be studying the electrostatic
potential. As you may recall from a course on electromagnetism, since the curl of the
electric field E is zero, there exists a scalar function whose gradient is the electric field:

E(r) = −∇φ(r) (2.70)
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where φ(r) is called the electrostatic potential. In general there would also be a second
term on the right-hand side, involving the vector potential A, but here we are focusing only
on the problem of static point charges.

The electrostatic potential at point P (located at r) due to the point charge q0 (which is
located at r0) is simply:

φ0(r) = k
q0

|r − r0|
(2.71)

where, as before, Coulomb’s constant is k = 1/(4πε0) in SI units (and ε0 is the permittivity
of free space). As you can verify by direct differentiation, this leads to the electric field in
Eq. (1.2).26 If we were faced with more than one point charge, we could apply the principle
of superposition also to the electrostatic potential, similarly to what we did for the electric-
field vector in Eq. (1.3). As a result, when dealing with the n point charges q0, q1, . . . , qn−1

located at r0, r1, . . . , rn−1 (respectively), namely the configuration shown in Fig. 1.5, the
total electrostatic potential at the location r is:

φ(r) =
n−1∑
i=0

φi(r) =
n−1∑
i=0

k
qi

|r − ri|
(2.72)

i.e., a sum of the individual potential contributions. Obviously, this φ(r) is a scalar quantity.
It contains |r − ri| in the denominator: this is the celebrated Coulomb potential.

Example: Array of 36 Charges

For the sake of concreteness, throughout this project we will study an arbitrarily chosen
specific configuration: 36 charges placed in a square from −0.5 to 0.5 in both x and y direc-
tions. To keep things interesting, we will pick the qi charges to have varying magnitudes
and alternating signs. Using our code vectorfield.py from the previous chapter we are
led to Fig. 2.4 for this case, where this time we are using a color map (in grayscale) in-
stead of line width to denote the field strength.27 This array of charges, distributed across
six rows and six columns, is here accompanied by the electric field, similarly to what we
saw in Fig. 1.6. In the present section we are interested in the electrostatic potential, not
directly in the electric field, but you should be able to go from the former to the latter using
Eq. (2.70). Our new figure shows many interesting features: looking at the left panel, the
direction and magnitude of the electric field are quite complicated; the field appears to be
strongest in between the charges. As we move farther away from the charge array, however,
as shown in the right panel, we start noticing the big picture: the field is strongest inside
the array, then we notice some intermediate-scale features at negative y, and then as we get
farther from the configuration of charges the electric field appears reasonably simple. We
recall that positive charges act as “sources”: since at large distances all the arrows point
outward, we see that, abstracting away all the details, “effectively” the charge array acts

26 We could have included an arbitrary offset here, but we haven’t.
27 Here and below x and y are measured in meters.
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�Fig. 2.4 Array of 36 charges of alternating sign and varying magnitudes

like an overall positive charge (though there may be more complicated residual effects not
captured by this simple analogy).

As advertised, our main concern here is the electrostatic potential. The question then
arises of how to visualize the potential: in principle, one could draw equipotential surfaces
(curves), which would be orthogonal to the electric field lines of Fig. 2.4. Instead, with
a view to what we will be studying in the following sections, here we opt for something
simpler: we pick a specific direction on the x−y plane and study the potential along it. Since
the right panel in Fig. 2.4 exhibits interesting behavior at negative y that is not present for
positive y, we decide to study the y axis itself (i.e., set x = 0) for both positive and negative
y. The result of evaluating φ(r) along the y axis as per Eq. (2.72) (for the given configuration
of charges) is shown in Fig. 2.5, using a symmetrical-log scale.28 The overall features are
easy to grasp: we observe rapid oscillations at short distances, which is where the qi charges
are physically located, and then simpler behavior at larger distances. As we expected based
on our electric-field visualization, the potential exhibits more structure (even changing
sign) at intermediate distances along the negative y axis than it does along the positive
y axis. Speaking of the sign, let’s do a quick consistency check: at large distances along
the positive y axis we see that the potential gets smaller as we increase y; since E(r) =
−∇φ(r) we expect a positive electric field (pointing up). Similarly, along the negative y
axis the potential gets larger as we increase the y magnitude at intermediate distances,
so we expect the electric field, again, to be positive (i.e., point up). As hinted at in the
leftmost part of our curve, as you keep increasing the y magnitude along the negative y
axis the situation will actually change: at some point for y � −3 you will “curve down”,
implying a negative electric field (pointing down). All these findings are consistent with
what is shown in Fig. 2.4: take a minute to inspect that figure more closely.

28 Note that we’ve divided out k, so our values are given in units of C/m.
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Electrostatic potential for the 36-charge array, along the y axis �Fig. 2.5

Implementation

At this point, it’s probably best to get a bit more specific: the results in these two figures
correspond to a given choice (not only of charge placement and sign but also) of the mag-
nitudes of the charges involved. Thinking about how to code up our 36-charge array, we
could go about this task in several different ways, e.g., using distinct lists for charges, x co-
ordinates, and y coordinates. However, since we already employed a Python dictionary in
vectorfield.py in order to associate charges with their positions, it stands to reason that
we should now generalize this approach: instead of filling in the keys and values by hand,
we should do so programmatically. Code 2.7 provides a Python implementation. Overall,
we see that this code produces the point-charge distribution, introduces a helper function,
calculates φ(r) as per Eq. (2.72), and prints out the potential value at two points along the
y axis. It should be easy to see that using these functions you can produce Fig. 2.5. Let’s
go over each aspect of this program in more detail.

The function chargearray() produces the dictionary qtopos. You may recall that this
was accomplished in one line in the code implementing the project of the previous chapter:
there, we were faced with only two (or at most four) charges, so we “hard-coded” the keys
and values. To do things in a more systematic way, we first remember how to populate
dictionaries: in section 1.3.3 we saw that the syntax is htow[key] = value. Producing
a grid of 36 elements (6 × 6) is not too difficult: we could simply pick some values (as
in vals) and iterate over x and y, adding in a new key/value pair each time (with the
keys being the qi and the values being the ri). Trying to be idiomatic, we make use of
enumerate() so we can have access both to the value of the coordinate and to its index.29

Our task is complicated somewhat by the requirement that the charges be alternating: if
on a given row the first charge is negative, the one to its right should be positive, then the

29 We even kept things general and did not hard-code the value 6, instead passing it in as an argument.
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Code 2.7 chargearray.py Code 2.7

from kahansum import kahansum

from math import sqrt

def chargearray(nvals):

vals = [-0.5 + i/(nvals-1) for i in range(nvals)]

qtopos = {}
for i,posx in enumerate(vals):

for j,posy in enumerate(vals):

count = j + nvals*i + 1

key = 1.02*count if (i+j)%2==0 else -count

qtopos[key] = posx, posy

return qtopos

def vecmag(rs):

sq = [r**2 for r in rs]

return sqrt(kahansum(sq))

def fullpot(qtopos,rs):

potvals = []

for q,pos in qtopos.items():

diffs = [r - po for r,po in zip(rs,pos)]

R = vecmag(diffs)

potvals.append(q/R)

return kahansum(potvals)

if name == ‘ main ’:

qtopos = chargearray(6)

for y in 1,-1:

rs = [0.,y]

potval = fullpot(qtopos,rs)

print(rs, potval)

next one negative and so on. This isn’t too hard to implement, either: you could simply have
an index and check whether or not that is even or odd. Unfortunately, in our case we want
this to go on as you move to the next row: the last charge on the first row is positive, but the
one immediately under it should be negative. In other words, we need to traverse our grid
from left to right, then from right to left, and so on, just like in ancient Greek inscriptions.30

30 This pattern is called boustrophedon, namely as an ox turns with the plough at the end of the furrow.



2.5 Project: the Multipole Expansion in Electromagnetism 65

This is accomplished in our test if (i+j)%2==0. To keep things interesting, we picked
each qi according to when we encountered it, via count = j + nvals*i + 1.31 When
constructing key, we artificially inflated the positive charge values: as you will discover
when you play around with this code, the total charge (adding together all qi) would have
been zero had we not taken this step.

We then introduce an auxiliary function, which evaluates the magnitude of a vector using
a list comprehension: observe how convenient Python’s for is here, since we don’t need to
specify how many dimensions our vector has. We also employ our very own kahansum()
from earlier in this chapter: while this is probably overkill for summing just a few num-
bers, it’s a nice opportunity to employ functionality we’ve already developed. We are,
finally, also in a position to see why we had included the line saying if name ==

‘ main ’: all the way back in kahansum.py: since we’re now not running that file as
the main program, the lines that followed the if check are not executed this time. If we
hadn’t taken care of this check, the older file’s output would be confusingly printed out
every time we ran the present chargearray.py file.

The final function of this program implements Eq. (2.72): we sum the φi(r) contributions
one by one. Using the items() method of dictionaries really pays off: once again, we
don’t have to specify ahead of time how many charges we are faced with or how many
dimensions our vectors have. We simply have access to one qi and one ri at a time. We first
form the components of r − ri using a list comprehension as well as Python’s zip(). We
then store each φi(r) contribution and at the end use kahansum() to sum them all together.
The main program simply picks two arbitrary points on the y axis and prints out the value
of the potential φ(r) at those points; you can use these values as benchmarks later in this
section, after we’ve developed the multipole expansion. Both the values and the signs are
consistent (nay, identical) with what we saw in Fig. 2.5.

2.5.2 Expansion for One Point Charge

We now turn to our stated aim, which is to approximate a complicated electrostatic po-
tential using only a few (or several) terms. To keep things manageable, we start from the
simple case of a single point charge. This allows us to introduce Legendre polynomials
without getting lost in a sea of indices; in the following subsection, we will apply what
we’ve learned to the general case of a distribution of point charges.

First Few Terms

For one point charge q0 (located at r0), the electrostatic potential at point P (at position r)
is given by Eq. (2.71):

φ0(r) = k
q0

|r − r0|
(2.73)

Roughly speaking, what we’ll do is to massage the denominator such that it ends up con-
taining only r (or r0) but not the difference between the two vectors.

31 We add in a unit to make sure we don’t include a charge of zero magnitude.
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With this in mind, let us examine the square of the denominator:

(r − r0)2 = r2 + r2
0 − 2rr0 cos θ0 = r2

[
1 +

( r0

r

)2
− 2

( r0

r

)
cos θ0

]
≡ r2 [1 + α] (2.74)

You may think of the first equality as the so-called law of cosines, or as simply expanding
the square and expressing the dot product of the two vectors in terms of the angle θ0 be-
tween them. In the second equality, we pulled out a factor of r2. In the third equality we
noticed the overall structure of the expression, by defining:

α ≡
( r0

r

) ( r0

r
− 2 cos θ0

)
(2.75)

We can now use the binomial theorem, a standard Taylor-expansion result:

1
(1 + x)m

= 1 − mx +
m(m + 1)

2!
x2 − m(m + 1)(m + 2)

3!
x3 + · · · (2.76)

We are in a position to expand the Coulomb potential from Eq. (2.73) as follows:

1
|r − r0|

=
1
r

1
(1 + α)1/2

=
1
r

(
1 − 1

2
α +

3
8
α2 − 5

16
α3 +

35
128

α4 − · · ·
)

=
1
r

[
1 − 1

2

( r0

r

) ( r0

r
− 2 cos θ0

)
+

3
8

( r0

r

)2 ( r0

r
− 2 cos θ0

)2

− 5
16

( r0

r

)3 ( r0

r
− 2 cos θ0

)3
+

35
128

( r0

r

)4 ( r0

r
− 2 cos θ0

)4
− · · ·

]
=

1
r

[
1 +

( r0

r

)
cos θ0 +

( r0

r

)2 1
2

(
3 cos2 θ0 − 1

)
+

( r0

r

)3 1
2

(
5 cos3 θ0 − 3 cos θ0

)
+

( r0

r

)4 1
8

(
35 cos4 θ0 − 30 cos2 θ0 + 3

)
+ · · ·

]
(2.77)

In the first equality we took one over the square root of Eq. (2.74). In the second equality
we used the binomial theorem of Eq. (2.76), asssuming that r > r0. In the third equality
we plugged in our definition of α from Eq. (2.75). In the fourth equality we expanded out
the parentheses and grouped terms according to the power of r0/r. We then notice that
the terms inside the square brackets are given by a power of r0/r times a polynomial of
cos θ0. As it so happens, this identification of the coefficients is precisely the way Legendre
introduced in 1782 what are now known as Legendre polynomials.32 In short, we have
arrived at the following remarkable result:

1
|r − r0|

=
1
r

∞∑
n=0

( r0

r

)n
Pn(cos θ0) (2.78)

32 Legendre was studying the Newton potential, three years before Coulomb published his law.
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where the Pn are the Legendre polynomials. Specifically, putting the last two equations
together we find the first few Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
1
2

(3x2 − 1),

P3(x) =
1
2

(5x3 − 3x), P4(x) =
1
8

(35x4 − 30x2 + 3)
(2.79)

For n odd the polynomial is an odd function of x and, similarly, for n even the polynomial is
an even function of x. Higher-order polynomials can be derived analogously, by employing
the binomial theorem, expanding the parentheses, and grouping terms.

Since this is a chapter on numerics, it’s worth noticing that what we’ve accomplished
with Eq. (2.78) is to trade a subtraction (which sometimes leads to catastrophic cancella-
tion) on the left-hand side, for a sum of contributions on the right-hand side. Even if the
signs oscillate, we are organizing our terms hierarchically.

A further point: in the derivation that led to our main result we assumed r > r0. If we
had been faced with a situation where r < r0, we would have carried out an expansion in
powers of r/r0, instead, and the right-hand side would look similar to Eq. (2.78) but with
the r and r0 changing roles. In our specific example, we will be studying positions r away
from the 36-charge array, so we will always be dealing with r > r0.

Legendre Polynomials: from the Generating Function to
Recurrence Relations

While you could, in principle, generalize the power-expansion approach above to higher
orders (or even a general n-th order), it’s fair to say that the manipulations become unwieldy
after a while. In this subsection, we will take a different approach, one that also happens to
be easier to implement programmatically. Let’s take our main result of Eq. (2.78) and plug
in the second equality of Eq. (2.74). We find:

1√
1 − 2

(
r0
r

)
cos θ0 +

(
r0
r

)2
=

∞∑
n=0

( r0

r

)n
Pn(cos θ0) (2.80)

If we now define u ≡ r0/r and x ≡ cos θ0, our equation becomes:

1
√

1 − 2xu + u2
=

∞∑
n=0

unPn(x) (2.81)

This is merely a reformulation of our earlier result. In short, it says that the function on
the left-hand side, when expanded in powers of u, has coefficients that are the Legendre
polynomials. As a result, the function on the left-hand side is known as the generating
function of Legendre polynomials.

At this point we haven’t actually gained anything from our re-definitions in terms of x
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and u. To see the benefit, we differentiate Eq. (2.81) with respect to u and find:

x − u

(1 − 2xu + u2)3/2
=

∞∑
n=0

nPn(x)un−1 (2.82)

If we now identify the 1/
√

1 − 2xu + u2 from Eq. (2.81) and move the remaining factor of
1/(1 − 2xu + u2) to the numerator, we get:

(1 − 2xu + u2)
∞∑

n=0

nPn(x)un−1 + (u − x)
∞∑

n=0

Pn(x)un = 0 (2.83)

where we also moved everything to the same side. We now expand the parentheses and end
up with five separate summations:

∞∑
n=0

nPn(x)un−1 −
∞∑

n=0

2nxPn(x)un +

∞∑
n=0

nPn(x)un+1 +

∞∑
n=0

Pn(x)un+1 −
∞∑

n=0

xPn(x)un = 0

(2.84)
We are faced with a power series in u (actually a sum of five power series in u) being equal
to zero, regardless of the value of u. This implies that the coefficient of each power of u
(separately) is equal to zero. Thus, if we take a given power to be j (e.g., j = 17) our five
summations above give for the coefficient of uj the following:

( j + 1)Pj+1(x) − 2 jxP j(x) + ( j − 1)Pj−1(x) + Pj−1(x) − xPj(x) = 0 (2.85)

which, after some trivial re-arrangements, gives us:

Pj+1(x) =
(2 j + 1)xPj(x) − jP j−1(x)

j + 1
(2.86)

To step through this process, we start with the known first two polynomials, P0(x) = 1 and
P1(x) = x, and calculate Pn(x) by taking:

j = 1, 2, . . . , n − 1 (2.87)

This is known as Bonnet’s recurrence relation. It’s similar in spirit to Eq. (2.64), but here
we won’t face as many headaches. We will implement our new relation in Python in the
following section. For now, we carry out, instead, the simpler task of picking up where
Eq. (2.79) had left off: we plug j = 4 into Eq. (2.86) to find:

P5(x) =
9xP4(x) − 4P3(x)

5
=

1
8

(
63x5 − 70x3 + 15x

)
(2.88)

In principle, this approach can be followed even for large n values.
At this point, we could turn to deriving a relation for the first derivative of Legendre

polynomials. It’s pretty easy to derive a recurrence relation that does this: as you will find
out in a guided problem at the end of the chapter, instead of differentiating Eq. (2.81) with
respect to u (as we did above), we could now differentiate that equation with respect to
x. What this gives us is a recurrence relation for P′j(x). As the problem shows, we can do
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even better, deriving a formula that doesn’t necessitate a separate recurrence process for
the derivatives. This is:

P′n(x) =
nPn−1(x) − nxPn(x)

1 − x2
(2.89)

This equation only needs access to the last two Legendre polynomials, Pn(x) and Pn−1(x),
which we produced when we were stepping through Bonnet’s formula. We are now ready
to implement both Eq. (2.86) and Eq. (2.89) in Python.

Implementation

Code 2.8 is an implementation of our two main relations for the Legendre polynomials and
their derivatives. The function legendre() basically implements Eq. (2.86). We observe,
however, that the first polynomial that that equation produces is P2(x): to evaluate Pj+1(x)
you need Pj(x) and Pj−1(x). Thus, we have hard-coded two special cases that simply spit
out P0(x) and P1(x) (as well as P′0(x) and P′1(x)) if the input parameter n is very small.
All other values of n are captured by the else, which contains a loop stepping through
the values of j given in Eq. (2.87). Note a common idiom we’ve employed here: we don’t
refer to Pj−1(x), Pj(x), and Pj+1(x) but to val0, val1, and val2. There’s no need to store
the earlier values of the polynomial, so we don’t.33 Note that each time through the loop
we have to change the interpretation of val0, val1, and val2: we do this via an idiomatic
swap of two variables. Once we’re done iterating, we turn to the derivative. As discussed
around Eq. (2.89), this is not a recurrence relation: it simply takes in the last two polyno-
mials and outputs the value of the derivative of the last Legendre polynomial. Our function
returns a tuple of values: for a given n and a given x, we output Pn(x) and P′n(x).34

For most of this project, we provide the Python code that could be used to produce the
figures we show, but we don’t actually show the matplotlib calls explicitly. This is partly
because it’s straightforward to do so and partly because it would needlessly lengthen the
size of this book. However, in the present case we’ve made an exception: as mentioned
in the previous chapter, we follow the principle of “separation of concerns” and place all
the plotting-related infrastructure in one function. The function plotlegendre() is used
to plot five Legendre polynomials and their derivatives. These are 10 functions in total: as
you can imagine, plotting so many different entities can become confusing if one is not
careful. We have therefore taken the opportunity to show that Python dictionaries can also
be helpful in tackling such mundane tasks as plotting. The first dictionary we employ deter-
mines the y-axis label: since we will be producing one plot for the Legendre polynomials
and another plot for the Legendre-polynomial derivatives, we want these to have different

33 Of course, we do calculate those, only to throw them away: another option would have been to also return all
the P j(x)’s to the user, since we get them “for free”.

34 You might need the derivative of Legendre polynomials if you wish to evaluate more involved electrostatic
properties. We won’t actually be doing that in what follows, but we will make use of the derivatives in chapter 7,
when we discuss Gauss–Legendre integration.



70 Numbers

Code 2.8 legendre.py Code 2.8

import matplotlib.pyplot as plt

def legendre(n,x):

if n==0:

val2 = 1.

dval2 = 0.

elif n==1:

val2 = x

dval2 = 1.

else:

val0 = 1.; val1 = x

for j in range(1,n):

val2 = ((2*j+1)*x*val1 - j*val0)/(j+1)

val0, val1 = val1, val2

dval2 = n*(val0-x*val1)/(1.-x**2)

return val2, dval2

def plotlegendre(der,nsteps):

plt.xlabel(‘$x$’, fontsize=20)

dertostr = {0: "$P n(x)$", 1: "$P n’(x)$"}
plt.ylabel(dertostr[der], fontsize=20)

ntomarker = {1: ‘k-’, 2: ‘r--’, 3: ‘b-.’, 4: ‘g:’, 5: ‘cˆ’}
xs = [i/nsteps for i in range (-nsteps+1,nsteps)]

for n,marker in ntomarker.items():

ys = [legendre(n,x)[der] for x in xs]

labstr = ‘n={0}’.format(n)
plt.plot(xs, ys, marker, label=labstr, linewidth=3)

plt.ylim(-3*der-1, 3*der+1)

plt.legend(loc=4)

plt.show()

if name == ‘ main ’:

nsteps = 200

plotlegendre(0,nsteps)

plotlegendre(1,nsteps)
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Legendre polynomials (left panel) and their first derivatives (right panel) �Fig. 2.6

labels.35 We then use a second dictionary, to encapsulate the correspondence from n value
to line or marker style: since we’re plotting five different functions (each time), we need to
be able to distinguish them from each other. Once again, a moment’s thought would show
that the alternative is to explicitly build the ys and then call plot() for each function
separately.36 In contradistinction to this, we employ a loop over the dictionary items, and
use fancy-string formatting to ensure that each curve label employs the correct number.
Also, we use the parameter der (which helped us pick the right y-axis label) to select the
appropriate element from the tuple returned by legendre(). Finally, we use ylim() to
ensure that both plots look good. The result of running this code is shown in Fig. 2.6. Note
that, due to their simplicity, we are not showing P0(x) = 1 and P′0(x) = 0.

2.5.3 Expansion for Many Point Charges

We are now ready to fuse the results of the previous two subsections: this means employing
the multipole expansion for the case of our charge array. Before we do that, though, let’s
first write out the relevant equations explicitly.

Generalization

Earlier, we were faced with the potential coming from a single charge q0, Eq. (2.73); we
expanded the denominator and arrived at an equation in terms of Legendre polynomials,
namely Eq. (2.78). In the present case, we would like to study the more general potential
coming from n charges, as per Eq. (2.72):

φ(r) =
n−1∑
i=0

φi(r) =
n−1∑
i=0

k
qi

|r − ri|
(2.90)

35 Take a moment to think of other possible solutions to this task: the one that probably comes to mind first is to
copy and paste. Most of the time, this is a bad idea.

36 But what happens if you want to add a couple more functions to the plot?
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If we carry out an expansion like that in Eq. (2.78) for each of these denominators, we get:

φ(r) =
n−1∑
i=0

1
r

∞∑
n=0

kqi

( ri

r

)n
Pn(cos θi) = k

∞∑
n=0

1
rn+1

n−1∑
i=0

qir
n
i Pn(cos θi)

=
k
r

n−1∑
i=0

qi +
k
r2

n−1∑
i=0

qiri cos θi +
k
r3

n−1∑
i=0

qir
2
i

1
2

(
3 cos2 θi − 1

)
+ · · · (2.91)

where θi is the angle between the vectors r and ri. In the second equality we interchanged
the order of the summations and pulled out the denominators. In the third equality we
wrote out the first few terms of the n summation and also plugged in the relevant Pn(x)
from Eq. (2.79).

At this point, we can spell out what was only implicit before: our approximation for the
total potential at point r is given as a sum of terms of the form 1/r, 1/r2, 1/r3, and so on:

φ(r) =
k
r

Q1 +
k
r2

Q2 +
k
r3

Q3 + · · · (2.92)

with the coefficients Qj being a (possibly complicated) combination of the qi, ri, and θi.
Even if you haven’t encountered this specific problem in a course on electromagnetism,
the general principle should be familiar to you: the terms we are now dealing with have
names such as monopole, dipole, quadrupole, etc. In general, what we’re carrying out is
known as the multipole expansion. The monopole coefficient Q1 is simply a sum over all
the charges; the corresponding contribution to the potential goes as 1/r, just like in the
case of a single point charge. The dipole coefficient Q2 is a sum over (qi times) ri cos θi,
which can be re-expressed as r̂ · ri. Employing exactly the same argument, we see that
the quadrupole coefficient Q3 is a sum over qi times [3(r̂ · ri)2 − r2

i ]/2. Note that these
coefficients may depend on the direction of r, but not on its magnitude: all the dependence
on the magnitude of r has been pulled out and is in the denominator.37

It’s worth pausing for a moment to appreciate what we’ve accomplished in Eq. (2.92):
by expanding in ri/r (assuming, for now, that r > ri) and interchanging the sums over n and
i, we’ve expressed the full potential φ(r) (which we know from Eq. (2.72) is generally a
complicated function of r) as an expansion in powers of 1/r, where the coefficients depend
on the point charges, as well as the angles between r and ri. It goes without saying that
increasingly large powers of 1/r have less and less of a role to play; of course, this also
depends on the precise value of the coefficients. Thus, there are situations where the oc-
tupole, hexadecapole, and higher-order terms may need to be explicitly taken into account.
Even so, what we’ve managed to do is to take a (possibly very complicated) distribution
of point charges and encapsulate its effects on the total potential (along a given direction)
into a few numbers, the Qj.

Let’s try to see the above insights applied to a specific case, that of our 36-charge array:

37 Incidentally, moving the origin of the coordinates may change the precise values of Q j, but the overall inter-
pretation remains the same.
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Multipole coefficients along the positive (left) and negative (right) y axis �Fig. 2.7

Fig. 2.7 shows the coefficients along the y axis.38 As already mentioned, the coefficients Qj

don’t depend on the precise point on the y axis, only on whether r is pointing up or down.
Focusing on the positive y axis for the moment (left panel), we find that for this specific
scenario the coefficients exhibit interesting structure: the monopole coefficient has a large
magnitude, but the dipole coefficient is even larger.39 After that, the even n coefficients
seem to be pretty small, but the n = 3, 5, 7, 9 coefficients are sizable (and of both signs).

Still on the subject of our 36-charge array, let’s now examine how the different coeffi-
cients are combined together. As you can see from Eq. (2.92), Qj’s of oscillating sign and
large magnitude end up giving positive and negative contributions: however, as noted in
our discussion near Eq. (2.78), these contributions are not of comparable magnitude, since
they are multiplying powers of 1/r. Thus, assuming r is reasonably large, the higher-order
terms don’t contribute too much. To reverse this argument, as you make r comparable to ri

you will need to keep track of an increasing number of terms in your multipole expansion.
This is precisely what we find in the left panel of Fig. 2.8 (using a symmetrical-log scale):
when you’re close to the point charges the contributions mimic the size of the coefficients,
but as you make r larger you need considerably fewer terms in the multipole expansion.40

The right panel of Fig. 2.7 shows the coefficients along the negative y axis: we notice that
even-n multipole coefficients are unchanged, whereas odd-n multipole coefficients have a
sign flipped. Taking the most prominent example, the electric dipole term is the largest in
magnitude for both cases, but is positive in the left panel and negative in the right panel (this
is easy to understand: r̂ ·ri changes sign when you flip the direction of r̂). The contributions
in the right panel of Fig. 2.8 behave as we would expect.

38 We picked the y axis for our r’s in order to be consistent with what we showed in Fig. 2.5.
39 Coefficients at different orders have different units.
40 All contributions have the same units, C/m.
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�Fig. 2.8 Multipole contributions along the positive (left) and negative (right) y axis

Implementation

In order to produce Fig. 2.7 on the coefficients and Fig. 2.8 on the different contributions
in the multipole expansion, we needed to make use of a code implementing the formalism
we’ve introduced thus far. Code 2.9 is a Python implementation, in which we have sepa-
rated out the different aspects of the functionality: (a) decomposition into magnitudes and
angles, (b) the coefficients, and (c) combining the coefficients together with the value of
r to produce an approximation to the full potential. This is the first major project in this
book. While the program doesn’t look too long, you notice that it starts by importing
functionality from our earlier codes: kahansum() to carry out the compensated summa-
tion, chargearray() to produce our 36-charge array, vecmag() as a helper function, as
well as legendre() to compute the Legendre polynomials that we need.

Our first new function, decomp(), takes in two vectors (r and ri, given as lists containing
their Cartesian components), and evaluates their magnitudes as well as the cosine of the
angle between them. As is common with our programs, there are several edge cases that
this function does not cover: there will be a division failing if either of r and ri is placed at
the origin.41 Another issue with this function is that it is wasteful: it evaluates rmag each
time it is called (i.e., 36 times in our case), even though the input rs hasn’t changed: as
usual, this is because we’ve opted in favor of code simplicity.

Our next function, multicoes(), is a straightforward implementation of Eq. (2.92)
or, if you prefer, of the second equality in Eq. (2.91). It takes in as parameters qtopos
(containing the distribution of point charges), rs (this being the position r at which we

41 While we’re taking r > ri, it’s possible that our charge array could contain a charge at the coordinate origin.
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multipole.py Code 2.9

from kahansum import kahansum

from chargearray import chargearray, vecmag

from legendre import legendre

def decomp(rs,ris):

rmag = vecmag(rs); rimag = vecmag(ris)

prs = [r*ri for r,ri in zip(rs,ris)]

vecdot = kahansum(prs)

costheta = vecdot/(rmag*rimag)

return rmag, rimag, costheta

def multicoes(rs,qtopos,nmax=60):

coes = [0. for n in range(nmax+1)]

for n in range(nmax+1):

for q,pos in qtopos.items():

rmag, rimag, costheta = decomp(rs,pos)

val = q*(rimag**n)*legendre(n,costheta)[0]

coes[n] += val

return coes

def multifullpot(rs,qtopos):

coes = multicoes(rs,qtopos)

rmag = vecmag(rs)

contribs = [coe/rmag**(n+1) for n,coe in enumerate(coes)]

return kahansum(contribs)

if name == ‘ main ’:

qtopos = chargearray(6)

for y in 1,-1:

rs = [0.,y]

potval = multifullpot(rs,qtopos)

print(rs, potval)

are interested in evaluating/approximating the potential), and nmax (which is a parameter
controlling how many terms we should keep in the multipole expansion). We provide a
default parameter value for nmax which is presumably large enough that we won’t have to
worry about the quality of our approximation. A problem asks you to investigate this in
detail, for obvious reasons: why use a large number of terms in the multipole expansion
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if only a handful are enough for your purposes? The structure of our function closely
follows that of Eq. (2.91): the loop over n is outside and that over i inside (though, as
earlier, there’s no need to carry around an explicit i index). We use the items() method
of Python dictionaries (which you should have gotten used to by now) to step through all
the qi’s in our distribution. The only subtlety is that our call to legendre() ends with
[0]: this results from the fact that legendre() returns a tuple of two numbers. While
multicoes() is a pretty function, note that it (and the rest of the code) assumes that r > ri

is true: a problem asks you to remove this assumption, rewriting the code appropriately.
Our last function, multifullpot(), is essentially a test: it computes the multipole-

expansion approximation of Eq. (2.92) for the total potential φ(r), which can be compared
to the complete calculation of it in Eq. (2.72). Note that the philosophy here is to sum
the contribution from each multipole (with the coefficient for each multipole term coming
from all the qi charges), whereas the philosophy of fullpot() in our earlier code was to
simply sum together the full contributions from each qi, as per Eq. (2.72). This function is,
as usual, idiomatic (employing a list comprehension, as well as enumerate()). At the end,
it sums together (using kahansum()) all the contributions: this is different from Fig. 2.8,
which shows each contribution separately.

The main program again picks two arbitrary points on the y axis and prints out the
multipole-expansion approximation to the value of the potential φ(r) at those points. Com-
paring those numbers to the output of our earlier code chargearray.py, we see that they
are in pretty good agreement with the full potential values. This isn’t too surprising, since
we picked nmax=60 as our default parameter value.42 The results may feel somewhat un-
derwhelming: this impression can be altered if you recall that this code can (be modified
in order to) produce Fig. 2.7 on the coefficients and Fig. 2.8 on the different contributions
in the multipole expansion. These figures can help you build insight about the specific
geometry involved in our 36-charge array and on the role of the different multipole terms.

2.6 Problems

1. Using the notation we employed in the main text, the absolute value of the relative error
is |δx| = |(x̃ − x)/x|. In practice, it is sometimes convenient to provide a bound for a
distinct quantity, |δ̃x| = |(x̃ − x)/x̃|. Using these two definitions, try to find an inequality
relating |δ̃x| and |δx| (i.e., A ≤ |δ̃x| ≤ B, where A and B contain |δx|).

2. Study the propagation of the relative error, for the case of division, x = a/b, by analogy
to what was done in the main text for the case of multiplication.

3. This problem studies error propagation for cases that are more involved than what we
encountered in the main text. Specifically, find the:

(a) Absolute error in y = ln x.

(b) Relative error in y =
√

x.

42 Given that our points are pretty close to the charge array, this was probably a safe choice.
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4. This problem studies overflow in Python in more detail.

(a) Modify the code in section 2.3.2 to investigate underflow for floating-point numbers
in Python. In order to make your output manageable, make sure you start from a
number that is sufficiently small.

(b) Now investigate whether or not overflow occurs for integers in Python. Do yourself
a favor and start not from 1, but from a very large positive number and increment
from there. You should use sys.maxsize to get the ballpark of near where you
should start checking things. You should use type() to see if the type changes
below sys.maxsize and above it.

5. Run the following code and see what happens:

from math import sqrt

def f(x,nmax=100):

for i in range(nmax):

x = sqrt(x)

for i in range(nmax):

x = x**2

return x

for xin in (5., 0.5):

xout = f(xin)

print(xin, xout)

Without rounding error, we would expect the output to be f (x) = x (we take the square
root a number of times and then take the square the same number of times, so nothing
happens). Note that this code does not involve any subtractions whatsoever, so the “fear”
of catastrophic cancellation plays no role here. Dig deeper, to determine why you get
the output you get. Once you’ve uncovered the issue, you’ll understand why, at the start
of section 2.4 we mentioned one or two iterations being the culprits.

6. We now examine a case where plotting a function on the computer can seriously mislead
us. The function we wish to plot is: f (x) = x6 + 0.1 log(|1 + 3(1 − x)|). Use 100 points
from x = 0.5 to 1.5 to plot this function in matplotlib. Do you see a dip? Consider
the function itself and reason about what you should be seeing. Then use a much finer
grid and ensure that you capture the analytically expected behavior.

7. Take the standard quadratic equation:

ax2 + bx + c = 0 (2.93)

The formula for the solutions of this equation is very well known:

x± =
−b ±

√
b2 − 4ac

2a
(2.94)
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Take b > 0 for concreteness. It is easy to see that when b2 
 ac we don’t get a catas-
trophic cancellation when evaluating b2−4ac (we may still get a “benign” cancellation).
Furthermore,

√
b2 − 4ac ≈ b. However, this means that x+ will involve catastrophic

cancellation in the numerator.
We will employ an analytical trick in order to help us preserve significant figures. Ob-
serve that the product of the two roots obeys the relation:

x+x− =
c
a

(2.95)

The answer now presents itself: use Eq. (2.94) to calculate x−, for which no catastrophic
cancellation takes place. Then, use Eq. (2.95) to calculate x+. Notice that you ended
up calculating x+ via division only (i.e., without a catastrophic cancellation). Write a
Python code that evaluates and prints out: (a) x−, (b) x+ using the “bad” formula, and
(c) x+ using the “good” formula. Take a = 1, c = 1, b = 108. Discuss the answers.43

8. We promised to return to the distinction between catastrophic and benign cancellation.
Take x̃ and ỹ to be: x̃ = 1234567891234567.0 and ỹ = 1234567891234566.0. Now,
if we try to evaluate x̃2 − ỹ2 we will experience catastrophic cancellation: each of the
squaring operations leads to a rounding error and then the subtraction exacerbates that
dramatically. Write a Python code that does the following:

(a) Carries out the calculation 12345678912345672 − 12345678912345662 using inte-
gers, i.e., exactly.

(b) Carries out the subtraction 1234567891234567.02 − 1234567891234566.02 using
floats, i.e., exhibiting catastrophic cancellation.

(c) Now, we will employ a trick: x2 − y2 can be re-expressed as (x− y)(x+ y). Try using
this trick for the floats and see what happens. Does your answer match the integer
answer or the catastrophic-cancellation answer? Why?

9. We will study the following function:

f (x) =
1 − cos x

x2
(2.96)

(a) Start by plotting the function, using a grid of the form x = 0.1×i for i = 1, 2, . . . , 100.
This should give you some idea of the values you should expect for f (x) at small x.

(b) Verify your previous hunch by taking the limit x→ 0 and using L’Hôpital’s rule.
(c) Now, see what value you find for f (x) when x = 1.2 × 10−8. Does this make sense,

even qualitatively?
(d) Use a trigonometric identity that enables you to avoid the cancellation. Evaluate the

new function at x = 1.2× 10−8 and compare with your analytical answer for x→ 0.

10. This problem focuses on analytical manipulations introduced in order to avoid a can-
cellation. Rewrite the following expressions in order to evaluate them for large x:

(a)
√

x + 1 −
√

x

43 Keep in mind that if b2 ≈ ac, then b2 − 4ac would involve a catastrophic cancellation. Unfortunately, there is
no analytical trick to help us get out of this problem.
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(b)
1

x + 1
− 2

x
+

1
x − 1

(c)
1
√

x
− 1
√

x + 1

Feel free to test the “before” and “after” formulas with Python.
11. We’ll spend more time on statistical concepts in chapters 6 and 7 but, for now, let’s

focus on numerical-error aspects. Assume you have n values xi. First, evaluate the mean:

μ =
1
n

n−1∑
i=0

xi (2.97)

You can evaluate the variance using a two-pass algorithm:

σ2 =
1
n

n−1∑
i=0

(xi − μ)2 (2.98)

This is called a two-pass algorithm because you need to evaluate the mean first, so you
have to loop through the xi once to get the mean and a second time time to get the
variance. Many people prefer the following one-pass algorithm:

σ2 =

⎛⎜⎜⎜⎜⎜⎜⎝1
n

n−1∑
i=0

x2
i

⎞⎟⎟⎟⎟⎟⎟⎠ − μ2 (2.99)

You should be able to see that this formula allows you to keep running sums of the xi

and the x2
i values in parallel and then perform only one subtraction at the end.

Naively, you might think that the two-pass algorithm will suffer from more roundoff
error problems, since it involves n subtractions. On the other hand, if you solved the
earlier problem on x̃2 − ỹ2, you might be more wary of subtracting the squares of two
nearly equal numbers (which is what the one-pass algorithm does). Write two Python
functions, one for each algorithm, and test them on the two cases below:

xi = 0, 0.01, 0.02, . . . , 0.09

xi = 123456789.0, 123456789.01, 123456789.02, . . . , 123456789.09
(2.100)

12. This problem discusses error buildup when trying to evaluate polynomials without and
with the use of Horner’s rule. Take a polynomial of degree n − 1:

P(x) = p0 + p1x + p2x2 + p3x3 + · · · + pn−1xn−1 (2.101)

Write a function that takes in a list containing the pi’s, say coeffs, and the point x and
evaluates the value of P(x) in the naive way, i.e., from left to right.
Notice that this way of coding up the polynomial contains several (needless) multipli-
cations. This is so because xi is evaluated as x × x × · · · × x (where there are i − 1
multiplications). Thus, this way of approaching the problem corresponds to:

1 + 2 + · · · + n − 2 =
(n − 1)(n − 2)

2
(2.102)

multiplications, from x2 all the way up to xn−1. If we rewrite the polynomial:

P(x) = p0 + x (p1 + x (p2 + x (p3 + · · · + x (pn−2 + xpn−1) · · · ))) (2.103)
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then we can get away with only n − 1 multiplications (i.e., no powers are evaluated).
This is obviously more efficient, but equally important is the fact that this way we can
substantially limit the accumulation of rounding error (especially for polynomials of
large degree). Write a function that takes in a list containing the pi’s, say coeffs, and
the point x and evaluates the value of P(x) in the new way, i.e., from right to left.

Apply the previous two functions to the (admittedly artificial) case of:

coeffs = [(-11)**i for i in reversed(range(8))]

and x = 11.01. Observe any discrepancy and discuss its origin.

13. This problem studies the rational function introduced in the main text, Eq. (2.53).

(a) Apply Horner’s rule twice (once for the numerator and once for the denominator)
to produce two plots, one for x = 1.606 + 2−52i and one for x = 2.400 + 2−52i. Your
results should look like Fig. 2.3.

(b) Create a new Python function that codes up the following expression:

s(x) = 4 − 3(x − 2)[(x − 5)2 + 4]
x + (x − 2)2[(x − 5)2 + 3]

(2.104)

which is a rewritten version of our rational function. Apply this new function to the
case of the previous two plots and compare the rounding error pattern, size, etc.

(c) Now introduce two more sets of results, this time for the starting expression for
r(x) produced using (not Horner’s rule but) the naive implementation, using powers
(i.e., the way you would have coded this up before doing the previous problem).
Interpret your findings.

14. This problem studies a new rational function:

t(x) =
7x4 − 101x3 + 540x2 − 1204x + 958

x4 − 14x3 + 72x2 − 151x + 112
(2.105)

Notice that the denominator is the same as in the previous problem.

(a) Plot t(x), evaluated via Horner’s rule, along with the following (equivalent) contin-
ued fraction, from x = 0 to x = 4:

u(x) = 7 − 3

x − 2 − 1
x−7+ 10

x−2− 2
x−3

(2.106)

You may wish to know that:

u(1) = 10, u(2) = 7, u(3) = 4.6, u(4) = 5.5 (2.107)

(b) Evaluate each of these functions for x = 1077 (make sure to use floats in your code).
Do you understand what is happening? Are you starting to prefer one formulation
over the other? (What happens if you use integers instead of floats?)

(c) Plot the two Python functions (t(x) and u(x)) for x = 2.400 + 2−52i, where i goes
from 0 to 800. Was your intuition (about which formulation is better) correct?
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15. In the main text we investigated the Taylor series for ex at x = 0.1 and x = 20. Do the
same for f (x) = sin x at x = 0.1 and x = 20. Just like we did, you will first need to find
a simple relation between the n-th term and the (n − 1)-th term in the series. Then, use
a trigonometric identity to study a smaller x instead of 20.

16. Here we study the Basel problem, namely the sum of the reciprocals of the squares
of the positive integers. This also happens to be a specific value of the Riemann zeta
function, ζ(2). The value can be calculated in a variety of ways and turns out to be:

∞∑
k=1

1
k2
=
π2

6
= 1.644 934 066 848 226 4 . . . (2.108)

Here we will use Python to approximate the sum numerically.

(a) Code this up in the obvious way, namely by adding all the contributions from k =
1, 2, up to some large integer. You can break out of the loop when the value of the
sum stops changing. What is the value of the sum when this happens?

(b) Make sure to understand why the sum stopped changing when it did. Is there some
meaning behind the value of the maximum integer (inverse squared) when this hap-
pens? Call this nmaxd for future reference.

(c) If you’re disappointed in the number of matching significant digits we get this way,
do not despair: we are summing the contributions from largest to smallest, so by
the time we get to the really tiny contributions they stop mattering. The obvious
fix here is to reverse the order in which we are carrying out the sum. This has the
advantage of dealing with the tiniest contributions first (you may have encountered
the term “subnormal numbers” in Appendix B). The disadvantage is that our previ-
ous strategy regarding termination (break out when the sum stops changing) doesn’t
apply here: when summing in reverse the last few contributions are the largest in
magnitude.

What we do, instead, is simply pick a large maximum integer nmaxr from the start.
Be warned that this part of the problem will start to take a long time, depending
on the CPU you are using. Do a few runs for nmaxr a multiple of nmaxd (4, 8,
16, 32). You should see the answer get (slowly) better. The beauty here is that the
larger nmaxr, the better we can do. (Try increasing nmaxd for the direct method and
observe that it makes no difference.)

(d) Employ compensated summation to carry out the sum. Test the Kahan sum function
out to see how well it does, despite the fact that it carries out the sum in direct order,
i.e., by starting from the largest contribution. Notice that we don’t have a nifty
termination/breaking out criterion. On the other hand, by increasing the number of
terms, we can still make a difference.

17. In section 2.4.5 we saw a case where backward recursion avoids the problems of for-
ward recursion. Another example is provided by spherical Bessel functions (of the first
kind):

jn+1(x) + jn−1(x) =
2n + 1

x
jn(x) (2.109)
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which is analogous to Bonnet’s recurrence relation, Eq. (2.86). Evaluate j4(0.5) in the
“naive way”, starting from the known functions:

j0(x) =
sin x

x
, j1(x) =

sin x
x2
− cos x

x
(2.110)

and see what goes wrong. Then, use backward recursion starting from n = 15. Since
your two starting guesses are arbitrary, you should normalize by computing:

j4(0.5) = j̃4(0.5)
j0(0.5)

j̃0(0.5)
(2.111)

at the end, where j̃0(0.5) and j̃4(0.5) are the values you computed and j0(0.5) is the
correctly normalized value from Eq. (2.110).

18. In this problem we will study the Fourier series of a periodic square wave. As you may
already know, this gives rise to what is known as the Gibbs phenomenon, which is a
“ringing” effect that appears at discontinuities. Specifically, from −π to π we have:

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1
2 , 0 < x < π

− 1
2 , − π < x < 0

(2.112)

The Fourier series of this function is:

f (x) =
2
π

∑
n=1,3,5,...

sin(nx)
n

(2.113)

(a) Create two Python functions, one for the square wave and another for its Fourier
expansion. The latter should take in as an argument the maximum n up to which
you wish the sum to go.

(b) Plot the square wave and the Fourier-expansion results for nmax = 1, 3, 5, 7, 9 (six
curves in total). Where are the oscillation amplitudes largest?

(c) Note that this issue arises not from roundoff error, but from the nature of the Fourier
series itself. To convince yourself that this is, indeed, the case, take the maximum n
value to be 21, 51, 101, and so on. What do you find?

19. Using vectorfield.py and chargearray.py, produce panels analogous to those in
Fig. 2.4, made up of 36 charges (along six rows and six columns). In this problem, in
addition to changing the magnitude of the charges (to either +1 or −1) you should also
change their placement (i.e., they no longer need to be alternating as in our figure).
Separately investigate the cases where the field at large distances behaves like: (a) a
dipole, and (b) a quadrupole.

20. An alternative recurrence relation for Legendre polynomials is:

Pn(x) = 2xPn−1(x) − Pn−2(x) − xPn−1(x) − Pn−2(x)
n

(2.114)

Compare with the output of legendre.py.

21. This problem guides you toward deriving our result for the first derivative of Legendre
polynomials, Eq. (2.89).
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(a) Differentiate Eq. (2.81) with respect to x. Then, split the resulting equation into four
separate sums, noticing that our power series in u is equal to zero, regardless of the
value of u. Thus, the coefficient of each power of u (separately) is equal to zero.
This will be a recurrence relation for P′j(x) (since we already know the Legendre
polynomials Pj(x)).

(b) Differentiate Eq. (2.86) with respect to x.
(c) Multiply the result of part (b) by 2 and add to that part (a) times 2 j + 1.
(d) Produce two equations, one being the sum of the results of part (a) and part (c)

(divided by 2) and the other being the difference of the results of part (a) and part
(c) (divided by 2). Call these two equations S and D, respectively.

(e) Take j → j + 1 in S and subtract x times D. The result should be equivalent to
Eq. (2.89).

22. This problem studies the evaluation of Bernoulli numbers and polynomials.

(a) In section 2.5.2 we saw how to go from a generating function to a recurrence rela-
tion for Legendre polynomials. We will now do something analogous for what are
known as Bernoulli numbers. Specifically, start from:

u
eu − 1

=

∞∑
j=0

Bju j

j!
(2.115)

and show that:

n − 1 =
n−1∑
j=1

B2 j

(
2n
2 j

)
(2.116)

You should use the Taylor series of the exponential and the Cauchy product.
(b) Compute the first 15 even Bernoulli numbers from the recurrence relation.
(c) Slightly generalizing the above generating function, we get to a corresponding re-

lation for Bernoulli polynomials:

ueut

eu − 1
=

∞∑
j=0

Bj(t)
uj

j!
(2.117)

Use this equation to derive the following properties:

Bj(0) = Bj,
d
dt

Bj(t) = jBj−1(t), Bj(1) = (−1) jB j(0) (2.118)

(d) We will now use the previous three properties to derive the celebrated Euler–Maclaurin
summation formula. Since B0(t) = B0 = 1, we can write:∫ 1

0
g(t)dt =

∫ 1

0
g(t)B0(t)dt (2.119)

You can now use the second property and replace B0(t) with B′1(t). Integrate by parts
and keep repeating the entire exercise until you find:∫ 1

0
g(t)dt =

g(0)
2
+

g(1)
2
−

m∑
j=1

1
(2 j)!

B2 j

[
g(2 j−1)(1) − g(2 j−1)(0)

]
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+
1

(2m)!

∫ 1

0
g(2m)(t)B2m(t)dt (2.120)

Crucially, only even Bernoulli numbers appear here.
(e) To make the integral and derivatives easier, take g(t) = et. Print out the value of the

left-hand side in Eq. (2.120) as well as the value of the right-hand side as you take
m = 1, 2, 3, . . . , 10 (always dropping the remainder term).

23. This problem studies the evaluation of Chebyshev polynomials and their extrema, known
as Chebyshev points. First, implement the following recurrence relation:

Tn+1(x) = 2xTn(x) − Tn−1(x) (2.121)

starting from the known functions T0(x) = 1 and T1(x) = x. Plot the first few Chebyshev
polynomials from x = −1 to x = +1. Second, use trigonometric identities to show
(analytically) that the representation:

Tn(x) = cos
(
n cos−1 x

)
(2.122)

is equivalent to that in Eq. (2.121). Finally, use Eq. (2.122) to show that the n extrema
of Tn−1(x) are:

x j = − cos
( jπ
n − 1

)
, j = 0, 1, . . . , n − 1 (2.123)

This result will play an important role in chapter 6.
24. For the 36-charge array of section 2.5 determine, as a function of position along the

y axis, the minimum number of terms you need to keep in the multipole expansion in
order to ensure your relative error in the total potential is less than 10−6.

25. Generalize our code in multipole.py so that it works regardless of whether or not
r > ri. This necessitates changes to all three functions in that program.



Derivatives 3
Deriva

I’ll teach you differences.
William Shakespeare

3.1 Motivation

In this chapter and in all the following ones we start out with a section titled “Motivation”,
which has a dual purpose: (a) to provide examples of the chapter’s theme drawn from the
study of physics, and (b) to give a mathematical statement of the problem(s) that will be
tackled in later sections.

3.1.1 Examples from Physics

Here are three examples of the use of derivatives in physics:

1. In classical mechanics, the definition of the velocity of a single particle is:

v =
dr
dt

(3.1)

where r is the position of the particle in a given reference frame. This definition tells us
that the velocity is the time derivative of the position.

2. In classical electromagnetism, the equation connecting the electric field E with the vec-
tor potential A and scalar potential φ is:

E = −∇φ − ∂A
∂t

(3.2)

The right-hand side contains both spatial derivatives and a time derivative.

3. The Lagrangian density for the vibrations of a continuous rod can be expressed as:

L = 1
2

⎡⎢⎢⎢⎢⎢⎣ 1
c2

(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2⎤⎥⎥⎥⎥⎥⎦ (3.3)

Here c is the velocity of longitudinal elastic waves. The dynamical variable is ϕ(x, t).
As you can see, the spatial and temporal derivatives of this quantity together make up
the Lagrangian density. Something very similar to this expression appears in state-of-
the-art lattice field theory computations.
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3.1.2 The Problem to Be Solved

More generally, our task is to evaluate the derivative of f (x) at a specific point, f ′(x). If we
have an analytical expression for the x-dependence of the function f (x), then this problem
is in principle trivial , even though humans are error-prone when dealing with complicated
expressions. However, in many cases we, instead, have a set of n discrete data points (i.e.,
a table) of the form (xi, f (xi)) for i = 0, 1, . . . , n − 1.1 This often happens when we are
dealing with a computationally demanding task: while we could produce more-and-more
sets of points, in practice, we are limited by the time it takes to produce those.

One could approach this problem in a number of ways. First, we can use interpolation
or data fitting (see chapter 6) to produce a new function that approximates the data rea-
sonably well, and then apply analytical differentiation to that function. This is especially
helpful when we are dealing with noisy data. On the other hand, just because a function
approximates a set of data points quite well, doesn’t mean that it also captures information
on the derivative (or even higher-order derivatives) of the function. In other words, inter-
polating/fitting and then taking the derivative doesn’t provide much guidance regarding the
error involved when we’re interested in the derivative (do we know we’re using the right
analytical form?). The second class of approach is helpful in systematizing our ignorance:
it is called the finite-difference approach, also known simply as numerical differentiation.
In a nutshell, it makes use of the Taylor series expansion of the function we are interested
in differentiating, around the specific point where we wish to evaluate the derivative. The
third class of approach is known as automatic differentiation: this is as accurate as analyti-
cal differentiation, but it deals with numbers instead of mathematical expressions.

3.2 Analytical Differentiation

Derivatives like those discussed in the previous section are defined in the usual way:

d f (x)
dx

= lim
h→0

f (x + h) − f (x)
h

(3.4)

This gives us the derivative of a function f at the point x in terms of a limit. In practice,
we typically don’t apply this definition, but use, instead, standard differentiation rules for
powers, quotients, products, as well as the well-known expressions for the derivative of
several special functions. As you learned a long time ago, the application of these rules can
help you differentiate any function you wish to, e.g.:

d
dx

esin(2x) = 2 cos(2x) esin(2x) (3.5)

You could similarly evaluate the second derivative, the third derivative, and so on.

1 Note that when labelling our n points we start at 0 and end at n−1: this is consistent with Python’s 0-indexing.
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In most of this book, we are interested in “computing”, namely plugging actual numbers
into mathematical expressions. Even so, there are times when carrying out a numerical
evaluation might obscure underlying simplicities. Other times, carrying analytical calcula-
tions out by hand can get quite tedious. The solution for these scenarios is to use a com-
puter algebra package. Such packages allow one to carry out symbolic manipulations on
the computer. Sage is a mathematical software system with a “Python-like” syntax that was
intended to be an alternative to solutions like Maple, Mathematica, or Matlab. In one of
the problems, we focus on a much more lightweight solution, namely SymPy (actually in-
cluded as part of Sage): this is a Python module (that can be used like any other Python
module) to carry out symbolic manipulations using Python idioms whenever possible.

3.3 Finite Differences

Let us return to the definition of the derivative given in Eq. (3.4):

d f (x)
dx

∣∣∣∣∣
x̃
= lim

h→0

f (x̃ + h) − f (x̃)
h

(3.6)

where we are slightly changing our notation to show that this definition allows us to evalu-
ate the derivative of f (x) at the point x̃.2 The obvious thing that comes to mind is to try to
use this formula but, instead of taking the limit h → 0, simply take h to be “small”. There
are many questions that immediately emerge with this ad hoc approach: (a) do we have
any understanding of the errors involved?, (b) do we know what “small” means?, (c) do
we realize that, typically, the smaller h becomes, the smaller the numerator becomes? Fo-
cusing on the last point: as we’re making h smaller and smaller, we’re producing a smaller
and smaller numerator f (x̃ + h) − f (x̃), since we’re evaluating the function f at two points
that are just next to each other: as if that wasn’t enough, then we’re simply dividing with
that tiny number h (since it’s in the denominator), magnifying any mistakes we made in
the evaluation of the numerator.

In the rest of this section, we will try to remedy the problems of this ad hoc approach, in
order to be more systematic. As mentioned above, we will make repeated use of the Taylor
series expansion of the function we are interested in differentiating.

3.3.1 Noncentral-Difference Approximations

Forward Difference

With the aforementioned disclaimer that we don’t distinguish between x and x̃, let us start
from the all-important Taylor expansion of f (x + h) around x, see Eq. (C.1):

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f (4)(x) + · · · (3.7)

2 Informally, this distinction between a general point x and a specific point x̃ is often passed over.
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�Fig. 3.1 First approximation of a first derivative: forward (left), central (right)

This can be trivially re-arranged to give:

f ′(x) =
f (x + h) − f (x)

h
− h

2
f ′′(x) + · · · (3.8)

This naturally leads to an approximation for the value of the derivative of f (x) at x:

f ′(x) =
f (x + h) − f (x)

h
+ O(h) (3.9)

known as the (first) forward-difference approximation. To be clear, this approximation con-
sists in using only the fraction on the right-hand side to evaluate the derivative: as the sec-
ond term on the right-hand side shows, this suffers from an error O(h): this is possibly not
too bad when h is small. This recipe is called a forward difference because it starts at x and
then moves in the forward/positive direction to x+ h. Graphically, this is represented in the
left panel of Fig. 3.1. Clearly, the forward difference is nothing other than the slope of the
line segment connecting f (x) and f (x + h). This is not always a great approximation: for
the example chosen, we would expect the slope of f (x) to be positive.

Note that the formula we arrived at for the forward difference happens to be identical
to the formula that we qualitatively discussed after Eq. (3.6): the difference here is that,
due to the derivation starting from the Taylor series, we have a handle on the error this
approximation corresponds to. It may still suffer from the issues mentioned above (tiny
numerator, tiny denominator), but at least now we have some guidance on how well we’re
doing: if the h is not too small (so that we’re still away from major roundoff issues), halving
the h should double the quality of the approximation (in absolute terms).

Incidentally, we used in Eq. (3.9) the O symbol, which you may have not encountered
before. This is known as big-O notation. For our purposes, it is simply a concise way of
encapsulating only the dependence on the most crucial parameter, without having to worry
about constants, prefactors, etc. Thus, O(h) means that the leading error is of order h. Since
h will always be taken to be “small”, we see that an error O(h) is much larger/worse than,
say, an error O(h6). Though there could, in principle, also be prefactors that complicate
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such a comparison, the essential feature is captured by the power-law (or other) dependence
attached to the O symbol.3

Backward Difference

At this point, we observe that we started our derivation in Eq. (3.7) with f (x + h) and then
ended up with the prescription Eq. (3.9) for the forward difference. Obviously, we could
just as well have started with the Taylor expansion of f (x − h):

f (x − h) = f (x) − h f ′(x) +
h2

2
f ′′(x) − h3

6
f ′′′(x) +

h4

24
f (4)(x) + · · · (3.10)

Again, this can be trivially re-arranged to give:

f ′(x) =
f (x) − f (x − h)

h
+

h
2

f ′′(x) − · · · (3.11)

This naturally leads to an approximation for the value of the derivative of f (x) at x:

f ′(x) =
f (x) − f (x − h)

h
+ O(h) (3.12)

known as the (first) backward-difference approximation. This is called a backward differ-
ence because it starts at x and then moves in the negative direction to x − h. It is nothing
other than the slope of the line segment connecting f (x − h) and f (x). The forward and
backward differences are very similar, so we focus on the former, for the sake of concrete-
ness. These are collectively known as noncentral differences, as used in the title of this
section. “Noncentral” is employed in contradistinction to “central”, which we discuss in
the following section. Before we do that, though, we will spend some time discussing the
errors of the forward-difference approximation in more detail.

Error Analysis for the Forward Difference

We’ve already seen above that we want the h to be small4 but, on the other hand, we don’t
want to make the h too small, as that will give rise to roundoff errors. Clearly, the best-
possible choice of h will be somewhere in the middle.

We’re here dealing with the combination of an approximation error Eapp, coming from
the truncation of the Taylor series, and a roundoff error Ero, coming from the subtraction
and division involved in the definition of the forward difference. In chapter 2 we defined the
absolute error as “approximate minus exact”, see Eq. (2.5); here we’re using a new symbol,
E, to denote the magnitude of the absolute error. The magnitude of the approximation error

3 Also, note that here we are interested in small h, in which case O(h2) is “better” than O(h). In later chapters,
we will be examining the dependence of various quantities on the required number of function evaluations n;
in that case O(n2) will be “worse” than O(n).

4 So that the term O(h) we’re chopping off doesn’t matter very much.
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is immediately obvious, given Eq. (3.8):

Eapp =
h
2
| f ′′(x)| (3.13)

Actually this result is not totally trivial: from what we know about the Lagrange remainder
in a Taylor series, this expression should involve | f ′′(ξ)|, where ξ is a point between x and
x + h. However, since h is small, it is a reasonable approximation to take | f ′′(ξ)| ≈ | f ′′(x)|;
we will make a similar approximation (more than once) below.

Turning to Ero, we remember that we are interested in evaluating ( f (x+h)− f (x))/h. We
focus on the numerator: this is subtracting two numbers that are very close to each other,
bringing to mind the discussion in section 2.2.2. As per Eq. (2.20), to find the absolute
error of the subtraction f (x + h) − f (x) we add together the absolute errors in f (x + h)
and in f (x). As per Eq. (2.51), we see that the absolute error in f (x + h) − f (x) is f (x)2εm,
where we assumed f (x+h) ≈ f (x) and that the relative error for each function evaluation is
approximated by the machine error. If we now ignore the error incurred by the division by h
(which we know is a reasonable thing to do), we see that the absolute error in evaluating the
forward difference, ( f (x + h) − f (x))/h, will simply be the absolute error in the numerator
divided by h:

Ero =
2| f (x)|εm

h
(3.14)

We can now explicitly see that for the case under study the approximation error de-
creases as h gets smaller, whereas the roundoff error increases as h gets smaller. Adding
the approximation error together with the roundoff error gives us:

E = Eapp + Ero =
h
2
| f ′′(x)| + 2| f (x)|εm

h
(3.15)

To minimize this total error, we set the derivative with respect to h equal to 0:

1
2
| f ′′(x)| − 2| f (x)|εm

h2
opt

= 0 (3.16)

where we called the h value that minimizes the total absolute error hopt. For future refer-
ence, we note that Eq. (3.16) can be manipulated to give:

hopt

2
| f ′′(x)| = 2| f (x)|εm

hopt
(3.17)

Our equation in Eq. (3.16) can be solved for the optimal value of h giving us:

hopt =

√
4εm

∣∣∣∣∣ f (x)
f ′′(x)

∣∣∣∣∣ (3.18)

These results can be plugged into Eq. (3.15) to give the smallest possible error in the
forward difference. We do this in two steps. First, we use Eq. (3.17) to find:

Eopt = hopt | f ′′(x)| (3.19)
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Second, we plug Eq. (3.18) into our latest result to find:

Eopt =
√

4εm | f (x) f ′′(x)| (3.20)

For concreteness, assume that f (x) and f ′′(x) are of order 1. Our result in Eq. (3.18) then
tells us that we should pick hopt =

√
4εm ≈ 3 × 10−8. In that case, the (optimal/minimum)

absolute error is also Eopt =
√

4εm ≈ 3 × 10−8. These numbers might, of course, look
quite different if the value of the function (or its second derivative) is much greater than or
less than 1. Note that an error of 10−8 is not that impressive: in section 3.2 on analytical
differentiation we had no differentiation error: the only error involved was the function
evaluation, which is typically a significantly less important problem.

Keep in mind that statements like “the error in this approach is O(h)” (referring to the
approximation error) are only true for reasonably well-behaved functions. If the corre-
sponding derivative is infinite or doesn’t exist, then you cannot rely on the straightforward
results on scaling we discuss here.

3.3.2 Central-Difference Approximation

We will now try to find a way to approximate the derivative using a finite difference, but
more accurately than with the forward/backward difference. As before, we start from the
Taylor expansion of our function around x, but this time we choose to make a step of size
h/2 (as opposed to the h in the previous section):

f

(
x +

h
2

)
= f (x) +

h
2

f ′(x) +
h2

8
f ′′(x) +

h3

48
f ′′′(x) +

h4

384
f (4)(x) + · · · (3.21)

We can also write down a similar Taylor expansion for a move in the negative direction:

f

(
x − h

2

)
= f (x) − h

2
f ′(x) +

h2

8
f ′′(x) − h3

48
f ′′′(x) +

h4

384
f (4)(x) − · · · (3.22)

Comparing the last two equations, we immediately see that adding them or subtracting
them can lead to useful patterns: the sum contains only even derivatives whereas the dif-
ference contains only odd derivatives. In the present case, we subtract the second equation
from the first: all even derivatives along with the f (x) term cancel. We can now re-arrange
the result, solving for f ′(x):

f ′(x) =
f
(
x + h

2

)
− f

(
x − h

2

)
h

− h2

24
f ′′′(x) + · · · (3.23)

This naturally leads to an approximation for the value of the derivative of f (x) at x:

f ′(x) =
f
(
x + h

2

)
− f

(
x − h

2

)
h

+ O(h2) (3.24)

known as the (first) central difference approximation. As the second term on the right-hand
side shows, this suffers from an error O(h2): since h is generally small, h2 is even smaller.
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Just like for the forward-difference approximation in Eq. (3.9), computing the central dif-
ference requires only two function evaluations. This is called the central difference because
these two evaluations are at x − h/2 and at x + h/2, i.e., they are centered at x: just like for
the forward difference, these two points are h apart. Graphically, this is represented in the
right panel of Fig. 3.1. Clearly, the central difference is nothing other than the slope of the
line segment connecting f (x − h/2) and f (x + h/2). As the figure shows, for the example
chosen this is a much better approximation than the forward difference in the left panel. We
will discuss this approximation’s error budget below: for now, note that if the h is not too
small (so that we’re still away from major roundoff issues), halving the h should quadruple
the quality of the approximation (in absolute terms).

There exists one (very common in practice) situation where a central-difference approx-
imation is simply not usable: if we have a set of n discrete data points (i.e., a table) of
the form (xi, f (xi)) for i = 0, 1, . . . , n − 1 we will not be able to use a central difference
to approximate the derivative at x0 or at xn−1: for any of the “middle” points we could al-
ways use two evaluations (one on the left, one on the right), but for the two endpoints we
simply don’t have points available “on the other side”, so a forward/backward difference is
necessary there.

Error Analysis for the Central Difference

We wish the h to be small,5 but we should be cautious about not making the h too small,
lest that give rise to roundoff errors. Once again, the best-possible choice of h will be some-
where in the middle. As you’ll show in a problem, for this case adding the approximation
error together with the roundoff error gives us:

E = Eapp + Ero =
h2

24
| f ′′′(x)| + 2| f (x)|εm

h
(3.25)

You will also show that minimizing this total error leads to:

hopt =

(
24εm

∣∣∣∣∣ f (x)
f ′′′(x)

∣∣∣∣∣
)1/3

, Eopt =

(
9
8
ε2

m[ f (x)]2| f ′′′(x)|
)1/3

(3.26)

For concreteness, assume that f (x) and f ′′′(x) are of order 1. Our result in Eq. (3.26) then
tells us that we should pick hopt = (24εm)1/3 ≈ 2×10−5. In that case, the (optimal/minimum)
absolute error is Eopt = (9ε2

m/8)1/3 ≈ 4×10−11. These numbers might, of course, look quite
different if the value of the function (or its third derivative) is much greater than or less than
1. This time our error of 10−11 is much better than that for the forward difference, though
it’s still likely worse than what we got in section 3.2 using analytical differentiation.

We just observed that the error for the central difference (10−11) is considerably smaller
than that for the forward difference (10−8). Intriguingly, the optimal step size for the central
difference (10−5) is orders of magnitude larger than the optimal step size for the forward
difference (10−8): the better algorithm allows us to “get away with” a larger h.

5 As before, so that the term O(h2) we’re chopping off doesn’t matter very much.
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3.3.3 Implementation

We now turn to an example: we will employ the same function, f (x) = esin(2x), that we ana-
lytically differentiated in section 3.2. For concreteness, we study the derivative at a fixed x,
namely x = 0.5. We will examine the absolute errors in approximating the derivative using
forward and central differences in Code 3.1. We first define one Python function, f(), cor-
responding to the mathematical function whose derivative we’re interested in calculating,
and then another Python function, fprime(), corresponding to the derivative itself: this
will be used as an analytical benchmark, with which to compare the difference formula re-
sults. We then define functions giving the forward and central difference results, which take
in as an argument the function we wish to differentiate (which could be changed later). We
then re-encounter the if name == ‘ main ’: idiom. This will come in handy in a
later section, when we will employ the functions defined in this program without running
the rest of the code.

We use a few list comprehensions to store the step sizes and the difference-formula
results corresponding to them. In order to make the output more legible than it would be
by default, we employ a format string as discussed in chapter 1. The only new feature here
is that we store the format string into the variable rowf, in order to make the line containing
the print() itself easier to understand. We print things out this way because we will be
faced with a cascade of zeros. The output of running this code is:

h abs. error in fd abs. error in cd

1e-01 0.3077044583376249 0.0134656094697689

1e-02 0.0260359156901186 0.0001350472492652

1e-03 0.0025550421497806 0.0000013505116288

1e-04 0.0002550180941236 0.0000000135077878

1e-05 0.0000254969542519 0.0000000001051754

1e-06 0.0000025492660578 0.0000000002500959

1e-07 0.0000002564334673 0.0000000011382744

1e-08 0.0000000255070782 0.0000000189018428

1e-09 0.0000000699159992 0.0000000699159992

1e-10 0.0000021505300500 0.0000021505300500

1e-11 0.0000332367747395 0.0000111721462455

Let’s first look at the forward-difference results: we see that as h gets smaller by an order
of magnitude, the absolute error also gets smaller by an order of magnitude: recall that for
this approach the approximation error is O(h). The minimum absolute error turns out to be
≈ 2.5× 10−8, which appears for the step size h = 10−8. This is qualitatively consistent with
what we saw in the section on the error analysis above; this time around we don’t have
guarantees that the function (or derivative) values are actually 1. Actually, the absolute
error we found here is slightly smaller than expected, due to a cancellation of errors that we
couldn’t generally assume was going to be present (e.g., for another value of x). Beyond
this point, as we keep reducing h, we see that the absolute error starts increasing: the
roundoff error is now dominating, leading to increasingly poor results.



94 Derivatives

Code 3.1 finitediff.py Code 3.1

from math import exp, sin, cos

def f(x):

return exp(sin(2*x))

def fprime(x):

return 2*exp(sin(2*x))*cos(2*x)

def calc fd(f,x,h):

fd = (f(x+h) - f(x))/h

return fd

def calc cd(f,x,h):

cd = (f(x+h/2) - f(x-h/2))/h

return cd

if name == ‘ main ’:

x = 0.5

an = fprime(x)

hs = [10**(-i) for i in range(1,12)]

fds = [abs(calc fd(f,x,h) - an) for h in hs]

cds = [abs(calc cd(f,x,h) - an) for h in hs]

rowf = "{0:1.0e} {1:1.16f} {2:1.16f}"
print("h abs. error in fd abs. error in cd")

for h,fd,cd in zip(hs,fds,cds):

print(rowf.format(h,fd,cd))

The results for the central-difference formula are completely analogous: we see that as
h gets smaller by an order of magnitude, the absolute error also gets smaller by two orders
of magnitude: recall that for this approach the approximation error is O(h2). This process
reaches a minimum at h = 10−5: the absolute error there is ≈ 10−10, similarly to what was
seen in our earlier discussion of the error budget. As before, reducing the h further gives
disappointing results, since the roundoff error dominates beyond that point.

After you solve the corresponding problem, you will produce Fig. 3.2. The step size
h gets smaller as we go to the left, whereas the absolute value of the absolute error gets
smaller as we go to the bottom of the plot. The behavior encountered in this plot (for a
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Log-log plot using forward-difference and central-difference formulas �Fig. 3.2

specific function at a specific point) is pretty generic. On the right part of the plot we are
dominated by the truncation/approximation error: there, the central difference is clearly
superior, as the absolute error is consistently smaller. In this region, we can easily see our
earlier statements in action: as h changes by an order of magnitude, the error of the forward
difference changes by an order of magnitude, whereas the error of the central difference
changes by two orders of magnitude. As we keep moving to the left, beyond a certain point
roundoff error starts dominating and the forward difference is as good (or as bad) as the
central difference. We stop plotting when the error is so large that we are completely failing
at evaluating the derivative.

It’s worth pointing out that the source of all the roundoff problems that all finite-difference
formulas suffer from is that in each case the sum of all the function evaluation coefficients
is zero! This is pretty obvious at this point, since we’ve only seen two finite-difference
formulas (Eq. (3.9) which contained + f (x + h) − f (x) and Eq. (3.24) which contained
+ f (x + h/2) − f (x − h/2)), but you should keep it in mind as you proceed. Having terms
that nearly cancel each other invites trouble.

3.3.4 More Accurate Finite Differences

Up to this point, we’ve seen noncentral and central finite differences; the forward difference
had an error O(h) and the central difference an error O(h2). It’s important to note that both
the forward difference, Eq. (3.9), and the central difference, Eq. (3.24), require two function
evaluations to calculate a finite-difference ratio.

As you will show in the problem set, one can produce the following approximation for
the value of the derivative of f (x) at x:
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f ′(x) =
4 f

(
x + h

2

)
− f (x + h) − 3 f (x)

h
+

h2

12
f ′′′(x) + · · · (3.27)

known as the second forward-difference approximation. It has this name because: (a) it
also requires evaluations of the function at x and other points to the right (so it is a forward
difference), and (b) while being a forward difference, it suffers from an error O(h2), i.e.,
it is more accurate than the forward-difference approximation in Eq. (3.9), which has an
error of O(h) (so Eq. (3.27) is the second forward-difference approximation). While this
new approximation seems to be as good as the central difference in Eq. (3.24) which also
has an error O(h2), it accomplishes this at the cost of requiring three function evaluations:
f (x), f (x + h/2), and f (x + h).

In the problem set you will also produce yet another approximation for the value of the
derivative of f (x) at x:

f ′(x) =
27 f

(
x + h

2

)
+ f

(
x − 3

2 h
)
− 27 f

(
x − h

2

)
− f

(
x + 3

2 h
)

24h
+

3
640

h4 f (5)(x) + · · ·
(3.28)

known as the second central-difference approximation, for obvious reasons. This approx-
imation has an error O(h4), making it the most accurate finite-difference formula (for the
first derivative) that we’ve encountered. However, it accomplishes this at the cost of requir-
ing four function evaluations: f (x + 3h/2), f (x + h/2), f (x − h/2), and f (x − 3h/2). It’s
worth emphasizing what we noted above: the sum of all the function evaluation coefficients
is zero for this formula, too (27 + 1 − 27 − 1 = 0.)

It should be clear by now that one can keep including more points, taking Taylor ex-
pansions, multiplying and adding/subtracting those together, to arrive at formulas (whether
central or noncentral) that are of even higher order in accuracy. As we’ve already noted, the
problem with that approach is that one needs increasingly many function evaluations: in
practice, evaluating f (x) at different points is a costly task, so it turns out that more accurate
expressions like those we’ve seen in this section are not too commonly encountered “in the
wild”. (You should also try to come up with aO(h4) method by using f (x+h/2)− f (x−h/2)
together with f (x + h) − f (x − h).)

3.3.5 Second Derivative

In practice, we also need higher-order derivatives: the second derivative is incredibly im-
portant in all areas of physics. It should come as no surprise that one can set up forward,
backward, and central difference expressions (of increasing sophistication) that approxi-
mate the second derivative. It is common to derive the simplest possible finite-difference
formula for the second derivative by saying that the second derivative is the first derivative
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of the first derivative, which symbolically translates to:

f ′′(x) ≈
f ′

(
x + h

2

)
− f ′

(
x − h

2

)
h

(3.29)

This is nothing other than the central-difference formula, Eq. (3.24), applied once. Apply-
ing it twice more (on the right-hand side) would give us an explicit approximation formula
for the second derivative in terms of function evaluations only.

Instead of pursuing that avenue, however, we will here follow the spirit of the previ-
ous sections, where we repeatedly used Taylor expansions, manipulating them to eliminate
terms of our choosing. Specifically, we look, once again, at Eq. (3.21) and Eq. (3.22). At
this point, we note that subtracting one of these equations from the other leads to odd
derivatives alone. It is just as easy to see that summing these two Taylor expansions to-
gether:

f

(
x +

h
2

)
+ f

(
x − h

2

)
= 2 f (x) +

h2

4
f ′′(x) +

h4

192
f (4)(x) + · · · (3.30)

leads to even derivatives alone. Since we’re interested in approximating the second deriva-
tive, we realize we’re on the right track. Our result can be trivially re-arranged to give:

f ′′(x) = 4
f
(
x + h

2

)
+ f

(
x − h

2

)
− 2 f (x)

h2
− h2

48
f (4)(x) − · · · (3.31)

This leads to an approximation for the value of the second derivative of f (x) at x:

f ′′(x) = 4
f
(
x + h

2

)
+ f

(
x − h

2

)
− 2 f (x)

h2
+ O(h2) (3.32)

known as the (first) central-difference approximation to the second derivative.
While it’s not too common in physics to need derivatives beyond the second derivative, it

should be straightforward to see how one would go about calculating higher-order deriva-
tives. We’ve seen that sums of Taylor series give us even derivatives and differences of the
Taylor series give us odd derivatives: we simply need to combine sufficiently many sums or
differences, to cancel all unwanted terms. For example, f (4)(x) can be approximated using
f (x + h/2) + f (x − h/2) together with f (x + h) + f (x − h).

3.3.6 Points on a Grid

So far, we’ve been quite cavalier in our use of different step sizes h and the placement of
different points at x, x+h/2, x+h, and so on. In other words, we were taking it for granted
that f was at our disposal, meaning that we could evaluate the function at any point of
our choosing. This does happen sometimes in practice: for example, in section 3.5 we will
evaluate a kinetic energy by numerically taking the second derivative of a wave function,
with an h that is up to us. However, as we noted in the first section of the present chapter,
sometimes we don’t control the function and the points at which it is evaluated but, instead,
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�Fig. 3.3 Illustration of points and subintervals/panels

have access only to a set of n discrete data points (i.e., a table) of the form (xi, f (xi)) for
i = 0, 1, . . . , n − 1. In this case, the function is known only at fixed points, xi, not of our
choosing.

Avoiding Error Creep

A very common use case is when the points xi are on an equally spaced grid (also known
as a mesh), from a to b. The n points are then given by the following relation:

xi = a + ih (3.33)

where, as usual, i = 0, 1, . . . , n − 1. The h is clearly given by:

h =
b − a
n − 1

(3.34)

Thus, even if this h is small (i.e., we have many points n), it is not of our choosing.
Since we will make heavy use of the last two formulas in what follows, let us take

some time to interpret them. First, note that if you use all xi’s, then you are dealing with
a closed approach: xi ranges from a (for i = 0) to b (for i = n − 1). In other words, in
that case the endpoints of our interval would be included in our set of points. Second, we
are using notation that will easily translate to Python’s (or any other C-based language’s)
0-indexing: we start counting at 0 and stop counting at n − 1. To be explicit: we have n
points in total (two of which are the endpoints). Third, we observe that the formula for
the h, Eq. (3.34), simply takes the interval from a to b and splits it up into smaller pieces.
When we are dealing with n points in total, we are faced with n − 1 subintervals from a
to b. In what follows, we will be using the terms subinterval and panel interchangeably.6

This is illustrated in Fig. 3.3; note that the overall interval (from a to b) always stays the
same.

Observe that Eq. (3.33) always starts at x = a and then automatically transports you
to your desired xi, e.g., if i = 17 it brings you up to x17 = a + 17h. You can store all
of these xi into a Python list by saying xs = [a+i*h for i in range(n)]. Note how
range automatically ensures that i goes from 0 to n-1. While this may appear to be rather

6 You might choose to introduce a new variable containing the number of panels, N = n − 1, in which case
h = (b − a)/N. In that case, the i in xi would go from 0 to N, since we have N + 1 = n points in total. This is
perfectly legitimate, but does introduce the cognitive load of having to keep track of two different variables, n
and N. We’ll stick to n alone in most of what follows.



3.3 Finite Differences 99

unremarkable, it’s worth observing that there are those7 who would rather use an alternative
formula, namely:

xi+1 = xi + h (3.35)

You may now be able to see where this is going: instead of storing all the xi’s so as to use
them only once, you might be tempted to simply use a “running” x variable, which you
can keep updating inside a loop by saying x += h. Unfortunately, this would be a mistake:
h is almost certainly bound to be evaluated with limited precision. That means that each
time we are adding h to the previous result we are committing another addition error. If
you are dealing with thousands of points (or more) it’s easy to see how an initial error of
εm in evaluating x can be exacerbated. Since we’re using these points on a grid in order to
evaluate a finite difference, we are setting ourselves up for failure: our x’s are becoming
progressively worse, therefore the ordinates (i.e., the f(x)) will also be wrong; this is a
case of “systematic creep”. It’s easy to see that our starting expression in Eq. (3.33) is much
better: it only involves one multiplication and one addition, and is therefore always to be
preferred. If you read and understood chapter 2, this point should be quite straightforward.
Of course, you may choose to avoid both the systematic creep (via the use of xi = a + ih)
and the storing of all the xi’s, simply by reapplying xi = a + ih each time through the loop.

Finite-Difference Formulas

Now, let us assume our task is to calculate the first derivative of f (x) at the same points xi.
To be fully explicit, let’s assume we have 101 points from 0 to 5. This leads to a step size of
h = 0.05: these points are 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, . . . , 4.9, 4.95, 5.0. For example,
we are interested in f ′(3.7) but the neighboring values at our disposal are only f (3.65),
f (3.7), and f (3.75). The forward-difference formula in Eq. (3.9):

f ′(x) =
f (x + h) − f (x)

h
+ O(h) (3.36)

shows that if we take x = 3.7 we can estimate f ′(3.7) using f (3.7) and f (3.75) with
h = 0.05. However, things are not so simple for the case of the central-difference formula
in Eq. (3.24):

f ′(x) =
f
(
x + h

2

)
− f

(
x − h

2

)
h

+ O(h2) (3.37)

Taking x = 3.7 and h = 0.05, this formula requires the function evaluations f (3.675) and
f (3.725). But, as we already noted, we have access to f (3.65), f (3.7), and f (3.75), not to
f (3.675) and f (3.725). What we can do, is take the h in the central-difference formula to
be twice as large, i.e., take h = 0.1 (this, obviously, has nothing to do with the h that was
used to produce the grid of points in Eq. (3.33)). For h = 0.1, the central-difference formula
requires f (3.65) and f (3.75) in order to approximate f ′(3.7) (and is therefore still distinct
from the forward-difference formula).

Slightly generalizing our result above, the central-difference formula in Eq. (3.37) as-
sumes that we have knowledge of f (x + h/2) and f (x − h/2): if all we have access to is a

7 Especially programmers who are averse to storing quantities that they won’t make much use of later on.
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grid of points like that in Eq. (3.33), then we will not be able to use the central-difference
formula in this form. We will be able to use it if we double the step size, taking h→ 2h:

f ′(x) =
f (x + h) − f (x − h)

2h
+ O(h2) (3.38)

In other words, by doubling the step size h→ 2h used to define the equation giving us the
central difference, we are able to plug in the same value of h in the formula Eq. (3.38) as
that used in the forward-difference Eq. (3.36), e.g., h = 0.05. This happens to be a general
result: all the expressions we gave above that require a function evaluation at a midpoint
could be recast in a form that can use function evaluations on a grid if we simply take
h → 2h. For example, our equation for the central-difference approximation to the second
derivative from Eq. (3.32) becomes:

f ′′(x) =
f (x + h) + f (x − h) − 2 f (x)

h2
+ O(h2) (3.39)

which is probably easier to memorize, anyway.
Let’s return to our problem of evaluating the first derivative at points on a grid xi when

all we have are the function values f (xi). We’ve seen that we can approximate f ′(xi) using:
(a) Eq. (3.36) which corresponds to the forward-difference formula with step size h, and
(b) Eq. (3.38) which corresponds to the central-difference formula with step size 2h. The
more accurate method (central differrence) here uses a larger step size 2h and we know that
a larger step size leads to less accuracy. Now, the question naturally arises: could it be that
the inaccuracy stemming from the larger step size overpowers the accuracy coming from
the fact that cental difference is a higher-order method?

In order to answer this question, we go back to our error analyses. For the forward
difference, we already know that the total error is given by Eq. (3.15):

E = Eapp + Ero =
h
2
| f ′′(x)| + 2| f (x)|εm

h
(3.40)

We will now find the corresponding expression for the new central difference. This will not
be identical to Eq. (3.25), since we’re now dealing with a step size of 2h, since the formula
we’re analyzing is Eq. (3.38). One can analyze the new approximation from scratch, or
simply replace h→ 2h in Eq. (3.25) to get:

E = Eapp + Ero =
h2

6
| f ′′′(x)| + | f (x)|εm

h
(3.41)

The trend exhibited by Eq. (3.41) appears to still be generally better than that of Eq. (3.40):
the approximation term is still quadratic,8 whereas the roundoff term is now half as big.
One could always concoct artificial scenarios where | f ′′′(x)| is dramatically larger than

8 And with a 6 in the denominator compared to the forward difference’s 2 in the denominator.
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| f ′′(x)|, but for most purposes it’s safe to say that the central-difference formula (even with
twice the step size) is better than the forward-difference one.

As an aside, we note that if we had been less strict in our requirements for the derivative
of f (x), e.g., if we were OK with the possibility of getting the derivative at points other
than the xi, then we would have been able to use the unmodified central-difference formula
of Eq. (3.37). To be explicit, taking x = 3.725 and h = 0.05, this formula requires the
function evaluations f (3.7) and f (3.75) which we do have access to! The price to be paid,
of course, is that this way we calculate f ′(3.725), not f ′(3.7).

3.3.7 Richardson Extrapolation

We now turn to a nice technique, called Richardson extrapolation, which can be used to im-
pove the accuracy of a numerical algorithm. Here we apply it to finite-difference formulas,
but its applicability is much wider, so we will return to this tool when we study integrals in
chapter 7 and differential equations in chapter 8.

General Formulation

Assume your task is to evaluate the quantity G, i.e., G is the exact answer of the calculation
that you are currently trying to carry out approximately. Your approximate answer g(h)
depends on a parameter h, which is typically an increment, or step size. We write:

G = g(h) + Eapp(h) (3.42)

where we explicitly noted that the approximation error also depends on h. The procedure
we are about to introduce works only on reducing the approximation error (so we didn’t
also include a roundoff term Ero).

We will now make the (pretty widely applicable) assumption that the error term can be
written as a sum of powers of h:

G = g(h) + Ahp + Bhp+q +Chp+2q + · · · (3.43)

where A, B,C are constants, p denotes the order of the leading error term and q is the incre-
ment in the order for the error terms after that. The idea behind Richardson extrapolation
is to apply Eq. (3.43) twice, once for a step size h and once for a step size h/2:

G = g(h) + Ahp + O(hp+q)

G = g(h/2) + A

(
h
2

)p

+ O(hp+q)
(3.44)

Equating the two right-hand-sides gives us:

g(h) + Ahp = g(h/2) + A

(
h
2

)p

+ O(hp+q) (3.45)

This equation can now be solved for Ahp:

Ahp =
2p

2p − 1
[
g(h/2) − g(h)

]
+ O(hp+q) (3.46)
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This result, in turn, can be plugged back into the first relation in Eq. (3.44) to give:

G =
2pg(h/2) − g(h)

2p − 1
+ O(hp+q) (3.47)

This is sometimes called an extrapolated value. This is a good time to lay all your possible
worries to rest: Eq. (3.47) contains a subtraction on the right-hand-side (so it’s possible
some roundoff error may creep in) but, despite the fact that g(h) and g(h/2) presumably
have similar values, no catastrophic cancellation is present, because of the 2p coefficient.

To summarize, we started in Eq. (3.43) from a formula that has a leading error of O(hp);
by using two calculations (one for a step size h and one for a step size h/2), we managed
to eliminate the error O(hp) and are left with a formula that has error O(hp+q). It’s easy to
see how this process could be repeated: by starting with two calculations each of which
has error O(hp+q), we can arrive at an answer with error O(hp+2q), and so on.

Finite Differences

We now apply our general result in Eq. (3.47) to finite-difference formulas. In order to bring
out the connections with other approaches touched upon in this chapter, we will carry out
this task twice, once for the forward difference and once for the central difference.

Forward Difference

We will use our first forward-difference formula, Eq. (3.9):

Df d(h) =
f (x + h) − f (x)

h
(3.48)

where we also took the opportunity to employ new notation. Clearly, the leading error term
in Eq. (3.48) is O(h) (as we explicitly derived in section 3.3), meaning that the exponent in
hp is p = 1 for this case. Richardson extrapolation will eliminate this leading error term,
leaving us with the next contribution, which is O(h2), as we know from Eq. (3.7).

Applying Eq. (3.47) with the present notation for p = 1 gives us:

Rf d = 2Df d(h/2) − Df d(h) + O(h2) = 2
f
(
x + h

2

)
− f (x)

h/2
− f (x + h) − f (x)

h
+ O(h2)

=
4 f

(
x + h

2

)
− f (x + h) − 3 f (x)

h
+ O(h2) (3.49)

In the second equality we plugged in our definition from Eq. (3.48) twice. In the third
equality we grouped terms together. Our result is identical to the second forward-difference
formula from Eq. (3.27): while there we had to explicitly derive things in terms of Taylor
series, here we simply carried out one step of a Richardson extrapolation process.9 To

9 We could now carry out two calculations with errors O(h2), set p = 2 in Eq. (3.47) and we would get a result
with error O(h3).
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summarize, we employed a two-point formula (Eq. (3.48)) twice and ended up with a
three-point formula (Eq. (3.49)) which is more accurate.

Central Difference

This time we will use our first central-difference formula, Eq. (3.24):

Dcd(h) =
f
(
x + h

2

)
− f

(
x − h

2

)
h

(3.50)

where we used the notation Dcd(h) notation on the left-hand side. The leading error term
in Eq. (3.50) is O(h2) (as we explicitly derived in section 3.3), meaning that the exponent
in hp is p = 2 for this case. Richardson extrapolation will eliminate this leading error term,
leaving us with the next contribution, which is O(h4), as we know from Eq. (3.28).

Applying Eq. (3.47) with the present notation for p = 2 gives us:

Rcd =
4
3

Dcd(h/2) − 1
3

Dcd(h) + O(h4)

=
4
3

f
(
x + h

4

)
− f

(
x − h

4

)
h/2

− 1
3

f
(
x + h

2

)
− f

(
x − h

2

)
h

+ O(h4)

=
8 f

(
x + h

4

)
+ f

(
x − h

2

)
− f

(
x + h

2

)
− 8 f

(
x − h

4

)
3h

+ O(h4) (3.51)

In the second line we plugged in our definition from Eq. (3.50) twice. In the third line we
grouped terms together. Our result is identical to the second central-difference formula that
you were asked to derive after Eq. (3.28): while there we had to explicitly derive things in
terms of Taylor series, here we simply carried out one step of a Richardson extrapolation
process. If you’re not seeing that the two results are identical, take h → 2h in the present
result. To summarize, we employed a two-point formula (Eq. (3.50)) twice and ended up
with a four-point formula (Eq. (3.51)) which is more accurate.10

Implementation

Code 3.2 is an implementation of Richardson extrapolation: crucially, this works by com-
bining the outputs of our earlier forward- and central-difference functions. The main new
feature in this code is that we have opted against copying and pasting functions from an
earlier file: that would be needlessly error-prone. Instead, what we’ve done here is to import
specific functions from finitediff.py which take care of the function itself, its analyti-
cal derivative, the forward difference, and the central difference. In addition to making the
present code shorter, this has the added advantage that if we ever update those functions,
we only need to change them in one location, namely in the file where they are defined.11

The output of running this code is:

10 Again, we could now carry out two calculations with errors O(h4), set p = 4 in Eq. (3.47) and we would get a
result with error O(h6).

11 As long as we don’t break the interface, i.e., if we keep the same input and output conventions.
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Code 3.2 richardsondiff.py Code 3.2

from finitediff import f, fprime, calc fd, calc cd

x = 0.5

an = fprime(x)

hs = [10**(-i) for i in range(1,7)]

rowf = "{0:1.0e} {1:1.16f} {2:1.16f}"
print("h abs. err. rich fd abs. err. rich cd")

for h in hs:

fdrich = 2*calc fd(f,x,h/2) - calc fd(f,x,h)

fd = abs(fdrich-an)

cdrich = (4*calc cd(f,x,h/2) - calc cd(f,x,h))/3

cd = abs(cdrich-an)

print(rowf.format(h,fd,cd))

h abs. err. rich fd abs. err. rich cd

1e-01 0.0259686059827384 0.0000098728371007

1e-02 0.0002695720500450 0.0000000009897567

1e-03 0.0000027005434182 0.0000000000009619

1e-04 0.0000000270109117 0.0000000000043667

1e-05 0.0000000003389138 0.0000000000132485

1e-06 0.0000000006941852 0.0000000002500959

Starting from the forward-difference Richardson-extrapolated results: every time we re-
duce the h by an order of magnitude, the absolute error is reduced by two orders of mag-
nitude, consistent with a method that has an approximation error of O(h2), see Eq. (3.49).
This process reaches a minimum at h = 10−5: the absolute error there is ≈ 3 × 10−10.
Note that this behaviour is very similar to the output of finitediff.py for the central-
difference column, which also resulted from a method with an error of O(h2). The last
line in the present output merely serves to show that roundoff has started dominating the
forward-difference case, so we can no longer rely on the Richardson extrapolation process.

The central-difference Richardson-extrapolated results are analogous. The first time we
reduce h by an order of magnitude we reduce the absolute error by a whopping four or-
ders of magnitude, consistent with a method that has an approximation error of O(h4), see
Eq. (3.51). This cannot continue indefinitely: in the next step we improve by three orders
of magnitude, reaching a minimum at h = 10−3: the absolute error there is ≈ 10−12, the
best we’ve seen so far using a finite-difference(-related) scheme. As the h is further reduced
roundoff error starts dominating, so the extrapolation process is no longer reliable.
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3.4 Automatic Differentiation

Up to this point in this chapter, we have seen that there are two ways of taking derivatives
on a computer: first, analytically using a symbolic algebra package or library and, second,
using finite-difference formulas of varying sophistication. While this is OK for pedagogical
clarity, it’s not quite true. There exists a third option, known as automatic differentiation
or, sometimes, algorithmic differentiation.

Qualitatively, automatic differentiation is equivalent to analytical differentiation of ele-
mentary functions along with propagation using the chain rule. Crucially, this is not ac-
complished via the manipulation of expressions (as is done in symbolic differentiation,
which is quite inefficient in practice) but using specific numbers. Thus, we never have ac-
cess to an analytical expression providing the derivative of a function, but do get a result
with nearly machine precision for the derivative at any one point. Thus, automatic differ-
entiation is considerably more accurate than finite differences: it’s as accurate as symbolic
differentiation, but it doesn’t need to produce a general expression (which is, anyway, only
going to be used at specific points).

Using Python, one has access to several implementations of automatic differentiation,
e.g., JAX: the details are strongly time dependent so we will, instead, focus on the main
idea. (One problem asks you to experiment with jax, whereas another problem guides
you toward building a bare-bones automatic differentiator yourself.) In the past, computa-
tional physics books did not mention automatic differentiation but, given its benefits and
conceptual simplicity, it deserves a wider audience.

3.4.1 Dual Numbers

Extend any number a by also adding a second component:

a = a + a′d (3.52)

These are called dual numbers. This d is simply a placeholder telling us what the second
component, a′, is. This is analogous to complex numbers, where we go from x to x + yi
via the use of the imaginary unit, i =

√
−1. Here, we take d2 = 0 (compare with i2 = −1).

If you’re uncomfortable with the possibility of a number being non-zero but giving zero
when squared, look up the term Grassmann variable.

It is easy to see how arithmetic works for dual numbers. For example, for addition:

a + b = (a + a′d) + (b + b′d) = a + b + (a′ + b′)d (3.53)

Similarly, for multiplication we have:

a × b = (a + a′d) × (b + b′d) = ab + ab′d + a′bd + a′b′d2 = ab + (ab′ + a′b)d (3.54)

To go to the third equality we made use of the fact that d2 = 0. You can see how subtraction
and division will turn out. What is emerging here is an arithmetic where the first component
behaves as real numbers do, whereas the second component follows well-known rules of
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differentiation (for the sum, the product, etc.). At this point, we can drop the use of d
entirely, by rewriting dual numbers using ordered pairs of real numbers:

a = (a, a′) (3.55)

As was implicit above, a gives us the value of a function at a specific point and a′ the value
of the derivative of that function at the same point. This definition using an ordered pair is
completely analogous to complex numbers, which are also given as z = (x, y). We can now
re-express (and augment) the basic arithmetic rules as follows:

a + b = (a + b, a′ + b′)

a − b = (a − b, a′ − b′)

a × b = (ab, ab′ + a′b)

a ÷ b =
(

a
b
,

a′b − ab′

b2

) (3.56)

Thus, dual numbers give us a way to differentiate elementary mathematical operations. In
actual calculations, we’ll need to also know how to treat constants, A, and independent
variables, x. Simply define:

A = (A, 0)

x = (x, 1)
(3.57)

Both of these are plausible, since the derivative of a constant is 0 and the derivative of x
with respect to x is 1. In practice, we’ll be faced with a function f (x) for which we would
like to produce the derivative. To accomplish this, we replace all occurences of x with x, all
occurences of constants A with A, and also employ the basic arithmetic rules in Eq. (3.56).
Thus, we arrive at a new function f(x): evaluating this at the specific point (x0, 1) we get
the ordered pair ( f (x0), f ′(x0)), thereby achieving what we set out to do.

3.4.2 An Example

Let’s apply all of the above rules to a specific example. Take:

f (x) =
(x − 2)(x − 3)

x − 4
(3.58)

We are interested in computing f (6) and f ′(6). We can immediately see (by plugging
in) that f (6) = 6. However, the value of f ′(6) is not as obvious. In order to find it, we
employ the above prescription, promoting all numbers to dual numbers and interpreting
the arithmetic operations appropriately. We have:

f(x) = (x − 2) × (x − 3) ÷ (x − 4)

= [(x, 1) − (2, 0)] × [(x, 1) − (3, 0)] ÷ [(x, 1) − (4, 0)] (3.59)
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Now, here’s the beauty of it all. Without needing to find an expression for f ′, we will
calculate the derivative at the specific point x = (6, 1) by plugging in and using the rules:

f ((6, 1)) = [(6, 1) − (2, 0)] × [(6, 1) − (3, 0)] ÷ [(6, 1) − (4, 0)]

= (4, 1) × (3, 1) ÷ (2, 1) = (12, 7) ÷ (2, 1) =

(
6,

1
2

)
(3.60)

In the second equality we simply did all the subtractions. In the third equality we did the
multiplication. In the fourth equality we carried out the division. This gives us f (6) = 6
(which we had already figured out) and f ′(6) = 1/2 (which we hadn’t). As advertised,
we have arrived at the derivative of our function at a specific point simply by plugging in
values and following the rules above, without having to produce an expression for f ′.

3.4.3 Special Functions

With a view to extending this formalism, let’s start with a polynomial:

p(a) = c0 + c1a + c2a2 + c3a3 + · · · + cn−1an−1 (3.61)

We now wish to promote a to a: we’ll need to know how to handle powers of a. These are
easy to calculate via repeated use of the multiplication rule from Eq. (3.56):

a2 = a × a = (a2, 2aa′) (3.62)

Similarly:

a3 = a2 × a = (a3, 3a2a′) (3.63)

and so on. Thus, promoting the a to (a, a′) and the constants ci to (ci, 0) gives us:

p(a) = (c0, 0) + (c1, 0) × a + (c2, 0) × a2 + (c3, 0) × a3 + · · · + (cn−1, 0) × an−1

= (c0, 0) + (c1a, c1a′) + (c2a2, c22aa′) + · · · + (cn−1an−1, cn−1(n − 1)an−2a′)

= (c0 + c1a + c2a2 + · · · + cn−1an−1, c1a′ + c22aa′ + · · · + cn−1(n − 1)an−2a′)

=
(
p(a), a′p′(a)

)
(3.64)

In the second line we carried out all the multiplications. In the third line we did the summa-
tions. In the fourth line we identified in the second component the presence of p′, namely
the derivative of the polynomial. This result, which we explicitly proved for polynomials,
leads us to think about other functions, since we will also need to know how to take, say,
the cosine of a dual number. We define the relevant (chain) rule as:

g(a) = g
(
(a, a′)

)
=

(
g(a), a′g′(a)

)
(3.65)

which looks completely analogous to our result for polynomials in Eq. (3.64) above. Note
that the ′ on the right-hand side of this equation has two distinct (though related) meanings:
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a′ is the second component of a, whereas g′ refers to the derivative of the function g , which
is arrived at through some other means. A few examples:

sin(a) = sin
(
(a, a′)

)
=

(
sin a, a′ cos a

)
cos(a) = cos

(
(a, a′)

)
=

(
cos a,−a′ sin a

)
ea = e(a,a′) =

(
ea, a′ea)

ln(a) = ln
(
(a, a′)

)
=

(
ln a,

a′

a

)

sqrt(a) = sqrt
(
(a, a′)

)
=

(√
a,

a′

2
√

a

)
(3.66)

We are using new symbols on the left-hand sides, in the spirit in which above we promoted
the function f to f (or the function g to g). These can either be seen as results of Eq. (3.65)
or could be explicitly derived via the relevant Taylor expansion each time.

A software system that implements automatic differentiation knows how to apply all
these formulas, even if it needs to apply more than one to the same expression. To make
this crystal clear, we now turn to our usual example, f (x) = esin(2x) at x = 0.5. Following
the rules of promotion, as above, we have:

f(x) = esin((2,0)×(x,1)) (3.67)

We now plug in x = 0.5 to find:

f ((0.5, 1)) = esin((2,0)×(0.5,1)) = esin((1,2)) = e(sin(1),2 cos(1)) =
(
esin(1), 2 cos(1)esin(1)

)
(3.68)

In the second equality we carried out the multiplication as per Eq. (3.56). In the third equal-
ity we used the chain rule in Eq. (3.66) for the sine. In the fourth equality we used the chain
rule in Eq. (3.66) for the exponential. Thus, we have arrived at the output f (0.5) = esin(1) ≈
2.319 776 824 715 853 and f ′(0.5) = 2 cos(1)esin(1) ≈ 2.506 761 534 986 894. These results
agree (to within machine precision) with the answer we get by analytically evaluating the
derivative and then plugging in x = 0.5.

It’s important to understand that the procedure we followed was not actually that of
taking a derivative. We were merely dealing with numbers, to which we applied the pro-
motions to ordered pairs as per Eq. (3.57), the basic arithmetic rules in Eq. (3.56), and the
chain rule in Eq. (3.65): the result turns out to be a derivative, even though the elementary
operations involved simply the additions, divisions, etc. of real numbers.

Before concluding, it’s worth underlining that the procedure we followed for automatic
differentiation doesn’t exactly address one of our main tasks, namely the case where we
have access only to a table of points (xi, f (xi)) for i = 0, 1, . . . , n − 1.12 Instead, automatic
differentiation can be applied to the piece of code producing a function evaluation at one
point: it then promotes all numbers to ordered pairs and follows simple rules to evaluate
the function’s derivative at the same point, without any major overhead.

12 For that matter, symbolic differentiation, as discussed in section 3.2 doesn’t either, except if one has first
interpolated and then analytically differentiates the interpolating function.
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3.5 Project: Local Kinetic Energy in Quantum
Mechanics

We will now see how taking derivatives is an essential part of evaluating the kinetic energy
in quantum mechanics (in the position basis). If you haven’t studied quantum mechanics,
you can skim through most of section 3.5.1. Even if you don’t know what a wave function
is, there are some lessons to be learned implementation-wise: we will show how one Python
function can handle different physical scenarios, as long as we are careful to respect some
general conventions about function-interface design.

Physics-wise, our coverage will revolve around one non-relativistic particle; we will
study two different interaction terms (harmonic oscillator and free particle). To refresh
your memory, the time-independent Schrödinger equation involves the Hamiltonian Ĥ, the
wave function ψ, and the energy E:

Ĥψ = Eψ (3.69)

This is an eigenvalue problem, about which we’ll have a lot more to say in the rest of this
volume, especially in chapter 4 (where we discuss linear algebra) and chapter 8 (where we
study differential equations). In general, the Hamiltonian operator is made up of the kinetic
energy operator and the potential energy operator: Ĥ = T̂ + V̂ .

3.5.1 Single-Particle Wave Functions in One Dimension

We now go over some standard results, assuming that you’ve encountered this material
before, so we will not repeat the explicit derivations.

Quantum Harmonic Oscillator

An important problem in one-dimensional single-particle quantum mechanics is the har-
monic oscillator; for this case, the time-independent Schrödinger equation takes the form:

− �
2

2m
d2ψ(x)

dx2
+

1
2

mω2x2ψ(x) = Eψ(x) (3.70)

where � is Planck’s constant (divided by 2π) and the particle’s mass is m. The left-hand side
is made up of the kinetic energy (involving a second derivative) and the potential energy
(involving a term quadratic in x). The ω is the (classical) angular frequency.

Every quantum mechanics textbook discusses how to solve this problem. This means
how to determine the energy eigenvalues:

En =

(
n +

1
2

)
�ω (3.71)

and the (normalized) eigenfunctions:
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�Fig. 3.4 First few Hermite polynomials (left) and harmonic oscillator probability density (right)

ψn(x) =
1
√

2nn!

(mω
π�

)1/4
Hn

(√
mω
�

x

)
e−mωx2/(2�) (3.72)

Note that both the eigenvalues and the eigenfunctions are labelled by a discrete index n
(a non-negative integer): this goes to the heart of quantization. Notoriously, the ground
state of the harmonic oscillator is n = 0, which is characterized by a finite energy as per
Eq. (3.71); this is known as zero-point motion.

For a given n, the harmonic-oscillator eigenfunction is equal to (some prefactors times) a
Gaussian term and another term involving an Hermite polynomial, Hn(x). Hermite polyno-
mials can be evaluated via a process similar to that introduced in section 2.5 for Legendre
polynomials. They obey the recurrence relation:

Hj+1(x) = 2xHj(x) − 2 jH j−1(x) (3.73)

To step through this process, one starts with the known first two polynomials, H0(x) = 1
and H1(x) = 2x, and calculates Hn(x) by taking:

j = 1, 2, . . . , n − 1 (3.74)

The first few Hermite polynomials are shown in the left panel of Fig. 3.4, which is analo-
gous to the left panel of Fig. 2.6. Similarly, for the derivative one can use the relation:

H′n(x) = 2nHn−1(x) (3.75)

though we don’t need to evaluate these derivatives here (we will later on). To summarize,
for a specified n the wave function is given by Eq. (3.72), which you can immediately
compute if you know how to evaluate Hermite polynomials numerically.
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Correspondence Principle

Let us recall the harmonic oscillator in classical mechanics. If the amplitude of the oscil-
lation is x0, then the total energy E, which is a constant of the motion, is:

E =
1
2

mω2x2
0 (3.76)

This describes the extreme case where the kinetic energy is zero; there are two such turning
points, ±x0. As you may recall, the particle oscillates between them, −x0 ≤ x ≤ x0. The
regions x2 > x2

0 are classically forbidden, since they correspond to negative kinetic energy.
(Things are different in quantum mechanics, since there the wave function may “leak”
into the classically forbidden region.) A problem guides you toward deriving the following
equation for the classical probability density for the oscillator problem:

Pc(x) =
1

π
√

x2
0 − x2

(3.77)

This is the probability that we will find the particle in an interval dx around the position x;
it is larger near the turning points: that’s where the speed of the particle is smallest.

A fascinating question arises regarding how we go from quantum to classical mechanics;
this is described by what is known as the correspondence principle: as the quantum number
n goes to infinity, we should recover classical behavior. In order to see this, the right panel
of Fig. 3.4 plots results for the quantum harmonic oscillator for the case of n = 100,
which is reasonably large. The solid curve, exhibiting many wiggles, is the probability
density for the quantum case; as per the Born rule, this is the square of the modulus of the
wave function, i.e., P(x) = |ψ(x)|2. To compare apples to apples, we also study a classical
problem (dashed curve) with an amplitude of:

x0 =

√
�

mω
(2n + 1) (3.78)

which we found by equating Eq. (3.76) with Eq. (3.71). As the figure clearly shows, if
we take a local average of the quantum probability density in a small interval around x
(essentially smearing out the wiggles), we get something that is very similar to the classical
probability density. This is the correspondence principle in action.

Particle in a Periodic Box

Another standard example covered in introductory quantum-mechanics courses is that of
a “particle in a box”; what is usually meant by this is a particle that is confined inside an
infinite potential well, i.e., one for which the wave function must go to zero at the edges.
Here, we study a different scenario, i.e., a periodic box, which is usually important in the
study of extended (i.e., non-confined) matter. Our box goes from −L/2 to L/2 (i.e., has a
length of L); inside it, the time-independent Schrödinger equation is simply:

− �
2

2m
d2ψ(x)

dx2
= Eψ(x) (3.79)
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since we’re assuming there is no external potential inside the box. The eigenfunctions are
simply plane waves, i.e., complex exponentials:

ψk(x) =
1
√

L
eikx (3.80)

The prefactor is such that our eigenfunction is normalized. We have labelled our eigen-
functions with the wave number k; it is related to the momentum via the relation p = �k.

In order to find out more about this wave number/momentum, let us investigate the
boundary conditions. We mentioned above that we are dealing with a periodic box; mathe-
matically, this is expressed by saying ψk(x) = ψk(x+L), which is precisely the relation that
allowed us to stay inside a single box in the first place (−L/2 ≤ x ≤ L/2): the wave func-
tion simply repeats itself beyond that point. If we now combine this periodicity condition
with our plane waves of Eq. (3.80), we find:

k =
2π
L

n (3.81)

where n is an integer which could be positive, negative, or zero. This is already different
from the case of the harmonic oscillator above. If we know the value of this quantum
number n, i.e., we know the value of the wave number for a given state, then we are also
able to calculate the energy corresponding to that state; to see this, plug the eigenfunction
Eq. (3.80) into the eigenvalue equation Eq. (3.79) to find:

E =
�2k2

2m
=
�2

2m

(
2π
L

)2

n2 (3.82)

In the second equality we used our result in Eq. (3.81). As expected for this problem (for
which there is no attraction and therefore no bound state), the energy cannot be negative.

Implementation

Let us see how to implement our two possibilities for the wave function. The task at hand is
pretty mundane; in order to make it a bit interesting, we have decided to write two functions
with the same interface; that means that the external world will treat wave function code
the same way, without caring about details of the implementation.

Both of our functions will take in two parameters: first, the position of the particle and,
second, a dictionary bundling together any wave-function-specific parameters. This is not
idle programming (“code golf”): as you will discover in the following section, a common
interface makes a world of difference when you need to pass these two functions into a
third function. We implement a general solution, similar to Python’s **kwargs, to help
students who are still becoming comfortable with dictionaries in Python.

Code 3.3 starts with import statements, as usual. We will need an exponential that han-
dles real numbers (for the harmonic oscillator) and another one that can handle complex
numbers (for the plane wave of the box problem). To avoid a name clash, we import exp
explicitly and then import the cmath module, from which we intend to use the complex
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psis.py Code 3.3

from math import sqrt, pi, factorial, exp

import cmath

def hermite(n,x):

val0 = 1.; val1 = 2*x

for j in range(1,n):

val2 = 2*x*val1 - 2*j*val0

val0, val1 = val1, val2

dval2 = 2*n*val0

return val2, dval2

def psiqho(x,nametoval):

n = nametoval["n"]

momohbar = nametoval["momohbar"]

al = nametoval["al"]

psival = momohbar**0.25*exp(-0.5*al*momohbar * x**2)

psival *= hermite(n,sqrt(momohbar)*x)[0]

psival /= sqrt(2**n * factorial(n) * sqrt(pi))

return psival

def psibox(x,nametoval):

n = nametoval["n"]

boxl = nametoval["boxl"]

return cmath.exp(2*pi*n*x*1j/boxl)

if name == ‘ main ’:

x = 1.

nametoval = {"n": 100, "momohbar": 1., "al": 1.}
psiA = psiqho(x, nametoval)

nametoval = {"n": -2, "boxl": 2*pi}
psiB = psibox(x, nametoval)

print(psiA, psiB)

exponential cmath.exp(). Our code then defines a function that evaluates Hermite poly-
nomial values and derivatives. This is very similar to our earlier legendre(), only this
time we don’t cater to the possibiities n = 0 or n = 1, in order to shorten the code.

Our first wave function, psiqho(), takes in a float and a dictionary, as advertised. This
implements Eq. (3.72): in addition to the position of the particle, we also need to pass in
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the quantum number n, as well as the value of mω/�. To spice things up, we also allow
for the possibility of including an extra variational parameter, α, in the exponent of the
Gaussian. That brings the total of extra parameters needed up to three. The dictionary
nametoval is aptly named: it maps from a string (the name) to a value; thus, by passing
in the appropriately initialized (in the external world) dictionary, we manage to bundle
together all the necessary extra parameters, while still keeping our interface clean. The rest
of the function is pretty straightforward.

Our second wave function, psibox(), also takes in a float and a dictionary. As be-
fore, the float is for the position of the particle and the dictionary for any other parameters
needed to evaluate the wave function for this case. To implement Eq. (3.80), we need to
pass in, first, the quantum number and, second, the length of the box side, L. Note how
different the requirements of our two wave functions are: psiqho() takes in a position and
then three more numbers, whereas psibox() accepts a position and then two more num-
bers; despite having different parameter needs, the two functions have the same interface,
due to our decision to bundle the “extra” parameters into a dictionary. Of course, inside
psibox() we immediately “unpack” this dictionary to get the values we need. We then
use cmath.exp().

The main program explicitly defines a nametoval dictionary that bundles the extra pa-
rameters for the oscillator problem, before passing it to psiqho(). The test code calling
psibox() is analogous: a nametoval dictionary is defined; note that, while, the two dic-
tionaries look quite different, the parts of the code calling psiqho() and psibox() are
identical. The output of this code is not very important here; the main point is the common
interface, which will help us below.

3.5.2 Second Derivative

You may have realized that the code we just discussed evaluates the wave functions only,
i.e., it has nothing to do with energies. We will now see how to use that code to eval-
uate the kinetic energy, by implementing the second derivative. This will emphasize the
aforementioned point on interface design, but will also be of wider applicability.

Before we discuss how to code things up, we first see why someone might want to eval-
uate the kinetic energy. Didn’t we already solve this problem by finding the eigenenergies
in Eq. (3.71) and Eq. (3.82)? Notice that here we’re not trying to find the total energy, only
the kinetic energy; note, further, that we’re not trying to evaluate the expectation value of
the kinetic energy but, instead, only the value of the kinetic energy for a given position.
Motivated by Eq. (3.69), Ĥψ = Eψ, we define the following quantity, known as the local
kinetic energy:

TL =
T̂ψ
ψ

(3.83)

In general, the value of TL will depend on x. The normalization of the wave function
doesn’t matter: it appears in both numerator and denominator, and cancels out.
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Of course, for the simple cases studied here we’ve actually solved the problem of eval-
uating TL, too: first, for the periodic box, there is no potential energy term, so the kinetic
energy is the total energy; also, as per Eq. (3.82), for this specific case the energy does not
depend on the position of the particle. Second, for the one-dimensional harmonic oscillator
problem, given that T̂ψ + V̂ψ = Eψ, and the eigenenergy is given by Eq. (3.71), we find:

TL =
T̂ψ
ψ
=

(
n +

1
2

)
�ω − 1

2
mω2x2 (3.84)

In other words, you can analytically determine TL once you know all the quantities on the
right-hand side. Obviously, we can find a local kinetic energy that is negative: just pick
x to be large enough in magnitude; this is a situation that was not allowed in classical
mechanics.

Even though the problem here is already solved ahead of time, the tools we will de-
velop will be much more general, and therefore applicable also to situations where the
wave function ψ is, say, not analytically known. Similarly, in the examples above we were
studying eigenfunctions, for which the corresponding eigenvalues were also known; the
approach that implements the local kinetic energy (i.e., basically, the second derivative) is
general enough not to care whether or not your ψ is an eigenfunction. Finally, as we’ll see
in the Project of chapter 7, the local kinetic energy also arises in quantum Monte Carlo
calculations for many-particle systems, so what we discuss here is part of the scaffolding
for that, more involved, problem.

Looking at the Schrödinger equations for our problems, Eq. (3.70) and Eq. (3.79), we
see that they involve the second derivative (times −�2/(2m)). We now turn to the main
theme of this chapter, namely the evaluation of derivatives via finite differences:

d2ψ(x)
dx2

≈ ψ(x + h) + ψ(x − h) − 2 f (x)
h2

(3.85)

as per Eq. (3.39).

Implementation

Code 3.4 is an implementation of the local kinetic energy. We start by importing the two
wave functions from Code 3.3. The core of the new program is the function kinetic(). Its
parameters are a wave function, a position, the infamous dictionary for extra parameters,
and then an optional step size h for the finite differencing. This kinetic function interop-
erates with any wave function that respects our common interface (described above). We
start by setting �2/m = 1 for simplicity. We then proceed to carry out the three function
evaluations shown in Eq. (3.85). Note that we are not changing the value of x, but are
employing “shifted” positions directly, wherever we need them. If you, instead, say some-
thing like x += h, you may be in for a surprise: as we learned in chapter 2, steps like x+ h
followed by x − 2h followed by x + h don’t always give back x, as there may be roundoff
error accumulation. The rest of the function is quite straightforward.

Next, we define a test function: this contains the type of code you may have been putting
in the main program so far (as did we, say, in Code 3.3). This is an example of standard
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Code 3.4 kinetic.py Code 3.4

from psis import psiqho, psibox

from math import pi

def kinetic(psi,x,nametoval,h=0.005):

hom = 1.

psiold = psi(x,nametoval)

psip = psi(x+h,nametoval)

psim = psi(x-h,nametoval)

lapl = (psip + psim - 2.*psiold)/h**2

kin = -0.5*hom*lapl/psiold

return kin

def test kinetic():

x = 1.

hs = [10**(-i) for i in range(1,6)]

nametoval = {"n": 100, "momohbar": 1., "al": 1.}
qhos = [kinetic(psiqho,x,nametoval,h) for h in hs]

nametoval = {"n": -2, "boxl": 2*pi}
boxs = [kinetic(psibox,x,nametoval,h) for h in hs]

rowf = "{0:1.0e} {1:1.16f} {2:1.16f}"
print("h qho box")

for h,qho,box in zip(hs,qhos,boxs):

print(rowf.format(h,qho,box))

if name == ‘ main ’:

test kinetic()

programming practice: by encapsulating your test code here, you are free to later define
other test functions that probe different features. The body of the function itself is not
too exciting: we define a list of h’s for which we wish to evaluate the (finite-difference
approximation to the) second derivative, and then we call kinetic(). Each time, we define
the appropriate extra-parameter dictionary, and then pass in the appropriate wave function
to kinetic(). This is followed by a nicely formatted print-out of the values we computed.
The main program then does nothing other than call our one test function (which in its turn
calls kinetic(), which goes on to call the wave functions repeatedly).

The output of running this code is:
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h qho box

1e-01 83.7347487381334759 1.9933422158758425+0.0000000000000063j

1e-02 99.8252144561287480 1.9999333342231158+0.0000000000004808j

1e-03 99.9982508976935520 1.9999993333621850-0.0000000001525828j

1e-04 99.9999829515395646 1.9999999988482300-0.0000000002804216j

1e-05 99.9997983578354876 1.9999999227612262+0.0000011797609070j

In order to interpret this output, we first note that, for our chosen input parameters, we
analytically expect the oscillator answer (see Eq. (3.84)) to be 100, while the box answer
should be 2 (see Eq. (3.82)). As the step size gets smaller, we get an increasingly good
approximation to the second derivative of the wave function; of course, as we keep reducing
h at some point roundoff error catches up to us, so further decreases are no longer helpful.
For the oscillator, from the right panel of Fig. 3.4 we immediately see that if we wish to
have any hope of capturing the behavior of the wave function for n = 100, then we had
better ensure that the step size is much smaller than the wiggles. Next, we notice that the
box answer comes with an imaginary part, which Eq. (3.82) tells us should be zero: as the
real part becomes better, the imaginary part becomes larger, so one would have to balance
these two properties (and drop the imaginary part).

3.6 Problems

1. We will study a simple quadratic polynomial:

f (x) = ax2 + bx + c (3.86)

Apply the forward-difference formula, Eq. (3.9), and the central-difference approxima-
tion, Eq. (3.24), and compare with the analytically known derivative:

f ′(x) = 2ax + b (3.87)

You should do this by hand, i.e., without any programming. Explain your findings using
the Taylor-series arguments that we encountered in the main text.

2. For this problem you will need to make sure SymPy is installed on your system. Use
SymPy to analytically differentiate the function f (x) = esin(2x). Then, evaluate the deriva-
tive at a few points from x = 0 to x = 0.5. Compare the latter values to the fprime()
we encountered in the main text.

3. Justify Eq. (3.25) and then use it to show Eq. (3.26).

4. Create a function that takes in three lists and produces the output in Fig. 3.2. Feel free
to use the xscale() and yscale() functions.

5. Modify finitediff.py to also plot the second forward-difference and the second-
central difference results. Comment on whether the plot agrees with the analytical ex-
pectation coming from the approximation-error dependence on h.
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6. Show Eq. (3.27) by combining the Taylor series for f (x+h) and f (x+h/2). Then, show
Eq. (3.28) by subtracting two pairs of Taylor series (pairwise): f (x+h/2) and f (x−h/2),
on the one hand, f (x + 3h/2) and f (x − 3h/2), on the other.

7. This problem deals with the error behaviour of the first central-difference approximation
to the second derivative.

(a) Start with the error analysis, including both approximation and roundoff error. De-
rive expressions for the hopt and the Eopt. Then, produce numerical estimates for
hopt and the Eopt. Compare these results to those for the first derivative.

(b) Now code this problem up in Python (for the function f (x) = esin(2x) at x = 0.5) to
produce both a table of numbers and a plot for the absolute error, with h taking on
the values 10−1, 10−2, 10−3, . . ., 10−10.

8. This problem studies the second derivative of the following function:

f (x) =
1 − cos x

x2
(3.88)

which you encountered in one of the problems in chapter 2. We take x = 0.004.

(a) Start by analytically evaluating the second derivative, and plugging in x = 0.004.
(b) Let h take on the values 10−1, 10−2, . . . , 10−6 and produce a log-log plot of the

absolute error in the first central-difference approximation to the second derivative.
(c) Introduce a new set of points to the previous plot, this time evaluating the first

central-difference approximation to the second derivative not of f (x), but of the
analytically rewritten version you arrived at in the previous chapter (recall: you had
used a trigonometric identity which enabled you to avoid the cancellation).

9. Similarly to what we did in the main text for the second derivative, derive the first
central-difference formula for the third derivative.

10. In section 2.5 we introduced Legendre polynomials via Eq. (2.81), the generating func-
tion which led to a recurrence relation, Eq. (2.86). Here we discuss another representa-
tion of Legendre polynomials, that produced by Rodrigues’ formula:

Pn(x) =
1

2nn!
dn

dxn

[
(x2 − 1)n

]
(3.89)

(a) Analytically derive the leading coefficient of the Legendre polynomial:

an =
(2n)!

2n(n!)2
(3.90)

This an is the coefficient multiplying xn when you expand Pn(x) out.
(b) For h = 0.01 employ Eq. (3.24) and Rodrigues’ formula to compute P1(x). Then,

compute the central-difference approximation to the second derivative (as the cen-
tral difference of the central difference) to compute P2(x). Keep calling the earlier
central-difference function(s) and go up to P8(x). Each time, you should plot your
function against the output of legendre.py.

(c) What happens if you change h to 10−3?
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11. This problem deals with our analytical expectations for the total error, E = Eapp + Ero,
for Eq. (3.40) and Eq. (3.41). Let h take on the values 10−1, 10−2, 10−3, 10−4 and plot
the total error for the two cases. Assume f (x) = 1, f ′′(x) = 0.1, and f ′′′(x) = 100. Do
you understand these results?

12. Produce a table of xi and esin(2xi) values, where xi goes from 0 to 1.6 in steps of 0.08.

(a) Plot the forward-difference and central-difference results (for the first derivative)
given these values. (Hint: if you cannot produce a result for a specific x, don’t.)
Then, introduce a curve for the analytical derivative.

(b) Use Richardson extrapolation for the forward difference for points on a grid and
add an extra set of points to the plot. You can use:

R f d = 2Df d(h) − Df d(2h) + O(h2) (3.91)

13. In the main text we used Richardson extrapolation in order to re-derive a second forward-
difference formula for the first derivative, see Eq. (3.49). Do the same (i.e., don’t use
Taylor series) for the third forward difference for the first derivative.

14. In the main text we derived a second central-difference formula for the first derivative in
two distinct ways, using Taylor series and using Richardson extrapolation. Correspond-
ingly derive a second central-difference formula for the second derivative.

15. Explicitly show how automatic differentiation works on the following function:

f (x) =
(x − 5)(x − 6)

√
x

x − 7
+ ln(8x) (3.92)

to evaluate f (4) and f ′(4).
16. For this problem you will need to make sure JAX is installed on your system. Use the
grad() function to automatically differentiate f (x) = esin(2x) at x = 0.5, comparing to
the answer mentioned in the main text. Be sure to enable double precision.

17. Write a basic automatic differentiator in Python, implementing the operations discussed
in section 3.4.1. Test your code on example functions like that in Eq. (3.58).
Probably the easiest way you can accomplish this task is via object orientation: define
a new class called dual; you should implement the special methods add , sub ,
and so on, according to the rules given in Eq. (3.56). If you don’t want each of these to
start with a test using isinstance(), you should have your init convert constants
as per Eq. (3.57).

18. This problem studies the classical and quantum harmonic oscillators.

(a) First, we study the classical oscillator. Take the solution x = x0 sin(ωt), which
assumes that the particle is at x = 0 at t = 0. Calculate Pc(x) by determining what
fraction of the total time the particle will spend in an interval dx around x. In other
words, use the relation Pc(x)dx = dt/T , where T is the period of oscillation.

(b) Plot the quantum harmonic oscillator eigenfunctions (squared) for n = 3, 10, 20, 150
and compare with the classical solution(s).

19. Implement the three-dimensional harmonic oscillator, allowing different n in each Carte-
sian component. Test your new function by using kinetic() and psiqho() (i.e., the
three-dimensional energy should be the sum of three one-dimensional energies).
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20. Rewrite psibox() such that it applies to the three-dimensional particle in a box. Your
wave vector should take the form k = 2π(nx, ny, nz)/L. In practice, you may wish to
only input the “cardinal number” labelling the eigenstate. To do so, order the triples
nx, ny, nz according to the magnitude of the sum of their squares. Rewrite psibox()
such that it takes in only the cardinal number (and the box size L) and evaluates the
correct wave function. (You will probably want to first create another function which
produces a dictionary mapping cardinal numbers to triples nx, ny, nz.)

21. Rewrite kinetic() to use the second central-difference formula for the second deriva-
tive (from an earlier problem). Compare your answers to what you get in kinetic.py
for both the harmonic-oscillator and the periodic-boundary cases.

22. This problem applies our function kinetic() to a physical setting that is different
from what we encountered in our Project. Specifically, we wish to study a particle in
one dimension, impinging on a simple-step barrier, i.e., our potential is:

V(x) =

⎧⎪⎪⎨⎪⎪⎩0, x < 0

V0, x > 0
(3.93)

and we take the energy of the particle to be E < V0. As you may have seen in a course
on quantum mechanics, the wave function for this problem takes the form:

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩Aeikx + Be−ikx, x < 0 (k =
√

2mE/�)

Ce−κx, x > 0 (κ =
√

2m(V0 − E)/�)
(3.94)

and continuity of the wave function and its derivative gives us:

C
A
=

2
1 + iκ/k

,
B
A
=

1 − iκ/k
1 + iκ/k

(3.95)

Take k = 2 and κ = 4 and determine (both analytically and using Python) what the
kinetic energy should be if the particle is located at x < 0 (or at x > 0).



Matrices 4
Matr

Praise small ships, but put your freight in a large one.
Hesiod

4.1 Motivation

Linear algebra pops up almost everywhere in physics, so the matrix-related techniques
developed below will be used repeatedly in later chapters. As a result, the present chapter
is the longest one in the book and in some ways constitutes its backbone. With this in mind,
we will take the time to introduce several numerical techniques in detail. As in previous
chapters, our concluding section addresses a physics setting where the numerical tools we
have developed become necessary.

4.1.1 Examples from Physics

In contradistinction to this, in the current subsection we will discuss some elementary
examples from undergrad physics, which don’t involve heavy-duty computation, but do
involve the same concepts.

1. Rotations in two dimensions
Consider a two-dimensional Cartesian coordinate system. A point r = (x y)T can be
rotated counter-clockwise through an angle θ about the origin, producing a new point
r′ = (x′ y′)T . The two points’ coordinates are related as follows:⎛⎜⎜⎜⎜⎜⎜⎝cos θ − sin θ

sin θ cos θ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝x

y

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝x′

y′

⎞⎟⎟⎟⎟⎟⎟⎠ (4.1)

The 2×2 matrix appearing here is an example of a rotation matrix in Euclidean space. If
you know r′ and wish to calculate r, you need to solve this system of two linear equa-
tions. Observe that our rotation matrix is not symmetric (the two off-diagonal matrix
elements are not equal). While symmetric matrices are omnipresent in physics, there
are several scenarios where the matrix involved is not symmetric. Thus, we will study
general matrices in most of what follows.

2. Electrostatic potentials
Assume you have n electric charges qj (which are unknown) held at the positions R j

(which are known). Further assume that you have measured the electric potential φ(ri)
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at the n known positions ri. From the definition of the potential (as well as the fact that
the potential obeys the principle of superposition), we see that:

φ(ri) =
n−1∑
j=0

(
k

|ri − R j|

)
q j (4.2)

where i = 0, 1, . . . , n − 1. If you assume you have four charges, the above relation turns
into the following 4 × 4 linear system of equations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k/|r0 − R0| k/|r0 − R1| k/|r0 − R2| k/|r0 − R3|
k/|r1 − R0| k/|r1 − R1| k/|r1 − R2| k/|r1 − R3|
k/|r2 − R0| k/|r2 − R1| k/|r2 − R2| k/|r2 − R3|
k/|r3 − R0| k/|r3 − R1| k/|r3 − R2| k/|r3 − R3|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0

q1

q2

q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(r0)

φ(r1)

φ(r2)

φ(r3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3)

which needs to be solved for the 4 unknowns q0, q1, q2, and q3. (As an aside, note that
in this case, too, the matrix involved is not symmetric.)

3. Principal moments of inertia

Let’s look at coordinate systems again. Specifically, in the study of the rotation of a
rigid body about an arbitrary axis in three dimensions you may have encountered the
moment of inertia tensor:

Iαβ =
∫

ρ(r)
(
δαβr

2 − rαrβ
)

d3r (4.4)

where ρ(r) is the mass density, α and β denote Cartesian components, and δαβ is a
Kronecker delta. The moment of inertia tensor is represented by a 3 × 3 matrix:

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.5)

The diagonal elements are moments of inertia and the off-diagonal elements are known
as products of inertia. Given their definition, this matrix is symmetric (e.g., Ixy = Iyx).

It is possible to employ a coordinate system for which the products of inertia vanish.
The axes of this coordinate system are known as the principal axes for the body at the
point O. In this case, the moment of inertia tensor is represented by an especially simple
(diagonal) matrix:

IP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I0 0 0

0 I1 0

0 0 I2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.6)

where I0, I1, and I2 are known as the principal moments of the rigid body at the point
O. In short, finding the principal axes is equivalent to diagonalizing a 3 × 3 matrix: this
is an instance of the “eigenvalue problem”, about which we’ll hear much more below.
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4.1.2 The Problems to Be Solved

Appendix C summarizes some of the linear-algebra material you should already be familiar
with. As far as the notation is concerned, you need to keep in mind that we employ indices
that go from 0 to n−1, in order to be consistent with the rest of the book (and with Python).
Also, we use upper-case bold symbols to denote matrices (e.g., A) and lower-case symbols
to denote vectors (e.g., x). In this chapter, after we do some preliminary error analysis in
section 4.2, we will be solving two large classes of problems. Both are very easy to write
down, but advanced monographs have been written on the techniques employed to solve
them in practice.

First, we look at the problem where we have n unknowns xi, along with n×n coefficients
Ai j and n constants bi:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 . . . A0,n−1

A10 A11 . . . A1,n−1

...
...

. . .
...

An−1,0 An−1,1 . . . An−1,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

...

xn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1

...

bn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.7)

where we used a comma to separate two indices (e.g., A1,n−1) when this was necessary to
avoid confusion. These are n equations linear in n unknowns. In compact matrix form, this
problem is written:

Ax = b (4.8)

where A is sometimes called the coefficient matrix. (We will see below how to actually
solve this problem, but for now we limit ourselves to saying that |A| � 0, i.e., the matrix
is non-singular, so it’s made up of linearly independent rows.) Even though it looks very
simple, this is a problem that we will spend considerable time solving in the present chap-
ter. We will be doing this mainly by using the augmented coefficient matrix which places
together the elements of A and b, i.e.:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 . . . A0,n−1 b0

A10 A11 . . . A1,n−1 b1

...
...

. . .
...

...

An−1,0 An−1,1 . . . An−1,n−1 bn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.9)

Note that this way we don’t have to explicitly write out the elements of x.
In a course on linear algebra you will have seen examples of legitimate operations one

can carry out while solving the system of linear equations. Such operations change the
elements of A and b, but leave the solution vector x unchanged. More generally, we are
allowed to carry the following elementary row operations:
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• Scaling: each row/equation may be multiplied by a constant (multiplies |A| by the same
constant).

• Pivoting: two rows/equations may be interchanged (changes sign of |A|).
• Elimination: a row/equation may be replaced by a linear combination of that row/equation

with any other row/equation (doesn’t change |A|).

In addition to providing the name and an explanation, we also mention parenthetically the
effect of each operation on the determinant of the matrix A. Keep in mind that these are
operations that are carried out on the augmented coefficient matrix (A|b) so, for example,
when you interchange two rows of A you should, obviously, also interchange the corre-
sponding two elements of b.

Second, we wish to tackle the standard form of the matrix eigenvalue problem:

Av = λv (4.10)

Once again, in this form the problem seems quite simple, but a tremendous amount of work
has gone toward solving this equation. Explicitly, our problem is equivalent to:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 . . . A0,n−1

A10 A11 . . . A1,n−1

...
...

. . .
...

An−1,0 An−1,1 . . . An−1,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

v1

...

vn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

v1

...

vn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.11)

A crucial difference from the system we encountered in Eq. (4.8) is that here both the
scalar/number λ and the column vector v are unknown. This λ is called an eigenvalue and
v is called an eigenvector.

Let’s sketch one possible approach to solving this problem. If we move everything to the
left-hand side, Eq. (4.10) becomes:

(A − λI )v = 0 (4.12)

where I is the n × n identity matrix and 0 is an n × 1 column vector made up of 0s. It
is easy to see that we are faced with a system of n linear equations: the coefficient matrix
here is A− λI and the constant vector on the right-hand side is all 0s. Since we have n+ 1
unknowns in total (λ, v0, v1, . . ., vn−1), it is clear that we will not be able to find unique
solutions for all the unknowns.

A trivial solution is v = 0. In order for a non-trivial solution to exist, we must be dealing
with a coefficient matrix whose determinant vanishes, namely:

|A − λI | = 0 (4.13)

where the right-hand side contains the number zero. In other words, we are dealing with a
non-trivial situation only when the matrix A−λI is singular. Expanding out the determinant
gives us a polynomial equation which is known as the characteristic equation:

(−1)nλn + cn−1λ
n−1 + · · · + c1λ + c0 = 0 (4.14)
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Thus, an n × n matrix has at most n distinct eigenvalues, which are the roots of the char-
acteristic polynomial. When a root occurs, say, twice, we say that that root has multiplicity
2 (more properly, algebraic multiplicity 2). If a root occurs only once, in other words if it
has multiplicity 1, we are dealing with a simple eigenvalue.1

Having calculated the eigenvalues, one way to evaluate the eigenvectors is simply by
using Eq. (4.10) again. Specifically, for a given/known eigenvalue, λi, one tries to solve the
system of linear equations (A − λiI )vi = 0 for vi. For each value λi, we will not be able to
determine unique values of vi, so we will limit ourselves to computing the relative values
of the components of vi. (You may recall that things are even worse when you are dealing
with repeated eigenvalues.) Incidentally, it’s important to keep the notation straight: for
example, v0 is a column vector, therefore made up of n elements. Using our notation above,
the elements of v are v0 and v1, therefore the elements of v0 have to be called something
like (v0)0, (v0)1, and so on (the first index tells us which eigenvector we’re dealing with,
the second index which component of that eigenvector).

4.2 Error Analysis

We now turn to a discussion of practical error estimation in work with matrices. In the
spirit of chapter 2, this will entail us finding worst-case (pessimistic) error bounds. Note
that this will not amount to a detailed error analysis of specific methods, say, for the solu-
tion of linear systems of equations. Instead, we will provide some general derivations and
examples of when a problem is “well-conditioned”, typically by using matrix perturbation
theory (i.e., by checking what happens if there are uncertainties in the input data). An ex-
plicit analysis of specific methods (like the pioneering work by Wilkinson in the 1960s on
Gaussian elimination) ends up showing that rounding errors are equivalent to perturbations
of the input data, so in essence this is precisely what we will be probing.

Thus, in what follows, after some preliminary comments, examples, and definitions, we
will investigate quantitatively how linear systems, eigenvalues, and eigenvectors depend
on the input data. We will be examining in each case the simplest scenario but, hopefully,
this will be enough to help you grasp the big picture. The present section will introduce
a large number of examples and discuss their properties: to streamline the presentation,
we don’t show the analytical manipulations or Python code that is used to produce spe-
cific numbers. Once you are comfortable with the concepts at play, you can use Python
programs like those introduced in the following sections (or the functionality contained in
numpy.linalg) to verify our numerical results.

1 You will show in a problem that the product of the eigenvalues is equal to the determinant of the matrix.
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4.2.1 From a posteriori to a priori Estimates

Let’s study a specific 2 × 2 linear system, namely Ax = b for the case where:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎝0.2161 0.1441 0.1440

1.2969 0.8648 0.8642

⎞⎟⎟⎟⎟⎟⎟⎠ (4.15)

This problem was introduced by W. Kahan [48] (who was also responsible for many of
the examples we studied in chapter 2). We are stating from the outset that this example is
contrived. That being said, the misbehavior we are about to witness is not a phenomenon
that happens only to experts who are looking for it. It is merely a more pronounced case of
problematic behavior that does appear in the real world.

Simply put, there are two options on how to analyze errors: (a) an a priori analysis, in
which case we try to see how easy/hard the problem is to solve before we begin solving
it, and (b) an a posteriori analysis, where we have produced a solution, and attempt to see
how good it is. Let’s start with the latter option, namely an a posteriori approach.

Say you are provided with the following approximate solution to the problem in Eq. (4.15):

x̃T =
(
0.9911 −0.4870

)
(4.16)

We are showing the transpose to save space on the page; we will keep doing this below.
One way of testing how good a solution this is, is to evaluate the residual vector:

r = b − Ax̃ (4.17)

Qualitatively, you can immediately grasp this vector’s meaning: since the “true” solution
x satisfies Ax = b, an approximate solution x̃ should “almost” satisfy the same equation.
Plugging in the matrices gives us for this case:

rT =
(
−10−8 10−8

)
(4.18)

which might naturally lead you to the conclusion that our approximate solution x̃ is pretty
good, i.e., it may suffer from minor rounding-error issues (say, in the last digit or some-
thing) but other than that it’s a done deal. Here’s the thing, though: the exact solution to
our problem is actually:

xT =
(
2 −2

)
(4.19)

as you can easily see by substituting in the starting equation, Ax = b (in other words, we
get a zero residual vector for the exact solution). Thus, far from being only slightly off, our
approximate “solution” x̃ doesn’t contain even a single correct significant figure.

With the disclaimer that there’s much more that could be said at the a posteriori level,
we now drop this line of attack and turn to an a priori analysis: could we have realized that
solving the problem in Eq. (4.15) was difficult? How could we know that there’s something
pathological about it?
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4.2.2 Magnitude of Determinant?

Example 1

In an attempt to see what is wrong with our example:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎝0.2161 0.1441 0.1440

1.2969 0.8648 0.8642

⎞⎟⎟⎟⎟⎟⎟⎠ (4.20)

we start to make small perturbations to the input data. Imagine we didn’t know the values
of, say, the coefficients in A all that precisely. Would anything change then? Take:

ΔA =

⎛⎜⎜⎜⎜⎜⎜⎝0.0001 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (4.21)

This is employing notation that is analogous to that in chapter 2: an absolute perturbation
is ΔA. To be explicit, what we are now studying is the effect of a perturbation in A on our
solution. In other words, we are now solving the linear system:

(A + ΔA)(x + Δx) = b (4.22)

where the constant vector b is kept fixed/unperturbed. For the specific case studied here:

(x + Δx)T =
(
−2.3129409051813273 × 10−4 9.996530588644692 × 10−1

)
(4.23)

By any reasonable definition of the word, this is not a “small” effect. Our perturbation
from Eq. (4.21) amounted to changing only one element of A by less than 0.1% and had a
dramatic impact on the solution to our problem.

Example 2

You might be thinking that this is all a result of our example in Eq. (4.20) being contrived.
OK, let’s look at another linear system of equations:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎝1 1 2

1 1.001 2.001

⎞⎟⎟⎟⎟⎟⎟⎠ (4.24)

The exact solution to this problem is:

xT =
(
1 1

)
(4.25)

as you can easily see by substituting in the starting equation, Ax = b.
We will now make a small perturbation to our coefficient matrix and see what happens.

In other words, we will again solve Eq. (4.22). As before, we make a small change to
the coefficient matrix, again of less than 0.1% in only one element (adding 0.001 to the
bottom-right element of A this time). If you solve the new set of equations, you will find:

(x + Δx)T ≈
(
1.5 0.5

)
(4.26)

In this case, too, a change of a single element in the coefficient matrix by less than 0.1%
led to a large effect (as much as 50%) on the solution vector.
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We can, similarly, also perturb the constant vector b. In other words, we can try to solve:

A(x + Δx) = b + Δb (4.27)

where A is left untouched. As usual, let’s take a specific case, adding in 0.001 to the bottom
element. This leads to a solution which is 100% different from the unperturbed one:

(x + Δx)T =
(
0 2

)
(4.28)

Example 3

Perturbations like ΔA or Δb above may result from rounding error: in physics applications,
the matrices A and b are often themselves the result of earlier calculations, i.e., not set in
stone. They may also result from uncertainty in the input data. If you are thinking that
small perturbations will always lead to dramatic consequences in the solution, know that
this is not true: it’s just a result of studying the specific cases of Eq. (4.20) and Eq. (4.24).

To see that this is, indeed, the case, let’s look at a third example:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎝2 1 2

1 2 7

⎞⎟⎟⎟⎟⎟⎟⎠ (4.29)

The exact solution to this problem is:

xT =
(
−1 4

)
(4.30)

To probe the sensitivity of this problem to perturbations, we will make a slightly larger
change to the coefficient matrix, this time of 1% in one element (adding 0.01 to the bottom-
left one). If you solve the new set of equations, you will find:

(x + Δx)T =
(
−1.003344481605351 4.006688963210702

)
(4.31)

Finally, here’s a case where a small perturbation (1% change) in the coefficient matrix has a
small effect (less than 0.5%) in the solution vector. Perhaps not all linear-system problems
behave as strangely as the first two we studied in this section.

We, similarly, can perturb the constant vector b, by adding 0.01 to the top element, a
change of less than 0.5%. This leads to:

(x + Δx)T =
(
−0.9933333333333334 3.9966666666666666

)
(4.32)

which is a bit more than 0.5% different from our unperturbed solution. In this case, too, we
see that our problem from Eq. (4.29) is much better behaved than the earlier ones.

What is making some problems behave poorly (i.e., be very sensitive to tiny pertur-
bations) and others to behave better? One criterion that is sometimes mentioned in this
context is: since (as we see in Appendix C.2) a non-invertible/singular matrix has determi-
nant 0, it is plausible that matrices that have determinants that are “close to 0” are close
to being singular. Let’s look at this potential criterion in more detail. For Example 1 we
find |A| ≈ −10−8, for Example 2 we find |A| = 0.001, and for Example 3 we find |A| = 3.
Thus, at first sight, our criterion regarding the “smallness of the determinant” appears to
be borne out by the facts: the examples that had small determinants were very sensitive to
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tiny perturbations, whereas the example with a larger determinant was not sensitive. (Don’t
stop reading here, though.)

4.2.3 Norms for Matrices and Vectors

Example 4

Consider the following question: what does “small determinant” mean? If the definition is
“much less than 1”, then one might counter-argue: what about the following matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎝0.2 0.1

0.1 0.2

⎞⎟⎟⎟⎟⎟⎟⎠ (4.33)

As you may have noticed, this is simply our matrix from Eq. (4.29), with each element
multiplied by 0.1. Our new matrix has |A| = 0.03, which is certainly smaller than 1. But
here’s the thing: if you also multiply each element in b with 0.1, you will find the same
solution as in Eq. (4.30). (You shouldn’t be surprised: this is simply the result of multi-
plying two equations with a constant.) What’s more, the linear system of equations will
be equally insensitive to perturbations in A or b. Obviously, our tentative definition that
“small determinant means much less than 1” leaves a lot to be desired, since a determinant
can be made as large/small as we wish by multiplying each element with a given number.

Intuitively, it makes sense to think of a “small determinant” as having something to
do with the magnitude of the relevant matrix elements: in the case we just studied, the
determinant was small, but so were the matrix elements involved. In contradistinction to
this, our Example 2 above had matrix elements of order 1 but |A| = 0.001, so it stands to
reason that that determinant was “truly” small.

Definitions and Properties for Matrices

Let us provide our intuitions with quantitative backing. We will introduce the matrix norm,
which measures the magnitude of A. There are several possible definitions of a norm, but
we will employ one of two possibilities. First, we have the Euclidean norm:

‖A‖E =

√√√n−1∑
i=0

n−1∑
j=0

∣∣∣Ai j

∣∣∣2 (4.34)

which is sometimes also called the Frobenius norm. Note that double vertical lines are
used to denote the norm. This is different from single vertical lines, used to denote the
determinant of a matrix or the absolute value of a real number or the modulus of a complex
number. Another popular definition is that of the infinity norm:
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‖A‖∞ = max
0≤i≤n−1

n−1∑
j=0

∣∣∣Ai j

∣∣∣ (4.35)

which is also known as the maximum row-sum norm. As you can see, both of these defini-
tions try to measure the magnitude of the various matrix elements. Other definitions choose
different ways to accomplish this (e.g., maximum column sum).

Regardless of the specific definition employed, all matrix norms for square matrices
obey the following properties:

‖A‖ ≥ 0

‖A‖ = 0 if and only if all Ai j = 0

‖kA‖ = |k| ‖A‖
‖A + B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ≤ ‖A‖ ‖B‖

(4.36)

Notice that a matrix norm is a number, not a matrix.2 The fourth of these relations is known
as the triangle inequality and should be familiar to you from other contexts.

We can now return to the question of when the determinant is “small”. A reasonable
definition would be |det(A)| � ‖A‖, where we took the absolute value on the left-hand side
and used the det notation to avoid any confusion. This new criterion has the advantage that
it takes into account the magnitude of the matrix elements. Let’s test it out for the cases
discussed above (employing the Euclidean norm, for the sake of concreteness):

• Example 1: |det(A)| ≈ 10−8 and ‖A‖E ≈ 1.58, so |det(A)| � ‖A‖E holds.
• Example 2: |det(A)| ≈ 0.001 and ‖A‖E ≈ 2.0, so |det(A)| � ‖A‖E holds.
• Example 3: |det(A)| = 3 and ‖A‖E ≈ 3.16, so |det(A)| � ‖A‖E does not hold.
• Example 4: |det(A)| = 0.03 and ‖A‖E ≈ 0.32, so |det(A)| � ‖A‖E does not really hold.

These results seem to be consistent with what we had seen above: Examples 1 and 2
are near-singular, while Example 3 is not singular. For Example 4, this criterion claims
that our matrix is not quite singular (though it’s getting there). Our introduction of the
concept of the matrix norm seems to have served its purpose: a small determinant needs to
be compared to the matrix norm, so Example 4 (despite having a small determinant) is not
singular, given that its matrix elements are small, too.

Definitions for Vectors

In what follows, we’ll also make use of norms of column vectors, so we briefly go over
two such definitions:

‖x‖E =

√√√n−1∑
i=0

|xi|2, ‖x‖∞ = max
0≤i≤n−1

|xi| (4.37)

2 This is analogous to a matrix determinant, which quantifies an entire matrix, but is not a matrix itself.
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These are the Euclidean norm and the infinity norm, respectively. The latter is also known
as the maximum-magnitude norm.

4.2.4 Condition Number for Linear Systems

Example 5

Unfortunately, our criterion |det(A)| � ‖A‖ is flawed (its appearance in textbooks notwith-
standing).3 We’ll look at only two examples of how it can lead us astray. The first one is
already implicit in what we saw above: take Example 3 and multiply the matrix elements
with a small number. We have:

A =

⎛⎜⎜⎜⎜⎜⎜⎝2 × 10−10 1 × 10−10

1 × 10−10 2 × 10−10

⎞⎟⎟⎟⎟⎟⎟⎠ (4.38)

As advertised, this is simply our matrix from Eq. (4.29), with each element multiplied by
10−10. Let’s summarize where things stand for this case:

• Example 5: |det(A)| = 3 × 10−20 and ‖A‖E ≈ 3.16 × 10−10, so |det(A)| � ‖A‖E holds.

But isn’t this strange? Simply multiplying a set of equations with a small number cannot
be enough to make the problem near-singular. Our intuition is borne out by a more detailed
investigation: just like for Example 3, a 1% change in one element of A will have an effect
of less than 0.5% on the solution-vector elements. Thus, for Example 5 the linear system
of equations will be equally insensitive to perturbations in A or b as Example 3 was.

Example 6

We just saw a case where the determinant is much smaller than the norm, yet the problem
is not sensitive to perturbations/near-singular. Now, let’s turn to our next counter-example.
We will find the reverse: a determinant that is much larger than the norm for a problem that
is near-singular. Let’s look at the following 8 × 8 problem:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 −2 . . . −2

0 2 −2 . . . −2

0 0 2 . . . −2
...

...
...

. . .
...

0 0 0 . . . 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.39)

The corresponding results are:

• Example 6: |det(A)| = 256 and ‖A‖E = 12, so in this case |det(A)| 
 ‖A‖E holds (with a

, not a�).

3 As Jonathan Swift put it in his 1731 Verses on the Death of Dr. Swift:
“Yet malice never was his aim;
He lash’d the vice, but spar’d the name.”
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OK, so the criterion is clearly not satisfied. Is this reason for concern? Well, try pairing this
matrix with the following constant vector:

bT =
(
+1 −1 +1 −1 +1 −1 +1 −1

)
(4.40)

You should (analytically or not) find the following solution vector:

xT =
(
−21 −11 −5 −3 −1 −1 0 −1/2

)
(4.41)

Let us now introduce a small perturbation (inspired by Ref. [86]) of −0.01 in the bottom-
left element of A. We find the following perturbed solution vector:

(x+Δx)T ≈
(
−30.88 −15.94 −7.47 −4.24 −1.62 −1.31 −0.15 −0.65

)
(4.42)

where we rounded for ease of viewing. Thus, we carried out a tiny change in 1 out of 64
matrix elements (with a magnitude that is 0.5% of a matrix element value) and ended up
with a solution vector whose matrix elements are different by as much as 60%. In other
words, this matrix is very sensitive to perturbations in the initial data.

To summarize, for Example 5 the criterion is satisfied but the matrix is not near-singular,
whereas for Example 6 the criterion is not satisfied but the matrix is near-singular. These
two examples should be enough to convince you that, when doing an a priori investiga-
tion into a linear system of equations, you should not bother with testing whether or not
|det(A)| � ‖A‖ holds.

Derivation

So where does this leave us? Just because we had a faulty criterion does not mean that
a good one cannot be arrived at. In the present subsection, we will carry out an informal
derivation that will point us toward a quantitative measure of ill-conditioning. (Spoiler
alert: it does not involve the determinant.) This measure of the sensitivity of our problem
to small changes in its elements will be called the condition number.

Let us start with the unperturbed problem:

Ax = b (4.43)

and combine that with the case where A is slightly changed (as above), with b being held
constant. Obviously, this will also impact the solution vector, as we saw above. The relevant
equation is:

(A + ΔA)(x + Δx) = b (4.44)

Of course, you could have chosen to also perturb the elements of the constant vector b
(either at the same time or separately). This scenario will be explored in a problem.
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Expanding out the parentheses in Eq. (4.44) and plugging in Eq. (4.43), we find:

AΔx = −ΔA(x + Δx) (4.45)

Assuming A is non-singular (so you can invert it), you get:

Δx = −A−1ΔA(x + Δx) (4.46)

Taking the norm on both sides we find:

‖Δx‖ = ‖A−1ΔA(x + Δx)‖ ≤ ‖A−1‖ ‖ΔA‖ ‖x + Δx‖ (4.47)

In the first step all we did was to take the absolute value of −1 (third property in Eq. (4.36))
and in the second step we simply applied the fifth property in Eq. (4.36), twice. Using the
non-negativity of norms (first property in Eq. (4.36)), we get:

‖Δx‖
‖x + Δx‖ ≤ ‖A

−1‖ ‖ΔA‖ (4.48)

Multiplying and dividing with a constant on the right-hand side gives us:

‖Δx‖
‖x + Δx‖ ≤ ‖A‖ ‖A

−1‖ ‖ΔA‖
‖A‖ (4.49)

In other words, if you know an error bound on ‖ΔA‖/‖A‖ then that translates to an error
bound on ‖Δx‖/‖x‖.4 The coefficient in front of ‖ΔA‖/‖A‖ determines if a small perturba-
tion gets magnified when solving for x or not.

This derivation naturally leads us to the introduction of the following condition number:

κ(A) = ‖A‖ ‖A−1‖ (4.50)

A large condition number leads to an amplification of a small perturbation: we say we are
dealing with an ill-conditioned problem. If the condition number is of order unity, then a
small perturbation is not amplified, so we are dealing with a well-conditioned problem (the
condition number is bounded below by unity). Qualitatively, this condition number tells us
both how well- or ill-conditioned the solution of the linear problem Ax = b is, as well as
how well- or ill-conditioned the inversion of matrix A is. This dual role is not surprising:
conceptually (though not in practice) solving a linear system is equivalent to inverting the
matrix on the left-hand side. Obviously, the precise value of the condition number depends
on which norm you are using (but we’ll employ only the Euclidean norm here).

Examples

To get a feeling for the relevant magnitudes, let’s evaluate the condition number for the six
examples encountered above:

• Example 1: κ(A) = 249 729 267.388, so the problem is (terribly) ill-conditioned.
• Example 2: κ(A) = 4002.001, so the problem is ill-conditioned.

4 Well, almost: our denominator is slightly different, but for small Δx this shouldn’t matter.
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• Example 3: κ(A) ≈ 3.33, so the problem is well-conditioned.
• Example 4: κ(A) ≈ 3.33, so the problem is well-conditioned.
• Example 5: κ(A) ≈ 3.33, so the problem is well-conditioned.
• Example 6: κ(A) ≈ 512.18, so the problem is ill-conditioned.

We notice that Examples 3, 4, and 5 (which had quite different determinants) all have the
same condition number: this makes perfect sense, since they are the same problem, just
scaled with an overall factor. Our results for all six problems are consistent with what
we discovered above by “experimentally” perturbing some elements in A: those matrices
with a large condition number lead to a larger relative change being propagated onto the
solution vector. What “large” actually means may depend on the specifics of your problem,
but typically anything above 100 is large.

Thus, the condition number manages to quantify the sensitivity to perturbations ahead
of time: you can tell that you will be sensitive to small perturbations even before you start
solving the linear system of equations. Specifically, you might appreciate knowing the
following rule of thumb: for a matrix with condition number 10k, if you perturb the matrix
elements in their t-th digits, then you will be perturbing the matrix elements of the inverse
in their (t − k)-th digits; as noted earlier, these perturbations might not be some arbitrary
change you are carrying out by hand, but the inevitable result of the solution method you
are employing. As a matter of fact, the condition number also encapsulates how close we
are to being singular: for an ill-conditioned matrix you can construct a small perturbation
that will render the matrix singular. (Obviously, for a well-conditioned matrix you need a
large perturbation to make the matrix singular.)

Example 7

Let’s keep hammering away at the irrelevance of the determinant in connection with how
well- or ill-conditioned a problem is. Look at the following 8 × 8 matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 0.1 0.1 . . . 0.1

0 0.1 0.1 . . . 0.1

0 0 0.1 . . . 0.1
...

...
...

. . .
...

0 0 0 . . . 0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.51)

If you are thinking in terms of determinants, you might confuse yourself into believing that
having many similar elements leads to ill-conditioning (since determinants combine many
+ and − in sequence). This matrix should convince you that this conclusion is untrue:

• Example 7: κ(A) ≈ 23.24, so the problem is well-conditioned, despite the fact that
|det(A)| = 10−8 and ‖A‖E = 0.6.

As it so happens, in this case (of a triangular matrix with all the elements being identical),
the +’s and −’s never show up in evaluating the determinant, since for a triangular matrix
the determinant is simply the product of the elements on the diagonal.
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Final Remarks

Both the κ(A) we introduced and the judiciously chosen perturbations we showed for spe-
cific examples are probing the worst-case situation, i.e., they can be too pessimistic. This
is not too troubling given our limited goals: we are merely providing some quantitative
insight for when you should be careful. This does not mean that every single time you get
a large κ(A) you will be extremely sensitive to minor perturbations. As a matter of fact,
in actual physical applications rounding or other errors typically accumulate not on an in-
dividual matrix element (as in the cases we explicitly tried out above), but in entire rows,
entire columns, or the entire matrix itself. In other words, what we’ve been exploring has to
some degree been a worst-case “artificial ill-conditioning” scenario, in order to teach you
what to look out for. Depending on your needs, you might have to study other condition
numbers.

Another qualitative point: to evaluate the condition number κ(A) from Eq. (4.50) we
need to first compute the matrix inverse A−1. This raises two issues: (a) wouldn’t the com-
putation of the inverse necessitate use of the same methods (such as those discussed in
section 4.3 below) whose appropriateness we are trying to establish in the first place?, and
(b) computing the inverse requires O(n3) operations (as we will discuss below) where the
coefficient in front is actually more costly than the task we were faced with (solving a
system of equations). But then it hardly seems reasonable to spend so much effort only
to determine ahead of time how well you may end up doing at solving your problem. We
won’t go into details here, but both of these concerns are addressed by established prac-
tice: use an alternative method to estimate the condition number (within a factor of 10
or so) using only O(n2) operations. Thus, you can quickly get a rough estimate of how
ill-conditioned your problem is going to be, before you start out on a detailed study.

4.2.5 Condition Number for Simple Eigenvalues

Having studied the sensitivity of a linear system to small perturbations, the natural place to
go from there is to carry out an analogous study for the eigenvalue problem. As you might
have expected, we begin with a few examples of matrices and some explicit perturbations
added in “by hand”. In this case, however, we are interested in solving not the linear system
of equations Ax = b from Eq. (4.8), but the eigenvalue problem Av = λv from Eq. (4.10).
For now, let us focus on the effect of the perturbations on the evaluation of the eigenvalues,
λ. We will study two examples that were proposed by J. H. Wilkinson [99].

Example 8

Take:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3 2 1

3 3 2 1

0 2 2 1

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.52)
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You can evaluate its eigenvalues using the characteristic polynomial (as per section 4.1.2)
or a more robust method from section 4.4 below. You will find:

λ0 ≈ 7.31274, λ1 ≈ 2.06663, λ2 ≈ 0.483879, λ3 ≈ 0.136748 (4.53)

where we ordered the eigenvalues by decreasing magnitude.
If you now introduce a small change to one out of 16 matrix elements (adding 0.01 to

the top right element) and recalculate the eigenvalues, you will find:

λ0 + Δλ0 ≈ 7.31298, λ1 + Δλ1 ≈ 2.06287, λ2 + Δλ2 ≈ 0.499374, λ3 + Δλ3 ≈ 0.124777
(4.54)

It’s easy to see that (for this example) the smaller the eigenvalue, the bigger the impact of
our small perturbation. For λ3 we go from 0.136748 to 0.124777, a change (in absolute
terms) that is a bit larger than the perturbation in our matrix element.

At this point, having read the previous subsection, you may be thinking that this specific
matrix may have a large condition number κ(A), which would explain (or so you think) the
sensitivity to small perturbations when computing eigenvalues. It turns out that this matrix
has κ(A) ≈ 126.744, so indeed it is ill-conditioned (according to our somewhat arbitrary
demarcation point of taking condition numbers above 100 as “large”).

Example 9

Well, it’s time to (once again) shoot down our tentative criterion. The following matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4 0 0

0 3 4 0

0 0 2 4

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.55)

has the eigenvalues:

λ0 = 4, λ1 = 3, λ2 = 2, λ3 = 1 (4.56)

This is a triangular matrix, so its eigenvalues are conveniently placed in its diagonal.
As per our previous tentative exploration, we note that this new matrix has a condition

number κ(A) ≈ 40.13, so we expect it to be well-conditioned, or at least better-conditioned
than the previous Example (don’t take our word for it: solve the system that arises when
you pick a “typical” constant vector b). But when we introduce a tiny change to one out of
16 matrix elements (adding 0.005 to the bottom left one) and recalculate the eigenvalues
(using the same approach), we find:

λ0 + Δλ0 ≈ 4.04884, λ1 + Δλ1 ≈ 2.81794, λ2 + Δλ2 ≈ 2.18206, λ3 + Δλ3 ≈ 0.951158
(4.57)

Looking only at λ2, we notice that it has changed from 2 to 2.18206, a change (in absolute
terms) larger than 30 times the perturbation in our matrix element. Despite the fact that
Example 9 has a smaller κ(A) than Example 8 did, it appears to be more sensitive to small
perturbations in its elements, as far as the computation of its eigenvalues is concerned.
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Back to Example 3

It’s starting to look like a matrix’s eigenvalues can be sensitive to small perturbations,
regardless of whether or not κ(A) is large. Even so, you shouldn’t walk away from this
discussion with the impression that for any matrix you pick the eigenvalues will be highly
sensitive to small perturbations in the matrix elements. To show this in action, let’s return
to our middle-of-the-road case, Example 3, Eq. (4.29). Its eigenvalues are:

λ0 = 3, λ1 = 1 (4.58)

Making the small change of adding 0.01 to the bottom left element of the coefficient matrix,
and then recalculating its eigenvalues we find them to be:

λ0 + Δλ0 ≈ 3.005, λ1 + Δλ1 ≈ 0.995 (4.59)

namely an impact that is (in absolute terms) half the size of the perturbation. It’s nice to
see that a matrix can have eigenvalues that don’t immediately start dramatically changing
when you perturb individual matrix elements.

Back to Example 1

To (temporarily) complicate things even further, we now return to the matrix A in Exam-
ple 1, Eq. (4.20); as you may recall, this was extremely ill-conditioned when solving a
linear system of equations. Calculating its eigenvalues, we find:

λ0 ≈ 1.0809, λ1 ≈ −9.25155 × 10−9 (4.60)

Making the small change of adding 0.0001 to the top left element of the coefficient matrix
and recalculating its eigenvalues, we find them to be:

λ0 + Δλ0 ≈ 1.08092, λ1 + Δλ1 ≈ 7.99967 × 10−5 (4.61)

We see that for λ0 the change is five times smaller than the perturbation. As far λ1 is
concerned, while this eigenvalue changes quite a bit, it’s worth observing that the change
(in absolute terms) is still smaller than the perturbation. It looks like the worst-behaved
matrix we’ve encountered so far is not too sensitive when it comes to the sensitivity (in
absolute terms) of its eigenvalues to small changes in the input matrix elements.

Derivation

So where does this leave us? We saw that some matrices have eigenvalues that are sen-
sitive to small perturbations, whereas others do not. We tried to use the same condition
number as for the linear system problem, Ax = b, but were disappointed. In the present
subsection, we will carry out an informal derivation that will point us toward a quantita-
tive measure of conditioning eigenvalues. (Spoiler alert: it is not κ(A).) This quantitative
measure of the sensitivity of our problem to small changes in the input matrix elements
will be called the condition number for simple eigenvalues; “simple” means we don’t have
repeated eigenvalues (this is done to streamline the presentation).

Let us start with the unperturbed problem:
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Avi = λivi (4.62)

This is Eq. (4.10) but with explicit indices, so we can keep track of the different eigenvalues
and the corresponding eigenvectors. By complete analogy to what we did in our derivation
for the linear system in Eq. (4.44) above, the relevant perturbed equation now is:

(A + ΔA)(vi + Δvi) = (λi + Δλi)(vi + Δvi) (4.63)

Here we are carrying out an (absolute) perturbation of the matrix A and checking to see its
impact on λi and on vi.5

So far (and for most of this chapter) we are keeping things general, i.e., we have not made
an assumption that A is symmetric (which would have simplified things considerably).
This is as it should be, since our Examples 8 and 9 above were clearly not symmetric and
we’re trying to derive a condition number that will help us understand a priori why they
behave the way they do. We now realize that we’ve been calling the column vectors vi that
appear in Eq. (4.62) “eigenvectors” though, properly speaking, they should be called right
eigenvectors. If we have access to “right eigenvectors”, then it stands to reason that we can
also introduce the left eigenvectors ui as follows:

uT
i A = λiuT

i (4.64)

where more generally we should have been taking the Hermitian conjugate/conjugate-
transpose, †, but this distinction won’t matter to us, since in all our applications everything
will be real-valued. Notice how this works: A is an n× n matrix whereas vi and ui are n× 1
column vectors (so uT

i is a 1 × n row vector). Notice also a very simple way of evaluating
left-eigenvectors if you already have a method to produce right eigenvectors: simply take
the transpose of Eq. (4.64) to find:

AT ui = λiui (4.65)

Thus, the right eigenvectors of the transpose of a matrix give you the left eigenvectors
of the matrix itself (remarkably, corresponding to the same eigenvalues, as you will show
in a problem). Since we are not assuming that we’re dealing with a symmetric matrix, in
general A � AT , so the left eigenvectors ui are different from the right eigenvectors vi.

We will now use the last three boxed equations to derive an error bound on the magnitude
of the change of an eigenvalue, Δλi. Start with Eq. (4.63) and expand the parentheses out.
If you also take second-order changes (of the form Δ × Δ) as being negligible, you find:

AΔvi + ΔAvi = λiΔvi + Δλivi (4.66)

5 Actually, right now we are only interested in the impact on λi, so we’ll try to eliminate Δvi here: we return to
the sensitivity of eigenvectors in the following subsection.
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where we also made use of Eq. (4.62) in order to cancel two terms. Note that dropping
higher-order terms is legitimate under the assumption we are dealing with small perturba-
tions and changes, and simply determines the validity of our results (i.e., they are valid “to
first order”). Multiplying the last equation with uT

i on the left, we get:

uT
i AΔvi + uT

i ΔAvi = λiuT
i Δvi + ΔλiuT

i vi (4.67)

But two of these terms cancel, as per our definition in Eq. (4.64), so we are left with:

uT
i ΔAvi = ΔλiuT

i vi (4.68)

Taking the absolute value of both sides and solving for |Δλi|, we have:

|Δλi| =
|uT

i ΔAvi|
|uT

i vi|
(4.69)

We realize that we can apply the Cauchy–Schwarz inequality to the numerator:

|uT
i ΔAvi| ≤ ‖ui‖ ‖ΔA‖ ‖vi‖ (4.70)

This is very similar to the fifth property in Eq. (4.36), but here we’re faced with an absolute
value of a number on the left-hand side, not the norm of a matrix. We can now take the
eigenvectors to be normalized such that ‖ui‖ = ‖vi‖ = 1 (as is commonly done in standard
libraries and we will also do in section 4.4 below).

This means that we have managed to produce an error bound on |Δλi|, as desired:

|Δλi| ≤
1

|uT
i vi|
‖ΔA‖ (4.71)

But this is fully analogous to what we had found for the perturbations in the case of the
linear system of equations. The coefficient in front of ‖ΔA‖ determines whether or not a
small perturbation gets amplified in a specific case. Thus, we are led to introduce a new
condition number for simple eigenvalues, as promised:

κλi
ev(A) =

1

|uT
i vi|

(4.72)

where the subscript is there to remind us that this is a condition number for a specific
problem: for the evaluation of eigenvalues. The superscript keeps track of which specific
eigenvalue’s sensitivity we are referring to. To calculate the condition number for a given
eigenvalue you first have to calculate the product of the corresponding left- and right-
eigenvectors. We examine below the expected magnitude of this new condition number.

Observe that we chose to study an absolute error bound, that is, a bound on |Δλi| instead
of one on |Δλi|/|λi|: this is reasonable, since an eigenvalue is zero if you’re dealing with
non-invertible matrices.6 Perhaps you can now see why when discussing the examples of
this section we focused on absolute changes in the eigenvalues.

6 You can see this for yourself: the determinant of a matrix is equal to the product of its eigenvalues; when one
of these is 0, the determinant is 0, so the matrix is non-invertible.
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Examples

We saw above, while discussing Examples 8 and 9, that the linear-system condition number
κ(A) was not able to tell us how sensitive a specific eigenvalue is to small perturbations in
the elements of matrix A. We now turn to a discussion of the same examples, this time
employing κλi

ev(A), which was designed to quantify the sensitivity in the problem at hand.
In order to keep things manageable, we will only focus on one eigenvalue for each example:

• Example 8: κλ3
ev (A) ≈ 2.82

• Example 9: κλ2
ev (A) ≈ 37.11

• Example 3: κλ1
ev (A) = 1

• Example 1: κλ1
ev (A) ≈ 1.46

Examples 8 and 9 are similar and can therefore be discussed together: we find that the
eigenvalue condition number is larger than 1, whether by a few times (Example 8) or by
many times (Example 9).7 As Eq. (4.71) clearly shows, κλi

ev(A) tells us what to multiply
the perturbation ‖ΔA‖ with in order to produce the absolute change in the eigenvalue. Of
course, Eq. (4.71) only gives us an upper bound, so it is possible that in specific cases
the actual error is much smaller. For the cases of Examples 8 and 9, specifically, our trial-
and-error approach above gave answers that are pretty similar to those we now find using
the eigenvalue condition number κλi

ev(A). Crucially, the latter is an a priori estimate which
doesn’t necessitate actual experimentation.

Turning now to Example 3: we find that the eigenvalue condition number is 1, namely
that a small perturbation is not amplified for this case. We now realize that this result is
a specific instance of a more general pattern: the matrix in Example 3 is symmetric. For
symmetric matrices, as you can see from Eq. (4.65), the right eigenvectors are identical
to the left eigenvectors. Thus, for normalized eigenvectors, such that ‖ui‖ = ‖vi‖ = 1, we
find that κλi

ev(A) = 1 always. This means that for real symmetric matrices the eigenvalue
problem is always well-conditioned.8

Finally, our result for Example 1 shows us that a matrix for which the solution to the
linear equation problem may be tremendously ill-conditioned, does not have to be ill-
conditioned when it comes to the evaluation of eigenvalues. In other words, we need differ-
ent condition numbers for different problems. As it so happens, for this specific example the
condition number for the other eigenvalue also has the same value: κλ0

ev (A) ≈ 1.46, showing
that this eigenvalue is not more ill-conditioned than the other one: this is consistent with
our experimental finding.

To summarize, an eigenvalue condition number that is close to 1 corresponds to an eigen-
value that is well-conditioned and an eigenvalue condition number that is much larger than
1 is ill-conditioned; as usual, the demarcation between the two cases is somewhat arbitrary.

7 For Example 9 the denominator, |uT
i vi |, was very small, implying that the corresponding left and right eigen-

vectors are almost orthogonal.
8 Incidentally, we now see that this condition number, too, is bounded below by unity.
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4.2.6 Sensitivity of Eigenvectors

Having studied the sensitivity of a linear system solution and of eigenvalue evaluations to
small perturbations, the obvious next step is to do the same for the eigenvectors. You might
be forgiven for thinking that this problem has already been solved (didn’t we just produce
a new condition number for eigenvalues in the previous section?), but things are not that
simple. To reiterate, we are interested in probing the sensitivity of the eigenvalue problem:

Avi = λivi (4.73)

to small perturbations. This time, we focus on the effect of the perturbations on the evalu-
ation of the (right) eigenvectors, vi. We begin with a few examples of matrices and some
explicit perturbations added in “by hand” and only then turn to a semi-formal derivation.

The pattern should be clear by now: we start with a mistaken assumption of how to
quantify the sensitivity, then we find counter-examples, after this we proceed to provide a
correct expression determining the sensitivity dependence, and at the end verify that our
new concept applies to the earlier examples.

Back to Example 3

We first return to our middle-of-the-road case, Example 3, Eq. (4.29). We saw above that
if we add 0.01 to the bottom left element then we get an impact on the eigenvalues that
is (in absolute terms) half the size of the perturbation. We also saw that the eigenvalue
condition number κλ1

ev (A) = 1, this being consistent with our experimental finding that the
eigenvalues for this problem are not sensitive to small perturbations.

We now explicitly check the sensitivity of an eigenvector. Before the perturbation:

vT
1 =

(
−0.70710678 0.70710678

)
(4.74)

After the perturbation is applied, the corresponding eigenvector becomes:

(v1 + Δv1)T =
(
−0.70534562 0.70886357

)
(4.75)

The eigenvector components have changed in the third digit after the decimal point: this is
a change that is smaller than the perturbation itself. Nothing unexpected going on here: the
present example is well-conditioned as far as any linear algebra problem is concerned.

Back to Example 9

We turn to the matrix in Eq. (4.55), which had an eigenvalue λ2 = 2 which changed to
λ2 + Δλ2 ≈ 2.18206 after we added 0.005 to the bottom left element. This was consistent
with the magnitude of the eigenvalue condition number, κλ2

ev (A) ≈ 37.11.
Let’s look at the corresponding eigenvector. Before the perturbation, we have:

vT
2 =

(
0.88888889 −0.44444444 0.11111111 0

)
(4.76)

After the perturbation is applied, the corresponding eigenvector becomes:

(v2 + Δv2)T =
(
0.90713923 −0.41228175 0.0843057 0.00383712

)
(4.77)
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The change in the eigenvector components seems to be a few times larger than the pertur-
bation we applied. It appears that, in this case, the eigenvectors are not as sensitive to small
perturbations as the eigenvalues were.

Example 10

Our finding on Example 9 is already starting to cast doubts on the appropriateness of using
the eigenvalue condition number κλi

ev(A) to quantify the sensitivity of eigenvectors to small
perturbations. We will now examine a new example which will leave no doubt:

A =

⎛⎜⎜⎜⎜⎜⎜⎝1.01 0.01

0 0.99

⎞⎟⎟⎟⎟⎟⎟⎠ (4.78)

Its eigenvalues can be read off the diagonal:

λ0 = 1.01, λ1 = 0.99 (4.79)

We now apply a not-so-small perturbation of adding 0.005 to the top right element:

λ0 + Δλ0 = 1.01, λ1 + Δλ1 = 0.99 (4.80)

In other words, both eigenvalues remain unchanged. This is consistent with the eigenvalue
condition number κλi

ev(A) which comes out to be approximately 1.11803 for both eigenval-
ues. As far as the eigenvalues are concerned, this problem is perfectly well-conditioned.

We now examine one of the eigenvectors explicitly. Before the perturbation we have:

vT
1 =

(
−0.4472136 0.89442719

)
(4.81)

After the perturbation is applied, the corresponding eigenvector becomes:

(v1 + Δv1)T =
(
−0.6 0.8

)
(4.82)

We notice a dramatic impact on the eigenvector components, of more than an order of
magnitude larger than the perturbation we applied (in absolute terms). In other words, the
eigenvector problem is ill-conditioned, despite the fact that the corresponding eigenvalue
problem was well-conditioned. It is obvious that something new is at play here, which is
not captured by our earlier condition number. We will explain what’s going on below, after
we derive a formula on the perturbed eigenvector.

Example 11

It’s starting to look like the eigenvalue problem condition number is not a good measure of
the sensitivity of eigenvectors to small perturbations. We will now see an example where
the same conclusion holds, but is arrived at in the opposite direction: the eigenvalue condi-
tion number is huge, but the eigenvectors are not too sensitive. In some ways (but not all),
this situation is similar to what we encountered when discussing Example 9 above.
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Take the following 3 × 3 matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 2 3

0 4 5

0 0 4.001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.83)

Its eigenvalues can, again, be read off the diagonal:

λ0 = 4.001, λ1 = 4, λ2 = 1 (4.84)

If we now add 0.005 to the bottom left element, then the new eigenvalues are:

λ0 + Δλ0 ≈ 4.12933336, λ1 + Δλ1 ≈ 3.87111014, λ2 + Δλ2 ≈ 1.0005565 (4.85)

The first and second eigenvalues are considerably impacted by our perturbation. This is
consistent with the eigenvalue condition numbers for our matrix:

κλ0
ev (A) ≈ 6009.19059687, κλ1

ev (A) ≈ 6009.25224596, κλ2
ev (A) ≈ 1.2069722023 (4.86)

We see that we could have predicted a priori that the first and second eigenvalues are
sensitive to perturbations, since the corresponding condition numbers are huge. Even so,
it’s worth noting that the change in these eigenvalues is less than 30 times larger than the
perturbation itself: this is to be compared with Example 9, where the eigenvalue condition
number was not even 40 but the eigenvalue changed by more than 30 times the magnitude
of the perturbation.

We now examine one of the eigenvectors explicitly. Before the perturbation we have:

vT
0 =

(
0.554687392 0.832058814 0.000166412

)
(4.87)

After the perturbation is applied, the corresponding eigenvector becomes:

(v0 + Δv0)T =
(
0.552982 0.832915 0.0215447

)
(4.88)

The eigenvector seems to be largely oblivious to the perturbation: despite the large eigen-
value condition number and the sensitivity of the corresponding eigenvalue, the change in
the eigenvector components is at most a few times larger than the perturbation we applied.
As advertised, we have found another case where the eigenvectors are not as sensitive to
small perturbations as the eigenvalues were. As we will see below, this is a somewhat
special case, which will serve as a reminder of how simple arguments can lead us astray.

Derivation

We’ve seen that some matrices have eigenvectors that are sensitive to small perturbations,
whereas others do not. We tried to use the same condition number as for the evaluation of
the eigenvalues but were disappointed. We will now carry out an informal derivation that
will point us toward a quantitative measure of conditioning eigenvectors. (Spoiler alert: it
is not κλi

ev(A).) This quantitative measure of the sensitivity of our problem to small changes
in the input matrix elements will provide guidance regarding how to approach problems a
priori.
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To refresh your memory, we note that the problem we are solving is:

Avi = λivi (4.89)

For simplicity, we are assuming we are dealing with distinct eigenvalues/linearly indepen-
dent eigenvectors. Perturbing leads to Eq. (4.63):

(A + ΔA)(vi + Δvi) = (λi + Δλi)(vi + Δvi) (4.90)

As you may recall, after a few manipulations we arrived at Eq. (4.66):

AΔvi + ΔAvi = λiΔvi + Δλivi (4.91)

We now expand the perturbation in the eigenvector in terms of the other eigenvectors:

Δvi =
∑
j�i

t jiv j (4.92)

where the coefficients t ji are to be determined. We are employing here the linear inde-
pendence of the eigenvectors. Note that this sum does not include a j = i term: you can
assume that if there existed a tii it could have been absorbed into our definition of what a
perturbation for this eigenvector is.9

If we plug the last equation into the penultimate equation, we find:∑
j�i

(λ j − λi)t jiv j + ΔAvi = Δλivi (4.93)

The λ j arose because we also used our defining relation Eq. (4.89). We will now multiply
our equation with the left eigenvector uT

k , keeping in mind that left and right eigenvectors
for distinct eigenvalues are orthogonal to each other, uT

k vi = 0 for k � i. We find:

(λk − λi)tkiuT
k vk + uT

k ΔAvi = 0 (4.94)

We can solve this relation for tki and then plug the result into Eq. (4.92), thereby getting:

Δvi =
∑
j�i

uT
j ΔAvi

(λi − λ j)uT
j v j

v j (4.95)

This is our main result. Let’s unpack it a little bit. First, we notice that (unlike our earlier
results in condition-number derivations), the right-hand side contains a sum: the pertur-
bation in one eigenvector contains contributions that are proportional to each of the other
eigenvectors. Second, we observe that the numerator contains the perturbation in the input
matrix, ΔA.10 Third, and most significant, we see that our denominator contains two dis-
tinct contributions: (a) a uT

j v j term, which is the same thing that appeared in our definition

9 vi becomes vi + Δvi, so any term in Δvi that is proportional to vi simply adjusts the coefficient in front of vi.
10 If we wanted to take the norm, the uT

j and vi in the numerator would disappear, since ‖ui‖ = ‖vi‖ = 1.
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of the condition number for a simple eigenvalue in Eq. (4.72), and (b) a λi−λ j term, which
encapsulates the separation between the eigenvalue λi and all other eigenvalues.

Thus, we have found that a perturbation in the input matrix will get amplified if, first,
uT

j v j is small or, second, if any two eigenvalues are close! In other words, the problem
of evaluating eigenvectors may be ill-conditioned either because the eigenvalue problem
for any of the eigenvalues is ill-conditioned, or because two (or more) eigenvalues are
closely spaced. Intuitively, we already know that if two eigenvalues coincide then we can-
not uniquely determine the eigenvectors, so our result can be thought of as a generalization
of this to the case where two eigenvalues are close to each other.

Examples

We will now go over our earlier examples once again, this time armed with our main
result in Eq. (4.95). Since this equation was derived specifically to quantify the effect of a
perturbation on an eigenvector, we expect it to do much better than the eigenvalue condition
number κλi

ev(A). Let’s examine Examples 3, 9, 10, and 11 in turn.
Example 3 is the easiest to discuss: we recall that the matrix was symmetric, implying

that the eigenvalue evaluation was well-conditioned. That removes one possible source of
eigenvector-evaluation issues. Since the eigenvalues were, in this case, also well removed
from one another, there is no reason to expect any conditioning problems here, a conclusion
that is consistent with our earlier experimental investigation.

Example 9, on the other hand, did exhibit sensitivity to perturbations. This, obviously,
did not result from the eigenvalues being close to each other (as, in this case, they are
well separated). We see that the sensitivity came from the ill-conditioning of some of its
eigenvalues, in other words from the uT

j v j in the denominator. From our earlier discussion
we know that the left and right eigenvectors (corresponding to the same eigenvalue) can be
near-orthogonal, thereby making the eigenvalue evaluation sensitive to small perturbations.
Of course, Eq. (4.95) involves more than just one denominator, so in this case the overall
effect is less dramatic than it was for the evaluation of the corresponding eigenvalue.

Example 10 exhibits precisely the opposite behavior: while the eigenvalues are well-
conditioned, they happen to be very closely spaced. This is a quite extreme illustration of
the impact closely spaced eigenvalues can have on the evaluation of the eigenvectors.11

This is a smoking-gun case where the previous condition numbers (κ(A) and κλi
ev(A)) do not

raise any red flags, yet the eigenvector problem is extremely sensitive to minor variations
in the input matrix.

Example 11 is trickier than all preceding examples and serves as a warning not to rush
to judgement. Observe that two of the eigenvalues are quite ill-conditioned and the same
two eigenvalues also happen to be very close to each other in value. Thus, naively apply-
ing our earlier rule of thumb (ill-conditioned eigenvalues or closely spaced eigenvalues
can complicate the evaluation of an eigenvector) we would have expected this example to
be a worst-case scenario, since both conditions are satisfied. However, our experimental
investigation showed limited sensitivity of our eigenvector to external perturbations.

11 Observe that before Example 10 all our examples were chosen to have well-separated eigenvalues.
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Let’s make matters even more confusing (for the moment) by examining the eigenvector
v2 for the same matrix (Example 11): as you can see from Eq. (4.95), for this eigenvector
we would get contributions from both the uT

0 v0 and uT
1 v1 denominators which are known to

be very small. The relevant eigenvalue separations would be λ2 −λ0 and λ2 −λ1, which are
nearly identical. We would thus expect a very large impact on v2 from a minor perturbation
on the input matrix. Let’s see what happens in practice. Before the perturbation we have:

vT
2 =

(
1 0 0

)
(4.96)

After the perturbation is applied, the corresponding eigenvector becomes:

(v2 + Δv2)T =
(
0.999 994 75 0.002 777 87 −0.001 666 41

)
(4.97)

This is a small effect which, at first sight, is inconsistent with the result we derived. What’s
going on? Remember that when we used our new trick in Eq. (4.92) we were employing the
linear independence of the eigenvectors: this is OK when they are orthogonal. However, in
the present case two of our eigenvectors are almost linearly dependent (stop reading and go
check that v0 and v1 are nearly identical). Thus, Δv2 is made up of a large number times v0

plus a large number times v1: since the coefficients are nearly identical in magnitude and
of opposite sign, the result is a small perturbation vector, which implies insensitivity to an
external perturbation.12

4.3 Solving Systems of Linear Equations

In the previous section we studied in detail the conditioning of linear-algebra problems. We
didn’t explain how we produced the different answers for, e.g., the norm, the eigenvectors,
etc. In practice, we used functions like the ones we will be introducing in the present and
following sections. There is no cart-before-the-horse here, though: given that the problems
were small, it would have been straightforward to carry out such calculations “by hand”.
Similarly, we won’t spend more time talking about whether or not a problem is well- or
ill-conditioned in what follows. We will take it for granted that that’s an a priori analysis
you can carry out on your own.

It’s now time to discuss how to solve simultaneous linear equations on the computer:

Ax = b (4.98)

We will structure our discussion in an algorithm-friendly way, i.e., we will write the equa-
tions in such a way as to enable a step-by-step implementation in Python later on.

In the spirit of this book, we always start with a more inefficient method, which is eas-
ier to explain. In the case of linear algebra, the more inefficient method turns out to be

12 If you understand our argument on Δv2 you should be able to produce an analogous argument for the case of
Δv0, as you are asked to do in a problem, thereby explaining our earlier experimental finding.
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more general than other, specialized, methods which have been tailored to study problems
with specific symmetries. Note that we will be focusing mainly on direct methods, namely
approaches that transform the original problem into a form that is more easily solved. Indi-
rect methods, briefly discussed in section 4.3.5, start with a guess for the solution and then
refine it until convergence is reached. They are mainly useful when you have to deal with
sparse problems, where many of the matrix elements are zero.

4.3.1 Triangular Matrices

We start with the simplest case possible, that of triangular matrices (for which all elements
either above or below the diagonal are zero). This is not simply a toy problem: many of the
fancier methods for the solution of simultaneous equations, like those we discuss below,
manipulate the starting problem so that it ends up containing one or two triangular matrices
at the end. Thus, we are here also providing the scaffolding for other methods.

We immediately note that in the real world one rarely stores a triangular matrix in its
entirety, as that would be wasteful: it would entail storing a large number of 0s, which don’t
add any new information; if we know that a matrix is triangular, the 0s above or below the
diagonal are implied. In state-of-the-art libraries, it is common to use a single matrix to
store together an upper-triangular and a lower-triangular matrix (with some convention
about the diagonal, since each of those triangular matrices also generally has non-zero
elements there). Here, since our goal is pedagogical clarity, we will opt for coding up
each algorithm “naively”, namely by carrying around several 0s for triangular matrices.
Once you get the hang of things, you will be able to modify our codes to make them more
efficient (as one of the problems asks you to do).

Forward Substitution

Start with a lower-triangular matrix L. The problem we are interested in solving is:

Lx = b (4.99)

This trivial point might get obscured later, so we immediately point out that by b we simply
mean the constant vector on the right-hand side (which we could have also named c, d, and
so on. Similarly, x is merely the solution vector, which we could have also called, e.g., y.
Our task is to find the solution vector. For concreteness, let us study a 3 × 3 problem:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L00 0 0

L10 L11 0

L20 L21 L22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0

x1

x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b0

b1

b2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.100)

This can be expanded into equation form:

L00x0 = b0

L10x0 + L11x1 = b1

L20x0 + L21x1 + L22x2 = b2

(4.101)
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The way to find the solution-vector components should be fairly obvious: start with the first
equation and solve it for x0. Then, plug in that answer to the second equation and solve for
x1. Finally, plug x0 and x1 into the third equation and solve for x2. We have:

x0 =
b0

L00
, x1 =

b1 − L10x0

L11
, x2 =

b2 − L20x0 − L21x1

L22
(4.102)

This process is known as forward substitution, since we solve for the unknowns by starting
with the first equation and moving forward from there. It’s easy to see how to generalize
this approach to the n × n case:

xi =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=0

Li jx j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Lii
, i = 0, 1, . . . , n − 1 (4.103)

with the understanding that, on the right-hand side, the sum corresponds to zero terms if
i = 0, one term if i = 1, and so on.

Back Substitution

You can also start with an upper-triangular matrix U:

Ux = b (4.104)

As above, for concreteness, we first study a 3 × 3 problem:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U00 U01 U02

0 U11 U12

0 0 U22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0

x1

x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b0

b1

b2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.105)

This can be expanded into equation form:

U00x0 + U01x1 + U02x2 = b0

U11x1 + U12x2 = b1

U22x2 = b2

(4.106)

For this case, too, the way to find the solution-vector components should be fairly obvious:
start with the last equation and solve it for x2. Then, plug in that answer to the second
equation and solve for x1. Finally, plug x2 and x1 into the first equation and solve for x0:

x2 =
b2

U22
, x1 =

b1 − U12x2

U11
, x0 =

b0 − U01x1 − U02x2

U00
(4.107)

This process is known as back substitution, since we solve for the unknowns by starting
with the last equation and moving backward from there. It’s easy to see how to generalize
this approach to the n × n case:
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xi =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
n−1∑

j=i+1

Ui jx j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Uii

, i = n − 1, n − 2, . . . , 1, 0 (4.108)

with the understanding that, on the right-hand side, the sum corresponds to zero terms if
i = n − 1, one term if i = n − 2, and so on.

Implementation

Given the form in which we have expressed forward substitution, Eq. (4.103), and back
substitution, Eq. (4.108), the Python implementation of Code 4.1 essentially writes itself.
A few observations are in order.

We used NumPy functionality throughout this code, though we could have employed
Python lists, instead. However, as already mentioned, in this chapter we will be using
NumPy arrays in order to help you become comfortable with them. (If you haven’t learned
how to use arrays, now is the time to do so.) Being familiar with NumPy arrays will also
help you employ a wealth of other Python libraries after you are done reading this book:
arrays are omnipresent in numerical computing, so this is a good opportunity to see them
used in action to implement major linear-algebra algorithms.

In addition to extracting the size of the problem from the constant vector, our code has
the following feature: the numpy array by the name of xs (to be returned by the function)
is first created to contain zeros. (We could have employed numpy.empty() instead.) Then,
each element of xs is evaluated and stored in turn. (In other words, we are not creating an
empty list and then appending elements one at a time.) Also, keep in mind that we are stor-
ing the solution vector x (which mathematically is a column vector) in a one-dimensional
NumPy array: this will be very convenient when we print it out (since it will all show up
as one row of text).

Crucially, the lines of code that implement the aforementioned equations are a joy to read
and write, given NumPy’s syntax: the code looks essentially identical to the equation. Note
how expressive something like L[i,:i] is: there’s no need for double square brackets,
while the slicing takes only the elements that should be used. More importantly, there’s no
need for a loop within a loop (the first loop going over i’s and the second loop going over
j’s): numpy knows how to take the dot product of two vectors correctly when you use @.13

It’s nice to see that Python/NumPy also handles the cases of i = 0 (no products) and i = 1
(only one product) correctly. Note finally that backsub() uses Python’s reversed(), as
per our discussion in chapter 1.

We then encounter the testcreate() function, which essentially pulls a test matrix out
of a hat: the crucial point here is that (in the spirit of the separation of concerns principle)
we create the matrix A inside a function (which can then be re-used in code we write in the
future). As we’ll see below, our choice is not totally arbitrary; for now, merely note that this
matrix is not symmetric. The code that creates the constant vector b is arbitrary, basically

13 As discussed in chapter 1, we could have used numpy.dot(as,bs) or numpy.sum(as*bs), instead.
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Code 4.1 triang.py Code 4.1

import numpy as np

def forsub(L,bs):

n = bs.size

xs = np.zeros(n)

for i in range(n):

xs[i] = (bs[i] - L[i,:i]@xs[:i])/L[i,i]

return xs

def backsub(U,bs):

n = bs.size

xs = np.zeros(n)

for i in reversed(range(n)):

xs[i] = (bs[i] - U[i,i+1:]@xs[i+1:])/U[i,i]

return xs

def testcreate(n,val):

A = np.arange(val,val+n*n).reshape(n,n)

A = np.sqrt(A)

bs = (A[0,:])**2.1

return A, bs

def testsolve(f,A,bs):

xs = f(A,bs); print(xs)

xs = np.linalg.solve(A,bs); print(xs)

if name == ‘ main ’:

A, bs = testcreate(4,21)

L = np.tril(A)

testsolve(forsub,L,bs)

print(" ")

U = np.triu(A)

testsolve(backsub,U,bs)

showcasing some of NumPy’s functionality, as described in section 1.6. Analogously, we
have created a function that runs the substitution functions and compares with the output of
numpy.linalg.solve(), the standard numpy choice for solving linear coupled equations.



4.3 Solving Systems of Linear Equations 151

In the spirit of all our codes so far, we pass in as an argument, f, our hand-rolled function
which solves the problem (in what follows we will keep using this test run function).

In the main program, after creating A and b, we use numpy.tril() to create a lower-
triangular matrix starting from A (and numpy.triu() to create an upper-triangular matrix).
This is only done in the spirit of pedagogy: the substitution function calls work just as
well (giving the same answers) even if you don’t first take the lower- or upper-triangular
elements. Running this code, you see that there is no visible difference between the output
of our substitution functions and that of numpy.linalg.solve(). Given the simplicity
of the problem(s) we are solving here, this comes as no surprise.

Digression: Operation Counts

We will now engage in an activity which is very common in linear algebra: we will count
how many floating-point operations it takes to carry out a specific calculation (these are
also called “flops”). If a given computation scales poorly (e.g., exponentially) with the size
of the problem, then it will be hard to increase the size much more than what is currently
possible. If the scaling is not “too bad” (e.g., polynomial with a small power), then one can
keep solving bigger problems without needing to employ dramatically new hardware.

In such studies, you will frequently encounter the O symbol which, as you may recall
from chapter 3 is known as big-O notation. Thus, a method that scales as O(n3) is better
than another method that scales as O(n4) (for the same problem), since the power domi-
nates over any prefactor when n is large. Note that when one explicitly counts the number
of additions/subtractions and multiplications/divisions, one is sometimes interested in the
prefactor, e.g., 2n3 is better than 4n3, since the former requires only half as many oper-
ations. On the other hand, lower powers don’t impact the scaling seriously so you may
sometimes encounter expressions such as 2n3 − 7n2 + 5n written as ∼2n3, simply dropping
the lower-degree terms.

Let’s study the case of matrix-vector multiplication explicitly, see Eq. (C.9):

y = Ax, yi =

n−1∑
j=0

Ai jx j (4.109)

We see that for a given yi we need, on the right-hand side, n multiplications and n − 1
additions. Thus, since we have n terms for the yi’s in total, we are faced with n × n multi-
plications and n × (n − 1) additions in total. If we add both of these results up, we find that
matrix-vector multiplication requires precisely 2n2−n floating-point operations. As above,
you will frequently see this re-expressed as ∼2n2 or even as O(n2).

In the problems, you are asked to calculate the operation counts for vector–vector mul-
tiplication and matrix–matrix multiplication. These turn out to be O(n) and O(n3), respec-
tively, but you will also need to evaluate the exact prefactors (and lower-order terms).
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Operation Count for Forward Substitution

For concreteness, we will examine only forward substitution (but the answer turns out to
be the same for back substitution). We copy here Eq. (4.103) for your convenience:

xi =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=0

Li jx j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Lii
, i = 0, 1, . . . , n − 1 (4.110)

It is easy to see that each of the xi requires one division, so n divisions in total. It’s equally
easy to see that for a given xi, we need to carry out i multiplications and i subtractions
(check this for a few values of i if it’s not immediately obvious). Thus, we can group the
required operations into two categories. First, we require:

n−1∑
i=0

i =
(n − 1)n

2
=

n2 − n
2

(4.111)

additions/subtractions. Second, we require:

n +
n−1∑
i=0

i = n +
(n − 1)n

2
=

n2 + n
2

(4.112)

multiplications/divisions. If we add both of these results up, we find that forward substi-
tution requires precisely n2 floating-point operations. This could be expressed as O(n2),
but the latter form is less informative: in our explicit calculation we have found that the
prefactor is exactly 1.

4.3.2 Gaussian Elimination

We now turn to the problem of solving linear simultaneous equations for the general case,
i.e., when we are not dealing with a triangular matrix. We will solve:

Ax = b (4.113)

for a general matrix A. We start with the method known as Gaussian elimination (though
it was used in China two thousand years earlier and by Newton more than a century before
Gauss). In essence, this method employs the third elementary row operation we intro-
duced in section 4.1.2: a row/equation may be replaced by a linear combination of that
row/equation with any other row/equation. After doing this repeatedly (in what is known
as the elimination phase), we end up with an upper-triangular matrix, at which point we
are at the back substitution phase which, as we just saw, is easy to carry out.
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Example

Before we discuss the general algorithm and its implementation, it may be helpful to first
show how to solve a specific example “by hand”. Let us study the following 3×3 problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2x0 + x1 + x2 = 8

x0 + x1 − 2x2 = −2

x0 + 2x1 + x2 = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 1 1

1 1 −2

1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0

x1

x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8

−2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.114)

given in two equivalent forms. Again, we’ve seen that one way to compactly write down
the crucial elements at play is to use the augmented matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 8

1 1 −2 −2

1 2 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.115)

This combines the coefficient matrix A with the constant vector b, with the solution vector
x being implied. You should spend some time looking at this augmented matrix, since that’s
what we are going to use below (i.e., the equations themselves will be implicitly given).
Note that in this specific example the coefficient matrix A is not symmetric.

As already mentioned, Gaussian elimination employs the third elementary row opera-
tion, i.e., we will replace a row with that same row plus another row (times a coefficient).
Specifically, we first pick a specific row, called the pivot row, which we multiply with a
number and then subtract from the row we are transforming. Let’s use j as the index that
keeps track of the pivot row and i for the index corresponding to the row we are currently
transforming (as usual, for a 3 × 3 problem our indices can have the values 0, 1, or 2). The
operation we are carrying out is:

New row i = row i − coefficient × row j (4.116)

The coefficient is selected such that after the transformation the leading number in row i is
a 0. Perhaps this will become more clear once you see the algorithm in action.

We begin with j = 0, taking the first equation as the pivot row. We then take i = 1 (the
second row) as the row to be transformed: our goal is to eliminate the element in the first
column (i.e., the term corresponding to x0). To do this, we will replace the second row with
the second row minus the first row times 0.5 (since 1− 0.5× 2 = 0). Obviously, we have to
carry out this calculation for the entire row, giving us:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 8

0 0.5 −2.5 −6

1 2 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.117)

Next, for the same pivot row ( j = 0), we will transform the third row (i = 2), again by



154 Matrices

multiplying the pivot row with 0.5 and subtracting. We get:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 1 1 8

0 0.5 −2.5 −6

0 1.5 0.5 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.118)

We now see that our work with j = 0 as our pivot row is done: all the rows below it have
been transformed such that the 0th (first) column contains a zero.

We now take j = 1, i.e., use the second equation as our pivot row. (We always use
the latest version of the matrix, so our j = 1 pivot row will be the result of our earlier
transformation.) The rows to be transformed always lie below the pivot row, so in this case
there’s only one row to change, i = 2 (the third row). We multiply the pivot row with 3 and
subtract from the third row, in order to eliminate the element in the second column (i.e.,
the term corresponding to x1), since 1.5 − 3 × 0.5 = 0. This gives us:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 8

0 0.5 −2.5 −6

0 0 8 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.119)

Our coefficient matrix is now in triangular form, so the elimination phase is done.
We now use Eq. (4.108) from the back substitution section:

x2 =
16
8
= 2

x1 =
−6 − (−2.5) × x2

0.5
=
−6 − (−2.5) × 2

0.5
= −2

x0 =
8 − 1 × x1 − 1 × x2

2
=

8 − 1 × (−2) − 1 × 2
2

= 4

(4.120)

Thus, we have accomplished our task: we have solved our three simultaneous equations
for the three unknowns, through a combination of elimination and back substitution.

General Case

Having gone through an explicit case step by step, it should be relatively straightforward
to generalize this to the n × n problem. First, we repeat the augmented matrix of Eq. (4.9):

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 . . . A0,n−1 b0

A10 A11 . . . A1,n−1 b1

...
...

. . .
...

...

An−1,0 An−1,1 . . . An−1,n−1 bn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.121)

As we saw in the previous section, Gaussian elimination modifies the coefficient matrix
and the constant vector until the former becomes triangular. It is standard to do this by
modifying the matrix elements of A and b (so, if you need the original values, you need to
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make sure you’ve made a copy of them ahead of time). In other words, at some intermediate
point in time the augmented matrix will look like this:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 A02 . . . A0, j−1 A0 j A0, j+1 . . . A0,n−1 b0

0 A11 A12 . . . A1, j−1 A1 j A1, j+1 . . . A1,n−1 b1

0 0 A22 . . . A2, j−1 A2 j A2, j+1 . . . A2,n−1 b2

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 . . . Aj−1, j−1 Aj−1, j A j−1, j+1 . . . Aj−1,n−1 b j−1

0 0 0 . . . 0 Aj j A j, j+1 . . . Aj,n−1 b j

0 0 0 . . . 0 Aj+1, j A j+1, j+1 . . . Aj+1,n−1 b j+1

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 . . . 0 Ai j Ai, j+1 . . . Ai,n−1 bi

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 . . . 0 An−1, j An−1, j+1 . . . An−1,n−1 bn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.122)

The snapshot we are showing corresponds to the case where j just became the pivot row,
meaning that all the rows up to it have already been transformed, whereas all the rows
below still have to be transformed. As already noted, the values of the A and b matrix
elements shown here are the current ones, i.e., have already been transformed (so far) from
the original values. (The first row is always left unchanged.)

You should convince yourself that j can take on the values:

j = 0, 1, 2, . . . , n − 2 (4.123)

The first possibility for the pivot row is the first row, meaning all other rows have to be
transformed. The last row to be transformed is the last one, so the final pivot row is the
penultimate row. Using the same notation as above, we call i the index corresponding to
the row that is being transformed. Obviously, i has to be greater than j. Given what we just
discussed, i takes on the values:

i = j + 1, j + 2, . . . , n − 1 (4.124)

As we saw in Eq. (4.116) and in the 3×3 case, Gaussian elimination works by multiplying
the pivot row j with a coefficient and subtracting the result from row i which is currently
being transformed (and storing the result back in row i). The coefficient is chosen such
that (after the transformation) row i starts with a 0. Thus, looking at the snapshot in our
augmented matrix, where the leading non-zero element of row i is Ai j and the leading
non-zero element of row j is Aj j, we see that the coefficient has to be Ai j/Aj j (given that
Ai j − (Ai j/Aj j)Aj j = 0). In equation form:
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coefficient =
Ai j

A j j
(4.125)

Incidentally, Aj j is sometimes called the pivot element since it is used (divided out) in order
to eliminate the leading elements in the following rows. Obviously, the other elements in
row i will end up having some new values (most likely non-zero ones).

At the end of this process, the matrix A contained in our augmented matrix will be upper
triangular, so it will be straightforward to then apply Eq. (4.108) from the back substitution
section to solve for all the unknowns.

Implementation

We have structured Eq. (4.122) and the surrounding discussion in such a way as to simplify
producing a Python code that implements Gaussian elimination. We will structure our code
in a modular way, such that it can apply to any input matrices A and b, impacting the
external world only via its return value. Code 4.2 is a straightforward implementation of
the afore-discussed algorithm.

We start out by importing some of the routines we created in our earlier code on trian-
gular matrices. As already mentioned, we make copies of the input matrices, so we may
update them at will, without impacting the rest of the program in an unexpected way (this
is inefficient, but pedagogically superior).

The core of our gauelim() function consists of two loops: one over jwhich keeps track
of the current pivot row and one over i which keeps track of which row we are currently
updating, see Eq. (4.123) and Eq. (4.124). Thus, our choice in this chapter of modifying
linear-algebra notation so that all indices start from 0 is starting to pay off.

In the inner loop, we always start from evaluating the coefficient Ai j/Aj j which will be
used to subtract out the leading element in the row currently being updated. This elim-
ination is carried out in the line A[i,j:] -= coeff*A[j,j:], which employs NumPy
functionality to carry out this modification for each column in row i. Notice how nice this
is: we did not need to keep track of a third index (and therefore did not need to introduce a
third loop). This reduces the cognitive load needed to keep track of what’s going on: all the
desired elements on one row are updated in one line. Actually, if we wanted to update the
whole row, we would have said A[i,:] -= coeff*A[j,:]. This, too, employs NumPy
functionality to our advantage, processing the entire row at one go. The earlier choice we
made, however, to index using A[i,j:] instead of A[i,:] is better: not only is it not
wasteful, processing only the non-zero elements, but it is also more transparent, since it
clearly corresponds to Eq. (4.122). Actually, we are being slightly wasteful: the leading
element in row i will end up being zero but we are carrying out the subtraction procedure
for that column as well, instead of just assuming that it will vanish. (You might wish to
implement this code with a third loop to appreciate our comments.) The code then makes
the corresponding update to the b row element currently being processed.

A further point: if we were interested in saving some operations, we might introduce an
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gauelim.py Code 4.2

from triang import backsub, testcreate, testsolve

import numpy as np

def gauelim(inA,inbs):

A = np.copy(inA)

bs = np.copy(inbs)

n = bs.size

for j in range(n-1):

for i in range(j+1,n):

coeff = A[i,j]/A[j,j]

A[i,j:] -= coeff*A[j,j:]

bs[i] -= coeff*bs[j]

xs = backsub(A,bs)

return xs

if name == ‘ main ’:

A, bs = testcreate(4,21)

testsolve(gauelim,A,bs)

if clause in the inner loop checking whether or not A[i,j] is already 0, before we divide
it with the coefficient. But then you would be needlessly testing all the time for a condition
which is rarely met.14

After we have used all possible pivot rows, our matrix will have been updated to be
upper triangular. At this point, we simply call our earlier backsub() function. This seems
to be a neat example of code re-usability. We allow ourselves to call functions inside our
codes even if we haven’t passed them in explicitly, as long as it’s clear what’s happening
and how one would proceed to further update the code.

The main body of the code is quite straightforward: it creates our test matrix and calls
the function that compares our new routine to the standard NumPy output. Observe how
useful these earlier two functions turned out to be. We will employ them again several times
in what follows. Running the code, we see that our simple Gaussian elimination code is
already doing a good job matching the output of numpy.linalg.solve(). Note that you
haven’t seen this output vector before: in the earlier code we created a lower or upper-
triangular matrix starting from A, whereas now we are using the entire matrix. We always
get at least seven digits of agreement between the two solution vectors. This is good, but at

14 If your matrix is sparse or banded and efficiency is a major concern, you should be using a different method.
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this point it is a bit unclear why we’re not doing a better job. We will return to this question
in a later section.

Operation Count

Turning to a study of the operation count for Gaussian elimination, we keep in mind that
we are interested in total floating-point operations. Thus, while it may help us to think of
additions, multiplications, etc. separately, in the end we will add all of them up. It may
be helpful to look at Eq. (4.122), which shows a snapshot of the Gaussian elimination
algorithm at an intermediate time slice. We can separate the operations into two categories:
(a) the conversion of A into an upper-triangular matrix together with the corresponding
changes to b and (b) the back substitution of the resulting triangular problem. We already
know from an earlier section that the back substitution phase requires n2 floating-point
operations, so we only have to address the first category.

From Eq. (4.116) we know that what we keep doing is the following operation:

New row i = row i − coefficient × row j (4.126)

We recall from Eq. (4.123) that the steps involved are organized by pivot row:

j = 0, 1, 2, . . . , n − 2 (4.127)

and are applied to the rows:

i = j + 1, j + 2, . . . , n − 1 (4.128)

in turn, as per Eq. (4.124).
In the first step, we have to modify the n−1 rows below the pivot row j = 0. To evaluate

the coefficients for each of the n − 1 rows we need n − 1 divisions of the form Ai j/Aj j. For
each of the n − 1 distinct i’s we will need to carry out n multiplications and n subtractions
(one for each column in A) and one multiplication and one subtraction for b. Since there are
going to be n−1 values that i takes on, we are led to a result of (n+1)(n−1) multiplications
and (n+ 1)(n− 1) subtractions. Putting these results together with the divisions, in this first
step we are carrying out (n − 1) + 2(n + 1)(n − 1) floating-point operations.

Still on the subject of the conversion of A, we turn to the second step, namely using
the pivot row j = 1. We have to modify the n − 2 rows below that pivot row. That leads
to n − 2 divisions for the coefficients. Then, for each of the i’s, we will need to carry
out n − 1 multiplications and n − 1 subtractions (one for each remaining column in A)
and 1 multiplication and 1 subtraction for b. Putting these results together, we are led to
(n − 2) + 2n(n − 2) floating-point operations in total for this step.

It’s easy to see that the third step would lead to (n − 3) + 2(n − 1)(n − 3) floating-point
operations. A pattern now emerges: for a given pivot row j, we have:

(n − 1 − j) + 2(n + 1 − j)(n − 1 − j) (4.129)
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floating-point operations. Thus, for all possible values of the pivot row j we will need:

Ncount =

n−2∑
j=0

[
(n − 1 − j) + 2(n + 1 − j)(n − 1 − j)

]
=

n−1∑
k=1

[k + 2(k + 2)k] =
n−1∑
k=1

(2k2 + 5k)

= 2
n(n − 1)(2n − 1)

6
+ 5

(n − 1)n
2

=
2
3

n3 +
3
2

n2 − 13
6

n ∼ 2
3

n3 (4.130)

floating-point operations. In the second step we used a new dummy variable, noticing that
n− 1− j goes from n− 1 down to 1. In the fourth step we used the two standard results for∑n−1

k=0 k and
∑n−1

k=0 k2.15

Since we already know that the back substitution stage has a cost of n2, we see that
the elimination stage is much slower and therefore dominates the cost of the calculation:
symbolically, we have 2n3/3 + n2 ∼ 2n3/3.

4.3.3 LU Method

While the Gaussian elimination method discussed in the previous section is a reasonably
robust approach (see below), it does suffer from the following obvious problem: if you
want to solve Ax = b for the same matrix A but a different right-hand-side vector b, you
would have to waste all the calculations you have already carried out and call a function
like gauelim() again, performing the Gaussian elimination on A from scratch. You may
wonder if this situation actually arises in practice. The answer is: yes, it does. We will see
an example in section 4.4 below, when we discuss methods that evaluate eigenvalues.

Thus, we are effectively motivating a new method (the LU method) by stressing the
need to somehow “store” the result of the Gaussian elimination process for future use. As
a matter of fact, several flavors of the LU method exist, but we are going to be discussing
the simplest one, which is a short step away from what we’ve already seen so far.

LU Decomposition

Let us assume we are dealing with a non-singular matrix A which can be expressed as the
product of a lower-triangular matrix L and an upper-triangular matrix U:

A = LU (4.131)

For obvious reasons, this is known as the LU decomposition (or sometimes as the LU
factorization) of matrix A. We will see in the following section (when we discuss pivoting)
that the story is a bit more complicated than this, but for now simply assume that you can
carry out such a decomposition.

The LU decomposition as described above is not unique. Here and in what follows, we
will make an extra assumption, namely that the matrix L is unit lower triangular, namely

15 If you have not seen the latter result before, it is worth solving the relevant problem: while this has little to do
with linear algebra, it’s always gratifying when a series telescopes.
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that it is a lower-triangular matrix with 1s on the main diagonal, i.e., Lii = 1 for i =
0, 1, . . . , n − 1. This is known as the Doolittle decomposition.16

It may be easiest to get a feel for how one goes about constructing this (Doolittle) LU
decomposition via an example. As above, we will start from the simple 3 × 3 case. Instead
of studying a specific matrix, as we did earlier, let us look at the general 3× 3 problem and
assume that we are dealing with:

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

L10 1 0

L20 L21 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U00 U01 U02

0 U11 U12

0 0 U22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.132)

By assumption, we can simply multiply them together (as per A = LU) to get the original
(undecomposed) matrix A:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U00 U01 U02

U00L10 U01L10 + U11 U02L10 + U12

U00L20 U01L20 + U11L21 U02L20 + U12L21 + U22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.133)

What we’ll now do is to apply Gaussian elimination to the matrix A only (notice there’s
no b anywhere in sight). This is in keeping with our declared intention to find a way of
“storing” the results of the Gaussian elimination process for future use.

As we did in our earlier 3 × 3 example, we will apply Eq. (4.116) repeatedly. We start
from the pivot row j = 0. We first take i = 1: the coefficient will be such that the leading
column in row i becomes a 0, i.e., L10. Thus:

New row 1 = row 1 − L10 × row 0 (4.134)

This gives:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U00 U01 U02

0 U11 U12

U00L20 U01L20 + U11L21 U02L20 + U12L21 + U22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.135)

Similarly, still for the pivot row j = 0, we now take i = 2:

New row 2 = row 2 − L20 × row 0 (4.136)

gives us:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U00 U01 U02

0 U11 U12

0 U11L21 U12L21 + U22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.137)

Remember, we always use the latest/updated version of the matrix A. We will now take the
pivot row to be j = 1 and the row to be updated as i = 2:

New row 2 = row 2 − L21 × row 1 (4.138)

16 The Doolittle decomposition is to be contrasted with other algorithms, like the Crout decomposition and the
Cholesky decomposition, which we will not address here.
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gives us:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U00 U01 U02

0 U11 U12

0 0 U22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.139)

We have reached a very interesting situation. Inverting this line of reasoning leads us to
conclude that to LU decompose a matrix you simply carry out the process of Gaussian
elimination: the final version of the matrix A will be U. Similarly, the off-diagonal matrix
elements of the matrix L will simply be the coefficients used in the Gaussian elimination
process (L10, L20, and L21 above).

For the purposes of illustration, we assumed that we could write down the LU decom-
position and drew our conclusions about how that came about in the first place. If this is
still not ringing a bell, you might want to see the reverse being done: starting with A, we
wish to calculate the matrix elements of L and U. For concreteness, let us study the matrix
given in Eq. (4.115):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 1 1

1 1 −2

1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.140)

where we took the liberty of dropping the elements of the constant vector b. As just stated,
U will be the end result of the Gaussian elimination process, namely Eq. (4.119), and,
similarly, L will collect the coefficients we used in order to bring our matrix A to upper-
triangular form:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 1 1

0 0.5 −2.5

0 0 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

0.5 1 0

0.5 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.141)

All these matrix elements made their appearance as part of the Gaussian elimination pro-
cess in the previous section. What we’ve done here is to collect them. See how effortless
this all was. (If you’re still not convinced, try multiplying L and U together.)

Notice that storing two matrices (one upper triangular and one lower triangular) is quite
wasteful, especially given that we already know that the diagonal elements of L are always
1. It is very common in practice to store both L and U in a single matrix (with the diagonal
elements of L being implied). A problem asks you to implement this solution, but in the
main text we opt for pedagogical clarity and use separate matrices.

In contradistinction to what we did in our earlier section on Gaussian elimination, here
we do not proceed to discuss the general n × n case. The reason why should be trans-
parent at this point: the (Doolittle) LU decomposition process is identical to the Gaussian
elimination process. We simply have to store the end result and the intermediately used
coefficients.
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Solving a System Using LU Decomposition

It is now time to see how the above decomposition can help in solving the standard problem
we’ve been addressing, namely the solution of:

Ax = b (4.142)

for a general matrix A. Since we assume that we’ve been able to carry out the LU decom-
position, we know that A = LU, so our problem is recast as:

LUx = b (4.143)

It should become crystal clear how to solve this problem once we rewrite this equation as:

L(Ux) = b (4.144)

Thus:

Ly = b

Ux = y
(4.145)

We can solve the first of these equations by forward substitution (since we’re dealing with
a lower-triangular problem). The result can then be used to pose and solve the second
equation by back substitution (since it involves an upper-triangular matrix).

Implementation

Before showing any code, let us summarize our accomplishments: we have been able to
LU decompose a given matrix, which can then be combined with a constant vector and
solve the corresponding system of linear equations. Code 4.3 accomplishes both tasks.

The main workhorse of this code is the straightforward function ludec(); this is iden-
tical to our earlier gauelim(), but:

• we don’t have to worry about the constant vector b, since at this stage all we’re doing is
LU-decomposing a given matrix A.

• we are calling the array variable that keeps getting updated U, instead of A.
• we store all the coefficients we calculated in L (while placing 1s in its diagonal – this

could have been done at the end, instead of starting from an identity matrix).

We then create a function that solves Ax = b as per Eq. (4.145), namely by first forward
substituting and then back substituting. Our previously advertised strive for modularity has
paid off: the main body of lusolve() consists of three calls to other functions.

The main body of the program is also very simple, calling functions to create the relevant
matrices and evaluate the solution to the system of equations. Running this code, we find at
least seven digits of agreement for the solution vectors. You may or may not be intrigued to
see that the LU-method solution vector turns out to be identical to the Gaussian elimination
vector we saw above.
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ludec.py Code 4.3

from triang import forsub, backsub, testcreate, testsolve

import numpy as np

def ludec(A):

n = A.shape[0]

U = np.copy(A)

L = np.identity(n)

for j in range(n-1):

for i in range(j+1,n):

coeff = U[i,j]/U[j,j]

U[i,j:] -= coeff*U[j,j:]

L[i,j] = coeff

return L, U

def lusolve(A,bs):

L, U = ludec(A)

ys = forsub(L,bs)

xs = backsub(U,ys)

return xs

if name == ‘ main ’:

A, bs = testcreate(4,21)

testsolve(lusolve,A,bs)

Operation Count

You are asked to carry out a detailed study of the operation count for LU decomposition in
one of the problems. Here, we focus on qualitative features. The calculation in Eq. (4.130)
contained several components: divisions, multiplications, and subtractions. These last two
were added up for the elements of both A and b which were being updated. Obviously,
while carrying out the LU decomposition, we do not have to modify b. This changes the
operation count slightly, but the dominant term in this case, too, is ∼2n3/3. One should
also take into account that for Gaussian elimination (after counting the multiplications
and subtractions for the elements of b) we only needed a back substitution at the end. As
Eq. (4.145) clearly shows, at the end of the LU method we will have to carry out both a
forward and a back substitution.

You should observe that in this operation-count estimate (as in all others) we are only
interested in the floating-point operations. Keep in mind that this only tells part of the story:
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one should, in principle, also keep track of storage requirements. For example, in the way
we chose to implement LU decomposition, it requires two n×n matrices, whereas Gaussian
elimination needed only one.

Matrix Inverse

Note that we chose not to implement a function that inverts a given matrix A, since one can
generally avoid matrix inversion in practice. Even so, as mentioned earlier, you may wish
to produce a matrix-inversion Python function in order to calculate the condition number
for the problem Ax = b.

We know from Eq. (C.17) that the matrix inverse A−1 satisfies:

AA−1 = I (4.146)

This motivates the following trick: think of the identity I as a matrix composed of n column
vectors, ei. (Each of these vectors contains only one non-zero element, whose placement
depends on i.) Thus, instead of tackling the full relation AA−1 = I head on, we break the
problem up into n problems, one for each column of the identity matrix:

Axi = ei (4.147)

where the xi are the columns of the inverse matrix A−1. Explicitly:

A−1 =
(
x0 x1 . . . xn−1

)
, I =

(
e0 e1 . . . en−1

)
(4.148)

Keep in mind that bold-lower-case entities are column vectors.
We now see our first example of using the LU decomposition to solve linear systems for

different constant vectors b: Axi = ei can be combined with A = LU:

L(Uxi) = ei (4.149)

Then, for each xi (or each ei) we use the same LU decomposition and carry out first a
forward substitution and then a back substitution (just like in Eq. (4.145) above). As you
may recall, each forward/back substitution has a cost of n2 which is much less costly than
the O(n3) needed for LU decomposition. Thus, since we need to solve for n columns of the
inverse, the total cost of this approach is (n2 + n2) × n = 2n3, in addition to the cost of the
LU decomposition (which is of the same order of magnitude).

If we wanted to use Gaussian elimination to evaluate the inverse, we would incur a
cost of O(n3) for each column of the inverse, leading to an overall cost of O(n4), which is
generally more than we are willing to tolerate.
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Determinant

Recall from Eq. (C.16) that the determinant of a triangular matrix is simply the product of
the diagonal elements. Given that A = LU:

det(A) = det(L) × det(U) =

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∏
i=0

1

⎞⎟⎟⎟⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎜⎜⎜⎝

n−1∏
i=0

Uii

⎞⎟⎟⎟⎟⎟⎟⎠ =
n−1∏
i=0

Uii (4.150)

In the first equality we used a result from elementary linear algebra, namely that the deter-
minant of a product of two matrices is equal to the product of the two matrix determinants.
In the second equality we expressed the determinant of each triangular matrix as the prod-
uct of the diagonal elements and used the fact that the diagonal elements of L are all 1.
That led us, in the third equality, to the conclusion that the determinant of the matrix A can
be evaluated by multiplying together the diagonal elements of the matrix U.17

4.3.4 Pivoting

Even though this wasn’t explicitly stated, so far we’ve limited ourselves to Gaussian elimi-
nation (and its cousin, Doolittle’s LU method) for straightforward cases. In this section, we
find out that things often get sticky. We go over a standard way to address the most glaring
deficiencies and also provide some pointers to more complicated remedies.

Instability without Ill-Conditioning

We spent quite a bit of time in an earlier section doing an a priori analysis of linear-algebra
problems. For example, we saw that we can quantify the ill-conditioning of the problem
Ax = b using a reasonably straightforward prescription. Ill-conditioning is a property that
refers to the problem we are solving. However, as we now address, there are situations
where one tries to solve a perfectly well-conditioned problem but the method of choice
fails to give a satisfactory answer. Obviously, the fault in this case lies with the method,
not with the problem. We will explore this by considering three examples.

First, we look at the following (very simple) 2 × 2 problem:⎛⎜⎜⎜⎜⎜⎜⎝0 −1 1

1 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ (4.151)

This is a perfectly well-conditioned problem, with an easy-to-evaluate analytical solution
of:

xT =
(
3 −1

)
(4.152)

Consider how you would go about implementing Gaussian elimination in this case. You
would start (and stop) with the pivot row j = 0 which would be used to update the row
i = 1. The coefficient multiplying the pivot row is, as usual, Ai j/Aj j. This is already a
major breakdown of our methodology: here Aj j = 0 so we cannot divide with it to eval-
uate the coefficient. If you try to use our gauelim() function, your output vector will be

17 Observe that our result tells us that A is non-singular if and only if all the diagonal elements of U are non-zero.
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[ nan nan ], where nan stands for “not a number” (as explained in Appendix B). It is
disheartening to see such a nice method fail at solving such a simple problem.

Second, in case you were thinking that this is not such a big deal, given that you could
immediately identify the 0 in the first slot of the first row of the previous example, we now
turn to a case where the problem is “hidden”. Examine the following augmented matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 8

2 1 −4 −2

1 2 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.153)

This is basically the example from Eq. (4.115) where we’ve modified a couple of elements,
while making sure that the solution vector is the same as in the original example:

xT =
(
4 −2 2

)
(4.154)

as you can verify by substitution or via an analytical solution. Note that this matrix, too, is
perfectly well-conditioned. Here’s the thing: if you wish to apply Gaussian elimination to
this problem, you would (once again) start with the pivot row j = 0 and update the rows
i = 1 and i = 2 in turn. After you update both rows you would be faced with:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 8

0 0 −5 −10

0 1.5 0.5 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.155)

We wish to turn to the pivot row j = 1 but notice that the pivot element Aj j = 0 so (as
in the first example) we are not able to bring this matrix to an upper-triangular form. In
other words, if we use our gauelim() function for this problem our output vector will be
[ nan nan nan ]. As advertised, this problem was not (totally) obvious at first sight:
some steps of the Gaussian elimination process had to be applied first.

Third, it turns out that Gaussian elimination has trouble providing good solutions not
only when zeros appear as pivot elements in the starting (or updated) matrix, but even
when the pivot element is very small. This is a general fact: when an algorithm cannot be
applied in a given situation, it most likely canot be applied successfully in situations that
are similar to it. Take our first example from this section, but instead of a 0 in the first
element of the first row, assume you are dealing with a small number:⎛⎜⎜⎜⎜⎜⎜⎝10−20 −1 1

1 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ (4.156)

This is still a perfectly well-conditioned problem, with an analytical solution:

xT =

(
3

1 + 10−20

−1 + 10−20

1 + 10−20

)
(4.157)

Knowing that Python employs double-precision floating-point numbers (and that 10−20 is
smaller than the machine precision), you would be tempted to expect that the numerical
solution to this system would be: [ 3 -1 ], namely the same solution as in our first
example above. (As it so happens, numpy.linalg.solve() does give us this, correct,



4.3 Solving Systems of Linear Equations 167

answer.) Now, let us think of how to apply Gaussian elimination here. As in the first ex-
ample, we only have one pivot row ( j = 0) and we’re updating only one row (i = 1).
Here the pivot element, Aj j = 10−20, is small but non-zero, so we can apply the Gaussian
elimination prescription. After we do so, our augmented matrix will be:⎛⎜⎜⎜⎜⎜⎜⎝10−20 −1 1

0 1 + 1020 2 − 1020

⎞⎟⎟⎟⎟⎟⎟⎠ (4.158)

This situation is similar to what we encountered in chapter 2, when in big + 1. the unit
was dropped. (Here we are faced with a 1020 because we have divided with the pivot
element.) Despite the roundoff errors that emerge, nowhere are we dividing with zero, so
the back substitution can proceed normally, but for the approximate matrix:⎛⎜⎜⎜⎜⎜⎜⎝10−20 −1 1

0 1020 −1020

⎞⎟⎟⎟⎟⎟⎟⎠ (4.159)

Unfortunately, this leads to [ 0 -1 ], which is very different from the correct solution.

Partial Pivoting

We now introduce a straightforward technique to handle problems like those discussed in
the previous subsection. One way to remedy the situation is to eliminate the problem from
the start. For example, in the case of our first matrix above, Eq. (4.151), if we were solving
the fully equivalent problem: ⎛⎜⎜⎜⎜⎜⎜⎝1 1 2

0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠ (4.160)

instead, no breakdown would have ever emerged. This matrix is already in upper triangu-
lar form, so we can proceed with back substitution. Of course, such an ad hoc approach
(interchanging rows in the starting matrix because they look like they will misbehave) can
only take you so far. What we are looking for is a general prescription.

Observe that the issue in all three of our earlier examples resulted from using a small
number (which was, perhaps, even zero) as the pivot element.18 This leads us to a general
presciption that aims to avoid using small numbers as pivot elements, when there is a better
alternative. To explain what we mean, let’s look at the Gaussian-elimination intermediate
time slice from Eq. (4.122) again. This snapshot describes the moment when we are about
to use Aj j as the pivot element (so it could also be referring to our original matrix, if
j = 0). As you may recall, in our process the coefficient (used to eliminate the leading
element in the following rows) is Ai j/Aj j: if Aj j is very small, then that coefficient will
be very large. This helps guide our strategy of what to do: instead of blindly using Aj j as
the pivot element (since it might have a very small magnitude) look at all the elements
in the same column as Aj j in the rows below it for the largest possible matrix-element
magnitude. This would be located, say, in row k: then, simply interchange rows j and k.
Now you have a larger-magnitude pivot element and the coefficient used in the elimination

18 In the second example, this occurred at an intermediate stage.
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process is never greater than 1 in absolute value. You can then proceed with the elimination
process as usual. Symbolically, we search for the smallest-integer k that satisfies:

∣∣∣Ak j

∣∣∣ = max
j≤m≤n−1

∣∣∣Am j

∣∣∣ (4.161)

followed by the interchange of rows j and k. You should make sure to mentally distinguish
the second index from the first index in this equation: we are always searching in the j
column (which is why Ak j and Am j have the same second index) for the element with the
largest magnitude. This means we search all the rows below row j.

This prescription employs the second elementary row operation we introduced in sec-
tion 4.1.2, namely pivoting: two rows/equations may be interchanged, as long as you re-
member to interchange the A and b elements appropriately.19 More properly speaking, this
is known as partial pivoting, in the sense that we are only interchanging rows (we could
have been interchanging columns). By the way, there is some terminology overloading at
play here: we use the word “pivot” to describe the pivot row or the pivot element, but we
also say that “pivoting” is the interchange of two rows. While these two meanings are re-
lated (we interchange two rows if necessary before we use a pivot row/element to eliminate
the leading element in the next rows) they are distinct and should not be confused. It might
help you to think of “partial pivoting” as synonymous with “row interchanging”.

Implementation

The above description should be enough for you to see how one goes about implementing
partial pivoting in practice; the result is Code 4.4. Note that this code is identical to that in
gauelim(), the only change being that we’ve added four lines. Let’s discuss them.

We employ numpy.argmax() to find the index of the element with the maximum value.20

This search for k starts at row j and goes up to the bottom row, namely row n-1. We’ve
employed NumPy’s slicing to write this compactly: A[j:,j] contains all the elements
in column j from row j until row n-1. Note however that, as a result of this slicing,
numpy.argmax() will return an index that is “shifted down”: its output will be 0 if the
largest element is A j j, 1 if the largest element is Aj+1, j, and so on. This is why when evalu-
ating k we offset numpy.argmax()’s output by adding in j: now k’s possible values start
at j and end at n-1.

After we’ve determined k, we check to see if it is different from j: we don’t want to
interchange a row with itself (since that doesn’t accomplish anything). If k is different
from j, then we interchange the corresponding rows of A and b. We do this using the
standard swap idiom in Python, which employs multiple assignment (and does not require a
temporary throwaway variable). The swapping of bs elements should be totally transparent
to you. The swapping of the A rows is a little more complicated: as you may recall, NumPy

19 Incidentally, we note that this operation changes the sign of det(A).
20 Conveniently, if the maximum value appears more than once, this function returns the first occurrence.
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gauelim pivot.py Code 4.4

from triang import backsub, testcreate, testsolve

import numpy as np

def gauelim pivot(inA,inbs):

A = np.copy(inA)

bs = np.copy(inbs)

n = bs.size

for j in range(n-1):

k = np.argmax(np.abs(A[j:,j])) + j

if k != j:

A[j,:], A[k,:] = A[k,:], A[j,:].copy()

bs[j], bs[k] = bs[k], bs[j]

for i in range(j+1,n):

coeff = A[i,j]/A[j,j]

A[i,j:] -= coeff*A[j,j:]

bs[i] -= coeff*bs[j]

xs = backsub(A,bs)

return xs

if name == ‘ main ’:

A, bs = testcreate(4,21)

testsolve(gauelim pivot,A,bs)

slicing rules imply that array slices are views on the original array. As a result, if you don’t
say A[j,:].copy() you will overwrite your elements instead of swapping rows.21

Running this code, we find that the results of our Gaussian elimination with partial pivot-
ing function are closer to those of numpy.linalg.solve() than the results of our earlier
gauelim() function. This should not come as a surprise, since numpy.linalg.solve()
also uses (a LAPACK routine which employs) partial pivoting. Note that partial pivoting
helps reduce roundoff error issues, even when these are not very dramatic (as here).

You might want to test our new function on our earlier three examples to see that it
solves the problems we were facing before. In the problem set, you are asked to apply our
partial pivoting prescription also to the LU-decomposition method: the only difference is
that LU decomposition only updates the A matrix, so you should keep track of which rows

21 This is unrelated to whether or not you choose to swap using a temporary intermediate variable.
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you interchanged and later use that information to interchange the corresponding rows in
b.

As a final implementation-related point, note that in our code we chose to actually swap
the rows each time. One can envision an alternative strategy, whereby the rows are left in
their initial order, so that the elements that end up being eliminated are not always below
the pivot row. The end result of this process is still a triangular matrix, but this time in
“hidden” form, since it will be a scrambled triangular matrix. You could then perform
back substitution if you had kept track of the order in which rows were chosen as pivot
rows. Obviously, this requires more bookkeeping but may end up being more efficient than
actually swapping the rows.

Beyond Partial Pivoting

We have now seen that the Gaussian elimination method (which can be unstable without
partial pivoting, even for well-conditioned problems) can be stabilized by picking as the
pivot element always the largest possible value (leading to coefficients that are never larger
than 1 in absolute value). Unfortunately, even Gaussian elimination with partial pivoting
can turn out to be unstable. To see this, take the third example from our earlier subsection
and scale the second row by multiplying with 10−20:⎛⎜⎜⎜⎜⎜⎜⎝10−20 −1 1

10−20 10−20 2 × 10−20

⎞⎟⎟⎟⎟⎟⎟⎠ (4.162)

This is in reality the same set of equations, so one should expect the same answer. Of
course, that’s not what happens in practice. Since now the first elements in the first and
second rows have the same magnitude, no interchanges take place under partial pivoting.
Thus, the same problem that we faced without partial pivoting will still be present now: as
a result, both gauelim pivot() and numpy.linalg.solve() give the wrong answer.

This new issue can be handled by changing our prescription from using the largest-
possible pivot element to using as the pivot element the one that has the largest relative
magnitude (i.e., in relation to other elements in its row). This is known as scaled partial
pivoting. Symbolically, we first define for each row i a size/scale factor:

si = max
0≤ j≤n−1

∣∣∣Ai j

∣∣∣ (4.163)

Thus, si contains the (absolute value of) the largest element in row i. Then, instead of
determining k as corresponding to the largest matrix element in column j (at or below
Aj j), we determine k by finding the matrix element with the largest relative magnitude,
i.e., the largest one in comparison to the other elements in its row. Thus, we search for the
smallest-integer k that satisfies:

∣∣∣Ak j

∣∣∣
sk
= max

j≤m≤n−1

∣∣∣Am j

∣∣∣
sm

(4.164)
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and then we interchange rows j and k and proceed as usual. You are asked to implement
this prescription in one of the problems.

Unfortunately, even scaled partial pivoting does not fully eradicate the potential for in-
stability. An approach that does guarantee stability is complete pivoting, whereby both
rows and columns are interchanged before proceeding with Gaussian elimination. That be-
ing said, it is extremely rare for (scaled) partial pivoting to fail in practice, so most libraries
do not implement the (more costly) strategy of complete pivoting.

Since this subsection is called “beyond partial pivoting”, it’s worth observing that there
exist situations where Gaussian elimination can proceed without pivoting. This happens for
matrices that are positive definite22 and symmetric. It also happens for diagonally dominant
matrices (you might want to brush up on our definitions from Appendix C.2). For example:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 8

1 2 1 2

1 1 −2 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.165)

This matrix is diagonally dominant and no pivoting would (or would need to) take place.23

We will re-encounter diagonal dominance as a criterion in the following section.
You might be wondering why we would be interested in avoiding pivoting. The first

(and most obvious) reason is that it entails a computational overhead: evaluating k and
swapping rows can become costly. Second, if the original coefficient matrix is symmetric
and banded then pivoting would remove nice structural properties like these; if you were
using a method that depended on (or was optimized for) that structure (unlike what we’ve
been doing above) you would be in trouble.

4.3.5 Jacobi Iterative Method

We now briefly talk about iterative methods, also known as relaxation methods. As you
may recall, direct methods (such as Gaussian elimination) construct a solution by carrying
out a fixed number of operations: first you take a pivot row, then you eliminate the leading
elements in the rows below it, etc. In contradistinction to this, iterative methods start with
a guess for the solution x and then refine it until it stops changing; the number of iterations
required is typically not known in advance. The number of iterations can depend on the
structure of the matrix, which method is employed, which initial solution vector we guess,
and which convergence criterion we use.

Actually, for a given set of equations an iterative method might not even converge at
all. Putting all these factors together, it probably comes as no surprise to hear that iterative
methods are typically slower than direct methods. On the other hand, these drawbacks are
counterbalanced by the fact that iterative methods are generally more efficient when we are
dealing with extremely sparse matrices, which may or may not be banded. In other words,

22 A matrix A is positive definite if xT Ax > 0 for all x � 0. This definition is most commonly applied to Hermitian
matrices, in which case we also know that the eigenvalues are all positive. For nonsymmetric matrices, the real
part of the eigenvalue is always positive.

23 This happens to be our example from Eq. (4.115) with the second and third rows interchanged.
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when most matrix elements are 0, such approaches really save computational time.24 Not
coincidentally, such iterative approaches are often used in the solution of boundary-value
problems for partial-differential equations; it is therefore perhaps beneficial to encounter
them at the more fundamental level of linear algebra.

Here we only discuss and implement the simplest possible iterative approach, namely
Jacobi’s method. We leave as problems the study of the convergence for the Jacobi method
as well as an extension to the Gauss–Seidel method. Our goal here is not to cover such
approaches thoroughly. Rather, it is to give you a flavor of iterating to get the answer; we
will re-encounter this strategy when we solve the eigenvalue problem below (section 4.4)
and when we discuss root-finding for nonlinear algebraic equations (chapter 5).

Algorithm

Let’s write out the system of linear algebraic equations, Ax = b, using index notation:

n−1∑
j=0

Ai jx j = bi (4.166)

where, as usual, i = 0, 1, 2, . . . , n − 1. The Jacobi method is motivated by taking this equa-
tion and solving for the component xi which corresponds to the diagonal element Aii:

xi =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=0

Ai jx j −
n−1∑

j=i+1

Ai jx j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Aii
, i = 0, 1, . . . , n − 1 (4.167)

Observe that the form of this equation is similar to what we had in Eq. (4.103) for forward
substitution and in Eq. (4.108) for back substitution. Of course, the situation here is quite
different: there we could solve for each of the xi in turn using the other x j’s which we’d
already evaluated. Here, however, we don’t know any of the solution-vector components.

The Jacobi method starts by choosing an initial solution vector x(0): the superscript in
parentheses tells us the iteration number (in this case we are starting, so it’s the 0th iter-
ation). The method proceeds by plugging in x(0) to the right-hand side of Eq. (4.167), to
produce an improved solution vector, x(1):

x(1)
i =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=0

Ai jx
(0)
j −

n−1∑
j=i+1

Ai jx
(0)
j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Aii
, i = 0, 1, . . . , n − 1 (4.168)

This process is repeated: the components of x(1) are plugged in to the right-hand side of
Eq. (4.167), thereby producing a further improved solution vector, x(2). For the general k-th
iteration step, we now have our prescription for the Jacobi iteration method:

x(k)
i =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=0

Ai jx
(k−1)
j −

n−1∑
j=i+1

Ai jx
(k−1)
j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Aii
, i = 0, 1, . . . , n − 1 (4.169)

24 Another feature is that iterative methods are self-correcting, i.e., an iteration is independent of the roundoff
error in the previous cycle.
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If all is going well, the solution vector will asymptotically approach the exact solution. A
natural question is when to end this process. The answer depends on our desired accuracy,
giving rise to what is known as a convergence criterion.

Let us be a little careful here. We know from chapter 2 that the absolute error in eval-
uating a quantity is defined as “approximate value minus exact value”. Of course, in an
iterative method like the Jacobi algorithm, we don’t know the exact value, but we can es-
timate how far along we are by seeing how much a given component changes from one
iteration to the next, x(k)

i − x(k−1)
i (more on this in the problem on the convergence of this

method). Of course, we are dealing with a solution vector, so we have to come up with
a way of combining all the solution-vector component contributions into one estimate of
how much/little the entire answer is changing. As we’ve done repeatedly in earlier chap-
ters, we will opt for a relative error criterion (comparing x(k)

i − x(k−1)
i with x(k)

i ). Specifically,
for a given tolerance ε, we will use the following termination criterion:

n−1∑
i=0

∣∣∣∣∣∣∣
x(k)

i − x(k−1)
i

x(k)
i

∣∣∣∣∣∣∣ ≤ ε (4.170)

Several other choices can be made, e.g., adding the contributions x(k)
i − x(k−1)

i in quadrature
before taking the square root, or using the maximum x(k)

i − x(k−1)
i difference.

For the sake of completeness, we point out that we could have been (a lot) more sys-
tematic in our choice of an error criterion. First, recall the residual vector from Eq. (4.17),
r = b − Ax̃. Employing this, a more robust stopping criterion could be:

‖b − Ax(k)‖ ≤ ε
(
‖A‖‖x(k)‖ + ‖b‖

)
(4.171)

This has the advantage of checking directly against the expected behavior (Ax = b) as well
as the relative magnitudes involved. In other words, it measures relative size but, unlike
our ad hoc prescription in Eq. (4.170), here we use norms to combine all the components
together in a consistent way.

A question that still remains open is how to pick the initial guess x(0). As you can imag-
ine, if you start with a guess that is orders of magnitude different from the exact solution
vector, it may take a while for your iterative process to converge. In practice, one often
takes x(0) = 0. This is one reason why we chose to divide in our relative error criterion with
x(k)

i (instead of x(k−1)
i ). In any case, x(k)

i happens to be our best estimate so far, so it makes
sense to use it in the denominator for our relative error.

Note that even if you pick a “good” initial guess, the Jacobi method is not always guar-
anteed to converge! As you will show in a problem, a sufficient condition for convergence
of the Jacobi iterative method is that we are dealing with diagonally dominant matrices,
regardless of the initial guess.25 Keep in mind that a system of equations might not be di-
agonally dominant, but can become so if one re-arrranges the equations. Observe, finally,
that even systems that are not (and cannot become) diagonally dominant can be solved with
Jacobi’s method for some choices of initial solution vectors.

25 Diagonal dominance also appeared in the previous section on pivoting in Gaussian elimination.
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Code 4.5 jacobi.py Code 4.5

from triang import testcreate, testsolve

import numpy as np

def termcrit(xolds,xnews):

errs = np.abs((xnews - xolds)/xnews)

return np.sum(errs)

def jacobi(A,bs,kmax=50,tol=1.e-6):

n = bs.size

xnews = np.zeros(n)

for k in range(1,kmax):

xs = np.copy(xnews)

for i in range(n):

slt = A[i,:i]@xs[:i]

sgt = A[i,i+1:]@xs[i+1:]

xnews[i] = (bs[i] - slt - sgt)/A[i,i]

err = termcrit(xs, xnews)

print(k, xnews, err)

if err < tol:

break

else:

xnews = None

return xnews

if name == ‘ main ’:

n = 4; val = 21

A, bs = testcreate(n,val)

A += val*np.identity(n)

testsolve(jacobi,A,bs)

Implementation

Code 4.5 is a Python implementation of the Jacobi algorithm described above. We first
define a short function termcrit() to encapsulate our termination criterion, Eq. (4.170).
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We use numpy functionality to conveniently form and sum the ratios [x(k)
i − x(k−1)

i ]/x(k)
i , this

time employing numpy.sum(). We then turn to the function jacobi(), which contains
two loops, one to keep track of which Jacobi iteration we’re currently at and one to go over
the xi in turn. Observe how convenient numpy’s functionality is: we are carrying out the
sums for j indices that are larger than or smaller than i, without having to employ a third
loop (or even a third index: j is not needed in the code); we don’t even have to employ
numpy.sum(), since @ takes care of everything for us.

Our program employs the for-else idiom that we introduced in chapter 1: as you
may recall, the else is only executed if the main body of the for runs out of iterations
without ever executing a break (which for us would mean that the error we calculated
never became smaller than the pre-set error tolerance).

Observe that we have been careful to create a new copy of our vector each time through
the outside loop, via xs = np.copy(xnews). This is very important: if you try to use sim-
ple assignment (or even slicing) you will get in trouble, since you will only be making xs
a synonym for xnews: this would imply that convergence is always (erroneously) reached
the first time through the loop.

In the main program, we first create our test matrix A: in this case, we also modify it
after the fact, to ensure “by hand” that it is diagonally dominant. Had we not, Jacobi’s
method would flail and return None. Observe that our definition of jacobi() uses default
parameter values; this allows us to employ testsolve(), which assumes our system-
solver only takes in two arguments, just like before. Running this code, we find that we
converge in roughly three dozen iterations.26 Of course, how fast we will converge will
also depend on our initial guess for the solution vector (though we always take x(0) = 0
for simplicity). In a problem, you are asked to modify this code, turning it into the Gauss–
Seidel method: a tiny change in the algorithm makes it converge considerably faster.

4.4 Eigenproblems

We turn to the “second half” of linear algebra, namely the matrix eigenvalue problem:

Avi = λivi (4.172)

The main trick we employed in the previous section is no longer applicable: subtracting a
multiple of a row from another row (i.e., the elimination procedure) changes the eigenval-
ues of the matrix, so it’s not an operation we’ll be carrying out in what follows.

As usual, we will be selective and study the special case where our n × n matrix A has n
eigenvalues λi that are all distinct. This simplifies things considerably, since it means that
the n eigenvectors vi are linearly independent. In this case, it is easy to show (as you will
discover when you solve the relevant problem) that the following relation holds:

26 You should comment out the call to print() once you are ready to use the code for other purposes.
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V−1AV = Λ (4.173)

where Λ is the diagonal “eigenvalue matrix” made up of the eigenvalues λi:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0 0 . . . 0

0 λ1 . . . 0
...

...
. . .

...

0 0 . . . λn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.174)

and V is the “eigenvector matrix”, whose columns are the right eigenvectors vi:

V =
(
v0 v1 . . . vn−1

)
(4.175)

Equation (4.173) shows how we can diagonalize a matrix, A. As a result, solving the eigen-
problem (i.e., computing the eigenvalues and eigenvectors) is often called diagonalizing a
matrix.

While we will be studying only diagonalizable matrices, these are not toy problems. As
a matter of fact, our approach will be quite general, meaning that we won’t assume that our
matrices are sparse or even symmetric; while many problems in physics lead to symmetric
matrices, not all do.27 That being said, the eigenvalue problem for nonsymmetric matrices
is messy, since the eigenvalues do not need to be real; in what follows, we will study only
nonsymmetric matrices that have real (and distinct) eigenvalues.

In section 4.1.2 we saw that writing out det(A−λI ) = 0 leads to a characteristic equation
(namely a polynomial set to 0). As you will learn in chapter 5, finding the roots of poly-
nomials is very often an ill-conditioned problem, even when the corresponding eigenvalue
problem is perfectly well-conditioned. Thus, it’s wiser, instead, to transform the matrix
into a form where it’s easy to read the eigenvalues off, while ensuring that the eigenvalues
of the starting and final matrix are the same.

The methods we do employ to computationally solve the eigenvalue problem are itera-
tive; this is different from the system-solving in the previous section, where some methods
were direct and some were iterative. Your first encounter with such an iterative method (the
Jacobi method) may have felt underwhelming: if the matrix involved was not diagonally
dominant, that approach could not guarantee a solution. In contradistinction to this, here
we will introduce the state-of-the-art QR method, currently the gold standard for the case
where one requires all eigenvalues. Before we get to it, though, we will discuss the power
and inverse-power methods: these help pedagogically, but will also turn out to be con-
ceptually similar to the full-blown QR approach. By the end of this section, we will have
produced a complete eigenproblem-solver (all eigenvalues and all eigenvectors); splitting
the discussion into several constituent methods will allow us to introduce and test the nec-
essary scaffolding, so that the final solver does not appear too forbidding.

Even though we will create from scratch a stable eigenproblem solver, we will not in-
clude all bells and whistles. Thus, we won’t be discussing things like the Aitken accelera-

27 The literature on the eigenvalue problem is overwhelmingly focused on the case of symmetric matrices.
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tion, the Householder transformation, the concept of deflation, and so on. In the real world,
one often first carries out some “preprocessing”, in order to perform the subsequent calcu-
lations more efficiently. In the spirit of the rest of the book, we are here more interested in
grasping the essential concepts than in producing a hyper-efficient library.28

4.4.1 Power Method

As already mentioned, we will start with the simplest possible method, which turns out
to be intellectually related to more robust methods. The general problem we are trying
to solve is Avi = λivi: λi are the true eigenvalues and vi are the true eigenvectors (all of
which are currently unknown). Since we’re making the assumption that all n eigenvalues
are distinct, we are free to sort them such that:

|λ0| > |λ1| > |λ2| > . . . > |λn−1| (4.176)

The power method (in its simplest form) will give us access to only one eigenvalue and
eigenvector pair. Specifically, it will allow us to evaluate the largest eigenvalue λ0 (also
known as the dominant eigenvalue) and the corresponding eigenvector v0.29

Algorithm: First Attempt

Let us immediately start with the power-method prescription and try to elucidate it after
the fact. In short, we start from an ad hoc guess and then see how we can improve it, as is
standard in iterative approaches. The method tells us to start from a vector z(0) and simply
multiply it with the matrix A to get the next vector in the sequence:

z(k) = Az(k−1), k = 1, 2, . . . (4.177)

Note that, just like in section 4.3.5 on the Jacobi method, we are using superscripts in
parentheses, (k), to denote the iteration count. Obviously, we have z(1) = Az(0), then z(2) =

Az(1) = A2z(0), and so on, leading to:

z(k) = Akz(0), k = 1, 2, . . . (4.178)

This is the source of the name “power method”: iterating through the steps of the algorithm,
we see the powers of the original matrix A making their appearance.

To see what any of this has to do with calculating eigenvalues, we express our starting
vector z(0) as a linear combination of the (unknown) eigenvectors:

z(0) =

n−1∑
i=0

civi (4.179)

where the coefficients ci are also unknown. Note that the i subscript here refers to which

28 Even so, the problems discuss some of the more advanced aspects we left out.
29 This time we are not starting from the most general method, but from the most specific method.
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eigenvector vi we are dealing with (so the m-th component of the i-th eigenvector would
be denoted by (vi)m). Now, putting the last two equations together, we have:

z(k) = Akz(0) =

n−1∑
i=0

ciAkvi =

n−1∑
i=0

ciλ
k
i vi = c0λ

k
0v0 + λ

k
0

n−1∑
i=1

ci

(
λi

λ0

)k

vi, k = 1, 2, . . .

(4.180)

In the second equality we pulled the Ak inside the sum. In the third equality we used
our defining equation, Avi = λivi, repeatedly. In the fourth equality we separated out the
first term in the sum and also took the opportunity to multiply and divide with λk

0 in the
second term. Looking at our result, we recall Eq. (4.176) telling us that λ0 is the largest
eigenvalue: this implies that in the second term, (λi/λ0)k → 0 as k → ∞. To invert this
reasoning, the rate of convergence of this approach is determined by the ratio |λ1/λ0|: since
we’ve already sorted the eigenvalues, we know that λ1 is the eigenvalue with the second
largest magnitude, so the |λ1/λ0| ratio will be the largest contribution in the sum. Thus, if
we further assume that c0 � 0, i.e., that z(0) has a component in the direction of v0, then we
have reached the conclusion that as we progress with our iteration we tend toward a z(k) in
the direction of v0 (which is the eigenvector corresponding to the largest eigenvalue, λ0).

We see from Eq. (4.180) that our z(k) will tend to c0λ
k
0v0. Of course, we don’t actually

know any of these terms (c0, λ0, or v0). Even so, our conclusion is enough to allow us to
evaluate the eigenvalue. To do so, introduce the Rayleigh quotient of a vector x as follows:

μ(x) =
xT Ax
xT x

(4.181)

If x is an eigenvector, μ(x) obviously gives the eigenvalue; if x is not an eigenvector, μ(x)
is the nearest substitute to an eigenvalue.30 Thus, since Eq. (4.180) tells us that z(k) will
tend to be proportional to v0, we see that μ(z(k)) will tend to λ0 (since everything else will
cancel out). We have therefore been able to calculate the dominant eigenvalue, λ0. In other
words, for k finite, μ(z(k)) is our best estimate for λ0.

Algorithm: Normalizing

At this point, we could also discuss how to get the dominant eigenvector, v0, from z(k).
Instead of doing that, however, we observe that we have ignored a problem in our earlier
derivation: in Eq. (4.180) the λk

0 will become unbounded (if |λ0| > 1) or tend to 0 (if
|λ0| < 1). In order to remedy this, we decide to scale the sequence z(k) between steps.

The simplest way to accomplish such a scaling is to introduce a new sequence q(k) which
has the convenient property that ‖q(k)‖ = 1. In all that follows we are employing a Euclidian
norm implicitly.31 To do this, simply scale the z(k) with its norm:

q(k) =
z(k)

‖z(k)‖
(4.182)

30 In the least-squares sense, introduced in chapter 6.
31 Our choice to use these specific symbols, q and z, will pay off in coming sections.
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As you can see by taking the norm on both sides, we have ‖q(k)‖ = 1, as desired. It’s also
easy to see that the Rayleigh quotient for our new vector q(k) will be:

μ(q(k)) = [q(k)]T Aq(k) (4.183)

since the denominator will give us 1.
Thus, our new normalized power-method algorithm can be summarized as the following

sequence of steps for k = 1, 2, . . .:

z(k) = Aq(k−1)

q(k) =
z(k)

‖z(k)‖
μ(q(k)) = [q(k)]T Aq(k)

(4.184)

We get this process going by starting from a unit-norm initial vector q(0). Similarly to what
we had before, for this to work q(0) should have a component in the direction of v0.

You should spend some time thinking about Eq. (4.184), mentally or manually going
through the steps of Eq. (4.180). For the unscaled method we know that z(k) is equal to
Akz(0), from Eq. (4.178). In the present, scaled, case, q(k) is not equal to but proportional
to Akq(0): the multiplication with A keeps happening at every step, but now we are also
rescaling the result of the multiplication so we end up with a unit norm each time.

Finally, observe that as part of our algorithm we have already produced not only our
best estimate for the dominant eigenvalue, μ(q(k)), but also the corresponding eigenvector,
which is nothing other than q(k), conveniently having unit norm. As before, the z(k) will
tend to be proportional to the dominant eigenvector v0; this time the scaling that leads to
q(k) simply removes all prefactors and we’re left with v0.

Implementation

Code 4.6 is an implementation of Eq. (4.184) in Python. We create a function to eval-
uate the norm of vectors, as per Eq. (4.37), since we’ll need it to do the rescaling af-
ter each matrix-vector multiplication; the square is produced by saying np.sum(xs*xs),
even though for these purposes we could have, instead, said xs@xs. The function power()
takes in a matrix and an optional parameter of how many times to iterate. We start out with
q(0), a unit-norm vector that’s pulled out of a hat. We then multiply A with our unit-norm
vector, to produce a non-unit-norm vector, z(k). We proceed to normalize z(k) to get q(k).
This is then done again and again. Evaluating the Rayleigh quotient at each step would
have been wasteful so what we do instead is to wait until we’re done iterating and then
evaluate [q(k)]T Aq(k) only once.32 We also wrote a function that tests one eigenvalue and
eigenvector pair by comparing against numpy.linalg.eig(). This is simply a wrapper

32 NumPy knows how to interpret qs@A@qs, without us having to say np.transpose(qs)@A@qs.
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Code 4.6 power.py Code 4.6

from triang import testcreate

import numpy as np

def mag(xs):

return np.sqrt(np.sum(xs*xs))

def power(A,kmax=6):

zs = np.ones(A.shape[0])

qs = zs/mag(zs)

for k in range(1,kmax):

zs = A@qs

qs = zs/mag(zs)

print(k,qs)

lam = qs@A@qs

return lam, qs

def testeigone(f,A,indx=0):

eigval, eigvec = f(A)

print(" "); print(eigval); print(eigvec)

npeigvals, npeigvecs = np.linalg.eig(A)

print(" ")

print(npeigvals[indx]); print(npeigvecs[:,indx])

if name == ‘ main ’:

A, bs = testcreate(4,21)

testeigone(power,A)

to state-of-the-art LAPACK functionality. The main program uses our old testcreate()
function to produce a test matrix A. The final lines of the output are:

21.3166626635

[ 0.44439562 0.48218122 0.51720906 0.55000781]

21.3166626635

[ 0.44439562 0.48218122 0.51720906 0.55000781]

Check to see that the eigenvector stops changing after a few iterations. In the code we just
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discussed, we arbitrarily pick a given number of total iterations; it is in principle better to
introduce a self-terminating criterion. Since our algorithm works by generating new vectors
q(k), the most obvious choice in this regard is Eq. (4.170):

n−1∑
j=0

∣∣∣∣∣∣∣
q(k)

j − q(k−1)
j

q(k)
j

∣∣∣∣∣∣∣ ≤ ε (4.185)

which is expressed in terms of the relative difference in the components. A problem asks
you to implement the power method with this criterion.

Operation Count

For iterative methods, the total operation count depends on the actual number of iterations
required, which we generally cannot predict ahead of time (since it depends on the starting
point, the error tolerance, the stopping criterion, etc.). For example, our 4 × 4 test matrix
took four iterations, whereas if you use testcreate() for the 20 × 20 case you will need
six total iterations. Thus, any operation count we encounter will also have to be multiplied
by m, where m is the number of actual iterations needed. The value of m required is related
to the separation between the eigenvalue we are after and the next closest one.

The bulk of the work of the power method is carried out by z(k) = Aq(k−1): this is a
matrix-vector multiplication. As we discussed in section 4.3.1, this costs ∼2n2 operations.
The power method also requires the evaluation of the norm of z(k). You will show in a prob-
lem that vector–vector multiplication costs ∼2n. Thus, so far the cost is ∼2mn2. Finally, we
also need the Rayleigh quotient, which is made up of a single matrix-vector multiplica-
tion, ∼2n2, and a single vector–vector multiplication, ∼2n. In total, we have found that the
operation count for the power method is ∼2(m + 1)n2.

4.4.2 Inverse-Power Method with Shifting

We will now discuss a variation of the power method, which will also allow us to evalu-
ate one eigenvalue and eigenvector pair. This time, it will be for the eigenvalue with the
smallest magnitude (in absolute value).

Algorithm

Let’s start with our defining equation, Avi = λivi. Multiplying on the left with A−1 we find
vi = λiA−1vi. Dividing both sides of this equation with λi, we get:

A−1vi = λ
inv
i vi (4.186)
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where λinv
i is an eigenvalue of the inverse matrix and we just showed that λinv

i = 1/λi.33 We
have proven that the eigenvectors of A−1 are the same as the eigenvectors of A. Similarly,
we’ve shown that the eigenvalues of A−1 are the reciprocals of the eigenvalues of A.

The basic idea is to apply the power method, Eq. (4.184), to the inverse matrix, A−1:

z(k) = A−1q(k−1) (4.187)

If you now combine the fact that the power method determines the largest-magnitude eigen-
value with the result λinv

i = 1/λi, our new approach will allow us to evaluate the eigenvalue
of the original matrix A with the smallest absolute value, namely λn−1, as per Eq. (4.176).
Similarly, our scaled vector q(k) will tend toward the corresponding eigenvector, vn−1. In
addition to normalizing at every step, as in Eq. (4.184), we would also have to evaluate the
Rayleigh quotient for the inverse matrix at the end: [q(k)]T A−1q(k). Of course, since we re-
cently showed that A and A−1 have the same eigenvectors, we could just as easily evaluate
the Rayleigh quotient for the original matrix A:

μ(q(k)) = [q(k)]T Aq(k) (4.188)

to evaluate λn−1. The results of using the two different Rayleigh quotients will not be the
same, but related to each other (the first one will give 1/λn−1 and the second one λn−1).

While conceptually this is all the “inverse power” method amounts to, in practice one
can avoid the (costly) evaluation of the inverse matrix; multiply Eq. (4.187) with A from
the left, to find:

Az(k) = q(k−1) (4.189)

This is a linear system of the form Ax = b which can be solved to give us z(k). Every
step of the way we will be solving a system for the same matrix A but different right-hand
sides: by saying LUx = b we are then able to solve this system by forward and then back
substitution, as per Eq. (4.145):

Ly = b

Ux = y
(4.190)

for different choices of b. Thus, we LU-decompose once (this being the most costly step),
and then we can step through Eq. (4.189) with a minimum of effort. To summarize, the
inverse-power method consists of the following sequence of steps for k = 1, 2, . . .:

Az(k) = q(k−1)

q(k) =
z(k)

‖z(k)‖
μ(q(k)) = [q(k)]T Aq(k)

(4.191)

As should be expected, we get this process going by starting from a unit-norm initial vector

33 The special case λi = 0 is easy to handle: since the determinant of a matrix is equal to 0 when an eigenvalue
is 0, such a matrix is not invertible, so we wouldn’t be able to multiply with A−1 in the first place.



4.4 Eigenproblems 183

q(0). Similarly to what we had before, for this to work q(0) should have a component in the
direction of vn−1. Observe how our procedure in Eq. (4.191) is almost identical to that of
the power method in Eq. (4.184): the only (crucial) difference is that here we have A on
the left-hand side so, instead of needing to carry out a matrix-vector multiplication at each
step, we need to solve a linear system of equations at each step. Thus, the crucial part of
this process is Az(k) = q(k−1), which is made easy by employing LU decomposition.

Eigenvalue Shifting

We could proceed at this point to implement the inverse-power method. Instead of doing
that, however, we will first further refine it. As usual, let’s start with our defining equation,
Avi = λivi. Subtract from both sides of this equation svi where s is some scalar, known as
the shift, for reasons that will soon become clear. The resulting equation is:

(A − sI )vi = (λi − s)vi (4.192)

which can be written as:

A∗vi = λ
∗
i vi

A∗ = A − sI
λ∗i = λi − s

(4.193)

In words, if you can solve the eigenproblem for the matrix A∗ you will have evaluated
eigenvectors vi which are identical to those of A. Furthermore, you will have evaluated the
eigenvalues λ∗i , which are equal to the eigenvalues λi of matrix A shifted by s.

Consider applying the inverse-power method of the previous subsection to solve the first
equation in Eq. (4.193). Conceptually, what we are suggesting to do is to apply the direct
power method for the matrix (A− sI )−1 or, equivalently, the inverse-power method for the
matrix A − sI .34 To be explicit, we are choosing to follow this sequence of steps:

A∗z(k) = q(k−1)

q(k) =
z(k)

‖z(k)‖
μ∗(q(k)) = [q(k)]T A∗q(k)

(4.194)

This will allow you to evaluate the smallest eigenvalue, λ∗i , of the matrix A∗. But, since
λ∗i = λi − s, finding the smallest λ∗i is equivalent to having evaluated that eigenvalue λi

of the original matrix A which is closest to s. This explains why we were interested in
combining the inverse-power method with eigenvalue shifting: the “inverse-power” part

34 We will sometimes mention the direct power method, to distinguish it from the inverse-power method.
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allows us to find the smallest eigenvalue and the “shifting” part controls what “smallest”
means (i.e., the one that minimizes λi − s).

As a matter of fact, given that q(k) will be converging to vi (which is an eigenvector
of A∗ and of A) when evaluating the Rayleigh quotient we could use, instead, the same
formula as before, namely μ(q(k)) = [q(k)]T Aq(k): this would automatically give us λi.35 In
Eq. (4.194) we used A∗ in the Rayleigh quotient for pedagogical clarity, but once you’ve
understood what’s going on there’s no need to take that extra step.

Now, when carrying out the shift for the matrix A∗, we can pick several different values
for s and (one can imagine) evaluate all the eigenvalue and eigenvector pairs for matrix
A.36 What we’ll do, instead, in coming sections is to assume we have access to an estimate
for a given eigenvalue: in that case, the inverse-power method with shifting allows you to
refine that estimate. Significantly, our new method is also quite useful when you already
know an eigenvalue (even very accurately) but don’t know the corresponding eigenvector:
by having s be (close to) the true eigenvalue λi, a few iterations will lead to q(k) converging
to vi. (This will come in very handy in section 4.4.4 below.)

Before turning to Python code, let us examine a final application of eigenvalue shifting.
Recall that the power method’s convergence is determined by the ratio |λ1/λ0|, where λ1 is
the eigenvalue with the second largest magnitude. Similarly, since the (unshifted) inverse-
power method converges toward the smallest eigenvalue λn−1, the rate of convergence will
depend on the ratio |λn−1/λn−2|: if λn−2 is much larger than λn−1 then we’ll converge rapidly
(and if it’s not much larger, then we’ll have trouble converging). One can envision, then,
employing a shift s that makes the ratio |λ∗n−1/λ

∗
n−2| as small as possible. As a matter of fact,

taking s to be very close to λn−1 should be enough to enforce this (since λ∗n−1 = λn−1 − s).
We won’t be following this route in what follows, but it’s worth knowing that eigenvalue
shifting is frequently used to accelerate convergence.

Implementation

Code 4.7 is a Python implementation of the inverse-power method. Comparing our new
function to power(), we notice three main differences. First, at the start we shift our orig-
inal matrix to produce A∗ = A − sI . We then apply our method to this, shifted, matrix.
At the end of the process, if successful, we evaluate the Rayleigh quotient for the original
matrix, which allows us to evaluate the eigenvalue λi of the original matrix that is closest
to the hand-picked shift s.

Second, we implement a self-stopping criterion, since later we intend to fuse our inverse-
power shifted function with another method, and we don’t want to be wasteful (e.g., car-
rying out hundreds of iterations when one or two will do). Thus, we have been careful to
create a new copy of our vector each time through the loop, via qs = np.copy(qnews).
This code employs the for-else idiom, just like jacobi() did: now that we know what

35 If we used μ∗(q(k)) = [q(k)]T A∗q(k), instead, we would get λ∗i and would still have to add s back in, in order to
get λi, given that λ∗i = λi − s.

36 Actually, if you have no prior input this is an inefficient way of finding all eigenvalues, since we don’t know
how to pick s, e.g., should we use a grid?
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invpowershift.py Code 4.7

from triang import forsub, backsub, testcreate

from ludec import ludec

from jacobi import termcrit

from power import mag, testeigone

import numpy as np

def invpowershift(A,shift=20,kmax=200,tol=1.e-8):

n = A.shape[0]

znews = np.ones(n)

qnews = znews/mag(znews)

Astar = A - np.identity(n)*shift

L, U = ludec(Astar)

for k in range(1,kmax):

qs = np.copy(qnews)

ys = forsub(L,qs)

znews = backsub(U,ys)

qnews = znews/mag(znews)

if qs@qnews<0:

qnews = -qnews

err = termcrit(qs, qnews)

print(k, qnews, err)

if err < tol:

lam = qnews@A@qnews

break

else:

lam = qnews = None

return lam, qnews

if name == ‘ main ’:

A, bs = testcreate(4,21)

testeigone(invpowershift,A)
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we are testing against in order to succeed, we can also account for the possibility of failing
to converge in the given number of iterations. Importantly, we also check to see if we need
to flip the sign of our vector: when the eigenvalue is negative, left on its own the sign of
q(k) would change from iteration to iteration.37 Our new function would always think it’s
failing to converge, since a vector is very different from its opposite; we take care of this
by checking for sign flips and adjusting accordingly.

Third, power() is implementing the (direct) power method so the bulk of its work is
carried out using @. Here, we have to solve a linear system of equations: to do that, we first
LU-decompose the shifted matrix A∗. This is done only once, outside the loop: then, inside
the loop we only use the forward and back substitution functions, which are considerably
less costly.

Running this code, the final lines of the output are:

21.3166626635

[ 0.44439562 0.48218122 0.51720906 0.55000781]

21.3166626635

[ 0.44439562 0.48218122 0.51720906 0.55000781]

Crucially, we did not need to carry out kmax iterations. We have picked s = 20, precisely
because we wanted to find the eigenvalue that is the same as that given by the direct power
method (i.e., the largest one). We encourage you to play around with shift and find all
the eigenvalue and eigenvector pairs for this simple 4 × 4 example.

Operation Count

Just like in the case of the power method above, when estimating the operation count for
the inverse-power method we don’t really know ahead of time how fast it will converge.
Thus, any operation count we encounter will also have to be multiplied by m, where m is
the number of actual iterations required.

The bulk of the work of the inverse-power method is carried out by A∗z(k) = q(k−1): this is
a linear system of equations that has to be solved again and again. As we discussed earlier,
we carry out a single LU decomposition for A∗. We recall that an LU decomposition costs
∼2n3/3 operations. (You might be wondering why we didn’t bother counting how many
operations were required to build up the matrix A∗. The reason is that since the shift only
affects the diagonal, this would be O(n) so it doesn’t matter.)

The inverse-power method also requires a forward substitution (n2) and a back sub-
stitution (n2), as well as a vector-norm evaluation (∼2n), each time through the loop. In
total, these three contributions add up to ∼2mn2. Similarly, the Rayleigh quotient evalu-
ation costs ∼2n2. In total, we have found that the operation count for the inverse-power
method is ∼2(m+1)n2+2n3/3. Thus, we see that while the power method cost involves n2,
the inverse-power method cost involves n3. This change in order of magnitude costs arose

37 The function power() doesn’t worry about this, since it blindly keeps iterating regardless of the sign: the
easiest way to test this is to say A = -A in the main program after creating the test matrix.
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solely due to the LU decomposition; said another way, if you have pre-LU-decomposed
your matrix, then the inverse-power method costs as much as the direct power method.
(Said yet another way: typically m ≈ n, in which case both the direct and the inverse-
power method scale as O(n3).)

4.4.3 QR Method

The (direct or inverse) power method that we’ve discussed so far gives us only one eigen-
value at a time (either the largest or the smallest). As we saw, you could combine the
latter method with eigenvalue shifting and then try to step through all the eigenvalues of
your matrix. In the present section, we will discuss a robust and scalable method used to
evaluate all the eigenvalues of a matrix at one go. We will be introducing the QR method:
this approach, developed by J. Francis in the early 1960s, takes its name from the QR de-
composition (also known as the QR factorization) and then adds a clever trick that allows
one to simply read off all the eigenvalues of our matrix. In order to better grasp this trick,
we will also make a slight detour into similarity transformations and the related approach
known as “simultaneous iteration”. We’ll try to keep the terminology straight: we use the
QR decomposition in order to express a matrix as the product of two other matrices, while
we use the QR method in order to evaluate all eigenvalues of a matrix.

QR Decomposition

We start from the concept of the QR decomposition, which turns out to be very significant:
according to the authors of Ref. [95], this is the most important idea in numerical linear
algebra. As usual, we will not cover all variations of the approach, nor will we see all
possible applications. That being said, we will derive things explicitly and implement them
in Python for a quite general case.

It’s worth keeping in mind that (as mentioned above) all methods that compute eigen-
values are iterative, but the QR decomposition is a direct method: just like the LU decom-
position we discussed in an earlier section, it goes through a fixed number of steps, until it
has decomposed the starting matrix in the desired form.38

Let’s be explicit. The QR decomposition starts with a matrix A and decomposes it into
the product of an orthogonal matrix Q and an upper-triangular matrix R. (This upper-
triangular matrix is called R and not U, as we did above, for historical reasons.) Symboli-
cally, we say that any real square matrix can be factorized as:

A = QR (4.195)

Recall from Appendix C.2 that a matrix is called orthogonal if the transpose is equal to the
inverse, Q−1 = QT . We can recast this definition as QT Q = I , showing that an orthogonal

38 There’s no contradiction here: QR decomposition may be direct, but the QR method, which actually calculates
the eigenvalues, is iterative.
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matrix has orthonormal columns (i.e., columns that are orthogonal unit vectors – you can
see that a better name would have been “orthonormal matrix”).

Now, a bit on strategy: we will provide what is known as a “constructive” proof. That
means that we will explicitly show how to construct the orthogonal matrix Q starting from
our original matrix A. When we are done with that process, we will show that it is easy
to find (as a matter of fact, we will have already found) an upper-triangular matrix R that,
when multiplied with Q on the right, allows us to reconstruct the original matrix A.

Evaluating Q: We start by constructing the orthogonal matrix Q. We will employ an old
method which you may have encountered in a course on linear algebra: Gram–Schmidt
orthogonalization. Let us write our starting matrix A in terms of its columns a j:

A =
(
a0 a1 . . . an−1

)
(4.196)

Our task now is to start from assuming that the column vectors a j are linearly independent
and try to produce an orthonormal set of column vectors q j. When we’ve accomplished
that task, we will have already produced our orthogonal matrix Q:

Q =
(
q0 q1 . . . qn−1

)
(4.197)

since Q will be made up of the orthonormal column vectors q j we just constructed.
To ensure that everything is transparent, we will build these orthonormal q j column

vectors one at a time. The first vector, q0, is very easy to produce: simply pick it to be in
the direction of a0 and scale it by the norm of a0 (to ensure that q0 is a unit vector):

q0 =
a0

‖a0‖
(4.198)

Unfortunately, this trivial prescription (simply divide by the norm) is not enough to produce
the next orthonormal vector, q1; this is because we need the q j to be orthogonal to each
other and we have no guarantee that a1 is orthogonal to a0 (actually, these two almost
certainly are not orthogonal to each other).

Here’s the Gram–Schmidt prescription: in order to find a vector that is orthogonal to q0,
take the second vector, a1, and subtract out its component in the direction of q0:

a′1 = a1 − (qT
0 a1)q0 (4.199)

This is the part of a1 that does not point in the direction of a0 (or of q0). You should
explicitly check that a′1 is perpendicular to q0. The only thing that’s left in order to produce
our second orthonormal vector q1 is to normalize a′1:

q1 =
a′1
‖a′1‖

(4.200)

which gives us a unit vector.
You are probably starting to discern the pattern, but let’s do one more step explicitly.

We’ve already determined q0 and q1. To determine q2 we, again, start with a2; this time we
want to subtract any component in the plane of q0 and q1. Thus, we take a2 and subtract
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its component in the direction of q0 as well as its component in the direction of q1:

a′2 = a2 − (qT
0 a2)q0 − (qT

1 a2)q1 (4.201)

Having made a′2 orthogonal to both q0 and q1 (check this!), all that’s left is to scale a′2:

q2 =
a′2
‖a′2‖

(4.202)

Clearly, the general pattern is, for j = 0, 1, . . . , n − 1:

a′j = a j −
j−1∑
i=0

(qT
i a j)qi

q j =
a′j
‖a′j‖

(4.203)

where we’ve assumed that you can also extend this definition naturally to j = 0 (for this
case, there are no terms in the sum, so a′0 = a0 and we agree with Eq. (4.198)). We have
therefore succeeded in constructing the orthonormal set of q j vectors. In other words, we
have produced the orthogonal matrix Q, as desired.

Evaluating R: We now turn to the matrix R. Let us, momentarily, assume that A = QR
holds, and try to see if there is an easy way to determine R. Using the notation employing
column vectors, A = QR can be rewritten as:

(
a0 a1 a2 . . . an−1

)
=

(
q0 q1 q2 . . . qn−1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R00 R01 R02 . . . R0,n−1

0 R11 R12 . . . R1,n−1

0 0 R22 . . . R2,n−1

...
...

...
. . .

...

0 0 0 . . . Rn−1,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.204)

Let’s explicitly carry out the matrix multiplication and identify matrix elements (which
themselves are column vectors) on the left-hand and the right-hand side. We find:

a0 = R00q0

a1 = R01q0 + R11q1

a2 = R02q0 + R12q1 + R22q2

...

a j = R0 jq0 + R1 jq1 + · · · + Rj jq j

...

an−1 = R0,n−1q0 + R1,n−1q1 + · · · + Rn−1,n−1qn−1

(4.205)
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where we also showed an intermediate case, a j. These equations can be solved for q j:

q0 =
a0

R00
, q1 =

a1 − R01q0

R11
, q2 =

a2 − R02q0 − R12q1

R22
, . . . ,

q j =
a j −

∑ j−1
i=0 Ri jqi

R j j
, . . . , qn−1 =

an−1 −
∑n−2

i=0 Ri,n−1qi

Rn−1,n−1

(4.206)

Comparing this general result for q j with what we found in Eq. (4.203), we see that it is
appropriate to identify the matrix elements of R as follows:

Ri j = qT
i a j, j = 0, 1, . . . , n − 1, i = 0, 1, . . . , j − 1

Rj j = ‖a′j‖ = ‖a j −
j−1∑
i=0

Ri jqi‖, j = 0, 1, . . . , n − 1
(4.207)

where, implicitly, Ri j = 0 for i > j. Note a somewhat subtle point: we have chosen the
diagonal elements of R to be positive, Rj j > 0, in order to match our earlier definitions.
This wasn’t necessary; however, if you do make the assumption Rj j > 0, then the QR
decomposition is uniquely determined.

Crucially, both Ri j = qT
i a j and Rj j = ‖a′j‖ are quantities that we have already evaluated

in the process of constructing the matrix Q. That means that we can carry out those compu-
tations in parallel, building up the matrices Q and R together. This will become clearer in
the following subsection, when we provide Python code that implements this prescription.

To summarize, we have been able to produce an orthogonal matrix Q starting from the
matrix A, as well as an upper-triangular matrix R which, when multiplied together, give
us the original matrix: A = QR. We have therefore accomplished the task we set out to
accomplish. There are other ways of producing a QR decomposition, but for our purposes
the above constructive proof will suffice.

Backing up for a second, we realize that what Gram–Schmidt helped us accomplish
was to go from a set of n linearly independent vectors (the columns of A) to a set of n
orthonormal vectors (the columns of Q). These ideas can be generalized to the infinite-
dimensional case: this is the Hilbert space, which you may have encountered in a course
on quantum mechanics. Without getting into more detail, we note that it is possible to
also extend the concept of a vector such that it becomes continuous, namely a function! If
we also appropriately extend the definition of the inner product (to be the integral of the
product of two functions), then all these ideas about orthonormalization start to become
applicable to functions. As a matter of fact (as you’ll see in a problem), if you start from
the monomials 1, x, x2, . . . and apply the Gram–Schmidt orthogonalization procedure, you
will end up with the Legendre polynomials which are, indeed, orthogonal to each other.
This is neither our first nor our last encounter with these polynomials.
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qrdec.py Code 4.8

from triang import testcreate

from power import mag

import numpy as np

def qrdec(A):

n = A.shape[0]

Ap = np.copy(A)

Q = np.zeros((n,n))

R = np.zeros((n,n))

for j in range(n):

for i in range(j):

R[i,j] = Q[:,i]@A[:,j]

Ap[:,j] -= R[i,j]*Q[:,i]

R[j,j] = mag(Ap[:,j])

Q[:,j] = Ap[:,j]/R[j,j]

return Q, R

def testqrdec(A):

n = A.shape[0]

Q, R = qrdec(A)

diffa = A - Q@R

diffq = np.transpose(Q)@Q - np.identity(n)

print(n, mag(diffa), mag(diffq))

if name == ‘ main ’:

for n in range(4,10,2):

A, bs = testcreate(n,21)

testqrdec(A)

QR Decomposition: Implementation

When thinking about how to implement the QR decomposition procedure, we direct our
attention to Eq. (4.203), which tells us how to construct the matrix Q, and Eq. (4.207),
which tells us how to construct the matrix R. The obvious way to test any routine we
produce is to see if the product QR really is equal to the original matrix A. Thus, what we
can do is inspect the norm ‖A−QR‖ to see how well we decomposed our matrix (this may
bring to mind the residual vector r = b − Ax̃ from section 4.2).

Another concern emerges at this point: we saw that the Gram–Schmidt procedure guar-
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antees the orthogonality of the matrix Q. In other words, mathematically, we know by
construction that QT Q = I should hold. However, since we are carrying out these cal-
culations for floating-point numbers (i.e., in the presence of roundoff errors), it’s worth
explicitly investigating how well this orthogonality holds. To do that, we will also evaluate
the norm ‖QT Q − I‖ explicitly. Deviations of this quantity from zero will measure how
poorly we are actually doing in practice.

Code 4.8 is a Python implementation of QR decomposition, together with the afore-
mentioned tests. We immediately see that this is not an iterative method: we don’t have a
kmax or something along those lines controlling how many times we’ll repeat the entire
process. Put differently, it is n, namely the size of the problem, that directly controls how
many iterations we’ll need to carry out. The function qrdec() is a mostly straightforward
implementation of the equations we developed above. Note how Ri j is evaluated by mul-
tiplying two one-dimensional NumPy arrays together (so there was no need to take the
transpose). The code then proceeds to use the already-evaluated Ri j in order to build up a′j:
note that we use columns of n × n matrices throughout, so we’ve also created Ap, which
corresponds to a collection of the columns a′j into a matrix A′.39 The values over which
i and j range are those given in Eq. (4.207). When j = 0, no iteration over i takes place.
Once we’re done with the inner loop, we evaluate the diagonal elements Rj j and use them
to normalize the columns of A′ thereby producing the matrix Q.

We’ve also created a function that computes the norms ‖A−QR‖ and ‖QT Q−I‖. These
are easy to implement; note, however, that in this case the transposition in QT has to be
explicitly carried out in our code. Another thing that might raise a red flag is our use of
mag() from power.py. As you may recall, that function had been developed in order to
compute the magnitude of vectors, not the norm of matrices. However, due to the pleasant
nature of Python and NumPy, it works just as well when you pass in a matrix. This happens
to be the reason we had opted to say np.sum(xs*xs) instead of xs@xs: if you pass in a
matrix in the place of xs, xs@xs carries out a matrix multiplication, and that’s not how the
matrix norm is defined in Eq. (4.34).

In the main body of the code, we print out the test norms for a few problem dimension-
alities. For the 4× 4 problem both the reconstruction of A using Q and R, on the one hand,
as well as the orthogonality of Q, on the other hand, perform reasonably well, even in the
presence of roundoff errors. As a matter of fact, ‖A −QR‖ is tiny, close to machine preci-
sion. We notice that something analogous holds for the 6 × 6 and 8 × 8 problems as well:
the product QR is a great representation of the matrix A. Unfortunately, the same cannot
be said for the degree of orthogonality of the matrix Q: clearly this gets quite bad even for
moderate system sizes.

Actually, the orthogonality (or lack thereof) is troubling even for the 4 × 4 case. One of
the problems asks you to use QR decomposition to solve Ax = b; you’ll see that even for
the 4 × 4 problem the solution is disappointing. Of course, this is a section on eigenvalue
evaluation, not on linear-system solving: we are building QR decomposition as a step in
our QR method (and it will turn out that this lack of orthogonality is not as troubling for

39 A′ starts out as a copy of A, because that’s always the first step in the Gram–Schmidt prescription for a′j: start
from a j and subtract out what you need to.
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our purposes). That being said, it’s worth knowing that Gram–Schmidt orthogonalization,
which we just discussed, is poorly behaved in the presence of roundoff errors. This is why
the algorithm presented above is known as classical Gram–Schmidt, in contradistinction
to what is known as modified Gram–Schmidt. This, as you’ll find out when you solve the
relevant problem, has better orthogonality properties.40

Similarity Transformations

We now make a quick detour, before picking up the main thread of connecting the QR
decomposition with the general QR method. First, recall from Eq. (4.173) that when we
diagonalize a matrix A we manage to find the matrices V and Λ such that:

V−1AV = Λ (4.208)

where Λ contains the eigenvalues of A and V is made up of the eigenvectors of A.
Assume there exists another (non-singular) matrix, S, such that:

A′ = S−1AS (4.209)

It is obvious why we assumed that S is non-singular: we need to use its inverse. Crucially,
we are not assuming here that A′ is diagonal or that S is made up of the eigenvectors. We
are simply carrying out a specific transformation (multiply the matrix A with S−1 on the left
and with S on the right) for a given matrix S. This is known as a similarity transformation
(and we say that the matrices A and A′ are similar).

You may ask yourself: since S does not (necessarily) manage to diagonalize our starting
matrix A, then why are we bothering with this similarity transformation? To grasp the
answer, let us start with the matrix eigenvalue problem from Eq. (4.172), Avi = λivi. Now,
plug in the expression for A in terms of A′ that results from Eq. (4.209):

SA′S−1vi = λivi (4.210)

If you multiply on the left with S−1 you get:

A′S−1vi = λiS−1vi (4.211)

At this point, you can define:

v′i ≡ S−1vi (4.212)

thereby getting:

A′v′i = λiv′i (4.213)

This is a quite remarkable result: we have found that our two similar matrices have the
same eigenvalues! This correspondence does not hold for the eigenvectors, though: as
Eq. (4.212) shows us, v′i ≡ S−1vi: the eigenvectors of A and A′ are related to each other but
not identical. A problem asks you to show that A and A′ also have the same determinant.

40 Another problem introduces a distinct approach, which employs a sequence of Householder transformations.
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One more definition: if the matrix S is unitary, then we say that the matrices A and A′

are unitarily similar. Since in this chapter we are focusing on real matrices, for this case
the requirement is that S be orthogonal. In keeping with our earlier convention, let’s call
such an orthogonal matrix Q. Since for an orthogonal matrix we know that Q−1 = QT , we
immediately see that our latest similarity transformation takes the form:

A′ = QT AQ (4.214)

Such a transformation is especially attractive, since it is trivial to come up with the inverse
of an orthogonal matrix (i.e., one doesn’t have to solve a linear system of equations n times
in order to compute the inverse).

It’s now time to see how this all ties in to the theme of this section: we have introduced
similarity transformations (including the just-mentioned orthogonal similarity transforma-
tion) as a way of transforming a matrix (without necessarily diagonalizing it) while still
preserving the same eigenvalues. This is worth doing because, if we pick Q in such a way
as to make A′ triangular, then we can simply read off the eigenvalues of A′ (which are
also the eigenvalues of A) from the diagonal. This greatly simplifies the task of evaluating
eigenvalues for our starting matrix A. Of course, at this stage we haven’t explained how to
find this matrix Q; we have simply claimed that it is possible to do so.

At this point, we may imagine an attentive reader asking: since a similarity transforma-
tion is nothing other than a determinant (and eigenvalue) preserving transformation, why
don’t we simply use the LU decomposition instead of going through all this trouble with
orthogonal matrices? After all, as we saw in Eq. (4.150), an LU decomposition allows us
to straightforwardly evaluate the determinant of a matrix. Hadn’t we said that triangular
matrices have their eigenvalues on their diagonal (which is consistent with the fact that the
product of the diagonal elements of U gives the determinant)? Unfortunately, this argu-
ment doesn’t work. While we can, indeed, read off the eigenvalues of U from the diagonal,
these are not the same as the eigenvalues of A: the LU decomposition is constructed by
saying A = LU and this is not a similarity transformation (which would have preserved
the eigenvalues).

Simultaneous Iteration: First Attempt

Very simply put, the method of simultaneous iteration is a generalization of the power
method to more than one eigenvectors. This new approach prima facie doesn’t have too
much to do with similarity transformations. Near the end of this section, however, we
will use some of the entities introduced earlier to carry out precisely such a similarity
transformation.

As usual, we assume that our eigenvalues are distinct (so we can also take it for granted
that they’ve been sorted). You may recall from section 4.4.1 that the power method starts
from an ad hoc guess and then improves it. More specifically, in Eq. (4.177) we started
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from a vector z(0) and then multiplied with the matrix A repeatedly, leading to:

z(k) = Akz(0), k = 1, 2, . . . (4.215)

which was the justification for the name “power method”. We then proceeded to show the
connection with calculating eigenvalues, by expressing our starting vector z(0) as a linear
combination of the (unknown) eigenvectors:

z(0) =

n−1∑
i=0

civi (4.216)

Combining the last two equations led to:

z(k) =

n−1∑
i=0

ciλ
k
i vi (4.217)

where we could then proceed to single out the eigenvalue we were interested in and have
all other ratios decay (see Eq. (4.180)).

We now sketch the most straightforward generalization of the above approach to more
eigenvectors. You could, in principle, address the case of 2, 3, . . . eigenvectors; instead,
we will attempt to apply the power method to n initial vectors in order to extract all n
eigenvectors of the matrix A. Since you need n starting vectors, your initial guess can be
expressed as an n × n matrix with these guess vectors as columns:

Z(0) =
(
z(0)

0 z(0)
1 z(0)

2 . . . z(0)
n−1

)
(4.218)

This is a direct generalization of the one-eigenvector case (Z(0) instead of z(0)). As always,
the superscript in parentheses tells us which iteration we’re dealing with and the subscript
corresponds to the column index. We want our starting guess to be made up of n linearly
independent vectors: one way to accomplish this is to take Z(0) to be the n × n identity
matrix and use its columns one at a time, as we saw in Eq. (4.148):

I =
(
e0 e1 . . . en−1

)
(4.219)

In complete analogy to the one-eigenvector case, Eq. (4.177), our tentative prescription for
the simultaneous iteration algorithm is to get the next matrix in the sequence simply by
multiplying with our matrix A:

Z(k) = AZ(k−1), k = 1, 2, . . . (4.220)

After k applications of the matrix A we will have:

Z(k) = AkZ(0) =
(
z(k)

0 z(k)
1 z(k)

2 . . . z(k)
n−1

)
(4.221)

Again, to see what this has to do with calculating eigenvalues, we first expand the initial
guess column z(0)

j in terms of the actual eigenvectors:

z(0)
j =

n−1∑
i=0

ci jvi (4.222)
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where we observe that our expansion coefficients ci j now have two indices, one for the
dummy summation variable and one to keep track of which initial column vector we are
referring to.41 If we then act with the A matrix k times we correspondingly find:

z(k)
j =

n−1∑
i=0

ci jλ
k
i vi (4.223)

One might hope to pull out of each sum the term we’re interested in each time and watch
the other terms decay away. At this stage, you may recall from section 4.4.1 that the unnor-
malized power method suffered from a problem: the eigenvalues raised to the k-th power
become unbounded or tend to zero. However, for not-too-large values of k this is not a
huge problem: you can simply iterate, say, 5 or 50 times and then at the end of this process
scale each column of Z(k) with its own norm. Assuming your eigenvalues are not too huge
or tiny, this should be enough to keep things manageable.

A problem asks you to implement both scenarios: (a) fully unnormalized simultaneous
iteration and (b) unnormalized simultaneous iteration that is scaled at the end with the norm
of each column. As you will discover there, your woes are not limited to the problem of
unboundedness (or vanishing values). Unfortunately, as k increases (even if you normalize
at the end) the vectors z(k)

j all converge to the same eigenvector of A, namely the dominant
eigenvector, v0. This is disappointing: we generalized the power method to the case of
n eigenvectors, only to end up with n copies of the same, dominant, eigenvector. Do not
despair.

Simultaneous Iteration: Orthonormalizing

Upon closer inspection, we realize what’s going on: since we are now dealing with more
than one eigenvector, normalizing columns is not enough: what we need to do, instead,
is to ensure that the dependence of one column on any of the other columns is projected
out. That is, in addition to normalizing, we also need to orthogonalize. But that’s precisely
what the Gram–Schmidt orthogonalization prescription does! Thus, we can ensure that we
are dealing with orthonormal vectors by carrying out a QR decomposition at each step.

Given the above motivation, we’ll proceed to give the prescription for the simultane-
ous iteration method (also known as orthogonal iteration) and later explore some of its
fascinating properties. This prescription is a direct generalization of the power method of
Eq. (4.184). We carry out the following steps for k = 1, 2, . . .:

Z(k) = AQQQ(k−1)

Z(k) = QQQ(k)R(k) (4.224)

where there’s no third line containing a Rayleigh quotient, since at this stage we’re only
interested in getting the eigenvectors. The way to read this prescription is as follows: start
with QQQ(0) = I (as discussed above), then multiply with A to get Z(1), then QR-decompose

41 We are assuming that these ci j put together, as well as their leading principal minors, are non-singular.
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Z(1) to get the orthonormal set of columns QQQ(1), at which point you multiply with A to get
Z(2), and so on and so forth. In one of the problems at the end of this chapter, you will im-
plement this algorithm. It’s really nice to see how similar the code you will develop is to the
power() function that we developed earlier (of course, this has a lot to do with how user-
friendly the Python and NumPy syntax is). This is a result of generalizing Eq. (4.184) to
deal with matrices instead of vectors (and, correspondingly, generalizing the normalization
to an orthonormalization).

You may have noticed that, when QR-decomposing Z(k), we made use of different-
looking symbols for the Q and for the R. The reasons for this will become clearer in the
following section but, for now, note that our strange-looking QQQ(k) is simply the orthogonal
matrix that comes out of the QR decomposition for Z(k). Since the notation appears a bit
lopsided (QQQ(k) is multiplied with R(k), not with RRR(k)) you may be happy to hear that we are
now ready to define such an RRR(k) matrix, as follows:

RRR(k) = R(k)R(k−1) . . .R(2)R(1) (4.225)

In words, RRR(k) is simply the product (in reverse order) of all the R(i) matrices.42

In a problem, you are asked to show that the product of two upper-triangular matrices is
another upper-triangular matrix. From this it follows thatRRR(k) is an upper-triangular matrix.
This result makes the following expression look very impressive:

Ak = QQQ(k)RRR(k) (4.226)

Just to be clear, we haven’t shown that this significant relation is actually true (but we soon
will). In words, this is saying that theQQQ(k) that appeared in the last step of the simultaneous-
iteration prescription, multiplied with all the R(i) matrices that have made their appearance
up to that point (a product which is equal toRRR(k)), gives us a QR decomposition of the k-th
power of the matrix A.43

Let us now prove Eq. (4.226) by induction. The base case k = 0 is straightforward:
A0 = I , this being consistent with the fact that RRR(0) = I as per our earlier definition, as
well asQQQ(0) = I which was our assumption for the starting point. Now, we assume that the
relation holds for the k − 1 case:

Ak−1 = QQQ(k−1)RRR(k−1) (4.227)

and we will show that it will also hold for the k case in Eq. (4.226). We have:

Ak = AAk−1 = AQQQ(k−1)RRR(k−1) = Z(k)RRR(k−1) = QQQ(k)R(k)RRR(k−1) = QQQ(k)RRR(k) (4.228)

In the first equality we simply separated out one of the A matrices. In the second equality
we used our k − 1 step from Eq. (4.227). In the third equality we used our expression from
the first line in Eq. (4.224). In the fourth equality we used our expression from the second
line in Eq. (4.224). In the fifth equality we grouped together the two R terms, as per the
definition in Eq. (4.225). We have reached the desired conclusion that Eq. (4.226) is true.

Qualitatively, simultaneous-iteration entities likeQQQ(k) andRRR(k) allow us to QR-decompose

42 Since there’s no such thing as a Z(0), there’s no such thing as an R(0). If you wanted to generalize the definition
in Eq. (4.225) to the case of k = 0, then RRR(0) = I would be the most natural assumption.

43 It’s extremely important at this point to distinguish between exponents like Ak and iteration counts likeQQQ(k).
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successive powers Ak, i.e., they allow us to construct orthonormal bases for the k-th power
of A. For a symmetric A, this amounts to having computed the eigenvectors (which are
orthonormal). As you will learn in a guided problem, for a nonsymmetric A (for which the
true eigenvectors are linearly independent, but not orthonormal),QQQ(k) converges toward the
orthogonal “factor ” of the eigenvector matrix from Eq. (4.175), i.e., toward Q̃ in V = Q̃U
(where U is an upper-triangular matrix and Q̃ is orthogonal). In either case, QQQ(k) is related
to the eigenvectors of the matrix A.

Next, we try to extract the eigenvalues. For the power method we saw the Rayleigh
quotient for a normalized vector in Eq. (4.183):

μ(q(k)) = [q(k)]T Aq(k) (4.229)

A straightforward generalization to the n-dimensional problem is to define:

A(k) = [QQQ(k)]T AQQQ(k) (4.230)

where we introduced (yet another piece of) new notation on the left-hand side. This is our
first orthogonal similarity transformation in the flesh! We will now show that A(k) (which
is always similar to the matrix A, meaning it has the same eigenvalues) converges to an
upper-triangular matrix for the case of general A:

A(k) = Q̃T AQ̃ = Q̃T AVU−1 = Q̃T VΛU−1 = Q̃T Q̃UΛU−1 = UΛU−1 (4.231)

In the first equality we used the fact that QQQ(k) converges toward Q̃. In the second equality
we used the earlier relation, V = Q̃U, after solving for Q̃. In the third equality we used
Eq. (4.173), multiplied with V on the left. In the fourth equality we used V = Q̃U again. In
the fifth equality we used the fact that Q̃ is an orthogonal (i.e., orthonormal) matrix. Our
final result is the product of three upper-triangular matrices so it, too, is an upper-triangular
matrix (note that the inverse of an upper-triangular matrix is also upper-triangular). This
derivation was carried out for the general case of a nonsymmetric matrix A; for the (sim-
pler) case of symmetric matrices, the A(k) converges to a diagonal form. In either case, the
eigenvalues can be simply read off the diagonal of A(k).

To summarize, we started from the prescription in Eq. (4.224), which generalized the
power method, and ended up with the following two important equations:

Ak = QQQ(k)RRR(k)

A(k) = [QQQ(k)]T AQQQ(k) (4.232)

Here we are merely collecting our earlier results for ease of reference. The first equation
is Eq. (4.226) which we proved by induction above: this is related to the eigenvectors,
via QQQ(k). The second equation is Eq. (4.230) which we essentially took as a definition
(motivated by what it means to be a Rayleigh quotient): this is what allows us to compute
eigenvalues, as the elements on the diagonal of A(k).

Note that throughout this section we’ve been carrying out this prescription for k =
1, 2, . . .: in other words, we didn’t really mention a termination criterion. As in the single-
eigenvector power method, we could either run this for a fixed number of iterations, or
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try to get fancier and check how much, say, A(k) changes from one iteration to the next.
When solving the relevant problem you should opt for the, simpler, first option; once that
is working, you may choose to go back and make things more robust.

QR Method: Algorithm

We are now in a position to tackle the full QR method, which is an ingenious eigenvalue-
computing approach. Describing this algorithm is very simple: so simple, as a matter of
fact, that stating it without proof gives the impression that there is something magical
going on. As you will soon see, the QR method can be implemented very easily. Having
introduced the simultaneous-iteration method above (which you are asked to implement in
a problem), the QR method itself will (it is hoped) appear much more transparent. As a
matter of fact, we will show that it is fully equivalent to simultaneous iteration, but simply
goes about calculating the relevant entities with different priorities.

Let’s first go over the QR method’s astoundingly simple prescription and then proceed
to show the equivalence with the simultaneous-iteration approach. We start with the initial
condition A(0) = A and then carry out the following steps for k = 1, 2, . . .:

A(k−1) = Q(k)R(k)

A(k) = R(k)Q(k) (4.233)

In essence, we start from a matrix A(k−1) and try to produce a new matrix A(k). More
specifically, we start with A(0) = A (as already mentioned), then QR decompose this matrix
to produce Q(1) and R(1). (Note that these two symbols look alike: we are using Q, notQQQ.)
Here comes the crucial part: in order to produce the next matrix in our sequence, A(1),
we take Q(1) and R(1) and multiply them in reverse order! Now that we have A(1) we QR-
decompose that and then multiply in reverse order again, and so on and so forth.

Qualitatively, our new algorithm is QR-decomposing and then multiplying the resulting
matrices in reverse order (again and again). To show that this is equivalent to simultaneous
iteration, we will prove that the QR method leads to precisely the same two equations as
did simultaneous iteration, namely Eq. (4.232) repeated here for your convenience:

Ak = QQQ(k)RRR(k)

A(k) = [QQQ(k)]T AQQQ(k) (4.234)

Our goal now is to show that these two relations hold: once we’ve shown this, the first of
these two equations will allow us to compute (the orthogonal factor of the) eigenvectors and
the second to compute eigenvalues. Before we launch into the formal proofs, we realize that
there’s something missing: Eq. (4.233) involves Q(k) and R(k) whereas Eq. (4.234) makes
use ofQQQ(k) andRRR(k). Defining the latter is not too difficult: we simply assume that our earlier



200 Matrices

definition from Eq. (4.225) will carry over:

RRR(k) = R(k)R(k−1) . . .R(2)R(1) (4.235)

Motivated by this, we correspondingly defineQQQ(k) as follows:

QQQ(k) = Q(1)Q(2) . . .Q(k−1)Q(k) (4.236)

Crucially, these Q matrices are multiplied in the opposite order. A problem asks you to
show that the product of two orthogonal matrices is an orthogonal matrix: once you’ve
shown this, it is easy to see thatQQQ(k) is orthogonal.44

Let us now prove the two relations in Eq. (4.234). We begin from the second equation,
which we didn’t really have to prove for the case of simultaneous iteration, since there
we took it to be the result of a definition (and proceeded to show that A(k) becomes upper
triangular). The base case k = 0 is:

A(0) = [QQQ(0)]T AQQQ(0) = A (4.237)

Since our definition ofQQQ(k) in Eq. (4.236) involves k = 1 and up, it makes sense to assume
thatQQQ(0) is the identity: this is what leads to A(0) = A, which we know is true since we took
it to be our starting point when introducing the QR method in Eq. (4.233). We now assume
that the relation we are trying to prove holds for the k − 1 case:

A(k−1) = [QQQ(k−1)]T AQQQ(k−1) (4.238)

and will try to show that it will also hold for the k case. Before we do that, we need a
bit more scaffolding. Turn to the first relation in Eq. (4.233) and multiply on the left with
[Q(k)]T . Since Q(k) is orthogonal, this gives us:

R(k) = [Q(k)]T A(k−1) (4.239)

If you’re wondering how we know that Q(k) is orthogonal, remember that it is what comes
out of the QR decomposition of the matrix A(k−1). Now, combining our latest result with
the second relation in Eq. (4.233) we find:

A(k) = [Q(k)]T A(k−1)Q(k) (4.240)

We can plug in our k − 1 hypothesis from Eq. (4.238) for A(k−1) to find:

A(k) = [Q(k)]T [QQQ(k−1)]T AQQQ(k−1)Q(k) (4.241)

At this point we marvel at how appropriate our definition ofQQQ(k) in Eq. (4.236) was.45 We
are hence able to group the extra term on each side, giving:

A(k) = [QQQ(k)]T AQQQ(k) (4.242)

which is what we had set out to prove.

44 You were probably suspecting that this would be the case since, in the previous section on simultaneous
iteration,QQQ(k) came out of the QR decomposition of Ak , as per the first relation in Eq. (4.232) – this argument
doesn’t quite work, though, since we haven’t yet shown this equation to be true for the present case.

45 Recall that when taking the transpose of a product of matrices, you get the product of the transpose of each
matrix in reverse order.
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We turn to the first equation in Eq. (4.234), which we will also prove by induction. As in
the previous section, the base case k = 0 is straightforward: A0 = I , this being consistent
with the facts that RRR(0) = I and QQQ(0) = I , which are fully analogous to each other. Now,
we assume that the relation holds for the k − 1 case:

Ak−1 = QQQ(k−1)RRR(k−1) (4.243)

and will try to show that this means it will also hold for the k case. Our derivation will be
somewhat similar to that in Eq. (4.228), but the intermediate steps will only make use of
relations corresponding to the QR method (not simultaneous iteration). We have:

Ak = AAk−1 = AQQQ(k−1)RRR(k−1) = QQQ(k−1)A(k−1)RRR(k−1) = QQQ(k−1)Q(k)R(k)RRR(k−1) = QQQ(k)RRR(k)

(4.244)

In the first equality we separated out one of the A matrices. In the second equality we
used our k − 1 step from Eq. (4.243). In the third equality we used our k − 1 step from
Eq. (4.238): this is no longer a hypothesis (since we’ve shown Eq. (4.242) to be true, we
know it will also hold for the case of k − 1). We first multiplied Eq. (4.238) withQQQ(k−1) on
the left. In the fourth equality we used the first relation in Eq. (4.233) to eliminate A(k−1).
In the fifth equality we once again marvelled at the appropriateness of our definitions of
QQQ(k) in Eq. (4.236) and of RRR(k) in Eq. (4.235). We have thus proved what we had set out to.

Summarizing where things now stand, we see that if we start with the QR-method pre-
scription of Eq. (4.233), then we can show that Eq. (4.234) holds. But those are precisely
the same relations that were true for the case of simultaneous iteration. If this abstract con-
clusion does not satisfy you, then simply step through the simultaneous iteration and QR-
method prescriptions: with the initial conditions that we chose to employ, the two methods
give identical intermediate (step-by-step) and final results. In other words, they are the
same method. This raises the natural question: why bother using the QR method, which re-
quired an analogy with the simultaneous-iteration method in order to be interpreted? Could
we not just use the simultaneous-iteration method directly?

Even though the two methods are identical, simultaneous iteration spends its time deal-
ing with the eigenvectors:QQQ(k) appears in Eq. (4.224) organically, and this is what gives us
the orthogonal factor of the eigenvectors, Q̃. You can also go through the trouble of defin-
ing A(k) in the simultaneous-iteration approach, as per Eq. (4.230), but that requires two
matrix multiplications, and is not even necessary to keep going: in its bare-bones formu-
lation, the simultaneous-iteration method keeps producing new Z(k) andQQQ(k). On the other
hand, the QR method in its basic formulation of Eq. (4.233) keeps evaluating A(k) which,
since we now know Eq. (4.234) to be true, gives you the eigenvalues of the original matrix
A in the diagonal. You can also go through the trouble of defining QQQ(k) as per Eq. (4.236),
but this is usually much more costly than you would like (even so, a problem asks you to
implement this approach by modifying our code). Any hint of magic in the QR method’s
workings should have (automagically) vanished by now: the second relation in Eq. (4.234),
A(k) = [QQQ(k)]T AQQQ(k), clearly shows that the second relation in Eq. (4.233), A(k) = R(k)Q(k),
is simply carrying out an orthogonal similarity transformation.

Before we turn to the Python code, we emphasize that the QR method as shown here is
quite inefficient: in production, eigenvalue shifting (employed earlier in the context of the
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Code 4.9 qrmet.py Code 4.9

from triang import testcreate

from qrdec import qrdec

import numpy as np

def qrmet(inA,kmax=100):

A = np.copy(inA)

for k in range(1,kmax):

Q, R = qrdec(A)

A = R@Q

print(k, np.diag(A))

qreigvals = np.diag(A)

return qreigvals

if name == ‘ main ’:

A, bs = testcreate(4,21)

qreigvals = qrmet(A,6)

print(" ")

npeigvals, npeigvecs = np.linalg.eig(A); print(npeigvals)

inverse-power method) is typically combined with the QR-method trick. There are several
other upgrades one can carry out.

QR Method: Implementation

After these somewhat lengthy derivations, we turn to a near-trivial implementation of the
QR method. This will make use of the QR-decomposition function qrdec()we introduced
above. In essence, as per Eq. (4.233), all Code 4.9 is doing is a QR decomposition followed
by multiplying the resulting matrices in reverse order. As was to be expected, we start from
A(0) = A and then keep decomposing and multiplying over and over again. This is done
for a fixed number of times (passed in as an argument) for simplicity. Once we’re done
iterating, we store and return the elements on the diagonal of A(k). Note that, since we’re
not implementing a fancy termination criterion, we didn’t need to keep track of the iteration
count: instead of A(k−1), Q(k), R(k), and A(k), this code uses simply A, Q, and R.

In the current version of the code, when we call qrmet() we print out the step-by-
step values of our Rayleigh quotients: as the iteration count increases, these diagonal el-
ements converge to the eigenvalues of A. The main program also outputs the result from
numpy.linalg.eig(). Running this code, we see that each eigenvalue rapidly converges
to a fixed value. As advertised, the QR method has allowed us to evaluate all eigenvalues
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at one go. You should spend some time playing with this code. For example, you should
check to see that as the iteration count increases, A(k) becomes upper triangular (also check
that for a symmetric A we get a diagonal A(k)). As always, you should comment out the
call to print() inside qrmet() once you are ready to use the code for other purposes.
(We will assume this below.)

QR Method: Operation Count

To compute the operation count required for the full QR method, we need to first count the
operation cost of the QR decomposition prescription and then of the QR method itself.

A problem asks you to evaluate the cost of the QR decomposition in detail. Here we
will look at the leading contribution. Focus on the innermost loop (which contains the op-
erations carried out the largest number of times). We see from Eq. (4.203) that we need
to evaluate the inner product qT

i a j (also known as Ri j). Since each of qi and ai is an n × 1
dimensional vector, we see that this inner product requires n multiplications and n − 1 ad-
ditions. Still in the innermost loop, a j −

∑ j−1
i=0 (qT

i a j)qi (also known as a j −
∑ j−1

i=0 Ri jqi) for
a fixed j and for a given i contribution to the sum requires n multiplications and n subtrac-
tions (one for each of the components of our column vectors). Putting all the operations
together, we find 4n− 1 or ∼4n. Recalling that this was for fixed i and j, we explicitly sum
over all possible values of these indices, as given in Eq. (4.207):

n−1∑
j=0

j−1∑
i=0

4n =
n−1∑
j=0

4n j = 4n
(n − 1)n

2
∼ 2n3 (4.245)

In the penultimate step we used Eq. (4.111) and in the last step we kept only the leading
term. Thus, we have found that a QR decomposition requires ∼2n3 floating-point opera-
tions. This is three times larger than the cost of an LU decomposition.

As we saw in Eq. (4.233), in addition to a QR decomposition, the QR method carries out
a matrix multiplication at each iteration. Since each matrix multiplication costs ∼2n3 (as
you showed in a problem), assuming we need m QR-method iterations, the total operation
count will be 4mn3 (half of the cost coming from the QR decomposition and half from
the matrix multiplication). Now this is where things get tricky: what is the size of m? This
depends on how well- (or ill-) separated the eigenvalues are, but generally speaking it is
not too far off to assume that m will be of the same order of magnitude as n. In that case,
our QR method is looking like it has a scaling of O(n4): for most practical purposes, this is
not good enough. Fortunately, some basic preprocessing of our starting matrix A (bringing
it into a so-called Hessenberg form) improves things dramatically: this reduces the amount
of work needed per iteration down from O(n3) to O(n2). If you need to implement such an
approach, this should be enough to get your literature search going.46

46 Bringing our matrix into Hessenberg form is actually carried out by employing a sequence of Householder
transformations. As mentioned earlier, the relevant concept is introduced in the problem set.
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Code 4.10 eig.py Code 4.10

from triang import testcreate

from invpowershift import invpowershift

from qrmet import qrmet

import numpy as np

def eig(A,eps=1.e-12):

n = A.shape[0]

eigvals = np.zeros(n)

eigvecs = np.zeros((n,n))

qreigvals = qrmet(A)

for i, qre in enumerate(qreigvals):

eigvals[i], eigvecs[:,i] = invpowershift(A,qre+eps)

return eigvals, eigvecs

def testeigall(f,A):

eigvals, eigvecs = f(A)

npeigvals, npeigvecs = np.linalg.eig(A)

print(eigvals); print(npeigvals)

print(" ")

for eigvec, npeigvec in zip(eigvecs.T,npeigvecs.T):

print(eigvec); print(npeigvec)

print(" ")

if name == ‘ main ’:

A, bs = testcreate(4,21)

testeigall(eig,A)

4.4.4 All Eigenvalues and Eigenvectors

We are now at a pretty good place: in qrmet() we have a function that computes all
the eigenvalues of a matrix. If we’re interested in building our very own (bare-bones)
general-purpose library to compute all eigenvalue and eigenvector pairs (similarly to what
numpy.linalg.eig() does), we are halfway there. We could modify our code above to
also evaluateQQQ(k); for a nonsymmetric matrix, this would give us only the orthogonal factor
Q̃. Wishing to find the actual eigenvectors, with the QR-method results for the eigenval-
ues in place, we will now, instead, employ the shifted inverse-power method to extract the
eigenvectors. Once you have reasonably good estimates for the eigenvalues, the shifted
inverse-power method converges very fast (typically in a couple of iterations).
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Code 4.10 is a Python implementation of such an approach. Our eig() function returns
a 1d NumPy array containing the eigenvalues and a 2d NumPy array containing the eigen-
vectors in its colunmns. This function does what we said it would: it calls qrmet() to
evaluate (a first version of) the eigenvalues and then invpowershift() for each eigen-
value separately, returning an eigenvalue and eigenvector pair at a time. Note that qrmet()
in its turn calls qrdec() and similarly invpowershift() calls ludec(). Thus, eig() is
so short only because we have already done the heavy lifting in earlier sections.

Turning to some more detailed features of this program, we observe that our code
(in an attempt to be idiomatic) includes the expression enumerate(qreigvals): this is
mixing Python with NumPy functionality. Depending on your perspective, you might be
impressed by how seamless this is, or might want a NumPy-centric solution (in which
case, look up numpy.ndenumerate()). Another detailed feature: we choose not to sim-
ply pass the specific eigenvalue that we get each time from enumerate(qreigvals) into
invpowershift(): instead, we pass in the QR-method eigenvalue shifted slightly (by
adding in eps). You can see why this is necessary by setting eps to have the value 0:
the inverse-power method misbehaves if your shift is not very close to but identical to the
eigenvalue that would have come out as output.47 Implicit in all this is that our eig()
function computes the QR-method eigenvalues, then does not print them out or return
them: instead, they are used as first approximations for the eigenvalues (shifts) passed into
the inverse-power method function. The eigenvalues returned were computed by the latter
function (and in some cases therefore end up being slightly modified).

We then proceed to introduce another test function, testeigall(), which first com-
pares our eigenvalues with those of numpy.linalg.eig() and then does the same for
each eigenvector in turn. As an aside, while we are in favor of code re-use, many times we
simply write a new test function on the spot: this is often better than going through contor-
tions to make an earlier test function work for a more general case (or to make a new very
general test function that you then backport to all earlier tests). A nice feature of this test
function is that we iterate over columns of NumPy arrays by stepping through the transpose
of the matrix. This is what we encountered as for column in A.T in section 1.6. This
time we have two matrices that we want to step through, so we use zip(). This is another
case of mixing Python and NumPy functionality (look up numpy.nditer).

Running this code, we see that (for the digits printed) we have near-perfect agreement
for all eigenvalues and eigenvectors. (One of the eigenvectors has the opposite sign, but
this is totally arbitrary.) As it turns out, the last/smallest eigenvalue we now get is slightly
different from what the QR-method had given us. You should spend some time playing with
this code for other input matrices, also taking the opportunity to tweak the input parameters
in the functions that work together to produce the eig() output. As part of that, you may
wish to uncomment the print() line in invpowershift() to explicitly check how many
iterations of the inverse-power method were needed to evaluate each eigenvector, given
that the QR method had already produced reasonably decent eigenvalues.

47 It’s a worthwhile exercise for you to figure out exactly which line in which program is the culprit.
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4.5 Project: the Schrödinger Eigenvalue Problem

We now turn to the prototypical eigenvalue problem in modern physics, the time-independent
Schrödinger equation:

Ĥ|ψ〉 = E|ψ〉 (4.246)

where Ĥ is the Hamiltonian operator, |ψ〉 is a state vector (called a ket by Dirac) in a Hilbert
space, and E is the energy. In a course on quantum mechanics you likely heard the terms
“eigenstates” and “eigenenergies”. At the time, it was pointed out to you that Eq. (4.246)
is an eigenvalue equation: it contains the same state vector on the left-hand side as on the
right-hand side and is therefore formally of the form of Eq. (4.172).

In practice, when solving Eq. (4.246) for a given physical problem, we typically get a
differential equation, as we will see in chapter 8. In the present section, we limit ourselves
to the case of one or more particles with spin-half, where there are no orbital degrees
of freedom.48 As we will see below, our problem maps onto a (reasonably) straightfor-
ward matrix form, where you don’t have to worry about non-matrix features; that is, the
Ĥ doesn’t have a kinetic energy in it. Thus, the problem of spin-half particles becomes a
direct application of the eigenproblem machinery we built earlier.

If you haven’t taken a course on quantum mechanics (QM) yet, you can skim through
the theory sections below and focus on the Python implementation that comes at the end.
There you will notice that most of the code consists of setting up the problem, since the hard
part (numerically evaluating eigenvalues of a matrix) has already been solved in previous
sections. If you have taken a course on quantum mechanics, keep in mind that our approach
here is slightly different from that given in a typical textbook on the subject. Generally, the
calculations become too messy to carry out using paper-and-pencil; in contradistinction to
this, we’ll show below that once you’ve set up the appropriate framework, increasing the
number of particles merely increases the dimensionality of your problem. Thus, we are
able to attack head-on the setting of two or three spin-half interacting particles; it should
be easy for the reader to generalize to the case of four (or more) particles with a minimum
of complications (as you will find out when solving the relevant problem).

4.5.1 One Particle

We start with some basic concepts from the study of spin in quantum mechanics. In order
to keep things manageable, we will assume you’ve encountered this material before, so the
purpose of this section and of the following one is mainly to establish the notation.

48 You should be able to generalize this to the case of spin-one once you’ve understood our approach.
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Hilbert Space

As you may recall, spin may be thought of as an intrinsic angular momentum. In quantum
mechanics you typically denote the spin angular momentum operator by Ŝ, this being made
up of the three Cartesian components Ŝ x, Ŝ y, and Ŝ z. The two most important relations in
this context are the ones for the square of the spin operator and for its z component:

Ŝ 2|sms〉 = �2s(s + 1)|sms〉
Ŝ z|sms〉 = �ms|sms〉

(4.247)

where |sms〉 is our notation for the spin eigenstates. Note that on the left-hand sides we have
operators (in upper case) and on the right-hand sides we have eigenvalues (in lower case).
More specifically, the latter are the spin s (in our case, s = 1/2) and the azimuthal quantum
number ms (which in our case can be either ms = +1/2 or ms = −1/2). The fact that there
are only two possibilities for the value of ms is a conclusion drawn from experimental
measurements with particles like electrons, neutrons, and protons. As a result, we call this
a two-state system.49

Since, as we just observed, we know that s = 1/2, we see that the first equation in
Eq. (4.247) will always have �23/4 on the right-hand side. This means that the two eigen-
states at play here are essentially labelled by the two possible values of the azimuthal
quantum number, ms. Thus, they are |s = 1/2,ms = +1/2〉 and |s = 1/2,ms = −1/2〉.
Instead of carrying around the general notation |sms〉, we can simply label our two eigen-
states using the fact that the z-projection of the spin is either ↑ (spin-up) or ↓ (spin-down).
Thus, we use the notation

∣∣∣ζ↑〉 and
∣∣∣ζ↓〉 (spin parallel and spin antiparallel to the z axis,

respectively). The Greek letter here was picked in order to bring to mind the last letter of
the English alphabet (so it should be easy to remember that

∣∣∣ζ↑〉 is an eigenstate of the Ŝ z

operator). Using this notation, the second relation in Eq. (4.247) becomes:

Ŝ z

∣∣∣ζ↑〉 = �2
∣∣∣ζ↑〉 , Ŝ z

∣∣∣ζ↓〉 = −�2
∣∣∣ζ↓〉 (4.248)

A further point: we can refer to either
∣∣∣ζ↑〉 or

∣∣∣ζ↓〉 using the notation |ζi〉: here i is an index
that covers all the possibilities, namely i =↑, ↓.

An arbitrary spin state can be expressed as a linear superposition of our two basis states:

|ψ〉 = ψ↑
∣∣∣ζ↑〉 + ψ↓ ∣∣∣ζ↓〉 = ∑

i=↑,↓
ψi |ζi〉 (4.249)

where ψ↑ and ψ↓ are complex numbers. In the second equality we employed our new nota-
tion with the i index. It should be easy to see that:

〈
ζ↑

∣∣∣ψ〉 = ψ↑, 〈
ζ↓

∣∣∣ψ〉 = ψ↓ (4.250)

where we used the fact that our two basis states are orthonormal.

49 Such two-state systems are heavily emphasized in The Feynman Lectures on Physics, Vol. 3 [27].
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Matrix Representation

We now turn to the matrix representation of spin-half particles. This is very convenient,
since it involves 2 × 2 matrices for spin operators. You may have even heard that a 2 × 1
column vector (which represents a spin state vector) is called a spinor. However, this is
putting the cart before the horse. Instead of starting from a result, let’s start at the start: the
physics in quantum mechanics is contained in the inner products, or the matrix elements,
as opposed to the operators or the state vectors alone.

Let’s try to form all the possible matrix elements, sandwiching Ŝ z between the basis
states: this leads to 〈ζi|Ŝ z|ζ j〉, where we are employing our new notation, |ζi〉 and |ζ j〉,
where i and j take on the values ↑ and ↓. In other words, the azimuthal quantum numbers
on the left and on the right can each take on the values ±1/2. This means that there are four
possibilites (i.e., four matrix elements) in total. It then becomes natural to collect them
into a 2 × 2 matrix. At this point, we have to be a bit careful with our notation, since in
this chapter we are denoting matrices and vectors using bold symbols. Thus, we will group
together all the matrix elements and denote the resulting matrix with a bold symbol, Sz.

It may help to think in terms of the notation we introduce in Appendix C.2: if you think
of 〈ζi|Ŝ z|ζ j〉 as the matrix element (Sz)i j, then the matrix made up of all these elements
would be

{
(Sz)i j

}
.50 In all, we have:

Sz =

⎛⎜⎜⎜⎜⎜⎜⎝
〈
ζ↑

∣∣∣ Ŝ z

∣∣∣ζ↑〉 〈
ζ↑

∣∣∣ Ŝ z

∣∣∣ζ↓〉〈
ζ↓

∣∣∣ Ŝ z

∣∣∣ζ↑〉 〈
ζ↓

∣∣∣ Ŝ z

∣∣∣ζ↓〉
⎞⎟⎟⎟⎟⎟⎟⎠ = �2

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ (4.251)

where we used, once again, the fact that our two basis states are orthonormal. Note that
there is no operator (i.e., there is no hat) on the left-hand side, since we are dealing with a
matrix containing inner products/matrix elements: we are not dealing with an operator, but
with the effect the operator has in a specific basis (the one made up of

∣∣∣ζ↑〉 and
∣∣∣ζ↓〉).

A standard derivation using the raising and lowering operators Ŝ + and Ŝ − (not intro-
duced here, but familiar to you, we hope) leads to corresponding results for the matrix
elements of the Ŝ x and Ŝ y operators. These are:

Sx =

⎛⎜⎜⎜⎜⎜⎜⎝
〈
ζ↑

∣∣∣ Ŝ x

∣∣∣ζ↑〉 〈
ζ↑

∣∣∣ Ŝ x

∣∣∣ζ↓〉〈
ζ↓

∣∣∣ Ŝ x

∣∣∣ζ↑〉 〈
ζ↓

∣∣∣ Ŝ x

∣∣∣ζ↓〉
⎞⎟⎟⎟⎟⎟⎟⎠ = �2

⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ (4.252)

and:

Sy =

⎛⎜⎜⎜⎜⎜⎜⎝
〈
ζ↑

∣∣∣ Ŝ y

∣∣∣ζ↑〉 〈
ζ↑

∣∣∣ Ŝ y

∣∣∣ζ↓〉〈
ζ↓

∣∣∣ Ŝ y

∣∣∣ζ↑〉 〈
ζ↓

∣∣∣ Ŝ y

∣∣∣ζ↓〉
⎞⎟⎟⎟⎟⎟⎟⎠ = �2

⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠ (4.253)

where you should note that we’re always using
∣∣∣ζ↑〉 and

∣∣∣ζ↓〉 (i.e., the eigenstates of the
z-component operator, Ŝ z) to sandwich the operator each time.

We’re ready at this point to introduce the Pauli spin matrices; these are simply the above
spin matrices with the prefactors removed:

50 We’re being a bit sloppy here: the i and j in 〈ζi |Ŝ z |ζ j〉 take on the values ↑ and ↓, whereas the i and j in (Sz)i j,
being indices for a 2× 2 matrix, take on the values 0 and 1. The correspondence between one meaning and the
other is always implied.
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σσσx =

⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , σσσy =

⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠ , σσσz =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ (4.254)

You should probably memorize these matrices.
We now turn to the representation of the state vectors. Let’s first approach this as a linear

algebra problem: we need to diagonalize the 2 × 2 matrix Sz. As you already know well
after studying the present chapter, that implies finding the eigenvalues (which turn out to
be ±�/2) and the eigenvectors, which we calculate to be:

ζζζ↑ =

⎛⎜⎜⎜⎜⎜⎜⎝10
⎞⎟⎟⎟⎟⎟⎟⎠ , ζζζ↓ =

⎛⎜⎜⎜⎜⎜⎜⎝01
⎞⎟⎟⎟⎟⎟⎟⎠ (4.255)

Since the matrix we were diagonalizing was 2 × 2, it comes as no surprise that the eigen-
vectors are 2× 1 column vectors. You should test your understanding by finding the eigen-
vectors corresponding to, say, Sy.

As already noted, we are no longer dealing with operators and state vectors (no hats
and no kets), but with matrices and column vectors, respectively. As a result, relations that
in the Hilbert-space language involved actions on kets, now turn into relations involving
matrices. For example, the equations from Eq. (4.248) translate to:

Szζζζ↑ =
�

2

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝10

⎞⎟⎟⎟⎟⎟⎟⎠ = �2
⎛⎜⎜⎜⎜⎜⎜⎝10

⎞⎟⎟⎟⎟⎟⎟⎠ = �2ζζζ↑ (4.256)

and:

Szζζζ↓ =
�

2

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝01

⎞⎟⎟⎟⎟⎟⎟⎠ = −�2
⎛⎜⎜⎜⎜⎜⎜⎝01

⎞⎟⎟⎟⎟⎟⎟⎠ = −�2ζζζ↓ (4.257)

where we carried out the matrix-vector multiplication in both cases.51 As you can imagine,
if we are ever faced with an expression like, say, SzSz, we have to carry out matrix–matrix
multiplication.

We can combine our two eigenvectors to produce the matrix representation of an arbi-
trary spin state (just like in Eq. (4.249), ψ↑ and ψ↓ are complex numbers):

ψψψ = ψ↑ζζζ↑ + ψ↓ζζζ↓ =
(
ψ↑ ψ↓

)T
(4.258)

where we used Eq. (4.255) to get to the second equality. In our final result, we see the 2×1
column vector (called a spinor above) emerge organically. Recall that when we went from
the operator Ŝ z to the matrix Sz, we simply grouped together all possibilities for 〈ζi|Ŝ z|ζ j〉.
This motivates a new way of looking at the 2 × 1 column vectors (which represent the

51 There’s nothing mysterious going on here: we’re simply reiterating the fact that ζζζ↑ and ζζζ↓ are eigenvectors of
the matrix Sz with the specificied eigenvalues.



210 Matrices

state vectors): simply group together all the possibilities for 〈ζi|ψ〉. Since i can take on two
values, you end up with:

ψψψ =

⎛⎜⎜⎜⎜⎜⎜⎝
〈
ζ↑

∣∣∣ψ〉〈
ζ↓

∣∣∣ψ〉
⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝ψ↑ψ↓
⎞⎟⎟⎟⎟⎟⎟⎠ (4.259)

The first equality is analogous to our definition in Eq. (4.251), while the second equality
follows from Eq. (4.250).

To summarize, operators are represented by 2 × 2 matrices:

(
∣∣∣ζ↑〉 ∣∣∣ζ↓〉〈

ζ↑
∣∣∣ � �〈

ζ↓
∣∣∣ � �

)
(4.260)

where we have also labelled (outside the matrix) how we get each row and column: by
sandwiching the operator with the bra on the left and the ket on the right, each time. (Ex-
amples of operator representations are given in Eqs. (4.251), (4.252), and (4.253).) Simi-
larly, a state vector is represented by a 2 × 1 column vector. An example of a state vector
representation is given in Eq. (4.259).

Hamiltonian

We recall that what we were actually interested in all along was solving the Schrödinger
equation, Eq. (4.246), Ĥ|ψ〉 = E|ψ〉. We are immediately faced with two questions: first,
which Hamiltonian Ĥ should we use? Second, how do we translate this equation involving
operators and kets into an equation involving matrices? Let’s start from the second ques-
tion. We take the Schrödinger equation, Eq. (4.246), and act with

〈
ζ↑

∣∣∣ on the left. We then
introduce a resolution of the identity, Î =

∣∣∣ζ↑〉 〈
ζ↑

∣∣∣ + ∣∣∣ζ↓〉 〈
ζ↓

∣∣∣, to find:〈
ζ↑

∣∣∣ Ĥ
∣∣∣ζ↑〉 〈

ζ↑
∣∣∣ψ〉 + 〈

ζ↑
∣∣∣ Ĥ

∣∣∣ζ↓〉 〈
ζ↓

∣∣∣ψ〉 = E
〈
ζ↑

∣∣∣ψ〉 (4.261)

You may now repeat this exercise, this time acting with
〈
ζ↓

∣∣∣ on the left. At this point you
are free to combine your two equations into matrix form, giving:

Hψψψ = Eψψψ (4.262)

Note how neatly this encompasses our earlier results. If you’re still trying to understand
what H looks like, just remember our general result about the representation of any oper-
ator, Eq. (4.260) – in other words, H = {〈ζi|Ĥ|ζ j〉}. You may have already encountered the
rewriting of Eq. (4.246) in the form of Eq. (4.262): we hope that it now feels legitimate as
a way of going from operators and kets to matrices and column vectors.52

Of course, even if we know what H looks like, we still need to answer our earlier ques-
tion, namely deciding on which Hamiltonian Ĥ we should use. To do that, assume that our
spin-half particle is interacting with an external magnetic field B. Associated with the spin

52 The same argument can help you see why, say, Eq. (4.256) is equivalent to Eq. (4.248).
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angular momentum Ŝ there will be a spin magnetic moment operator, μ̂μμ: since this operator
needs to be a combination of the spin operators and the identity (and we know it has to
be a vector operator), it follows that μ̂μμ is proportional to Ŝ. It is customary to write the
proportionality between the two operators as follows:

μ̂μμ = g
( q
2m

)
Ŝ (4.263)

where q is the electric charge of the particle and m is its mass. The proportionality constant
is known as the g-factor: its value is roughly −2 for electrons and 5.9 for protons.

Since we have no orbital degrees of freedom, the Hamiltonian is simply made up of the
interaction energy which, by analogy to the classical-physics case, is:

Ĥ = −μ̂μμ · B = −gqB
2m

Ŝ z (4.264)

In the second step we took our z axis as pointing in the direction of the magnetic field.
Combining our earlier point about how to go from operators to matrices, Eq. (4.260), with
the explicit matrix representation of Ŝ z, Eq. (4.251), we find:

H = −gqB�
4m

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ (4.265)

This Hamiltonian is so simple that the matrix form of the Schrödinger equation (which we
know from Eq. (4.262) is Hψψψ = Eψψψ) can be solved analytically. Note that there are two
reasons why this is such an easy problem: first, it’s because of the small dimensionality
(2 × 2) and second, it is because our Hamiltoninan matrix H is diagonal. We will soon
discuss other cases, where the matrices are both larger and non-diagonal.

4.5.2 Two Particles

We went over things in great detail in the previous subsection (which dealt with a single
spin-half particle) because we wanted to establish the notation and the concepts. We are
now about to do something similar for the problem of two spin-half particles. As before,
we start from the formulation involving operators and kets, then turn to the matrix repre-
sentation, ending with the Hamiltonian for our problem.

Hilbert Space(s)

When dealing with a single spin-half particle, we saw that its state vectors were labelled
|sms〉: this contained the possibilities |s = 1/2,ms = +1/2〉 and |s = 1/2,ms = −1/2〉.
We then proceeded to use the alternative notation

∣∣∣ζ↑〉 and
∣∣∣ζ↓〉 for these two states, known

collectively as |ζi〉.
We now have to be especially careful about our notation: since we’re dealing with two

particles, we need some way of labelling them. Let’s call them particle I and particle II,
using Roman numerals: this will pay off later on, when we implement things in Python
(we’ll have enough indices to worry about). Thus, the first particle involves a vector space
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which is spanned by the two kets
∣∣∣∣ζ(I)
↑

〉
and

∣∣∣∣ζ(I)
↓

〉
: observe that we have employed super-

scripts and parentheses (within which we place the Roman numeral) to keep track of which
particle we’re talking about. If we wish to refer to either of the two states, we can use the
notation

∣∣∣ζ(I)
i

〉
. Make sure you understand what’s going on here: i is either ↑ or ↓, keeping

track of the (eigenvalue of the) z-projection of the spin for the first particle. Similarly, the

Hilbert space of the second particle is spanned by the two kets
∣∣∣∣ζ(II)
↑

〉
and

∣∣∣∣ζ(II)
↓

〉
, which can

be compactly expressed as
∣∣∣∣ζ(II)

j

〉
, where we used a new index, j, since in general the second

particle can be either ↑ or ↓, regardless of what the projection of the first particle spin was.
We now wish to start from these single-particle vector spaces and generalize to a two-

particle space. To do this, we employ the concept of a tensor product (denoted by ⊗):
this allows us to express the product between state vectors belonging to different Hilbert

spaces (e.g.,
∣∣∣∣ζ(I)
↑

〉
and

∣∣∣∣ζ(II)
↑

〉
). In short, the two-particle Hilbert space is a four-dimensional

complex vector space which is spanned by the vectors:∣∣∣∣ζ(I)
↑

〉
⊗

∣∣∣∣ζ(II)
↑

〉
≡

∣∣∣ζ↑↑〉 , ∣∣∣∣ζ(I)
↑

〉
⊗

∣∣∣∣ζ(II)
↓

〉
≡

∣∣∣ζ↑↓〉 , ∣∣∣∣ζ(I)
↓

〉
⊗

∣∣∣∣ζ(II)
↑

〉
≡

∣∣∣ζ↓↑〉 , ∣∣∣∣ζ(I)
↓

〉
⊗

∣∣∣∣ζ(II)
↓

〉
≡

∣∣∣ζ↓↓〉
(4.266)

where we also took the opportunity to define a compact notation for the two-particle state
vectors: in an expression like

∣∣∣ζ↑↓〉 it is implicit that the first arrow refers to particle I and
the second arrow to particle II. Note that

∣∣∣ζ↑↓〉 doesn’t have a superscript in parentheses,
because it is not a one-particle state vector, but is made up of two one-particle state vectors.

We can compactly refer to any one of these four basis states using the notation |ζa〉, where
a is an index that covers all the possibilities, namely: a =↑↑, ↑↓, ↓↑, ↓↓. Keep in mind that in
the previous section we were using the notation |ζi〉 (or |ζ j〉) to refer to single-particle states.
In the present section one-particle states will always come with a parenthesized Roman
numeral keeping track of which particle we’re referring to. Here we are introducing the
similar-yet-distinct notation |ζa〉 (or perhaps also |ζb〉) to keep track of two-particle states.
We’ll consistently pick letters from the start of the alphabet to denote two-particle indices.
Thus, Eq. (4.266) can be compactly given in the following form:

∣∣∣ζ(I)
i

〉
⊗

∣∣∣∣ζ(II)
j

〉
≡ |ζa〉 (4.267)

The left-hand side involves the one-particle states and the tensor product (and i, j indices),
while the right-hand side has a two-particle state (and an a index). Depending on your
learning style, you may wish to think of a as the ordered pair (i, j), which we would have
called a tuple in Python (of course, this is an ordered pair of arrows, not numbers).

In terms of the Hilbert spaces themselves, we started from the space of the first particle
(H (I)) and the space of the second particle (H (II)) and have produced the larger, two-

particle Hilbert space H (I) ⊗H (II). The four state vectors
∣∣∣ζ(I)

i

〉
⊗

∣∣∣∣ζ(II)
j

〉
form the product

basis of this Hilbert space H (I) ⊗H (II).
Let us turn to the operators in the two-particle Hilbert space, focusing on the z-projection

operator for concreteness. We already know the one-particle operator Ŝ (I)
z which acts on the



4.5 Project: the Schrödinger Eigenvalue Problem 213

vector space of particle I and, similarly, the one-particle operator Ŝ (II)
z which acts on the

vector space of particle II. Each of these operators measures the z-projection of the spin for
the respective particle. What we wish to do is come up with operators for the composite
system. We do this by, again, employing the tensor product. For example:

Ŝ Iz = Ŝ (I)
z ⊗ Î(II) (4.268)

On the left-hand side we are introducing a new entity, Ŝ Iz, which is appropriate for the
two-particle Hilbert space: note that it doesn’t have a superscript in parentheses, because it
is not a one-particle operator. Instead, it is made up of two one-particle operators, each of
which knows how to act on its respective one-particle space. It should be easy to see why
we have taken the tensor product with the identity operator Î: the two-particle operator Ŝ Iz

measures the z component of the spin for particle I, so it does nothing to any particle-II
ket it encounters. In complete analogy to this, the two-particle operator that measures the z
component of the spin for particle II is:

Ŝ IIz = Î(I) ⊗ Ŝ (II)
z (4.269)

where we do nothing (i.e., have an identity) for particle I and take the tensor product with
the appropriate operator for particle II.

Perhaps an example will help solidify your understanding of what’s going on. Let’s see
what happens when a two-particle operator acts on a given two-particle state vector:

Ŝ IIz

∣∣∣ζ↑↓〉 = (
Î(I) ⊗ Ŝ (II)

z

) (∣∣∣∣ζ(I)
↑

〉
⊗

∣∣∣∣ζ(II)
↓

〉)
=

(
Î(I)

∣∣∣∣ζ(I)
↑

〉)
⊗

(
Ŝ (II)

z

∣∣∣∣ζ(II)
↓

〉)
=

∣∣∣∣ζ(I)
↑

〉
⊗

(
−�

2

∣∣∣∣ζ(II)
↓

〉)
= −�

2

∣∣∣ζ↑↓〉 (4.270)

In the first equality we used Eq. (4.269) and Eq. (4.266) for the operator and state vector,
respectively, writing each in terms of a tensor product. In the second equality we acted with
each operator on the appropriate state vector: the parenthesized superscripts help us keep
track of which particle is which. In the third equality we applied our knowledge about the
effect one-particle operators have on one-particle state vectors, specifically Eq. (4.248). In
the fourth equality we re-identified the compact way of expressing the two-particle state
vector (in the opposite direction from what was done on the first equality). The final result
is not surprising, since we already knew that particle II was ↓, but it’s nice to see that the
different Hilbert spaces and operators work together to give the right answer (e.g., observe
that the final answer is proportional to a two-particle state vector, as it should).

Finally, an arbitrary spin state can be expressed as a linear superposition:

|ψ〉 = ψ↑↑
∣∣∣ζ↑↑〉 + ψ↑↓ ∣∣∣ζ↑↓〉 + ψ↓↑ ∣∣∣ζ↓↑〉 + ψ↓↓ ∣∣∣ζ↓↓〉 = ∑

a=↑↑,↑↓,↓↑,↓↓
ψa |ζa〉 (4.271)

where ψ↑↑, and so on, are complex numbers. Similarly to what we did in the one-particle
case, in the second equality we show the superposition expressed as a sum. It’s easy to
see that as we get an increasing number of basis states, it is this second formulation that
becomes more manageable (you just have to keep track of the possible values of the index).
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At this stage, a QM textbook typically passes over into the coupled representation, where
the total spin of the two-particle system is of interest. For the general problem of adding
two angular momenta, this is where Clebsch–Gordan coefficients come into the picture. For
the specific case of two spin-half particles, this leads to one spin-singlet state and a spin-
triplet (made up of three states). In contradistinction to this, here we are interested in the
uncoupled representation, where we consider the two-particle system as being made up of
two individual particles. Below, we will show you how to build up the matrix representation
of a two-particle operator using the matrix representation of one-particle operators: this will
give us a tool that is then trivial to generalize to larger numbers of particles.

Matrix Representation

Turning to the matrix representation of two spin-half particles, you will not be surprised
to hear that it involves 4 × 4 matrices for spin operators and 4 × 1 column vectors for the
state vectors. We recall that the matrix representation of quantum mechanics translates to
taking inner products, i.e., sandwiching operators between a bra and a ket. For the sake
of concreteness, we will start our discussion from a given operator, Ŝ Iz, though eventually
we will need to provide a prescription that gives the matrix representation of the other five
relevant operators (Ŝ Ix, Ŝ Iy, as well as Ŝ IIx, Ŝ IIy, and Ŝ IIz).

Let us try to form all the possible matrix elements, sandwiching Ŝ Iz between the basis
states: using our latest notation from Eq. (4.267), this leads to 〈ζa| Ŝ Iz |ζb〉.53 Since each of
a and b can take on four values, there are 16 possibilites (i.e., 16 matrix elements) in total.
It then becomes natural to collect them into a 4 × 4 matrix, using a to keep track of rows
and b for the columns. Once again, the notation of section C.2 may be helpful here: the
entire matrix is generated by going over all the indices’ values, namely {〈ζa| Ŝ Iz |ζb〉}.54

If you’ve never encountered this material before, you might want to pause at this point:
a matrix has two indices (one for rows and one for columns), so in order to produce a
matrix corresponding to the operator Ŝ Iz we needed to employ a single bra on the left and
a single ket on the right. In other words, we moved away from keeping track of individ-
ual particles’ quantum numbers and toward using two-particle states – this back-and-forth
between one- and two-particle states is something we will return to below. Since we have
four two-particle basis states, operators in a system made up of two spin-half particles are
represented by 4 × 4 matrices as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣ζ↑↑〉 ∣∣∣ζ↑↓〉 ∣∣∣ζ↓↑〉 ∣∣∣ζ↓↓〉〈
ζ↑↑

∣∣∣ � � � �〈
ζ↑↓

∣∣∣ � � � �〈
ζ↓↑

∣∣∣ � � � �〈
ζ↓↓

∣∣∣ � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.272)

where we have also labelled (outside the matrix) how we get each row and column: by
sandwiching the operator with the bra on the left and the ket on the right, each time.

53 This a encapsulates two distinct azimuthal quantum numbers, one for each particle – the same holds for b.
54 Remembering to distinguish between ket-indices with “arrow values” and matrix-indices with integer values.
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We will now proceed to evaluate the matrix:

SIz =
{
〈ζa| Ŝ Iz |ζb〉

}
(4.273)

in the most obvious way possible (we turn to a less obvious approach in the following
subsection). In essence, we will make repeated use of our derivation in our earlier example,
Eq. (4.270). In an identical fashion, one can show that, say:

Ŝ Iz

∣∣∣ζ↑↑〉 = �2
∣∣∣ζ↑↑〉 (4.274)

Here it is implied that we went through all the intermediate steps of using one-particle
operators and one-particle states, and then zipped everything up again at the end. Acting
with the bra

〈
ζ↑↑

∣∣∣, we find: 〈
ζ↑↑

∣∣∣ Ŝ Iz

∣∣∣ζ↑↑〉 = �2 (4.275)

where we assumed our basis vector is normalized. Since our basis states are orthonormal,
had we used any other bra here, say

〈
ζ↓↓

∣∣∣, we would have gotten 0. In other words, all other
matrix elements on the same column are 0. Repeating this argument, we find:

SIz =
�

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.276)

where, unsurprisingly, we find that the matrix is diagonal: the only way to get a non-zero
entry is to use the same basis vector on the left and on the right. The only other feature of
this matrix is that it measures the spin of the first particle (as it should): we get +�/2 if the
first particle is ↑ and −�/2 if the first particle is ↓.

Without realizing it, we’ve evaluated the eigenvalues of the matrix (they’re on the diag-
onal for a triangular/diagonal matrix). It’s also a short step away to find the eigenvectors,
now that we know the eigenvalues. For this 4 × 4 matrix, we find four eigenvectors, each
of which is a 4 × 1 column vector:

ζζζ↑↑ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ζζζ↑↓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ζζζ↓↑ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ζζζ↓↓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.277)

where we used the obvious notation for each eigenvector, by analogy to Eq. (4.255). As a
result of this, an arbitrary state vector is represented by a 4 × 1 column vector:

ψψψ = ψ↑↑ζζζ↑↑ + ψ↑↓ζζζ↑↓ + ψ↓↑ζζζ↓↑ + ψ↓↓ζζζ↓↓ =
(
ψ↑↑ ψ↑↓ ψ↓↑ ψ↓↓

)T
(4.278)
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Kronecker Product

Our approach, while good enough to get us going for the case of SIz, has obvious limita-
tions: for each new operator we need to evaluate 16 matrix elements. The example above
was diagonal, so this task was considerably easier, but that won’t always be the case. Sim-
ilarly, if we were faced with a larger problem this way of doing things would quickly
become prohibitive.55 Thus, in the present section we will introduce a technique that can
straightforwardly handle off-diagonalness and bigger matrices.56

Qualitatively, the main trick we will employ in this subsection is to focus on one-particle
states and operators, in contradistinction to the previous subsection where we used two-
particle basis states. Here we are in the fortunate situation of knowing what the answer
should be for at least one case (that of SIz), so we will be able to check if we got things
right. Our starting point will be the same, namely Eq. (4.273), but soon thereafter things
will start to take a different turn:

SIz =
{
〈ζa| Ŝ Iz |ζb〉

}
=

{(〈
ζ(I)

i

∣∣∣ ⊗ 〈
ζ(II)

j

∣∣∣∣) (Ŝ (I)
z ⊗ Î(II)

) (∣∣∣ζ(I)
k

〉
⊗

∣∣∣ζ(II)
l

〉)}
=

{〈
ζ(I)

i

∣∣∣ Ŝ (I)
z

∣∣∣ζ(I)
k

〉 〈
ζ(II)

j

∣∣∣∣ Î(II)
∣∣∣ζ(II)

l

〉}
=

{〈
ζ(I)

i

∣∣∣ Ŝ (I)
z

∣∣∣ζ(I)
k

〉}
⊗

{〈
ζ(II)

j

∣∣∣∣ Î(II)
∣∣∣ζ(II)

l

〉}
= Sz ⊗ I

(4.279)

In the second equality we used the defining Eq. (4.267) and Eq. (4.268), which express
our two-particle state vectors and operators in terms of corresponding one-particle entities.
In the third equality we grouped together entities relating to each particle, separately: the
tensor product has vanished, since we are now dealing only with matrix elements (i.e.,
complex numbers). We then notice that the four indices i jkl appear in pairs: ik sandwiches
one operator and jl sandwiches the other operator. This suggests that our 4 × 4 matrix
(which is what the curly braces on the outside produce) is made up of 2 × 2 blocks. Thus,
in the fourth equality we made the claim that we can go over all possible values of i jkl, two
indices at a time (ik and jl), at the cost of having slightly changed the meaning of ⊗: in the
second equality this was the tensor product, keeping state vectors and operators belonging
to particles I and II separate: in the fourth equality, however, we are no longer dealing
with state vectors or operators, but with 2 × 2 matrices. In the fifth equality, we make this
explicit: observe that there are no longer any particle labels, only the one-particle Sz matrix
from Eq. (4.251), as well as a 2 × 2 identity matrix.

We now have to explain the meaning of this new ⊗ entity, which can combine matrices
in this specific way. This is nothing other than the Kronecker product, which turns out to
be not so new, of course, since it is merely a matrix version of the tensor product. Assume
you’re dealing with an n × n matrix U and a p × p matrix V.57 The most intuitive way of

55 For example, three spin-half particles correspond to an 8 × 8 matrix, namely 64 matrix elements in total.
56 Of course, applying it to two particles is overkill – “using a chain saw to trim your fingernails”.
57 We could also define the Kronecker product for non-square matrices, even for vectors.
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thinking of the Kronecker product U ⊗ V is as the np × np matrix that looks like this:

W = U ⊗ V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U00V U01V . . . U0,n−1V

U10V U11V . . . U1,n−1V
...

...
. . .

...

Un−1,0V Un−1,1V . . . Un−1,n−1V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.280)

The presence of a V in each slot is to be interpreted as follows: to produce U⊗V, take each
element of U, namely Uik, and replace it by UikV, which is a p × p matrix. (In total, there
will be n2 such p × p matrices.) Expanded out, this leads to the np × np matrix W:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U00V00 . . . U00V0,p−1 U01V00 . . . U01V0,p−1 . . . U0,n−1V0,p−1

U00V10 . . . U00V1,p−1 U01V10 . . . U01V1,p−1 . . . U0,n−1V1,p−1

...
. . .

...
...

. . .
...

. . .
...

U00Vp−1,0 . . . U00Vp−1,p−1 U01Vp−1,0 . . . U01Vp−1,p−1 . . . U0,n−1Vp−1,p−1

U10V00 . . . U10V0,p−1 U11V00 . . . U11V0,p−1 . . . U1,n−1V0,p−1

U10V10 . . . U10V1,p−1 U11V10 . . . U11V1,p−1 . . . U1,n−1V1,p−1

...
. . .

...
...

. . .
...

. . .
...

U10Vp−1,0 . . . U10Vp−1,p−1 U11Vp−1,0 . . . U11Vp−1,p−1 . . . U1,n−1Vp−1,p−1

...
. . .

...
...

. . .
...

. . .
...

Un−1,0Vp−1,0 . . . Un−1,0Vp−1,p−1 Un−1,1Vp−1,0 . . . Un−1,1Vp−1,p−1 . . . Un−1,n−1Vp−1,p−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.281)

You should spend some time making sure you understand that the last two matrices are
showing exactly the same thing.

While this intuitive understanding is important, what we would eventually like to do is
to implement the Kronecker product programmatically: in order to do that, we need an
equation connecting the indices of the U and V matrix elements, on the one hand, with the
indices of the W matrix, on the other. This is:

Wab = (U ⊗ V)ab = UikV jl

where a = pi + j, b = pk + l (4.282)

The original four indices take on the values:

i = 0, 1, . . . , n − 1, k = 0, 1, . . . , n − 1, j = 0, 1, . . . , p − 1, l = 0, 1, . . . , p − 1
(4.283)

As a result, the new indices take on the values:

a = 0, 1, . . . , np − 1, b = 0, 1, . . . , np − 1 (4.284)

You should spend some time thinking about our new equation: you will benefit from ap-
plying it by hand to one or two simple cases (say, the Kronecker product of a 2 × 2 matrix
with a 3 × 3 matrix). Incidentally, the idea that the Kronecker product is the same thing
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as regular matrix multiplication is obligingly self-refuting (to borrow a memorable turn of
phrase): a Kronecker product of a 2 × 2 matrix with 3 × 3 matrix leads to a 6 × 6 matrix,
whereas the regular matrix multiplication of a 2 × 2 matrix with 3 × 3 matrix is not even
possible, since the dimensions don’t match.

Having introduced and explained the Kronecker product, we may now return to our
derivation in Eq. (4.279). The third equality contains the product of the two matrix elements
(Sz)ik and (I ) jl: armed with Eq. (4.282), we may now confidently identify (Sz)ik(I ) jl using
the Kronecker product, namely (Sz ⊗I )ab, thereby justifying our earlier claim. This means
we can now continue our derivation at the point where Eq. (4.279) had left it off:

SIz = Sz ⊗ I (4.285)

This is the matrix version of the operator relation Eq. (4.268), no longer involving any
particle labels. It is perhaps not too late to try to avoid possible confusion: when comparing
to other texts, you should keep in mind that Sz here has nothing to do with a total spin
operator for the two-particle system: it is a 2 × 2 matrix corresponding to a one-particle
operator. We can now plug in Sz from Eq. (4.251), as well as a 2 × 2 identity to find:

SIz = Sz ⊗ I =
�

2

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ = �2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.286)

where, crucially, the last step applied our definition of the Kronecker product, Eq. (4.282).
To summarize what we’ve been doing in this subsection: in Eq. (4.279) we went from

two-particle operators and state vectors to one-particle entities. Then, we identified one-
particle matrix elements: collecting those together, we ended up with one-particle-space-
dimensioned (i.e., small) matrices and took their Kronecker product. That led to a two-
particle-space-dimensioned (i.e., larger) matrix. This SIz matrix turned out to be identical
to what we had found in Eq. (4.276), but it is important to realize that here we didn’t even
have to think once about the effect of a specific spin operator on a specific ket: instead,
we merely took the Kronecker product of a Pauli matrix with an identity matrix. In other
words, we simply carried out a mathematical operation between two matrices.

Matrix Representation Continued

In short, we have encountered two ways of building up the 4 × 4 matrices we need to
describe the system of two spin-half particles: first, using two-particle operators and state
vectors explicitly, to produce matrix elements for all 16 cases. (Of course, to do that, we
need to employ tensor products of one-particle operators and state vectors.) Second, we
showed that the same answer could be arrived at via a Kronecker product between two 2×2
matrices. The second approach can now be used to find the answer for more complicated
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cases. For example, the matrix SIIx can be computed as follows:

SIIx =
{
〈ζa| Ŝ IIx |ζb〉

}
=

{(〈
ζ(I)

i

∣∣∣ ⊗ 〈
ζ(II)

j

∣∣∣∣) (Î(I) ⊗ Ŝ (II)
x

) (∣∣∣ζ(I)
k

〉
⊗

∣∣∣ζ(II)
l

〉)}
=

{〈
ζ(I)

i

∣∣∣ Î(I)
∣∣∣ζ(I)

k

〉 〈
ζ(II)

j

∣∣∣∣ Ŝ (II)
x

∣∣∣ζ(II)
l

〉}
=

{〈
ζ(I)

i

∣∣∣ Î(I)
∣∣∣ζ(I)

k

〉}
⊗

{〈
ζ(II)

j

∣∣∣∣ Ŝ (II)
x

∣∣∣ζ(II)
l

〉}

= I ⊗ Sx =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗ �2
⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ = �2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.287)

The first several steps proceed by direct analogy to the steps in Eq. (4.279). The only
differences are that (a) our operator is Ŝ IIx = Î(I) ⊗ Ŝ (II)

x by analogy to Eq. (4.269), and (b)
now we need to use the x one-particle matrix, from Eq. (4.252). If you wish to, you could
check this result by doing things the hard way, namely by using two-particle states and
explicitly evaluating all the matrix elements. (You’ll find the same answer, unsurprisingly.)

Crucially, all the steps of the above process can be automated, so computing other matri-
ces (e.g., SIy) is just as straightforward: all we’re doing is taking the Kronecker product of
an identity and a Pauli spin matrix (possibly not in that order). This is a purely mathemati-
cal task, which doesn’t need to get caught up in the details of different spin operators: once
you’ve determined the (one-particle) Pauli spin matrices, Eq. (4.254), you can straightfor-
wardly arrive at the matrix representation of any two-particle operator; as we’ll see below,
the same also holds for problems involving three, four, and so on particles.

Interacting Spins

If you’re following along so far, it shouldn’t be too hard to see how to handle more com-
plicated operators. The most obvious candidate is:

ŜI · ŜII = Ŝ IxŜ IIx + Ŝ IyŜ IIy + Ŝ IzŜ IIz (4.288)

Let’s see how to handle this operator, focusing on Ŝ IzŜ IIz for the moment.
As before, there are two ways of going about this: either we focus on 4 × 4 matrices

(for the two-particle system directly), or we use Kronecker products between 2 × 2 matri-
ces (corresponding to one-particle matrix elements). Let’s start with the former approach,
which involves two-particle matrices like SIz and SIIz: we assume that you know how to
produce these (again, either the hard way or the easy way). Here’s what we do in order to
express our matrix elements in terms of 4 × 4 matrices:

〈ζa| Ŝ IzŜ IIz |ζb〉 =
∑

c=↑↑,↑↓,↓↑,↓↓
〈ζa| Ŝ Iz |ζc〉 〈ζc| Ŝ IIz |ζb〉 =

∑
c

(SIz)ac (SIIz)cb = (SIzSIIz)ab

(4.289)

In the first equality we introduced a resolution of the identity. In the second equality we
expressed our matrix elements using the notation that employs bold symbols. In the third
equality we realized that we were faced with nothing other than a matrix multiplication, as
per Eq. (C.10), namely Ci j =

∑
k AikBk j. Comparing the left-hand side with our result in the
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third equality, we see that we can build up the entire matrix {〈ζa| Ŝ IzŜ IIz |ζb〉} by giving a
and b all possible values. The same argument can be repeated for the x and y components.
All in all, we have shown that the answer is arrived at if you multiply together the relevant
4 × 4 matrices and then sum the results up:

SI·II =
{
〈ζa| ŜI · ŜII |ζb〉

}
= SIxSIIx + SIySIIy + SIzSIIz (4.290)

where we also introduced a new symbol, SI·II, to denote the 4 × 4 matrix corresponding to
the dot product between two spin operators. As advertised, this is a result involving two-
particle matrices; it is the formula which we will implement in our Python code below.

We now turn to our second approach to the operator Ŝ IzŜ IIz, this time employing one-
particle operators and state vectors. Let’s start with expressing the product of the two two-
particle operators in terms of one-particle operators:

Ŝ IzŜ IIz =
(
Ŝ (I)

z ⊗ Î(II)
) (
Î(I) ⊗ Ŝ (II)

z

)
=

(
Ŝ (I)

z Î(I)
)
⊗

(
Î(II)Ŝ (II)

z

)
= Ŝ (I)

z ⊗ Ŝ (II)
z (4.291)

In the first equality we used Eq. (4.268) and Eq. (4.269). In the second equality we grouped
together operators acting on particle I and those acting on II. In the third equality we
removed the identities, since they don’t change anything. We see that the product of the
two two-particle operators reduces itself to a tensor product between one-particle operators.

Let’s now evaluate the matrix made up by sandwiching this operator. This derivation
will be very similar in spirit to that in Eq. (4.287):

{
〈ζa| Ŝ IzŜ IIz |ζb〉

}
=

{(〈
ζ(I)

i

∣∣∣ ⊗ 〈
ζ(II)

j

∣∣∣∣) (Ŝ (I)
z ⊗ Ŝ (II)

z

) (∣∣∣ζ(I)
k

〉
⊗

∣∣∣ζ(II)
l

〉)}
=

{〈
ζ(I)

i

∣∣∣ Ŝ (I)
z

∣∣∣ζ(I)
k

〉 〈
ζ(II)

j

∣∣∣∣ Ŝ (II)
z

∣∣∣ζ(II)
l

〉}
=

{〈
ζ(I)

i

∣∣∣ Ŝ (I)
z

∣∣∣ζ(I)
k

〉}
⊗

{〈
ζ(II)

j

∣∣∣∣ Ŝ (II)
z

∣∣∣ζ(II)
l

〉}
= Sz ⊗ Sz (4.292)

In the first equality we expressed two-particle entities in terms of one-particle entities. The
equalities after that closely follow the steps in Eq. (4.287): our result is a Kronecker product
between (multiples of) two Pauli spin matrices. Obviously, analogous relations hold for the
x and y components. All in all, we have shown that you can get the desired 4× 4 matrix by
taking Kronecker products of 2 × 2 matrices and summing the results up:

SI·II =
{
〈ζa| ŜI · ŜII |ζb〉

}
= Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz (4.293)

where we used the same symbol as above, SI·II, to denote the 4 × 4 matrix corresponding
to the dot product between two spin operators. As advertised, this is a result involving
(Kronecker products of) one-particle matrices; it is the formula you are asked to implement
in a problem. It should come as no surprise that Eq. (4.293) is equivalent to Eq. (4.290).
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Hamiltonian

We end our discussion of two spin-half particles with the Schrödinger equation:

Ĥ|ψ〉 = E|ψ〉 (4.294)

You should work through the derivation that led to Eq. (4.262): you will realize that all the
steps are still valid, the only difference being that now instead of dealing with a one-body
|ζi〉 we are faced with a two-body |ζa〉 (i.e., we are still sandwiching and introducing a
resolution of the identity). Thus, we arrive at the matrix form of the Schrödinger equation:

Hψψψ = Eψψψ (4.295)

where this time the H matrix is 4 × 4 and the state ψψψ is a 4 × 1 column vector.
Just like we did for the single-particle case, we now have to consider which Hamiltonian

Ĥ to use. This time around, we first assume that each of particles I and II is interacting with
an external magnetic field B. Each spin angular momentum (ŜI and ŜII) will be associated
with a spin magnetic moment operator (μ̂μμI and μ̂μμII, respectively). Thus, there will be a
contribution to the total energy coming from the interaction of each magnetic moment
with the magnetic field (−μ̂μμI · B and −μ̂μμII · B). As before, we are free to take our z axis
as pointing in the direction of the magnetic field. In addition to the interaction with the
magnetic field, the two particles may also be interacting with each other: this is why the
previous subsection on the operator ŜI · ŜII was titled “interacting spins”.

Putting all the pieces together, the Hamiltonian for the case of two spins is:

Ĥ = −gIqIB
2mI

Ŝ Iz −
gIIqIIB
2mII

Ŝ IIz + γŜI · ŜII = −ωIŜ Iz − ωIIŜ IIz + γ(Ŝ IxŜ IIx + Ŝ IyŜ IIy + Ŝ IzŜ IIz)

(4.296)

The first two terms correspond to the interaction with the magnetic field and the third
term the interaction between the two spins. The first equality employs the dimensionless
g-factor, charge, and mass for each particle, as well as the coupling constant γ for the two-
spin interaction (appropriately, �2γ has units of energy). The second equality lumps all the
coefficient terms together in the form of ωI and ωII. We also took the opportunity to expand
the dot product ŜI · ŜII as per Eq. (4.288).

All that’s left is for us to build up the matrix H. By now you should feel pretty confident
about taking matrix elements: what we need is H = {〈ζa| Ĥ |ζb〉}. We get:

H = −ωISIz − ωIISIIz + γ
(
SIxSIIx + SIySIIy + SIzSIIz

)
(4.297)

where we also made use of Eq. (4.290). (As you may recall, you are asked to use the
alternative expression for SI·II, Eq. (4.293), in a problem.) We have succeeded in expressing
H only in terms of 4×4 matrices (which, in their turn, can be computed using the techniques
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introduced in earlier subsections). At this point, solving Hψψψ = Eψψψ is simple: this is a matrix
eigenvalue problem, like the ones we spent so much time solving in this chapter.

Equation (4.297) is deceptively simple, so it may be beneficial to explicitly write it out
in 4 × 4 form. Obviously, this is no longer practical once you start dealing with larger
numbers of particles, but the intuition you build at this stage will serve you well later on.
We assume that you have already produced the six matrices SIx, SIIx, and so on. We plug
these matrices in to Eq. (4.297) to find:

H = −�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωI + ωII 0 0 0

0 ωI − ωII 0 0

0 0 −ωI + ωII 0

0 0 0 −ωI − ωII

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ γ
�2

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −�
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωI + ωII − γ �2 0 0 0

0 ωI − ωII + γ
�
2 −γ� 0

0 −γ� −ωI + ωII + γ
�
2 0

0 0 0 −ωI − ωII − γ �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.298)

In the first line we grouped together the magnetic-field-related terms, before combining
everything together in the second line. Note that something like �ωI has units of energy.

We immediately see that the terms relating to the magnetic field are diagonal in this
basis: this means that if we had non-interacting spins (γ = 0) then the problem would
have been trivial/diagonal/already solved. Notice that we said “in this basis”: obviously,
this is referring to the eigenkets |ζa〉 which, you should recall, were built up from the two
individual spins in the uncoupled representation. As a matter of fact, if you take γ = 0
together withωI = ωII, you’re basically adding together these two spins: as a result, solving
the eigenproblem for this case leads to the same four eigenvalues you may be familiar with
from the coupled representation, corresponding to a spin-singlet and a spin-triplet (adding
spins together is what the coupled representation does).

On the other hand, the interacting-spins term is not diagonal in our basis. As it so hap-
pens, if you had been working in the coupled representation, then this second term would
have been diagonal (but then the magnetic-field terms wouldn’t have been diagonal). Thus,
our Hamiltonian (which has the spins interacting both with the magnetic field and with
each other) is an example of a situation where the eigenvalues and eigenvectors are harder
to pin down; thus, an eigenproblem solver is helpful here.58 Reiterating: if you solve for
the eigenvectors (in our representation, the uncoupled one) for the general case, you will
not find the column vectors ζζζ↑↑, ζζζ↑↓, ζζζ↓↑, and ζζζ↓↓ from Eq. (4.277): these were arrived at as
eigenvectors of SIz (and they are also eigenvectors of SIIz) but they are not eigenvectors of
our more general Hamiltonian. That’s not a big deal: this is precisely why we are studying
the solution of general eigenvalue problems in this chapter.

58 Of course, this is still a small matrix, so you could still do everything by hand if you wanted to.
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4.5.3 Three Particles

We are now (at last) ready to reap the benefits of the theoretical machinery we established
in the previous sections. We will study the problem of three spin-half particles, interacting
with a magnetic field and with each other. The matrix formulation of this problem gives rise
to 8×8 matrices (so 64 matrix elements per matrix): since there are three particles and three
Cartesian coordinates, we need to deal with at least nine matrices, each of which is 8 × 8.
In other words, this is not a task that is comfortably carried out using paper and pencil,
which is why it doesn’t appear in QM textbooks traditionally. When the three-angular-
momenta problem does appear in textbooks, it is typically in the context of the coupled
representation: in this case the Clebsch–Gordan coefficients are generalized to entities like
the Wigner 6j-symbols or the Racah W-coefficients; these are messy to calculate, so they
are typically found tabulated. As we’ll soon see, both in this section and in the next one,
our framework is essentially no more laborious to implement for the case of three particles
(or even for more particles) than the two-particle problem was. This is because we are
side-stepping the whole issue of angular momentum coupling (or recoupling): we will,
once again, be working in the uncoupled representation. At the end of this process, we can
use our eigensolver to diagonalize any matrix we desire: that automatically will allow us
to evaluate quantities like the total spin of the system (or its z projections).

Inevitably, the present subsection will be much shorter than the preceding ones: if you’ve
been paying attention so far then you will recognize that we’re merely repeating the same
arguments; if you haven’t been reading attentively, we urge you to first study the one- and
two-particle sections more carefully.

As usual, we start from the formulation in terms of operators and state vectors. Let’s
call our three particles: particle I, particle II, and particle III, again using Roman numerals.

The first particle lives in a vector space spanned by the two kets
∣∣∣∣ζ(I)
↑

〉
and

∣∣∣∣ζ(I)
↓

〉
, compactly

denoted by
∣∣∣ζ(I)

i

〉
. Similarly, a second particle ket is

∣∣∣∣ζ(II)
j

〉
and for the third particle we

have
∣∣∣ζ(III)

k

〉
. We wish to start from these single-particle vector spaces and generalize to a

three-particle space. As before, we accomplish this using the concept of a tensor product:

∣∣∣ζ(I)
i

〉
⊗

∣∣∣∣ζ(II)
j

〉
⊗

∣∣∣ζ(III)
k

〉
≡

∣∣∣ζμ〉 (4.299)

where μ is an index that covers all the three spin-projection possibilities, namely:

μ = ↑↑↑, ↑↑↓, ↑↓↑, ↑↓↓, ↓↑↑, ↓↑↓, ↓↓↑, ↓↓↓ (4.300)

We’ll consistently pick Greek letters starting from μ to denote three-particle indices. Here
it is implicit that the first arrow refers to particle I, the second arrow to particle II, and
the third arrow to particle III. Note that an entity like

∣∣∣ζμ〉 (or like
∣∣∣ζ↑↓↓〉) doesn’t have a

superscript in parentheses, because it is not a one-particle state vector, but is made up of
three one-particle state vectors. You may wish to think of μ as the ordered triple (i, j, k).

Turning to how the operators look in the three-particle Hilbert space, we’ll again build up



224 Matrices

our three-particle operators using tensor products between one-particle operators. Here’s
an example for the z projection of the first particle:

Ŝ Iz = Ŝ (I)
z ⊗ Î(II) ⊗ Î(III) (4.301)

This is almost identical to Eq. (4.268): the only difference is that we have an extra tensor
product and an extra identity operator at the end. As usual, the left-hand side doesn’t have
a superscript in parentheses, because it is not a one-particle operator (it’s a three-particle
operator).59 Here’s another example, namely the three-particle operator that measures the
y component of the spin for particle II:

Ŝ IIy = Î(I) ⊗ Ŝ (II)
y ⊗ Î(III) (4.302)

where we do nothing (i.e., have an identity) for particles I and III and take the tensor
product with the appropriate operator for particle II.

Next up, the matrix representation. As advertised, this involves 8 × 8 matrices for spin
operators (and therefore 8 × 1 column vectors for the state vectors). As usual, we are
sandwiching operators between a bra and a ket: this time around, we have eight basis kets,
as per Eq. (4.299): this is determined by the possible values of the μ index, see Eq. (4.300).
For concreteness, we discuss the operator Ŝ Iz. We are interested in evaluating the matrix:

SIz =
{
〈ζμ|Ŝ Iz|ζν〉

}
(4.303)

where we have used two different (Greek) indices on the left and on the right (each of which
can take on eight values). As you may recall, this calculation may be carried out the hard
way, explicitly evaluating each of the 64 possibilities. Instead, we will now take advantage
of having introduced the Kronecker product. Repeating the derivation in Eq. (4.279) you
will find out that the answer is simply:

SIz = Sz ⊗ I ⊗ I (4.304)

where, as usual, we are now dealing with matrices so there are no more particle labels to
worry about. We don’t want to go too fast at this point, so let’s take a moment to appre-
ciate what this simple-looking result means. This is the first time we’ve encountered two
Kronecker products in a row, so you may be wondering how to interpret such an operation.
Luckily, the Kronecker product is associative:

(T ⊗ U) ⊗ V = T ⊗ (U ⊗ V) (4.305)

meaning you simply carry out one Kronecker product after the other and it doesn’t matter
which Kronecker product you carry out first. (Even so, the Kronecker product is not com-
mutative, U⊗V � V⊗U.) Thus, in the present case you could, similarly to what we did in

59 Note that, while Ŝ (I)
z is always a one-particle operator, we are using the same symbol, Ŝ Iz, to denote a two- or

a three-particle operator – you can figure out which one we mean based on the context.
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Eq. (4.279), identify (Sz)ik(I ) jl using the Kronecker product, namely (Sz ⊗I )ab. Crucially,
you could then treat this resulting expression as just another matrix element, which would
have the same role as Uik in Eq. (4.282). You should think about this a little, keeping in
mind that in that defining relation U and V did not have to have the same dimensions. This
is precisely the situation we are faced with right now: in forming Sz ⊗ I ⊗ I we can first
take one Kronecker product, producing a 4×4 matrix, and then take the Kronecker product
of that matrix with the last 2 × 2 identity matrix: (Sz ⊗ I ) ⊗ I . That’s what gives you an
8×8 matrix at the end. Obviously, the same arguments apply for any other operator/matrix
pair, so we can produce analogous results, for example:

SIIy = I ⊗ Sy ⊗ I (4.306)

As you will discover when you print out this matrix using a Python program, it is starting
to have some non-trivial structure. Obviously, now that we are dealing with 8× 8 matrices,
it is becoming harder to calculate (or even write out) things by hand.

One last stop before we discuss the three-particle Hamiltonian. The interaction between
spins I and II will look identical to Eq. (4.288):

ŜI · ŜII = Ŝ IxŜ IIx + Ŝ IyŜ IIy + Ŝ IzŜ IIz (4.307)

The derivation in Eq. (4.289) carries over in its essence, therefore:

SI·II =
{
〈ζμ|ŜI · ŜII|ζν〉

}
= SIxSIIx + SIySIIy + SIzSIIz (4.308)

This is basically identical to Eq. (4.290), but you have to keep in mind that now SI·II and
all the other matrices have dimensions 8 × 8, not 4 × 4.60

Let us conclude this section with a discussion of the Hamiltonian. The matrix form of
the Schrödinger equation is still the same:

Hψψψ = Eψψψ (4.309)

where the H matrix is 8 × 8 and the state ψψψ is an 8 × 1 column vector. As far as the
Hamiltonian operator Ĥ is concerned, we will again have interactions with a magnetic
field and between spins. Since we now have three particles, there are more pairs one could
form: in addition to having particles I and II interacting, we could also have particles I and
III, and particles II and III. Thus, Eq. (4.296) is generalized to:

Ĥ = −gIqIB
2mI

Ŝ Iz −
gIIqIIB
2mII

Ŝ IIz −
gIIIqIIIB

2mIII
Ŝ IIIz + γ

(
ŜI · ŜII + ŜI · ŜIII + ŜII · ŜIII

)
= −ωIŜ Iz − ωIIŜ IIz − ωIIIŜ IIIz + γ

(
Ŝ IxŜ IIx + Ŝ IyŜ IIy + Ŝ IzŜ IIz

)
+ γ

(
Ŝ IxŜ IIIx + Ŝ IyŜ IIIy + Ŝ IzŜ IIIz

)
+ γ

(
Ŝ IIxŜ IIIx + Ŝ IIyŜ IIIy + Ŝ IIzŜ IIIz

)
(4.310)

60 The result in Eq. (4.293) doesn’t translate to the three-particle case quite so cleanly: it has to be generalized.
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The first three terms correspond to the interaction with the magnetic field and the remain-
ing terms to the interaction within the spin pairs (we assumed, for simplicity, the same
coupling constant for all pairs). In the second equality we expanded the dot products as per
Eq. (4.307). We’re now ready to build up the matrix H =

{
〈ζμ|Ĥ|ζν〉

}
. We get:

H = −ωISIz − ωIISIIz − ωIIISIIIz + γ (SI·II + SI·III + SII·III) (4.311)

where this time, in order to be concise, we chose not to expand SI·II and its cousins from
Eq. (4.308) and the corresponding relations. As was to be expected, all of the matrices
involved here are 8 × 8: once again, the magnetic-field-related contributions are diagonal
and the spin-interacting parts are non-diagonal. Yet again, that’s not a problem because we
know how to solve Hψψψ = Eψψψ for the general case.

As you will find out when you solve the relevant problem, our approach can handle the
simplification of γ = 0 (i.e., non-interacting spins) together with ωI = ωII = ωIII (i.e.,
several copies of the same type of particle). This problem amounts to a version of standard
angular momentum addition, this time applied to the case of three spin-half particles. This
involves a diagonal matrix, so it’s trivial to find the eigenvalues (the only labor involved
is that required to produce the Hamiltonian matrix). On the other hand, similarly to what
we saw for the case of two spin-half particles, if you switch off the magnetic field you get
a non-diagonal problem (which is diagonal in the coupled representation – not employed
here). Obviously, our situation consists of both the magnetic field and the spins interacting
with each other, so we’ll have to code this up in as general a fashion as possible (e.g., you
might want to introduce a different interaction term in the future).

4.5.4 Implementation

We are now ready to implement our machinery in Python. To keep things manageable, we
provide three codes, the first of which is the program that builds the infrastructure (namely
the Pauli spin matrices and the Kronecker product). The second program then employs 4×4
matrices to diagonalize the two-spin Hamiltonian. Once we’ve discussed the two-spin code
and its output, we turn to our main attraction, which is a separate program implementing a
three-spin function. This is where the 8 × 8 matrices are built and used.

Kronecker Product

In Code 4.11 we code up the Pauli spin matrices (for future use) and the Kronecker product.
The function paulimatrices() simply “hard-codes” the Pauli matrices from Eq. (4.254).
As usual, we have opted to create a 2d NumPy array using a Python list containing all the
elements, followed by a call to reshape(), in order to avoid a list-of-lists. The dtype
of our arrray elements is here inferred from the arguments we pass in: this means that
one of our Pauli matrices contains complex numbers and the other two floats. Importantly,
we have chosen to write paulimatrices() in such a way that it returns a tuple of three
NumPy arrays. This is a pattern that will re-emerge: in an attempt to keep things easier to
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kron.py Code 4.11

import numpy as np

def paulimatrices():

sigx = np.array([0.,1,1,0]).reshape(2,2)

sigy = np.array([0.,-1j,1j,0]).reshape(2,2)

sigz = np.array([1.,0,0,-1]).reshape(2,2)

return sigx, sigy, sigz

def kron(U,V):

n = U.shape[0]

p = V.shape[0]

W = np.zeros((n*p,n*p), dtype=np.complex64)

for i in range(n):

for k in range(n):

for j in range(p):

for l in range(p):

W[p*i+j,p*k+l] = U[i,k]*V[j,l]

return W

if name == ‘ main ’:

sigx, sigy, sigz = paulimatrices()

allones = np.ones((3,3))

kronprod = kron(sigx,allones); print(kronprod.real)

reason about, we have chosen to “mix” conventions, so we create Python entities (tuples
or lists) that contain NumPy arrays. It’s almost certainly more efficient to do everything
in NumPy: in this case, that would imply returning a 3d NumPy array, where one of the
indices would keep track of which Cartesian component is being referred to and the other
two indices would be “Pauli indices”, namely the indices that tell us which bra (〈ζi|) and
which ket (|ζ j〉) we are using to sandwich our operator(s). Finally, notice that these Pauli
matrices are one-particle entities. We will be able to combine them with other matrices to
produce two-particle entities using the Kronecker product.

Speaking of which, the function kron() is reasonably straightforward.61 After figuring
out n and p, which determine the dimensions of our matrices, we create an np × np matrix
where we will store the output: this is made to be complex, in order to be as general
as possible (we already saw that the y Pauli matrix is imaginary, so we need to employ
complex arithmetic). We then proceed to carry out an iteration over all the one-particle

61 We could have used numpy.kron() but, as usual, we prefer to roll our own.
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Code 4.12 twospins.py Code 4.12

from kron import paulimatrices, kron

from qrmet import qrmet

import numpy as np

def twospins(omI,omII,gam):

hbar = 1.

paulis = paulimatrices()

iden = np.identity(2)

SIs = [hbar*kron(pa,iden)/2 for pa in paulis]

SIIs = [hbar*kron(iden,pa)/2 for pa in paulis]

SIdotII = sum([SIs[i]@SIIs[i] for i in range(3)])

H = -omI*SIs[2] - omII*SIIs[2] + gam*SIdotII

H = H.real

return H

if name == ‘ main ’:

H = twospins(1.,2.,0.5)

qreigvals = qrmet(H); print(qreigvals)

indices (ik jl), in order to implement Eq. (4.282), namely Wab = UikV jl where a = pi + j
and b = pk + l. This is the only time in the book that we use four nested loops (typically a
slow operation for large problems).

The main program takes the Kronecker product of a given Pauli spin matrix (a one-body,
i.e., 2 × 2 entity) and a 3 × 3 matrix of 1’s. This is a mathematical test case, i.e., there is no
physics being probed here. Run the code to see what you get. Then, to highlight the fact that
the Kronecker product is not commutative, try putting the Pauli matrix in the second slot.
Even though kron() returns a complex matrix, we take the real part just before printing
things out, for aesthetic reasons. You should try to work out what the output should be
before proceeding; this will be a 6× 6 matrix. In order to interpret the results, it’s probably
best to look at Eq. (4.280). When the Pauli spin matrix comes first, we get 3 × 3 blocks,
each of which repeats a single matrix element of σσσx from Eq. (4.254). When the matrix
full of 1’s comes first, we get 2 × 2 blocks each of which is a σσσx.

Two Particles

Code 4.12 contains a Python implementation of the two-spin Hamiltonian. This program
imports the needed functionality from our earlier code(s) and then defines our new physics
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function twospins(), which takes in as inputs the coefficients ωI, ωII, and γ. We first set
� to 1, to keep things simple; while this is part of what are known as “natural units”, it
won’t have any effect in what follows. We then call paulimatrices() and create a 2 × 2
identity matrix for later use. Our main design choice (hinted at above) was to produce
and store our 4 × 4 matrices in a list. The first time we do this is when we employ a list
comprehension to create SIs. Note how Pythonic this is: we use no indices and directly
iterate through the Pauli-matrices tuple. This (together with repeated calls to our Kronecker
product function, kron()) allows us to produce the 4 × 4 matrices SIx, SIy, and SIz in
turn, storing them together in a list of three elements.62 As we saw in Eq. (4.285) and in
Eq. (4.287), when we’re dealing with particle I we put the Pauli spin matrix before the
identity (e.g., SIz = Sz ⊗ I ), whereas when we’re dealing with particle II the identity
comes first (e.g., SIIx = I ⊗Sx). You may now start to realize why we labelled the particles
using the Roman numerals I and II: we already have to deal with Cartesian-component
indices and Pauli indices. If we had also chosen to label the particles using the numbers 1
and 2 (or, heaven forfend, 0 and 1) it would have been easier to make a mistake.

We then evaluate SI·II as per Eq. (4.290). We have six matrices that we need to multiply
pairwise and then add up the results (giving you one 4× 4 matrix). We have, again, chosen
to use a list comprehension: this produces the matrix multiplications and stores them in a
list, whose elements (which are matrices) are then added together using Python’s sum().63

Depending on your eagerness to be Pythonic at all costs, you may have opted to avoid
using any indices whatsoever, saying instead:

SIdotII = sum([SI@SII for SI,SII in zip(SIs,SIIs)])

Of course, this is starting to strain the limits of legibility. If you’re still not comfortable
with list comprehensions, simply write out the three matrix multiplications:

SIs[0]@SIIs[0] + SIs[1]@SIIs[1] + SIs[2]@SIIs[2]

If you know that you will never have to deal with more than three Cartesian components,
then it’s OK to explicitly write out what you’re doing.

We then proceed to construct the 4 × 4 Hamiltonian matrix H of Eq. (4.297), using
several of the results we have already produced. So far we’ve been doing our calculations
using complex numbers, as we should. When we took the dot product that produced SI·II,
however, everything became real again. We therefore keep only the real part of H, since our
eigenvalue methods (developed earlier in this chapter) won’t work with complex matrices.

The main program is incredibly short: we first call twospins(), with some arbitrary
input parameters. Now that we have the matrix H, we call our very own qrmet() to evaluate

62 Again, you might prefer to use a 3d NumPy array. In that case, you could implement the interacting-spins term
much more concisely, if you know what you’re doing. A further point: while numpy.dot() and @ are for us
fully equivalent, they behave differently for 3d, 4d, etc. arrays.

63 In turn, when Python tries to sum these matrices together, it knows how to do that properly, since they are
NumPy arrays – recall that summing lists together would have concatenated them and that’s not what we’re
trying to do here. Using np.sum() is also wrong: do you understand why?
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�Fig. 4.1 Eigenvalues for the problem of two spins (left) and three spins (right)

the matrix’s eigenvalues and then print out the result.64 Running this code, we see that
we get a non-diagonal 4 × 4 Hamiltonian matrix, which we then diagonalize and get 4
eigenvalues. Of course, a 4× 4 matrix is not too large, so you could have tried to solve this
problem the old-fashioned way, via |A − λI | = 0. As the dimensionality keeps growing,
this is, in general, less feasible. While the output of our code is short, you shouldn’t let that
mislead you: our program carries out a number of calculations that would have required
some effort to do by hand. As always, we urge you to play around with this code, printing
out intermediate results. You can start by printing out matrices like SIz or SIIx; you can
compare with the matrices we derived in an earlier section. Another thing to try is to study
the limits of no magnetic field or the opposite limit of no interaction between the spins. In
one of these cases, our function qrmet() has trouble converging to the right answer. You
will explore this in one of the problems.

In the left panel of Fig. 4.1, we show the result of using twospins() to plot the total
energy as a function of the ωI (assuming ωII/ωI = 2, just like in our code). In both the
axes, we have made everything dimensionless by dividing out an appropriate product of a
power of � and the coupling constant γ. Physically, you can envision tuning the magnetic
field B to tune the magnitude of ωI. At vanishing magnetic field, we find three of the
states becoming degenerate in energy; this is the spin-triplet that you find in the coupled
representation (namely, three states with total spin 1). Another feature of this plot is that, at
some point, there is a crossing between eigenenergies; you should spend some time trying
to understand why this happens. It may help you to know that physically this situation is
similar to the Zeeman effect in hydrogen (only there, ωII � ωI holds).

64 A problem explores why we’re not using our eig() function instead.
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threespins.py Code 4.13

from qrmet import qrmet

from kron import paulimatrices, kron

import numpy as np

def threespins(omI,omII,omIII,gam):

hbar = 1.

paulis = paulimatrices()

iden = np.identity(2)

SIs = [hbar*kron(kron(pa,iden),iden)/2 for pa in paulis]

SIIs = [hbar*kron(kron(iden,pa),iden)/2 for pa in paulis]

SIIIs = [hbar*kron(kron(iden,iden),pa)/2 for pa in paulis]

SIdotII = sum([SIs[i]@SIIs[i] for i in range(3)])

SIdotIII = sum([SIs[i]@SIIIs[i] for i in range(3)])

SIIdotIII = sum([SIIs[i]@SIIIs[i] for i in range(3)])

H = -omI*SIs[2] - omII*SIIs[2] - omIII*SIIIs[2]

H += gam*(SIdotII+SIdotIII+SIIdotIII)

H = H.real

return H

if name == ‘ main ’:

np.set printoptions(precision=3)

H = threespins(1.,2.,3.,0.5)

qreigvals = qrmet(H); print(qreigvals)

Three Particles

Code 4.13 is a Python implementation for the case of three particles, building on our earlier
work; in a problem, you are asked to study the case of four spin-half particles.65

We first import the functions paulimatrices() and kron() from our earlier code.
Our only new function, threespins(), is a modification of twospins(). While we, of
course, have to introduce a new variable to keep track of the matrices corresponding to
particle III, that’s not the main change. The core modification is that, in the list compre-
hension that creates these matrices, we now have to call the kron() function twice. This
is hardly surprising if you bring to mind equations like Eq. (4.304), SIz = Sz ⊗ I ⊗ I . The

65 You are free to try to implement the general case of any number of particles, but it’s probably best to do that
after you’ve done the four-particle case the quick and dirty way.
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Kronecker product is not commutative, so it matters whether the Pauli matrix is first, sec-
ond, or third. A natural consequence of doing two Kronecker products is that at the end we
will be dealing with 8 × 8 matrices. Turning to the dot-product terms like SI·II, we observe
that the relevant line, SIdotII = sum([SIs[i]@SIIs[i] for i in range(3)]), is
identical to what we used in the two-particle code, despite the fact that the matrices being
manipulated are now 8 × 8: Python and NumPy work together to accomplish exactly what
we want. The only difference in this regard is that since we now have three particles, we
have to form more pairs, also constructing SI·III and SII·III. Our function then proceeds to
create the Hamiltonian matrix, directly following Eq. (4.311).

The main program is very short: the only change in comparison to the two-particle case
(in addition to having to pass in ωIII as an argument) is a beautifying fix ensuring that
we don’t print out too many digits of precision. Running this code, we realize that we
are dealing with an 8 × 8 matrix that is not diagonal. That is where our function qrmet()
comes in handy and evaluates the eight eigenvalues. You could have tried using |A−λI | = 0
to compute these eigenvalues, but you would be faced with a polynomial of eighth order:
while some symmetries of the matrix might help you, you would get into trouble the second
you modified our Hamiltonian to contain a new term, say Ŝ Ix.

Like in the two-spin case, we also used threespins() in order to build some physical
intuition. The right panel of Fig. 4.1 shows the total energy for our eight states as a function
of the ωI (assuming ωII/ωI = 2 and ωIII/ωI = 3, just like in our code). As before, we have
ensured that all quantities plotted are dimensionless. At vanishing magnetic field, we see
the states forming two quartets, with each of the four states in each quartet being degenerate
in energy. As you will discover when you solve the corresponding problem, the situation is
actually a bit more complicated: we are here faced with a spin-quartet (with total spin 3/2)
and two spin-doublets (each of which has total spin 1/2). Moving to other features of our
plot, we see that this time around we find several more eigenvalue crossings.

Writing threespins() was not really harder than writing twospins(), yet the prob-
lem we solved was much larger. This is the beauty of using a computer to solve your
problem: as long as our infrastructure (here mainly the Kronecker product) is robust, we
can address more demanding scenarios without much effort on our part (of course, the
computer now has to multiply larger matrices together, so the total operation cost can grow
rather rapidly). Sometimes the knowledge that you’ve already built up your machinery is
enough to convince you to tackle a problem that you may have shied away from if all
you had at your disposal was paper and pencil. To put this concretely: just like in the two-
particle case, our output is not showing the intermediate variables we made use of. You will
benefit from experimenting with this code, printing out matrices like SIIIx and comparing
with what you derive analytically. As you may have noticed, in our theory section on the
three-particle problem (section 4.5.3) we did not explicitly show any 8×8 matrices, so you
will have to do the bulk of the derivations yourself; we hope that this process will convince
you of the point we were making before in abstract terms, regarding how the computer can
help. If that doesn’t work, then solving the last problem at the end of this chapter (asking
you to repeat this exercise for the 10-particle case) should do the trick.



4.6 Problems 233

4.6 Problems

1. Show that the product of the eigenvalues of a matrix is equal to its determinant.

2. Show that the product of two (a) upper-triangular matrices is an upper triangular matrix,
and (b) orthogonal matrices is an orthogonal matrix.

3. In the main text we derived an error bound for the condition number of a linear system of
equations, κ(A), in Eq. (4.50), under the assumption that the vector b was held constant.
You should now carry out an analogous derivation, assuming b is perturbed but A is
held fixed. This time, you will arrive at an error bound for ‖Δx‖/‖x‖.

4. Write Python codes that implement:

(a) finding the lower and upper triangular part of a given matrix

(b) the Euclidean norm

(c) the infinity norm

You can use NumPy but, obviously, you shouldn’t use the functions that have been
designed to give the corresponding answer each time.

5. Rewrite triang.forsub() and triang.backsub() in less idiomatic form.

6. For the following linear system:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎝0.8647 0.5766 0.2885

0.4322 0.2822 0.1442

⎞⎟⎟⎟⎟⎟⎟⎠ (4.312)

evaluate the determinant, norm, condition number of A, as well as the effect hand-
picked small perturbations in the matrix elements have on the solution vector.

7. Search the NumPy documentation for further functions that produce or manipulate ar-
rays. Use what you’ve learned to produce an n × n matrix of the form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 . . . −1

0 1 −1 . . . −1

0 0 1 . . . −1
...

...
...

. . .
...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.313)

which is a generalization of what we called Example 6. Your code should be such that
it should be trivial to change the n to a new value.

Now, take n=16 and solve the system (with b made up of alternating +1’s and −1’s, as
in Eq. (4.40)) with and without a small perturbation of −0.01 in the bottom-left element.
Then, evaluate the condition number κ(A).
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8. Carry out an eigenvalue sensitivity analysis for the following 20 × 20 matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 19 18 17 . . . 3 2 1

19 19 18 17 . . . 3 2 1

0 18 18 17 . . . 3 2 1
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 2 2 1

0 0 0 0 . . . 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.314)

which is a generalization of our Example 8 from the main text, Eq. (4.52). Specifically,
evaluate the condition numbers for the largest (in absolute value) 11 real eigenvalues
and discuss which seem to be ill-conditioned.

9. Prove that left and right eigenvalues are equivalent (something which does not hold for
left and right eigenvectors).

10. Find a matrix that is sensitive to perturbations for all three cases of: (a) linear system
of equations, (b) eigenvalue, and (c) eigenvector. Explain how you would go about
constructing such a matrix.

11. When adding 0.005 to the bottom-left element of Example 11, Eq. (4.83), we saw that
eigenvector v0 didn’t change very much. Now that you are armed with the general
derivation of eigenvector sensitivity, you should explore this perturbation in more detail.
After that, try out small perturbations in other matrix elements and repeat the study.

12. Evaluate the norm and condition number for the 4 × 4, 10 × 10, and 20 × 20 matrices
you get from triang.testcreate().

13. In this problem we will evaluate the sum:

N∑
k=0

k2 (4.315)

The trick we’ll use is to start from the following sum:

N∑
k=0

[
(k + 1)3 − k3

]
(4.316)

First evaluate this sum without expanding the parentheses: you will notice that it in-
volves a telescoping series and is therefore straightforward. Now that you know what
this sum is equal to, expand the parentheses and solve for the sum in Eq. (4.315). Fi-
nally, it should be trivial to re-express the final result for the case N = n − 1.

14. Use LU decomposition to calculate the inverse of a matrix A as per Eq. (4.147) and
the determinant as per Eq. (4.150). Test your answers by comparing to the output of
numpy.linalg.inv() and numpy.linalg.det().

15. Rewrite the ludec() function, where you now don’t store the L and U matrices sepa-
rately. Then, rewrite the lusolve() function to use your modified ludec(). Can you
still use the forsub() and backsub() functions?

16. Prove (by contradiction) that Doolittle’s LU decomposition is unique.
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17. Intriguingly, the LU decomposition of a matrix A preserves tridiagonality (meaning that
L and U are tridiagonal if A is tridiagonal). Take the following tridiagonal matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0 e0 0 0 . . . 0 0 0

c1 d1 e1 0 . . . 0 0 0

0 c2 d2 e2 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . cn−2 dn−2 en−2

0 0 0 0 . . . 0 cn−1 dn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.317)

We only need to store the main diagonal and the two diagonals next to the main diagonal
(i.e., there is no need to create and employ an n × n NumPy array), namely the vectors
c, d, and e. Rewrite ludec() and lusolve() so that they apply to this, tridiagonal,
problem. Before you start coding, you should first write out the equations involved.

18. Implement scaled partial pivoting for the Gaussian elimination method, as per the dis-
cussion around Eq. (4.164):

∣∣∣Ak j

∣∣∣
sk
= max

j≤m≤n−1

∣∣∣Am j

∣∣∣
sm

(4.318)

Remember to also swap the scale factors when you are interchanging a row.

19. Implement pivoting (whether scaled or not) for the case of LU decomposition. While
you’re at it, also calculate the determinant for the case of pivoting (you have to keep
track of how many row interchanges you carried out).

20. Use Gaussian elimination or LU decomposition (without and with pivoting) for:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4 8 4 1

4 5 3 7 2

8 3 9 9 3

4 7 9 5 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.319)

Does pivoting help in any way? What are your conclusions about this matrix? You
sometimes hear the advice that, since the problem arises from one of the Uii’s being
zero, you should replace it with a small number, say 10−20. Does this work?

21. We will now employ the Jacobi iterative method to solve a linear system of equations,
for the case where the coefficient matrix is sparse. In the spirit of what we saw in the
discussion around Eq. (4.317) in an earlier problem, we will formulate our task in such
a way that the entire matrix A need not be stored explicitly.
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To be specific, focus on the following cyclic tridiagonal matrix:

(A|b) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 0 . . . 0 0 0 −1 1

−1 4 −1 0 . . . 0 0 0 0 1

0 −1 4 −1 . . . 0 0 0 0 1
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 . . . −1 4 −1 0 1

0 0 0 0 . . . 0 −1 4 −1 1

−1 0 0 0 . . . 0 0 −1 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.320)

Something similar appears when you study differential equations with periodic bound-
ary conditions, as we will see in chapter 8. (Note that A is “almost” a tridiagonal ma-
trix.) For this problem, the Jacobi iterative method of Eq. (4.169) turns into:

x(k)
0 =

(
1 + x(k−1)

1 + x(k−1)
n−1

) 1
4

x(k)
i =

(
1 + x(k−1)

i−1 + x(k−1)
i+1

) 1
4
, i = 1, . . . , n − 2

x(k)
n−1 =

(
1 + x(k−1)

0 + x(k−1)
n−2

) 1
4

(4.321)

Implement the Jacobi iterative method for this set of equations. Your input parameters
should be only the total number of iterations, the tolerance, as well as n (which deter-
mines the size of the problem), i.e., there are no longer any A and b to be passed in.
Choose a tolerance of 10−5 and print out the solution vectors for n = 10 and for n = 20,
each time also comparing with the output of numpy.linalg.solve(). (To produce
the latter, you will have to form A and b explicitly.)

22. As mentioned in the main text, a small modification to the Jacobi method of Eq. (4.169)
leads to an improved algorithm. This is the Gauss–Seidel method, which is given by:

x(k)
i =

⎛⎜⎜⎜⎜⎜⎜⎝bi −
i−1∑
j=0

Ai jx
(k)
j −

n−1∑
j=i+1

Ai jx
(k−1)
j

⎞⎟⎟⎟⎟⎟⎟⎠ 1
Aii
, i = 0, 1, . . . , n − 1 (4.322)

In words, what the Gauss–Seidel method does is to use the improved values as soon as
they become available. Implement the Gauss–Seidel method in Python and compare its
convergence with that of the Jacobi method, for the same problem as in jacobi.py.

23. This problem reformulates (in matrix form) the Jacobi iterative method for solving lin-
ear systems of equations and provides a justification for its convergence criterion.

(a) Split the matrix A in terms of a lower triangular matrix, a diagonal matrix, and an
upper triangular matrix:

A = D(L + I + U) (4.323)

Now, if you are told that the following relation:

x(k) = Bx(k−1) + c (4.324)

is fully equivalent to the Jacobi method of Eq. (4.169), express B and c in terms of
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known quantities. (Unsurprisingly, a similar identification can be carried out for the
Gauss–Seidel method as well.)

(b) We will now write the matrix relation Eq. (4.324) for the exact solution vector x.
This is nothing other than:

x = Bx + c (4.325)

Combine this with Eq. (4.324) to relate ‖x(k) − x‖ with ‖x(k) − x(k−1)‖. Discuss how
small ‖B‖ has to be for ‖x(k)−x(k−1)‖ to constitute a reasonable correctness criterion.

(c) Examine the infinity norm ‖B‖∞ and see what conclusion you can reach about its
magnitude for the case where A is diagonally dominant.

24. Explicitly prove Eq. (4.173), V−1AV = Λ, for the 3×3 case. Hint: first prove AV = VΛ.
25. Implement the (direct) power method with the stopping criterion in Eq. (4.185). You

will have to keep the q(k) in the current iteration and in the previous one.
26. Use invpowershift.py to evaluate all eigenvalues and all eigenvectors for:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1 2

1 4 3

2 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4.326)

27. This problem studies the modified Gram–Schmidt method, which is less sensitive to
numerical errors than classical Gram–Schmidt. Conceptually, classical Gram–Schmidt
produces new a′j vectors by subtracting out any non-orthogonal components of the orig-
inal vectors a j, as per Eq. (4.203). The problem with this is that if in the calculation of,
say, q3 a numerical roundoff error is introduced, this error will then be propagated to the
computation of q4, q5, and so on. In contradistinction to this, modified Gram–Schmidt
tries to correct for the error in q3 when computing q4, q5, and so on.66

In equation form, what modified Gram–Schmidt does is to replace the relations from
Eq. (4.198) to Eq. (4.202) as follows:

q0 =
a0

‖a0‖
a′(0)

j = a j − (qT
0 a j)q0, j = 1, 2, . . . , n − 1

q1 =
a′(0)

1

‖a′(0)
1 ‖

(4.327)

So far, there’s nothing really “modified” going on. Then, the next step is:

a′(1)
j = a′(0)

j − (qT
1 a′(0)

j )q1, j = 2, 3, . . . , n − 1

q2 =
a′(1)

2

‖a′(1)
2 ‖

(4.328)

Note how the inner product is taken not with the original vector, but with the updated
one (which has a superscript in parentheses).

66 This approach is somewhat similar in spirit to that of the Gauss–Seidel method, in that updated values are used
but, of course, we are comparing apples with oranges.
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Thus, for the general case we have:

qi =
a′(i−1)

i

‖a′(i−1)
i ‖

a′(i)j = a′(i−1)
j − (qT

i a′(i−1)
j )qi, j = i + 1, . . . , n − 1

(4.329)

Implement QR decomposition in Python using the modified Gram–Schmidt approach.
You should carefully think about how to structure your new code: the prescription above
builds the required matrices row by row (whereas qrdec() works column by column),
so it may help you to first restructure your classical Gram–Schmidt code to also work
row by row. At that point, you will see that the only difference between the two methods
is whether the inner products are computed using the original or the updated vectors.

When you’re done, evaluate ‖QT Q − I‖ for the testcreate() problem and compare
the orthogonality properties of our new method with those of classical Gram–Schmidt.

28. We will now use QR decomposition to solve a linear system of equations, Ax = b.
This equation can be rewritten as: QRx = b. We can take advantage of the orthogonal-
ity of Q to re-express this as: Rx = QT b. But now the right-hand side contains only
known quantities and the left-hand side has the upper-triangular matrix R, so a back
substitution is all that’s needed. Implement this approach in Python for both classical
and modified Gram–Schmidt (if you haven’t solved the problem introducing modified
Gram–Schmidt, use only classical Gram–Schmidt).

29. Here we will generalize the Gram–Schmidt orthonormalization process (Eq. (4.198) to
Eq. (4.203)) to work with functions. We realize that we are lacking the concept of the
“length” of a function (which would correspond to the norm used in the denominator to
normalize) as well as the concept of the “inner product” of two functions (which would
be needed to subtract out any component that’s not orthogonal). Let’s introduce the
latter, namely the inner product of the function f (x) with the function g(x). We choose
to work with the symmetrical interval −1 ≤ x ≤ 1 and define:

( f , g) ≡
∫ 1

−1
f (x)g(x)dx (4.330)

assuming these are real functions. It is then straighforward to define the length of a
function as simply

√
( f , f ).

We are now in a position to start following the Gram–Schmidt steps. We will call q j

(non-bold) the result of orthonormalizing the monomials a0 = 1, a1 = x, a2 = x2, a3 =

x3, . . .. Taking them in order we have:

q0 =
a0√

(a0, a0)
=

1
√

(1, 1)
=

1√∫ 1

−1
12dx

=
1
√

2
(4.331)

Next we have:

a′1 = a1 − (q0, a1)q0 = x −
(

1
√

2
, x

)
1
√

2
= x − 1

√
2

∫ 1

−1

1
√

2
xdx = x (4.332)
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which was particularly easy to calculate since the integral vanishes (1 and x were al-
ready orthogonal). Normalizing, we get:

q1 =
a′1√

(a′1, a
′
1)
=

x
√

(x, x)
=

x√∫ 1

−1
x2dx

=

√
3
2

x (4.333)

The next step is:

a′2 = a2 − (q0, a2)q0 − (q1, a2)q1 = x2 −
(

1
√

2
, x2

)
1
√

2
−

⎛⎜⎜⎜⎜⎜⎝
√

3
2

x, x2

⎞⎟⎟⎟⎟⎟⎠
√

3
2

x

= x2 − 1
√

2

∫ 1

−1

1
√

2
x2dx −

√
3
2

x
∫ 1

−1

√
3
2

x3dx = x2 − 1
3

(4.334)

In the last step the second integral vanished. Now, to normalize:

q2 =
a′2√

(a′2, a
′
2)
=

x2 − 1/3√
(x2 − 1/3, x2 − 1/3)

=
x2 − 1/3√∫ 1

−1
(x2 − 1/3)2dx

=

√
5
2

(
3
2

x2 − 1
2

)

(4.335)

(a) Carry out the calculation that leads to a′3 and from there to q3.
(b) Explicitly check the orthonormality of the qj’s, by seeing that:

(qn, qm) ≡
∫ 1

−1
qnqmdx = δnm (4.336)

holds for the first few orthonormal polynomials.
(c) Any polynomial of degree n − 1 can be expressed as a linear combination of our

orthogonal q j’s as follows:

rn−1(x) =
n−1∑
j=0

c jq j (4.337)

Use this expansion and the orthonormality property in Eq. (4.336) to show that:

(rn−1, qn) ≡
∫ 1

−1
rn−1qndx = 0 (4.338)

In words, qn is orthogonal to all polynomials of a lower degree.
(d) The q j we have been finding are multiples of the orthogonal Legendre polynomials.

Compare the first few qj’s to Eq. (2.79). Also, use that equation to confirm that the
normalization of the Legendre polynomials obeys:

(Pn(x), Pm(x)) ≡
∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δnm (4.339)

30. We now use Householder transformations to carry out a QR decomposition.

(a) We define a Householder matrix as P = I − 2wwT , where w is a unit-norm vector.
(Our definition involves the product of a column vector and a row vector; we will
see something similar in Eq. (5.89).) Show that P is symmetric and orthogonal. You
have thereby shown that P2 = I .
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(b) If two vectors x, y satisfy Px = y, then show that w = (x − y)/‖x − y‖.
(c) Specialize to y = α‖x‖e0, where e0 is the first column of the identity matrix, as

per Eq. (4.148). (Discuss why you should choose α = −sign(x0).) Notice that Px
zeroes out all the elements of a general vector x below the leading element; this is
reminiscent of the first step in Gaussian elimination.

(d) Produce a Householder matrix P(0) that zeroes out the all the elements except the
leading one in the first column of an n × n matrix A. This P(0) acting on the entire
A thereby transforms the other elements (outside the first column). We now need to
zero out the elements in P(0)A below its 1, 1 element. We form a new Householder
matrix P(1) based on the lower n − 1 elements of the second column of P(0)A; note
that this leads to P(1) being (n−1)× (n−1). Similarly, P(2) would be (n−2)× (n−2),
and so on. We opt for the (wasteful) option of padding:

Q(k) =

⎛⎜⎜⎜⎜⎜⎜⎝I 0

0 P(k)

⎞⎟⎟⎟⎟⎟⎟⎠ (4.340)

where I is k × k, P(k) is (n − k) × (n − k) and, therefore, Q(k) is n × n. Explain
why R = Q(n−2)Q(n−3) . . .Q(1)Q(0)A is upper triangular. Use the fact that these ma-
trices are orthogonal to show that Q = Q(0)Q(1) . . .Q(n−3)Q(n−2) is also orthogonal.
Multiplying Q and R gives you the initial A.

(e) Implement this prescription in Python to produce a QR decomposition.

31. Show that A′ from Eq. (4.209) (A′ = S−1AS) and A have the same determinant.

32. Show that a number z is a Rayleigh quotient of the matrix A if and only if it is a diagonal
entry of QT AQ, for an orthogonal matrix Q. (Recall that “if and only if” means you
have to prove this both ways.) The conclusion that follows from this is that Rayleigh
quotients are simply diagonal entries of matrices (but you first have to orthogonally
transform to the appropriate coordinate system).

33. We now show that, for the algorithm of simultaneous iteration,QQQ(k) converges toward Q̃.
First, use Eq. (4.173) to show that Ak = VΛkV−1. Then, carry out two decompositions,
V = Q̃U and V−1 = LR, where Q̃ is orthogonal, L is unit lower-triangular, with U and
R being upper triangular. Combining these three equations, and introducing an identity
expressed as Λ−kΛk, a unit lower-triangular term of the form ΛkLΛ−k emerges: argue
why its off-diagonal elements go to 0 as k is increased. You have thereby shown that Ak

is equal to Q̃ times an upper-triangular matrix. Comparing this to Eq. (4.226), since the
factorization is unique, identify the large-k version ofQQQ(k) with Q̃.

34. This problem implements simultaneous iteration step by step.

(a) Start with Eq. (4.220), namely Z(k) = AZ(k−1). Implement this and check how well
you do on the eigenvectors for the 4 × 4 testcreate() example.

(b) Now repeat the previous prescription and simply normalize each column at the end
(without any QR decomposition).

(c) Implement the full simultaneous iteration from Eq. (4.224) and compare the eigen-
vectors with the (QR-decomposed) output of numpy.linalg.eig().
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(d) Implement A(k) as per Eq. (4.230) and compare with the numpy.linalg.eig()
eigenvalues.

35. Including all contributions (not just the leading term), evaluate the operation counts
for (a) vector–vector multiplication, (b) matrix–matrix multiplication, (c) linear system
solution via the LU method, and (d) QR decomposition.

36. Use the QR method to compute the orthogonal factor of the eigenvector matrix. If you
followed the derivation in the main text, you’ll know that this means you should write
a Python code that modifies qrmet() to also computeQQQ(k).

37. This problem explores the QR method as applied to a symmetric tridiagonal matrix A.
You can either try to derive things in general, or experiment with a given matrix.

(a) Check to see whether or not the QR decomposition of A preserves tridiagonality
(meaning if Q and R are tridiagonal when A is tridiagonal).

(b) Take the product in reverse order, RQ, in the spirit of the QR method. Is this product
also tridiagonal? What does your answer imply more widely?

38. While the QR method (in the form in which we presented it) is reasonably robust,
there are situations where it fails completely. To make matters worse, since there’s no
termination criterion, the method is not even telling us that it’s failing. For:⎛⎜⎜⎜⎜⎜⎜⎝0 2

2 0

⎞⎟⎟⎟⎟⎟⎟⎠ (4.341)

(a) Run the QR method for several dozen iterations. Do you ever get the correct eigen-
values? (Derive the latter analytically.) To see what’s happening, print out the first
QR decomposition and the first RQ product.67

(b) Try to solve the “neighboring” problem, where there is a 0.01 in the top-left slot. Is
this better? Why? (or why not?) Use as many iterations as you’d like.

39. In our study of differential equations, in chapter 8, we will learn how to tackle the one-
particle time-independent Schrödinger equation for any potential term:

p̂2

2m
|ψ〉 + V(x̂)|ψ〉 = E|ψ〉 (4.342)

Here, we focus on an important specific case, the quantum harmonic oscillator, V(x̂) =
mω2 x̂2/2. In the position basis this Schrödinger equation takes the form of Eq. (3.70).
In a course on quantum mechanics you also learned about the energy basis, involving
Dirac’s trick with creation and annihilation operators. In terms of the energy eigenstates
|n〉, the matrix elements of the position and momentum operators are:

〈n′|x̂|n〉 =
√
�

2mω

[√
nδn′,n−1 +

√
n + 1δn′,n+1

]

〈n′|p̂|n〉 = i

√
�mω

2

[√
n + 1δn′,n+1 −

√
nδn′,n−1

] (4.343)

These are the elements of infinite-dimensional matrices: n and n′ start at 0, but they

67 The problem can be overcome by using the “Wilkinson shift”, which we won’t go into.
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don’t go up to a given maximum value. Keep in mind that the eigenvalues involved (the
n that keeps track of the cardinal number of the eigenenergy) are discrete, even though
we have not carried out any numerical discretization procedure ourselves; this is just
the nature of the problem.
Truncate these matrices up to a maximum of, say, n = 10 and implement them program-
matically. Then, by using matrix multiplications to carry out the necessary squarings,
verify that the Hamiltonian is diagonal in this basis; this is hardly surprising, but it is re-
assuring. Compare the eigenvalues to the (analytically known) answers of Eq. (3.71).
Did you expect the value you found in the bottom element of the diagonal? To see
what’s going on, evaluate the trace of XP−PX, where X = {〈n′|x̂|n〉} and P = {〈n′|p̂|n〉},
and compare with your expectations from Heisenberg’s commutation relation.

40. Study the case of two spins, as per twospins.py, implementing the Hamiltonian matrix
of Eq. (4.297). This time, instead of getting the SI·II term as per Eq. (4.290), you should
use Eq. (4.293), which involves Kronecker products.
You should also write down the generalization of Eq. (4.293) for the case of three spins
(no need to code this up).

41. The angular-momentum addition theorem tells us that if you have a particle with j0 and
another one with j1, the angular momentum of the pair, J, will take on the values:

| j0 − j1| ≤ J ≤ j0 + j1 (4.344)

You should apply this theorem (twice) to the case of three electron spins. That means
that you should first add two of the angular momenta, and then add to the resulting
pair angular momentum the third angular momentum you had left out (this is known
as recoupling). Employing this approach, you should find the total possible spin and
the z projection of the spin for the 3-spin-half system. You should then try to call
threespins() to find the same answer. (If you try to use twospins() to evaluate the
same limit – even though the Hamiltonian matrix is still diagonal – something breaks,
as mentioned in the main text. Do you understand why?)

42. Modify our two and three spin codes, for the same input parameters as in the main
text, to also produce the eigenvectors/state vectors using our eig() function. You first
have to modify our implementation of the shifted inverse-power method so that it
doesn’t compare the last two iterations, but simply carries out a fixed total number
of iterations. (You should also discuss why this step is necessary here.) You can use
numpy.linalg.eig() as a benchmark while you’re developing your version.

43. Study the case of four spins. You should first rewrite the expression for the Hamiltonian:
this will instruct you on how the spin operators and matrices should be produced for the
present case. Finally, code this up in Python and test the eigenvalues to make sure that
they reduce to the correct non-interacting limit. (It’s OK to use numpy.linalg.eig()
if you’re having trouble converging in that limit.)

44. Generalize our codes to generate, say, the SIx matrix for the case of five (or 10) particles.
The number of particles should be kept general, passed in as an argument. The matrices
won’t fit on the screen, so print out selected matrix elements as a test.
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Roo

In changing, it finds rest.
Heraclitus

5.1 Motivation

5.1.1 Examples from Physics

Nonlinear equations are omnipresent in physics. Here are a few examples:

1. Van der Waals equation of state
As you may recall, the classical ideal gas “law” has the form:

Pv = RT (5.1)

where P is the pressure, v is the molar volume, R is the gas constant, and T is the temper-
ature. This ignores the finite size of the gas molecules, as well as the mutual attraction
between molecules. Correcting for these features “by hand” (or via the formalism of
statistical mechanics) leads to the so-called van der Waals equation of state:(

P +
a
v2

)
(v − b) = RT (5.2)

where a and b are parameters that depend on the gas. Assume you know the pressure
and the temperature and wish to evaluate the molar volume. As you can see by multi-
plying Eq. (5.2) with v2, you get a cubic equation in v. Even though it’s messy to do
so, cubic equations can be solved analytically; however, van der Waals is not the final
word on equations of state: you can keep adding more terms in an attempt to make your
model more realistic (as is done in, e.g., the virial expansion), so the resulting equation
becomes increasingly complicated.

2. Quantum mechanics of a particle in a finite well
A standard part of any introduction to quantum mechanics is the study of a single par-
ticle in a one-dimensional finite square well potential. Assume that the potential is V0

for x < −a and x > a and is 0 inside the well, i.e., for −a < x < a. Solving the one-
dimensional time-independent Schrödinger equation leads to states of even and odd
parity. The even solutions obey the transcendental equation:

k tan ka = κ (5.3)

243
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where k and κ are related to the mass m of the particle and to the energy of the state
(and to V0); k characterizes the wave function inside the well and κ that outside the well.
These two quantities are related by:

k2 + κ2 =
2mV0

�2
(5.4)

In a first course on quantum mechanics you typically learn that these two equations
must be solved for k and κ “graphically”. But what does that really mean? And what
would happen if the potential was slightly more complicated, leading to a more involved
set of equations? It would be nice to have access to general principles and techniques.

3. Gravitational force coming from two masses
The previous examples involved one or two polynomial or transcendental equations.
We now turn to a case where several quantities are unknown and the equations we need
to solve are nonlinear.
Consider two masses, MR and MS , located at R and S, respectively. Crucially, while the
masses are known, the positions where they are located are unknown. That means that
we need to determine the coordinates of R and S, i.e., 2 × 3 = 6 numbers. Thankfully,
we are free to make force measurements on a test mass m at positions of our choosing.
First, we carry out a measurement of the force on m at the position r0 (which we pick):1

F0 = −GMRm
r0 − R
|r0 − R|3

−GMS m
r0 − S
|r0 − S|3

(5.5)

This is a vector relation so it corresponds to three scalar equations; however, we are
dealing with six unknowns. To remedy the situation, we make another measurement of
the force on m, this time at position r1:

F1 = −GMRm
r1 − R
|r1 − R|3

−GMS m
r1 − S
|r1 − S|3

(5.6)

The last two vector relations put together give us six scalar equations in six unknowns.
Due to the nature of Newton’s gravitational force, these are coupled nonlinear equa-
tions; this is not a problem you would enjoy approaching using paper and pencil.

5.1.2 The Problem(s) to Be Solved

At its most basic level, the problem we are faced with is as follows: you are given a function
f (x) and you need to find its zeros. In other words, you need to solve the equation f (x) = 0
(the solutions of this equation are known as roots).2 Thus, our task is to solve:

f (x) = 0 (5.7)

where f (x) is generally nonlinear. Just like our main problems in the chapter on linear
algebra, our equation this time is very easy to write down. We are faced with one equation

1 Notice the formal similarity between this equation and Eq. (1.3).
2 In practice, the words root and zero are often used interchangeably.
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in one unknown: if the function f (x) is linear, then the problem is trivial. If, however, it
is nonlinear then arriving at a solution may be non-trivial. The f (x) involved may be a
polynomial, a special function, or a complicated programming routine (which makes each
function evaluation quite costly). In what follows, we will denote our root by x∗.

To give an example: f (x) = x2 − 5 = 0 is very easy to write down. Anyone can “solve”
it by saying x2 = 5, followed by x = ±

√
5. This is where things are not so easy any

more: what is the value of
√

5? Of course, you can use a calculator, or even from math
import sqrt in Python. But how do those figure out which number gives 5 when squared?
Roughly two thousand years ago, Hero of Alexandria came up with a specific prescrip-
tion that addresses this question. In our case, we are not really interested in square roots,
specifically, but in any nonlinear equation. We will encounter several general-use methods
in section 5.2.

A complication arises when you are faced with a single polynomial and need to evaluate
its zeros. In equation form:

c0 + c1x + c2x2 + c3x3 + · · · + cn−1xn−1 = 0 (5.8)

This is a single equation, but it has n − 1 roots. As we will discover in section 5.3, this
problem presents its own set of challenges.

A more complicated version of the earlier problem (one nonlinear equation in one vari-
able) is the case where we have n simultaneous nonlinear equations in n unknowns:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x0, x1, . . . , xn−1) = 0

f1(x0, x1, . . . , xn−1) = 0
...

fn−1(x0, x1, . . . , xn−1) = 0

(5.9)

which can be recast using our vector notation from chapter 4 as follows:

f(x) = 0 (5.10)

As we will discover in section 5.4, the crudest but most surefire method of solving a single
nonlinear equation cannot help us when we are faced with several simultaneous equations.

The final problem we attack in this chapter is related yet distinct: instead of trying to
find the zeros of a function, find the points where the function attains a minimum (or, as
we will see, a maximum). Using the notation we introduced above, this problem would
have the form:

min φ(x) (5.11)
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where x bundles together the variables x0, x1, . . . , xn−1 but φ produces scalar values.3 This
problem is tackled in section 5.5. As always, entire books have been written about each of
these topics, so we will by necessity be selective in our exposition.

5.2 Nonlinear Equation in One Variable

As noted in the previous section, our problem is very easy to write down: f (x) = 0. In order
to make things concrete, in what follows we will be trying to solve a specific equation using
a variety of methods. That equation is:

ex−
√

x − x = 0 (5.12)

Obviously, in our case f (x) = ex−
√

x − x. Our problem involves both an exponential and a
square root, so it is clearly nonlinear.

As a general lesson, before we start discussing detailed root-finding methods, we first
try to get some intuition on the specific problem we are facing. Most simply, we can do that
by plotting the function; the result is shown in the left panel of Fig. 5.1. Just by looking
at this plot, we see that our function has two zeros, one near x∗ ≈ 1 and another one near
x∗ ≈ 2.5. As a matter of fact, we can immediately see by substituting that the first root is
exactly x∗ = 1. In the same spirit of trying to understand as much as possible regarding
our problem, we also went ahead and plotted the first derivative of our function in the right
panel of Fig. 5.1. We find that the derivative varies from negative to positive values, with
the change from one to the other happening between our two roots. Similarly, we notice
that for x small and x large the derivative is large in magnitude, but it has smaller values
for intermediate x’s.

Now, turning to ways of solving our equation: we’ll need a method that can find both
roots, preferably in comparable amounts of time. (While we already analytically know one
of the roots, we’ll keep things general.) The most naive approach, having already plotted
the function, is to try out different values (or perhaps even a very fine grid) near where
we expect the roots to be. This is not a great idea, for several reasons: first, it is very
wasteful, requiring a large number of function evaluations. What do you do if the first
grid spacing you chose was not fine enough? You pick a smaller grid spacing and start
evaluating the function again. Second, as noted in the previous section, in some cases even
evaluating the function a single time may be very costly, so you might not even be able to
plot the function in the first place. Finally, it is easy to see that this brute-force approach
will immediately fail when you are faced with a multidimensional problem (since you’d
need a multidimensional grid, with costly function evaluations at each point on the grid).

At a big-picture level, we can divide root-finding methods into two large classes:

• Bracketing methods: these are approaches which start with two values of x, let us call

3 Obviously, if n = 1 you need to minimize a function of a single variable.
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Nonlinear equation in one variable, for the case of f (x) = ex−
√

x − x �Fig. 5.1

them x0 and x1, which bracket the root (i.e., we already know that f (x0) and f (x1)
have opposite signs). Of the methods we discuss below, bisection and Ridders’ are
bracketing methods.

• Non-bracketing methods, also known as open-domain methods: these approaches may
need one or two starting estimates of the root, but the root itself does not need to be
bracketed in the first place. Of the methods introduced below, fixed-point iteration,
Newton’s, and the secant methods are all non-bracketing.

While the distinction between bracketing and non-bracketing methods is very important
and should always be borne in mind when thinking about a given approach, we will not
introduce these methods in that order. Instead, we will employ a pedagogical approach,
starting with simple methods first (which end up being very slow) and increasing the so-
phistication level as we go. Let us note at the outset that we will provide Python implemen-
tations for three out of the five methods, inviting you to code up the rest in the problems at
the end of the chapter. Similarly, while we provide a detailed study of convergence proper-
ties in the first few subsections, we don’t do so for all five methods.

5.2.1 Conditioning

In section 4.2 we encountered the question of how x, in the problem Ax = b, is im-
pacted when we slightly perturb A. This led us to introduce the condition number κ(A) in
Eq. (4.50), as a measure of how much (or how little) a perturbation in the coefficient matrix,
‖ΔA‖/‖A‖, is amplified when evaluating the effect on the solution vector, ‖Δx‖/‖x‖.

We will now do something analogous, this time for the case of absolute changes, just
like we did for the eigenvalue problem in Eq. (4.71). The problem we are now solving is
the nonlinear equation f (x) = 0, so the perturbations in the system would be perturbations
of the value of the function f . As it so happens, this is also closely related to what we
studied in section 2.2.2 on error propagation for functions of one variable. To be specific,
the exact root is here denoted by x∗, so our approximate value for it would be x̃∗. What
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we’ll do is to Taylor expand f (x̃∗) around x∗. This gives us:

f (x̃∗) − f (x∗) = f (x∗ + Δx∗) − f (x∗) = f (x∗) + f ′(x∗)(x̃∗ − x∗) + · · · − f (x∗)

≈ f ′(x∗)(x̃∗ − x∗) (5.13)

This is identical to the derivation we carried out in Eq. (2.36). Just like then, we made the
assumption that x̃∗ − x∗ is small, in order to drop higher-order terms.

We now remember that we are trying to consider the question of how well- or ill-
conditioned a given nonlinear problem f (x) = 0 is; in other words, what we are after
is a good estimate of x∗. To do that, we take our last result and solve it for x̃∗ − x∗:

x̃∗ − x∗ ≈ 1
f ′(x∗)

[
f (x̃∗) − f (x∗)

]
(5.14)

allowing us to introduce a condition number for our problem:

κ f =
1

f ′(x∗)
(5.15)

Clearly, the magnitude of κ f tells us whether or not a small change in the value of the
function near the root is amplified when evaluating the root itself. Qualitatively, we see that
a function f (x) which crosses the x axis “rapidly” leads to large f ′(x∗) and therefore a small
condition number κ f ; this is a well-conditioned problem. On the other hand, a problem for
which f (x) is rather flat near the root, crossing the x axis “slowly”, will correspond to a
small f ′(x∗) and therefore a large condition number κ f ; this is an ill-conditioned problem.
This should be conceptually easy to grasp: if a function is quite flat near the root, it will
be difficult to tell the root apart from its neighbors. Just like in the earlier cases, we need
some quasi-arbitrary criterion to help us distinguish between rapid and slow behavior.

5.2.2 Order of Convergence and Termination Criteria

Our goal is to find an x∗ such that f (x∗) = 0. Except for very low-degree polynomials, this
is a problem that does not have an analytical solution with a closed formula. In practice,
we have to resort to iterative methods. As we saw in our discussion of the Jacobi iterative
method for solving linear systems of equations in section 4.3.5, iterative methods start with
a guess for the solution and then refine it until it stops changing; as a result, the number of
iterations required is typically not known in advance.4 Just like we did in that section (as
well as in section 4.4 on eigenproblems), we will denote our initial root estimate by x(0):
the superscript in parentheses tells us the iteration number (in this case we are starting, so
it’s the 0th iteration).

As noted, we won’t actually be computing x∗ itself. Instead, we will have a sequence of
iterates, x(0), x(1), x(2), . . ., and x(k), which (we hope) will be approaching x∗. For now, let
us assume that we are dealing with a convergent method and that x(k) will be close to the

4 To make matters worse, in some cases an iterative method might not even converge.
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root x∗; we’ll discuss the meaning of “close” below. If there exist a constant m � 0 and a
number p such that:

|x(k) − x∗| ≤ m|x(k−1) − x∗|p (5.16)

for k sufficiently large, then m is called the asymptotic error constant and p is called the
order of convergence. If p = 1 then we are dealing with a linearly convergent method, if
p = 2 with a quadratically convergent method, and so on. For example, the fixed-point
iteration method will turn out to be linearly convergent, whereas Newton’s method will
turn out to be quadratically convergent. It’s worth noting that we can also find cases where
p is not an integer: for example, the secant method turns out to have p ≈ 1.618. We say
that such methods are superlinearly convergent.5

Generally speaking, the order of convergence is a formal result associated with a given
method, so it doesn’t always help us when we are faced with an actual iterative proce-
dure. As we found out in chapter 2 on numerics, sometimes general error bounds are too
pessimistic; a general convergence trend doesn’t tell you what you should expect for the
specific f (x) you are dealing with. To make things concrete, the order of convergence dis-
cussed in the previous paragraph relates, on the one hand, the distance between the current
iterate and the true value of the root (|x(k) − x∗|) with, on the other, the distance between the
previous iterate and the true value of the root (|x(k−1) − x∗|). In practice, we don’t actually
know the true value of the root (x∗): that is what we are trying to approximate. In other
words, we wish to somehow quantify |x(k) − x∗| when all we have at our disposal are the
iterates themselves, x(0), x(1), x(2), . . ., x(k).

Thinking about how to proceed, one option might be to check the absolute value of the
function and compare it to a small tolerance:

| f (x(k))| ≤ ε (5.17)

Unfortunately, this is an absolute criterion, which doesn’t take into account the “typical”
values of the function; it may be that the function is very steep near its root, in which case
an ε like 10−8 would be too demanding (and therefore never satisfied). As another example,
the function might have typical values of order 1015: a test like our ε = 10−8 would simply
be asking too much of our iterates. Conversely, the function might be very flat near its root
(i.e., ill-conditioned) or involve tiny magnitudes, say 10−10, even away from the root. You
may be tempted, then, to somehow divide out a “typical” value of f (x), in order to turn
this criterion into a relative one. The problem is that it’s not always clear what qualifies as
typical.

In what follows, we will take another approach. Instead of checking to see how small
the value of the function itself is, we will check the iterates themselves to see if they are
converging to a given value. In other words, we will test the distance between the current

5 Strictly speaking, superlinear order means that |x(k) − x∗| ≤ dk |x(k−1) − x∗| and dk → 0 hold; for the case of
quadratic convergence we can take dk = m|x(k−1) − x∗| → 0, so we see that quadratic order is also superlinear.
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iteration and the previous one, |x(k) − x(k−1)|.6 We are already suspicious of using absolute
criteria, so we come up with the following test:

|x(k) − x(k−1)|
|x(k)|

≤ ε (5.18)

Of course, if the numbers involved are tiny, even this criterion might lead us astray. We
won’t worry about this in our implementations below, but it may help you to know that one
way of combining absolute and relative tolerance testing is as follows:

|x(k) − x(k−1)|
1 + |x(k)|

≤ ε (5.19)

If the iterates x(k) themselves are tiny and getting increasingly close to each other, here the
numerator will be small but the denominator will be of order 1.

In closing, if you are feeling a bit uncomfortable about the transition from |x(k) − x∗| to
(a possibly relativized) |x(k) − x(k−1)| in our termination criterion, you should bring to mind
the problem on the convergence properties of the Jacobi method in chapter 4. There, we
directly proved a corresponding criterion for the case of that iterative method. If this is
still not enough, you’ll be pleased to find out that we will explicitly address the transition
from one quantity to the other (for the case of fixed-point iteration) in one of the following
subsections.

5.2.3 Fixed-Point Iteration

Algorithm

The first method we will introduce addresses a problem that is very similar, though not
identical, to the f (x) = 0 problem that we started with. Specifically, this method solves the
problem:

x = g(x) (5.20)

As you may have already learned, a point x∗ satisfying this relation is called a fixed point
of g. For example, the function g(x) = x2 − 6 has two fixed points, since g(3) = 3 and
g(−2) = −2. Similarly, the function g(x) = x + 2 has no fixed points, since x is never equal
to x + 2.

We could always take g(x) = x and rewrite it as f (x) = g(x)− x = 0 so it appears that the
problem we are now solving is equivalent to the one we started out with. (Not quite. Keep
reading.) Thus, let us see how to solve g(x) = x on the computer. Again, for concreteness,
we study our problem from Eq. (5.12): ex−

√
x − x = 0 can be trivially re-arranged to give

g(x) = ex−
√

x. We have plotted y = x and y = g(x) in the left panel of Fig. 5.2, where you
can immediately see that this example leads to two fixed points, namely two points where

6 As you may recall, in the case of linear algebra we were faced with an analogous but more complicated
problem, since there the iterates themselves were vectors, so we had to somehow combine them together into
a termination criterion; this led to Eq. (4.170), or the more robust Eq. (4.171).
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Nonlinear equation of the fixed-point form, for the case of g(x) = ex−
√

x �Fig. 5.2

the curves meet. Unsurprisingly, these two fixed points are at x∗ ≈ 1 and x∗ ≈ 2.5, similarly
to what we saw in our original problem.7

The simplest approach to solving Eq. (5.20) is basically to just iterate it, starting from
an initial estimate x(0). Plug x(0) in to the right-hand side and from there get x(1):

x(1) = g(x(0)) (5.21)

As you may have guessed, this process is repeated: x(1) is then plugged in to the right-hand
side of Eq. (5.20), thereby producing a further improved solution x(2). For the general k-th
iteration step, we now have our prescription for the fixed-point iteration method:

x(k) = g(x(k−1)), k = 1, 2, . . . (5.22)

If all is going well, the solution vector will asymptotically approach the exact solution.
This process of guessing a given value, evaluating the next one, and so on, is illustrated in
Fig. 5.3.8

Implementation

Observe that we have been making the (hyper-optimistic) assumption that everything will
“go well”. We will make this question concrete soon, when we discuss the convergence
properties of the fixed-point iteration method. For now, we turn to a Python implementation

7 It’s not yet obvious why, but we have also plotted the first derivative of our g(x) in the right panel of Fig. 5.2 –
this is the same as what we saw in the right panel of Fig. 5.1, but with an offset.

8 Incidentally, this is strongly reminiscent of what we did in the section on the Jacobi iterative method, when
faced with Eq. (4.167). Of course, there we had to find many values all at once and the problem was linear.
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�Fig. 5.3 Illustration of the fixed-point method for our example function

for the case of g(x) = ex−
√

x, see Code 5.1. This trial-and-error approach will emphasize
what “going well” and “going wrong” mean in practice.

This program is reasonably straightforward; in essence, it is a simpler version of the
Jacobi code we saw in the chapter on linear algebra. After defining our g(x) function, we
create a function that implements the fixed-point iteration method. The latter function takes
in as arguments: (a) g(x), since we might wish to solve a different problem later on, (b) the
initial estimate for the root x(0), (c) the maximum number of iterations we should keep
going for (in order to make sure the process terminates even if we’ve been unsuccessful),
and (d) the relative tolerance which will be used to determine whether we should stop
iterating. Since we don’t plan on changing the last two parameters often, they are given
default values.

The body of the function contains a single loop which employs the for-else idiom
that we also encountered in earlier chapters: as you may recall, the else is only executed
if the main body of the for runs out of iterations without ever executing a break (which
for us would mean that the error we calculated never became smaller than the pre-set error
tolerance).

In addition to evaluating the new x(k) each time, we also keep track of the difference
between it and the previous iterate, so that we can form the ratio |x(k) − x(k−1)|/|x(k)|. We
take the opportunity to print out our iteration counter, as well as the latest iterate and the
(absolute) change in the value of the iterate. Obviously, you should comment out the call
to print() inside fixedpoint() once you are ready to use the code for other purposes.
We then say xold = xnew in preparation for the next iteration (should it occur).

In the main program, we simply pick a couple of values of x(0) and run our fixed-point
iteration function using them. Wishing to reduce the number of required iterations, we
pick our x(0) to be close to the actual root each time. Running this code we see that, for the
first fixed point, we converge to the (analytically known) solution after 20 iterations. The
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fixedpoint.py Code 5.1

from math import exp, sqrt

def g(x):

return exp(x - sqrt(x))

def fixedpoint(g,xold,kmax=200,tol=1.e-8):

for k in range(1,kmax):

xnew = g(xold)

xdiff = xnew - xold

print("{0:2d} {1:1.16f} {2:1.16f}".format(k,xnew,xdiff))

if abs(xdiff/xnew) < tol:

break

xold = xnew

else:

xnew = None

return xnew

if name == ‘ main ’:

for xold in (0.99, 2.499):

x = fixedpoint(g,xold)

print(x)

absolute difference |x(k)−x(k−1)| roughly gets halved at each iteration, so we eventually reach
convergence. Obviously, the number of iterations required also depends on the starting
value. For example, if we had picked x(0) = 1.2 we would have needed 25 iterations.9

Turning to the second fixed point, things are more complicated. Even though we started
very close to the fixed point (based on our knowledge of Fig. 5.2), we fail to converge. The
absolute difference |x(k) − x(k−1)| initially doubles at each iteration and then things get even
worse, so we eventually crash. The OverflowError could have been avoided if we had
introduced another test of the form |x(k)−x(k−1)| ≥ |x(k−1)−x(k−2)|, intended to check whether
or not we are headed in the right direction. In any case, at this point we don’t really know
what’s different for the case of one fixed point vs the other. Thinking that maybe we picked
the “wrong” starting estimate, we try again with x(0) = 2.49; this time the run doesn’t crash:

9 Incidentally, if you’re still uncomfortable with the for-else idiom, try giving kmax a value of, say, 10.
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�Fig. 5.4 Nonlinear equation of the fixed-point form, for the case of g(x) = ln x +
√

x

the absolute difference |x(k)− x(k−1)| first keeps increasing in magnitude, but at some point it
starts decreasing, leading to eventual convergence. Unfortunately, though, this converges to
the wrong fixed point! The method is giving us the first fixed point, which we had already
found.

We’ll let you try out several other initial estimates x(0) (whether by hand or systemat-
ically). That exercise won’t add anything new: we always either crash or converge to the
fixed point on the left. Since we’re stuck, we decide to try out a different approach. Recall
that the fixed-point iteration method solves the problem x = g(x). Since the equation we
wished to solve was ex−

√
x − x = 0, we acted as if the two problems were equivalent and

then proceeded. Here’s the thing, though: our choice of g(x) was not unique! Specifically,
we could take the natural logarithm of both sides in ex−

√
x = x to get x −

√
x = ln x, which

then has the form x = g(x), but this time for g(x) = ln x +
√

x. We have plotted y = x and
this new y = g(x) in the left panel of Fig. 5.4; as before, we have two fixed points, namely
two points where the curves meet.10 Unsurprisingly, these two fixed points are at x∗ ≈ 1
and x∗ ≈ 2.5, just like in the previous version of our problem. We have also plotted the first
derivative of our new g(x) in the right panel of Fig. 5.4; this is considerably different from
both the original problem’s derivative, Fig. 5.1, and our previous fixed-point derivative,
Fig. 5.2.

If we code up our new function we find that our iterative procedure now crashes for the
case of the first fixed point (using the same initial estimate as before)! Using x(0) = 2.49,
we now do converge to the fixed point on the right, even if we take a bit longer to get there.
For the sake of completeness, note that x(0) = 2.499 would have also worked, but would
have required even more iterations to converge. Similarly, taking x(0) = 1.2 also works, but
it converges to the fixed point on the right (despite the starting value being so close to the
fixed point on the left).

To summarize, for our first choice of g(x) we either crash or converge to the fixed point

10 Intriguingly, between the fixed points the two curves appear to be “closer” to each other than the corresponding
two curves in Fig. 5.2 were.
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on the left, whereas for our second choice of g(x) we either crash or converge to the fixed
point on the right. Needless to say, this does not feel like a robust solution to our initial
problem, namely solving Eq. (5.12). It is now time to understand why this is taking place.

Convergence Properties

As before, we assume that our equation x = g(x) has a fixed point x∗ and we are using an
interval in which this fixed point is unique. (That is, for our earlier examples, either near
x∗ ≈ 1 or near x∗ ≈ 2.5.) In order to systematize the behavior exhibited by the fixed-point
iteration method, we start with our defining relationship, Eq. (5.22):

x(k) = g(x(k−1)) (5.23)

Since x∗ is a fixed point, we know that:

x∗ = g(x∗) (5.24)

holds. Subtracting the last two equations gives us:

x(k) − x∗ = g(x(k−1)) − g(x∗) (5.25)

Let us now employ a Taylor expansion. This is something that we’ve already done repeat-
edly in chapter 3 on finite differences and that we’ll keep on doing.11 Let us write down
the Taylor expansion of g(x∗) around x(k−1):

g(x∗) = g(x(k−1)) + (x∗ − x(k−1))g′(x(k−1)) + · · · (5.26)

If we stop at first order, we can rewrite this expression as:

g(x∗) = g(x(k−1)) + (x∗ − x(k−1))g′(ξ) (5.27)

where ξ is a point between x∗ and x(k−1).12

If we now plug g(x∗) from Eq. (5.27) in to Eq. (5.25), we find:

x(k) − x∗ = g′(ξ)
(
x(k−1) − x∗

)
(5.28)

Note how on the right-hand side the order of x∗ and x(k−1) has changed. If we now simply
take the absolute value of both sides we find that our result is identical to that in Eq. (5.16)
with |g′(ξ)| ≤ m and p = 1. We see that at each iteration the distance of our iterate from
the true solution is multiplied by a factor of |g′(ξ)|; thus, if |g′(ξ)| ≤ m < 1 we will be
converging to the solution. More explicitly, if we start with a x(0) sufficiently close to x∗,
we will have:

|x(k) − x∗| ≤ m|x(k−1) − x∗| ≤ m2|x(k−2) − x∗| ≤ . . . ≤ mk |x(0) − x∗| (5.29)

and since m < 1 we see that x(k) converges to x∗ linearly (since p = 1). Note that each

11 Most notably in chapter 7 on integration and in chapter 8 on differential equations.
12 Taylor’s theorem truncated to such a low order, as here, is known as the mean-value theorem.
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application of the mean-value theorem needs its own ξ, but this doesn’t matter as long as
|g′(ξ)| ≤ m holds for each one of them. On the other hand, if |g′(ξ)| > 1 this process will
diverge. Analogously, if |g′(ξ)| < 1 but close to 1, convergence will be quite slow. Finally,
if g′(x) = 0 at or near the root, then the first-order term in the error vanishes; as a result, in
this case the fixed-point iteration converges quadratically.13

Let us now apply these findings to our earlier examples. For the first g(x) we have the
derivative g′(x) in the right panel of Fig. 5.2. We find that near the left fixed point m < 1
(m = 0.5 to be precise) and near the right fixed point m > 1. This is consistent with our
findings using Python in the previous subsection: we cannot converge to the fixed point
on the right but we do converge to the one on the left. Similarly, for the second g(x) we
have the derivative g′(x) in the right panel of Fig. 5.4. We find that near the left fixed point
m > 1 and near the right fixed point m < 1. Again, this is consistent with what we found
using Python: we cannot converge to the fixed point on the left but we do converge to the
one on the right. As it so happens, the latter case has m ≈ 0.72, which explains why it took
us a bit longer to converge in this case.

Before we conclude, let us return to the question of relating |x(k) − x∗| (which appears in
the above derivation) to |x(k) − x(k−1)| (which appears in our termination criterion). We can
take Eq. (5.28) and add g′(ξ)x∗ − g′(ξ)x(k) to both sides. After a trivial re-arrangement:[

1 − g′(ξ)
] [

x(k) − x∗
]
= g′(ξ)

[
x(k−1) − x(k)

]
(5.30)

If we now take the absolute value on both sides and assume |g′(ξ)| ≤ m < 1, we find:

|x(k) − x∗| ≤ m
1 − m

|x(k) − x(k−1)| (5.31)

Thus, as long as m < 0.5 (in which case m/(1−m) < 1) the “true convergence test” |x(k)−x∗|
is even smaller than the quantity |x(k)−x(k−1)|which we evaluate in our termination criterion.
Conversely, if m > 0.5 it is possible that our termination criterion doesn’t constrain true
convergence very well; to take an extreme example, for m = 0.99 we have m/(1 −m) = 99
so the two quantities may be two orders of magnitude apart.14

Finally, note that Eq. (5.31) does not include roundoff errors. The derivation above may
be straightforwardly generalized to include those. The main feature is that the final com-
putational error will only depend on the roundoff error made in the final iteration. This is
good news, as it implies that iterative methods are self-correcting: minor issues in the first
few iterations will not impact the final accuracy.

5.2.4 Bisection Method

Fixed-point iteration allowed us to study a root-finding method (including its convergence
properties) in detail. Unfortunately, as we saw, the mapping from f (x) = 0 to x = g(x) is
not unique. Also, if |g′(ξ)| > 1 the fixed-point iteration method diverges. Thus, it would

13 In a problem, you will see that we can recast Newton’s method as a fixed-point iterative process.
14 Even so, our result is merely an error bound, so the actual error can be much smaller.
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be nice to see a different approach, one that always succeeds. This is precisely what the
bisection method accomplishes;15 it is a slow method, which doesn’t really generalize to
higher-dimensional problems, but it is safe and systematic.

Algorithm and Convergence

The bisection method assumes you have already bracketed the root; that means that you
have found an x0 and an x1 for which f (x0) and f (x1) have opposite signs. We know
from Bolzano’s theorem that when a continuous function has values of opposite sign in a
given interval, then the function has a root in that same interval (this is a corollary of the
intermediate-value theorem). This works as follows:

• Take the interval (x0, x1) (for which we know f (x0) f (x1) < 0) and evaluate the midpoint:

x2 =
x0 + x1

2
(5.32)

• At this point, we will halve the original interval (x0, x1), thereby explaining why this
approach is also known as the internal halving method. Thus, we are producing two
subintervals: (x0, x2) and (x2, x1). The sign of f (x2) will determine in which of these
two subintervals the root lies.

• If f (x0) f (x2) < 0, then the root is in (x0, x2). Thus, we could rename x1 ← x2 and repeat
the entire process (which started with an x0 and an x1 that bracket the root).

• If, on the other hand, f (x0) f (x2) > 0, then the root is in (x2, x1). Thus, we could rename
x0 ← x2 and repeat the entire process.

• There is also the extreme scenario where f (x0) f (x2) = 0 but, since we are dealing
with floating-point numbers this is unlikely. Even so, if it does happen, it’s merely
informing you that you’ve already found the root.

Take a moment to realize that the notation we are using here is distinct from what we
were doing above; x0 and x1 were never true “iterates”, i.e., we never really thought x1

was closer to the right answer than x0. We could have just as easily called them a and b.16

Actually, it may help you to think of the initial interval as (a, b); here a and b never change
(since they simply correspond to the original bracket) whereas x0 and x1 are the numbers
that keep getting updated (and simply start out with the values x0 = a and x1 = b).

The best estimate at a given iteration is x2, given by Eq. (5.32). Thus, using our earlier
notation x(0) is the first x2, x(1) is the next x2 (after we’ve halved the interval and found
the next midpoint), x(2) is the next x2 (once we’ve halved the interval again), and so on. In
general, at the k-th iteration x(k) will be the latest midpoint. This is illustrated in Fig. 5.5:
for this case, the initial midpoint is x(0), the midpoint between that and b is x(1), and so on.

15 Well, almost. Keep reading.
16 However, this notation would get really confusing below, since Ridders’ method needs a, b, c, and d.
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�Fig. 5.5 Illustration of the bisection method for our example function

Since we are always maintaining the bracketing of the root and the interval in which the
root is bracketed always gets halved, we find that:

|x(k) − x∗| ≤ b − a

2k+1
(5.33)

Remember that the original interval had length b − a. Instead of taking Eq. (5.33) for
granted, let’s quickly derive it. For k = 0 we have evaluated our first midpoint, but have
not actually halved the interval (i.e., we haven’t carried out a selection of one of the two
subintervals). Since the first midpoint is at (b+ a)/2, the largest possible error we’ve made
in our determination of the root is either:

a + b
2
− a =

b − a
2

(5.34)

or:

b − a + b
2
=

b − a
2

(5.35)

which amounts to the same answer. Now, for k = 1 we have already picked one of the sub-
intervals (say, the one on the left) and evaluated the midpoint of that: this is [a+(a+b)/2]/2.
The largest possible error in that determination is the distance between the latest midpoint
and either of the latest endpoints; this comes out to be (b − a)/4. The general case follows
the same pattern. In the end, Eq. (5.33) tells us that as k becomes sufficiently large we
converge to x∗. Since there’s always a factor of 1/2 relating |x(k) − x∗| with |x(k−1) − x∗|,
we see from our general result on convergence, Eq. (5.16), that here we have m = 1/2 and
p = 1, i.e., linear convergence.

You should keep in mind that many textbooks use the interval itself in their termination
criterion. In contradistinction to this, we are here employing at each iteration only a given
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number, x(k), as an iterate (which happens to be the latest incarnation of the midpoint, x2).
This allows us to employ the same termination criterion as always, Eq. (5.18):

|x(k) − x(k−1)|
|x(k)|

≤ ε (5.36)

with the same disclaimer holding for the case where the magnitudes involved are tiny.

Implementation

Given what we’ve seen so far, it’s reasonably straightforward to implement the bisection
method in Python; the result is Code 5.2. Note that we had to first define f (x), since the
fixed-point iteration code employed g(x), instead. Our bisection() method employs the
interface you’d expect, first taking in f (x). Then, it accepts the points determining the
starting interval, x0 and x1.17 The kmax and tol parameters are identical to what we had
before.

The core of our new function implements Eq. (5.32) and the bullet points that follow.
That implies an evaluation of a midpoint, then a halving of the interval, followed by a
comparison between old and new midpoints. Note that we are trying not to be wasteful
in our function evaluations, calling f() only once per iteration; to do that, we introduce
the new variables f0 and f2 which get updated appropriately. We are being wasteful in
evaluating x2 at the start of the loop, since that will always be the same as the midpoint we
had computed the last time through the loop (of course, this is a simple operation involving
floats and therefore less costly than a function evaluation). When printing out values (which
you can later comment out, as usual) we decided this time to also print out the (absolute)
value of the function itself; even though our disclaimers above about how this could lead
one astray are still valid, it’s nice to have extra information in our output. Observe that
the termination criterion is identical to what we had before; as per Eq. (5.18), we evaluate
|x(k) − x(k−1)|/|x(k)|, only this time the x(k) are the midpoints.

In the main program, we run our function twice, once for each root. The bracketing in
this case is chosen to be quite wide: we simply look at the left panel of Fig. 5.1 and try
to be conservative. Running this code leads us to finding both roots; already, things are
much better than with the fixed-point iteration method. In each case we need more than
a couple dozen iterations (so our approach to the final answer was somewhat slow), but
success was guaranteed. Looking at the ouput in a bit more detail, we recall that the first
column contains the iteration counter, the second column has the latest midpoint, the third
column is the (absolute) difference in the last two midpoints, and the final column contains
the absolute value of the function itself. Notice that the difference in the third columns gets
halved (exactly) from one iteration to the next. As far as the function value itself goes, we
generally tend to reduce its magnitude when iterating, though for the case of the root on
the right the value of the function first grows a little.

17 The fixed-point iteration method was different, taking in only a single starting value, x(0).
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Code 5.2 bisection.py Code 5.2

from math import exp, sqrt

def f(x):

return exp(x - sqrt(x)) - x

def bisection(f,x0,x1,kmax=200,tol=1.e-8):

f0 = f(x0)

for k in range(1,kmax):

x2 = (x0+x1)/2

f2 = f(x2)

if f0*f2 < 0:

x1 = x2

else:

x0, f0 = x2, f2

x2new = (x0+x1)/2

xdiff = abs(x2new-x2)

rowf = "{0:2d} {1:1.16f} {2:1.16f} {3:1.16f}"
print(rowf.format(k,x2new,xdiff,abs(f(x2new))))

if abs(xdiff/x2new) < tol:

break

else:

x2new = None

return x2new

if name == ‘ main ’:

root = bisection(f,0.,1.5)

print(root); print("")

root = bisection(f,1.5,3.)

print(root)

5.2.5 Newton’s Method

We now turn to Newton’s method (sometimes also called the Newton–Raphson method):
this is the simplest fast method used for root-finding. It also happens to generalize to larger-
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dimensional problems in a reasonably straightforward manner. At a big-picture level, New-
ton’s method requires more input than the approaches we saw earlier: in addition to being
able to evaluate the function f (x), one must also be able to evaluate its first derivative f ′(x).
This is obviously trivial for our example above, where f (x) is analytically known, but may
not be so easy to access for the case where f (x) is an externally provided (costly) rou-
tine. Furthermore, to give the conclusion ahead of time: there are many situations in which
Newton’s method can get in trouble, so it always pays to think about your specific prob-
lem instead of blindly trusting a canned routine. Even so, if you already have a reasonable
estimate of where the root may lie, Newton’s method is usually a fast and reliable solution.

Algorithm and Interpretation

We will assume that f (x) has continuous first and second derivatives. Also, take x(k−1) to
be the last iterate we’ve produced (or just an initial guess). Similarly to what we did in
Eq. (5.26) above, we will now write down a Taylor expansion of f (x) around x(k−1); this
time we go up to one order higher:

f (x) = f (x(k−1)) +
(
x − x(k−1)

)
f ′(x(k−1)) +

1
2

(
x − x(k−1)

)2
f ′′(ξ) (5.37)

where ξ is a point between x and x(k−1). If we now take x = x∗ then we have f (x∗) = 0. If
we further assume that f (x) is linear (in which case f ′′(ξ) = 0), we get:

0 = f (x(k−1)) +
(
x∗ − x(k−1)

)
f ′(x(k−1)) (5.38)

which can be re-arranged to give:

x∗ = x(k−1) − f (x(k−1))
f ′(x(k−1))

(5.39)

In words: for a linear function, an initial guess can be combined with the values of the
function and the first derivative (at that initial guess) to locate the root.

This motivates Newton’s method: if f (x) is nonlinear, we still use the same formula,
Eq. (5.39), this time in order to evaluate not the root but our next iterate (which, we hope,
brings us closer to the root):

x(k) = x(k−1) − f (x(k−1))
f ′(x(k−1))

, k = 1, 2, . . . (5.40)

As we did in the previous paragraph, we are here neglecting the second derivative term
in the Taylor expansion. However if we are, indeed, converging, then (x(k) − x(k−1))2 in
Eq. (5.37) will actually be smaller than x(k) − x(k−1), so all will be well.

Another way to view the prescription in Eq. (5.40) is geometrically: we approximate f (x)
with its tangent at the point (x(k−1), f (x(k−1))); then, the next iterate, x(k), is the point where
that tangent intercepts the x axis. If this is not clear to you, look at Eq. (5.38) again. Fig-
ure 5.6 shows this step being applied repeatedly for our example function from Eq. (5.12).
We make an initial guess, x(0), and then evaluate the tangent at the point (x(0), f (x(0))). We
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�Fig. 5.6 Illustration of Newton’s method for our example function

call x(1) the point where that tangent intercepts the x axis and repeat. For our example, this
process brings us very close to the root in just a few steps.

Convergence Properties

We now turn to the convergence properties of Newton’s method. To orient the reader, what
we’ll try to do is to relate x(k) − x∗ to x(k−1) − x∗, as per Eq. (5.16). We will employ our
earlier Taylor expansion, Eq. (5.37), and take x = x∗, but this time without assuming that
the second derivative vanishes. Furthermore, we assume that we are dealing with a simple
root x∗, for which we therefore have f ′(x∗) � 0; that means we can also assume f ′(x) � 0
in the vicinity of the root. We have:

0 = f (x(k−1)) +
(
x∗ − x(k−1)

)
f ′(x(k−1)) +

1
2

(
x∗ − x(k−1)

)2
f ′′(ξ) (5.41)

where the left-hand side is the result of f (x∗) = 0.
Dividing by f ′(x(k−1)) and re-arranging, we find:

− f (x(k−1))
f ′(x(k−1))

− x∗ + x(k−1) =

(
x∗ − x(k−1)

)2
f ′′(ξ)

2 f ′(x(k−1))
(5.42)

The first and third terms on the left-hand side can be combined together to give x(k), as per
Newton’s prescription in Eq. (5.40). This leads to:

x(k) − x∗ =

[
f ′′(ξ)

2 f ′(x(k−1))

] (
x(k−1) − x∗

)2
(5.43)

This is our desired result, relating x(k) − x∗ to x(k−1) − x∗. Taking the absolute value of both
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Cases where Newton’s method struggles �Fig. 5.7

sides, our result is identical to that in Eq. (5.16), under the assumption that:

f ′′(ξ)
2 f ′(x(k−1))

≤ m (5.44)

Since the right-hand side of Eq. (5.43) contains a square, we find that, using the notation
of Eq. (5.16), p = 2, so if m < 1 holds then Newton’s method is quadratically convergent,
sufficiently close to the root.18 This explains why our iterates approached the root so rapidly
in Fig. 5.6, even though we intentionally picked a poor starting point.

Multiple Roots and Other Issues

Of course, as already hinted at above, there are situations where Newton’s method can
misbehave. As it so happens, our starting point in Fig. 5.6 was near 0, but not actually 0.
For our example function f (x) = ex−

√
x− x, the first derivative has a

√
x in the denominator,

so picking x(0) = 0 would have gotten us in trouble. This can easily be avoided by picking
another starting point. There are other problems that relate not to our initial guess, but to
the behavior of f (x) itself.

An example is given in the left panel of Fig. 5.7. Our initial guess x(0) is perfectly normal
and does not suffer from discontinuities, or other problems. However, by taking the tan-
gent and finding the intercept with the x axis, our x(1) happens to be near a local extremum
(minimum in this case); since f ′(x(k−1)) appears in the denominator in Newton’s prescrip-
tion in Eq. (5.40), a small derivative leads to a large step, considerably away from the root.
Note that, for this misbehavior to arise, our previous iterate doesn’t even need to be “at”
the extremum, only in its neighborhood. It’s worth observing that, for this case, the root
x∗ ≈ 1.4 actually is found by Newton’s method after a few dozen iterations: after slowly
creeping back toward the minimum, one iterate ends up overshooting to the right this time
(past the root), after which point the solution is slowly but surely reached.

18 Again, a problem recasts Newton’s method as a special case of fixed-point iteration to find the same result.
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Things are even worse in the case of the right panel of Fig. 5.7, where our procedure
enters an infinite cycle. Here we start with a positive x(0), then the tangent brings us to a
negative iterate (which happens to be the exact opposite of where we started, x(1) = −x(0)),
and then taking the tangent and finding the intercept brings us back to where we started,
x(2) = x(0). After that, the entire cycle keeps repeating, without ever coming any closer to
the root which we can see is at x∗ = 0. Of course, this example is somewhat artificial; in a
real-world application, the function would likely not be perfectly symmetric.

Another problem arises when we are faced with a root that is not simple. As you may
recall, in our study of the convergence properties for Newton’s method above, we assumed
that f ′(x∗) � 0. This is not the case when you are faced with a multiple root.19 This is a
problem not only for the convergence study but also for the prescription itself: Eq. (5.40)
contains the derivative in the denominator, so f ′(x∗) = 0 can obviously lead to trouble.

As an example, in Fig. 5.8 we are plotting the function:

f (x) = x4 − 9x3 + 25x2 − 24x + 4 (5.45)

which has one root at x∗ ≈ 0.21, another one at x∗ ≈ 4.79, as well as a double root at
x∗ = 2. This is easier to see if we rewrite our function as:

f (x) = (x − 2)2 (x2 − 5x + 1) (5.46)

As it turns out, Newton’s method can find the double root, but it takes a bit longer than
you’d expect to do so. Intriguingly, this is an example where the bisection method (and all
bracketing methods) cannot help us: the function does not change sign at the root x∗ = 2
(i.e., the root is not bracketed). As you will find out when you solve the corresponding
problem, Newton’s method for this case converges linearly! If you would like to have it
converge quadratically (as is usually the case), you need to implement Newton’s prescrip-
tion in a slightly modified form, namely:

x(k) = x(k−1) − 2
f (x(k−1))
f ′(x(k−1))

, k = 1, 2, . . . (5.47)

as opposed to Eq. (5.40). The aforementioned problem discusses the source of this myste-
rious 2 prefactor.

Unfortunately, in practice we don’t know ahead of time that we are dealing with a dou-
ble root (or a triple root, etc.), so we cannot pick such a prefactor that guarantees quadratic
convergence. As you will discover in another problem, a useful trick (which applies regard-
less of your knowledge of the multiplicity of the root) is to apply Newton’s prescription,
but this time not on the function f (x) but on the function:

w(x) =
f (x)
f ′(x)

(5.48)

As you will show in that problem, w(x) has a simple root at x∗, regardless of the multiplicity
of the root of f (x) at x∗. Of course, there’s no free lunch, and you end up introducing
cancellations (which may cause headaches) when evaluating the derivative w′(x), which
you’ll need to do in order to apply Eq. (5.40) to w(x).

19 Applying our definition in Eq. (5.15), we see that for multiple roots, where f ′(x∗) = 0, the root-finding problem
is always ill-conditioned. This is challenging for all approaches, not only for Newton’s method.
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A case where the equation has a double root �Fig. 5.8

Note, finally, that there are several other modifications to the plain Newton algorithm that
one could carry out (e.g., what is known as backtracking, where a “bad” step is discarded).
Some of these improvements are explored in the problems at the end of the chapter. Many
such tricks happen to be of wider applicability, meaning that we can employ them even
when we’re not using Newton’s method.

5.2.6 Secant Method

Given the simplicity of Newton’s method, as well as the fact that it generalizes to other
problems, it would be natural to provide an implementation at this point. However, since
(modified) versions of Newton’s method are implemented below, we don’t give one now for
the basic version of the algorithm. Instead, we proceed to discuss other approaches, starting
from the secant method, which is quite similar to Newton’s method. As you may recall, the
biggest new requirement that the latter introduced was that you needed to evaluate not only
the function f (x), but also the derivative f ′(x). In some cases that is too costly, or even
impossible. You might be tempted to approximate the derivative using the finite-difference
techniques we introduced in chapter 3. However, those would necessitate (at least) two
function evaluations per step. The method we are about to introduce is better than that, so
will be our go-to solution for the cases where we wish to avoid derivatives.

Algorithm and Interpretation

As already hinted at, the secant method replaces the evaluation of the derivative, needed
for Newton’s method, by a single function evaluation. Although a naive finite-difference
calculation would be bad (how do you pick h?), the secant method is inspired by such an
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�Fig. 5.9 Illustration of the secant method for our example function

approach. Specifically, this new method starts from Newton’s Eq. (5.40):

x(k) = x(k−1) − f (x(k−1))
f ′(x(k−1))

, k = 1, 2, . . . (5.49)

and approximates the derivative f ′(x(k−1)) using the latest two points and function values:

f ′(x(k−1)) ≈ f (x(k−1)) − f (x(k−2))
x(k−1) − x(k−2)

(5.50)

which looks like a finite difference, where the spacing h is picked not by being on a grid
or by hand, but by whatever values our latest iterates have; this implies that the spacing
changes at every iteration.

Combining the last two equations, our prescription for the secant method is:

x(k) = x(k−1) − f (x(k−1))
x(k−1) − x(k−2)

f (x(k−1)) − f (x(k−2))
, k = 2, 3, . . . (5.51)

where we start the iteration at k = 2, since we need two initial guesses as starting points.
Once we get going, though, we only need to evaluate the function once per iteration. Note
how this prescription doesn’t need the derivative f ′(x) anywhere.

You may be wondering where the name “secant” comes from. This word refers to a
straight line that cuts a curve in two or more points.20 You can understand why the method
is so named if you think about the geometric interpretation of our prescription in Eq. (5.51).
From elementary geometry, you may recall that the line that goes through the two points
(x0, y0) and (x1, y1) is:

y − y0 =
y1 − y0

x1 − x0
(x − x0) (5.52)

20 Secant comes from the Latin secare, “to cut”.
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If you now compute the x axis intercept of this straight line, you will find that it is pre-
cisely of the same form as in Eq. (5.51). Thus, in the secant method, at a given step, we
are producing a straight line21 as the secant through the two points (x(k−1), f (x(k−1))) and
(x(k−2), f (x(k−2))). The intercept of that straight line with the x axis gives us the next iterate,
and so on.

This is nicely illustrated in Fig. 5.9 for our usual example function. Even though we
(purposely) begin with two initial points that are far away from the root, we see that this
process of constructing a line through the points, finding the x axis intercept, and then using
the latest two points again, quickly approaches the root. Crucially, we do not require that
our two initial guesses bracket the root. In this example, x(0) and x(1) do happen to bracket
the root, but then x(1) and x(2) don’t; this is irrelevant to us, since we’re simply drawing a
straight line that goes through two points.

From a purely numerical perspective, we observe that the secant method requires the
evaluation of the ratio [x(k−1) − x(k−2)]/[ f (x(k−1)) − f (x(k−2))]. As you may have suspected,
typically both numerator and denominator will be small, so this ratio will be evaluated
with poor relative accuracy. Fortunately, it’s the coefficient in front, f (x(k−1)), that matters
more. In the problem set, you will show that the order of convergence of the secant method
is the golden ratio, p ≈ 1.618. This is superlinear convergence: not as fast as Newton’s
method, but the fact that we don’t need to evaluate the derivative may make this trade-off
worthwhile.

Implementation

Code 5.3 is a Python program that implements our prescription from Eq. (5.51). Observe
that the parameter list is identical to that of our bisection() function from a previous
section.22 The rest of the function is pretty straightforward: we keep forming the ratio of
the difference between abscissas and function values, use it to produce a new iterate, and
evaluate the difference between our best current estimate and the previous one. This part of
the code happens to be easier to read (and write) than bisection() was, since there we
needed notation for the old vs the new midpoint. As usual, we print out a table of values
for informative purposes and then check to see if we should break out of the loop. It’s
worth observing that we are trying to avoid being wasteful when computing ratio and
x2: similarly to what we did in bisection(), we introduce intermediate variables f0 and
f1 to ensure that there is only one function evaluation per iteration.

The main program uses initial guesses for each of the roots. For the first root, we pick x(0)

21 This time not as the tangent at the point (x(k−1), f (x(k−1))), as we did in Newton’s method.
22 Of course, there the x0 and x1 were required to bracket the root, whereas here they don’t have to. While we’re

on the subject, note that in our earlier program x0, x1, and x2 stood for x0, x1, and x2, whereas now x0, x1,
and x2 stand for x(k−2), x(k−1), and x(k).
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Code 5.3 secant.py Code 5.3

from bisection import f

def secant(f,x0,x1,kmax=200,tol=1.e-8):

f0 = f(x0)

for k in range(1,kmax):

f1 = f(x1)

ratio = (x1 - x0)/(f1 - f0)

x2 = x1 - f1*ratio

xdiff = abs(x2-x1)

x0, x1 = x1, x2

f0 = f1

rowf = "{0:2d} {1:1.16f} {2:1.16f} {3:1.16f}"
print(rowf.format(k,x2,xdiff,abs(f(x2))))

if abs(xdiff/x2) < tol:

break

else:

x2 = None

return x2

if name == ‘ main ’:

root = secant(f,0.,1.7)

print(root); print("")

root = secant(f,2.,2.1)

print(root)

and x(1) to match what we saw in Fig. 5.9. For the second root, we pick two values, close
to where we expect the root to lie, as is commonly done in practice. Running this code,
we see that not too many iterations are required to reach the desired tolerance target. This
is much faster than the fixed-point iteration; even more importantly, the secant method al-
lows us to evaluate both roots, without having to carry out any analytical manipulations
first. Of course, there was some guesswork involved when picking the two pairs of ini-
tial guesses. The secant method also took considerably fewer iterations than the bisection
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method and barely more than Newton’s method. All in all, with basically no bookkeeping
and no derivative-evaluations, it has allowed us to finds both roots fast.

5.2.7 Ridders’ Method

We now turn to Ridders’ method: this approach is “only” 40 years old, making it one of
the most modern topics in this volume.23 We back up for a moment to realize that the last
two methods we’ve encountered (Newton’s, secant) produced the next iterate by finding
the x axis intercept of a straight line; they only differ in how that straight line is produced.
Ridders’ method follows the same general idea, of finding the x axis intercept of a straight
line, but chooses this line not by the value of the function f (x) or its derivative f ′(x), but
through a clever trick. While our derivation below will be somewhat long, the prescription
we arrive at is quite simple, requiring very little bookkeeping.

Ridders’ is a bracketing method, so it assumes f (x0) f (x1) < 0. The main idea is to
multiply f (x) with the unique exponential function which turns it into a straight line:

R(x) = f (x) eQx (5.53)

That is, regardless of the shape of f (x), the new R(x) will be linear, R(x) = c0 + c1x. Since
we have three undetermined parameters (c0, c1, and Q), we will use three points to pin
them down. We take these to be our initial bracket’s endpoints, x0 and x1, as well as their
midpoint, x2 = (x0 + x1)/2. A moment’s thought will convince you that, since R(x) is a
straight line, we will have:

R2 =
R0 + R1

2
(5.54)

where we are using the notation Ri ≡ R(xi); we will soon also employ the corresponding
fi ≡ f (xi). Let us further define:

d = x2 − x0 = x1 − x2 (5.55)

Using Eq. (5.53) and Eq. (5.54), we find:

f0 eQx0 + f1 eQx1 − 2 f2 eQx2 = 0 (5.56)

Factoring out eQx0 leads to:

f1 e2Qd − 2 f2 eQd + f0 = 0 (5.57)

which you can see is a quadratic equation in eQd. Solving it leads to:

eQd =
f2 − sign( f0)

√
f 2
2 − f0 f1

f1
(5.58)

Since we are starting with the assumption that f0 f1 < 0, we see that f 2
2 − f0 f1 > 0, as it

should be. For the same reason, the square root of f 2
2 − f0 f1 is larger in magnitude than f2.

23 And, in all likelihood, in your undergraduate education.
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The −sign( f0) is deduced from the fact that eQd > 0. To see this, we distinguish between
two possible scenarios, (a) f0 < 0 and f1 > 0, (b) f0 > 0 and f1 < 0. Taking the first
scenario, we see that the denominator in Eq. (5.58) is positive, so the numerator should
also be positive. For this scenario, there are two possibilities regarding the sign of f2. If
f2 > 0, then the square root term has to come in with a plus sign in order to get a positive
numerator. Similarly, if f2 < 0 then the first term in the numerator is negative so, again, the
square root term (which is larger in magnitude) has to come in with a plus sign to ensure
eQd > 0. An analogous line of reasoning leads to a minus sign in front of the square root
for the second scenario, f0 > 0 and f1 < 0. Overall, we need −sign( f0), as in Eq. (5.58).

Looking at Eq. (5.58), we see that we have determined Q in terms of the known values
d, f0, f1, and f2. That means that we have fully determined the full R(x), as per our starting
Eq. (5.53). Given that R(x) is a straight line, we can play the same game as in the secant
method, namely we can find the x axis intercept. To be clear, that means that we will
produce a new point x3 as the x axis intercept of the line going through (x1,R1) and (x2,R2),
which of course also goes through (x0,R0); we apply Eq. (5.51):

x3 = x2 − R2
x2 − x1

R2 − R1
= x2 −

d
R1/R2 − 1

= x2 + sign( f0)
f2d√

f 2
2 − f0 f1

(5.59)

In the second equality we brought the R2 to the denominator and identified d in the nu-
merator (along with changing the sign of both numerator and denominator). In the third
equality we employed the fact that:

R1

R2
=

f1 eQx1

f2 eQx2
=

f1
f2

eQd (5.60)

together with our result in Eq. (5.58) for eQd. To reiterate, we found the x axis intercept of
R(x); we then re-expressed everything in terms of the function f (x), which was how our
initial problem was formulated.

Our last result in Eq. (5.59) is something you could immediately implement program-
matically. It only requires f (x) evaluations to produce a root estimate, x3. We’ll follow
Ridders’ original work in making an extra step, in order to remove the factor sign( f0).24

Divide both the numerator and denominator with f0 to find:

x3 = x2 + (x1 − x2)
f2/ f0√

( f2/ f0)2 − f1/ f0
(5.61)

where we also took the oportunity to re-express d as per Eq. (5.55).25 We now notice a nice
property of Ridders’ prescription: since f0 f1 < 0, we see that the denominator is larger in

24 In the literature after Ridders’ paper, that factor is given as sign( f0 − f1). However, since we already know that
f0 f1 < 0, it’s simpler to use sign( f0).

25 This form of the equation for x3 might make you a bit uncomfortable from a numerical perspective: f0, f1,
and f2 are expected to become very small in magnitude as we approach the root, so perhaps we shouldn’t be
dividing these small numbers with each other and then subtracting the ratios.
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Illustration of Ridders’ method for our example function �Fig. 5.10

magnitude than the numerator. That shows that x3 will certainly stay within the original
bracket between x0 and x1; thus, Ridders’ method is guaranteed to converge.

So far, we’ve discussed only the procedure that allows us to produce our first root esti-
mate, x3, i.e., we haven’t seen how to iterate further. Even so, it may be instructive at this
point to see Ridders’ method in action; in the left panel of Fig. 5.10 we show our exam-
ple function, as usual. We have picked our initial bracket x0 and x1 in such a way as to
highlight that the function f (x) and the straight line R(x) are totally different entities. As
a reminder, in Ridders’ method we start from x0 and x1, we evaluate the midpoint x2, and
then use the function values f0, f1, and f2 as per Eq. (5.58) and Eq. (5.53) to produce the
line R(x). Our root estimate x3 is the point where R(x) crosses the x axis. As you can see in
Fig. 5.10, for this problem just one iteration of this algorithm was enough to get very close
to the true root x∗. In order to clarify that the x axis intercepts of f (x) and of this first R(x)
are not necessarily the same, we provide a zoomed-in version of the plot in the right panel
of Fig. 5.10.

After we’ve evaluated our first estimate for the root, in the way just discussed, Ridders’
method goes on to form a new bracket, made up of x3 and one of the existing xi values.
Specifically, we check if f3 fi < 0 for i = 0, 1, 2 to ensure that the root is still bracketed
between x3 and a specific xi. We then rename the two endpoints appropriately, i.e., to x0

and x1, and repeat the entire process.

Overall, Ridders’ method is a reliable bracketing method. As we’ve seen in our exam-
ple case, it converges more rapidly than the bisection method, typically quadratically. Of
course, this is slightly misleading, since each iteration of Ridders’ method requires two
function evaluations, one for the midpoint and one for an endpoint (which was an x axis
intercept in the previous iteration). Even so, this is still superlinear and therefore faster than
the bisection method.
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5.2.8 Summary of One-Dimensional Methods

We’ve already encountered five different methods that solve nonlinear equations. Here’s a
quick summary of their main features:

• Fixed-point method: a non-bracketing method; simple; doesn’t always converge.

• Bisection method: a bracketing method; simple; always converges; linear convergence.

• Newton’s method: a non-bracketing method; requires the function derivative; usually
quadratic convergence; sometimes slow or worse.26

• Secant method: a non-bracketing method; similar to Newton’s method but doesn’t re-
quire the function derivative; usually superlinear convergence; sometimes slow or
worse.

• Ridders’ method: a bracketing method; superlinear convergence; rarely slow.

There are even more speedy and reliable methods out there. Most notably, Brent’s method
is a bracketing approach which is as reliable as the bisection method, with a speed similar
to that of the Newton or secant methods (for non-pathological functions). However, the
bookkeeping it requires is more complicated, so in the spirit of the rest of this volume we
omit it from our presentation. Note that for all bracketing methods our earlier disclaimer
applies: if you have a root that is not bracketed, like in Fig. 5.8, you will not be able to use
such an approach.

Combining all of the above pros and cons, in what follows we will generally reach
for Newton’s method (especially when generalizing to multiple dimensions below) or the
secant method (when we don’t have any information on the derivative, as in chapter 8).
When you need the speed of these methods and the reliability of bracketing methods, you
can employ a “hybrid” approach, as touched upon in the problem set.

5.3 Zeros of Polynomials

As noted at the start of this chapter, a special case of solving a nonlinear equation in one
variable has to do with polynomial equations, of the form:

c0 + c1x + c2x2 + c3x3 + · · · + cn−1xn−1 = 0 (5.62)

The reason this gets its own section is as follows: we know from the fundamental theorem
of algebra that a polynomial of degree n − 1 has n − 1 roots, so this problem is already
different from what we were dealing with above, where only one or two roots needed to be
evaluated.

26 Leading some people to say that Newton’s method should be avoided; this is too strong a statement.
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5.3.1 Challenges

Let us start out by discussing the special challenges that emerge in polynomial root-finding.
We’ve already encountered one of these in a previous section; as you may recall, for mul-
tiple roots we have f ′(x∗) = 0 so, using our definition from Eq. (5.15), we saw that the
root-finding problem in this case is always ill-conditioned. We already learned that brack-
eting methods may be inapplicable in such scenarios, whereas methods (like Newton’s)
which are usually lightning fast, slow down.

Based on the intuition you developed when studying error analysis in linear algebra,
in section 4.2, you probably understand what being ill-conditioned means: if you change
the coefficients of your problem slightly, the solution is impacted by a lot. Let’s look at a
specific example, motivated by Eq. (5.46):

x2 − 4x + 4 = 0 (5.63)

This has a double root at x∗ = 2, as you can easily see by gathering the terms together into
(x − 2)2 = 0. A small perturbation of this problem has the form:

x2 − 4x + 3.99 = 0 (5.64)

Even though we’ve only perturbed one of the coefficients by 0.25%, the equation now has
two distinct roots, at x∗ = 2.1 and x∗ = 1.9. Each of these has changed its value by 5% in
comparison to the unperturbed problem. This effect is considerably larger than the change
in the coefficient. Things can get even worse, though. Consider the perturbed equation:

x2 − 4x + 4.01 = 0 (5.65)

This one, too, has a single coefficient perturbed by 0.25%. Evaluating the roots in this case,
however, leads to x∗ = 2 + 0.1i and x∗ = 2 − 0.1i, where i is the imaginary unit! A small
change in one coefficient of the polynomial changed the real double root into a complex
conjugate pair, with a sizable imaginary part (i.e., there are no longer real roots).

Even so, we don’t want you to get the impression that polynomials are ill-conditioned
only for the case of multiple roots. To see that, we consider the infamous “Wilkinson
polynomial”:

W(x) =
20∏

k=1

(x − k) = (x − 1)(x − 2) . . . (x − 20)

= x20 − 210x19 + 20, 615x18 + · · · + 2 432 902 008 176 640 000 (5.66)

Clearly, this polynomial has the 20 roots x∗ = 1, 2, . . . , 20. The roots certainly appear to be
well-spaced, i.e., nowhere near being multiple. One would naively expect that a tiny change
in the coefficients would not have a large effect on the locations of the roots. Wilkinson
examined the effect of changing the coefficient of x19 from -210 to:

-210 - 2**(-23) = -210.0000001192093

which is a single-coefficient modification of relative magnitude ≈ 6 × 10−8%. The result
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�Fig. 5.11 Roots of the Wilkinson polynomial on the complex plane

of this tiny perturbation ends up being dramatic, as shown in Fig. 5.11. Half the roots have
now become complex, with large imaginary parts; the largest effect is on the roots that used
to be x∗ = 15 and 16. It’s important to emphasize that these dramatic changes are not errors
in our root-finding: we are calculating the true roots of the perturbed polynomial, these just
happen to be very different from the true roots of the original polynomial. Whatever root-
finding algorithm you employ, you should make sure the errors it introduces are small
enough not to impact the interpretation of your actual polynomial equation.

You may recall that in chapter 2 we studied the question of how to evaluate a polynomial
when you have access to the coefficients ci, using what is known as Horner’s rule. In
this section, we’ve been examining the problem of solving for the polynomial’s zeros,
when you have access to the coefficients ci. Our conclusion has been that the problem of
finding the roots starting from the coefficients can be very ill-conditioned, so this approach
should be avoided if possible. While this is an extreme example, the general lesson is that
you should be very careful in the earlier mathematical steps which lead to a polynomial
problem. Given such idiosyncratic behavior, you will not be surprised to hear that there
exist specialized algorithms, designed specifically for finding zeros of polynomials. Some
of these techniques suppress an already-found root, as touched upon in the problem set. In
what follows, we begin with a more pedestrian approach.

5.3.2 One Root at a Time: Newton’s Method

The easiest way to solve for a polynomial’s zeros is to treat the problem as if it was any
other nonlinear equation and employ one of the five methods we introduced in the previous
section, or other ones like them. Specifically, you may recall that, if you have access to
the function’s derivative and you start close enough to the root, Newton’s method is a very
fast way of finding an isolated root. For a high-degree polynomial this will entail finding
many roots one after the other. Thus, it becomes crucial that you have a good first estimate
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of where the roots lie. Otherwise, you will be forced to guess, for example picking a grid
of starting values; many of these will likely end up finding the same roots over and over,
thereby wasting computational resources. Even worse, in order to find all the zeros of the
polynomial, you may be forced to repeat the entire exercise with a finer grid.

We will address a specific problem, that of finding the roots of Legendre polynomials.
As you may recall, we first encountered these in the context of the multipole expansion
(chapter 2) and then saw them again in our discussion of Gram–Schmidt orthogonalization
(chapter 4). We will re-encounter them when we introduce the theory of Gaussian quadra-
ture (chapter 7); as it so happens, at that point we will need their roots, so here we are
providing both scaffolding and a pedagogical example.27

Fortunately, Legendre polynomials have been extensively studied and tabulated, so we
can use several of their properties. Take Pn(x) to be the n-th degree Legendre polynomial28

and denote its i-th root by x∗i ; as usual, we use 0-indexing, meaning that the n roots are
labelled using i = 0, 1, . . . , n − 1. If we convert Eq. (22.16.6) from Ref. [1] to use our
counting scheme, we learn that the true roots x∗i obey the following inequality:

cos

(
2i + 1
2n + 1

π

)
≤ x∗i ≤ cos

(
2i + 2
2n + 1

π

)
(5.67)

This allows us to start Newton’s algorithm with the following initial guess:

x(0)
i = cos

(
4i + 3
4n + 2

π

)
(5.68)

where we are using a subscript to denote the cardinal number of the root29 and a superscript
in parentheses to denote the starting value in Newton’s method. Note that we multiplied
both numerator and denominator with 2 in order to avoid having a 3/2 in the numerator.

We have now accomplished what we set out to do, namely to find a reasonably good
starting estimate of the n roots of our polynomial. The other requirement that Newton’s
method has is access to the function derivative. Fortunately for us, we have already pro-
duced, in legendre.py, a function that returns both the Legendre polynomial and its
first derivative at a given x. Intriguingly, we accomplished this without ever producing the
coefficients of the Legendre polynomials, so we are not too worried about questions of
conditioning. Thus, we are now ready to implement in Python a root-finder for Legendre
polynomials; the result is Code 5.4. We start out by importing our earlier legendre() and
then define two new functions; let’s discuss each of these in turn.

The function legnewton() is designed specifically to find a single root of a Legendre
polynomial. In other words, it looks quite a bit like what a Newton’s method function
would have looked like, had we implemented it in an earlier section; however, it does not

27 Note also how we are following the separation of concerns principle: Legendre-polynomial evaluation is dif-
ferent from Legendre-polynomial root-finding, and both of these are different from Gaussian quadrature, so
there should be (at least) three Python functions involved here.

28 Don’t get confused: Pn(x) involves xn, just like our (n − 1)-th degree polynomial in Eq. (5.62) involves xn−1.
29 Here xi is referring to distinct roots, not to bracketing endpoints, like x0 and x1 above.
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Code 5.4 legroots.py Code 5.4

from legendre import legendre

import numpy as np

def legnewton(n,xold,kmax=200,tol=1.e-8):

for k in range(1,kmax):

val, dval = legendre(n,xold)

xnew = xold - val/dval

xdiff = xnew - xold

if abs(xdiff/xnew) < tol:

break

xold = xnew

else:

xnew = None

return xnew

def legroots(n):

roots = np.zeros(n)

npos = n//2

for i in range(npos):

xold = np.cos(np.pi*(4*i+3)/(4*n+2))

root = legnewton(n,xold)

roots[i] = -root

roots[-1-i] = root

return roots

if name == ‘ main ’:

roots = legroots(9); print(roots)

take in as parameters a general function f and its derivative fprime. Instead, it is designed
to work only with legendre() which, in its turn, had been designed to return the values
of a Legendre polynomial and its first derivative as a tuple.30 The rest of the function, with
its termination criterion and so on, looks very similar to what we saw in, say, secant().

The next function, legroots(), takes care of some rather messy bookkeeping. In essence,
all it does is to repeatedly call legnewton() with different initial guesses corresponding

30 Note that if you had tried to use a pre-existing general newton() function, you would have had to go through
syntactic contortions in order to make the two interfaces match.
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to each root, as per Eq. (5.68). The messiness appears because we have decided to halve
our workload: instead of calculating n roots for the n-th degree polynomial, we notice that
these are symmetrically distributed around 0. Specifically, if n is even, then we can sim-
ply evaluate only n/2 roots (say, the positive ones) and we can rest assured that the other
n/2 can be trivially arrived at. If n is odd, then 0 is also a root, so we need only evaluate
(n − 1)/2 positive roots. The code does just that, by starting out with an array full of zeros,
roots, which all get overwritten in the case of n-even but provide us with the needed 0 for
the case of n-odd. Notice that we employed Python’s integer division to find the number
of positive roots, n//2, which works correctly for both n-even and n-odd. We start roots
out with the negative roots and then introduce the corresponding positive roots counting
from the end: as you may recall, roots[-1-i] is the idiomatic way of accessing the last
element, the second-to-last element, and so on.

Unsurprisingly, numpy has a function that carries out the same task as our legroots();
you may wish to use numpy.polynomial.legendre.leggauss() to compare with our
results; this actually returns two arrays, but we are interested only in the first one. In the
main program we try out the specific case of n = 9, in order to test what we said earlier
about the case of n-odd. The output of running this program is:

[-0.96816024 -0.83603111 -0.61337143 -0.32425342 0. 0.32425342

0.61337143 0.83603111 0.96816024]

As expected, the roots here are symmetrically distributed around 0. You will see in the
problem set two other ways of arriving at the same roots.

5.3.3 All the Roots at Once: Eigenvalue Approach

The approach we covered in the previous section, of evaluating Legendre polynomial roots
one at a time, seems perfect: we didn’t have to go through the intermediate step of com-
puting the polynomial coefficients, so we didn’t get in trouble with the conditioning of
the root-finding problem. However, there was one big assumption involved, namely that
we had good initial guesses for each root available, see Eq. (5.68). But what if we didn’t?
More specifically, what if you are dealing with some new polynomials which have not been
studied before? In that case, our earlier approach would be inapplicable. We now turn to
a different method, which uses matrix techniques to evaluate all of a polynomial’s roots
at once. We state at the outset that this approach requires knowledge of the coefficients of
the polynomial, so our earlier disclaimers regarding the conditioning of root-finding in that
case also apply here. Another disclaimer: this technique is more costly than polynomial-
specific approaches like Laguerre’s method (which we won’t discuss).

Qualitatively, the idea involved here is as follows: we saw in chapter 4 that we shouldn’t
evaluate a matrix’s eigenvalues by solving the characteristic equation; you now know that
this was due to the conditioning issues around polynomial root-finding. However, there’s
nothing forbidding you from taking the reverse route: take a polynomial equation, map it
onto an eigenvalue problem and then use your already-developed robust eigensolvers.

Motivated by Eq. (5.62), we define the following polynomial:
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p(x) = c0 + c1x + c2x2 + c3x3 + · · · + cn−1xn−1 + xn (5.69)

Note that p(x) also includes an xn term, with a coefficient of 1. This is known as a monic
polynomial; you can think of it as a monomial plus a polynomial of one degree lower. Even
though it may seem somewhat arbitrary, we now define the following companion matrix
which has dimensions n × n:31

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 . . . 0

0 0 0
. . .

...
...

...
. . . 0 1

−c0 −c1 . . . −cn−2 −cn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.70)

We picked this matrix because it has a very special characteristic polynomial. As you may
recall from Eq. (4.13), the characteristic polynomial for our companion matrix C will be
formally arrived at using a determinant, i.e., det(C − λI ). Now here is the remarkable
property of our companion matrix: if you evaluate this determinant, it will turn out to be
(as a function of λ) equal to our starting polynomial (up to an overall sign), i.e., p(λ)!
Therefore, if you are interested in the solutions of the equation p(λ) = 0, which is our
starting problem in Eq. (5.69), you can simply calculate the eigenvalues using a method
of your choosing. We spent quite a bit of time in chapter 4 developing robust eigenvalue-
solvers, so you could use one of them; note that you have hereby mapped one nonlinear
equation with n roots to an n × n eigenvalue problem. Intriguingly, this provides you with
all the eigenvalues at once, in contradistinction to what we saw in the previous subsection,
where you were producing them one at a time.

In the previous paragraph we merely stated this remarkable property of companion ma-
trices. Actually there were two interrelated properties: (a) the characteristic polynomial of
C is (up to a sign) equal to p(λ), and therefore (b) the roots of p(λ) are the eigenvalues of
C. Here, we are really interested only in the latter property; let’s prove it. Assume x∗ is a
root of our polynomial p(x), i.e., p(x∗) = 0 holds. It turns out that the eigenvector of C is
simply a tower of monomials in x∗, specifically (1 x∗ (x∗)2 . . . (x∗)n−2 (x∗)n−1)T ; observe
that this is an n × 1 column vector. Let’s explicitly see that this is true, by acting with our

31 Amusingly enough, mathematicians have gone on to also define a “comrade matrix” and a “colleague matrix”.
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companion matrix on this vector:

C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

x∗

...

(x∗)n−2

(x∗)n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∗

(x∗)2

...

(x∗)n−1

−c0 − c1x∗ − c2(x∗)2 − . . . − cn−1(x∗)n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∗

(x∗)2

...

(x∗)n−1

(x∗)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= x∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

x∗

...

(x∗)n−2

(x∗)n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.71)

In the first equality we simply carried out the matrix multiplication. In the second equality
we used the fact that x∗ is a root, so p(x∗) = 0, which can be re-expressed in the form
(x∗)n = −c0 − c1x∗ − c2(x∗)2 − · · · − cn−1(x∗)n−1. In the third equality we pulled out a factor
of x∗. Thus, we have managed to prove not only that the column vector we said was an
eigenvector is, indeed, an eigenvecor, but also that x∗ is the corresponding eigenvalue!32

To summarize, we can evaluate the roots of our polynomial p(x) from Eq. (5.69) by
computing the eigenvalues of the companion matrix from Eq. (5.70). Make sure you re-
member that Eq. (5.69) is a monic polynomial. If in your problem the coefficient of xn is
different from 1, simply divide all the coefficients with it; you’re interested in the roots,
and this operation doesn’t impact them. From there onwards, everything we’ve said in this
subsection applies. To be concrete, for a monic polynomial of degree 4, you will have a
4×4 companion matrix and a 4×1 eigenvector. One of the problems asks you to implement
this approach in Python, using the eigenvalue solvers we developed in the previous chapter,
qrmet.py or eig.py.

5.4 Systems of Nonlinear Equations

We now turn to a more complicated problem, that of n simultaneous nonlinear equations
in n unknowns. Employing the notation of Eq. (5.10), this can be expressed simply as
f(x) = 0. In the earlier section on the one-variable problem, the approach that was the
easiest to reason about and was also guaranteed to converge was the bisection method. Un-
fortunately, this doesn’t trivially generalize to the many-variable problem: you would need
to think about all the possible submanifolds and evaluate the function (which, remember,
may be a costly operation) a very large number of times to check if it changed sign. On the
other hand, the fixed-point iteration method generalizes to the n-variable problem straight-
forwardly (as you will discover in a problem) but, as before, is not guaranteed to converge.
What we would like is a fast method that can naturally handle an n-dimensional space. It
turns out that Newton’s method fits the bill, so in the present section we will discuss mainly
variations of this general approach. It should come as no surprise that, in that process, we
will use matrix-related functionality from chapter 4.

Writing down f(x) = 0 may appear misleadingly simple, so let’s make things concrete
by looking at a two-dimensional problem:

32 Note that we didn’t have to evaluate a determinant anywhere.
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�Fig. 5.12 Example of two coupled nonlinear equations

⎧⎪⎪⎨⎪⎪⎩ f0(x0, x1) = x2
0 − 2x0 + x4

1 − 2x2
1 + x1 = 0

f1(x0, x1) = x2
0 + x0 + 2x3

1 − 2x2
1 − 1.5x1 − 0.05 = 0

(5.72)

We have two unknowns, x0 and x1, and two equations; the latter are given in the form fi = 0,
where each of the fi’s is a function of the two variables x0 and x1. Note that here we are
truly faced with two variables, x0 and x1, in contradistinction to the previous section, where
x0, x1, and so on were used to denote distinct roots of a single polynomial.33 You should
convince yourself that you cannot fully solve this pair of coupled nonlinear equations by
hand; in this simple case, it’s possible to solve, say, for x0 in terms of x1, and then get a
single nonlinear equation, but the question arises how you would be able to do the same for
the case of a 10-dimensional system. To get some insight into the problem, Fig. 5.12 shows
the curves described by our two equations. Note that even the simple task of producing this
plot is not totally trivial. We find three intersection points between the two curves.34

5.4.1 Newton’s Method

The derivation of Newton’s multidimensional method will basically be a straightforward
generalization of what we saw in section 5.2.5, with a Taylor expansion at its core. We
assume that f has bounded first and second derivatives; the actual solution of our problem
is x∗ and we will be trying to approximate it using iterates, which this time are themselves
vectors, x(k).35 In order to make the transition to the general problem as simple as possible,
let’s start from a Taylor expansion of a single function component fi around our latest

33 Also in contradistinction to the bracketing endpoints, x0 and x1, of earlier sections.
34 Actually, there is also a fourth one, if you look farther to the right.
35 Just like in our disussion of the Jacobi iterative method for solving linear systems of equations in section 4.3.5.
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iterate, x(k−1):

fi(x) = fi(x(k−1)) +
(
∇ fi(x(k−1))

)T (
x − x(k−1)

)
+ O

(
‖x − x(k−1)‖2

)
(5.73)

where, as usual, i = 0, 1, . . . , n − 1. We can rewrite the second term on the right-hand side
in terms of vector components:

(
∇ fi(x(k−1))

)T (
x − x(k−1)

)
=

n−1∑
j=0

∂ fi
∂x j

∣∣∣∣∣
x(k−1)

j

(
x j − x(k−1)

j

)
(5.74)

With a view to collecting the n function components together, we now introduce the Jaco-
bian matrix:

J(x) =

{
∂ fi
∂x j

}
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f0
∂x0

∂ f0
∂x1

. . . ∂ f0
∂xn−1

∂ f1
∂x0

∂ f1
∂x1

. . . ∂ f1
∂xn−1

...
...

. . .
...

∂ fn−1

∂x0

∂ fn−1

∂x1
. . . ∂ fn−1

∂xn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.75)

You may sometimes see this denoted by J f (x), in order to keep track of which function
it’s referring to. Using this matrix, we can now rewrite Eq. (5.73) to group together all n
function components:

f(x) = f(x(k−1)) + J(x(k−1))
(
x − x(k−1)

)
+ O

(
‖x − x(k−1)‖2

)
(5.76)

Keep in mind that this is nothing more than a generalization of the Taylor expansion in
Eq. (5.37). In the spirit of that derivation, we now drop the second-order term and assume
that we have found the solution, f(x∗) = 0:

0 = f(x(k−1)) + J(x(k−1))
(
x∗ − x(k−1)

)
(5.77)

In practice, one iteration will not be enough to find the solution so, instead, we use our
latest formula to introduce the prescription of Newton’s method for the next iterate, x(k):

J(x(k−1))
(
x(k) − x(k−1)

)
= −f(x(k−1)) (5.78)

Since all quantities at the location of our previous iterate, x(k−1), are known, this equation
has the form of Ax = b, i.e., it is a linear system of n equations in n unknowns. Assuming
J(x(k−1)) is non-singular, we can solve this system and then we will be able to find all the
x(k)

j . This process is repeated, until we satisfy a termination criterion, which could be taken
to be that in Eq. (4.170):

n−1∑
j=0

∣∣∣∣∣∣∣
x(k)

j − x(k−1)
j

x(k)
j

∣∣∣∣∣∣∣ ≤ ε (5.79)

or something fancier.
In principle, you could further manipulate Eq. (5.78) so as to write it in the form:

x(k) = x(k−1) −
(
J(x(k−1))

)−1
f(x(k−1)) (5.80)



282 Roots

which looks very similar to Eq. (5.40) for the one-variable Newton’s method. In practice, as
you know from chapter 4, explicitly evaluating the inverse of a matrix is usually a bad idea.
Instead, you simply solve the linear system Eq. (5.78), say by Gaussian elimination or the
Jacobi iterative method (if the Jacobian matrix is sparse). A straightforward generalization
of the convergence study in section 5.2.5 will convince you that, even in many dimensions,
Newton’s method is quadratically convergent, assuming your initial guess (vector) x(0) is
close enough to the true solution x∗.

5.4.2 Discretized Newton Method

Note that, in order to solve the linear system in Eq. (5.78), you need to have access to the Ja-
cobian matrix, J(x). This is completely analogous to the one-variable version of Newton’s
method, where you needed to be able to evaluate f ′(x). For our two-dimensional problem
in Eq. (5.72) this is very easy to do: you simply take the derivatives analytically. In gen-
eral, however, this may not be possible, e.g., if your function components fi are external
complicated subroutines.

Algorithm

You may recall that in the case of the one-variable Newton’s method we had advised against
using a finite-difference approach to evaluate the first derivative f ′(x). This was both be-
cause we didn’t know which spacing h to pick, and also because it implied two function
evaluations at each iteration. In the present, multidimensional, case we are willing to deal
with these problems, given the paucity of alternatives.

This gives rise to the discretized Newton method; this is simply a result of using the
forward difference to approximate the derivatives that make up the Jacobian matrix:

∂ fi
∂x j
≈

fi(x + e jh) − fi(x)

h
=

fi(x0, x1, . . . , x j + h, . . . , xn−1) − fi(x0, x1, . . . , x j, . . . , xn−1)

h
(5.81)

As shown explicitly in the second equality, e j is the j-th column of the identity matrix,
as we had already seen back in Eq. (4.148). The algorithm of the discretized Newton
method then consists of employing Eq. (5.78), where the Jacobian is approximated as per
Eq. (5.81).

Since each of i and j takes up n possible values, you can see that in order to evaluate
all the fi(x + e jh) we need n2 function-component evaluations. To that you must add an-
other n function-component evaluations that lead to fi(x); you actually need those for the
right-hand side of Eq. (5.78), so you compute them before you start forming the forward
differences of Eq. (5.81). In addition to this cost, each iteration of the discretized Newton
method requires the linear system of Eq. (5.78) to be solved, for which as you may recall
the operation count is ∼2n3/3 for Gaussian elimination.36

36 Which is the method you’d likely employ for a dense matrix.



5.4 Systems of Nonlinear Equations 283

Implementation

At this point, it should be relatively straightforward to implement the discretized New-
ton method in Python; the result is Code 5.5. We start out by importing the Gaussian-
elimination-with-pivoting function from the last chapter: since we have no guarantees
about the structure of our matrices, we try to be as general as possible. We then intro-
duce three new functions. Taking these in turn: first, we create a function that evaluates
the n function components fi given a position argument x. We do this for our two-variable
problem in Eq. (5.72), but the rest of the code is set up to be completely general. In other
words, the dimensionality of the problem is located only in one part of the code, i.e., in
the function fs(). Since the rest of the code will be manipulating matrices, we make sure
to produce a one-dimensional numpy array to hold the values of f(x). Note that in fs()
we start by unpacking the input argument xs into two local variables; this is not neces-
sary, since we could have simply used xs[0] and xs[1] below. However, all those square
brackets are error prone so we avoid them.

Our next function, jacobian(), is designed to build up the Jacobian matrix Jf via the
forward difference, as per Eq. (5.81). Note that we are being careful not to waste func-
tion evaluations: fs0 is calculated once, outside the loop. After this, we are reasonably
idiomatic, producing one column of the Jacobian matrix, Eq. (5.75), at a time. To get all
the columns, we are iterating through the j index in fi(x + e jh), while using numpy func-
tionality to step through the i’s, without the need for a second explicit index. It’s worth
pausing to compare this to the way we evaluated the second derivative all the way back in
section 3.5. At the time, we didn’t have access to numpy arrays, so we would shift a given
position by h, in order to avoid rounding error creep. Here, we have the luxury of using a
new vector for each shifted component separately.

The function multi newton() looks a lot like our earlier legnewton() but, of course,
it applies to any multidimensional function. As a result, it uses numpy arrays throughout.
After evaluating the Jacobian matrix at the latest iterate as per Eq. (5.81), we solve the
linear system Eq. (5.78) and thereby produce a new iterate. As usual, we test against the
termination criterion to see if we should keep going. The print-out statement could have
included the value(s) of fs(xnews), to highlight that each function component fi gets
closer to zero as the algorithm progresses. Before exiting the loop, we prepare for the next
iteration by renaming our latest iterate; we could have also accomplished this by saying
xolds = xnews, but it’s good to get into the habit of using numpy.copy().

The main part of the program simply makes up an initial guess and runs our multidimen-
sional Newton function. We then print out the final solution vector, as well as the values of
the function components fi at the solution vector. Running this code, we succeed, after a
small number of iterations, in finding a solution which leads to tiny function components.
You should try different initial guesses to produce the other roots.

5.4.3 Broyden’s Method

As it now stands, the discretized Newton method we just discussed works quite well for
problems that are not too large; we will make use of it in the projects at the end of this
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Code 5.5 multi newton.py Code 5.5

from gauelim pivot import gauelim pivot

from jacobi import termcrit

import numpy as np

def fs(xs):

x0, x1 = xs

f0 = x0**2 - 2*x0 + x1**4 - 2*x1**2 + x1

f1 = x0**2 + x0 + 2*x1**3 - 2*x1**2 - 1.5*x1 - 0.05

return np.array([f0,f1])

def jacobian(fs,xs,h=1.e-4):

n = xs.size

iden = np.identity(n)

Jf = np.zeros((n,n))

fs0 = fs(xs)

for j in range(n):

fs1 = fs(xs+iden[:,j]*h)

Jf[:,j] = (fs1 - fs0)/h

return Jf, fs0

def multi newton(fs,jacobian,xolds,kmax=200,tol=1.e-8):

for k in range(1,kmax):

Jf, fs xolds = jacobian(fs, xolds)

xnews = xolds + gauelim pivot(Jf, -fs xolds)

err = termcrit(xolds, xnews)

print(k, xnews, err)

if err < tol:

break

xolds = np.copy(xnews)

else:

xnews = None

return xnews

if name == ‘ main ’:

xolds = np.array([1.,1.])

xnews = multi newton(fs, jacobian, xolds)

print(xnews); print(fs(xnews))
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and following chapters. However, let’s back up and see which parts of the algorithm are
wasteful. As you may recall, this method entailed two large costs: first, it involved n2 + n
function-component evaluations, n2 for the Jacobian matrix as per Eq. (5.81) and n for
the right-hand side of the Newton update, as per Eq. (5.78). Second, the Newton update
itself involved solving a linear system of equations, which for Gaussian elimination costs
∼2n3/3 operations.

A reasonable assumption to make at this point is that, of these two costs, the function
(component) evaluations are the most time-consuming. You can imagine problems where
n is, say, 10, so solving a 10×10 linear system is pretty straightforward, but each function-
component evaluation could be a lengthy separate calculation involving many other math-
emetical operations; then, the n2 evaluations required for the discretized Newton method
will dominate the total runtime. To address this issue, we are inspired by the secant method
for the one-variable case: what we did there was to use the function values at the two latest
iterates in order to approximate the value of the derivative, see Eq. (5.50). The idea was
that, since we’re going to be evaluating the function value at each iterate, we might as well
hijack it to also provide information on the derivative. As the iterates get closer to each
other, this leads to a reasonably good approximation of the first derivative.

With the secant method as our motivation, we then come up with the idea of using the
last two guess vectors, x(k) and x(k−1), and the corresponding function values, in order to
approximate the Jacobian matrix. In equation form, this is:

J(x(k))
(
x(k) − x(k−1)

)
≈ f(x(k)) − f(x(k−1)) (5.82)

This secant equation has to be obeyed but, unfortunately, it cannot be solved on its own,
since it is underdetermined. To see this, think of our problem as Ax = b, where we know
x and b but not A. In order to make progress, we need to impose some further condition.

This problem was tackled by Broyden, who had the idea of not evaluating J(x(k)) from
scratch at each iteration. Instead, he decided to take a previous estimate of the Jacobian,
J(x(k−1)), and update it. The notation can get messy, so let’s define some auxiliary variables:

x(k) − x(k−1) ≡ q(k), f(x(k)) − f(x(k−1)) ≡ y(k) (5.83)

Our secant equation then becomes simply:

J(x(k))q(k) ≈ y(k) (5.84)

Broyden chose to impose the further requirement that:

J(x(k))p = J(x(k−1))p (5.85)

for any vector p that is orthogonal to q(k), i.e., for which
(
q(k)

)T
p = 0 holds: if you change

x in a direction perpendicular to q(k) then you don’t learn anything about the rate of change
of f. The last two equations are enough to uniquely determine the update from J(x(k−1))
to J(x(k)). However, instead of constructing this update explicitly, we will follow an easier
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route: we’ll state Broyden’s prescription, and then see that it satisfies both the required
conditions, Eq. (5.84) and Eq. (5.85). Broyden’s update is:

J(x(k)) = J(x(k−1)) +
y(k) − J(x(k−1))q(k)(

q(k)
)T q(k)

(
q(k)

)T
(5.86)

(We state at the outset that we can get in trouble if q(k) = x(k) − x(k−1) = 0.) Let’s check if
our two requirements are satisfied.

First, we take Eq. (5.86) and multiply with q(k) on the right. We have:

J(x(k))q(k) = J(x(k−1))q(k) +
y(k) − J(x(k−1))q(k)(

q(k)
)T q(k)

(
q(k)

)T
q(k)

= J(x(k−1))q(k) + y(k) − J(x(k−1))q(k) = y(k) (5.87)

In the second equality we cancelled the denominator and in the third equality we cancelled
the other two terms. We find that our first requirement, Eq. (5.84), is satisfied.

Next, we take Eq. (5.86) again, this time multiplying with p on the right:

J(x(k))p = J(x(k−1))p +
y(k) − J(x(k−1))q(k)(

q(k)
)T q(k)

(
q(k)

)T
p (5.88)

Since we know that
(
q(k)

)T
p = 0 holds, we see that the second term on the right-hand side

vanishes, so we are left with Eq. (5.85), as desired.
Thus, Broyden’s update in Eq. (5.86) satisfies our two requirements in Eq. (5.84) and

Eq. (5.85). In other words, we have been able to produce the next Jacobian matrix using
only the previous Jacobian matrix and the last two iterates (and corresponding function val-
ues). Let us summarize the entire prescription using our original notation, which employs
fewer extra variables:

J(x(k−1))
(
x(k) − x(k−1)

)
= −f(x(k−1))

J(x(k)) = J(x(k−1)) +
f(x(k))

(
x(k) − x(k−1)

)T

‖x(k) − x(k−1)‖2E

(5.89)

We start with a known J(x(0)); this could be produced using a forward-difference scheme
(just once at the start), or could even be taken to be the identity matrix. From then and
onwards, we simply apply Newton’s step from Eq. (5.78), in the first line, and then use
Broyden’s formula, Eq. (5.86), in the second line to update the Jacobian matrix; we also
took the opportunity to use the first line to cancel some terms in the numerator and to iden-
tify the Euclidean norm in the denominator. Remember, even though Broyden’s update
was designed to respect the secant equation, Eq. (5.82), this equation does not appear in
the prescription itself. Observe that the first line requires n function-component evaluations
for f(x(k−1)) and the next line another n function-component evaluations, for f(x(k)), but the
latter will be re-used in the guise of f(x(k−1)) the next time through the loop. Note, finally,
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that there is no derivative in sight. Keep in mind that we won’t exhibit quadratic conver-
gence (like Newton’s method for analytical derivatives does) but superlinear convergence,
similarly to what we saw in the one-variable case.

At the end of the day, our prescription above still requires us to solve a linear system
of equations in the first line. Broyden actually did not carry out our cancellation in the
numerator; instead, he went on to make the prescription even more efficient, but the main
concept should be clear from our discussion. The crucial point is that we are avoiding the
n2 function-component evaluations; this approach is often much faster than the discretized
Newton method we covered in the previous subsection. A problem asks you to implement
this version of Broyden’s method in Python; you should keep in mind that the numerator
in the second line of Eq. (5.89) involves the product of a column vector and a row vector,
so it is similar to the outer product in producing an n × n matrix.37

5.5 Minimization

We turn to the last problem of this chapter: instead of finding function zeros, we are now
going to be locating function minima. Note that we will be studying the problem of uncon-
strained minimization, meaning that we will not be imposing any further constraints on our
variables; we are simply looking for the variable values that minimize a scalar function.

5.5.1 One-Dimensional Minimization

For simplicity, let’s start from the case of a function of a single variable, φ(x).38 As you may
recall from elementary calculus, a stationary point (which, for a differentiable function, is
also known as a critical point) is a point at which the derivative vanishes, namely:

φ′(x∗) = 0 (5.90)

where we are now using x∗ to denote the stationary point. If φ′′(x∗) > 0 we are dealing with
a local minimum, whereas if φ′′(x∗) < 0 a local maximum. Minima and maxima together
are known as extrema.

A simple example is our function φ(x) = ex−
√

x − x from Fig. 5.1; in an earlier section
we saw that it has two zeros, at ≈1 and at ≈2.5, but we are now interested in the minimum,
which is located at x∗ ≈ 1.8. It’s easy to see that φ′′(x∗) > 0 (simply by looking) so
we have a (single) minimum. From a practical perspective, to compute the location of the
minimum we can use one of our five one-variable root-finding algorithms from section 5.2,
this time applied not to φ(x) but to φ′(x). By simply applying root-finding algorithms to
the φ′(x) function, you will find a stationary point, but you won’t know if it is a minimum,

37 So you should not use numpy’s @ here, since it would lead to a scalar; use numpy.outer() instead.
38 You will soon see why we are switching our notation from f (x) to φ(x).
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maximum, or something else (see below). As usual, more specialized (and “safe”) methods
exist that locate only function minima, but here we are trying to give you only a flavor for
the subject. A problem asks you to apply the secant method to this problem.

As a second example, we look at Fig. 5.8, which was plotting the function:

φ(x) = x4 − 9x3 + 25x2 − 24x + 4 (5.91)

As you may recall, that function had one root at ≈0.21, another one at ≈4.79, as well
as a double root at 2. Of course, we are now not trying to evaluate roots but minima or
maxima. Just by looking at the plot we can see that we have a local minimum at x∗ ≈
0.7, a local maximum at x∗ = 2 (which coincides with the location of the double root),
as well as another minimum at x∗ ≈ 4. The second derivative of our function at each
of these extrema, φ′′(x∗), is positive, negative, and positive, respectively. This is a nice
opportunity to point out that the minimum at x∗ ≈ 4 happens to be the global minimum,
i.e., the point where the function reaches its smallest value not only locally but in general.
It should be easy to see that our iterative root-finding algorithms, which start with an initial
guess x(0) and proceed from there cannot guarantee that a global minimum (or, for other
functions, a global maximum) will be reached. This applies even if you have somehow
taken into account the value of the second derivative, i.e., even if you can guarantee that
you are dealing with a local minimum, you cannot guarantee that you have found the
global minimum. You can think of placing a marble (point) on this curve: it will roll to
the minimum point that is accessible to it, but may not roll to the absolute minimum. We
won’t worry too much about this, but there are techniques that can move you out of a local
minimum, in search of nearby (deeper) local minima.

At this point we realize that, when classifying critical points above, we forgot about one
possibility, namely that φ′′(x∗) = 0. In this case, one must study the behavior of higher-
order derivatives (this is called the extremum test):39 the point may turn out to be a min-
imum, a maximum, or what is known as a saddle point.40 In order to elucidate that last
concept, let us look at a third example, namely the function:

φ(x) = 4x5 − 15x4 + 14x3 + 4 (5.92)

In Fig. 5.13 we are plotting the function φ(x) itself in the left panel, the first derivative
φ′(x) in the middle panel, and the second derivative φ′′(x) in the right panel. We have
a local minimum at x∗ ≈ 1.89, a local maximum at x∗ ≈ 1.11, and something new at
x∗ = 0: the function “flattens” but then keeps going in the same direction. Looking at
the first derivative in the middle panel, we see that all three points are critical points (i.e.,
have vanishing first derivative). Then, turning to the second derivative in the right panel,
examining these three points starting from the rightmost, φ′′(x∗) is positive, negative, and
zero, respectively. You can see from the way φ′′(x) crosses the x axis at x = 0 that we will
find φ′′′(0) � 0, which is what leads to a saddle point.

To summarize, locating critical points using a one-dimensional root-finding algorithm
is reasonably straightforward. After this, one has to be a little careful in distinguishing

39 This is actually more general, also covering the case where the first several derivatives are zero.
40 There are situations where you can have an inflection point that is not a critical point (so it doesn’t get called

a saddle point). For example: φ(x) = sin x leads to φ′′(0) = 0, but for φ′(0) � 0.
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Example illustrating the concept of a saddle point �Fig. 5.13

between (local and global) minima, maxima, and saddle points; this is easier to do when
function-derivative information is available.

5.5.2 Multidimensional Minimization

The problem of multidimensional minimization is, in general, much harder to solve; as the
dimensionality grows one cannot even visualize what’s going on very effectively. We start
with some mathematical aspects of the problem, then turn to a two-dimensional example,
and after that discuss specific minimization methods.

General Features

Consider a scalar function of many variables, i.e., φ(x), where x bundles together the vari-
ables x0, x1, . . . , xn−1 but φ produces scalar values. This is somewhat analogous to the sin-
gle function components fi that we encountered in section 5.4. As we did in Eq. (5.73), we
will now employ a multidimensional Taylor expansion, this time going to one order higher.
Also, in order to keep things general, we will not expand around our latest iterate, x(k−1),
since we are not introducing a specific method right now; we are simply trying to explore
features of the problem of minimizing φ(x).41

We assume φ(x) has bounded first, second, and third derivatives. Then, employing nota-
tion inspired by Eq. (5.83), we Taylor expand in each of the components of the vector x;
these can be bundled together using vector notation, see Eq. (C.5):

φ(x + q) = φ(x) + (∇φ(x))T q +
1
2

qT H(x)q + O
(
‖q‖3

)
(5.93)

Here the first-order term involves ∇φ(x), the gradient vector of φ at x. This is:

∇φ(x) =

(
∂φ

∂x0

∂φ

∂x1
· · · ∂φ

∂xn−1

)T

(5.94)

Similarly to Eq. (5.74), we can express the first-order term in our expansion in terms of the

41 Whatever we discover on the question of minimizing φ(x) will also apply to the problem of maximizing −φ(x).
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vector components:

(∇φ(x))T q =
n−1∑
j=0

∂φ

∂x j
q j (5.95)

We will come back to this point below but, for now, note that ∇φ(x) is the direction of
steepest ascent. To see this, observe that, for small q, the term linear in q is the dominant
contribution, since ‖q‖2 � ‖q‖. From elementary vector calculus we know that the dot
product (∇φ(x))T q will be maximized when q points in the direction of ∇φ(x).

Assuming x∗ is a local minimum of φ and ignoring higher-order terms in Eq. (5.93):

φ(x∗ + q) ≈ φ(x∗) + (∇φ(x∗))T q (5.96)

Reversing our argument from the previous paragraph, the first-order term will lead to the
largest possible decrease when q points in the direction of −∇φ(x∗). If ∇φ(x∗) � 0, we will
have found a φ(x∗ + q) that is smaller than φ(x∗); by definition, this is impossible, since
we said that x∗ is a local minimum of φ. This leads us to the following multidimensional
generalization of our criterion for being a critical point in Eq. (5.90):

∇φ(x∗) = 0 (5.97)

where both the left-hand side and the right-hand side are vectors.
Having established that the gradient vector vanishes at a critical point, we now turn to

the second-order term in Eq. (5.93), which involves the Hessian matrix, H(x). To see what
this is, we expand the quadratic form as follows:

1
2

qT H(x)q =
1
2

n−1∑
i, j=0

∂φ

∂xi∂x j
qiq j (5.98)

In matrix form:

H(x) =

{
∂φ

∂xi∂x j

}
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2φ

∂x2
0

∂2φ
∂x0∂x1

. . . ∂2φ
∂x0 xn−1

∂2φ
∂x1∂x0

∂2φ

∂x2
1

. . . ∂2φ
∂x1∂xn−1

...
...

. . .
...

∂2φ
∂xn−1∂x0

∂2φ
∂xn−1∂x1

. . . ∂2φ

∂x2
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.99)

Since for us the second partial derivatives will always be continuous, it is easy to see that
our Hessian matrix will be symmetric. Let us now apply Eq. (5.93), for the case of x∗, a
local minimum of φ. We have:

φ(x∗ + q) = φ(x∗) +
1
2

qT H(x∗)q + O
(
‖q‖3

)
(5.100)

where we have not included the first-order term, since the gradient vector vanishes, as per
Eq. (5.97). If we now further assume that H(x∗) is positive definite,42 then we can see that,
indeed, φ(x∗ + q) > φ(x∗), as it should, since x∗ is a minimum.
42 Recall from section 4.3.4 that a matrix A is positive definite if xT Ax > 0 for all x � 0.
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Example of a scalar function of two variables �Fig. 5.14

To summarize: (a) a necessary condition for x∗ being a local minimum is that it be
a critical point, i.e., that its gradient vector vanish, and (b) a sufficient condition for the
critical point x∗ being a local minimum is that its Hessian matrix be positive definite.

A Two-Dimensional Example

As in the case of solving nonlinear coupled equations, it’s easier to build your intuition
by studying a two-variable problem. This means we will be dealing with a (single) scalar
function φ that takes in two variables, x0 and x1, and produces a single number, the function
value. As above, our goal is to minimize this function, i.e., to find the values of x0 and x1

that produce the smallest possible φ(x0, x1). We decide to look at the f0 from our earlier
example, Eq. (5.72), this time being considered not as a function component but as a single
function; also, as noted, we are no longer looking at the zeros of this function, but its entire
behavior, with a view to minimizing it. It is:

φ(x0, x1) = x2
0 − 2x0 + x4

1 − 2x2
1 + x1 (5.101)

To help you get more comfortable with higher dimensions, Fig. 5.14 shows what this func-
tion looks like. This is attempting both to visualize the third dimension and to draw equipo-
tential curves (also known as contour lines). For example, if you take φ = 0 then you will
reproduce our earlier curve from Fig. 5.12.

We find that we are dealing with two local minima. The one on the “right” leads to
smaller/more negative function values, so it appears to be the global minimum. As a re-
minder of some of our earlier points: if you place a marble somewhere near these two wells,



292 Roots

it will roll down to one of the minima; which of the two minima you end up in depends
on where you start. Note, finally, that our discussion above on saddle points in one dimen-
sion needs to be generalized: you may have a saddle point when you are at a maximum
along, say, the x0 direction and at a minimum along the x1 direction. Incidentally, this also
explains why the word “saddle” is used in this context.

5.5.3 Gradient Descent

We now turn to a simple and intuitively clear approach to multidimensional minimization.
This method, known as gradient descent, does not exhibit great convergence properties and
can get in trouble for non-differentiable functions. Even so, it is a pedagogical, straightfor-
ward approach.

Algorithm and Interpretation

Recall from our discussion of general features that ∇φ(x) is the direction of steepest ascent.
This leads to the conclusion that −∇φ(x) is the direction of steepest descent: as in our
discussion around Eq. (5.96), we know that choosing q to point along the negative gradient
guarantees that the function value decrease will be the fastest. The method we are about
to introduce, which employs −∇φ(x), is known as gradient descent.43 Qualitatively, this
approach makes use of local information: if you’re exploring a mountainous region (with
your eyes closed), you can take a small step downhill at that point; this doesn’t mean
that you’re always actually moving in the direction that will most quickly bring you to a
(possibly distant) local minimum, simply that you are moving in a downward direction.

Implicit in our discussion above is the fact that the steps we make will be small: while
−∇φ(x) helps you pick the direction, it doesn’t tell you how far in that direction you should
go, i.e., how large a ‖q‖ you should employ. The simplest possible choice, analogously to
our closed-eyes example, is to make small fixed steps, quantified by a parameter γ. Using
notation similar to that in Eq. (5.80), this leads to the following prescription:

x(k) = x(k−1) − γ∇φ(x(k−1)) (5.102)

Note that the right-hand side involves an evaluation of the gradient, not of the function
itself. At each step, this method picks the direction that is perpendicular to the contour line.
Note also that there is no (costly) Jacobian computation being carried out here; similarly,
there is no matrix inversion or linear system solution: all that’s being done is that the
gradient is computed and a (small) step is taken along that direction. Of course, the question
arises what “small” means, i.e., of how to pick γ. In what follows, we will take an empirical,
i.e., trial-and-error, approach. In one of the problems, you will explore a more systematic
solution, where this magnitude parameter is allowed to change at each iteration, i.e., you

43 Since it employs the direction of steepest descent, this method is also known by that name, though it should
not be confused with the “method of steepest descent”, which arises in the study of contour integration.
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will be dealing with γ(k) and will employ an extra criterion to help you pick this parameter
at each step.

In practice, we may not know the gradient analytically. In complete analogy to Eq. (5.81),
we typically approximate it using a forward-difference scheme. In equation form, this
means that Eq. (5.94) becomes:

∇φ(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[φ(x + e0h) − φ(x)]/h

[φ(x + e1h) − φ(x)]/h

. . .

[φ(x + en−1h) − φ(x)]/h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.103)

for a given spacing h. This involves “only” n+1 function evaluations, so it is not too costly
(it doesn’t involve any really demanding linear-algebra steps).

Implementation

Our prescription in Eq. (5.102) is quite simple, so you will not be surprised to hear that it is
straightforward to implement. Code 5.6 is along the lines you’d expect. We first define our
scalar function φ(x); again, notice that this is the only part of the code where the problem is
shown to be two-dimensional, implementing Eq. (5.101). In other words, changing phi()
would be all you would need to do to solve a 10-dimensional problem.

We then introduce another function, gradient(), which computes the gradient using a
forward-difference approximation, as per Eq. (5.103). It’s important to keep in mind that
φ is a scalar, i.e., phi() returns a single number; as a result, ∇φ is a column vector, so
gradient() returns a numpy array. We could have employed here an explicit loop, as you
are asked to do in one of the problems. Let’s look at Xph a bit more closely: in essence,
what we are doing is producing a matrix made up of n copies of the position x (or x(k−1))
and then adding in h to each of the position-components separately. The transposition is
taking place because we intend to call phi() and wish to have each shifted position vector,
x+e jh, in its own column; then, each of x0 and x1 will end up being a numpy array instead
of an individual number; this allows us to carry out all the needed calculations at once.

The function descent() takes in the φ to be minimized, as well as another function
parameter, which will allow you to call a different gradient-computing prescription in the
future, if you so desire. We then pass a γ with a reasonably small default value. Note that
this is something you will need to tune by hand for each problem and possibly also for
each initial-guess vector. The function body itself is quite similar to our earlier iterative
codes. As a matter of fact, it’s much less costly, since the main updating of Eq. (5.102) is
so straightforward. At each iteration we are printing out the value of our latest iterate, x(k),
a measure of the change in the iterates, as well as the function value at our latest iterate,
φ(x(k)). Once again, note that we are not looking for function zeros, but for local minima.
You can compare the final function value you find using different initial guesses, to see if
the minimum you arrived at is lower than what you produced in previous runs.
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Code 5.6 descent.py Code 5.6

from jacobi import termcrit

import numpy as np

def phi(xs):

x0, x1 = xs

return x0**2 - 2*x0 + x1**4 - 2*x1**2 + x1

def gradient(phi,xs,h=1.e-6):

n = xs.size

phi0 = phi(xs)

Xph = (xs*np.ones((n,n))).T + np.identity(n)*h

grad = (phi(Xph) - phi0)/h

return grad

def descent(phi,gradient,xolds,gamma=0.15,kmax=200,tol=1.e-8):

for k in range(1,kmax):

xnews = xolds - gamma*gradient(phi,xolds)

err = termcrit(xolds,xnews)

print(k, xnews, err, phi(xnews))

if err < tol:

break

xolds = np.copy(xnews)

else:

xnews = None

return xnews

if name == ‘ main ’:

xolds = np.array([2.,0.25])

xnews = descent(phi, gradient, xolds)

print(xnews)

The main part of the program simply makes an initial guess and runs our gradient de-
scent function. We then print out the final solution vector. Running this code, we succeed
in finding the global minimum, but we need considerably more than a handful of iterations
to get there. Of course, the number of iterations needed depends on the initial-guess vector
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Example of gradient descent applied to a scalar function of two variables �Fig. 5.15

and on the value of γ. In order to help you understand how the gradient-descent method
reaches the minimum, in Fig. 5.15 we are visualizing its progress.44 Shown are four dis-
tinct “trajectories”, i.e., collections of iterates for four distinct initial guesses. As you can
see from these trajectories, each time the step taken is perpendicular to the contour line.
Sometimes that means you will go to the minimum pretty straightforwardly, whereas other
times you will bend away from your earlier trajectory, always depending on what the con-
tour line looks like locally. Notice also that you may end up in the global minimum or not,
depending on where you started.

5.5.4 Newton’s Method

Gradient descent is nice and simple but, as we will see in the problem set, either your γ
is very small and you waste iterations or you are carrying out a line-search at each step to
determine the optimal γ(k), which is starting to get costly.

A distinct approach goes as follows: instead of using only the value of the gradient at a
given point, perhaps we should be building in more information. As you may recall, that
is roughly what we were doing in an earlier section when employing the multidimensional
Newton’s method. Of course, there we were in the business of (multiple-equation) root-
finding, whereas now we are trying to find (single) function minima. However, it turns out
that these two problems can be mapped onto each other. Specifically, Eq. (5.97) told us that
the gradient vanishes at a critical point. Combine that with the fact that the gradient of a
scalar function is a column vector, and you can recast that equation as a set of n coupled

44 We have changed the viewing angle, as matplotlib conveniently allows, but it’s the same problem.
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nonlinear equations:

f(x) = ∇φ(x) = 0 (5.104)

In other words, finding a critical point is simply a special case of solving a nonlinear system
of equations. Thus, we can use approaches such as Newton’s or Broyden’s methods that
we developed above. Importantly, by comparing the Jacobian matrix of Eq. (5.75), made
up of first derivatives of function components, with the Hessian matrix of Eq. (5.99), made
up of second derivatives of the scalar function, we realize that:

H(x) = J∇φ(x) (5.105)

due to the fact that the Hessian is symmetric. Note that we have now seen the notation
where the Jacobian gets a subscript pay off. In words, the Jacobian matrix of the gradient is
the Hessian matrix of our scalar function. This enables us to apply Newton’s method to the
problem of scalar-function minimization and thereby produce the next iterate, x(k). Thus,
Eq. (5.78) now becomes:

J∇φ(x(k−1))
(
x(k) − x(k−1)

)
= −∇φ(x(k−1)) (5.106)

Observe that this equation contains the gradient at the previous iterate, just like gradient
descent in Eq. (5.102), but now also builds in further information, in the form of the Hes-
sian/Jacobian on the left-hand side. Of course, this is accomplished at the cost of having to
solve a linear system of equations in order to produce the next iterate, x(k).

In a problem, you are asked to apply this method to our example scalar function of
Eq. (5.101). The easiest way to do this is to analytically produce and code up the gradient.
At that point, all the infrastructure we built in multi newton.py above applies directly to
our problem. Alternatively, you could envision evaluating both the gradient and the Hessian
using finite-difference approximations. The qualitative point to realize is that we will have
to carry out a larger number of function evaluations at each iteration, in addition to also
having to solve a linear system each step of the way. On the other hand, Newton’s method
converges quadratically if you are close enough to the root/minimum, so the higher cost at
each iteration is usually compensated by the smaller number of required iterations.

You might protest at this point: Newton’s method as just described finds critical points,
but how do you know that you reached a minimum? As it turns out, we (implicitly) ad-
dressed this question in our earlier discussion in section 5.5.2: once you’ve reached a crit-
ical point, you can test your Hessian matrix to see if it is positive definite;45 as you may
recall, since the Hessian is symmetric, this simply means that if you find all the eigenval-
ues of the Hessian to be positive, then you’ll know you’ve found a minimum. Similarly,
if they’re all negative you are at a maximum. In the problem set you will also explore
the case of a multidimensional saddle point. Of course, there’s another question that we
haven’t addressed: can you guarantee that you have found the global minimum? Generally,
the answer is no. Many refinements of Newton’s method exist that attempt to make it more

45 Note, however, that the Hessian might not be positive definite away from the minimum.
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safe, more efficient, as well as more globally oriented, but what we’ve covered should be
enough for now.

Before closing this section, we realize that our linear-algebra machinery from chapter 4
has turned out to be pretty useful when dealing with the zeros of polynomials, with systems
of nonlinear equations, and with multidimensional minimization. These are quite different
applications, some of which used Gaussian elimination and others an eigenvalue solver.
What unites them is the power of linear algebra, even when you’re solving problems that
themselves are nonlinear.

5.6 Project: Extremizing the Action in Classical
Mechanics

As in previous chapters, we now turn to a physics application of the infrastructure we’ve
developed in earlier sections. We will be studying a problem from classical mechanics,
more specifically the dynamics of a single particle. Crucially, we will not be solving dif-
ferential equations; that’s the topic of chapter 8. Here, after some background material on
Lagrangian mechanics, we will see how multidimensional minimization techniques, like
those we just covered, can help you find the trajectory of a particle. This is a nice con-
cretization of topics that students encounter in introductory courses; it’s one thing to say
that we minimize the action and quite another to see it happen.

5.6.1 Defining and Extremizing the Action

Working in a Cartesian system, let us study a single particle in one dimension. We can
denote the particle’s location by x(t), where we’re explicitly showing that the position
is a function of time. For a more complicated problem, we would introduce generalized
coordinates, but what we have here is enough for our purposes.

The kinetic energy of the particle will be a function of only ẋ(t), i.e., of the time deriva-
tive of the position: K = K(ẋ(t)). Specifically, since we are dealing with a single particle,
we know that:

K =
1
2

mẋ2 (5.107)

where m is the mass of the particle. Similarly, in the absence of time-dependent external
fields, the potential energy is a function of only x(t): V = V(x(t)). The difference of these
two quantities is defined as the Lagrangian:

L(x(t), ẋ(t)) ≡ K(ẋ(t)) − V(x(t)) (5.108)

where, for our case, there is no explicit dependence of the Lagrangian on time.
We are interested in studying the particle from time t = 0 to time t = T . Then, one can

define the action functional as the integral of the Lagrangian over time:
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S [x(t)] ≡
∫ T

0
dt L(x(t), ẋ(t)) =

∫ T

0
dt

(
1
2

mẋ2 − V(x)

)
(5.109)

where we applied Eq. (5.108) to our case. Notice that we called the action a functional and
used square brackets on the left-hand side. Roughly speaking, a functional is a function
of a function. A reminder: an ordinary function φ takes us from one number t to another
number φ(t). A functional is an entity that takes in an entire function and gives back a
number. In other words, a functional is a mapping from a space of functions into the real
(or complex) numbers.

In case you haven’t encountered functionals before, let us start with a simple case: a
functional F of φ(t) (where t is a regular variable – this is a one-dimensional problem):
F[φ(t)]. Being a functional, F depends simultaneously on the values of φ at all points t
but it does not depend on t itself : we provide it with the entire function and it provides

us with one number as a result. A trivial example: F[φ] =
∫ 1

0
dtφ(t) gives us one number

for φ(t) = t and a different number for φ(t) = t2. In both cases, however, the answer is an
ordinary number that does not depend on t.

Applied to our mechanics problem, we see that the action S depends on the position of
the particle x(t) at all times from 0 to T , but not on t directly, since t has been “integrated
out”. For a given trajectory x(t) from t = 0 to t = T , the action produces a single number,
S .46 The question then arises: which trajectory x(t) from t = 0 to time t = T does the parti-
cle actually “choose”? The answer comes from Hamilton’s principle: of all possible paths,
the path that is actually followed is that which minimizes the action. As it so happens, the
action only needs to be stationary, i.e., we are extremizing and not necessarily minimizing,
but we will usually be dealing with a minimum. This extremization is taking place with the
endpoints kept fixed, i.e., x(0) and x(T ) are not free to vary.

5.6.2 Discretizing the Action

At this point our exposition will diverge from that of a standard mechanics textbook. This
means that we will not proceed to write a possible trajectory as the physical trajectory plus
a small perturbation. Instead, we will take the action from Eq. (5.109) and discretize it.
This simply means that we will assume the positions x(t) from t = 0 to t = T can be
accessed only at a discrete set of n points; applying our discussion of points on a grid from
section 3.3.6, we have:

tk = kΔt = k
T

n − 1
(5.110)

46 As an aside, observe that, since the Lagrangian has units of energy, the action has units of energy times time.
Intriguingly, these are also the units of Planck’s constant, �, but here we’re studying classical mechanics.
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where, as usual, k = 0, 1, . . . , n − 1.47 We will further employ the notation xk ≡ x(tk) to
denote the (possible) position of the particle at each of our time-grid points.

We promised to discretize the action from Eq. (5.109). This involves two separate steps.
First, we have to discretize the integral: we haven’t seen how to carry out numerical inte-
gration yet (the subject of chapter 7). Even so, you are already familiar with the simplest-
possible way of carrying out an integral, namely the rectangle rule: assume that the area
under L from tk to tk+1 can be approximated by the area of a rectangle, with width Δt.
Equivalently, the rectangle rule approximates L as a constant from tk to tk+1, namely a
straight (horizontal) line. Then, the areas of all the individual rectangles have to be added
up. Second, we have to discretize the time derivative ẋ. This is a process that you are
even more familiar with, having studied chapter 3. The simplest thing to do is to employ
a forward-difference scheme.48 Putting these two discretization steps together allows us to
introduce the finite-n analogue of Eq. (5.109):

S n ≡
n−2∑
k=0

Δt

[
1
2

m
( xk+1 − xk

Δt

)2
− V(xk)

]
(5.111)

where the sum goes up to n− 2: the last rectangle gets determined by the value of the func-
tion on the left. Since the continuum version of Hamilton’s principle involved determining
x(t) with x(0) and x(T ) kept fixed, we will now carry out the corresponding extremization
of S n, with x0 and xn−1 kept fixed. This means that we are dealing with n points in total,
but only n − 2 variable points. To keep thing simple, we define nvar = n − 2. This means
that our discrete action, S n, is a function of these nvar variables:

S n = S n(x1, x2, . . . , xnvar ) (5.112)

There you have it: our problem has now become that of finding a minimum of S n in this
nvar-dimensional space. But this is precisely the problem we tackled in section 5.5.2, when
we were faced with a scalar function of many variables, φ(x). Crucially, Eq. (5.112) shows
us that S n is a function of a discrete number of variables, x1, x2, and so on; there is no
integral, no derivative, and no functional left anymore.

5.6.3 Newton’s Method for the Discrete Action

We now decide to employ Newton’s method from section 5.5.4 for this multidimensional
minimization problem. While we haven’t yet reached the stage of implementing things in
Python, let us try to make sure we won’t get confused by the notation. We are dealing
with n positions xk; of these, x0 and xn−1 are kept fixed, so the only “true” variables are
x1, x2, . . . , xnvar . These nvar variables will be determined by our Newton’s method; the func-
tion we will employ to do that (multi newton()) will expect our variables to employ the

47 Note that this k is a dummy summation variable over our discretization index, so it has nothing to do with the
iteration counter, e.g., x(k), we encountered earlier.

48 A problem invites you to do better.
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�Fig. 5.16 Discretized coordinates, also showing the corresponding Python variables

standard Python 0-indexing. Thus, we will employ distinct Python names for the first and
last point: x0 and xn−1 will be xini and xfin, respectively. The nvar actual variables, which
are to be determined, will be stored in our usual numpy array by the name of xs, which
will be indexed from 0 up to nvar-1. We attempt to summarize these facts in Fig. 5.16:
notice how xs[0] corresponds to x1, the first true variable; similarly, xs[-1] is another
name for xs[nvar-1] and corresponds to xn−2, the last true variable.

As mentioned, we plan to employ Newton’s method for minimization. We recall from
Eq. (5.106) that this will require the gradient vector ∇φ(x) as well as the Hessian, i.e., the
Jacobian of the gradient, J∇φ(x); of course, here we are faced with S n instead of φ. Sig-
nificantly, our approach in earlier sections was to evaluate any needed derivatives using a
finite-difference scheme. In the present case, however, we have already employed a forward
difference scheme once, in order to get to our discrete action, Eq. (5.111). More impor-
tantly, Eq. (5.111) contains the sum of a large number of contributions, but any derivative
with respect to a given position will not involve so many contributions; in other words, if
we try to evaluate the first and second derivatives of S n numerically, we will be asking for
trouble. Instead, we decide to take any required derivatives analytically; we will then code
up our results in the following subsection.

To produce the components of the gradient vector, we need to take the derivative of S n

with respect to xi, for i = 1, 2, . . . , nvar. As repeatedly mentioned, x0 and xn−1 are kept
fixed so we will not be taking any derivatives with respect to them. Let’s look at a given
component:

∂S n

∂xi
=

n−2∑
k=0

Δt

[
m

(Δt)2
(xk+1 − xk)(δi,k+1 − δi,k) − ∂V(xk)

∂xi
δi,k

]

=
m
Δt

(2xi − xi−1 − xi+1) − Δt
∂V(xi)
∂xi

(5.113)

In the first line, we saw the 1/2 get cancelled by taking the derivative of (xk+1 − xk)2;
observe that only specific values of k contribute to this sum. This fact is taken into account
in the second line, where the Kronecker deltas are used to eliminate most of the terms in
the sum, leaving us with a simple expression.49 Note that, even though we’re only taking
the derivative with respect to xi for i = 1, 2, . . . , nvar, the result in Eq. (5.113) also involves
x0 and xnvar+1 = xn−1, due to the presence of the xi−1 and xi+1 terms, respectively.

Similarly, we can find the Hessian by taking the derivative of the gradient vector com-

49 In the study of differential equations (the subject of chapter 8) our result is known as the Verlet algorithm.
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ponents with respect to x j, where j = 1, 2, . . . , nvar. We have:

∂S n

∂x j∂xi
=

m
Δt

(2δ j,i − δ j,i−1 − δ j,i+1) − Δt
∂2V(xi)

∂x2
i

δ j,i (5.114)

We see that the Hessian matrix will only have elements on the main diagonal and on the
two diagonals next two it; in other words, it will be a tridiagonal matrix. Of course, this
only holds for our specific prescription of how to discretize the action.

Armed with the gradient in Eq. (5.113) and the Hessian in Eq. (5.114), we are now ready
to employ Newton’s multidimensional minimization method from Eq. (5.106). Note that
we haven’t specified anything about V(xi) so far; this is a feature, not a bug. It means that
our formalism of discretizing and then extremizing the action will apply to any physical
problem where the potential energy at xi depends only on xi,50 regardless of the specific
form V takes.

5.6.4 Implementation

Before we implement our approach in Python, we have to make things concrete. Let’s pick
a specific form for the potential energy, that of the quartic oscillator:

V =
1
4

x4 (5.115)

where we didn’t include an extra coefficient in front, for the sake of simplicity. Of course,
the classical quartic oscillator is a problem that’s been studied extensively; we are merely
using it as a case where: (a) you won’t be able to think of the analytical solution off the top
off your head, and (b) the dependence on x is nonlinear, so we’ll get to test the robustness
of our minimization methodology for a challenging case. You can generalize our approach
to more complicated scenarios later. Given the forms of Eq. (5.113) and Eq. (5.114), we
realize that we are really only interested in the first and second derivative of the potential
energy, namely:

F(x) = −∂V
∂x
= −x3, F′(x) = −∂

2V
∂x2
= −3x2 (5.116)

where we also took the opportunity to define the force (and introduce its first derivative).
Code 5.7 starts by importing our earlier function multi newton(). We then define a

function to hold several parameters; we do this here in order to help our future selves,
who may be interested in trying out different endpoint values, total times, masses,51 or
numbers of variables, nvar. This way of localizing all the parameters in one function and
then having other parts of the code call it to get the parameter values is somewhat crude,52

but still better than using global variables (i.e., Python variables defined outside a function
and never explicitly communicated to it). In our example we employ nvar = 99; this was
chosen such that n = 101, which in its turn, see Eq. (5.110), leads to Δt = 0.01 in the

50 Of course, even this requirement can be loosened, by appropriately generalizing the above derivation.
51 For simplicity, we take m = 1.
52 This is a case where object orientation would really help.
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Code 5.7 action.py Code 5.7

from multi newton import multi newton

import numpy as np

def params():

nvar = 99; m = 1.

xini, xfin = 2., 0.

tt = 1.; dt = tt/(nvar+1)

return nvar, m, xini, xfin, dt

def fod(der,x):

return -x**3 if der==0 else -3*x**2

def actfs(xs):

nvar, m, xini, xfin, dt = params()

arr = np.zeros(nvar)

arr[0] = (m/dt)*(2*xs[0]-xini-xs[1]) + dt*fod(0,xs[0])

arr[1:-1] = (m/dt)*(2*xs[1:-1] - xs[:-2] - xs[2:])

arr[1:-1] += dt*fod(0,xs[1:-1])

arr[-1] = (m/dt)*(2*xs[-1]-xs[-2]-xfin) + dt*fod(0,xs[-1])

return arr

def actjac(actfs,xs):

nvar, m, xini, xfin, dt = params()

Jf = np.zeros((nvar,nvar))

np.fill diagonal(Jf, 2*m/dt + fod(1,xs)*dt)

np.fill diagonal(Jf[1:,:], -m/dt)

np.fill diagonal(Jf[:,1:], -m/dt)

actfs xs = actfs(xs)

return Jf, actfs xs

if name == ‘ main ’:

nvar, m, xini, xfin, dt = params()

xolds = np.array([2-0.02*i for i in range(1,nvar+1)])

xnews = multi newton(actfs, actjac, xolds); print(xnews)

appropriate units. Importantly, this means that we have to solve a minimization problem in
∼100 variables, which is a larger-scale problem than any we solved in earlier sections.

We then define a simple one-liner function to evaluate the force-or-derivative. This is the
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only other place in our program where specifics about the physics problem are encoded.
A point that will come in handy below: the parameter x of our function fod() can handle
either single numbers or entire numpy arrays.

The bulk of our code is to be found in the following two functions. We recall from
Code 5.5 that multi newton() has a very specific interface: as its first argument it ex-
pects a function that returns a 1d numpy array and as its second argument a function that
returns a 2d numpy array and a 1d array. These functions implement the gradient vector of
Eq. (5.113) and the Jacobian/Hessian of Eq. (5.114). Crucially, both these functions do not
employ any explicit loops or indices (like i, j and so on). In most of our codes we have
prioritized legibility over efficiency. Even here, despite the fact that our slicing is more
efficient than the indexed alternative, our guiding principle was actually clarity: the grid in
Fig. 5.16 can be confusing, so we’d rather avoid having to deal with indices that go up to
nvar-1 or perhaps nvar-2 (or even worse: n-3 or n-4) when we step through our arrays.
As it so happens, a problem in chapter 1 asked you to rewrite these two functions using
explicit indices.

Since actfs() is following our prescription of fixed endpoints, x0 and xn−1, the lines
setting up arr[0] and arr[-1] need to be different from what we do for the “mid-
dle” points.53 Similarly, actjac() needs to treat the main and other diagonals differ-
ently. We accomplish the latter task by slicing the arrays we pass as the first argument
to numpy.fill diagonal(). Note how for the main diagonal we pass the entire xs to
fod().

The main part of the program is incredibly simple. It sets up an initial guess vector, x(0),
designed to start near fixed endpoint x0 and end near our other fixed endpoint xn−1. It then
calls our earlier multi newton() function, passing in our tailored gradient and Hessian
functions. Importantly, by using params() we have ensured that actfs() and actjac()
have the same interface as our earlier fs() and jacobian() functions, so everything
works together smoothly. It may be surprising to see that we’ve been able to solve for
the dynamical trajectory of a particle by minimizing in ∼100 variables, using a code that
takes up less than a page. Of course, this is slightly misleading, since we are also calling
multi newton(), which in its turn calls gauelim pivot() and termcrit(). The former
then calls backsub(). Thus, our latest program fits on one page, but only because we can
so smoothly make use of several functions we developed earlier.

Instead of showing you the 99 numbers that get printed on the screen when you run
this code, we have decided to plot them in Fig. 5.17. Our xolds is labelled with “Initial
guess #1”. The converged solution of xnews is labelled with “Minimized”. You may be
wondering how we know that our converged solution corresponds to a minimum; if so,
compute the eigenvalues of the Hessian corresponding to xnews. Wanting to make sure
that our result was not a fluke that was directly tied to a “magic” choice of our initial guess
vector, we try out another xolds, labelled with “Initial guess #2”: this leads to the exact
same minimum as before, thereby increasing our confidence in our result.

It’s worth pausing for a second to marvel at our accomplishment. In this project, we
went beyond the formal statement that the action “could” be minimized or “should” be

53 This is analogous to our discussion of the central difference in section 3.3.2.
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�Fig. 5.17 Finding the trajectory of a particle via minimization of the action

minimized and actually minimized the action. We did this by using a (somewhat crude)
discretization scheme and stepping through a many-variable minimization process which,
incidentally, only required roughly half a dozen iterations to converge. You may become
more convinced of the importance of this fact after you attempt the problem that asks
you to carry out a minimization for the (easier) case of the harmonic oscillator using the
gradient descent method. You will discover that multidimensional minimization is a fickle
procedure, with few guarantees. A combination of analytical work and earlier coding has
allowed us to find a practical avenue toward making the action stationary and thereby
determining the physical trajectory of the particle.

Now that we’ve marvelled at how great we did, let’s tone things down: had we actually
followed the standard textbook-route, we would have used Hamilton’s principle to find
the Euler–Lagrange equation(s), thereby getting an equation of motion, which would be a
differential equation. For our case, this would have been simply mẍ = −x3. This differential
equation, in turn, can straightforwardly be solved using its own discretization scheme, as
you will soon learn (in chapter 8). In contradistinction to this, in our present approach we
had to repeatedly employ 99× 99 matrices, even though the problem is reasonably simple.
When all is said and done, it’s nice to see that you can calculate dynamical trajectories
without having to solve a differential equation.

5.7 Problems

1. Come up with an example where the relative termination criterion of Eq. (5.18) fails.
Then, replace it with Eq. (5.19) and re-run your root-finding program.

2. This problem studies fixed-point iteration for the case of g(x) = cx(1 − x). Examine:
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(a) c = 0.9: play around with the number of iterations, tolerance, termination criterion,
and initial guess to see where all your solutions tend to go to.

(b) c = 1.5: see how long it takes you to find a fixed point.
(c) c = 2.8: does this take longer than the c = 1.5 case?
(d) c = 3.2: start with x(0) = 0.2 and observe that a new pattern emerges.
(e) c = 3.5: start with x(0) = 0.2 and see another pattern emerge.
(f) c = 3.6: start with x(0) = 0.2 and attempt to discern any pattern.

You may need to plot the x(k) as a function of k in order to (attempt to) discern the
patterns. For future reference, this problem is known as a “logistic map”.

3. Use bisection for f (x) = 1/(x − 3) in the interval (0, 5). Is your answer correct?
4. Code up Newton’s method for our example function f (x) = ex−

√
x − x and reproduce

Fig. 5.6. You should evaluate f ′(x) analytically.
5. Analytically use Newton’s method to write

√
2 as a ratio of two integers. Provide a few

(increasingly better) approximations.
6. Code up a safe version of Newton’s method, by combining it with the bisection method.

Specifically, start with a bracketing interval and carry out a Newton step: if the iterate
“wants” to leave the interval, carry out a bisection step, instead. Repeat.

7. We will now recast Newton’s method as a special case of the fixed-point iteration
method. Specifically, if your problem is f (x) = 0, then one way of transforming it
into the fixed-point form x = g(x) is to take:

g(x) = x − f (x)
f ′(x)

(5.117)

Assume x∗ is a simple root (i.e., f (x∗) = 0 and f ′(x∗) � 0). You should analytically
evaluate g′(x∗). You should then combine your result with our analysis of the conver-
gence properties of the fixed-point iteration method to find the order of convergence for
the method of Eq. (5.117).

8. Having recast Newton’s method as a version of fixed-point iteration in the previous
problem, we will now build on that result. Assume x∗ is a root of multiplicity m. This
means we can write:

f (x) = (x − x∗)mq(x) (5.118)

where q(x∗) � 0. Now:

(a) Analytically derive a formula for the g(x) of Eq. (5.117) where you’ve employed
Eq. (5.118).

(b) Use that result to show that g′(x∗) = (m − 1)/m. From there, since m = 2 or higher,
draw the conclusion that Newton’s method converges linearly for multiple roots.

(c) It should now be straightforward to see that if you had used:

g(x) = x − m
f (x)
f ′(x)

(5.119)

instead of Eq. (5.117), then you would have found g′(x∗) = 0, in which case New-
ton’s method would converge quadratically (again).
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9. In practice, we don’t know the multiplicity of a root ahead of time, so the utility of
Eq. (5.119) is limited. In the first part of the previous problem, you incidentally also
derived a formula for w(x) = f (x)/ f ′(x) for the case of Eq. (5.118). Similarly, in the
second part of that problem you found a formula for w′(x), which leads to w′(x∗) = 1/m.
But this means that w′(x∗) � 0, while w(x∗) = 0; in other words, w(x) has a simple root
at x∗ regardless of what the multiplicity of f (x) at x∗ is.

We can take advantage of this fact: whenever you think you may have a multiple root,
you could apply Newton’s method not to f (x), but to w(x). Code this approach up in
Python for the case of:

f (x) = x5 − 3x4 + x3 + 5x2 − 6x + 2 (5.120)

Compare your runs to how long it takes the (unmodified) Newton’s method to converge.
While you’re at it, also compare to the result of using Eq. (5.119), where you’ll need to
guess the value of m.

10. When using Newton’s method, it can sometimes be frustrating to start from different
initial guesses but end up producing the same root over and over. A trick that can be
used to suppress an already-found root is to apply Newton’s method not to f (x) but to
u(x) = f (x)/(x− a), where a is the root you’ve already found and are no longer looking
for. Implement this strategy for the case of our example function f (x) = ex−

√
x−x, where

you are suppressing the root a = 1. This means that you should always be converging
to the other root, regardless of your initial guess.54

11. We now guide you toward deriving the secant method’s order of convergence. First
introduce notation similar to that in Eq. (2.5), i.e., Δk = x(k) − x∗. Now, Taylor expand
f (x(k)), f (x(k−1)), and f (x(k)) around x∗; note that this is different from what we did in
Eq. (5.37) and elsewhere, where we Taylor expanded around x(k−1). Plug these three
relations into Eq. (5.51) to show that Δk is equal to the product of Δk−1 and Δk−2 (times
another factor). Motivated by Eq. (5.16), take Δk = mΔp

k−1 and Δk−1 = mΔp
k−2, and

combine these with your earlier result. This should lead to a quadratic equation in p,
which is solved by p = (1 +

√
5)/2 ≈ 1.618.

12. Implement Ridders’s method from Eq. (5.59) for our example function f (x) = ex−
√

x−x.

13. There exists a method known as regula falsi or false position which is very similar to
the secant method. The difference is that regula falsi is a bracketing method, so it starts
with x0 and x1 such that f (x0) f (x1) < 0. Like the secant method, it then employs the
line that goes through the two points (x0, y0) and (x1, y1), as per Eq. (5.52), and then
finds the x axis intercept. The false-position method then ensures that it continues to
bracket the root. Implement this approach for our example function f (x) = ex−

√
x − x,

starting with the interval (0, 1.7). Do you see the method converging on both sides or
not? Do you understand what that implies for the case where one of your initial points
is “bad”, i.e., very far from the root?

54 Root suppression feels similar to, yet is distinct from, the concept of deflation for polynomials, which amounts
to using synthetic division and then solving a smaller-sized problem.
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14. Another approach, known as Steffensen’s method, iterates according to:

x(k) = x(k−1) − f (x(k−1))
g(x(k−1))

(5.121)

where:

g(x(k−1)) =
f
(
x(k−1) + f (x(k−1))

)
− f (x(k−1))

f (x(k−1))
(5.122)

This achieves quadratic convergence, at the cost of requiring two function evaluations
per iteration. Implement Steffensen’s method in Python for our example function f (x) =
ex−

√
x − x and compare the required number of iterations to those of other methods.

15. Explore the roots of:

f (x) = −x5 + 4x4 − 4x3 + x2ex − 2x2 − 4xex + 8x + 4ex − 8 (5.123)

using a method of your choice.
16. Take the cubic equation:

x3 − 21x2 + 120x − 100 = 0 (5.124)

and find its roots. Now perturb the coefficient of x3 so that it becomes 0.99 (first) or
1.01 (next) and discuss how the roots are impacted.

17. In the Project of chapter 3 we computed the values of Hermite polynomials, see Code 3.3,
i.e., psis.py. You should now find the roots of Hermite polynomials, by writing a code
similar to legroots.py. Digging up Eq. (6.31.19) in Ref. [90] and converting to our
notation gives us:

π (4i + 3 − (−1)n)

4
√

2n + 1
≤ x(0)

i ≤
4i + 6 − (−1)n

√
2n + 1

(5.125)

for the positive Hermite-polynomial zeros. Figure out how to use this to produce a
function that gives correct roots for n up to, say, 20. Compare the zeros you find with the
output of the (alternatively produced) numpy.polynomial.hermite.hermgauss().

18. Code up our companion matrix from Eq. (5.70) for a general polynomial. Then, use it
to find all the roots of our polynomial from Eq. (5.120).

19. In legroots.py we computed the roots of a Legendre polynomial using Newton’s
method and calling legendre.py for the function values (and derivatives). We now
see that it is possible to directly employ the recurrence relation from section 2.5.2 to
evaluate the roots of a Legendre polynomial, by casting the problem into matrix form.
This generalizes to other sets of polynomials, even if you don’t have good initial guesses
for the roots. It is part of the Golub–Welsch algorithm.

(a) Take Eq. (2.86) and write it in the form:

j + 1
2 j + 1

Pj+1(x) +
j

2 j + 1
Pj−1(x) = xPj(x) (5.126)

If x∗ is one of the zeros of Pn(x), i.e., Pn(x∗) = 0, we can apply the above relation
at x = x∗ for j = 0, 1, . . . , n − 1; the result takes the form, J p(x∗) = x∗p(x∗). Verify
that J, known as a Jacobi matrix (not to be confused with a Jacobian matrix), is
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tridiagonal. The matrix elements of the J you found can be immediately determined
from the coefficients in the recurrence relation, Eq. (5.126).

(b) Observe that J p(x∗) = x∗p(x∗) is an eigenvalue problem for the zeros of Pn(x).
Using Python, compute the eigenvalues of J and verify that they coincide with the
output of legroots.py.

20. We now generalize the fixed-point iteration method of Eq. (5.22) to the problem of
n equations in n unknowns. In equation form, this is simply x(k) = g(x(k−1)) where,
crucially, all quantities involved are vectors. Implement this approach in Python and
apply it to the following two-variable problem:⎧⎪⎪⎨⎪⎪⎩ f0(x0, x1) = x2

0 − 2x0 − 2x2
1 + x1 = 0

f1(x0, x1) = x2
0 + x0 − 2x2

1 − 1.5x1 − 0.05 = 0
(5.127)

This system has two solutions. Do you find them both using the fixed-point iteration
method? Do you understand why (not)?

21. In our study of Gaussian quadrature in chapter 7, the brute-force approach will lead to
systems of nonlinear equations like the following:

2 = c0 + c1 + c2, 0 = c0x0 + c1x1 + c2x2,
2
3
= c0x2

0 + c1x2
1 + c2x2

2,

0 = c0x3
0 + c1x3

1 + c2x3
2,

2
5
= c0x4

0 + c1x4
1 + +c2x4

2, 0 = c0x5
0 + c1x5

1 + +c2x5
2

(5.128)
Apply multi newton.py to solve these six equations for the six unknowns.

22. In this problem we solve Eq. (5.5) together with Eq. (5.6), using Newton’s method. For
simplicity, work in units where m = MR = G = 1 and MS = 2. Assume we have made
a measurement at r0 = (2 1 3)T , finding:

F0 = (−0.016 859 96 − 0.040 029 72 − 0.014 790 52)T (5.129)

and another measurement at r1 = (4 4 1)T , this time finding

F1 = (−0.143 642 92 0.120 962 46 − 0.264 605 37)T (5.130)

Set up the problem in a way that allows you to call multi newton.py, with the under-
standing that the components of R are the first three elements of xs and the components
of S are the next three elements of xs. If you’re having trouble converging, try starting
from xolds = np.array([0.8,-1.1,3.1,3.5,4.5,-2.]).

23. Implement our basic Broyden method from Eq. (5.89) for our two-variable problem in
Eq. (5.72). Separately investigate the convergence for the two cases of J(x(0)) being the
identity matrix or a forward-difference approximation to the Jacobian.

24. Employ the secant method to minimize f (x) = ex−
√

x − x, Eq. (5.46), and Eq. (5.92).

25. Rewrite the function gradient() from the code descent.py so that it uses an explicit
loop. Compare with the original code. Then, study the dependence of the maximum
required iteration number on the magnitude of γ; explore values from 0.02 to 0.30, in
steps of 0.01.
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26. In descent.py we studied the simplest case of constant γ. We will now expand our
method to also include a “line-search minimization” to determine γ(k) at each iteration.
If you’re currently at position x and the gradient is ∇φ(x), then you can define:

u(γ) = φ (x − γ∇φ(x)) (5.131)

Crucially, u(γ) is a function of one variable. What this approach does is to take the
negative gradient direction, −∇φ(x), and then decide how large a step γ to make in
that direction, by minimizing u(γ); since this minimization is taking place along the
fixed line determined by the negative gradient, this approach is known as line-search
minimization. Putting everything together, we have the following algorithm:

Minimize u(γ(k−1)) = φ
(
x(k−1) − γ(k−1)∇φ(x(k−1))

)
to find γ(k−1)

x(k) = x(k−1) − γ(k−1)∇φ(x(k−1))
(5.132)

To implement the above prescription, combine descent.py with (a modified version
of) secant.py; check your program on the function φ(x) = x2

0 + 5x2
1.

27. Carry out multidimensional minimization using Newton’s method for our example in
Eq. (5.101). After you locate both minima (how would you know they’re minima?),
try starting from xolds = np.array([1.5,0.]). Then, use that same initial guess
vector in the gradient-descent method and compare the two results.

28. An intriguing generalization of Newton’s method for multidimensional root-finding
borrows ideas from multidimensional minimization. The goal is to ensure that New-
ton’s method can do a good job of finding the solution to a system of equations, even if
the initial guess was poor; in other words, we wish to make sure that each step we make
decreases the function-component values.55

To do so, we now examine the quantity (f(x(k−1)))T f(x(k−1)): it makes sense to require
that after the step the magnitude of the functions is reduced, i.e., that (f(x(k)))T f(x(k)) is
smaller. It’s easy to show that the Newton step is a descent direction; in other words,
the step prescribed by Newton’s method picks a direction that reduces the functions’
values. Here’s how to see this:

1
2

{
∇

[(
f(x(k−1))

)T
f(x(k−1))

]}T
q(k) =

(
f(x(k−1))

)T
J(x(k−1))

(
−

(
J(x(k−1))

)−1
f(x(k−1))

)
= −

(
f(x(k−1))

)T
f(x(k−1)) < 0 (5.133)

On the first line, q(k) is the Newton step as per Eq. (5.83). We also took the gradient of
our fT f quantity using a standard vector identity, and also re-expressed the Newton step
from Eq. (5.80). From there, we cancelled the Jacobians and were left with a negative
value. Indeed, the Newton step is a descent direction.
Now the question arises how to pick the magnitude of our step in that direction (sim-
ilarly to what we saw when studying the gradient-descent method for minimization).
We could, at this point, employ a line-search approach as we did in an earlier prob-
lem. Instead, we will try the empirical approach of multiplying the full Newton step
with λ = 0.25, if the function value would have otherwise increased. Try out this

55 In jargon, we are looking for a globally convergent method.
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backtracking strategy for our example system from Eq. (5.72): starting from xolds
= np.array([-100.,100.]), compare the unmodified and modified Newton’s runs.
Make sure to print out a message each time the step is/would have been bad.

29. In this problem we will employ the same discretization of the action as in action.py,
still for the case of the quartic oscillator. Imagine you made a mistake when trying to
approach the fixed-endpoints in your initial guess, leading you to start with q(0)(t) =
0.9375t2 + 1.0625t − 2. Plot the initial guess and converged solution together. Are you
getting the same converged solution as in the main text? Why (or why not)? Compute
the value of the action from Eq. (5.111) as well as the eigenvalues of the Jacobian for
the two converged solutions and use those results to justify your conclusions.

30. Modify action.py to address the physical context of the harmonic oscillator. Take
x0 = 0, xn−1 = 1 and T = 1. Plot the coordinate of the particle as a function of time;
also show the (analytically known) answer. Incidentally, what happens if you take T to
be larger?
Then, try to solve the same problem using the gradient-descent method. You will have
to tune n, gamma, kmax, and tol (as well as your patience levels) to do so.

31. Modify action.py to address the physical context of a vertically thrown ball; start by
thinking what force this implies. Take x0 = xn−1 = 0 and T = 10. Plot your solution for
the height of the particle as a function of time.

32. Repeat the study of the quartic oscillator, but this time instead of using Eq. (5.111) for
the discretization, employ a central-difference formula. This means you should analyti-
cally calculate the new gradient and Hessian, before implementing things in Python.



Approximation 6
Approxi

If native pow’r prevail not, shall I doubt
To seek for needful succor from without?

Vergil
(trans. John Dryden)

6.1 Motivation

6.1.1 Examples from Physics

Both in theoretical and in experimental physics we are often faced with a table of data
points; we typically wish to manipulate physical quantities even for cases that lie “in be-
tween” the table rows. Here are a few examples:

1. Velocity from unequally spaced points

When introducing numerical differentiation in chapter 3, our first motivational exam-
ple came from classical mechanics. This, the most trivial example of differentiation in
physics, takes the following form in one dimension:

v =
dx
dt

(6.1)

where v is the velocity and x is the position of the particle in a given reference frame. In
that chapter, we spent quite a bit of time discussing how to compute finite differences,
and how to estimate the error budget.

The question then arises how we should handle the case where we know the positions at
unequally spaced points. To clarify what we mean by that, imagine we only have access
to a set of n discrete data points (i.e., a table) of the form (t j, x j) for j = 0, 1, . . . , n − 1;
the positions are known only at fixed times t j not of our choosing, which are not equally
spaced. One could simply revert to the general finite-difference formulas (i.e., those not
on a grid); since you don’t control the placement of the points, you’d likely have to use
a forward or backward formula. However, simply using a noncentral difference formula
where the h is determined by whatever happened to be the distance between two t j’s
is a recipe for disaster: what if there are many data points for early and late times, but
few in between? Should we resign ourselves to not being able to extract the velocity at
intermediate times?

311
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An alternative approach is to take the table of unequally spaced input data points, pro-
duce an interpolating polynomial p(t) which captures the behavior of the data effec-
tively, and then evaluate the derivative of the interpolating polynomial quasi-analytically.
As an aside, an analogous example arises when dealing with noisy data: one could first
carry out, say, Fourier smoothing and then get a nicer looking derivative. This brings us
to the next example, which also relates to Fourier analysis.

2. Differentiating a wave function
When taking an introductory quantum mechanics course, you may have wondered why
we sometimes work in coordinate space and sometimes in momentum space. One of
the reasons is that operations that may be difficult in one space are easy in another. A
fascinating example of this is known as Fourier differentiation or spectral differentia-
tion. To see what we mean, consider the following wave function expressed in terms of
the inverse Fourier transform:

ψ(t, x) =
1

2π

∫ ∞

−∞
dk ψ̃(t, k)eikx (6.2)

Taking the spatial derivative of ψ(t, x) becomes a simple arithmetic operation (multipli-
cation by a scalar) in momentum space:

∂

∂x
ψ(t, x) =

1
2π

∫ ∞

−∞
dk ψ̃(t, k)

∂

∂x
eikx =

1
2π

∫ ∞

−∞
dk ψ̃(t, k)ikeikx (6.3)

In the first step we emphasized that only the complex exponential is position dependent
and in the second step we took the derivative. As advertised, we replaced the derivative
on the left-hand side with a simple multiplication on the right-hand side. We can take
an extra step, expressing the ψ̃(t, k) itself in terms of a (direct) Fourier transform:

∂

∂x
ψ(t, x) =

1
2π

∫ ∞

−∞

∫ ∞

−∞
dk dy ψ(t, y)ikeik(x−y) (6.4)

Take a moment to appreciate that this equation involves the coordinate-space wave func-
tion on both the left- and the right-hand sides.
Of course, these manipulations are here carried out for the continuous case, which in-
volves integrals on the right-hand side; you may be wondering why we would bother
with Eq. (6.4), since it’s replaced one derivative by two integrals. In the present chapter
we will learn about a related tool called the discrete Fourier transform (DFT) which
involves sums. We will then see that it is possible to re-express the DFT so that it is
carried out incredibly fast. One of the problems asks you to develop and implement
an analogous differentiation formula for the DFT. At that point you will appreciate the
power of being able to produce a table of derivative values without having to worry
about finite-difference errors. Even more crucially, in the n-dimensional case evaluating
the gradient vector at one point via the forward difference requires n new function eval-
uations, see Eq. (5.103), but Fourier differentiation gives you the derivatives without
any new function evaluations being necessary.

3. Hubble’s law
According to observations, the universe displays remarkable large-scale uniformity.
More specifically, at large scales the universe is homogeneous: this applies not only
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to the average density, but also to the types of galaxies, their chemical composition,
and other features. Furthermore, the universe appears to be isotropic about every point,
implying that there is no special direction. Another aspect of the uniformity of the uni-
verse is that even its expansion seems to be uniform: on average, galaxies are receding
from us with a speed that is proportional to how far away from us they are. Of course,
this doesn’t apply only to us: any galaxy will see all other galaxies receding at a speed
proportional to their distance from it.

The point we just made is significant enough to bear repeating: even though the universe
is expanding, the homogeneity and isotropy are maintained, i.e., the universe does not
exhibit a velocity anisotropy. This fact was first noticed by Edwin Hubble in 1929,
in his study of 24 extra-galactic nebulae for which both distances and velocities were
available. Plotting the velocities versus the distances, Hubble noticed a “roughly linear
relation” and extracted the coefficient. Nowadays, we call this Hubble’s law:

v = Hd (6.5)

where v is the recessional velocity, d is the distance, and H is known as Hubble’s pa-
rameter. The present value of this parameter is known as Hubble’s constant, and has
been measured to be H0 = (2.3± 0.1)× 10−18 s−1. Hubble’s parameter has wider signif-
icance: if we denote by R(t) the cosmological expansion parameter, then the following
relation holds:

H =
Ṙ(t)
R(t)

(6.6)

i.e., at time t Hubble’s parameter is the relative rate of expansion of our universe.

In modern terms, Hubble carried out a straight-line fit to the data. We encountered
another instance of experimental data following a linear trend earlier on, when we
discussed Millikan’s 1916 experiment on the photoelectric effect (section 2.1). In the
Project at the end of the present chapter we will discuss yet another set of experimental
data, this time not obeying a linear trend.

It is no coincidence that the first two items on our list both involve taking derivatives. The
problem of approximation, the theme of this chapter, typically arises when one wishes to
carry out operations that are otherwise hard or impossible.

6.1.2 The Problems to Be Solved

Basically, the goal of the present chapter is to learn how to approximate a function f (x).
There could be several reasons why this needs to happen: perhaps computing f (x) is a
costly procedure, which cannot be repeated at many points, or maybe f (x) can only be
experimentally measured. In any case, the point of the present chapter is that we wish
to have access to f (x) for general x but can only produce selected f (x j) values. What is
commonly done is that a set of n basis functions φk(x) is chosen which, combined with a
set of n undetermined parameters ck (k = 0, 1, . . . , n − 1) is used to produce the following
linear form:
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p(x) =
n−1∑
k=0

ckφk(x) (6.7)

This is called a linear form because it constitutes a linear combination of basis functions;
this does not mean that the basis functions themselves are linear. We assume that the φk(x)’s
are linearly independent. Note that we used p(x) to denote our approximating function,
since we don’t know that it is the same as the underlying f (x). Crucially, both p(x) and
the basis φk(x) apply to any x, not just points on a grid. This raises the question of how we
would know that our approximating function, p(x), is accurate, leading us to distinguish
between the following two large classes of approach:

1. Interpolation

Interpolation arises when we have as input a table of data points, (x j, y j) for j =
0, 1, . . . , n − 1, which we assume exactly represent the underlying f (x).1 We’ll take
the basis functions φk(x) as given and attempt to determine the n parameters ck. Cru-
cially, we have n unknowns and n data points, so we can determine all the unknown
parameters by demanding that our approximating function p(x) go exactly through the
input data points (except for roundoff error), i.e.:

y j =

n−1∑
k=0

ckφk(x j) (6.8)

where we used the fact that p(x j) = y j. This can be written in matrix form as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0(x0) φ1(x0) φ2(x0) . . . φn−1(x0)

φ0(x1) φ1(x1) φ2(x1) . . . φn−1(x1)

φ0(x2) φ1(x2) φ2(x2) . . . φn−1(x2)
...

...
...

. . .
...

φ0(xn−1) φ1(xn−1) φ2(xn−1) . . . φn−1(xn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

...

cn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

...

yn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.9)

or, more compactly,Φc = y, whereΦ is an n× n matrix and we’re solving for the n× 1
column vector c. Thus, for a given choice of the φk(x), with the table (x j, y j) known,
this is “simply” a linear system of equations for the ck’s; it can be solved using, say,
Gaussian elimination after O(n3) operations.

An example of interpolation along these lines is shown in Fig. 6.1, where the solid curve
smoothly connects the data points. Significantly, such an interpolant is not unique: even
though every interpolant has to go through the data points, there are many shapes/forms

1 Interpolation has been called an “exact approximation”, but this is infelicitous (if not a contradiction in terms).
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Illustration of the difference between interpolation and least-squares fitting �Fig. 6.1

it could have taken between them.2 As a result, one needs to impose further criteria
in order to choose an interpolant, such as smoothness, monotonicity, etc. The crudest
way to put it is that the interpolant should behave “reasonably”; for example, wild
fluctuations that are not supported by the data should generally be avoided.
In the present chapter, we’ll examine three different approaches to the interpolants:

(a) Polynomial interpolation: this approach, covered in section 6.2, assumes that a
single polynomial can efficiently and effectively capture the behavior of the under-
lying function. Despite popular myths to the contrary, this is a great assumption.

(b) Piecewise polynomial interpolation: here, as we’ll see in section 6.3, one breaks
up the data points into subintervals and employs a different low-degree polynomial
in each subinterval.

(c) Trigonometric interpolation: in section 6.4 we’ll find out how to carry out inter-
polation for the case of periodic data. This will also allow us to introduce one of the
most famous algorithms in existence, the fast Fourier transform.

Regardless of how one picks the basis functions, having access to an interpolation
scheme usually helps one before carrying out further manipulations; for example, one
might wish to differentiate or integrate p(x). Assuming the interpolation was successful,
such tasks can be carried out much faster and with fewer headaches than before.

2. Least-squares fitting
We now turn to our next large class of approximation. There are two major differences
from the case of interpolation: (a) we have more data than parameters, and (b) our input

2 Actually, in Fig. 6.1 we are also showing our interpolant for x values slightly outside the interval where we
have data; generally, this is a trickier problem, known as extrapolation. In cases where you have a theory about
how the data should behave even in regions where you have no measurements, this is not too hard a problem;
this is precisely the case of Richardson extrapolation, discussed in chapters 3 and 7.
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data have associated errors. Specifically, this time we have as input a table of data points,
(x j, y j) for j = 0, 1, . . . ,N − 1, which do not perfectly represent the underlying f (x);
for example, these could arise in experimental measurement, in which case each y j is
associated with an error, σ j. Note that in the present case the number of data points,
N, is larger than the number of ck parameters in Eq. (6.7), which was n, i.e., we have
N > n. In other words, the problem we are faced with is that the input data cannot be
fully trusted, i.e., our approximating function should not necessarily go exactly through
them, but at the same time we have more data points then we have parameters.

In the language of linear algebra, the problem we are now faced with is an overdeter-
mined system, of the form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0(x0) φ1(x0) . . . φn−1(x0)

φ0(x1) φ1(x1) . . . φn−1(x1)

φ0(x2) φ1(x2) . . . φn−1(x2)
...

...
. . .

...

φ0(xN−1) φ1(xN−1) . . . φn−1(xN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

...

cn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

...

yN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.10)

Here our input y-values are grouped together in an N ×1 column vector y,Φ is an N ×n
matrix, and we’re solving for the n × 1 column vector c. As you can see, we are aiming
for approximate equality, since this system cannot be generally solved (and even if it
could, we know that our y j values suffer from errors).

To tackle this overdetermined system, we’ll do the next-best thing available; since we
can’t solve Φc = y, let’s try to minimize the norm of the residual vector, i.e.,

min ‖Φc − y‖ (6.11)

where we’re implicitly using the Euclidean norm. As we’ll see in section 6.5 this ap-
proach is known as least-squares fitting, since it attempts to determine the unknown
vector by minimizing the (sum of the) squares of the difference between the approxi-
mating function values and the input data.3

An example of least-squares fitting is shown in Fig. 6.1: if we assume that the data
points cannot be fully trusted, then it is more appropriate to capture their overall trend.
As a result, the goal of our least-squares fitting procedure should not be to go through
the points. We’ll learn more about how to quantify the effect of the error in the input
data later on but, for now, observe that the least-squares fit in Fig. 6.1 follows from
the assumption that the approximating function p(x) should be linear in x. Obviously,
we could have made different assumptions, e.g., that p(x) is quadratic in x, and so on.

3 Another way of approaching this overdetermined system is via minimax approximation, which aims to mini-
mize the maximum error, instead. This is an elegant idea, but covering it would require a separate development.
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Apparently, we’ll need to introduce a goodness-of-fit measure to help us decide which
form to employ.

In section 6.5 we’ll first learn about straight-line fits, which involve only two parameters
(as in Fig. 6.1); this is the simplest-possible choice of basis functions. We will then
turn to the more general problem of tackling the normal equations that arise in the
case of polynomial least-squares fitting, employing machinery we developed in our
study of linear algebra in chapter 4. It’s important to realize that even polynomial least-
squares fitting is a case of linear least-squares fitting: you can see from Eq. (6.7) that
the dependence on the ck parameters would be linear, even if the basis functions are,
e.g., exponentials. In the Project of section 6.6 you will get a first exposure to the more
general problem of nonlinear least-squares fitting; while in general this is a problem of
multidimensional minimization, as in section 5.5.2, we will rewrite it in the form of a
multidimensional root-finding problem and proceed to employ methods we introduced
in section 5.4.4

6.2 Polynomial Interpolation

We now turn to our first major theme, namely polynomial interpolation; this refers to the
case where the interpolating function p(x) of Eq. (6.7) is a polynomial. Keep in mind
that the underlying function f (x) that you’re trying to approximate does not have to be
a polynomial, it can be anything whatsoever. That being said, we will study cases that
are well-behaved, i.e., we won’t delve too deeply into singularities, discontinuities, and
so on; in other words, we focus on the behavior that appears most often in practice. As
explained in the preceding overview, we start by using a single polynomial to describe an
entire interval; in addition to its intrinsic significance, this is a topic which also help us in
chapter 7 when we study numerical integration.

At the outset, let us point out that polynomial interpolation is a subject that is mis-
leadingly discussed in a large number of texts, including technical volumes on numerical
analysis.5 The reasons why this came to be are beyond the scope of our text; see N. Tre-
fethen’s book on approximation theory [94] for some insights on this and several related
subjects. Instead, let us start with the final conclusion: using a single polynomial to ap-
proximate a complicated function is an excellent approach, if you pick the interpolating
points x j appropriately. This is not just an abstract question: knowing how easy, efficient,
and accurate polynomial interpolation can be, will benefit you in very practical ways in
the future. Issues with single-polynomial interpolation arise when one employs equidistant
points, an example which is all most textbooks touch upon.6 We’ll here follow a pedagogi-

4 This also helps explain why our discussion of approximating functions was not provided in chapter 2; our
exposition will involve the linear algebra and root-finding machinery that we developed in chapters 4 and 5.

5 Amicus Plato, sed magis amica veritas, i.e., Plato is a friend, but truth is a better friend.
6 The standard treatment, which employs equidistant points and gets into trouble, doesn’t mesh well with the

Weierstrass approximation theorem, which states that a polynomial can approximate a continuous function;
the problem is that this theorem doesn’t tell us how to go about constructing such a successful polynomial.
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�Fig. 6.2 Chebyshev nodes for n = 15, also showing the equidistant points on the unit circle

cal approach, i.e., we will start with what works and only mention potential problems near
the end of our discussion.

To be specific, let us immediately introduce our go-to solution for the placement of the
interpolation nodes. In much of what follows, we employ Chebyshev points, sometimes
known as Chebyshev nodes. As you learned in a problem in chapter 2, see Eq. (2.123), the
extrema of Chebyshev polynomials take the simple form:

x j = − cos
( jπ
n − 1

)
, j = 0, 1, . . . , n − 1 (6.12)

where we have included a minus sign in order to count them from left to right.7 Given the
importance of these points, we will mainly focus on the interval [−1, 1]; if you are faced
with the interval [a, b] you can scale appropriately:

t =
b + a

2
+

b − a
2

x (6.13)

Spend some time to understand how this transformation takes us from x which is in the
interval [−1, 1] to t which is in the interval [a, b]: x = −1 corresponds to t = a, x = 1
corresponds to t = b and, similarly, the midpoint x = 0 corresponds to t = (b + a)/2.
Note that Eq. (6.13) is more general than Eq. (6.12), i.e., you can use it even if you are not
employing Chebyshev points.

In order to help you build some intuition on the Chebyshev points, we are showing
them in Fig. 6.2 on the x axis. Also shown are the equidistant points on the (upper half
of the) unit circle; their projections onto the x axis are the Chebyshev points. The most
conspicuous feature of Chebyshev points is that they cluster near −1 and 1 (i.e., near the
ends of the interval). This will turn out to be crucial for the purposes of interpolation, as

7 Though the convention in the literature is not to include this minus sign.
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discussed in section 6.2.3. Despite not being equidistant on the x axis, Chebyshev points
have the advantage of obeying nesting: when you double the number of points, n, you use,
you can re-use the old points since you’re simply adding new points between the old ones.
This is generally desirable when you don’t know ahead of time how many points you are
going to need: start with some guess, keep doubling (while re-using the work you carried
out for the old guesses), until you see that you can stop doubling.

The attentive reader may recall encountering another set of points with a similar cluster-
ing property, namely the roots of Legendre polynomials, which we computed all the way
back in section 5.3.2. For now, we will consider the placement of the nodes as settled, i.e.,
following Chebyshev points as per Eq. (6.12). This still leaves open the question of how to
solve Eq. (6.9): we need to pick a specific set of basis functions φk(x) and then to compute
the ck parameters.

In order to avoid getting confused, one has to distinguish between the (possible) ill-
conditioning of a problem and the stability of a given algorithm employed to solve that
problem. For example, in section 4.2 we discussed how to quantify the conditioning of a
linear system of equations; this had little to do with specific methods one could choose to
apply to that problem. If a matrix is terribly ill-conditioned it will be so no matter which
algorithm you use on it. Similarly, in section 4.3.4 we encountered a case (Gaussian elim-
ination without pivoting) where the algorithm can be unstable even when the problem is
perfectly well-conditioned. Turning to the present case of polynomial interpolation, one
has to be careful in distinguishing between the conditioning of the problem itself (interpo-
lating using a table (x j, y j)) and the method you employ to do that (which needs to evaluate
the ck parameters). We’ll soon see a specific method that can be quite unstable, but this
doesn’t mean that the problem itself is pathological.

Another distinction one can make at a big-picture level relates to the practical imple-
mentation of polynomial interpolation. While we will always follow Eq. (6.7), we can
distinguish between two stages in our process: (a) constructing the interpolating function
is the first stage; after deciding on which basis functions φk(x) to employ, the main task
here is to compute the ck parameters, and (b) evaluating the interpolating function p(x) at
a given x, with the φk(x)’s and ck’s in place. It stands to reason that the first stage, com-
puting the ck parameters, should only be carried out once, i.e., should be independent of
the specific x where we may need to evaluate p(x). As mentioned earlier, interpolation is
supposed to make further manipulations easy, so the evaluation stage should be as efficient
as possible; this would not be the case if the parameter values would need to be separately
re-computed for each new x point.

6.2.1 Monomial Basis

The preceding discussion may be too abstract for your taste, so let us write down some
equations. The most natural choice for the basis functions φk(x) is to use monomials:8

φk(x) = xk (6.14)

8 You may recall monomials as what you started with before orthogonalizing to get to Legendre polynomials,
in a problem in chapter 4.
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�Fig. 6.3 Monomial basis functions for the first several degrees

It’s not too early to highlight the fact that we use j for the spatial index and k for the index
that keeps track of the basis functions. Plugging Eq. (6.14) into Eq. (6.7) allows you to
write the interpolating polynomial p(x) in the simplest way possible:

p(x) = c0 + c1x + c2x2 + c3x3 + · · · + cn−1xn−1 (6.15)

This employs notation similar to that we’ve used before, say in Eq. (5.62): this is a poly-
nomial of degree n − 1, in keeping with our 0-indexing convention. Remember, our input
is a table of data points, (x j, y j) for j = 0, 1, . . . , n − 1; we have n unknown parameters and
n input points.

The most naive way to carry out polynomial interpolation, which is the one you probably
learned when you first saw how to find the line that goes through two specified points, is
to evaluate Eq. (6.15) at our grid points:

p(x j) = y j = c0 + c1x j + c2x2
j + c3x3

j + · · · + cn−1xn−1
j (6.16)

and solve for the unknown parameters. Explicitly writing this out for all the values of j,
i.e., j = 0, 1, . . . , n − 1, allows us to re-express our equations in matrix form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

...

cn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

...

yn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.17)
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Monomial interpolation for the case of n = 101 (left), also zoomed in (right) �Fig. 6.4

This (nonsymmetric) n × n coefficient matrix is known as a Vandermonde matrix.9 As you
will show in one of the problems, the determinant of a Vandermonde matrix is non-zero
for distinct nodes x j; thus, a Vandermonde matrix is non-singular. As a result, the columns
of the Vandermonde matrix are linearly independent. This means that if you employ O(n3)
operations (at most, since specialized algorithms also exist) you are guaranteed to be able
to solve this linear system of equations for the ck parameters; this is a unique solution. This
is a general result: for real data points with distinct nodes, there exists a unique polynomial
that goes through the points.

While the fact of the non-singularity of the Vandermonde matrix is good news, it’s not
great news. In Fig. 6.3 we show the monomial basis functions for the first several degrees.
As the degree increases, different basis functions become closer in value to each other for
positive-x; for negative-x odd degrees start to look alike, and similarly for even degree
monomials. Even though in principle the columns of a Vandermonde matrix are linearly
independent, in practice they are almost linearly dependent. Put another way, the Vander-
monde matrix becomes increasingly ill-conditioned as n gets larger. In the past, textbooks
would brush this off as a non-issue, since one didn’t employ interpolating polynomials of
a high degree anyway. However, as we’re about to see, polynomials with n = 100, or even
n = 1000, are routinely used in practice and therefore the Vandermonde ill-conditioning is
a real problem.

Figure 6.4 shows data points drawn from a significant example, Runge’s function:

f (x) =
1

1 + 25x2
(6.18)

In this figure, our data (x j, y j) are picked from the Chebyshev formula in Eq. (6.12) for this
specific f (x); we used n = 101 to stress the fact that n does not need to be small in practical

9 This is not the first Vandermonde matrix we’ve encountered: in one of the problems in chapter 5, see
Eq. (5.128), we solved a multidimensional system of nonlinear equations, with the promise that it will re-
emerge in our study of Gaussian quadrature in chapter 7.
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applications. Note that our interpolation using the monomial basis/Vandermonde matrix
does a reasonable job capturing the large-scale features of Runge’s function (see left panel).
This is starting to support our earlier claim that polynomial interpolation with Chebyshev
nodes is an excellent tool. Unfortunately, once we zoom in (see right panel) we realize that
the monomial interpolation misses detailed features and shows unpleasant wiggles near the
ends of the interval, as a result of the Vandermonde matrix’s ill-conditioning. Crucially,
this is not an issue with the Runge function; it is also not a problem with the Chebyshev
nodes; it is a problem with the method we chose to use in order to interpolate between
our Chebyshev nodes for the Runge function (though other functions would show similar
behavior). In other words, the issue lies with the “naive” choice to use monomials as our
basis functions and then solve an ill-conditioned linear system. To emphasize the fact that
the polynomial-interpolation problem itself was not ill-conditioned (i.e., our algorithm is
unstable but we could have picked a better algorithm, instead), we also show in Fig. 6.4
results from a mysterious “Lagrange interpolation” method. Having piqued your curiosity,
this is the topic we turn to next.

6.2.2 Lagrange Interpolation

Lagrange interpolation10 is introduced in most textbooks on numerical methods. After
some introductory comments, though, the approach is usually abandoned for other meth-
ods, e.g., Newton interpolation, typically after a claim that the Lagrange form is nice for
proving theorems but not of practical value. As we’ll see, Lagrange interpolation is helpful
both formally and in practice. To emphasize this point, we will end the section with an im-
plementation of Lagrange interpolation which leads to the (excellent) results in Fig. 6.4.11

Cardinal Polynomials

As before, we have as input a table of data points, (x j, y j) for j = 0, 1, . . . , n − 1. Before
discussing how to interpolate through those points, let us introduce what are known as
cardinal or Lagrange or fundamental polynomials:

Lk(x) =

∏n−1
j=0, j�k(x − x j)∏n−1

j=0, j�k(xk − x j)
, k = 0, 1, . . . , n − 1 (6.19)

The denominator depends only on the x j’s, i.e., on the interpolation points, so it is clearly
a constant (it doesn’t depend on x). The numerator is a polynomial in x of degree n − 1,
which for a given k goes to 0 at x j when j � k. The Lagrange polynomial Lk(x) goes to 1
at xk, since the numerator and the denominator are equal to each other in that case.

10 A typical example of the Matthew effect: Lagrange interpolation was actually discovered by Waring.
11 Incidentally, in section 5.3.1 we cautioned against finding the roots of a polynomial starting from its coeffi-

cients. Here, however, we’re not finding roots but interpolatory behavior; also, we’re starting from interpolation
nodes, not from polynomial coefficients.
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Lagrange basis functions for Chebyshev 3-point (left) and 6-point (right) interpolation �Fig. 6.5

If you’ve never encountered Lagrange polynomials before, you might benefit from see-
ing them explicitly written out for a simple case. Regardless of where the x j’s are placed,
here’s what the three Lagrange polynomials for the case of n = 3 look like:

L0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
, L1(x) =

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

, L2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
(6.20)

We could expand the parentheses here, but we won’t, since that’s less informative than
the form the fractions are currently in. Clearly, for n = 3 the Lagrange polynomials are
quadratic in x. Equally clearly, L0(x1) = 0, L0(x2) = 0, and L0(x0) = 1, and analogous
relations hold for L1(x) and L2(x). These facts are illustrated in the left panel of Fig. 6.5:
in the interval [−1, 1] for n = 3 Chebyshev points and equidistant points are the same.

As mentioned before, these are general results: Lk(x j) is 0 if j � k, and 1 if j = k. This
result is important enough that it deserves to be highlighted:

Lk(x j) = δk j (6.21)

where δk j is the Kronecker delta. The right panel of Fig. 6.5 shows the example of n = 6,
in which case the Lk(x) are fifth degree polynomials (and there are six distinct Lagrange
polynomials). No matter what they may do between one node and the next, these always
go to 1 and to 0 in the appropriate places.

It is now time to use our cardinal polynomials as basis functions; this means that we
take φk(x) = Lk(x) in Eq. (6.7). As will soon become clear, this also means that we don’t
need to use ck in our definition of the interpolating polynomial, since we can simply write
yk (the y-values of our input data) in their place:
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p(x) =
n−1∑
k=0

ykLk(x) (6.22)

To see why this is allowed, let’s examine the value of p(x) at our nodes:

p(x j) =
n−1∑
k=0

ykLk(x j) =
n−1∑
k=0

ykδk j = y j (6.23)

where we used Eq. (6.21) in the second step. But p(x j) = y j was the definiton of what it
means to be an interpolating polynomial.

We thereby conclude that Eq. (6.22) has been successful: by using cardinal polynomials
(which go to 0 and to 1 in the right places) instead of monomials, we have managed to
avoid encountering a (possibly ill-conditioned) Vandermonde matrix. As a matter of fact,
the Lagrange form employs an ideally conditioned basis: in the language of Eq. (6.9), since
φk(x j) = Lk(x j) = δk j, we see that Φ is the identity matrix. Thus, we don’t even have to
solve Φc = y, since we’ll always have c j = y j; this explains why we used yk in Eq. (6.22).
To summarize, in the Lagrange form we write the interpolating polynomial as a linear
combination (not of monomials, but) of polynomials of degree n − 1, see Eq. (6.22).

Barycentric Formula

At this point, you can understand why many books shun the Lagrange form: while it is true
that it leads to a linear system in Eq. (6.9) which is perfectly conditioned, the approach
still seems to be inefficient. In other words, while it is true that we don’t have to solve a
linear system, which in general costs O(n3) operations, our main formula in Eq. (6.22),
combined with Eq. (6.19), appears to be highly inefficient: at a single x, we need O(n)
operations to compute Lk(x) and must then carry out n such evaluations, leading to a total
of O(n2) operations. When you change the value of x where you need to find the value of
the interpolating polynomial, you’ll need another O(n2) operations. To compare with the
monomial basis: there it was costly to determine the ck’s as per Eq. (6.17) but, once you
had done so, it took only O(n) operations to evaluate p(x) at a new x as per Eq. (6.15).

One can do much better, simply by re-arranging the relevant formulas. Observe that, as
you change k, the numerator in Eq. (6.19) is always roughly the same, except for the miss-
ing x − xk factor each time. This motivates us to introduce the following node polynomial:

L(x) =
n−1∏
j=0

(x − x j) (6.24)

where there are no factors missing; this L(x) is a (monic) polynomial of degree n. Clearly,
L(xk) = 0 for any k, i.e., the node polynomial vanishes at the nodes.

We now make a quick digression, which will not be used below but will help us in the
following chapter, when we introduce Gauss–Legendre integration. The numerator in the
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equation for Lk(x), Eq. (6.19), can be re-expressed as follows:

n−1∏
j=0, j�k

(x − x j) =

∏n−1
j=0(x − x j)

x − xk
=

L(x)
x − xk

(6.25)

where in the second equality we identified the node polynomial from Eq. (6.24). We now
turn to the denominator in Eq. (6.19). This can be arrived at using Eq. (6.25), where we
write the numerator as L(x) − L(xk) (since L(xk) = 0) and then take the limit x → xk. This
leads to:

n−1∏
j=0, j�k

(xk − x j) = L′(xk) (6.26)

where the definition of the derivative appeared organically. Putting the last two equations
together with Eq. (6.19) allows us to express a given cardinal polynomial Lk(x) in terms of
the node polynomial and its derivative:

Lk(x) =
L(x)

(x − xk)L′(xk)
(6.27)

We will produce another (analogous) relation below.
Continuing with the main thread of our argument, we now introduce another quantity

that captures the denominator in Eq. (6.19); we define the barycentric weights as follows:

wk =
1∏n−1

j=0, j�k(xk − x j)
, k = 0, 1, . . . , n − 1 (6.28)

We are now in a position to re-express (once again) a given cardinal polynomial Lk(x), see
Eq. (6.19), in terms of the node polynomial and the weights:

Lk(x) = L(x)
wk

x − xk
(6.29)

where we simply divided out the x − xk factor that is present in L(x) but missing in Lk(x).
A way to make further progress is to remember that, regardless of how you compute

Lk(x), the way to produce an interpolating polynomial p(x) is via Eq. (6.22). Let us write
out that relation, incorporating Eq. (6.29):

p(x) = L(x)
n−1∑
k=0

yk
wk

x − xk
(6.30)

where we pulled out L(x) since it didn’t depend on k. We now apply Eq. (6.22) again,
this time for the special case where all the y j’s are 1: given the uniqueness of polynomial
interpolants, the result must be the constant polynomial 1. In equation form, we have:

1 =
n−1∑
k=0

Lk(x) = L(x)
n−1∑
k=0

wk

x − xk
(6.31)

In the first step we show that adding up all the Lagrange polynomials gives us 1; in the
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second step we plugged in Eq. (6.29). If we now divide the last two equations, we can
cancel the node polynomial L(x), leading to:

p(x) =
n−1∑
k=0

wkyk

x − xk

/ n−1∑
k=0

wk

x − xk
(6.32)

where we get the wk from Eq. (6.28). If you run into the special case x = xk for some k,
you can simply take p(x) = yk. Equation (6.32) is known as the barycentric interpolation
formula and is both a beautiful and a practical result. Observe that the two sums are nearly
identical: the first one involves the input data values yk, whereas the second one doesn’t.
As x approaches one of the xk’s, a single term in the numerator and in the denominator
become dominant; their ratio is yk, so our interpolating polynomial has the right behavior.
Of course, if x is actually equal to xk this line of reasoning doesn’t work, which is why we
account for this scenario separately in our definition.

You may be wondering why we went through all the trouble. The form in Eq. (6.22)
was clearly a polynomial, whereas Eq. (6.32), despite still being a polynomial, looks like it
might be a rational function. The reason we bothered has to do with our earlier complaint
that the Lagrange form of Eq. (6.22) necessitated O(n2) operations at each x value. In
contradistinction to this, the barycentric formula splits the construction stage from the
evaluation stage: we first compute the weights as per Eq. (6.28), using O(n2) operations;
crucially, the weights don’t rely on the y j values but only on the placement of the nodes, x j.
When the weights have been computed (once and for all), we use Eq. (6.32) at each new
x, requiring only O(n) operations. As you may recall, this was the scaling exhibited by the
monomial-basis evaluation stage, only this time we have no ill-conditioning issues.

Even though Eq. (6.32) looks like it might have issues with roundoff error, it is numeri-
cally stable. It actually has several more advantages, e.g., in how it handles the introduction
of a new data pair (xn, yn). Another pleasant feature is that for Chebyshev nodes the weights
wk can be analytically derived, i.e., the O(n2) operations are not needed. Instead of getting
into such details, however, we will now see the barycentric formula in action.

Implementation

We will study Runge’s function from Eq. (6.18), namely the same example we plotted for
the case of the monomial basis. In reality, interpolation deals with a table of data (x j, y j) as
input, not with continuous functions. Even so, we want to test how well our interpolation is
working, so it’s good to start from a function and produce our data from it. Thus, Code 6.1
starts by defining Runge’s function and then introduces another function to generate the
data pairs. We have coded up two distinct possibilities: Chebyshev points as per Eq. (6.12),
or equidistant nodes. If you’re still not very comfortable with numpy.linspace(), try
to use numpy.arange() to accomplish the same task; for example, for Chebyshev nodes
you would write down something like np.arange(n)*np.pi/(n-1). Note that dataxs
is a numpy array, so when we define datays we end up calling f() with an array as an
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barycentric.py Code 6.1

import numpy as np

def f(x):

return 1/(1 + 25*x**2)

def generatedata(n,f,nodes="cheb"):

if nodes=="cheb":

dataxs = -np.cos(np.linspace(0,np.pi,n))

else:

dataxs = np.linspace(-1,1,n)

datays = f(dataxs)

return dataxs, datays

def weights(dataxs):

n = dataxs.size

ws = np.ones(n)

for k in range(n):

for j in range(n):

if j == k:

continue

ws[k] *= (dataxs[k]-dataxs[j])

return 1/ws

def bary(dataxs,datays,ws,x):

k = np.where(x == dataxs)[0]

if k.size == 0:

nume = np.sum(ws*datays/(x-dataxs))

denom = np.sum(ws/(x-dataxs))

val = nume/denom

else:

val = datays[k[0]]

return val

if name == ‘ main ’:

dataxs, datays = generatedata(15, f)

ws = weights(dataxs)

x = 0.3; pofx = bary(dataxs, datays, ws, x)

print(x, pofx, f(x))
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argument; this works seamlessly for the operations involved in defining Runge’s function
(power, multiplication, addition, and division).

Having produced the table of data (x j, y j), we need to carry out the actual interpolation
procedure. As hinted at above, we do this in two separate steps. We first define a func-
tion that computes the weights wk; this knows nothing about the y j values: if you need to
carry out interpolation for a different problem later on, you can re-use the same weights.
Similarly, our computation of the weights is not related to the specific x where we wish
to interpolate: it only cares about where the nodes are located, as per Eq. (6.28). You can
clearly see that this, construction, stage involves O(n2) operations, since it contains two
nested loops. We eliminate the case j = k from the product by employing continue, our
first use of this keyword after our introduction to Python at the start of the book. Employ-
ing numpy functionality, we produce the denominator of wk for each case, and then invert
them all at once at the end.

With the table (x j, y j) and the weights wk in place, we are in a position to turn to the
second stage of the interpolation process, namely to use Eq. (6.32) in order to produce p(x)
at a given x. We start by considering the special case x = xk for some k, for which we should
take p(x) = yk instead of using the full barycentric formula. We accomplish this by using
numpy.where(); as you may recall from our introduction to numpy, numpy.where()
allows us to find specific indices where a condition is met. Since it returns a tuple of arrays,
we take its 0th element. If the element we’re looking for is not there, the 0th element of
the tuple returned by numpy.where() is an empty array; this means that its size is 0, so
we should proceed with Eq. (6.32). That case is a straightforward application of numpy
functionality: we carry out the two needed sums without employing any explicit loops.
You might be wondering about the cost of traversing the array elements twice (once for
the numerator and once for the denominator); the thing to note is that the evaluation of our
interpolant is now a problem requiring O(n) operations, so a factor of 2 doesn’t make much
of a difference. If numpy.where() did not return an empty array, we are dealing with the
special case, so we index once again in order to return p(x) = yk.

The main program produces the data, constructs the weights, and then evaluates the
interpolating polynomial p(x). In order to effectively distinguish the x j (part of our input
data) from the x (the point at which we wish to interpolate), we are calling the former
dataxs and the latter x. The specific value of x we employ here is not important; the
output of running this code is:

0.3 0.259275058184 0.3076923076923077

Since we have access to the underlying f (x), we also compare its value to p(x). The match
is not great, so we then decide to use this code at thousands of points to produce a quasi-
continuous curve. It’s important to realize that we are not referring to the use of thousands
of nodes (though we could have done that, as well): we pick, say, n = 15 Chebyshev nodes
and then plot p(x) for thousands of different x’s. The result is shown in the left panel of
Fig. 6.6 for both n = 7 and n = 15. In order to make this plot easier to understand, we
are not showing the data points (x j, y j). We see that n = 7 captures only the peak height,
but misses the overall width of our curve, in addition to exhibiting strong oscillations. For
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Lagrange interpolation for Chebyshev (left) and equidistant nodes (right) �Fig. 6.6

n = 15 the width is better reproduced and the magnitude of the oscillations is considerably
reduced. As you may recall from our comparison with the monomial basis, see Fig. 6.4,
you can keep increasing n and you will keep doing a better job at approximating the un-
derlying f (x); those two panels showed that for n = 101 the match is nearly perfect. This
cannot be over-emphasized: the canonical problem of misbehavior in polynomial interpo-
lation (Runge’s function) is easy to handle using Chebyshev points and the barycentric
formula. As noted above, without the barycentric formula we would have had to keep re-
evaluating the Lk(x) from scratch at each of our thousands of x values, so this would have
been prohibitively slow. To summarize, the accuracy resulted from the Chebyshev points
and the efficiency from the barycentric formula.

We left the worst for last. If you use our code for equidistant nodes, you will find behav-
ior like that shown in the right panel of Fig. 6.6. As n is increased, the width of our curve is
captured better, but the magnitude of the oscillations at the edges gets larger! Even though
the interpolating polynomial p(x) goes through the input data points, the behavior near the
ends of the interval is wholly unsatisfactory. It is this poor behavior that has often led to
the generalization that polynomial interpolation should be avoided when n is large; you
now know that this only applies to equidistant nodes. Of course, you may be in the un-
fortunate situation where the input data were externally provided at equidistant points; in
that scenario, one typically resorts to a cubic-spline interpolation instead, as we will see
in section 6.3. Before we get there, though, let’s build some intuition into why different
placements of the nodes lead to such dramatically different results.

6.2.3 Error Formula

As we just saw, polynomial interpolation behaves well for Chebyshev nodes and not so
well for equidistant nodes. Instead of examining things on a case-by-case basis, it would
be nice to see how well our interpolating polynomial p(x) approximates the underlying
f (x) in general. The answer is trivial in the case where x = x j: the interpolant goes through
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the nodes, i.e., p(x j) = y j = f (x j). In other words, the interpolation error is zero at the
nodes. Motivated by this fact, we introduce a new function:

F(x) = f (x) − p(x) − L(x)K = f (x) − p(x) − K
n−1∏
j=0

(x − x j) (6.33)

where K is a constant and in the second equality we plugged in the node polynomial from
Eq. (6.24). It’s easy to see that if x is on one of the nodes the right-hand-side vanishes,
since there the interpolant matches the underlying function. We introduced K because it
also helps us see how close p(x) gets to matching f (x) for the more interesting case where
x is not equal to the nodes. Let us demand F(x∗) = 0 at a given point x∗; solving for K
gives us:

K =
f (x∗) − p(x∗)

L(x∗)
(6.34)

where we’re allowed to divide with L(x∗) since we know that it vanishes only at the nodes.
In what follows we won’t need this form, so we simply write K.

We have learned that F(x) has n zeros at the x j’s and another zero at x∗. Thus, F(x)
has at least n + 1 zeros in the interval [a, b]. We now make use of Rolle’s theorem, which
you may recall from basic calculus as a special case of the mean-value theorem; Rolle’s
theorem tells us that between every two consecutive zeros of F(x) there is a zero of F′(x).
Since F(x) has at least n+1 zeros in our interval, we see that F′(x) will have at least n zeros
in the same interval. Similarly, F′′(x) will have at least n − 1 zeros, and so on. Repeatedly
applying Rolle’s theorem eventually leads to the result that F(n)(x) (the n-th derivative of
F(x)) has at least one zero in the interval [a, b]; if we denote this zero by ξ, our finding is
that F(n)(ξ) = 0.

Let us examine the n-th derivative a bit more closely. Using Eq. (6.33), we have:

F(n)(x) = f (n)(x) − p(n)(x) − L(n)(x)K (6.35)

Now, recall from our discussion of Eq. (6.22) that p(x) is a linear combination of polyno-
mials of degree n − 1, so it is itself a polynomial of degree at most n − 1. This implies that
p(n)(x) = 0. Similarly, we can see from the definition of the node polynomial in Eq. (6.24)
that L(x) is a polynomial of degree n. Actually, it happens to be a monic polynomial: as
explained near Eq. (5.69), this is what we call a polynomial whose leading power has a
coefficient of 1. The fact that L(x) is a monic polynomial makes it very easy to evaluate its
n-th derivative: L(n)(x) = n! is the straightforward answer. Putting everything together:

F(n)(ξ) = f (n)(ξ) − Kn! = 0 (6.36)

where F(n)(ξ) = 0, since we’re examining its zero. This equation can now be solved for K:

K =
f (n)(ξ)

n!
(6.37)

This is a more useful result than Eq. (6.34).
We are now in a position to take the expression for the constant from Eq. (6.37) and

combine it with our earlier result f (x∗) = p(x∗) + L(x∗)K, to give:
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f (x∗) = p(x∗) +
f (n)(ξ)

n!

n−1∏
j=0

(x∗ − x j) (6.38)

where we’ve assumed all along that f (x) has an n-th derivative. This is our desired general
error formula for polynomial interpolation. It shows us that the error in approximating the
underlying function is made up of two parts: the n-th derivative of the underlying function
(at the unknown point ξ, divided by n!) and the node polynomial.

Of the two terms making up the error, the first one, f (n)(ξ), is complicated to handle,
since ξ depends on the x j’s implicitly. It’s easier to focus on the second term, namely the
node polynomial. In a problem, you will see that Chebyshev points minimize the relevant
product and also discover how differently equidistant nodes behave; this provides retroac-
tive justification for our choice to employ Chebyshev nodes. Of course, in some cases the
f (n)(ξ) will also play a role: in general, the smoother the function f (x) is, the faster the in-
terpolation will converge; the extreme case is Lagrange interpolation at Chebyshev points
for analytic functions, in which case the interpolant converges geometrically, as we’ll see
in section 6.3.3. That being said, you don’t necessarily have to limit yourself to Chebyshev
nodes: another problem asks you to use the roots of Legendre polynomials, which as you’ll
find out also do a good job. What makes both sets of nodes good is the fact that they cluster
near the ends of the interval; as a result, each node has roughly the same average distance
from the others, something which clearly distinguishes them from equidistant points.

6.2.4 Hermite Interpolation

In the previous subsections we have been tackling the problem of interpolating through
a set of data points, i.e., p(x j) = y j for j = 0, 1, . . . , n − 1. A slightly different problem
involves interpolating through both the points and the first derivatives at those points:

p(x j) = y j, p′(x j) = y′j, j = 0, 1, . . . , n − 1 (6.39)

The scenario involving these 2n conditions gives rise to what is known as Hermite interpo-
lation. As you can guess, using a polynomial of degree n−1 won’t work: this would have n
undetermined parameters, but we need to satisfy 2n conditions. In other words, our Ansatz
for the interpolating polynomial should start from a form containing 2n undetermined pa-
rameters, i.e., a polynomial of degree 2n − 1.

We start from the following guess:

p(x) =
n−1∑
k=0

ykαk(x) +
n−1∑
k=0

y′kβk(x) (6.40)

where the αk(x) are meant to capture the function values and the βk(x) the derivative values.
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In other words:

αk(x j) = δk j

α′k(x j) = 0

βk(x j) = 0

β′k(x j) = δk j
(6.41)

for k, j = 0, 1, . . . , n − 1. This is merely re-stating our 2n conditions from Eq. (6.39).
We decide to write down αk(x) and βk(x) in terms of Lk(x), namely the cardinal poly-

nomials of Eq. (6.19). As you may recall, Lk(x) is a polynomial of degree n − 1 which
satisfies Lk(x j) = δk j, as per Eq. (6.21). We know that we need αk(x) and βk(x) to be of
degree 2n− 1. With that in mind, we realize that if we square Lk(x) we get a polynomial of
degree 2(n − 1) = 2n − 2. Thus, multiplying L2

k(x) with a linear polynomial brings us up to
degree 2n − 1, as desired:

αk(x) = uk(x)L2
k(x), βk(x) = vk(x)L2

k(x), k = 0, 1, . . . , n − 1 (6.42)

where both uk(x) and vk(x) are linear. To see how these are determined, we first write out
two properties of the squared cardinal polynomials:

L2
k(x j) = (δk j)

2 = δk j

(L2
k(x j))

′ = 2Lk(x j)L
′
k(x j) = 2δk jL

′
k(x j)

(6.43)

We can now examine the first αk(x)-related condition in Eq. (6.41):

δk j = αk(x j) = uk(x j)L
2
k(x j) = uk(x j)δk j (6.44)

where we used Eq. (6.43) in the last step. This implies that:

uk(xk) = 1 (6.45)

Similarly, the next αk(x)-related condition in Eq. (6.41) gives us:

0 = α′k(x j) = u′k(x j)L
2
k(x j) + uk(x j)(L

2
k(x j))

′ = u′k(x j)δk j + 2uk(x j)δk jL
′
k(x j) (6.46)

where we, again, used Eq. (6.43) in the last step. This implies that:

u′k(xk) + 2uk(xk)L′k(xk) = 0 (6.47)

Since uk(x) is linear, we know that uk(x) = γx + δ. Thus, we can use Eq. (6.45) and
Eq. (6.47) to determine γ and δ, in which case we have fully determined αk(x) to be:

αk(x) =
[
1 + 2L′k(xk)(xk − x)

]
L2

k(x) (6.48)

A completely analogous derivation allows you to determine βk(x). Putting everything to-
gether, our interpolating polynomial from Eq. (6.40) is then:

p(x) =
n−1∑
k=0

yk

[
1 + 2L′k(xk)(xk − x)

]
L2

k(x) +
n−1∑
k=0

y′k (x − xk)L2
k(x) (6.49)

Even if you didn’t follow the derivation leading up to this equation, you should make sure
to convince yourself that Eq. (6.49) satisfies our 2n conditions from Eq. (6.39).
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Note that, using techniques similar to those in section 6.2.3, in a problem you will derive
the following general error formula for Hermite interpolation:

f (x∗) = p(x∗) +
f (2n)(ξ)

2n!

n−1∏
j=0

(x∗ − x j)
2 (6.50)

This looks very similar to Eq. (6.38) but, crucially, it contains a square on the right-hand
side, as well as a 2n-th derivative.

6.3 Cubic-Spline Interpolation

In the previous section, we covered interpolation using a single polynomial for an entire
interval, staying away from the topic of how to deal with discontinuities. These are typ-
ically handled using piecewise polynomial interpolation, which is also useful when the
placement of the nodes is irregular or, as mentioned earlier, when the nodes have been
externally determined to be equidistant.

To be specific, our problem is the same as for Lagrange interpolation, namely we are
faced with a table of input data points, (x j, y j) for j = 0, 1, . . . , n−1. We wish to interpolate
between these points, i.e., produce an easy-to-evaluate and well-behaved interpolant that
can be computed at any x value. The approach known as spline interpolation, named after
the thin strips used in building construction, cuts up the full interval into distinct panels,
just like we did in section 3.3.6. A low-degree polynomial is used for each subinterval, i.e.,
[x0, x1], [x1, x2], and so on. To make things transparent, we will employ the notation:

p(x) = sk−1,k(x), xk−1 ≤ x ≤ xk, k = 1, 2 . . . , n − 1 (6.51)

where sk−1,k(x) is the low-degree polynomial that is used (only) for the subinterval [xk−1, xk];
note that k starts at 1 and ends at n − 1. These pieces are then stitched together to produce
a continuous global interpolant; nodes are sometimes known as knots or break points.

One of the problems sets up piecewise-linear interpolation, but in what follows we focus
on the most popular case, namely piecewise-cubic interpolation, known as cubic-spline in-
terpolation. This leads to an interpolant that is smooth in the first derivative and continuous
in the second derivative. Before deriving the general case of n nodes, we go over an explicit
example, that of n = 3, to help you build some intuition about how this all works.

6.3.1 Three Nodes

For n = 3 we have only three input-data pairs, (x0, y0), (x1, y1), and (x2, y2), so we are
faced with only two panels, [x0, x1] and [x1, x2]. In each of these subintervals, we will
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use a different cubic polynomial; to make things easy to grasp, we write these out in the
monomial basis; that’s not the best approach, but it’s good enough to start with.

The first panel will be described by the cubic polynomial:

s0,1(x) = c0 + c1x + c2x2 + c3x3 (6.52)

which is exactly of the form of Eq. (6.15). For the second panel we use a separate polyno-
mial; this means that it will have distinct coefficients:

s1,2(x) = d0 + d1x + d2x2 + d3x3 (6.53)

As was to be expected, each cubic polynomial comes with four unknown parameters, so
we are here faced with eight parameters for our two cubic polynomials put together. We’ll
need eight equations to determine the unknown parameters.

The first polynomial should interpolate the data at the ends of its (sub)interval:

c0 + c1x0 + c2x2
0 + c3x3

0 = y0, c0 + c1x1 + c2x2
1 + c3x3

1 = y1 (6.54)

Similarly, the second polynomial interpolates the data at the ends of its own subinterval:

d0 + d1x1 + d2x2
1 + d3x3

1 = y1, d0 + d1x2 + d2x2
2 + d3x3

2 = y2 (6.55)

So far we have produced four equations, employing the definition of what it means to be
an interpolating polynomial, p(x j) = y j. Obviously, that’s not enough, so we’ll have to use
more properties. Specifically, we will impose the continuity of the first derivative at x1:

c1 + 2c2x1 + 3c3x2
1 = d1 + 2d2x1 + 3d3x2

1 (6.56)

and, similarly, the continuity of the second derivative at x1:

2c2 + 6c3x1 = 2d2 + 6d3x1 (6.57)

At this point, we have six equations for eight unknowns. This is a pattern that will re-
emerge in the general case below. There are several ways via which we can produce two
more constraints; here and in what follows, we will choose to make the second derivative
go to 0 at the endpoints of the initial interval. This gives rise to what is known as a natural
spline.12 We get two more equations by demanding that the second derivative is 0 at x0 and
at x2:

2c2 + 6c3x0 = 0, 2d2 + 6d3x2 = 0 (6.58)

where, obviously, only the first polynomial can be used at x0 and only the second one at

12 One of the problems investigates a different choice.
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x2. The 8 equations can be written in matrix form as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x0 x2
0 x3

0 0 0 0 0

1 x1 x2
1 x3

1 0 0 0 0

0 0 0 0 1 x1 x2
1 x3

1

0 0 0 0 1 x2 x2
2 x3

2

0 1 2x1 3x2
1 0 −1 −2x1 −3x2

1

0 0 2 6x1 0 0 −2 −6x1

0 0 2 6x0 0 0 0 0

0 0 0 0 0 0 2 6x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

c3

d0

d1

d2

d3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y1

y2

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.59)

where the only (minor) subtlety involved the fifth and sixth equations. This is analogous
to, but quite distinct from, the matrix equation we were faced with in Eq. (6.17).13

To summarize, we employed three types of constraints: (a) interpolation conditions, (b)
continuity conditions, and (c) natural-spline conditions. In one of the problems, you are
asked to implement Eq. (6.59) programmatically; instead of following that avenue, we
now turn to a more systematic approach, which also has the added benefit of involving a
banded (tridiagonal) system of equations.

6.3.2 General Case

In the previous, explicit, example, we had three points and two panels. In the general case,
we have n points (x j for j = 0, 1, . . . , n − 1) and n − 1 panels. Similarly, the fact that there
are n points in total means there are n− 2 interior points (i.e., excluding x0 and xn−1). Each
panel gets its own spline, i.e., corresponds to four unknown parameters; since there are
n− 1 panels in total, we are faced with 4n− 4 undetermined parameters. We will find these
using the following constraints:

• A given spline should interpolate the data at its left endpoint:

sk−1,k(xk−1) = yk−1, k = 1, 2 . . . , n − 1 (6.60)

and at its right endpoint:

sk−1,k(xk) = yk, k = 1, 2 . . . , n − 1 (6.61)

Together, these are 2n − 2 conditions.

• For each of the n − 2 interior points, the first derivative of the two splines on either side
should match:

s′k−1,k(xk) = s′k,k+1(xk), k = 1, 2, . . . , n − 2 (6.62)

where this k ends at n − 2. We get another n − 2 conditions this way.

13 Incidentally, the coefficient matrix in Eq. (6.59) belongs to the class of nonsymmetric matrices. As advertised
in chapter 4, these show up quite often in practice.
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• For each of the n − 2 interior points, the second derivative of the two splines on either
side should match:

s′′k−1,k(xk) = s′′k,k+1(xk), k = 1, 2, . . . , n − 2 (6.63)

This provides us with another n − 2 conditions.

• So far, we have 4n − 6 conditions. To find the missing two constraints, we decide to use
a natural spline, i.e., make the second derivative go to 0 at x0 and at xn−1:

s′′0,1(x0) = s′′n−2,n−1(xn−1) = 0 (6.64)

This brings the total number of conditions up to 4n − 4, which is equal to the number
of undetermined parameters.

Let’s start writing these conditions out. Our strategy will be to express our cubic spline
sk−1,k(x) in terms of the input data (xk and yk) as well as the second-derivative values at the
nodes. We call the latter ck’s; our relation giving the continuity of the second derivative,
Eq. (6.63), is then simply:

s′′k−1,k(xk) = s′′k,k+1(xk) = ck, k = 1, 2, . . . , n − 2 (6.65)

We don’t actually know these yet. For a natural spline, we do know that:

c0 = cn−1 = 0 (6.66)

as per Eq. (6.64). You may wish to think of the ck’s as y′′k ’s, though we denote them ck’s
because we will end up solving a linear system of equations for them, as in earlier sections.
This linear system, in its turn, will give us the ck’s in terms of the input data (xk and
yk) directly. To belabor the obvious, in other sections of the present chapter the ck’s are
coefficients of a polynomial, but here they are second-derivative values.

Remember that we are dealing with a sk−1,k(x) in Eq. (6.51) which is cubic, so s′′k−1,k(x)
is a straight line; thus, if we know the values of the second derivative at the left and right
endpoint of a given subinterval, ck−1 and ck at xk−1 and xk, we can apply our standard
Lagrange-interpolation formula from Eq. (6.22). This is:

s′′k−1,k(x) = ck−1
x − xk

xk−1 − xk
+ ck

x − xk−1

xk − xk−1
(6.67)

As promised, we are expressing the second derivative of the spline in terms of the ck’s,
namely the values of the second derivative at the nodes. The notation here can get a bit
confusing, so make sure you remember the essential point: we are applying Lagrange in-
terpolation for a straight line in xk−1 ≤ x ≤ xk; just like in Eq. (6.51), we will eventually
take k = 1, 2 . . . , n − 1.

If we now integrate Eq. (6.67) we can get an expression for the first derivative of the
spline (at any x):

s′k−1,k(x) = ck−1
x2/2 − xxk

xk−1 − xk
+ ck

x2/2 − xxk−1

xk − xk−1
+ A (6.68)
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where we called the integration constant A. If we integrate another time, we can get the
spline itself:

sk−1,k(x) = ck−1
x3/6 − x2xk/2

xk−1 − xk
+ ck

x3/6 − x2xk−1/2
xk − xk−1

+ Ax + B (6.69)

where there is now another integration constant, B. If you use Eq. (6.69) twice to impose
the conditions that the spline should interpolate the data at its left and right endpoints,
Eq. (6.60) and Eq. (6.61), you can eliminate A and B (as you’ll verify in a problem). Thus,
your spline is now written only in terms of the input data (xk and yk) and the second-
derivative values at the nodes (ck). In equation form, this is:

sk−1,k(x) = yk−1
xk − x

xk − xk−1
+ yk

x − xk−1

xk − xk−1

− ck−1

6

[
(xk − x)(xk − xk−1) − (xk − x)3

xk − xk−1

]

− ck

6

[
(x − xk−1)(xk − xk−1) − (x − xk−1)3

xk − xk−1

]
(6.70)

where k = 1, 2 . . . , n − 1. This equation identically obeys the relation giving the continuity
of the second derivative, Eq. (6.63) or Eq. (6.65).14 It does not in general obey the relation
giving the continuity of the first derivative, Eq. (6.62), so let’s impose it explicitly and see
what happens. First, differentiate Eq. (6.70) to get:

s′k−1,k(x) =
yk − yk−1

xk − xk−1
+

ck−1

6(xk − xk−1)

(
−3x2 + 6xxk − 2x2

k − 2xk xk−1 + x2
k−1

)
+

ck

6(xk − xk−1)

(
3x2 − 6xxk−1 + 2x2

k−1 + 2xk xk−1 − x2
k

)
(6.71)

This function can be immediately evaluated at xk to give:

s′k−1,k(xk) =
yk − yk−1

xk − xk−1
+

xk − xk−1

6
(2ck + ck−1) (6.72)

We can also take k → k + 1 in Eq. (6.71) and then evaluate at xk to get:

s′k,k+1(xk) =
yk+1 − yk

xk+1 − xk
− xk+1 − xk

6
(ck+1 + 2ck) (6.73)

Equating the right-hand sides in the last two relations, as per Eq. (6.62), allows us to find
an equation for the unknown parameters ck:

(xk − xk−1)ck−1 + 2(xk+1 − xk−1)ck + (xk+1 − xk)ck+1 = 6

(
yk+1 − yk

xk+1 − xk
− yk − yk−1

xk − xk−1

)
(6.74)

14 If you’re not seeing this, go back to Eq. (6.67) and check it there.
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where k = 1, 2 . . . , n − 2. Remember, as per Eq. (6.66), c0 = cn−1 = 0 holds. When going
over our strategy, we promised that we would produce a linear system that can be solved
to find the ck’s in terms of the input data (xk and yk) directly; we have now set this up.

You might feel more convinced after seeing this in matrix form. Recall, the second
derivative values go from c0, c1, all the way up to cn−2 and cn−1, but we are only solving
Eq. (6.74) for c1 through cn−2. The situation is similar to what we saw when discretizing
the action around Fig. 5.16. We have n data points but only n−2 variables to solve for. The
system of equations can be expressed as:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(x2 − x0) x2 − x1 0 . . . 0

x2 − x1 2(x3 − x1) x3 − x2 . . . 0
...

...
. . .

...
...

0 . . . xn−3 − xn−4 2(xn−2 − xn−4) xn−2 − xn−3

0 . . . 0 xn−2 − xn−3 2(xn−1 − xn−3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

...

cn−3

cn−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

...

bn−3

bn−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.75)

where the bk’s are defined as per the right-hand side of Eq. (6.74): this makes the equation
shorter, but also helps us think about how to implement things programatically below.

Our coefficient matrix here is symmetric tridiagonal (and also diagonally dominant);
this means one could use very efficient solvers, but we’ll go with our standard approach,
Gaussian elimination with pivoting, despite it being overkill. Once we’ve solved the system
in Eq. (6.75), we will have determined all the ck’s in terms of the input data. Then, we
can use them in Eq. (6.70) to find the value of the interpolant at any x. There’s actually
a slightly subtle point involved here: Eq. (6.70) holds for a specific subinterval, namely
xk−1 ≤ x ≤ xk. When trying to find the value of the interpolant at x, we don’t know ahead
of time which subinterval x belongs to, so we’ll also have to first determine that.

6.3.3 Implementation

Code 6.2 starts by importing the underlying f (x), Runge’s function from Eq. (6.18), as well
as the function that produced a table of input data, (x j, y j), both from barycentric.py.
We also import our Gaussian elimination function, which we’ll need to determine the ck’s.

As before, the actual interpolation procedure will be carried out in two separate steps.
First, we define a function that computes the values of the second derivative at the nodes,
namely the ck’s, as per Eq. (6.74) or Eq. (6.75). This knows nothing about the specific x
where we wish to interpolate: it only cares about the input data, (x j, y j). Since we have n
data pairs, the cofficient matrix will have dimensions (n−2)×(n−2); similarly, the solution
vector will be (n − 2) × 1, since we already know that c0 = cn−1 = 0. We need to fill up
a tridiagonal matrix, similarly to what we saw in section 5.6 when extremizing the action.
We treat the main and other diagonals differently via slicing the arrays we pass as the
first argument to numpy.fill diagonal(), in addition to employing slicing to determine
what makes up each diagonal. Setting up the right-hand side of the linear system is largely
straightforward; once again numpy’s indexing makes things very convient: dataxs[1:-1]
is easier to read than dataxs[1:n-1]. Slicing is used yet again to ensure that all the c j’s
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splines.py Code 6.2

from barycentric import f, generatedata

from gauelim pivot import gauelim pivot

import numpy as np

def computecs(dataxs,datays):

n = dataxs.size

A = np.zeros((n-2,n-2))

np.fill diagonal(A, 2*(dataxs[2:]-dataxs[:-2]))

np.fill diagonal(A[1:,:], dataxs[2:-1]-dataxs[1:-2])

np.fill diagonal(A[:,1:], dataxs[2:-1]-dataxs[1:-2])

b1 = (datays[2:]-datays[1:-1])/(dataxs[2:]-dataxs[1:-1])

b2 = (datays[1:-1]-datays[:-2])/(dataxs[1:-1]-dataxs[:-2])

bs = 6*(b1 - b2)

cs = np.zeros(n)

cs[1:-1] = gauelim pivot(A, bs)

return cs

def splineinterp(dataxs,datays,cs,x):

k = np.argmax(dataxs>x)

xk = dataxs[k]; xk1 = dataxs[k-1]

yk = datays[k]; yk1 = datays[k-1]

ck = cs[k]; ck1 = cs[k-1]

val = yk1*(xk-x)/(xk-xk1) + yk*(x-xk1)/(xk-xk1)

val -= ck1*((xk-x)*(xk-xk1) - (xk-x)**3/(xk-xk1))/6

val -= ck*((x-xk1)*(xk-xk1) - (x-xk1)**3/(xk-xk1))/6

return val

if name == ‘ main ’:

dataxs, datays = generatedata(15, f, "equi")

cs = computecs(dataxs, datays)

x = 0.95; pofx = splineinterp(dataxs, datays, cs, x)

print(x, pofx, f(x))

are stored in a single array: the solution of the linear system is an (n − 2) × 1 vector, so it’s
padded with c0 = cn−1 = 0 to produce an n × 1 vector.

With the table (x j, y j) and the c j values in place, we turn to the second stage of the
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�Fig. 6.7 Cubic-spline interpolation for equidistant nodes (left), vs other approaches (right)

interpolation process, namely the use of Eq. (6.70) in order to produce p(x) at a given x. The
main difficulty is determining which panel x falls in. We do so by using numpy.argmax(),
which we also encountered in our implementation of Gaussian elimination with pivoting;
as you may recall from our introduction to numpy, numpy.argmax() allows us to return the
index of the maximum value. You should experiment to make sure you understand what’s
going on here: dataxs>x returns an array of boolean values (True or False). Since our
x j’s are ordered, dataxs>x will give False for the x j’s that are smaller than x and True
for the x j’s that are larger than x. Then, numpy.argmax() realizes that True > False,
so it returns as k the index for the first x j that is larger than x. We are fortunate that if the
maximum value appears more than once, numpy.argmax() returns the first occurrence (all
the other x j’s to the right of xk are also larger than x). The rest of the function is near-trivial:
Eq. (6.70) is algebra-heavy, so we first define some local variables to make our subsequent
code match the mathematical expressions as closely as possible.

The main program produces the data, constructs the c j’s, and then evaluates the inter-
polating polynomial p(x). In order to highlight that cubic-spline interpolation can handle
equally spaced grids well, we produce equidistant grid points and also pass in x = 0.95,
a value for which Lagrange interpolation (at equidistant points) was doing quite poorly in
the right panel of Fig. 6.6. The output of running this code is:

0.95 0.0426343358892 0.042440318302387266

The match is very good, despite the fact that we only used 15 points. As before, we decide
to be more thorough, using this code at thousands of points to produce a quasi-continuous
curve. Once again, we’ll use a reasonably small number of nodes (n = 7 or n = 15), but
thousands of x’s.

The result is shown in the left panel of Fig. 6.7; as we did earlier, we are not showing the
data points (x j, y j) so you can focus on the curves. Note that we are only showing the case
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of equidistant points, where the splines are doing a better job (but see below for splines
with Chebyshev nodes). Overall, both n = 7 and n = 15 do a better job than Lagrange
interpolation did in Fig. 6.6. This bears repeating: cubic-spline interpolation does just fine
when you use an equally spaced grid, in contradistinction to Lagrange interpolation. As a
matter of fact, the n = 15 results are virtually indistinguishable from the underlying Runge
function. While there were no singularities to be dealt with in this example, in practice it
is very common to employ cubic-spline interpolation with an equidistant grid starting near
the singularity, given little other knowledge about the behavior of the underlying function.

Our finding in the left panel of Fig. 6.7 may be a bit surprising given our earlier ad-
miration for the barycentric formula at Chebyshev nodes. We decide to investigate things
further, still for Runge’s function using cubic-spline interpolation, only this time we will
keep increasing n and also explore both equidistant and Chebyshev nodes. While we’re at
it, we will also repeat this exercise for Lagrange interpolation with Chebyshev nodes (we
already know that equidistant nodes are bad for Lagrange interpolation, so we don’t use
them). Since we wish to plot the result for several n’s, we must somehow quantify how
well a given interpolant p(x) matches f (x); inspired by the infinity norm, see Eq. (4.37),
we will calculate the maximum magnitude of the difference p(x) − f (x) across all the
x’s we are interpolating at. The result for such a calculation with all three methods is
shown in the right panel of Fig. 6.7. First, observe that spline interpolation with equidis-
tant nodes consistently outperforms spline interpolation with Chebyshev nodes (by a little).
Second, comparing spline interpolation with equidistant nodes to Lagrange interpolation
with Chebyshev nodes we see that for small n the splines do a better job, as we also saw
in the left panel. However, as n keeps increasing, the splines “level off”, i.e., do as well as
they’re going to at a maximum error of ≈10−6. In contradistinction to this, the Lagrange-
interpolation results keep getting better, reaching close to machine precision.

The results of the right panel of Fig. 6.7 are significant and bear emphasizing: a single
polynomial of degree a couple of hundred can describe Runge’s function to within machine
precision, if you’re picking the nodes at Chebyshev points. This is a linear trend on a
semilog plot: as you add 10 more points, you improve by an order of magnitude! Perhaps
you can now appreciate the comments we made after deriving our general error formula
for polynomial interpolation, Eq. (6.38): for analytic functions Lagrange interpolation at
Chebyshev nodes converges geometrically, so it’s likely the tool you are looking for.

6.4 Trigonometric Interpolation

We now turn to a related topic: what do you do if the data points you are faced with are
periodic? In this case, obviously, your interpolatory function should also be periodic, so
using a polynomial (as in previous sections) is not on the face of it appropriate.15 In prac-
tice, one employs an expansion in sines and cosines. The notation, as well as the concepts,

15 Though, even here, the barycentric formula with Chebyshev nodes does a great job, as you’ll see in a prob-
lem. If you squint, you can see that polynomial interpolation at Chebyshev points is actually equivalent to
trigonometric interpolation; one picks the x j’s trigonometrically and the other does the same for the φk’s.
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involved in this context can get a bit confusing, so let’s try to take things from the start.
We will use a number of tools that have the name of Fourier attached to them but, since
they serve different purposes, it’s good to begin at a very basic level. This way (it is hoped)
you will start getting comfortable with our symbols and their use, while things are still
reasonably simple.

6.4.1 Fourier Series

Assume we are dealing with a function f (x) that is periodic; for simplicity, let us focus on
the interval [0, 2π].16 If f (x) is reasonably continuous, then a standard result is that it can
be decomposed in the following Fourier series:

f (x) =
1
2

a0 +

∞∑
k=1

(ak cos kx + bk sin kx) (6.76)

Note that the sum here extends from 1 to∞. We call the k’s “wave numbers”, or sometimes
even “frequencies”, a left-over from the use of Fourier analysis that relates time, t, to
frequency, ω or f . Note also that the zero-frequency term a0 has been singled out and
treated differently (with a 2 in the denominator), for reasons that will soon become clear.17

Crucially, for well-behaved functions f (x), this decomposition is exact, in the sense that
the series on the right-hand side converges to f (x); thus, a general periodic f (x) is re-
written as a sum of sines and cosines. We can imagine a careful student, who solved the
relevant problem in chapter 2, protesting at this point: what about the Gibbs phenomenon?
As you may recall, this is a “ringing” effect which appears when you try to reconstruct a
discontinuous function using a Fourier series; even as you take the number of terms in the
series to infinity, this mismatch between the left-hand side and the right-hand side does not
go away. In what follows, we will assume that our functions are sufficiently smooth so that
such problems do not arise.

We can exploit the orthogonality of sines and cosines to extract the Fourier coefficients in
Eq. (6.76), namely the ak’s and bk’s. As you will show in a problem, multiplying Eq. (6.76)
with cos jx (and, separately, with sin jx) and integrating x from 0 to 2π we get:

ak =
1
π

∫ 2π

0
dx f (x) cos kx, k = 0, 1, . . . , bk =

1
π

∫ 2π

0
dx f (x) sin kx, k = 1, 2, . . .

(6.77)

In both of these equations we renamed j → k after we were done. You can now see why
we included a 2 in the denominator for the case of a0 in Eq. (6.76): it leads to the same
expression, Eq. (6.77), for both k = 0 and k > 0.

In what follows, we will benefit from employing the Fourier series in a different form.

16 You can trivially scale this to [0, T ] later on, by writing x = 2πt/T .
17 We could have also included a b0 term, but it wouldn’t have made a difference.
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First, recall Euler’s formula (in its incarnation as de Moivre’s formula):

eikx = cos kx + i sin kx (6.78)

where i =
√
−1 is the imaginary unit. Making (repeated) use of this formula, the Fourier

series can be re-written as:

f (x) =
∞∑

k=−∞
ckeikx (6.79)

as you will show in a problem. It’s important to notice that the k here goes from −∞ to
+∞. In another problem you will also show how to solve for the coefficients ck:

ck =
1

2π

∫ 2π

0
dx f (x)e−ikx, integer k (6.80)

where this time we employed the orthogonality of the plane waves. Incidentally, this is one
of the few points in the book where we are choosing to employ complex numbers.

Before we conclude this section, let us observe that there is an asymmetry at play here:
we employ a sum to decompose our function f (x), see Eq. (6.76) or Eq. (6.79), but we use
integrals to get the coefficients ak, bk, or ck in terms of the function f (x), see Eq. (6.77), or
Eq. (6.80).

6.4.2 Finite Series: Trigonometric Interpolation

In the present section, we take the more practical route of assuming a set of n data pairs are
known, and trying to reconstruct those using ideas borrowed from Fourier analysis. This
approach is known as trigonometric interpolation for good reason. Since we’re dealing
with a finite number of data points, we will employ a series with a finite number of terms
and make sure that no integrals appear at any point in our calculation.

Definition and Properties

We start from the same assumption as in earlier sections on interpolation: we are given
n data points (also known as support points) where we know both the x and the y value:
(x j, y j) for j = 0, 1, . . . , n − 1 using our standard Python-inspired 0-indexing.18 As was
also the case earlier in the chapter, we don’t know if these points truly come from a given
analytic function f (x) (in which case f (x j) = y j), or were experimentally measured, and
so on. All we know is that we need to produce an interpolating function, which must go
through the points we are given, in addition to satisfying criteria relating to smoothness
etc. Essentially, the only difference from earlier on is that our problem now involves x j’s
which lie in the interval [0, 2π] and y j’s which are periodic; thus, whatever interpolatory
function we come up with had better be periodic as well.

18 We will be interested only in the case where the y j are real numbers.
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�Fig. 6.8 Grid for the x j’s, with solid dots showing our actual points and open dots implied ones

Since we know only the value of y j at n distinct values of x j, it is unreasonable to expect
that we will be able to determine infinitely many ak and bk coefficients from the integrals
of Eq. (6.77). Instead, what we do is to truncate the series in Eq. (6.76); since we have n
data points, the corresponding interpolating polynomial will be:19

p(x) =
1
2

a0 +

m∑
k=1

(ak cos kx + bk sin kx) (6.81)

where we’ve implicitly assumed that we are dealing with the case of n-odd. To see why this
is so, count the total number of undetermined parameters; these are 1+m+m = 2m+1 which
means that we’ll be able to determine them by matching at our n data points, p(x j) = y j, if
n = 2m + 1. Observe that we haven’t assumed that the x j are equally spaced so far.

For reasons that will later become clear, we prefer to focus on the case of n-even, so we
cannot use Eq. (6.81). Instead, our main formula for trigonometric interpolation will be:

p(x) =
1
2

a0 +

m−1∑
k=1

(ak cos kx + bk sin kx) +
1
2

am cos mx (6.82)

This time the total number of parameters is 1 + 2(m − 1) + 1 = 2m; thus, we will be able
to determine all of them by matching via p(x j) = y j, if n = 2m. We see that the first and
last terms are treated separately. Since n (or m) is finite, this p(x) will be an approximation
to an (underlying) “true function” f (x). A complementary viewpoint is that f (x) is not
part of our problem here: we are simply faced with a table of input data points, (x j, y j)
for j = 0, 1, . . . , n − 1, and we are doing our best to produce a function, p(x), which goes
through those points and also is reasonably behaved everywhere else. Crucially, we will be
interested in the case where both x j and y j are real; then, our p(x) will also be real-valued.

Observe that applying Eq. (6.82) n times leads to an n×n linear system of equations, with
n = 2m unknowns. If there were no special tricks we could apply, solving this system would
require O(n3) operations, just as we observed in our general comments in section 6.1.2.

While nothing so far assumes anything specific about the placement of the x j values, it
is very convenient to study the special case of equidistant values. Since we are dealing with
the interval [0, 2π] and n points in total, this naturally leads to a grid:

19 It’s not yet clear why this is called a polynomial, but bear with us.
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x j =
2π j
n
, j = 0, 1, . . . , n − 1 (6.83)

As always, we are placing n points. While the value 0 is included in our x j’s (it’s x0), the
value 2π isn’t; this is because we know our signal is periodic, so if we had included an x j

at 2π then its corresponding y j value would have been identical to y0. Instead of storing
needless information, we simply stop our points just before we get to 2π. This is illustrated
in Fig. 6.8, where we are showing both the j index and the x j value.

If we want to solve for the ak and bk parameters, the avenue that led to, say, Eq. (6.77)
is now closed to us: we can’t integrate Eq. (6.82) from 0 to 2π because we don’t actually
know p(x); that is precisely what we are trying to compute. All we have at our disposal are
the p(x j) = y j values, available only at the grid points. With that in mind, we will, instead,
employ the pleasant fact that sines and cosines are orthogonal to each other even in the
discrete case for our equally spaced grid! In other words:

n−1∑
j=0

cos kx j cos lx j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, k � l

m, 0 < k = l < m

2m, k = l = 0 or k = l = m

n−1∑
j=0

cos kx j sin lx j = 0

n−1∑
j=0

sin kx j sin lx j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, k � l

m, 0 < k = l < m

0, k = l = 0 or k = l = m

(6.84)

You are guided toward these remarkable properties in a problem. Armed with Eq. (6.84),
we can immediately solve for our ak and bk parameters:

ak =
1
m

n−1∑
j=0

y j cos kx j, k = 0, 1, . . . ,m

bk =
1
m

n−1∑
j=0

y j sin kx j, k = 1, 2, . . . ,m − 1

(6.85)

Both of these are given in terms of y j, the known input data. Pay close attention to the values
k can take on in each case; these are fully consistent with what we need in Eq. (6.82).
Speaking of which, we are now all set: we get our parameters from Eq. (6.85) and our
interpolating polynomial p(x) at any value x from Eq. (6.82); obviously, if we did things
correctly, p(x) should match the input data at the grid points, i.e., p(x j) = y j.

Note that, having employed the discrete orthogonality, our problem of Eq. (6.85) re-
quires only O(n2) operations to implement: we need O(n) operations for a given k and are
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dealing with n values of k in total. This is already a major improvement (n2 vs n3); even
so, we will soon find out that we can do even better than that.

Implementation

We remember that we dealt with a periodic function all the way back in chapter 3; this
was f (x) = esin(2x), though the periodicity didn’t play a role at the time. As in the case
of polynomial interpolation earlier in this chapter, we first produce our data starting from
our chosen function, followed by interpolating and comparing. Code 6.3 starts by defining
a function to represent f (x) = esin(2x): observe that this employs numpy functionality; this
shouldn’t matter if we’re passing in a single number but, as we’ll soon discover, we can also
use this function with a whole numpy array as an argument and it works equally seamlessly.
We then define a function that picks the grid of x j values as per Eq. (6.83) and produces
the y j values as y j = f (x j); after this, f (x) is no longer needed.

With the table of data (x j, y j) in place, we proceed to tackle the problem of trigono-
metric interpolation in two steps. We first create a function that evaluates our ak and bk

parameters, as per Eq. (6.85). It is important to do this separately, since we don’t want to
re-evaluate these parameters each time we pick a different x at which to interpolate. The
function computeparams() first sets up the dimensions of the two arrays, closely follow-
ing Eq. (6.85); the values k can take for ak and for bk are different, so that is also reflected in
the loops that evaluate our parameters. Note that, regardless of which of the two equations
in Eq. (6.85) we are dealing with, the right-hand side always involves n terms in the sum;
as a result, we have implemented both right-hand sides as @ products of one-dimensional
arrays, thereby obviating the need for a second loop and a j index. When storing the results
in arrays, we have to be a bit careful in the case of bparams, since k = 1, 2, . . . ,m − 1 but
numpy array indices start at 0; thus, all elements are shifted down by one (but not on the
right-hand side, where Eq. (6.85) involves the actual k value).

The second step in trigonometric interpolation, now that the ak and bk parameters are in
place, is to use Eq. (6.82) to compute the value of the interpolating polynomial p(x) at a
given x. In the function triginterp() we first take care of the a0 am, which need to be
handled separately. We then step through the terms in the sum, handling k = 1, 2, . . . ,m−1
one at a time. Note that we could have employed @multiplications here instead of a loop, as
long as we were careful in treating the bparams appropriately. This would have involved
a new array ks = np.arange(1,m) and slicing.

The main program simply calls three of the functions we defined. As before, we use
dataxs for the input data x j’s and x for the x where we wish to interpolate; the value
of the latter is picked at random. In Fig. 6.9 we are showing the f (x) we started from.
More importantly, we show the data (x j, y j) together with the result of our interpolating
polynomial at many values of x. The left panel is for n = 6: the general trend is roughly
captured, despite using so few points.20 The n = 8 case (right panel) is even better. As you
will find out when you experiment for yourself, from 14 points and up you cannot tell the
two curves apart with the naked eye.

20 You should try using n = 4 points. Did you see the result coming?
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triginterp.py Code 6.3

from math import pi

import numpy as np

def f(x):

return np.exp(np.sin(2*x))

def generatedata(n,f):

dataxs = 2*pi*np.arange(n)/n

datays = f(dataxs)

return dataxs, datays

def computeparams(dataxs,datays):

n = dataxs.size

m = n//2

aparams = np.zeros(m+1)

bparams = np.zeros(m-1)

for k in range(m+1):

aparams[k] = datays@np.cos(k*dataxs)/m

for k in range(1,m):

bparams[k-1] = datays@np.sin(k*dataxs)/m

return aparams, bparams

def triginterp(aparams,bparams,x):

n = aparams.size + bparams.size

m = n//2

val = 0.5*(aparams[0] + aparams[-1]*np.cos(m*x))

for k in range(1,m):

val += aparams[k]*np.cos(k*x)

val += bparams[k-1]*np.sin(k*x)

return val

if name == ‘ main ’:

dataxs, datays = generatedata(6, f)

aparams, bparams = computeparams(dataxs, datays)

x = 0.3; pofx = triginterp(aparams, bparams, x)

print(x,pofx)
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�Fig. 6.9 Trigonometric interpolation for the cases of n = 6 (left) and n = 8 (right)

Keep in mind that our equations and code above only work for the case of n = 2m, i.e.,
even-n. In a problem, you are asked to extend the formalism to the case of odd-n but our
main line of development will assume that n is even; as a matter of fact, below we will be
yet more specific, requiring n to be a power of 2.

6.4.3 Discrete Fourier Transform

We could decide to stop here: combined with our earlier sections on Lagrange interpola-
tion and cubic splines, we already have a toolbox that is sufficiently varied to handle a large
number of approximation problems. However, the connections of trigonometric interpola-
tion to the wider theme of Fourier transforms are too good to ignore; this will also allow us
to introduce one of the most successful algorithms ever, the fast Fourier transform (FFT).
Thus, we will now reformulate our earlier work with sines and cosines to use complex
exponentials. However, we will not be doing this just for the sake of abstractly introducing
the FFT, but will also see how to use this new algorithm to carry out interpolation for pe-
riodic problems. It’s important to keep in mind that the literature on this subject is riddled
with errors; we therefore choose to explicitly derive our interpolation formula step-by-step.

First Definition

When faced with the infinite Fourier series, we saw that this could be given in either a
real form (sines and cosines of Eq. (6.76)) or in a complex form (complex exponentials of
Eq. (6.79)). In the former case our sum was over positive k’s and in the latter over both
positive and negative k’s. When we moved to the real finite series, Eq. (6.82), we summed
over positive k’s and were careful in handling the extra cosine that arose for even-n. We
will now make an analogous transition from sines and cosines to complex exponentials for
the finite series, again for even-n (i.e., we are still taking n = 2m):
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p(x) =
1
2

a0 +

m−1∑
k=1

(ak cos kx + bk sin kx) +
1
2

am cos mx

=
1
2

a0 +

m−1∑
k=1

(
ak

eikx + e−ikx

2
+ bk

eikx − e−ikx

2i

)
+

1
2

am cos mx

=
1
2

a0 +

m−1∑
k=1

1
2

(ak − ibk)eikx +

m−1∑
k=1

1
2

(ak + ibk)e−ikx +
1
2

am cos mx

=
1
2

a0 +

m−1∑
k=1

1
2

(ak − ibk)eikx +

−1∑
k=−m+1

1
2

(a−k + ib−k)eikx +
1
2

am cos mx

= c0 +

m−1∑
k=1

ckeikx +

−1∑
k=−m+1

ckeikx + c−m cos mx (6.86)

In the first line we simply wrote down our interpolating polynomial from Eq. (6.82). In the
second line we used de Moivre’s formula (a couple of times) from Eq. (6.78). In the third
line we grouped terms into two sums. In the fourth line we took k → −k in the second sum,
also appropriately adjusting the values k can take on. In the fifth line we introduced a new
set of ck parameters, which are related to the ak and bk parameters in the following way:

c0 =
1
2

a0, ck =
1
2

(ak − ibk), k = 1, 2, . . . ,m − 1

c−m =
1
2

am, ck =
1
2

(a−k + ib−k), k = −m + 1,−m + 2, . . . ,−2,−1
(6.87)

The definition of c−m was a bit arbitrary, since we could have just as well called this cm

(more on this below). We notice that the first three terms on the last line of Eq. (6.86) can
be grouped into a single sum:

p(x) =
m−1∑

k=−m+1

ckeikx + c−m cos mx (6.88)

Crucially, this goes over both positive and negative k values, similarly to the infinite-series
case in Eq. (6.79).21 In contradistinction to Eq. (6.79), here we do not have only complex
exponentials: the c−m is treated separately and gets a cosine.22

Recall that our problem started out with n = 2m input data values y j and Eq. (6.82)
expressed p(x) in terms of the ak and bk parameters: there were n = 2m of these. In the
present case of Eq. (6.88), counting up the ck parameters, we find there are 2(m−1)+1+1 =
2m = n parameters, so everything is consistent. Note that we could have employed de
Moivre’s formula for the am term too in our derivation of Eq. (6.86); this would have led

21 Incidentally, if you set z = eix, then the sum is over zk: this is polynomial interpolation on the unit circle. Of
course, k can also be negative, so this would be a Laurent polynomial.

22 This would not have been the case if we were studying the odd-n problem.
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to our sum over k going from −m to m, all for complex exponentials. Even so, the special
treatment of this first/last term would not have been avoided: we would have been faced
with a cm and a c−m that would have been equal. While it’s not so pretty to single out c−m

as in Eq. (6.88), it would have been even stranger to use 2m+ 1 parameters ck but have one
of them be non-independent.23

Up to this point, our main result is the new version of the interpolating polynomial,
Eq. (6.88). This was a polynomial, p(x), that can be evaluated at any value of x we may
choose. We now change gears, to address the more specific problem of using our grid of
x j values from Eq. (6.83). In other words, we will (once again) assume we are faced with
a table of input data points, (x j, y j) for j = 0, 1, . . . , n − 1; we wish to compute the ck’s
in terms of these known values. While we could produce an answer by using Eq. (6.85)
to find the ak and bk parameters and then use those, in turn, via Eq. (6.87), to find the ck

parameters, we won’t do that. Instead, we will try to work with Eq. (6.88) directly and
attempt to find ck in terms of x j and y j.

We start by evaluating the interpolating polynomial at the grid points:

p(x j) = y j =

m−1∑
k=−m+1

ckeikx j + c−m cos mxj =

m−1∑
k=−m+1

ckeikx j + c−me−imx j =

m−1∑
k=−m

ckeikx j

(6.89)

The first equality simply assumed that the interpolation worked, i.e., we get the desired
y j values at x j. The second equality just plugged in x j to Eq. (6.88). The third equality
made use of the evenness of cosines, cos(−mxj) = cos mxj, as well as the fact that sin mxj

vanishes at our grid points:

sin(−mxj) = − sin mxj = − sin

(
m

2π j
2m

)
= − sin π j = 0 (6.90)

As a result, we are free to pretend that we were faced with a complex exponential, e−imx j ,
instead of only a cosine, cos mxj. This allows us to modify our sum so that it runs from
−m to m − 1; this time, we are justified in doing so, because we are limited to points on
the grid. Our main result here is known as the inverse discrete Fourier transform (inverse
DFT), for reasons that will soon become clear:

y j =

m−1∑
k=−m

ckeikx j , j = 0, 1, . . . , n − 1 (6.91)

It’s important to realize that this equation relates y j to ck. In other words, it refers only to
grid points as per Eq. (6.83); n numbers are transformed into n numbers. The problem, of
course, is that we do not (yet) know the values of ck; this is what we are trying to solve for.

We now wish to have a formula that goes in the opposite direction: starting from the
values of x j and y j, compute ck. We will accomplish this by combining Eq. (6.91) with

23 There is also the option of having the sum in Eq. (6.88) go from −m to m−1 by fiat; this leads to an interpolating
polynomial with an imaginary part and is therefore different from what we were doing in Eq. (6.82).
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a(nother) remarkable property, namely the fact that complex exponentials are orthogonal
to each other even in the discrete case:

n−1∑
j=0

eikx j e−ilx j =

⎧⎪⎪⎨⎪⎪⎩n, (k − l)/n is integer

0, otherwise
(6.92)

A problem guides you toward proving this. Knowing that sines and cosines are orthogonal
to each other even for the discrete case, Eq. (6.84), this perhaps does not come as a total
surprise. As advertised, we now multiply Eq. (6.91) with e−ilx j and sum over all the x j’s:

n−1∑
j=0

e−ilx j y j =

m−1∑
k=−m

ck

n−1∑
j=0

eikx j e−ilx j =

m−1∑
k=−m

cknδk,l = ncl (6.93)

In the penultimate step we used the orthogonality property from Eq. (6.92), while acknowl-
edging that our k and l values run only from −m to m−1; thus, the only contribution comes
from the case k = l. We now rewrite our result in Eq. (6.93) by renaming l→ k:

ck =
1
n

n−1∑
j=0

y je
−ikx j , k = −m,−m + 1, . . . ,m − 2,m − 1 (6.94)

This, our desired result, is known as the discrete Fourier transform (DFT). It produces all
2m parameters ck, starting from our input points y j. These were precisely the ck param-
eters we needed in order to evaluate the interpolating polynomial from Eq. (6.88). Once
again, there is nothing continuous going on in Eq. (6.94): n numbers are transformed into
n numbers. Our result also explains why Eq. (6.91) is known as the inverse DFT, since that
equation recovers the data points y j once you know the parameters ck.

Let’s quickly summarize a few points before things get out of hand; this paragraph will
be somewhat dense, but may help you in the future. Keep in mind that in the case of an infi-
nite Fourier series we are faced with a sum (expanding the function in terms of the Fourier
coefficients) and an integral (computing the Fourier coefficients in terms of the function).
On the other hand, in the case of trigonometric interpolation or the discrete Fourier trans-
form we have a sum (direct) and a sum (inverse); interpolation deals with any x value
whereas the DFT deals only with grid points x j. Note that both the infinite Fourier series
and the discrete Fourier transform apply to the case of a periodic function/signal. If you are
faced with a nonperiodic function, you can simply focus on a given interval (assuming the
function does repeat outside) and try to decribe only that region; your predictions will only
be applicable to the interval you focused on (since, in reality, the function doesn’t repeat
outside the region of interest).24 Incidentally, nonperiodic functions give rise to the (con-
tinuous) Fourier transform, which involves an integral (direct) and an integral (inverse).
In this book we have little to say on continuous Fourier transforms, since we are always
discretizing. While we arrived at the discrete Fourier transform starting from trigonomet-
ric interpolation, you will not be surprised to hear that you can also view the DFT as a
discretization of the continuous Fourier transform.
24 A more detailed study would also address topics like aliasing, windowing, and leakage.
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Shifted Version

We will now slightly tweak our results. This is done both in anticipation of introducing the
fast Fourier transform in the following subsection, and also in order to make contact with
notation that is standard on this subject. We will make three related changes.

First, we observe that our expressions in Eq. (6.94) and in Eq. (6.91) involve x j, which
are our grid points from Eq. (6.83). Let’s use that equation to re-express the DFT:

ck =
1
n

n−1∑
j=0

y je
−2πik j/n, k = −m,−m + 1, . . . ,m − 2,m − 1 (6.95)

This ik j in the exponent may be confusing, so keep in mind that i is the imaginary unit, k is
our wave number (or “frequency”) index, and j is our spatial index. Second, we note that
our expressions in Eq. (6.94) and in Eq. (6.91) exhibit an asymmetry: j is non-negative,
going from 0 to n−1, whereas k can be either negative or positive, going from −m to m−1.
As it turns out, this asymmetry can be lifted; to do so, observe that Eq. (6.95) can help us
show that the DFT is periodic in k, with period n:

ck+n =
1
n

n−1∑
j=0

y je
−2πi(k+n) j/n =

1
n

n−1∑
j=0

y je
−2πik j/ne−2πi j = ck (6.96)

since e−2πi j = 1. Given that up to this point our k could also take on negative values, we can
use ck+n = ck to re-express ck for the negative frequencies k = −m,−m+ 1, . . . ,−1 in terms
of positive frequencies k = m,m + 1, . . . , n − 1.25 Third, it is customary to have the 1/n in
the definition of the inverse DFT, not in that of the DFT, cf. Eq. (6.91) and Eq. (6.94).

Putting these three modifications together, we arrive at a new definition of the DFT. In
order to keep our notation straight, we will use a new symbol for the new version of our
Fourier parameters, ỹk, where k now goes from 0 to n − 1:

ỹk =

n−1∑
j=0

y je
−2πik j/n, k = 0, 1 . . . , n − 1 (6.97)

As before, this is simply transforming n numbers into n numbers. Observe how there is no
x j left over here; the assumption that we have equally spaced points has already been used,
so our expressions from now on will only involve y j and ỹk. Crucially, both our j and our k
indices now run from 0 to n − 1.

If you’re having trouble seeing the correspondence between Eq. (6.94) and Eq. (6.97),
keep in mind that (a) we’ve replaced x j with j as per Eq. (6.83), (b) we’ve shifted the
negative frequencies so that they appear after the positive frequencies, and (c) there is no
1/n in the new definition of the DFT. The last two modifications can be summarized as
follows: (

ỹ0 ỹ1 . . . ỹm−1

)T
= n

(
c0 c1 . . . cm−1

)T

25 Observe that those slots were not previously taken: our positive frequencies were only going up to m − 1.
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(
ỹm ỹm+1 . . . ỹn−1

)T
= n

(
c−m c−m+1 . . . c−1

)T
(6.98)

In addition to the (arbitrary) choice to remove the 1/n, this also shows that the (zero and)
positive frequencies in ck are still in the same place when using ỹk, whereas the negative
frequencies in ck are now placed in the “second half” of the available frequency slots
of ỹk. Keep in mind that the c−m can be viewed as corresponding to either the largest-
magnitude negative frequency or the largest-magnitude positive frequency: c−m = cm, as
a consequence of ck+n = ck. Note that the 0th-frequency component, ỹ0, was also the 0th-
frequency component of ck; it’s sometimes called the DC component: you can see from
Eq. (6.97) that it is simply the sum of all the y j’s. Overall, we have now switched to what
is known as the “standard order” of the DFT; we will sometimes refer to it as the “shifted
version”, as in the current section’s heading.

We can also use our new Fourier parameters ỹk to rewrite our definition of the inverse
DFT from Eq. (6.91). This has now turned into:

y j =
1
n

n−1∑
k=0

ỹke2πik j/n, j = 0, 1 . . . , n − 1 (6.99)

To see that this is true, you could start from Eq. (6.97) and employ the complex discrete
orthogonality of Eq. (6.92). As in the case of the updated (direct) DFT, the x j’s are gone
and the k’s are now non-negative. Furthermore, there is now a 1/n term on the right-hand
side: to see where this came from,26 look at Eq. (6.91) and recall how we went from ck to
ỹk in Eq. (6.98).

A comment we will make for the fourth time in a row: Eq. (6.99) is simply transforming
n numbers into n numbers. We keep repeating this fact in order to highlight that the direct
and inverse DFT transforms are fundamentally discrete problems which refer to points on
a grid. We will take this into consideration in what follows.

Fast Fourier Transform

As you will show in a problem, the case of real input data, y j, is special, in that you
only need to evaluate m + 1 Fourier parameters; this is so because ỹn−k = ỹ∗k holds for
this case, so the remaining coefficients are complex conjugates of already-evaluated ones.
(Incidentally, the ỹk might be complex, even when the y j are all real; this is OK, because
the inverse DFT of Eq. (6.99) makes everything real again.) You could consider this to be a
way of reducing the computational runtime of a DFT implementation. Instead of following
this approach, however, we will now turn to a much more effective way of speeding the
DFT up, regardless of whether or not the input data, y j, are real. As is usually the case in
computing, algorithmic breakthroughs matter much more than “small efficiencies”.

Before we start accelerating things, let us observe that our latest definition of the DFT,

26 If you didn’t follow our admonition to employ the orthogonality explicitly.
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�Fig. 6.10 Complex plane unit circle and 16th roots of unity, e−2πik/n for k = 0, 1, . . . , 15 and n = 16

Eq. (6.97), can be expressed in the form:

ỹk =

n−1∑
j=0

(e−2πi/n)k jy j, k = 0, 1 . . . , n − 1 (6.100)

But this, in its turn, can be written in matrix form:

ỹ = Ey (6.101)

where E is the n×n matrix made up of (E)k j, which are powers of e−2πi/n. In short, we now
see that the problem of computing the DFT is essentially matrix-vector multiplication!
As we discovered in section 4.3.1,27 this is a problem for which the operation count is
O(n2). The main idea behind the fast Fourier transform (FFT) is that the matrix-vector
multiplication of Eq. (6.100) involves specific symmetries (despite not being sparse) and
therefore does not have to cost O(n2). In other words, we will now see how to exploit the
specific properties of the E matrix in order to make the DFT dramatically faster. For the
sake of simplicity, we assume that n is a power of 2.

Let us first turn to an elementary problem involving complex numbers. We are looking
for the roots of the equation zn = 1; the solutions are known as the n-th roots of unity.
Here’s one of them:

e−2πi/n = cos

(
2π
n

)
− i sin

(
2π
n

)
(6.102)

Obviously, (e−2πi/n)n = 1, meaning that e−2πi/n is, indeed, an n-th root of unity. It is not the
only one, however. It should be easy to see that (e−2πi/n)k = e−2πik/n, for k = 0, 1, . . . , n − 1,
are all n-th roots of unity, since (e−2πik/n)n = 1 for all k’s. For a given value of n, since k runs
from 0 to n − 1, there are n such distinct n-th roots of unity, e−2πik/n. They are illustrated in
Fig. 6.10 for the case of n = 16. The crucial take-away here is that, for the case n = 16,

27 Of course, here we are dealing with complex numbers, but that doesn’t change the overall scaling.
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there are 16 distinct roots only: even if you raise e−2πik/n to another power, say j as in
(e−2πik/n) j, you can only get back one of the 16 roots.28

Having grasped the meaning of the n-th roots of unity, we now return to our E matrix
from Eq. (6.101). We realize that out of the n2 matrix elements there are only n distinct
ones (since many of them repeat); this E matrix is complex symmetric, but not Hermitian.
To reiterate, the fast Fourier transform is essentially a clever way of exploiting the fact
that our matrix-vector multiplication involves (e−2πi/n)k j. It’s easier to see this in a specific
example, so let us write out Eq. (6.101) for the 4 × 4 case:

ỹ0 = y0(e−2πi/4)0 + y1(e−2πi/4)0 + y2(e−2πi/4)0 + y3(e−2πi/4)0

ỹ1 = y0(e−2πi/4)0 + y1(e−2πi/4)1 + y2(e−2πi/4)2 + y3(e−2πi/4)3

ỹ2 = y0(e−2πi/4)0 + y1(e−2πi/4)2 + y2(e−2πi/4)4 + y3(e−2πi/4)6

ỹ3 = y0(e−2πi/4)0 + y1(e−2πi/4)3 + y2(e−2πi/4)6 + y3(e−2πi/4)9

(6.103)

Were we to evaluate things at this stage, we would have to carry out 42 = 16 multiplica-
tions. We notice that our exponents here go up to nine, even though we know that there are
only four distinct roots of unity: (e−2πi/4)0, (e−2πi/4)1, (e−2πi/4)2, and (e−2πi/4)3. This means
we can use elementary manipulations to re-express the 16 matrix elements of E in terms
of only these four roots of unity. For example:

(e−2πi/4)6 = (e−2πi/4)4(e−2πi/4)2 = (e−2πi/4)2 (6.104)

Using this fact and regrouping, allows us to re-express our four equations in the form:

ỹ0 = [y0(e−2πi/4)0 + y2(e−2πi/4)0] + (e−2πi/4)0[y1(e−2πi/4)0 + y3(e−2πi/4)0]

ỹ1 = [y0(e−2πi/4)0 + y2(e−2πi/4)2] + (e−2πi/4)1[y1(e−2πi/4)0 + y3(e−2πi/4)2]

ỹ2 = [y0(e−2πi/4)0 + y2(e−2πi/4)0] + (e−2πi/4)2[y1(e−2πi/4)0 + y3(e−2πi/4)0]

ỹ3 = [y0(e−2πi/4)0 + y2(e−2πi/4)2] + (e−2πi/4)3[y1(e−2πi/4)0 + y3(e−2πi/4)2]

(6.105)

In addition to factoring out and simplifying some of the exponents, observe that we first
write the even y j elements (y0 and y2) and then the odd ones (y1 and y3).

Introducing new notation, which we hope is self-explanatory, this takes the form:

ỹ0 = ỹeven
0 + (e−2πi/4)0ỹodd

0

ỹ1 = ỹeven
1 + (e−2πi/4)1ỹodd

1

ỹ2 = ỹeven
0 + (e−2πi/4)2ỹodd

0

ỹ3 = ỹeven
1 + (e−2πi/4)3ỹodd

1

(6.106)

where we noticed that the y j’s and the powers of e−2πi/4 inside the square brackets appear
in only four distinct combinations, which we denoted by ỹeven

0 , ỹodd
0 , ỹeven

1 , and ỹodd
1 . To

compute these, we need to carry out only 2 × (4/2)2 = 8 multiplications. Make sure you
understand what these entities are; for example:

ỹeven
1 = y0(e−2πi/4)0 + y2(e−2πi/4)2 = y0(e−2πi/2)0 + y2(e−2πi/2)1 (6.107)

28 Once again, the similarity between Fig. 6.10 and Fig. 6.2 is hard to miss.
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The e−2πi/4 always appears raised either to the 0th or the 2nd power, so we can rewrite the
exponential to have 2 in the denominator instead of 4. (This also applies to the ỹodd’s.)

As per Eq. (6.106), once you have the two ỹeven’s and the two ỹodd’s, you do four more
multiplications in order to combine them together and produce the ỹk. Even in this small
problem, we have managed to reduce the total number of multiplications required.

We now take yet another step, rewriting Eq. (6.106) as follows:

ỹ0 = ỹeven
0 + (e−2πi/4)0ỹodd

0

ỹ1 = ỹeven
1 + (e−2πi/4)1ỹodd

1

ỹ2+0 = ỹeven
0 − (e−2πi/4)0ỹodd

0

ỹ2+1 = ỹeven
1 − (e−2πi/4)1ỹodd

1

(6.108)

The first two relations are unchanged; the last two were rewritten to highlight the fact that
all the relevant indices go from 0 to 1. On the right-hand sides of the last two equations
we wrote 2 = 2 + 0 and 3 = 2 + 1 in the exponents and then made use of the fact that
e−πi = −1. In short, we have rewritten our 4× 4 DFT problem from Eq. (6.103) in terms of
two smaller (2× 2) DFT problems, one for the even j indices and one for the odd j indices
(recall Eq. (6.107)), which are combined with the appropriate prefactors as per Eq. (6.108).

Having worked out the 4 × 4 example in gory detail, we hope that you will now be
able to understand without much effort the general case, which goes by the name of the
Danielson–Lanczos lemma. Let’s start from Eq. (6.97), splitting the sum over j into a sum
over the even components, j = 2l, and the odd components, j = 2l + 1:

ỹk =

n−1∑
j=0

y je
−2πik j/n =

m−1∑
l=0

y2le
−2πik(2l)/n +

m−1∑
l=0

y2l+1e−2πik(2l+1)/n

=

m−1∑
l=0

y2le
−2πikl/m + e−2πik/n

m−1∑
l=0

y2l+1e−2πikl/m = ỹeven
k + e−2πik/nỹodd

k (6.109)

Note that in the second equality our sums switched to using l and therefore the maximum
value became m − 1. In the exponents of the third equality we moved the 2 from the nu-
merators to the denominators, thereby getting m; in the second term, we also factored out
the odd term (which has an n in the denominator of the exponent). In the fourth equality
we identified our new DFTs of length m = n/2, the ones for the even and odd components.

As we saw above, this is already a gain; however, let’s take one more step, to make our
general result match what we did for the 4 × 4 case. As you may recall, we managed to
express the “second half” of our equations in terms of quantities that had already appeared
in the first half. Right now, in Eq. (6.109) the k goes from 0 to n − 1, so we seem to be
using more ỹeven’s and ỹodd’s than we actually need. To remedy the situation, introduce a
new wave number index q which runs from 0 to m − 1, i.e., it appears in the combination
k = m + q. We have:

ỹeven
m+q =

m−1∑
l=0

y2le
−2πiml/me−2πiql/m =

m−1∑
l=0

y2le
−2πiql/m = ỹeven

q (6.110)

since e−2πil = 1. Now both the sum over l and the index q only cover half the range from 0
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to n − 1 (i.e., go from 0 to m − 1). A fully analogous derivation can be carried out for the
odd case, leading to:

ỹodd
m+q = ỹodd

q (6.111)

There is only one other ingredient missing: the factored-out coefficients in Eq. (6.109) still
employ k which goes up to n − 1. As in Eq. (6.108), we can also halve those:

e−2πik/n = e−2πi(m+q)/n = e−2πi/2e−2πiq/n = −e−2πiq/n (6.112)

Putting everything together, we have accomplished what we set out to do:

ỹq = ỹeven
q + e−2πiq/nỹodd

q

ỹm+q = ỹeven
q − e−2πiq/nỹodd

q

(6.113)

where we left the first-half of the factored-out coefficients untouched. For both equations,
we have q = 0, 1, . . . ,m − 1. This closely matches our earlier result, Eq. (6.108).

As you may have suspected, the fast Fourier transform doesn’t carry out such a halving
process only once: it employs a divide-and-conquer approach, continually halving, until
the problem becomes sufficiently small that it cannot be cut in half. At that point, the
problem will be simple enough that the DFT can be trivially arrived at: you can see from
Eq. (6.97) that when n = 1 we have ỹ0 = y0. You may now realize why we said that our
n has to be a power of 2: this was in order to enable us to keep halving until we get down
to n = 1 without a problem. Each stage of this algorithm involves n multiplications and
there are log2 n such stages in total. In all, the fast Fourier transform operation count is
O(n log2 n), a dramatic improvement over the “naive” implementation of the DFT, which
involved O(n2) operations. You may also recall, from chapter 1, that divide-and-conquer
algorithms are most naturally implemented using recursion. This is fortunate, because it
means that we do not have to produce separate notation for each stage of the algorithm:
it is enough to show one halving step and state that we repeat the process recursively. We
will return to these considerations soon.

As usual, things can be made even more efficient than that. You could think about where
the different quantities are stored, how many of them can be re-used from one stage to the
next, how you would go about reformulating the algorithm iteratively, and so on. However,
the crucial point is that the FFT introduces a different scaling: the matrix multiplication of
Eq. (6.101) is no longer quadratic! When n is large, this can have a dramatic effect on how
long things take; a problem asks you to compare the runtime of DFT and FFT for the case
of n = 8192. Viewed from another perspective, the FFT enables calculations that would
have been impossible using only the old-fashioned DFT. This is one of the reasons why
Fourier transforms are so prevalent in a very large number of applications. For example,
in the study of differential equations, FFTs are routinely used to go to wave-number space
and (trivially) take derivatives there (see section 8.5.2). Instead of following that route,
however, we now recall that our goals in this chapter were more humble: we return to the
problem of trigonometric interpolation.
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�Fig. 6.11 Naive attempt to carry out shifted-DFT interpolation for the case of n = 8

Interpolation Using the FFT

Backing up for a second, we realize that the fast Fourier transform, Eq. (6.113), is just
a fast way of producing the discrete Fourier transform, Eq. (6.97). In other words, both
approaches simply evaluate the ỹk’s for k = 0, 1, . . . , n−1. A few subsections ago, once we
calculated the ak and bk parameters we were ready to produce the interpolating polynomial
p(x) given in Eq. (6.82); similarly, in Eq. (6.88) we re-expressed p(x) in terms of the ck

parameters. Wishing to produce the shifted-DFT analogue, once you’ve computed the ỹk’s,
you may be tempted to write down an interpolating polynomial of the form:

r(x) =
1
n

n−1∑
k=0

ỹkeikx (6.114)

This bears a passing resemblance to our infinite Fourier series, Eq. (6.79), and looks pretty
similar to our shifted inverse DFT, Eq. (6.99). As a matter of fact, it basically is Eq. (6.99)
but this time evaluated not at x j = (2π j)/n but at any x. It is certainly plausible that r(x)
would do a good job interpolating, since we already know (by construction) that r(x j) = y j:
evaluating Eq. (6.114) at the grid points turns r(x) into the y values of our input data.

As you will discover when you solve the relevant problem, this polynomial doesn’t ac-
tually do a very good job of interpolating between the (x j, y j) points; see Fig. 6.11 for the
n = 8 case. Our r(x) does go through the input data (x j, y j), as it should. However, com-
paring our new polynomial to our earlier trigonometric interpolation, see the right panel of
Fig. 6.9, the general behavior is very different. Not only is the real part of r(x) exhibiting
wild fluctuations between the grid points, but r(x) also comes with a sizable imaginary part,
which also fluctuates. As it so happens, we already knew that the “interpolating” polyno-
mial of Eq. (6.114) would give these different results, which is why we made sure to call it
r(x), i.e., not p(x).
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The reason r(x) is so different from p(x) has nothing to do with the 1/n that appears
in Eq. (6.114). As you may recall, that was simply a standard choice in how to define the
Fourier coefficients ỹk in comparison to our earlier ck parameters. The 1/n should be there
if you’re using ỹk as input. The actual problems with using r(x) as per Eq. (6.114) are two:
(a) we assumed that a sum over non-negative k’s, as per the shifted version of the DFT,
would work, and (b) we didn’t treat the largest/smallest frequency term, ỹm, specially.

Both of these issues can be addressed in one go. Instead of producing an ad hoc guess,
let us start with our interpolating polynomial p(x) from Eq. (6.88) and update its definition
to use our shifted Fourier coefficients, ỹk. To refresh your memory, what we had there was:

p(x) =
m−1∑

k=−m+1

ckeikx + c−m cos mx (6.115)

We now recall that the correspondence between shifted and unshifted parameters was, as
per Eq. (6.98): (

ỹ0 ỹ1 . . . ỹm−1

)T
= n

(
c0 c1 . . . cm−1

)T

(
ỹm ỹm+1 . . . ỹn−1

)T
= n

(
c−m c−m+1 . . . c−1

)T
(6.116)

This immediately leads us to the following formulation of our interpolating polynomial:

p(x) =
1
n

m−1∑
k=0

ỹkeikx +
1
n

ỹm cos mx +
1
n

n−1∑
k=m+1

ỹkei(k−n)x (6.117)

where you will notice that we are using the same symbol, p(x), since it is the same polyno-
mial, this time expressed in terms of our shifted Fourier coefficients, ỹk. The positive terms
in the sum remain unchanged, the negative ones are handled separately, as is true of the
midpoint (which corresponds to the largest/smallest wave number). The only subtle point
here is the exponent in the second sum: to match the exponents for the negative terms of
the sum in Eq. (6.115), we need to shift; make sure to check that k − n goes from −m + 1
to −1, when k goes from m+ 1 to n− 1. Finally, we are also including a 1/n term to ensure
the two definitions match.

Implementation

We are now ready to implement trigonometric interpolation using the FFT. If you’ve been
following along, you will realize that we could have done something analogous at several
points along the way: we could have implemented the unshifted DFT, Eq. (6.94), to find the
ck’s and then used that to produce p(x) as per Eq. (6.88). We could have also implemented
the shifted DFT, Eq. (6.97), to find the ỹk’s and then computed p(x) from Eq. (6.117). Both
of these are easier programming tasks, which you are asked to carry out in the problem
set. Instead, we will now capitalize on all our progress so far and implement the FFT,
Eq. (6.113), to find the ỹk’s and then plug those in to Eq. (6.117) to compute p(x). Since we
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Code 6.4 fft.py Code 6.4

from triginterp import f, generatedata

from math import pi

import numpy as np

def fft(ys):

n = ys.size

m = n//2

if n==1:

ytils = ys

else:

evens = fft(ys[::2])

odds = fft(ys[1::2])

coeffs = np.exp(-2*pi*np.arange(m)*1j/n)

first = evens + coeffs*odds

second = evens - coeffs*odds

ytils = np.concatenate((first, second))

return ytils

def fftinterp(ytils,x):

n = ytils.size

m = n//2

val = ytils[:m]@np.exp(np.arange(m)*x*1j)

val += ytils[m]*np.cos(m*x)

val += ytils[m+1:]@np.exp(np.arange(-m+1,0)*x*1j)

return val/n

if name == ‘ main ’:

n = 8

dataxs, datays = generatedata(n, f)

ytils = fft(datays)

x = 0.3; pofx = fftinterp(ytils, x)

print(x,pofx.real)

are faced with two separate tasks, computing the ỹk’s and p(x), we define two functions
in Code 6.4. Our first function implements the fast Fourier transform. As discussed in
chapter 1, and around Eq. (6.113), it is natural to code up divide-and-conquer algorithms
using recursion. We start from our base case, n = 1, for which the answer can be directly
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given: we know from Eq. (6.97) that in this case we have ỹ0 = y0. For any other value
of n (always a power of 2), we cut the problem up into two halves using numpy’s slicing:
ys[::2] and ys[1::2] select the even and odd components, respectively. Then, fft()
calls itself to solve that simpler problem. Once an answer for evens and odds is known,
our program simply multiplies with +e−2πiq/n or −e−2πiq/n, exactly as in Eq. (6.113). It’s
interesting to note that we are not employing any loops, so the q index doesn’t explicitly
appear. We combine our two halves together by using numpy.concatenate() to make
a larger array. In all, even though we are implementing a state-of-the-art algorithm, this
function is very short and reasonably straightforward to understand. You may wish to print
out its output or intermediate values, in order to be certain that everything is clear to you.

Specifically, you should make sure to understand that, even though Eq. (6.113) is written
in terms of q and m+q, the end result is that we’ve managed to compute the ỹk coefficients,
with k going from 0 to n− 1. This may be even easier to grasp when you solve the problem
that asks you to evaluate the ỹk’s using the (slow) DFT approach, Eq. (6.97). Having com-
puted the ỹk’s, our second function uses them to implement Eq. (6.117). Nothing exciting
is going on here: once again, we are employing numpy functionality, i.e., the dot product of
one-dimensional arrays using @, to avoid having explicit loops and indices. Our three lines
of code directly correspond to the three terms on the right-hand side of Eq. (6.117).

The main program first creates some data points using the functions we defined in
triginterp.py. It then calls our two new functions to compute the ỹk’s and then the
interpolating polynomial p(x). Once again, we pick a value of x at random, just to show
that we can evaluate p(x) at any point we choose. We end by printing out the real part of
the value of p(x); crucially, the imaginary part that we are dropping is always zero. Our ỹk

and the exponentials in Eq. (6.117) are complex, but they combine to produce a real inter-
polating polynomial at any value of x. This is so by construction, since we’ve been trying
to match our trigonometric-interpolation polynomial every step of the way. As a result, we
can use Code 6.4 to reproduce the right panel of Fig. 6.9 exactly.

6.5 Least-Squares Fitting

As we saw in our introduction in section 6.1.2, least-squares fitting is different from what
we’ve spent the last several pages doing: we will no longer trust our input table (x j, y j) of N
data pairs blindly. This time around, each data point will have an associated measurement
error, σ j; you may wish to think of the y-values of your data as y j ±σ j. In other words, we
will not demand that our approximating function, p(x), go through the data points; instead,
we will try to come up with a p(x) that “roughly” captures the behavior of the data. Of
course, there are infinitely many choices we could make; in practice, one is guided by other
knowledge of the system, say from the physical theory that describes that observable. If
no extra knowledge is available, one typically picks a p(x) that is a polynomial in x, but
this time a low-degree polynomial should be enough, since the higher the degree the larger
the number of undetermined parameters: since we don’t fully trust the input data, we don’t
want to capture the “scatter”, but only the underlying trend. An example of this was shown
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in Fig. 6.1, where we had assumed that the data points could not be fully trusted, and taken
the overall trend to be roughly linear.

6.5.1 Chi Squared

Let’s study this problem a bit more systematically. Recall that we are still expanding our
p(x) in terms of n parameters ck, as per Eq. (6.7):

p(x) =
n−1∑
k=0

ckφk(x) (6.118)

where the basis functions φk(x) may be polynomials (or not). This is a linear problem, in
the sense that p(x) is a linear combination of the ck’s. In the context of least-squares fitting,
our approximating function p(x) is sometimes known as a theory or a model.

As we mentioned around Eq. (6.10), we have N data points and n undetermined param-
eters (where N > n), so this could be thought of as an overdetermined system. As we saw
there, since Φc = y cannot be solved exactly, what we’ll do is the closest thing available,
i.e., we’ll try to minimize the norm of the residual vector, as per Eq. (6.11):

min ‖Φc − y‖ (6.119)

Of course, this task seems to only depend on the basis functions and the input data: where
did the input uncertaintiesσ j go? Qualitatively, what this is asking is: suppose some of your
input data have large uncertainties, and perhaps also appear to show different behavior than
the rest. Obviously, the points with larger measurement error should somehow be weighted
differently, i.e., they shouldn’t impact our final determination as much as points that were
measured much more accurately.

Since we wish to take the measurement errors into account, we choose to minimize:

χ2 =

N−1∑
j=0

(
y j − p(x j)

σ j

)2

(6.120)

which is known as the chi squared. It goes without saying (but we’ll say it anyway) that
(x j, y j) are variables (independent and dependent, respectively) whereas the ck’s are param-
eters; in other words, we’ll never measure the ck’s directly. Note that this sum extends over
all the N data points; the approximating function Eq. (6.118) is (implicitly) dependent on
the values of the parameters ck. When a given measurement error is large, the contribution
of that term in the sum is small, as it should be. Presumably you can now see where the
name least-squares fitting comes from: as shown by Eq. (6.120), minimizing χ2 minimizes
the distance between the theory and the data (p(x j) and y j, respectively), weighted by the
size of the error bar in the data.

Since we will choose the ck parameters that minimize χ2, we are free to take the deriva-
tive of Eq. (6.120) with respect to a given parameter ck and set the result to zero:
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∂χ2

∂ck
= −2

N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − p(x j)

σ2
j

⎞⎟⎟⎟⎟⎟⎠ ∂p(x j)

∂ck
= 0 (6.121)

where k = 0, 1, . . . , n − 1. Observe that in ∂p(x)/∂ck we are taking the derivative with
respect to ck, since x j and y j are considered externally given (and “frozen”). Assuming that
the approximating function p(x) is linear in the ck’s, as per Eq. (6.118), means that these
derivatives can be trivially taken, as we’ll see below: this leads to n linear equations in n
unknowns, namely the ck’s.

If we now make the further assumption that the σ j’s are normally distributed, then our
prescription above provides maximum likelihood parameter estimation for the ck’s. While
the subject of statistical inference is quite interesting, our goals here are more limited: we
try to find the ck’s that mimize the χ2, without worrying too much about questions regarding
goodness-of-fit.29 Even so, we would like to have some guidance on the question of how
to compare different theories. To reiterate, minimizing the χ2 of Eq. (6.120) tells you how
to find the best ck’s you can, for a given theory. But what if your theory is wrong? For
example, imagine that you should have picked p(x) = c0 + c1x + c2x2 but instead you
picked p(x) = c0 + c1x. The χ2-minimization process still tries to do its best, but the results
may end up being poor, as you could see simply by inspection (i.e., by comparing p(x) to
the input data: it is rare that a parabola can be approximated by a straight line).

Here, we give some practical advice that will help you decide which theory to pick, al-
ways under the assumption that the σ j’s are normally distributed. If the (minimum) χ2 is
very large, you can see from its definition in Eq. (6.120) that you have not been able to pro-
duce a p(x) that goes “near” the data points; this could simply be due to the fact that your
model is wrong. Another explanation could be that whoever produced the σ j’s underesti-
mated them, i.e., they are actually much larger, in which case your model would do a better
job since the χ2 would be smaller. On the other hand, if χ2 ≈ 0, then from the same defini-
tion, Eq. (6.120), you see that your theory curve essentially goes through the data points.
This is not always a good outcome: you may be using too many parameters, thereby “over-
fitting”, i.e., trying to capture the random scatter in the data. Another explanation could be,
as before, related to whoever produced the σ j’s: perhaps these were overestimated, i.e., in
reality the σ j’s should be much smaller. As always, the question arises how to distinguish
between “large” and “small” chi-squared values. As a rule of thumb, typically χ2 ≈ N − n
implies a reasonably good fit.30 The difference between the number of data points and the
number of parameters, N −n, is known as the number of degrees of freedom. Thus, the rule
of thumb can be re-stated as saying that for a fit that is not too good nor too bad you should
expect the chi-squared per degree of freedom to be roughly one.

It turns out that the quantity to be minimized in Eq. (6.120) is equivalent to what we
were faced with in Eq. (6.119), only this time we’re also appropriately dividing with the

29 Which means that we also don’t go into important alternative scenarios like Poisson-distributed data.
30 If you were not given the σ j’s as input, you could assume that they are all equal, σ j = σ, and also that you

did a good job fitting, in which case χ2 ≈ N − n. Then, you could find σ2 from Eq. (6.120) but, of course, this
does not help you check how well you did in your fit, since you started by assuming you did well.
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input uncertainties. We will return to the matrix notation below but, for now, we will help
you build some intuition on least-squares fitting, by showing Eq. (6.121) explicitly applied
to a simple case.

6.5.2 Straight-Line Fit

You have probably encountered the task of fitting data to a straight line in an introductory
lab course. Here, we will essentially repeat what you saw there, employing the notation
that we introduced above; in the following section, we go over a more general form, which
will map the least-squares problem to a linear-algebra one.

Our task is to fit N data points (x j, y j) to a model which is a straight line:

p(x) = c0 + c1x (6.122)

We need to determine the 2 parameters c0 and c1. For this theory, the chi squared definition
of Eq. (6.120) takes the form:

χ2 =

N−1∑
j=0

(
y j − c0 − c1x j

σ j

)2

(6.123)

where we are explicitly showing the dependence on the ck parameters.

Parameter Estimates and Variances

The vanishing-derivative condition of Eq. (6.121) for our theory, Eq. (6.122), gives:

∂χ2

∂c0
= −2

N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − c0 − c1x j

σ2
j

⎞⎟⎟⎟⎟⎟⎠ = 0,
∂χ2

∂c1
= −2

N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − c0 − c1x j

σ2
j

⎞⎟⎟⎟⎟⎟⎠ x j = 0 (6.124)

where the derivatives of p(x j) with respect to each ck were easy to produce. Each numerator
can be split into three terms; to do so, let us define the following six helper variables:

S ≡
N−1∑
j=0

1

σ2
j

, S x ≡
N−1∑
j=0

x j

σ2
j

, S y ≡
N−1∑
j=0

y j

σ2
j

,

S xx ≡
N−1∑
j=0

x2
j

σ2
j

, S xy ≡
N−1∑
j=0

x jy j

σ2
j

, Δ ≡ S S xx − S 2
x

(6.125)

Note that all the right-hand sides here are expressed in terms of known quantities, which
means that they can be computed from the data. We can now re-express our vanishing-
derivative results from Eq. (6.124) in terms of these helper variables:

S c0 + S xc1 = S y

S xc0 + S xxc1 = S xy
(6.126)
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This is a simple 2 × 2 linear system of equations:⎛⎜⎜⎜⎜⎜⎜⎝ S S x

S x S xx

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝c0

c1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ S y

S xy

⎞⎟⎟⎟⎟⎟⎟⎠ (6.127)

If you’re wondering why we went through the trouble of defining the Δ, the answer is that
it helps us compactly write down the solution to our 2 × 2 system:

c0 =
S xxS y − S xS xy

Δ
, c1 =

S S xy − S xS y

Δ
(6.128)

Since the helper variables of Eq. (6.125) were computed in terms of the data, everything
here is known: we have managed to find the c0 and c1 values that minimize the χ2.

At this point, we could immediately proceed to a Python implementation of Eq. (6.128)
for a given set of data. Instead, let us take a minute to think about the values of c0 and
c1 we just determined. We recall that these are estimates of the parameter values: since
our input data suffered from measurement errors, σ j, it is obvious that a corresponding
uncertainty has been introduced in the determination of the ck parameters. In short, we now
need to make a quick detour through the subject of propagation of error which, as you may
recall, is a topic we spent quite a bit of time discussing all the way back in section 2.2.2;
however, back then we were referrring to “maximal error” propagation, whereas we are
now interested in employing “standard error” propagation. In short, this time around we
will add the errors in quadrature, in contradistinction to what we did, say, in Eq. (2.41).
Assuming the data are independent, propagation of error for any function g takes the form:

σ2
g =

N−1∑
j=0

(
∂g
∂y j

)2

σ2
j (6.129)

where we have assumed the data are independent and in our specific case g will be either
c0 or c1. We can evaluate the needed derivatives from our answer in Eq. (6.128):

∂c0

∂y j
=

S xx − S xx j

σ2
jΔ

,
∂c1

∂y j
=

S x j − S x

σ2
jΔ

(6.130)

It may help you to use different dummy summation variables in the definitions of our
helpers, Eq. (6.125), to see where these results came from. The first equation helps us
determine σ2

c0
and the second one σ2

c1
. Plugging these two equations into Eq. (6.129),

expanding the parentheses, and collecting terms leads to:

σ2
c0
=

S xx

Δ
, σ2

c1
=

S
Δ

(6.131)
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�Fig. 6.12 Least-squares fitting for a straight-line theory

These are the variances in the estimates for our two parameters. If you want the standard
deviations, you’ll have to take the square root(s). As you will see in a problem, one can also
compute the covariance of c0 and c1, but what we have here is enough for our purposes.

Implementation

To see our least-squares straight-line fitting algorithm at work, we’ll need a set of input
data. We decide to re-use the data shown in Fig. 6.1: the measurement errors, σ j, were
suppressed there (since interpolation doesn’t need them), but can be taken into account
now. Code 6.5 first computes the helper variables of Eq. (6.125). We then define another
function to evaluate the ck’s from Eq. (6.128) and theσck ’s from Eq. (6.131). We store these
in two numpy arrays: this is overkill for our 2 × 2 problem, but it sets the stage for what
is to follow.31 Having determined the ck’s, we then define another function to compute the
(minimum) χ2 from Eq. (6.123).

The main program sets up the data corresponding to Fig. 6.1 and then proceeds to call
the last two functions, first computing the ck’s and then using them to compute the χ2.
Printed out are the parameters and their standard deviations, as well as the χ2 per degree of
freedom, i.e., χ2/(N − n). The output of running this program is:

[ 3.04593186 0.5189044 ]

[ 0.02927752 0.04896135]

1.09916819554

We see that the χ2 per degree of freedom is pretty close to 1, signifying a decent fit. This

31 Note that we could have opted in favor of not solving the 2 × 2 system of Eq. (6.127) by hand: instead, we
could have simply set it up and then used Gaussian elimination to solve it programmatically.
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linefit.py Code 6.5

import numpy as np

def helpers(dataxs,datays,datasigs):

S = np.sum(1/datasigs**2)

Sx = np.sum(dataxs/datasigs**2)

Sy = np.sum(datays/datasigs**2)

Sxx = np.sum(dataxs**2/datasigs**2)

Sxy = np.sum(dataxs*datays/datasigs**2)

Del = S*Sxx - Sx**2

return S, Sx, Sy, Sxx, Sxy, Del

def computecs(dataxs,datays,datasigs):

S,Sx,Sy,Sxx,Sxy,Del = helpers(dataxs,datays,datasigs)

cs = np.zeros(2); dcs = np.zeros(2)

cs[0] = (Sxx*Sy - Sx*Sxy)/Del

cs[1] = (S*Sxy - Sx*Sy)/Del

dcs[0] = np.sqrt(Sxx/Del)

dcs[1] = np.sqrt(S/Del)

return cs, dcs

def computechisq(dataxs,datays,datasigs,cs):

chisq = np.sum((datays-cs[0]-cs[1]*dataxs)**2/datasigs**2)

return chisq

dataxs = np.linspace(0,1,6)

datays = np.array([3.085, 3.123, 3.224, 3.360, 3.438, 3.569])

datasigs = np.array([0.048, 0.053, 0.02, 0.005, 0.023, 0.07])

cs, dcs = computecs(dataxs, datays, datasigs)

print(cs); print(dcs)

chisq = computechisq(dataxs, datays, datasigs, cs)

print(chisq/(dataxs.size - cs.size))

is also reflected in the error bars we have placed on the parameters. Speaking of which, we
observe that the error in the offset parameter, c0, is much smaller than that in the slope, c1.

In Fig. 6.12 we are showing the data along with the measurement errors, σ j. We’re also
plotting the straight-line model, Eq. (6.122), that results from our best-fit parameters c0

and c1.32 Even if you take the error bars into consideration, the straight-line model does

32 We could have also used the σck ’s and thereby produced a band instead of a straight line.
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not need to go through all the points. We are minimizing the χ2 from Eq. (6.123), trying to
take into account all the data points and associated errors; our procedure does the best job
it can, always under the assumption that our model is a straight line.

6.5.3 General Linear Fit: Normal Equations

The (standard) material that we developed in the previous section is good as far as it goes.
However, it’s easy to see that solving things “by hand” doesn’t take you very far. For
example, imagine you wanted to check whether you picked the right model. One way to
do so would be to try a quadratic theory:

p(x) = c0 + c1x + c2x2 (6.132)

And repeat the entire least-squares fitting procedure.33 This involves three unknown pa-
rameters; in this case Eq. (6.127) generalizes to:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S S x S xx

S x S xx S xxx

S xx S xxx S xxxx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c0

c1

c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S y

S xy

S xxy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6.133)

where you should be able to guess how the new terms like S xxxx are defined. A problem
asks you to derive this, starting from the zero-derivative conditions in Eq. (6.121).

A moment’s thought will convince you that the coefficient matrix here is an extension of
the Vandermonde matrix we encountered in Eq. (6.17). As you may recall from that dis-
cussion, such matrices can be very ill-conditioned, especially for large dimensions. Since
Lagrange interpolation for n = 100 or even n = 1000 is routinely used in practice, this is a
real issue. However, when carrying out least-squares fitting, you would generally not like
to use a polynomial of very high degree: as mentioned in section 6.5.1, this mostly leads
to overfitting, namely to capturing the random scatter in the data, which is an unwelcome
outcome. In other words, you will typically not get into too much trouble if you attack
the 3 × 3 problem of Eq. (6.132) via the naive approach of Eq. (6.133).34 Of course, what
happens if you then decide to try out the 4×4 or the 5×5 case? It’s easy to see that you will
have to give up on solving the linear system analytically, opting for Gaussian elimination
or another method, instead.

So far in this subsection we have been considering the possibility of employing a model
that is a polynomial, raising the question of what order we should go up to. A related
question arises when your basis functions are not monomials/polynomials. For example,
your model could be:

p(x) = c0 + c1e−x2
(6.134)

Note that this is still linear (in the ck’s), as per Eq. (6.118); it’s only one of the basis

33 As you will see in a problem, in this case you find that the coefficient of the quadratic term is very small,
thereby increasing your confidence in your decision to carry out a straight-line fit for this set of data.

34 Even so, one of the problems introduces an alternative approach, involving a generalization of the QR decom-
position we encountered in chapter 4 to rectangular matrices; this leads to a more robust prescription, which
is routinely used in libraries.
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functions that is not linear (in x). As you will discover in one of the problems, trying to
carry out a least-squares fit for this model will lead you to introduce helper variables like:

S x ≡
N−1∑
j=0

e−x2
j

σ2
j

(6.135)

in direct generalization of what we saw in the straight-line case. Obviously, if you had three
(or, say, seven) parameters, this way of doing things “by hand” would no longer be very
practical.

Normal Equations

Instead of studying models on a case-by-case basis, we will now tackle the general (linear)
problem of Eq. (6.118):

p(x) =
n−1∑
k=0

ckφk(x) (6.136)

It should be easy to see that polynomial fitting is merely a special case of this model, that
in which the φk(x)’s are monomials. Thus, we will develop and implement the general
machinery for any set of basis functions; then, in one of the problems you will specialize
our code to the case of polynomial fitting.

For this model, the χ2 of Eq. (6.120) takes the form:

χ2 =

N−1∑
j=0

1

σ2
j

⎛⎜⎜⎜⎜⎜⎜⎝y j −
n−1∑
i=0

ciφi(x j)

⎞⎟⎟⎟⎟⎟⎟⎠
2

(6.137)

Similarly, the zero-derivative conditions of Eq. (6.121) now become:

∂χ2

∂ck
= −2

N−1∑
j=0

1

σ2
j

⎛⎜⎜⎜⎜⎜⎜⎝y j −
n−1∑
i=0

ciφi(x j)

⎞⎟⎟⎟⎟⎟⎟⎠ φk(x j) = 0 (6.138)

where k = 0, 1, . . . , n−1, as usual. If we now drop the −2 coefficient, re-arrange terms, and
interchange the order of summation, we find:

n−1∑
i=0

N−1∑
j=0

φk(x j)

σ j

φi(x j)

σ j
ci =

N−1∑
j=0

φk(x j)

σ j

y j

σ j
(6.139)

Keep in mind that typically N is large and n is small. On both sides, we are summing over
the j index, which corresponds to the (large) number of data points, N. The way we have
chosen to write Eq. (6.139) clearly motivates the introduction of two new entities:

Ajk =
φk(x j)

σ j
, bj =

y j

σ j
(6.140)

You can see that A = {Ajk} is a rectangular matrix made up of N × n elements; the row
index goes from 0 to N − 1 and the column index from 0 to n − 1. This is usually called
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the design matrix of the problem. Similarly, b is an N × 1 column vector, made up of
the data scaled by the measurement errors. Crucially, all the elements of A and b can be
immediately computed from the input data.

In terms of our two new entities, Eq. (6.139) becomes:

n−1∑
i=0

N−1∑
j=0

AjkA jici =

N−1∑
j=0

Ajkb j (6.141)

We now recognize that the sums over j can be replaced by matrix–matrix multiplication
(on the left-hand side) and matrix-vector multiplication (on the right-hand side):

n−1∑
i=0

(AT A)kici = (AT b)k (6.142)

where we appropriately introduced the transpose of A whenever we needed two indices to
appear in different order. We now realize that even the summation over i on the left-hand
side can be expressed in terms of a matrix-vector multiplication, leading us to write:

(AT Ac)k = (AT b)k (6.143)

But since this holds for any component k, we have thereby shown:

AT Ac = AT b (6.144)

Given that A and b are already known (computed in terms of the input data), this equation
is a simple linear system of equations: we can solve it using, say, Gaussian elimination to
find c. Make sure you understand the dimensions of each entity: A is N × n, which means
AT is n × N and therefore AT A is n × n. This is appropriate since c is an n × 1 vector
containing all the ck’s. Similarly, AT is n × N and b is an N × 1, so AT b is n × 1. In other
words, we have managed to transform our problem into square form, with a coefficient
matrix of dimension n × n: this is in general a much easier problem than dealing with A
directly (which has dimensions N × n), since typically n will be much smaller than N.

Interpreting the Normal Equations

Let us now build some intuition on the AT A matrix. Our main goal is to show that the c
that we get from Eq. (6.144) is not only a critical point, but a minimum. You might want to
brush up on the multidimensional minimization material in section 5.5.2 at this point.

First, it’s easy to see that AT A is symmetric:

(AT A)T = AT (AT )T = AT A (6.145)

Since AT A is equal to its transpose, it is symmetric. Second, AT A is positive semidefinite,
because for any non-trivial vector x we have:

xT AT Ax = (Ax)T Ax = ‖Ax‖2 ≥ 0 (6.146)
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where, as usual, we’re implicitly using the Euclidean norm. We can do even better: write
A in terms of its columns:

A =
(
a0 a1 . . . an−1

)
(6.147)

If we assume that the columns of A are linearly independent, we can re-express Ax, whose
norm we were taking in Eq. (6.146), as:

Ax =
n−1∑
i=0

ai xi � 0 (6.148)

where the last step follows from the definition of being linearly independent. That means
that we have shown ‖Ax‖2 � 0, which implies ‖Ax‖2 > 0, i.e., AT A is positive definite if
the columns of A are linearly independent.

We now realize that our new A and b entities from Eq. (6.140) can help us rewrite the
χ2 from Eq. (6.137) in matrix form:

χ2(c) = (b − Ac)T (b − Ac) (6.149)

where we also took the opportunity to explicitly note that χ2 depends on the values of the
ck parameters. To see that χ2(c) involves a quadratic form in c, expand things out:

χ2(c) = bT b − bT Ac − cT AT b + cT AT Ac (6.150)

In a problem, you will show that the Hessian of a quadratic form xT Bx is H = 2B when B is
symmetric. Recall that the Hessian for our case would be defined by analogy to Eq. (5.98):

Hi j =
∂χ2(c)
∂ci∂c j

(6.151)

From Eq. (6.150) you can see that only the quadratic form cT AT Ac contributes to the sec-
ond derivative of χ2(c); thus, H = 2AT A for our case. The reason we care about the Hessian
is that it makes an appearance in the multidimensional Taylor expansion (see Eq. (5.93)):

χ2(c + q) = χ2(c) +
(
∇χ2(c)

)T
q +

1
2

qT Hq (6.152)

where now there is no term O(‖q‖3) since the third derivative of a quadratic form vanishes.
Recall that our main result in Eq. (6.144) gives us the c value that corresponds to the zero-
derivative conditions, Eq. (6.138). In other words, it is the analogue of Eq. (5.97):

∇χ2(c∗) = 0 (6.153)

This c∗ is the set of ck’s that satisfies Eq. (6.144).35 But this means that the vanishing
gradient leads to:

χ2(c∗ + q) = χ2(c∗) +
1
2

qT Hq > χ2(c∗) (6.154)

which is essentially a repeat of our argument in Eq. (5.100). The last step, showing that c∗

35 If you’re careful, you could simply derive Eq. (6.144) by taking the gradient of Eq. (6.150).
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is, indeed, a minimum as desired, follows from the fact that our H is positive definite. This
is all consistent with what we said in section 5.5.2: a necessary condition for c∗ being a
local minimum is that it be a critical point and a sufficient condition for the critical point
c∗ being a local minimum is that its Hessian matrix be positive definite.

Before concluding, let us return to the cases where the normal-equations approach can
get in trouble (and therefore another algorithm should be preferred). The main takeaway
from the last few pages has been that Eq. (6.144) has transformed the problem such that
we are no longer faced with the rectangular A matrix but with the square AT A matrix.
As you will explicitly show in a problem, the condition numbers of the two matrices are
straightforwardly related:

κ(AT A) ≈ κ(A)2 (6.155)

Thus, if A is an ill-conditioned matrix, then AT A will be a terribly ill-conditioned matrix:
the issue has gotten exacerbated by the method we chose to employ. This is a nice example
of the interplay between the ill-conditioning of a problem and the (possible) instability of
an algorithm. There exist other, more robust algorithms, typically involving orthogonaliza-
tion, as you will find out in the problem set.

Variances

For the case of the straight-line fit of section 6.5.2, after determining the estimated param-
eters c0 and c1, we proceeded to find the uncertainties in these estimates, σc0 and σc1 . You
will not be surprised to hear that something analogous can be done in the present case,
also. The general relation in Eq. (6.129) has the form:

σ2
ci
=

N−1∑
j=0

(
∂ci

∂y j

)2

σ2
j (6.156)

where we have, implicitly, assumed that the uncertainties in any two data points are uncor-
related, i.e., that the measurements are independent. To compute σ2

ci
we see that we’ll need

the derivative of the parameter ci with respect to the datum y j, i.e., ∂ci/∂y j. To get that, in
its turn, we first need to write out ci as a function of y j.

Multiplying Eq. (6.144) with (AT A)−1 on the left, we find:

c = (AT A)−1AT b (6.157)

The inverse matrix is important enough that it gets its own symbol:

V = (AT A)−1, U = AT A (6.158)

where we also went ahead and introduced a new symbol for AT A itself, for later use. We
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can write down the relation in Eq. (6.157) for the i-th component:

ci =

n−1∑
k=0

Vik(AT b)k =

n−1∑
k=0

Vik

N−1∑
l=0

Alkbl =

n−1∑
k=0

Vik

N−1∑
l=0

φk(xl)
σl

yl

σl
(6.159)

In the second equality we expressed (AT b)k as in Eq. (6.141), and in the third equality we
wrote out Alk and bl as per their definitions in Eq. (6.140). The final expression is the result
we were after, relating ci to yl.

Crucially, Vik does not depend on y j. This means that we can straightforwardly evaluate
the needed derivative:

∂ci

∂y j
=

n−1∑
k=0

Vik
φk(x j)

σ2
j

(6.160)

where you’ll notice that the sum over l is now gone. We now plug this result into Eq. (6.156):

σ2
ci
=

n−1∑
k=0

n−1∑
l=0

VikVil

⎛⎜⎜⎜⎜⎜⎜⎝
N−1∑
j=0

φk(x j)φl(x j)

σ2
j

⎞⎟⎟⎟⎟⎟⎟⎠ (6.161)

where we interchanged the order of summation and cancelled one of the σ2
j’s. Now, the

term inside the parentheses can also be re-expressed:

N−1∑
j=0

φk(x j)φl(x j)

σ2
j

=

N−1∑
j=0

AjkA jl = (AT A)kl = Ukl (6.162)

In the first equality we used the definitions in Eq. (6.140). In the second equality we re-
placed the sum by matrix–matrix multiplication. In the third equality we identified our new
matrix from Eq. (6.158). Now we can take this result and re-introduce it into Eq. (6.161):

σ2
ci
=

n−1∑
k=0

n−1∑
l=0

VikVilUkl =

n−1∑
l=0

Vil

n−1∑
k=0

VikUkl =

n−1∑
l=0

Vilδil (6.163)

In the second equality we re-ordered the sums and terms, and in the third equality we
realized that V is the inverse of U, so their product is the identity. This leads us to the
significant result that:

σ2
ci
= Vii (6.164)

namely, the diagonal elements of the V matrix are the variances of the estimates of the c
parameters. In a problem, you will show that the off-diagonal matrix elements of V are the
covariances between different parameters, i.e., Vik is the covariance between parameters ci

and ck. As a result, V is known as the variance-covariance matrix.
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Implementation

We are now ready to implement our general linear least-squares fitting procedure in Python,
see Code 6.6. We will only determine the ck’s, leaving the determination of the variances,
which requires a matrix inversion, as an end-of-chapter problem.

To highlight the generality of our machinery, we decide to generate the data from a sinu-
soidal function; we perturb the data values using samples drawn from the standard normal
distribution, conveniently provided by numpy.random.randn(). We ensure that we’ll get
the same answer every time we call our generatedata() function by first seeding the
random-number generator, via numpy.random.seed(). (We will re-encounter random
numbers in the following chapter, in our discussion of stochastic integration.) We also
employ the function numpy.random.randn() to produce the “measurement” errors; we
take the absolute value to ensure that all σ j’s are positive. As usual, we bundle all the data-
related code lines in the same function; if you’re dealing with a different set of data, simply
don’t call this one function.

We then have to think about how to program our basis functions, namely the φk(x). In
the spirit of showing that our formalism is truly general, we implement two distinct sets
of basis functions: (a) monomials, and (b) sinusoidal behavior. Of course, for both cases
the dependence on the ck’s is linear, as per Eq. (6.136). Since the data were drawn from a
sinusoidal function, it should come as no surprise that using an analogous function will do
a good job capturing what’s going on (modulo the “noise” that we added in by hand). In the
function phi() we are choosing to differentiate between the two different types of theory
based on which value of the size of the problem, n, was passed in. We are hard-coding only
two possibilities: (a) n = 5 is interpreted as monomials up to fourth degree, and (b) n = 2
is interpreted as either 1 or sin(x). (Note how the last two options were squeezed onto one
line of code.)

While the two functions we just discussed were special, applying to a given set of data
or a couple of possible theories, the next function is completely general. We define a func-
tion called normalfit() which computes the ck’s and calculates the minimum χ2. Its
parameter list is similar to our earlier function computecs() from linefit.py; the only
change is that this time we are also explicitly passing in the number of parameters, n. Note
that we don’t need to pass in N, since we’re passing in the data itself. We immediately
create the rectangular N × n matrix A. This is the first rectangular matrix we’ve seen in
this book, but observe that numpy handles everything as smoothly as before. We iterate
through the columns (of which there are n), directly implementing the definition of Ajk

from Eq. (6.140). As usual, we employ numpy functionality and therefore only need a col-
umn index: the rows are iterated over implicitly, by manipulating the input data arrays. We
similarly define the b column vector as per Eq. (6.140). Having computed A and b, we
manage to both set up and solve the linear system AT Ac = AT b of Eq. (6.144) in a sin-
gle line. This would have been unpleasant without the convenience of using @ to carry out
matrix–matrix or matrix-vector multiplication. We call our usual routine that does Gaus-
sian elimination with pivoting and then return the ck’s. Having produced the ck’s, we can
then compute the minimum χ2, again in one line. This line implements Eq. (6.149): in a
problem, you are asked to calculate χ2 starting from Eq. (6.137) and calling phi(); as
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normalfit.py Code 6.6

from gauelim pivot import gauelim pivot

import numpy as np

def generatedata(N):

np.random.seed(45379)

dataxs = np.linspace(0,9,N)

datays = 2 + 5*np.sin(dataxs) + 0.3*np.random.randn(N)

datasigs = 0.2*np.abs(np.random.randn(N))

return dataxs, datays, datasigs

def phi(n,k,x):

if n==5:

val = x**k

elif n==2:

val = 1. if k==0 else np.sin(x)

return val

def normalfit(dataxs,datays,datasigs,n):

N = dataxs.size

A = np.zeros((N,n))

for k in range(n):

A[:,k] = phi(n,k,dataxs)/datasigs

bs = datays/datasigs

cs = gauelim pivot(A.T@A, A.T@bs)

chisq = np.sum((bs - A@cs)**2)

return cs, chisq

if name == ‘ main ’:

dataxs, datays, datasigs = generatedata(8)

for n in (5, 2):

cs, chisq = normalfit(dataxs, datays, datasigs, n)

print(cs)

print(chisq/(dataxs.size-cs.size)); print("")

you’ll discover there, that is a messier task. Instead, here we take advantage of the fact that
we’ve already computed A and b.

The main program picks N = 8 and then tries out the two theories in turn, printing out the
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�Fig. 6.13 Least-squares fitting for a polynomial and a sinusoidal theory

ck’s and minimum χ2 each time. Running this code, we see that the sinusoidal theory did
a much better job capturing the behavior of the data. This is reflected in the smaller value
of the minimum χ2. It is also clearly seen in the left panel of Fig. 6.13: despite having five
parameters at its disposal, the polynomial was not able to describe the data that well. You
may be thinking that this was inevitable, given that we already knew which function the
data were drawn from (roughly).

That being said, you shouldn’t be too quick to dismiss the accomplishments of our poly-
nomial theory. The right panel of Fig. 6.13 shows the result of choosing the data from 0 to 4
(instead of from 0 to 9), with every other aspect of the code left unchanged. In this case, the
polynomial seems to have done at least as good a job; as a matter of fact, if you compare
the minimum χ2 (per degree of freedom) for the two models, the polynomial seems to be
doing better. This raises a host of related questions: should you trust a smaller minimum χ2

blindly? Generally speaking, you should try to balance the magnitude of the minimum χ2

with the number of parameters you are employing: as mentioned earlier, if you use many
parameters you may end up overfitting, i.e., capturing some of the noise in the data. One
of the problems asks you to study our earlier straight-line data using polynomial models of
increasing degree, where this issue is thrown into sharp relief.

6.6 Project: Testing the Stefan–Boltzmann Law

As usual, this Project will discuss an application of the concepts described earlier in this
chapter, for a case where a computer is necessary. Since we spent quite a bit of time dis-
cussing interpolation and less time on least-squares fitting, we take the opportunity to ex-
tend some of our earlier material to the case of nonlinear least-squares fitting. The physics
problem we have chosen to study is the extraction of the exponent in the Stefan–Boltzmann
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law for the power radiated by a black body. This is a result that preceded early quantum
theory and in which the fitting to experimental data played an important role historically.

6.6.1 Beyond Linear Fitting

Our general least-squares fitting formalism, employing the normal equations, is not fully
general: everything we have said so far applies to the case of Eq. (6.136), i.e., the case of
linear dependence on the parameters. However, in practice you may be faced with more
complicated scenarios, e.g.:

p(x) = c0e−c1 x (6.165)

The dependence on c1 is nonlinear, as you will discover immediately when you try to take
the derivative of p(x) with respect to c1. There is a time-honored trick you could employ
here: taking the natural logarithm of both sides, you are led to:

q(x) = d0 + d1x (6.166)

where q(x) = ln[p(x)], and the dk’s are straightforwardly related to the ck’s. Then, you
could simply carry out a straight-line fit for q(x) and later translate what you’ve learned
back to the p(x) model. That being said, you should keep in mind that our maximum-
likelihood interpretation of the parameters that resulted from the χ2-minimization proce-
dure followed from the assumption that the errors were normally distributed. Manipulating
your theory so that it becomes linear in the parameters will quite likely remove the Gaus-
sianity of your measurement errors. Even so, the result of the χ2 minimization might still
be helpful to you, practically speaking.

There are many other cases of nonlinearities, which are not easy to transform away. For
example, here is the Cauchy distribution:

p(x) =
1
π

c1

(x − c0)2 + c2
1

(6.167)

For this case, if you have a set of input data (x j, y j ± σ j) and wish to determine c0 and c1,
our earlier discussion cannot help you very much. The task at hand is to minimize the χ2

in the general case, namely Eq. (6.120):

χ2 =

N−1∑
j=0

(
y j − p(x j)

σ j

)2

(6.168)

As you may recall, for the linear case this problem was reformulated into a simple expres-
sion, χ2(c) = (b − Ac)T (b − Ac), minimizing which led to a linear system of equations,
AT Ac = AT b. For a general p(x) this is no longer true, so we need to turn to general
aspects of multidimensional minimization, as discussed in section 5.5.2.

For the specific problem of nonlinear χ2 minimization, several approaches (e.g., the
Gauss–Newton and Levenberg–Marquardt methods) have been developed. Instead of going
over those, we will try to build your intuition by following a different tack: we will study a
specific nonlinear model and explicitly carry out the derivatives of Eq. (6.121) by hand:
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∂χ2

∂ck
= −2

N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − p(x j)

σ2
j

⎞⎟⎟⎟⎟⎟⎠ ∂p(x j)

∂ck
= 0 (6.169)

where k = 0, 1, . . . , n − 1. Note that this is still a general set of equations, since we haven’t
specified anything about p(x). Thus, we will be faced with n nonlinear equations in n un-
knowns. To be clear, we intend to carry out these derivatives analytically, thereby con-
verting the multidimensional minimization problem to a multidimensional root-finding
problem. We will then proceed to solve the latter using the techniques we developed in
section 5.4 on systems of nonlinear equations.

6.6.2 Total Power Radiated by a Black Body

We now turn to our physics theme, the total amount of radiation emitted by a black body.
As you may recall, a black body is a perfect absorber of radiation. For reasons that will soon
become clear, we will discuss in more detail than usual the history of this subject [47, 62],
whose major events all took place in the second half of the nineteenth century.

Stefan’s Stab in the Dark

In the early 1860s John Tyndall reported on his experiments heating a platinum wire and
measuring the deflection of a galvanometer. Adolph Wüllner, in the 1875 edition of his
textbook on experimental physics, summarized Tyndall’s findings, providing estimates for
the temperatures at which the platinum wire was observed. Thus, Tyndall’s “faint red”
became 525 °C and his “full white” turned into 1200 °C. The “intensity of the radiation”
was observed to increase from 10.4 to 122, i.e., by a factor of 11.7. The qualitative point is
that, even though the temperature increased by a factor of roughly 2, the radiation emitted
increased considerably more.

In 1879 Josef Stefan published an article in which he converted (Wüllner’s estimates of)
Tyndall’s temperatures into absolute temperatures. Stefan also noticed that by raising the
ratio of the two absolute temperatures to the fourth power, one gets a value of 11.6, which
is very similar to the 11.7 of the previous paragraph. Explicitly:

(273 + 1200)4

(273 + 525)4
≈ 11.6 (6.170)

From this, Stefan drew the general conclusion that the “heat radiation” is proportional to
the fourth power of the absolute temperature.

You may be thinking that drawing a general conclusion about a power-law dependence
based on only two points is stretching the limits of plausibility. You may also be think-
ing that Wüllner’s temperatures were merely estimates. It turns out that Stefan was even
luckier than that: Tyndall’s measurements did not probe black-body radiation; repeating
Tyndall’s experiment today would lead to a ratio of 18.6, instead of the 11.7 following
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from Tyndall’s/Wüllner’s numbers. This is a pretty striking example of serendipity: Stefan
made the right inference, using very little (and incorrect) experimental data.

Boltzmann’s Thermodynamic Derivation

In 1884 Ludwig Boltzmann, who had earlier been Stefan’s doctoral student, published a
paper in which he derived the Stefan law from purely thermodynamic arguments. Nowa-
days, we call it the Stefan–Boltzmann law and write it as follows:

I = σT 4 (6.171)

where I is the radiated energy per second per surface area, at absolute temperature T .
The proportionality factor, σ, is now known as the Stefan–Boltzmann constant. This law
describes the energy emitted at all wavelengths. It is also significant to note that, as shown
by Boltzmann’s derivation, this law is a classical result. In one of the problems you are
asked to recover this result starting from Planck’s formula for the black-body spectrum,
thereby deriving the Stefan–Boltzmann constant, σ, in terms of fundamental constants.

Given the beauty and simplicity of Boltzmann’s derivation, we now briefly go over its
main steps. Suppose we have a closed system, made up of a “gas” of electromagnetic
radiation. The fundamental thermodynamic relation is:

dU = TdS − PdV (6.172)

where U is the internal energy, T the temperature, S the entropy, P the pressure, and V the
volume. Dividing by dV at fixed T gives us:(

∂U
∂V

)
T

= T

(
∂S
∂V

)
T

− P = T

(
∂P
∂T

)
V

− P (6.173)

where the second step followed from one of the most common Maxwell relations.
Maxwell’s name is also relevant to the next step, since he came up with the formula for

radiation pressure (which you will explicitly show in a problem), P = E/3. Here E = U/V
is the energy density of radiation (assumed to depend only on T ). Plugging Maxwell’s
result and U = EV into Eq. (6.173), we get:

E = 1
3

T
dE
dT
− 1

3
E (6.174)

We wrote dE since E is a function of the temperature solely. This can be integrated to give:

E = bT 4 (6.175)

where b is a constant. You can immediately see the formal similarity with the Stefan–
Boltzmann law of Eq. (6.171). One of the problems guides you toward relating this b
constant with the Stefan–Boltzmann constant, σ.
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�Fig. 6.14 Black-body radiation data from the 1897 paper by Lummer and Pringsheim

Lummer and Pringsheim’s Experiments

In 1897, well-controlled experiments were carried out by Otto Lummer and Ernst Pring-
sheim [63]. In their experimental setup, Lummer and Pringsheim employed vessels coated
with platinum black and surrounded by baths of water and niter; they used a bolometer
to measure the radiant energy. They checked that the deflection in the galvanometer was
proportional to the energy of the radiation.

Their results are shown in Fig. 6.14. Notice immediately that the y axis is labelled “re-
duced deflection”: we don’t get into details on the manipulations of the data the authors
carried out. Instead, we will treat the numbers in this figure as the raw data, (x j, y j) for
j = 0, 1, . . . , 12. Another thing that immediately stands out is that the y j’s are not accom-
panied by measurement errors, σ j’s. This is standard in early experimental papers, which
generally only made a few qualitative statements about the errors in the main text, instead.
For us, this will be an opportunity to learn what to do (and how to interpret our results)
when there are no input measurement errors available. We are also showing in Fig. 6.14 our
least-squares fitting results pre-emptively, which we will produce in the following section.
Note that we are using a logarithmic scale for our y axis and a linear scale for our x axis.
You can probably already guess that on a log-log plot the points would largely end up on a
straight line; this follows immediately from the Stefan–Boltzmann law, Eq. (6.171), which
does look like a straight line in a log-log plot.

6.6.3 Fitting to the Lummer and Pringsheim Data

Since, as we already saw, Stefan’s conjecture was based on little data which did not apply
to the case in hand, the Lummer and Pringsheim work constitutes the first piece of experi-
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mental evidence confirming Stefan’s intuition and Boltzmann’s derivation. This motivates
our choice to study this set of data in some detail, trying to extract the physics ourselves.

For most of their paper, Lummer and Pringsheim assumed the Stefan–Boltzmann law of
Eq. (6.171) was true. In other words, they assumed that the data followed a power-law with
temperature raised to the fourth power. Then, they tested to see how universal the b (or σ)
constant is. In what follows, we will implement a more general strategy: don’t assume that
T 4 gives you the energy; instead, keep the exponent general and see if the experimental
measurements lead you to the Stefan–Boltzmann law.

Setting up the Equations

As noted, we will take the (x j, y j) points of Fig. 6.14 as our input data. It would be nice if
we could assume that the data could be modelled by the theory:

p(x) = c0xc1 (6.176)

In that case, we could use the trick mentioned near Eq. (6.165), namely to take the loga-
rithm on both sides. This would lead to a linear dependence on two parameters, in which
case everything we said in section 6.5.3 would apply here. However, in the spirit of letting
the data guide us it is more appropriate to study, instead, the following theory:

p(x) = c0 + c1xc2 (6.177)

Except for the dependence on c0, things are no longer so simple: even the c1, which ap-
pears straightforward, is not multiplying a basis function φk(x), but xc2 , which involves an
undetermined parameter. This is a more general model than that in Eq. (6.176).

The fact that c1 and c2 appear in non-trivial combinations is highlighted when you eval-
uate the partial derivatives you’ll need for Eq. (6.169):

∂p(x j)

∂c0
= 1,

∂p(x j)

∂c1
= xc2

j ,
∂p(x j)

∂c2
= c1xc2

j ln x j (6.178)

Now that we have these three derivatives, we can plug them into the right-hand side of
Eq. (6.169) to produce the three nonlinear coupled equations that we need to solve:

f0(c0, c1, c2) =
N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − c0 − c1xc2
j

σ2
j

⎞⎟⎟⎟⎟⎟⎠ = 0

f1(c0, c1, c2) =
N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − c0 − c1xc2
j

σ2
j

⎞⎟⎟⎟⎟⎟⎠ xc2
j = 0

f2(c0, c1, c2) =
N−1∑
j=0

⎛⎜⎜⎜⎜⎜⎝y j − c0 − c1xc2
j

σ2
j

⎞⎟⎟⎟⎟⎟⎠ c1xc2
j ln x j = 0

(6.179)
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Even the first equation, which led to an “easy” partial derivative in Eq. (6.178), contains
nonlinearities in the numerator. The other two equations are even more complicated.

You should understand that when we refer to nonlinearities, we are talking about the
ck’s: this is emphasized by writing the three equations as f0 = f1 = f2 = 0 (where all
three functions are functions of c0, c1, and c2), employing the notation of section 5.4 on
multidimensional root-finding. Keep in mind that x j here refers to input data: the y j’s and
x j’s are known, but the ck’s are unknown. It’s easy to understand that these three coupled
nonlinear equations (each of which involves a sum over 13 terms) could not have been
tackled straightforwardly without the use of a computer. You may be thinking: couldn’t
one simply define variables like S x, S y, and so on, as in Eq. (6.125)? The problem is that
here we cannot introduce such sums that depend only on the input data: the c2-dependent
exponent gets in the way.

One last point: our three equations in Eq. (6.179) involve the measurement errors, σ j’s,
since that’s how we had set up our vanishing-derivative condition of Eq. (6.169). As you
can see from Fig. 6.14, though, this time we were provided only with a set of (x j, y j) points.
What we’ll do is to take σ j = 1 for each data pair: this actually simplifies our equations
in Eq. (6.179). This assumption is equivalent to trusting each data pair the same; as you
can see from Eq. (6.168), it is the uniformity of the variance that matters here: even if we
took σ j = A for some fixed value A, the minimization process is not impacted. Just to
warn you ahead of time, since we are dealing with a nonlinear model and no input errors,
the minimum χ2 we find from Eq. (6.168) will be nowhere near N − n (which in our case
is 13 − 3 = 10).36 That’s not an issue, though, since right now we are not interested in
model selection but in parameter estimation, taking the model in Eq. (6.177) as given. As
usual, while there is much more to be said on the statistical concepts involved in nonlinear
fitting, here we take the practical route of minimizing the χ2, which for our case is simply
minimizing the sum of the squares of the residuals.

Implementation

Since the main part of our calculation will involve solving three nonlinear equations in
three unknowns, we start Code 6.7 by importing functions implementing the Jacobian ma-
trix and Newton’s method from our code multi newton.py from the previous chapter.
As you may recall, jacobian() evaluated the derivatives numerically; multi newton()
used Gaussian elimination to solve a linear system of equations, and terminated when the
vector iterate stopped changing.

In order to avoid the use of global variables,37 we define a function, generatedata(),
which sets up the numpy arrays for the x j’s, y j’s, and σ j’s.38 We just mentioned that for us
all the σ j’s are equal to 1, but we’re still keeping things general: this might help you if you
were to estimate them in some other way later on: you would need to change only a single
function, generatedata(). Similarly, if you were to study another set of data, you would
only have to change this one location in the code.

36 Of course, for a nonlinear model it’s not even obvious that we are dealing with N − n degrees of freedom.
37 This is another case where object orientation would be useful.
38 The larger y j values seem awfully round, making us wonder if we should have trusted all data points equally.



6.6 Project: Testing the Stefan–Boltzmann Law 383

blackbody.py Code 6.7

from multi newton import jacobian, multi newton

import numpy as np

def generatedata():

dataxs = np.array([373.1, 492.5, 733, 755, 799, 820,

877, 1106, 1125, 1403, 1492, 1522, 1561])

datays = np.array([156., 638, 3320, 3810, 4440, 5150,

6910, 16400, 17700, 44700, 57400, 60600, 67800])

datasigs = np.ones(dataxs.size)

return dataxs, datays, datasigs

def model(cs,x):

return cs[0] + cs[1]*x**cs[2]

def fs(cs):

dataxs, datays, datasigs = generatedata()

c0, c1, c2 = cs

resids = datays - model(cs, dataxs)

f0 = np.sum(resids/datasigs**2)

f1 = np.sum(dataxs**c2*resids/datasigs**2)

numers = c1*dataxs**c2*np.log(dataxs)*resids

f2 = np.sum(numers/datasigs**2)

return np.array([f0,f1,f2])

def computechisq(cs):

dataxs, datays, datasigs = generatedata()

chisq = np.sum((datays - model(cs,dataxs))**2/datasigs**2)

return chisq

if name == ‘ main ’:

colds = np.array([-700, 1.26e-8, 6])

cs = multi newton(fs,jacobian,colds,kmax=500,tol=2.e-6)

chisq = computechisq(cs); print(cs); print(chisq)

In the same spirit of producing a separate function for each task, we define a function,
model(), to evaluate our theory, p(x) from Eq. (6.177). This is called in our next function,
fs(), which defines the f0, f1, and f2 we’ll need to pass to multi newton() and which
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it, in its turn, will pass to jacobian(). Since those functions had an interface which knew
nothing about dataxs and so on, we write our fs() in such a way that it produces its own
input data: this means that it doesn’t take them in as parameters, as that would break the
interface of our earlier functions.39 Of course, it is highly inefficient to reproduce the input
data each time fs() is called, but that is the price we are willing to pay in order to maintain
interoperability with our earlier routines. (Plus, for the small-size problem we’re handling
here, it doesn’t really matter.) The core of fs() sets up the three functions in Eq. (6.179);
to do so in a readable manner, we first set up the residuals via calls to model(). As usual,
that function works just as well when the input is a single number or an entire numpy array.
One should be careful not to overinterpret the modularity of our code: while it’s nice that
we have model() at our disposal and don’t need to rewrite it out each time we need it, the
lines of code computing f0, f1, and f2 are implementing Eq. (6.179), which knows that
our model is that of Eq. (6.177). In other words, if you wish to try out a different model,
you will need to modify both model() and fs().

Finally, note that the parameters of the function fs() are called cs, since these are our
unknowns. If you look at our older code in multi newton.py, you should make sure not
to get confused by the fact that it employs xs for the variables: those were the unknowns
there, whereas here the x j’s are simply input values. It is quite gratifying that the imple-
mentation details of that earlier code are not important to us now: if you know how to call
multi newton(), i.e., its interface and the interpretation of its parameters, that is enough.
You could even treat multi newton() as a “black box” of your own making.

We also define another function to compute the χ2, similarly to what we did in Code 6.5.
At this stage, this is only meant to be used for the minimum χ2, after we’ve solved our
three-dimensional nonlinear problem (but keep reading). In the spirit of not repeating
the expression for our model, we call the relevant function when we need to evalute
Eq. (6.177).

The main program starts by writing down an initial guess for the ck’s. If the following
point was not clear to you up to here, it should now be clear: the linear least-squares prob-
lem (say, in the case of the normal equations) was solved using linear-algebra methods, i.e.,
in a number of steps that was known ahead of time. In contradistinction to this, the non-
linear least-squares problem is inherently iterative, in the sense of us not knowing ahead
of time how many iterations we’ll need. Looked at another way, we will be calling the
multidimensional Newton’s method routine, which requires an initial guess to get going.
The question then arises how to pick this initial guess; at this point, textbooks usually state
general facts, e.g., that multidimensional root-finding (or minimization) is tricky business,
so you may not be able to find a solution unless you start sufficiently close to it. That is
certainly true, but it doesn’t help us much in our practical task of deciding what to pass
to Newton’s method as an initial guess. You should experiment with crude guesses like
colds = np.array([1., 2, 3]) and see what happens.

A slightly more systematic way of going about things is to assume the Stefan–Boltzmann
exponent is 4, only to get things going. In other words, you could take the last two data

39 For your own edification, you might wish to investigate the functionality provided by functools.partial().
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points and assume c0 and c1 can be chosen to make the curve go through the points:

c0 + c115224 = 60600, c0 + c115614 = 67800 (6.180)

This gives you c0 ≈ −700 and c1 ≈ 1.26 × 10−8. These values shouldn’t be trusted too
much, but they should be good enough to start with. We could also take the initial c2 to
be 4, but we don’t want to do all the work of Newton’s method for it, so we start with a
guess of 6 to see what happens. It’s already looking like the three parameters will have
very different magnitudes.

As an aside, if you are worried that c0 is non-zero (whereas the Stefan–Boltzmann law
has no offset), don’t be: we are describing the reduced data, which have been manipulated
such that the energy would not go to zero if you extrapolated down to zero temperature.

The output of running this code is:

1 [ -2.83218318e+10 1.25998970e-08 5.94426940e+00] 1.00938366559

...

38 [ -1.51552789e+02 1.25998514e-08 3.98696831e+00] 9.70204845233e-09

[ -1.51552789e+02 1.25998514e-08 3.98696831e+00]

2203474.76723

A few things immediately jump out. First, the converged parameters indeed exhibit very
different orders of magnitude, as was also true of the initial-guess parameters.

Second, as you may recall, Newton’s method prints out the current solution vector as
well as a measure of how much it has changed from the previous iteration. We see that the
solution vector change is not monotonic, taking a few dozen iterations before it finally stops
changing all together (rather suddenly). During those iterations, the c0 takes a tortuous
path, jumping up to huge values and then slowly dropping back down to something of
order 100. All the while, the c1 seems to change barely at all: as a result, its converged
value is essentially the same as what we provided as an initial guess. While we trust that
our back of the envelope calculation in Eq. (6.180) likely gave the right order of magnitude,
it’s hard to believe that it also just happened to give precisely the correct value.

Third, the χ2 that is printed out at the end seems very large, but given that we are dealing
with a nonlinear model with no input errors, we don’t really know what values we should
have been expecting for it, i.e., we don’t know if it’s “bad”. At a qualitative level, the fs()
we have solved are the vanishing-derivative conditions of Eq. (6.179) so, since the iterate
stopped changing, we may be tempted to think that we have, indeed, succeeded in our task
of minimizing χ2.

Further Investigation

As already noted, the converged ck’s are of wildly different magnitudes. Also, while New-
ton’s method seems to have no trouble modifying c0 and c2 on the way to convergence, the
c1 is essentially left untouched. Those two facts are intimately related: as you may recall,
multi newton() calls the function jacobian(), which computes a finite-difference ap-
proximation to the Jacobian. The h employed there was 10−4 by default: clearly, trying to
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�Fig. 6.15 Trying to extract the Stefan–Boltzmann exponent from the data

evaluate a quantity that has a magnitude of 10−8 by taking steps of 10−4 does not seem like
a good idea. The situation, however, is even more complicated than that.

With a view to finding out more about what’s going on, we decide to print out fs(cs)
for the converged ck’s. If we have, indeed, managed to solve the three nonlinear equations,
we expect to find zeros; instead, we find that f0 was successfully solved, but the other two
equations not so much. Given the very different dependences on c1 and c2, as well as the
expectation that their magnitudes are wildly different, this is not too surprising.40 After
all, our termination criterion in Newton’s method was whether or not the iterate keeps
changing, not whether or not all functions have been successfully zeroed out.

Wishing to do better, we recall that c1 was not really optimized in our run of Newton’s
method, staying essentially where it started. This motivates us to study the dependence on
the c1 explicitly; we’d like to vary the converged-c1 by hand.41 We hope that such a study
will also shed some light on the question of how good or bad our minimum χ2 was.

Since the initial guesses from Eq. (6.180) gave the expected order of magnitude, we pro-
duce a grid of c1 values near c1 ≈ 1.26 × 10−8. For a given c1 value we run the entire code,
i.e., attempt to solve the three nonlinear equations, and then evaluate the χ2 for the con-
verged set of ck’s. The initial values of c0 and c2 can be kept frozen. Doing this repeatedly
leads to the left panel of Fig. 6.15: we find a clear dependence of χ2 on the value of (the
converged) c1. Even though each of these runs doesn’t really change c1 from start to finish,
having many of these runs available allows us to draw a clear conclusion that the χ2 is truly
minimized for c1 ≈ 8.3 × 10−9. As an aside, you should realize that what we’re doing here
is quite wasteful: we’re solving three coupled nonlinear equations using Newton’s method,
in an attempt to minimize the χ2, and then minimizing again by hand, by repeating the
entire process. This is a consequence of the specific method we are employing in order to
carry out the steps in this three-parameter space.

Our manual exploration of the dependence on the value of c1 has provided us with insight
on the magnitude of our χ2. From c1 ≈ 1.26 × 10−8 to c1 ≈ 8.3 × 10−9, the χ2 is reduced

40 In improved methods, one scales the relevant quantities to make them have comparable magnitude.
41 In practice, since the initial c1 and the converged c1 are roughly the same, we can vary the former.
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by roughly 6%. In the right panel of Fig. 6.15 we are tracking the converged value of the
exponent, c2, as we vary the c1. The converged c2 is always roughly 4, but the specific
value we get depends (weakly) on c1. A vertical line marks the c1 that minimized the χ2 in
the left panel. For this case, we extract an exponent of roughly 4.04.

Having done a better job at minimizing the χ2, you can once again print out fs(cs).
You’ll find that all three fi’s were brought down by one or two orders of magnitude. They
are still not zero, however, but that’s as well as we can do for now. It’s important not to
take our failure personally, however. We were faced with imperfect measurements, which
did not quantify the imperfections. A more detailed study of the σ j’s can plausibly help
us improve the quality of our solutions. Even so, the main point still stands: minimiz-
ing the χ2 for the Lummer–Pringsheim data led to an exponent of 4.04. Combined with
the uncertainty in our estimate for this parameter, which turns out to be several orders of
magnitude smaller, this is clear experimental evidence for the Stefan–Boltzmann exponent
being (roughly) 4, just as intuited by Stefan and derived by Boltzmann.

6.7 Problems

1. You should compute the determinant of the Vandermonde matrix appearing in Eq. (6.17):

det(X) =
∏
i> j

(xi − x j) (6.181)

The easiest way to show this is via induction. Our result shows that if xi � x j for all
pairs then the determinant is non-zero, and therefore the matrix is non-singular.

2. Produce the two plots in Fig. 6.4. Investigate the ill-conditioning by, first, evaluating
the condition number of the Vandermonde matrix and, second, defining the Chebyshev
points without the minus in front (i.e., in opposite order) and comparing the zoomed-in
plots.

3. Implement Lagrange interpolation without the barycentric formula, i.e., the slow way,
as per Eq. (6.22) and Eq. (6.19).

4. Build intuition on equispaced vs Chebyshev nodes by plotting the cardinal polynomials
for n = 10. What do you observe regarding their magnitude?

5. Use Chebyshev points and Lagrange interpolation for (a) f (x) = esin(20x) (for n = 15
and n = 60), and (b) f (x) = 100(x − 1)3 cos(4(x − 1))e5(x−1) (for n = 7 and n = 15).

6. Implement Lagrange interpolation for the case where the nodes are the roots of Legen-
dre polynomials, given by legroots.py. Plot n = 7 and n = 15 for Runge’s function.

7. We know from Eq. (6.38) that the error of the interpolant at the point x is proportional
to the node-polynomial value (Eq. (6.24)) at that point. It can be formally shown that
Chebyshev nodes minimize the maximum value of the node polynomial. Instead of
following that route, you should plot L(x) for n = 7 and n = 15 for the two choices of
equidistant and Chebyshev nodes and draw the corresponding conclusions.

8. Following techniques similar to those used in section 6.2.3, you should derive the gen-
eral error formula for Hermite interpolation, Eq. (6.50). Specifically, you should start in
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the spirit of Eq. (6.33) and define:

F(x) = f (x) − p(x) − K
n−1∏
j=0

(x − x j)
2 (6.182)

and then follow the rest of the derivation.

9. Imagine we hadn’t introduced Hermite interpolation in the main text. Try to determine
an interpolating polynomial that satisfies the following conditions:

p(0) = 2 p(1) = −5 p′(0) = −5 p′(1) = −8 (6.183)

Then, repeat the calculation using Hermite interpolation, Eq. (6.49).

10. The method of piecewise-linear interpolation is essentially an application of Lagrange
interpolation in each panel, this time not to the second derivative, as in Eq. (6.67), but
to the function itself. Specifically, we have:

sk−1,k(x) = yk−1
xk − x

xk − xk−1
+ yk

x − xk−1

xk − xk−1
(6.184)

where this is to be interpreted as in Eq. (6.51). A moment’s attention will highlight
that this expression is nothing but Eq. (6.70) where we have dropped all the c terms
Implement this in Python for Runge’s function, for n = 7 and n = 15.

11. Implement the monomial three-node spline approach, as per Eq. (6.59), and compare
with the output of splines.py for n = 3. Do this for many x values, leading to an
n = 3 version of the left panel in Fig. 6.7.

12. Instead of using natural splines in Eq. (6.59), you could have implemented clamped
cubic splines, in which the value of the first derivative is externally provided at the ends
of the interval. Implement this and, as in the previous problem, do so for many x values,
leading to the n = 3 version of Fig. 6.7. Take f ′(x0) = 0.1 and f ′(x2) = −0.1 as your
clamped boundary conditions and discuss the effect this choice has.

13. Derive Eq. (6.70); you may choose to employ a symbolic algebra package to help with
the manipulations. While you’re at it, also check for the continuity of the second deriva-
tive, Eq. (6.65), for Eq. (6.70).

14. Produce the right panel in Fig. 6.7. Repeat this exercise for f (x) = |x| − x/2 − x2; do
you understand why Lagrange interpolation is not doing as well?

15. Explicitly use the orthogonality of sines and cosines in the continuous case to prove
Eq. (6.77). Similarly, use the orthogonality of complex exponentials to show Eq. (6.80).

16. Go from the real Fourier series, Eq. (6.76), to the complex Fourier series, Eq. (6.79).

17. Explicitly show the orthogonality of the complex exponentials in the discrete case,
Eq. (6.92); the trick here is to identify a geometric series. Then, use Eq. (6.92) to show
the orthogonality of sines and cosines in the discrete case, Eq. (6.84); simply employ
de Moivre’s formula and write out the real and imaginary parts separately.42

42 As the equation numbers cited here show, in the main text we went in the opposite direction i.e., started with
sines and cosines and then went to complex exponentials.
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18. Carry out trigonometric interpolation, similarly to triginterp.py, but this time for
odd-n. The formulas in Eq. (6.82) and Eq. (6.85) now become:

ak =
2
n

n−1∑
j=0

y j cos kx j, k = 0, 1, . . . ,m

bk =
2
n

n−1∑
j=0

y j sin kx j, k = 1, 2, . . . ,m

p(x) =
1
2

a0 +

m∑
k=1

(ak cos kx + bk sin kx)

(6.185)

where n = 2m + 1. Produce one plot for n = 7 and another one for n = 9.

19. Produce plots like in Fig. 6.9, this time for f (x) = esin x+cos x using n = 6 and n = 8.

20. Reproduce our plots in Fig. 6.9, this time using the “unshifted” discrete Fourier trans-
form, Eq. (6.88) and Eq. (6.94). Also show the imaginary part.

21. For real input data, we can cut the number of required computations in half, because
ỹn−k = ỹ∗k holds. Show this relationship by writing out ỹn−k explicitly.

22. Reproduce our plot in Fig. 6.11 by implementing r(x) from Eq. (6.114).

23. This problem compares the slow DFT with the FFT.

(a) Implement the (shifted) slow DFT of Eq. (6.97).

(b) Carry out timing runs for the slow DFT of the previous part and the fft() function
from fft.py. To make things more systematic, print out runtimes for 29 up to 213

points, using the default timer() function from the timeit module.

24. In our derivation from Eq. (6.103) to Eq. (6.108) we showed how the FFT approach
reduces the 4×4 problem to two 2×2 ones. Write out (by hand) the analogous derivation
for breaking down the 8 × 8 problem into two 4 × 4 ones.

25. This problem builds up to spectral differentiation using the FFT.

(a) We’ll need a routine implementing the inverse FFT. Thankfully, we can simply re-
use the direct FFT. To see this, take the complex conjugate of Eq. (6.99): this shows
that the direct DFT of ỹ∗k divided by n gives you y∗j; taking the complex conjugate
of that then leads to y j. Write a Python function that does this.

(b) To evaluate derivatives, we’ll start with p(x) from Eq. (6.117). If you take the first
derivative of p(x) and then evaluate at the grid points, the cosine term (which has
turned into minus sine) vanishes,43 leading to:

y′j =
1
n

m−1∑
k=0

ikỹkeikx j +
1
n

n−1∑
k=m+1

i(k − n)ỹkei(k−n)x j =
1
n

n−1∑
k=0

ỹ′keikx j (6.186)

To get to the second equality, we employed Eq. (6.83) for the x j (in the second sum)

43 Analogously, when taking the second derivative the cosine term does not vanish at the grid points. Thus,
counterintuitively, the second spectral derivative is not equivalent to taking the first spectral derivative twice.
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and also introduced a new entity, ỹ′k, as follows:

ỹ′k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ikỹk, 0 ≤ k ≤ m − 1

0, k = m

i(k − n)ỹk, m + 1 ≤ k ≤ n − 1

(6.187)

Thus, to implement Eq. (6.186) you simply need the inverse DFT (or inverse FFT)
of ỹ′k, which is defined as per Eq. (6.187). Plot the derivative for n = 8 and n = 128
and draw a conclusion about what’s going on.

26. This problem deals with the covariance between the two parameters of the straight-line
theory. Starting from:

σ2
c0,c1
=

N−1∑
j=0

∂c0

∂y j

∂c1

∂y j
σ2

j (6.188)

show that σ2
c0,c1
= −S x/Δ holds.

27. As sketched near Eq. (6.134), analytically set up the least-squares fit for the model
p(x) = c0 + c1e−x2

.
28. This problem uses the straight-line data of linefit.py. We will employ a quadratic

model, as per Eq. (6.132). You should analytically set up the problem, making it take
the form of Eq. (6.133). Then, code it up in Python.

29. We now wish to generalize the approach of the previous problem to handle cubic, quar-
tic, and so on models. Obviously, doing everything by hand is not the way to go.

(a) You should convert normalfit.py to do general polynomial fitting.
(b) Apply your new code to the straight-line data of linefit.py. Show a plot with the

data, as well as the least-squares fits using polynomials of degrees 2, 3, and 4. Ob-
serve that the third degree gives essentially a straight line, increasing our confidence
in the straight-line fit (whereas the fourth degree appears to be overfitting).

(c) Plot the residuals for the three cases (of polynomials of degrees 2, 3, and 4) and
interpret the results.

30. For the data in normalfit.py, compare the two models already contained there, with
the model p(x) = c0 + c1 sin(x) + c2 sin(2x). Implement Eq. (6.164) to also compute
the standard deviations. Also, code up computechisq() separately, using Eq. (6.137)
instead of Eq. (6.149), and calling phi() as the need arises.

31. This problem studies the quadratic form β = xT Bx.

(a) Take the gradient of β, i.e., ∇β. It is probably a good idea to break everything down
in terms of components.

(b) Now specialize to the case where B is a symmetric matrix.
(c) Your previous result should be of the form ∇β = Cx. Now take the derivative of

this, thereby getting the Hessian of β.

32. This problem studies the condition number for the normal-equations approach:
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(a) Derive Eq. (6.155). To do this, start from:

(A + ΔA)T (A + ΔA)(c + Δc) = (A + ΔA)T b (6.189)

and then follow an approach similar to that of section 4.2 to show that:

‖Δc‖
‖c‖ � κ(A)2 ‖ΔA‖

‖A‖ (6.190)

(b) Compare κ(AT A) and κ(A)2 for a specific ill-conditioned rectangular A.

33. We will now see how QR decomposition can help with the least-squares problem. As-
sume A is a rectangular matrix, of dimension N × n. There exists a generalization of
what we saw in chapter 4, known as the reduced QR decomposition (or sometimes as
the thin QR decomposition): A = QR where Q is an N × n matrix with orthogonal
columns and R is an n × n upper triangular matrix.

(a) Start from the normal equations, Eq. (6.144). Introduce the reduced QR decompo-
sition to derive an n× n system where the left-hand side will be Rc. Take a moment
to observe that this is an upper-triangular system, which can therefore be trivially
solved via back substitution.

(b) Multiply with RT on the left and manipulate the equation such that Q no longer
appears. You have now derived what are known as the seminormal equations. These
are helpful for the case where A is large and sparse and you need to repeat the
calculation for several different b’s; in this scenario you’d rather avoid producing
and using Q (which can be dense) each time.

34. This problem deals with the covariance between two parameters in the normal-equations
(linear) least-squares fitting problem. Starting from:

σ2
ci,cl
=

N−1∑
j=0

∂ci

∂y j

∂cl

∂y j
σ2

j (6.191)

show that σ2
ci,cl
= Vil holds.

35. In the spirit of section 6.6.1, come up with analytical manipulations that will allow you
to determine the parameters of the models p(x) = 1/(c0x + c1) and p(x) = c0x/(x + c1)
using only straight-line fitting.

36. This problem addresses Maxwell’s result for the radiation pressure, P = E/3. While
Maxwell carried out his derivation using only electromagnetic fields, it is easier to start
from the kinetic theory of a gas of photons. For N non-interacting particles in a volume
V and in thermodynamic equilibrium at temperature T , the pressure P obeys:

PV =
∑

j

px, jvx, j (6.192)

where p is the momentum, v is the velocity, and x, j refers to the x component of the
j-th particle. Apply this expression to photons to derive Maxwell’s result.44

44 If you’re familiar with the covariant formulation of Maxwell electrodynamics, note that P = E/3 can be
straightforwardly derived from the vanishing of the trace of the electromagnetic stress-energy tensor.
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37. In this problem we relate the energy density of black-body radiation, E, to the energy
emitted per unit area per second, I. We see that the energy in the volume element d3r
is Ed3r. The fraction of this energy that passes through an elementary area at angle θ is
cos θ/(4πr2). Thus, by integrating cos θ E d3r/(4πr2) in the upper hemisphere (φ from
0 to 2π, θ from 0 to π/2, and r from 0 to c), you should show that I = cE/4.

38. Re-derive Boltzmann’s Eq. (6.175) starting from the Planck distribution:

Eν =
8πhν3

c3

1
ehν/kBT − 1

(6.193)

and integrating over all (positive) frequencies ν; this gives you an expression for b.
Combining this with the result of the previous problem, I = cE/4, you can also find an
expression for σ from Eq. (6.171).

39. Write Python code that produces the two plots in Fig. 6.15.
40. We now re-do the fits to the Lummer–Pringsheim data.

(a) Use the theory of Eq. (6.176), i.e., the one with no offset. Take the logarithm on
both sides, do a straight-line fit, and then translate back to the original quantities.

(b) Again, use the theory of Eq. (6.176). This time, manually determine the c0 for
which χ2 is minimized (using a modified version of blackbody.py) and then find
the corresponding c1. If the value of the c1 doesn’t agree with that from the previous
part, check the variance (in the previous part).

(c) Use the theory p(x) = c0xc1 − c0290c1 , which is inspired by Lummer and Pring-
sheim’s manipulations. Again, manually determine the c0 for which χ2 is minimized
and then find the corresponding c1.



Integrals 7
Integ

For human beings there is no greater evil than necessary chance.
Sophocles

7.1 Motivation

We now turn to numerical integration, also known as quadrature. At a big-picture level, it’s
good to keep in mind that in numerical integration “throwing more points at the problem”
typically pays off; it is common that one can provide the answer for a definite integral
(approximately) to within machine precision.

7.1.1 Examples from Physics

In the spirit of starting each chapter with appropriately motivated problems, we now discuss
a few integrals that pop up in different areas of physics.

1. Electrostatic potential away from a uniformly charged rod
Our first (quasi-random) example comes from classical electromagnetism. When calcu-
lating the electrostatic potential at a distance d away from (the start of) a finite uniformly
charged rod, we are faced with the calculation:

V =
∫

kdq
r
=

∫ a

0

kλdx
√

x2 + d2
=

∫ a

0

kλdx

d
√(

x
d

)2
+ 1

(7.1)

where λ is the linear density of electric charge and a is the length of the rod. Changing
variables to y = x/d and assuming a/d = 1, leads to the integral:

Φ =

∫ 1

0
dx

1
√

x2 + 1
(7.2)

where we re-named the dummy integration variable y back to x. This integral can be
evaluated analytically: substitute x = tan θ and then take w = tan θ + sec θ. The answer
turns out to be:

Φ = ln(x +
√

x2 + 1)
∣∣∣∣∣1
0
= ln(1 +

√
2) ≈ 0.881 373 587 019 542 . . . (7.3)

Here, the indefinite integral happens to be an inverse hyperbolic sine. We will employ
this example in what follows, for the sake of concreteness.

393
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2. Maxwell–Boltzmann distribution for the velocities
While it’s not totally trivial to come up with such substitutions, you could always use
a symbolic math package or even a table of integrals. However, in some cases there
may be no simple analytical answer. A well-known example appears in the theory of
statistical mechanics. Take the Maxwell–Boltzmann distribution for the velocities of an
ideal gas (in one dimension):

P(vx) =

√
βm
2π

e−βmv2
x/2 (7.4)

where vx is the velocity and the temperature is hidden inside β = 1/kBT . If we’re
interested in the probability of particles having velocities from, say, −A to A, then the
integral we need to evaluate can be recast as:

I =
∫ A

−A
P(vx)dvx =

1
√

2π

∫ A
√
βm

−A
√
βm

e−x2/2dx (7.5)

The answer here cannot be expressed in terms of elementary functions (instead, this is
precisely the definition of the error function, erf(A

√
βm). This is important enough that

it bears repeating: the indefinite integral of a simple Gaussian cannot be expressed in
terms of elementary functions.1

3. Statistical mechanics starting from elementary degrees of freedom
There is a case where simple analytical evaluation or standard numerical quadrature
methods both fail: multidimensional integrals. For example, the (interaction part of the)
classical partition function of a gas of n atoms is:

Z =
∫

d3r0d3r1 . . . d
3rn−1e−βV(r0,r1,...,rn−1) (7.6)

Here, β = 1/kBT is the inverse temperature and V(r0, r1, . . . , rn−1) contains the in-
teractions between particles (or with external fields). This is clearly a 3n-dimensional
integral, evaluating which analytically (or via numerical quadrature) is hopeless for all
but the smallest values of n.

7.1.2 The Problem to Be Solved

More generally, the task of quadrature is to evaluate
∫ b

a
f (x)dx, for a function f (x) which

may look like that in Fig. 7.1. Numerical integration at its most fundamental consists of
approximating a definite integral by a sum, as follows:

∫ b

a
f (x)dx ≈

n−1∑
i=0

ci f (xi) (7.7)

1 If we take the limit A→ ∞, then we can carry out the integral analytically: this gives
√

2π and therefore I = 1.
This is a very important integral, which you will re-encounter in the problem set.
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The definite integral is the area under the curve, when x goes from a to b �Fig. 7.1

Here, the xi are known as the nodal abscissas and the ci are known as the weights. Note
that the i runs from 0 to n − 1, so we are dealing with n abscissas (and n weights) in total.

Such quadrature methods (and much of this chapter) can be divided into two large cat-
egories. First, we have closed methods, where the endpoints of our interval (a and b) are
included as abscissas (xi). Of the approaches we discuss below, the trapezoid and Simp-
son’s methods are closed. Second, we have open methods, where the endpoints of our
interval (a and b) are not included as abscissas (xi). Of the approaches we discuss below,
the midpoint method and Gaussian quadrature are open. Most categorizations are too neat
and this one is no exception: there exists a third category, namely the case of half-open
methods, where one of the endpoints of our interval (a or b) is not included in the abscissas
(xi). Of the approaches we discuss below, the rectangle method is half-open. It’s easy to
see that open or half-open methods are to be preferred in the case where the integrand has
a singularity at an endpoint.

Above, we mentioned several integration methods by name, grouping them according to
whether or not they are closed, open, or half-open. In practice, it is much more common to
group them, instead, according to a different criterion, namely whether they are:

• Newton–Cotes methods: these make the assumption that the integral can be approxi-
mated by summing up the areas of elementary shapes (e.g., rectangles); such methods
typically involve equally spaced abscissas: these are useful (if not necessary) when
f (x) has already been evaluated at specific points on a grid.

• Gaussian quadrature: these make use of unequally spaced abscissas: these methods
choose the xi in such a way as to provide better accuracy. As a result, they typically
require fewer abscissas and therefore fewer function evaluations, making them an
attractive option when an f (x) evaluation is costly.

Keep in mind that some of the Newton–Cotes methods we discuss below (e.g., the rectangle
rule) don’t, strictly speaking, require equally spaced abscissas (e.g., we could have adjacent
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rectangles of different widths), but in all that follows we will only use points on an equally
spaced grid for Newton–Cotes methods, reserving unequally spaced abscissas for Gaussian
quadrature methods.

A large part of our discussion of Newton–Cotes and Gaussian quadrature methods will
involve a study of the errors involved; this will allow us to introduce adaptive integration
(section 7.3), wherein one quantifies the error in the integration even when the analytical
answer is not known (which in practice is usually the case). A similar idea is involved in
Romberg integration (section 7.4), which combines a low-order approach with Richardson
extrapolation, to produce a more accurate answer. The second half of the chapter will focus
on multidimensional integration, for which Newton–Cotes and even Gaussian quadrature
methods are typically too inefficient. This will allow us to introduce the important subject
of Monte Carlo integration, also known as stochastic integration, which employs random
numbers; this is also used in the Project that rounds out this chapter.

You may be wondering why the present chapter, on integration, comes much later in the
book than chapter 3 on numerical differentiation. The answer is that we will be using a lot
of the machinery developed in earlier chapters, most notably our infrastructure on inter-
polation from chapter 6 and on root-finding from chapter 5. Since this is the penultimate
chapter of the book, we assume the reader has developed some maturity from working
through the earlier material. Similarly, our codes will use numpy functionality repeatedly,
which we had opted against in chapter 3.

7.2 Newton–Cotes Methods

As already noted, Newton–Cotes methods evaluate the integral as a sum of elementary ar-
eas (rectangles, trapezoids, etc.). In this book, we use Newton–Cotes methods that employ
an equally spaced grid: this is similar (nay, identical) to what we saw in chapter 3, when we
examined derivatives for points on a grid in section 3.3.6. As a reminder, the assumption is
that we have access to a set of n discrete data points (i.e., a table) of the form (xi, f (xi)) for
i = 0, 1, . . . , n − 1. The points xi are on an equally spaced grid, from a to b. The n points
then are given by the following relation:

xi = a + ih (7.8)

where, as usual, i = 0, 1, . . . , n − 1. The h is clearly given by:

h =
b − a
n − 1

(7.9)

Recall that we are dealing with n points in total, so we are faced with n − 1 subintervals
from a to b. As always, we are using the terms subinterval and panel interchangeably. (A
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final reminder, which will come in handy later in this chapter: you may want to introduce
a new variable containing the number of panels, N = n − 1, in which case h = (b − a)/N;
then, the i in xi would go from 0 to N, since we have N + 1 = n points in total.)

For each of the several methods covered here, we will first start out with a version
of the answer for a small problem (e.g., for one panel, an approximation to the integral∫ xi+1

xi
f (x)dx). This includes a graphic interpretation as well as an appropriately motivated

formula. In each case, we then turn to what is known as the composite formula, which
is nothing other than a sum of all the “small-problem” answers like

∫ xi+1

xi
f (x)dx and is

thereby an approximation to the integral
∫ b

a
f (x)dx. That is then followed by an expres-

sion for the approximation error made by employing that specific composite formula. In
three cases (rectangle, trapezoid, Simpson’s methods) we also provide a derivation of the
expression for the error as well as a full Python implementation.

7.2.1 Rectangle Rule

We start with the one-panel version of the rectangle rule; it may help to periodically look
at Fig. 7.2 while reading. For the one-panel version, we are interested in approximating∫ xi+1

xi
f (x)dx. The rectangle rule makes the simplest assumption possible, namely that the

area under f (x) from xi to xi+1 can be approximated by the area of a rectangle, with width
h (the distance from xi to xi+1) and height given by the value of f (x) either at xi or at xi+1.
An equivalent way of seeing this is that the rectangle rule approximates f (x) as a constant
from xi to xi+1, namely a straight (horizontal) line: this means that instead of evaluating the
area under the curve it evaluates the area under that straight line.

Let’s provide a formula for this before we elaborate further. The analytical expression
for the one-panel version of the rectangle rule is simply:

∫ xi+1

xi

f (x)dx ≈ h f (xi) (7.10)

As noted, we’ve taken the distance from xi to xi+1 to be fixed, given by Eq. (7.9).
Implicit both in the figure and in the formula above is an assumption, which is easier to

elucidate in a specific case. Take the figure, which illustrates the case of five points (and
therefore four panels), namely n = 5, and focus on any one of the rectangles. Observe we
have determined the height of the rectangle as the value of f (x) at the left abscissa, namely
f (xi). This can be referred to as the left-hand rectangle rule. We could just as easily have
taken the height of the rectangle as the value of f (x) at the right abscissa, namely f (xi+1),
giving rise to the right-hand rectangle rule.

We now turn to the approximation for the total integral from a to b, namely
∫ b

a
f (x)dx.

This is nothing other than the sum of all the one-panel rectangle areas, giving rise to the
composite version of the rectangle rule:
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�Fig. 7.2 Composite version of rectangle rule (left) and midpoint rule (right)

∫ b

a
f (x)dx =

n−2∑
i=0

∫ xi+1

xi

f (x)dx

≈ h f (x0) + h f (x1) + h f (x2) + · · · + h f (xn−2) (7.11)

The first line is simply taking the sum and the second line has plugged in the one-panel
expression from Eq. (7.10). We can translate this result into the language of weights ci

from Eq. (7.7). The answer is ci = h{1, 1, . . . , 1, 0}, namely, the weights are all equal to h,
except for the endpoint at b, where the weight is zero: the rectangle formula is half-open,
as it doesn’t include one of the two endpoints. 2

The result in the second line of Eq. (7.11) brings to mind the definition of the Riemann
integral: the difference is that here we are taking h as fixed by n, i.e., we are not taking the
limit of h→ 0 (even if we later try out a larger n, we will never take the actual limit). This is
similar to what we saw in section 3.3 on derivatives: the simplest finite-difference formula
is just the definition of the derivative, without the limit. One main difference, however, is
that in that case making the h smaller led to problems (due to catastrophic cancellation),
whereas this won’t be an issue for integration.

Error Analysis

We start from a discussion of the approximation error in the one-panel version of the rect-
angle formula, Eq. (7.10). Take the Taylor expansion of f (x) around xi:

f (x) = f (xi) + (x − xi) f ′(xi) + · · · (7.12)

2 Note that the sum in Eq. (7.7) goes from 0 to n − 1 whereas the sum in Eq. (7.11) goes from 0 to n − 2.
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If we stop at first order, we can rewrite this expression as:

f (x) = f (xi) + (x − xi) f ′(ξi) (7.13)

where, as usual, ξi is a point between xi and x.
To belabor the obvious: in the previous section, when introducing the rectangle rule, we

were dealing with a constant approximation to f (x), not with a Taylor series. Thus, in that
section we took it for granted that f (x) could be approximated as being a constant from xi

to xi+1, whereas now we are Taylor expanding the actual function f (x), which in general
is much more complicated than a simple constant (this is why in what follows we carry
around a first derivative, which in general is non-zero).

We now integrate this Taylor series from xi to xi+1 to find:∫ xi+1

xi

f (x)dx =
∫ xi+1

xi

dx
[
f (xi) + (x − xi) f ′(ξi)

]
(7.14)

where the last term will turn out to be the error term for us. This integral is easy enough
that it can be evaluated by hand, but in the interest of establishing the notation for coming
sections, we define a helper variable:

u =
x − xi

h
(7.15)

Expressed in terms of u, the integral from xi to xi+1 becomes:∫ xi+1

xi

f (x)dx = h
∫ 1

0
du

[
f (xi) + hu f ′(ξi)

]
= h f (xi) +

1
2

h2 f ′(ξi) (7.16)

In the second equality we evaluated the integral over u. Comparing this result with the
one-panel version of the rectangle formula, Eq. (7.10), we find that the absolute error in
the one-panel rectangle formula is:

Ei =
1
2

h2 f ′(ξi) (7.17)

where we introduced the notation Ei for the error incurred by approximating one panel.3

We now turn to a discussion of the approximation error in the composite version of the
rectangle formula, Eq. (7.11). Just like in the first line of Eq. (7.11), we will evaluate the
absolute error for the full interval by summing up all the subinterval contributions:

E =
n−2∑
i=0

Ei =
1
2

h2 (
f ′(ξ0) + f ′(ξ1) + f ′(ξ2) + · · · + f ′(ξn−2)

)

=
n − 1

2
h2

(
f ′(ξ0) + f ′(ξ1) + f ′(ξ2) + · · · + f ′(ξn−2)

n − 1

)
=

n − 1
2

h2 f ′(ξ) (7.18)

If you’re uncomfortable with the first equality, you could instead take Eq. (7.16) and sum all

3 Note that in chapter 2 we defined the absolute error as “approximate minus exact”, Δx = x̃ − x, see Eq. (2.5).
Our definition of the absolute error in this chapter conforms to standard practice and differs by an overall
minus sign, which is why we’re using a different symbol, E, to denote it.
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the panels separately: this will clearly show that the subinterval error contributions simply
add up. In the second equality we plugged in the result for Ei from Eq. (7.17). In the third
equality we multiplied and divided with n − 1, which is the number of terms in the sum.
In the fourth equality we identified the term in the parentheses as the arithmetic mean and
remembered from elementary calculus that there exists a ξ (from a to b) for which f ′(ξ)
is equal to the arithmetic mean of f ′. Combining the last result with our definition of h in
Eq. (7.9), recast as (n − 1)h = b − a, we find our final result for the absolute error in the
composite rectangle formula:

E = b − a
2

h f ′(ξ) (7.19)

A point that will re-emerge below: it is wrong to infer from Eq. (7.19) that E = ch where
c is a constant, since f ′(ξ) is actually not independent of h (this will become crystal clear
in section 7.2.4). If we do assume that c is a constant, then we will draw the conclusion
that the error in the composite rule is O(h): this is actually correct, if you interpret it as
giving the leading error. Another pattern that will re-emerge below: the leading error in
the composite rule (O(h) here) is worse by one degree compared to the elementary-interval
error (O(h2) here); we say “worse” because for small h we have h2 < h.

7.2.2 Midpoint Rule

We now briefly turn to an improved rule, which is surprisingly similar to the rectangle
rule. As expected, we start with the one-panel version; it may help to keep the right panel
of Fig. 7.2 in mind. The midpoint rule makes the same assumption as the rectangle rule,
namely that the area under f (x) from xi to xi+1 can be approximated by the area of a
rectangle, with width h (the distance from xi to xi+1) and height given by the value of
f (x). The only difference is that the midpoint rule uses the value of f (x) not at the left
or at the right, but at the midpoint of the panel. In other words, just like for the rectangle
rule, the midpoint rule approximates f (x) as a constant from xi to xi+1, namely a straight
(horizontal) line: instead of evaluating the area under the curve it evaluates the area under
that straight line. Again, not a great assumption but, as we’ll soon see, one that works
much better than the rectangle rule. The analytical expression for the one-panel version of
the midpoint rule is:

∫ xi+1

xi

f (x)dx ≈ h f

(
xi +

h
2

)
(7.20)

Thinking about the composite version of the midpoint rule, we realize there’s a problem
here: we would need f (x) evaluated at xi + h/2; if all we have is a table of the form
(xi, f (xi)) for i = 0, 1, . . . , n−1, then we simply don’t have access to those function values.
This is another way of saying that we cannot really translate our result into the language of
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weights ci from Eq. (7.7), since here we are not evaluating the function at the grid points.
Incidentally, you should have realized by now that the midpoint formula is open, since it
doesn’t include either of the two endpoints. A problem guides you toward the following
approximation error in the one-panel version of the midpoint formula:

Ei =
1
24

h3 f ′′(ξi) (7.21)

Similarly, adding up all the one-panel errors gives us the final result for the absolute error
in the composite midpoint formula:

E = b − a
24

h2 f ′′(ξ) (7.22)

7.2.3 Integration from Interpolation

Both the rectangle rule and the midpoint rule approximated the area under f (x) from xi to
xi+1 in the simplest way possible, namely by the area of a rectangle. The natural next step
is to assume that the function is not approximated by a constant, i.e., a horizontal line, from
xi to xi+1, but by a straight line, a quadratic, a cubic, and so on. In other words, we see the
problem of interpolation, studied extensively in chapter 6, emerge here.

It should be straightforward to see that one panel, made up of two consecutive abscissas,
is enough to define a general straight line (i.e., not necessarily a flat, horizontal line). Simi-
larly, two panels, made up of three consecutive abscissas, can “anchor” a quadratic, and so
on. This is precisely the problem Lagrange interpolation solved, see section 6.2.2. In the
language of the problem we are now faced with, we have as input a table of q data points
(xi+ j, f (xi+ j)) for j = 0, 1, . . . , q− 1 and wish to find the interpolating polynomial that goes
through them. For q = 2 we get a straight line, for q = 3 a quadratic, and so on. Make sure
you keep the notation straight: q = 3 leads to the three abscissas xi, xi+1, and xi+2.

Thus, for a given approach the elementary interval will depend on the value of q: for
q = 2 the elementary interval has a width of one panel, for q = 3 of two panels, for q = 4
of three panels, and so on.4 More generally, for the case of q points in the elementary
interval we wish to approximate the integral:∫ xi+q−1

xi

f (x)dx (7.23)

The way we do this in general is to employ an interpolating polynomial as per Eq. (6.22):

p(x) =
q−1∑
j=0

f (xi+ j)Li+ j(x) (7.24)

4 We use q for an elementary interval and n, as before, for the composite case, i.e., for the full interval.
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Since our nodes go from xi to xi+q−1, the cardinal polynomials Li+ j(x) take the form:

Li+ j(x) =

∏q−1
k=0,k� j(x − xi+k)∏q−1

k=0,k� j(xi+ j − xi+k)
, j = 0, 1, . . . , q − 1 (7.25)

which is simply a translation of Eq. (6.19) into our present notation. Once again, make sure
to disentangle the notation: for q = 4 we have Li(x), Li+1(x), Li+2(x), Li+3(x), each of which
is a cubic polynomial. The points they are interpolating over are xi, xi+1, xi+2, and xi+3.

Using p(x), Newton–Cotes methods in an elementary interval are cast as:

∫ xi+q−1

xi

f (x)dx ≈
∫ xi+q−1

xi

p(x)dx =
q−1∑
j=0

(
f (xi+ j)

∫ xi+q−1

xi

Li+ j(x)dx

)
=

q−1∑
j=0

wi+ j f (xi+ j)

(7.26)

We plugged in Eq. (7.24) and then defined the weights for the elementary interval:

wi+ j =

∫ xi+q−1

xi

Li+ j(x)dx (7.27)

The crucial point is that these weights depend only on the cardinal polynomials, not on the
function f (x) that is being integrated. Thus, for a given q, implying an elementary interval
with a width of q−1 panels, these weights can be evaluated once and for all, and employed
to integrate any function you wish, after the fact.

Before seeing the details worked out, let us make a general comment: by focusing on an
elementary interval and employing a low-degree polynomial in it, in essence what we’re
doing in Eq. (7.26) is piecewise polynomial interpolation and then integration of each
interpolant. This is completely analogous to what we did in section 6.3. Interpolation on
an equally spaced grid suffers from serious issues, but focusing on a few points at a time
and integrating in elementary intervals mostly gets rid of these problems.

7.2.4 Trapezoid Rule

It may help to look at the left panel of Fig. 7.3 in what follows, but keep in mind that it
is showing the composite version of the trapezoid rule, whereas we will, as before, first
discuss our new rule in its elementary-interval version.

The previous discussion may be too abstract, so let us make it tangible. We start from
the case of q = 2, giving rise to what is known as the trapezoid rule.5 We have the two

5 Strangely enough, this is typically called the trapezoidal rule. But we don’t say rectangular rule, do we? More
importantly, the rule itself is most certainly not shaped like a trapezoid. How could it? It’s a rule. Note that
we’re not being pedantic here. A purist would point out that Proclus introduced the term trapezoid to denote
a quadrilateral figure no two of whose sides are parallel. The same purist would insist that this be called the
trapezium rule and would cringe were anyone to refer to it as the trapeziform rule.
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Composite version of trapezoid rule (left) and Simpson’s rule (right) �Fig. 7.3

points (xi, f (xi)) and (xi+1, f (xi+1)) and the two cardinal polynomials from Eq. (7.25):

Li(x) =
x − xi+1

xi − xi+1
= − x − xi+1

h
, Li+1(x) =

x − xi

xi+1 − xi
=

x − xi

h
(7.28)

We can immediately evaluate the two elementary weights from Eq. (7.27):

wi =

∫ xi+1

xi

Li(x)dx = −1
h

∫ xi+1

xi

(x − xi+1) dx =
h
2

wi+1 =

∫ xi+1

xi

Li+1(x)dx =
1
h

∫ xi+1

xi

(x − xi) dx =
h
2
= wi

(7.29)

where we used the fact that xi+1 = xi + h. It’s worth noting at this point that the sum of
weights in the one-panel version of the trapezoid rule is h (h/2 for the point at xi and h/2
for the point at xi+1). This is actually a general result, which you will show in a problem:
for any Newton–Cotes integration rule, the sum of all the weights is equal to the width of
the elementary interval. Here the elementary interval is simply one panel, so the sum of
the weights is h. We will see more examples of this below.

Taking these elementary weights and plugging them into Eq. (7.26) leads to the one-
panel version of the trapezoid rule:

∫ xi+1

xi

f (x)dx ≈ h
2

[ f (xi) + f (xi+1)] (7.30)

which merely reiterates the fact that each of the two points making up our elementary
interval gets the same weight, h/2.

We now turn to the approximation for the total integral from a to b, namely
∫ b

a
f (x)dx.

This is nothing other than the sum of all the one-panel trapezoid areas, giving rise to the
composite version of the trapezoid rule:
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∫ b

a
f (x)dx =

n−2∑
i=0

∫ xi+1

xi

f (x)dx

≈ h
2

f (x0) + h f (x1) + h f (x2) + · · · + h f (xn−3) + h f (xn−2) +
h
2

f (xn−1)

(7.31)

The first line is simply taking the sum; the second line has plugged in the one-panel ex-
pression from Eq. (7.30) and grouped terms together: each intermediate term is counted
twice, so the 2 in the denominator cancels there. It is now trivial to translate this result into
the language of weights ci from Eq. (7.7). The answer is simply:

ci = h

{
1
2
, 1, . . . , 1,

1
2

}
(7.32)

namely, the weights are all equal to h, except for the endpoints, where the weight is h/2;
the trapezoid formula is closed, meaning that it includes both endpoints.6 Note, finally, that
we have been careful to use different symbols for the weights in an elementary interval and
for the overall Newton–Cotes weights: the former are denoted by wi+ j and the latter by ci.

Just to avoid confusion, we observe that the trapezoid rule may approximate a function
by a sequence of straight lines, but that’s not something you need to worry about when
using the rule: Eq. (7.31) is the composite trapezoid rule so you could, if you want, forget
about where it came from. (Remember: the composite rule is made up of many trapezoids,
whereas the one-panel version, of a single trapezoid.)

Error Analysis

In a problem, you are asked to carry out an error analysis for the trapezoid rule by gen-
eralizing what we did for the rectangle rule in an earlier section. However, since we just
introduced the trapezoid rule using the Lagrange-interpolation machinery, it makes sense
to turn to the latter for guidance on the error behavior.

As you may recall, in section 6.2.3 we derived a general error formula for polynomial
interpolation, Eq. (6.38). For the present case of q = 2 this takes the form:

f (x) − p(x) =
1
2!

f ′′(ξi)(x − xi)(x − xi+1) (7.33)

Integrating this difference from xi to xi+1 will then give us the error in the one-panel version
of the trapezoid rule. We have:

Ei =

∫ xi+1

xi

(
1
2

f ′′(ξi)(x − xi)(x − xi+1)

)
dx =

1
2

f ′′(ξi)
∫ xi+1

xi

(x − xi)(x − xi+1)dx (7.34)

This might seem like an improper thing to do: after all, the ξ in Eq. (6.38) implicitly

6 Note that the sum in Eq. (7.7) goes from 0 to n − 1 whereas the sum in the first line of Eq. (7.31) goes from 0
to n − 2, but each term in that sum includes both f (xi) and f (xi+1), as per Eq. (7.30).
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depended on the placement of the nodes. However, you can use the extended version of
the integral mean-value theorem: this is justified because (x − xi)(x − xi+1) has a constant
sign in our interval. If you then do the integral in the last step and, once again, employ the
fact that xi+1 = xi + h, you find the following absolute error in the one-panel trapezoid
formula:

Ei = −
1
12

h3 f ′′(ξi) (7.35)

Thus, the leading term in the error for the one-panel case is O(h3).
We now turn to a discussion of the approximation error in the composite version of the

trapezoid formula, Eq. (7.31). Just like in the first line of Eq. (7.31), we will evaluate the
absolute error for the full interval by summing up all the subinterval contributions:

E =
n−2∑
i=0

Ei = −
1
12

h3 (
f ′′(ξ0) + f ′′(ξ1) + f ′′(ξ2) + · · · + f ′′(ξn−2)

)

= −n − 1
12

h3

(
f ′′(ξ0) + f ′′(ξ1) + f ′′(ξ2) + · · · + f ′′(ξn−2)

n − 1

)
= −n − 1

12
h3 f ′′(ξ) (7.36)

In the second equality we simply plugged in the result for Ei from Eq. (7.35). In the third
equality we multiplied and divided with n− 1, which is the number of terms in the sum. In
the fourth equality we identified a ξ (from a to b) for which f ′′(ξ) is equal to the arithmetic
mean of f ′′. Combining the last line with our definition of h in Eq. (7.9), we find our final
result for the absolute error in the composite trapezoid formula:

E = −b − a
12

h2 f ′′(ξ) (7.37)

Observe that this error contains a second derivative, so for polynomials of up to first degree,
the composite trapezoid rule is exact. Since we derived the trapezoid rule by approximating
f (x) by straight lines, this isn’t really surprising. This approximation error, O(h2), is of the
same order as the approximation error of the midpoint rule, Eq. (7.22). As a matter of fact,
in absolute value, the error in the midpoint rule, Eq. (7.22), is smaller by a factor of 2 than
the error in the trapezoid rule, Eq. (7.37). This is quite interesting: the midpoint rule uses
a cruder shape (a rectangle) than the trapezoid one, but manages to be more accurate, by
using the midpoint instead of the endpoints of each panel. Of course, that is at the price of
not employing the function values at the grid points, f (xi).

Beyond the Leading Error

It is wrong to infer from Eq. (7.37) that E = ch2 where c is a constant, since f ′′(ξ) is
actually not independent of h. The question then arises if we can do better, i.e., if we can
quantify the error to higher orders. This will turn out to be a very fruitful avenue: section 7.4
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will essentially rely on the behavior of the trapezoid error beyond the leading term. Thus,
it is important to investigate the trapezoid-rule error in more detail.

Help comes from a (somewhat) unexpected place: in a problem in chapter 2 we intro-
duced Bernoulli numbers and the Euler–Maclaurin summation formula, Eq. (2.120):7∫ 1

0
g(t)dt =

g(0)
2
+

g(1)
2
−

m∑
j=1

1
(2 j)!

B2 j

[
g(2 j−1)(1) − g(2 j−1)(0)

]
+ R (7.38)

where the B2 j’s are Bernoulli numbers and the R is the higher-order error term, given in
terms of an integral over a Bernoulli polynomial. We wish to use this equation to get guid-
ance on the behavior of the trapezoid rule. With that in mind, we make the transformation
x = xi + ht and take g(t) = f (x) = f (xi + ht). From this definition, together with the chain
rule, we find for the first derivative g′(t) = f ′(x)h, and similarly g(k)(t) = f (k)(x)hk for
higher derivatives. Putting everything together, the one-panel integral of f (x) becomes:∫ xi+1

xi

f (x)dx = h
∫ 1

0
g(t)dt =

h
2

( f (xi)+ f (xi+1))−
m∑

j=1

1
(2 j)!

B2 j[ f (2 j−1)(xi+1)− f (2 j−1)(xi)]h
2 j

(7.39)
where we dropped the R term, since we’re only interested in establishing the order pattern
beyond the leading term. The first term on the right-hand side already matches the one-
panel version of the trapezoid rule, Eq. (7.30). This means that we’ve already computed
the one-panel error, Ei, beyond leading order.

Instead of focusing on the one-panel result, we will press on: adding together all the
one-panel expressions, as in Eq. (7.31) above, we find:∫ b

a
f (x)dx =

h
2

f (x0) + h f (x1) + h f (x2) + · · · + h f (xn−3) + h f (xn−2) +
h
2

f (xn−1)

−
m∑

j=1

1
(2 j)!

B2 j

[
f (2 j−1)(b) − f (2 j−1)(a)

]
h2 j (7.40)

where on the first line we identify the trapezoid-rule approximation to the integral; on the
second line we are happy to see the “intermediate” series all cancel; this is a version of a
telescoping series,8 only this time each term that cancelled was a sum over j. In the end,
we’re left with a single sum over derivative values at the endpoints of our integral, only.

Plugging in the values of the first few Bernoulli numbers, which you computed in the
chapter 2 problem, the absolute error in the trapezoid rule to all orders takes the form:

E = − h2

12
[
f ′(b) − f ′(a)

]
+

h4

720
[
f ′′′(b) − f ′′′(a)

]
− h6

30 240

[
f (5)(b) − f (5)(a)

]
+

h8

1 209 600

[
f (7)(b) − f (7)(a)

]
+ · · · (7.41)

7 If you didn’t solve that problem, and therefore would prefer not to rely on it, you can solve a problem in the
present chapter, which guides you toward proving our main result in Eq. (7.41) “by hand”.

8 We encountered another telescoping series in a problem in chapter 4.
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This is a significant formula, which tells us several things. We see, first, that the error
of the trapezoid rule contains only even powers in h and, second, that the coefficient of
each h2 j term depends only on a difference of derivative values at the endpoints. The latter
point means that the error is not impacted by the behavior of the derivatives at interme-
diate points. We will return to the first point when we introduce Romberg integration in
section 7.4 and to the second point in our discussion of analytical features in section 7.6.

7.2.5 Simpson’s Rule

As you may have guessed, Simpson’s rule is the natural continuation of the Lagrange-
interpolation process we saw above; it uses q = 3 in an elementary interval, namely the
three abscissas xi, xi+1, and xi+2. The trapezoid rule fit a straight line through two points, so
Simpson’s rule fits a quadratic through three points (making up two panels); in a problem,
you are asked to employ “naive”, i.e., monomial, interpolation, but here we will capitalize
on the infrastructure developed in chapter 6. It may help to look at the right panel of Fig. 7.3
from here onward; this shows the case of four panels, i.e., two elementary intervals each
of which has width 2h.

We are dealing with three points (xi, f (xi)), (xi+1, f (xi+1)), and (xi+2, f (xi+2)), and three
cardinal polynomials from Eq. (7.25):

Li(x) =
(x − xi+1)(x − xi+2)
(xi − xi+1)(xi − xi+2)

Li+1(x) =
(x − xi)(x − xi+2)

(xi+1 − xi)(xi+1 − xi+2)

Li+2(x) =
(x − xi)(x − xi+1)

(xi+2 − xi)(xi+2 − xi+1)

(7.42)

Each of these is a quadratic polynomial. We would now like to compute the three elemen-
tary weights; as you can see from Eq. (7.27), this will require integrating from xi to xi+2,
i.e., in an elementary interval. In order to streamline the evaluation of these integrals, we
define a helper variable:9

u =
x − xi+1

h
(7.43)

and notice that the denominators in Eq. (7.42) are simply −h, −2h, h, and so on. Then, the
elementary weights from Eq. (7.27) are:

wi =

∫ xi+2

xi

Li(x)dx =
h
2

∫ 1

−1
du u(u − 1) =

h
3

wi+1 =

∫ xi+2

xi

Li+1(x)dx = −h
∫ 1

−1
du (u + 1)(u − 1) =

4h
3

wi+2 =

∫ xi+2

xi

Li+2(x)dx =
h
2

∫ 1

−1
du (u + 1)u =

h
3

(7.44)

9 This is similar to what we did when deriving the leading error in the rectangle rule, Eq. (7.15), only this time
we employ the midpoint of our elementary interval in the numerator, xi+1.
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Taking these elementary weights and plugging them into Eq. (7.26) leads to the two-panel
version of Simpson’s rule:

∫ xi+2

xi

f (x)dx ≈ h
3

[
f (xi) + 4 f (xi+1) + f (xi+2)

]
(7.45)

As we observed when introducing the one-panel version of the trapezoid rule in Eq. (7.30),
we notice that the sum of all the weights in this elementary interval is (1 + 4 + 1)h/3 = 2h,
consistent with the fact that the elementary interval in this case has width 2h.

We now turn to the approximation for the total integral from a to b, namely
∫ b

a
f (x)dx.

This is nothing other than the sum of all the two-panel elementary areas, giving rise to the
composite version of Simpson’s rule:

∫ b

a
f (x)dx =

n−3∑
i=0,2,4,...

∫ xi+2

xi

f (x)dx

≈ h
3

f (x0) +
4h
3

f (x1) +
2h
3

f (x2) + · · · + 2h
3

f (xn−3) +
4h
3

f (xn−2) +
h
3

f (xn−1)

(7.46)

The first equality is simply taking the sum, but this time we’re careful since we’re moving
in steps of 2h: this is why the sum over i goes in steps of 2 and ends at n − 3 (so the last
xi+2 can be xn−1, which is our last point). The second equality has plugged in the two-panel
expression from Eq. (7.45) and grouped terms together: each intermediate term is counted
twice, so we go from h/3 to 2h/3 for those points. It is now trivial to translate this result
into the language of weights ci from Eq. (7.7). The answer is simply:

ci =
h
3
{1, 4, 2, 4 . . . , 2, 4, 1} (7.47)

namely, the weights for the two endpoints are h/3, for each “middle” point the weight is
4h/3, whereas the intermediate/matching points get a weight of 2h/3 as already mentioned.
Obviously, Simpson’s formula is closed, as it includes both endpoints.

Here’s a very important point that was implicit up to here: to use Simpson’s rule, you
have to use an even number of panels. This is because the “elementary interval” version
gives us the two-panel answer:

∫ xi+2

xi
f (x)dx. We actually took this fact for granted in the

right panel of Fig. 7.3, which shows the case of n = 5 points and therefore four panels. We
used n = 5 in the earlier methods, too, but there this was by choice, since those methods
could use an even or an odd number of panels and work just fine. To summarize this
significant point, Simpson’s rule requires an even number of panels and therefore an odd
number of points n.
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Error Analysis

The natural next step would be to generalize our error analysis for the trapezoid rule, lead-
ing up to Eq. (7.35), for the case of Simpson’s rule. You are guided toward such an analysis
using the general interpolation error formula, Eq. (6.38), in one of the problems. Here we
will follow a different route: we will carry out the error analysis for Simpson’s rule by em-
ploying a Taylor-series approach, similarly to what we did for the rectangle rule starting in
Eq. (7.12). Since Simpson’s rule is a more accurate method, we’ll have to keep more terms
in the Taylor series expansion this time.

As usual, we start from the elementary interval, namely from the two-panel version of
Simpson’s rule in Eq. (7.45). Taylor expanding f (x) around xi+1 gives us:

f (x) = f (xi+1) + (x − xi+1) f ′(xi+1) +
1
2

(x − xi+1)2 f ′′(xi+1)

+
1
6

(x − xi+1)3 f ′′′(xi+1) +
1

24
(x − xi+1)4 f (4)(ξi+1) (7.48)

where we have stopped at fourth order; as usual, ξi+1 is a point between xi+1 and x (we’re
calling it ξi+1, instead of ξi, for purely aesthetic reasons). We wish to integrate this Taylor
series from xi to xi+2: to make this calculation easier, we employ u, the helper variable from
Eq. (7.43). Expressed in terms of u, the integral from xi to xi+2 becomes:∫ xi+2

xi

f (x)dx = h
∫ 1

−1
du

[
f (xi+1) + hu f ′(xi+1) +

1
2

h2u2 f ′′(xi+1)

+
1
6

h3u3 f ′′′(xi+1) +
1

24
h4u4 f (4)(ξi+1)

]
= 2h f (xi+1) +

1
3

h3 f ′′(xi+1) +
1

60
h5 f (4)(ξi+1) (7.49)

where, crucially, the third-derivative term cancelled. We’re not done yet. The first term
on the last line of our result contains 2h f (xi), which looks different from the two-panel
version of Simpson’s formula, Eq. (7.45). In order to make further progress, we will plug
in an approximation for the second derivative term f ′′(xi+1). We get this from Eq. (3.39):

f ′′(xi+1) =
f (xi) + f (xi+2) − 2 f (xi+1)

h2
− h2

12
f (4)(ξi+1) (7.50)

where we assumed x = xi+1 and took the liberty of writing f (xi+1) instead of f (xi + h) (and
f (xi+2) instead of f (xi + 2h)). We also dropped all higher-order terms (at the cost of using
ξi+1 in the last term): the actual error term came from Eq. (3.31) with h→ 2h.10

Now, plugging our result for f ′′(xi+1) from Eq. (7.50) into our expression for the two-
panel integral, Eq. (7.49), we find:∫ xi+2

xi

f (x)dx = 2h f (xi+1) +
1
3

h3

[
f (xi) + f (xi+2) − 2 f (xi+1)

h2
− h2

12
f (4)(ξi+1)

]

+
1
60

h5 f (4)(ξi+1)

10 Strictly speaking, this ξi+1 is different from the one in the Taylor expansion Eq. (7.49). However, even if we
used a different symbol for it now, the end result would be the same, so we don’t bother.
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=
h
3

[
f (xi) + 4 f (xi+1) + f (xi+2)

] − 1
90

h5 f (4)(ξi+1) (7.51)

If you’re troubled by this, you should observe that the next term in the finite-difference
expansion would be proportional to h4 which, together with the h3 outside the brackets
would give a h7; we drop this, since it’s of higher order than our leading error.

We’re now happy to see that this result loooks exactly like the two-panel version of
Simpson’s formula, Eq. (7.45), with the addition of the absolute error in the two-panel
Simpson’s formula:

Ei = −
1
90

h5 f (4)(ξi+1) (7.52)

Thus, the leading term in the two-panel error is O(h5).
We now turn to a discussion of the approximation error in the composite version of

Simpson’s formula, Eq. (7.46). Just like in the first line of Eq. (7.46), we will evaluate the
absolute error for the full interval by summing up all the elementary contributions:

E =
n−3∑

i=0,2,4,...

Ei = −
1
90

h5
(

f (4)(ξ1) + f (4)(ξ3) + f (4)(ξ5) + · · · + f (4)(ξn−2)
)

= − (n − 1)/2
90

h5

(
f (4)(ξ1) + f (4)(ξ3) + f (4)(ξ5) + · · · + f (4)(ξn−2)

(n − 1)/2

)
= −n − 1

180
h5 f (4)(ξ)

(7.53)

In the second equality we plugged in the result for Ei from Eq. (7.52). In the third equality
we multiplied and divided with (n − 1)/2, which is the number of terms in the sum. In the
fourth equality we employed a ξ (from a to b) for which f (4)(ξ) is equal to the arithmetic
mean of f (4). Combining the last expression with our definition of h, we find our final result
for the absolute error in the composite Simpson’s formula:

E = −b − a
180

h4 f (4)(ξ) (7.54)

Observe that this error contains a fourth derivative, so for polynomials of up to third degree,
the composite Simpson’s rule is exact. Given what we know about Simpson’s rule, this
is surprising: we found that this method is exact for all cubic polynomials, even though
we derived it using a quadratic polynomial (remember when the third-derivative term in
Eq. (7.49) vanished?). This approximation error, O(h4), is much better than any of the
other quadrature errors we’ve encountered up to this point (e.g., midpoint or trapezoid). We
will offer some advice below on which integration method you should choose in general;
for now, we note that if you’re not dealing with poorly behaved functions (which may
have Taylor series that behave improperly, in the sense of having successive terms grow in
magnitude) Simpson’s is a good method.
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Table 7.1 Features of selected Newton–Cotes methods in an elementary interval

Method Panels Polynomial Weights Absolute error

Rectangle 1 Constant h 1
2 h2 f ′(ξi)

Trapezoid 1 Straight line h
2 (1, 1) − 1

12 h3 f ′′(ξi)

Simpson’s 1/3 2 Quadratic h
3 (1, 4, 1) − 1

90 h5 f (4)(ξi)

Simpson’s 3/8 3 Cubic 3h
8 (1, 3, 3, 1) − 3

80 h5 f (4)(ξi)

Boole 4 Quartic 2h
45 (7, 32, 12, 32, 7) − 8

945 h7 f (6)(ξi)

7.2.6 Summary of Results

It shouldn’t be hard to see how this process continues: we keep raising the power of the
polynomial used to approximate f (x) in an elementary interval and hope for the best. Using
a cubic polynomial to approximate the function within the elementary area gives rise to
Simpson’s 3/8 rule11 (which needs three panels) and, similarly, using a quartic polynomial
in the four-panel problem leads to Boole’s rule. These are totally straightforward, so you
are asked to implement them in the problem set. As you learned in the previous chapter,
this process cannot go on ad infinitum: interpolation using high-degree polynomials on an
equally spaced grid will eventually misbehave.

What we have so far, however, already allows us to notice a pattern: a Newton–Cotes
method that requires an even number of panels as an elementary interval gives the exact
answer for the full interval a to b for polynomials of one degree higher than the number
of panels in that elementary interval (e.g., Simpson’s rule needs two panels and is exact
for polynomials up to third degree, whereas Boole’s rule needs four panels and is exact for
polynomials up to fifth degree). On the other hand, Newton–Cotes methods that contain
an odd number of panels in an elementary interval are exact for the full interval a to b for
polynomials of the same degree as the number of panels in that elementary interval (e.g.,
the trapezoid rule uses one panel and is exact for polynomials up to first degree, whereas
Simpson’s 3/8 rule needs three panels and is exact for polynomials up to third degree).12

Since we’ve introduced a fair number of Newton–Cotes formulas, exploring the under-
lying approximation (e.g., quadratic polynomial), the weights involved, as well as the error
behavior, it might be helpful to produce a compendium of the most important results, see
Table 7.1. In this table “panels” refers to the number of panels included in an elementary
interval; “polynomial” is referring to the order of the polynomial used to approximate the
function in each elementary interval; the “weights” here are the coefficients of the func-
tion values in an elementary interval; the “absolute error” is Ei, i.e., the error only in one

11 Simpson’s rule from Eq. (7.46) is sometimes called “Simpson’s 1/3 rule” because the first weight is 1/3 (times
h). As you can imagine, “Simpson’s 3/8 rule” employs different weights. Given the popularity of “Simpson’s
1/3 rule” it is often called simply “Simpson’s rule”.

12 We further observe that all the closed formulas we’ve seen (trapezoid, the two Simpson’s rules, and Boole’s
rule) have an error coefficient that is negative, whereas the half-open or open methods (rectangle and midpoint
rules) have an error coefficient that is positive.
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elementary interval; as a result, the powers of h shown are one degree higher than those of
the composite rules (e.g., the composite trapezoid error is O(h2) whereas the elementary
trapezoid error listed here is O(h3)).

7.2.7 Implementation

We are now in a position to implement the composite rectangle rule, Eq. (7.11), the com-
posite trapezoid rule, Eq. (7.31), as well as the composite Simpson’s rule, Eq. (7.46). To
make things tangible, we will evaluate the integral giving the electrostatic potential in
Eq. (7.2), where we know the answer analytically. An implementation is given in Code 7.1.

Our grid of abscissas xs is the one from Eq. (7.8). The only exception is in the function
rectangle(), where we don’t include xn−1 (also known as b) in the sum. Note that if we
were really efficiency-oriented, we would have stored neither the xi nor the f (xi): we would
have simply summed the latter up. Instead, we are here opting for a more reader-friendly
solution, as usual. We don’t separately multiply each f (xi) with h, as per Eq. (7.11): instead
of having several multiplications, we simply factor the h out and have only one multiplica-
tion at the end. We didn’t bother storing the weights ci in a separate array, since they’re so
straightforward. Turning to the trapezoid() function: the main difference here is that we
are now explicitly storing the weights ci in a separate array, in order to avoid any bookkeep-
ing errors (and for ease of reading). The first and last elements of the array have weight h/2
and all other ones are h (where we again multiply with h only at the end, to avoid roundoff
error creep). You should observe that we are using a numpy array for the weights cs that
contains n elements and similarly an array for the grid points xs that also contains n ele-
ments. The implementation of Simpson’s rule involves slightly more subtle bookkeeping:
we distinguish between odd and even slots (and use different values for the two endpoints
at a and at b). Our function does not check to see if n is odd, so would give wrong answers
if employed for an even value of n.

The output of running this code is:

0.88137358702

0.884290734036 0.881361801848 0.881373587255

Thus, for n = 51 points, the absolute error for: (a) the rectangle rule is in the third digit
after the decimal point, (b) the trapezoid rule is in the fifth digit after the decimal point, and
(c) Simpson’s rule is in the tenth digit after the decimal point. Remember: for 51 points,
we have h = 0.02 (the error in the rectangle rule being O(h)), while h2 = 0.0004: since the
error in the trapezoid rule is O(h2), we have an improvement of two orders of magnitude.
Similarly, the error in Simpson’s rule is O(h4); h4 = 1.6 × 10−7, but there’s also a 180 in
the denominator of Eq. (7.54).

We now decide to employ this code for many different values of h (or, equivalently, of
n). The result is shown in Fig. 7.4. Note that the x axis is showing n on a logarithmic
scale, whereas the corresponding figure in the chapter on derivatives, Fig. 3.2, had h on a
logarithmic scale. (In other words, here as the grid gets finer we are moving to the right,
whereas in the derivatives figure a finer grid meant moving to the left.)
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newtoncotes.py Code 7.1

import numpy as np

def f(x):

return 1/np.sqrt(x**2 + 1)

def rectangle(f,a,b,n):

h = (b-a)/(n-1)

xs = a + np.arange(n-1)*h

fs = f(xs)

return h*np.sum(fs)

def trapezoid(f,a,b,n):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

cs = np.ones(n); cs[0] = 0.5; cs[-1] = 0.5

contribs = cs*f(xs)

return h*np.sum(contribs)

def simpson(f,a,b,n):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

cs = 2*np.ones(n)

cs[1::2] = 4; cs[0] = 1; cs[-1] = 1

contribs = cs*f(xs)

return (h/3)*np.sum(contribs)

if name == ‘ main ’:

ans = np.log(1 + np.sqrt(2))

print(ans)

for integrator in (rectangle, trapezoid, simpson):

print(integrator(f, 0., 1., 51), end=" ")

You should interpret this figure as follows: a decrease in the absolute error (moving down
the y axis) means we’re doing a good job; moving to the right on the x axis means we’re
adding more points. Let us start from discussing the rectangle-rule results: we see that this
is a pretty slow method, as the absolute error for this formula decreases only very slowly.
Even when using a million points, the absolute error is ≈10−7, which is quite large. Even so,
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�Fig. 7.4 Log-log plot resulting from the rectangle, trapezoid, and Simpson’s rules

it’s worth observing that the rectangle-rule results fall on a straight line, implying that we
are only witnessing the approximation error here, not any roundoff error. In other words,
as n gets larger by an order of magnitude, the absolute error gets smaller by an order of
magnitude: recall that for this approach the approximation error is O(h). You should keep
in mind Eq. (7.9), which tells us that h = (b − a)/(n − 1).

The results for the trapezoid rule are analogous: as n gets larger by an order of mag-
nitude, the absolute error gets smaller by two orders of magnitude: for this approach the
approximation error is O(h2). This process doesn’t seem to have reached a minimum: we
simply stopped after roughly a million points, where the absolute error is ≈10−14.

The results for Simpson’s (1/3) rule are not that strange, either: as n gets larger by an
order of magnitude, the absolute error gets smaller by roughly four orders of magnitude:
recall that for this approach the approximation error is O(h4). This process is so fast that
after about 1000 points or so we have reached a minimum absolute error of ≈10−16, which
is as good as we’re going to get. After that, we run up against numerical roundoff issues,
so as n is increased beyond that point the absolute error wobbles.13

7.3 Adaptive Integration

In the previous section we examined the absolute error by comparing the output of each
Python function (corresponding to a quadrature rule) with the analytically known answer
for the integral. However, there are going to be (several) situations where you cannot eval-
uate an integral analytically, so it will be impossible to quantify the absolute error in this
manner.
13 It’s worth observing that in Fig. 3.2 the central-difference formula (crudely speaking the analogue to the

trapezoid rule) reached a minimum absolute error of ≈10−10, which is four orders of magnitude worse than
what we found for the trapezoid rule in Fig. 7.4.
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In practice we are often faced with a very different problem: we know that we can only
tolerate an answer that is accurate to at least, say, 10 decimal places, and are now wondering
which n to pick and whether or not we should trust our answer. One solution to this problem
is to keep increasing the number of points n by hand and seeing if the answer appears
to be converging toward a given value. This is fine for simple “back of the envelope”
calculations, but for dependable answers there should be a way of automating this entire
process. This can be done as part of what is called adaptive integration: you provide your
function, the region where you want it integrated, and your error tolerance; your method
then determines the optimal n (without needing to inform you of this) and gives you a value
for the integral along with an estimate of how accurate it is.

7.3.1 Doubling the Number of Panels

As usual, our task is to evaluate
∫ b

a
f (x)dx, which we now call I for ease of reference. In

the present section, it will be helpful to keep in mind both the number of points n and the
number of panels N = n − 1 separately. We will now examine elementary consequences
of the error analyses for the rectangle, trapezoid, and Simpson’s rules that we discussed
above. Regardless of which quadrature method we employ, we denote the result for the
value of the integral IN when using N panels. We also modify our notation on the panel
width: as per Eq. (7.9), we define:

hN =
b − a

N
(7.55)

The only differences are that we now use the number of panels N in the denominator
(instead of using n − 1) and that we called the panel width hN , to ensure that we keep
track of which width we’re talking about. For example, the estimate for our integral will
be called I16 for the case of N = 16 panels (for which we have n = N + 1 = 17 points),
making use of panel width h16; similarly, I128 for the case of N = 128 panels (for which
we have n = N + 1 = 129 points), making use of panel width h128.

We will now focus on what happens when we start from a given panel number N and
then change the panel number to N′ = 2N. We’re simply doubling the panel number, but
it will turn out to be convenient for us to use a new variable (N′) to denote the new panel
number. This is almost too trivial to write out explicitly but, just in case, here’s how we can
relate the new panel width hN′ to the old panel width hN :

hN′ =
b − a

N′
=

b − a
2N

=
1
2

b − a
N
=

hN

2
(7.56)

This isn’t rocket surgery: doubling the number of panels, you halve the panel width.
We will now see what happens to the error as we go from N panels to N′ panels. In

essence, we are doing (for a given integration rule) two calculations of the integral, one
giving IN and one giving IN′ . To keep things manageable, we will only study Simpson’s
rule, leaving the analogous derivation for the rectangle and trapezoid rules as a problem.

Using our new notation, we know that to leading order in the error, the total absolute
error for a Simpson’s-rule calculation with N panels is EN = ch4

N , as per Eq. (7.54); as
above, c actually depends on hN , but we here take it to be constant. This means that our



416 Integrals

estimate for the value of I when employing N panels can be related to its total absolute
error as follows:

I = IN + ch4
N (7.57)

This is nothing other than Eq. (7.54), but this time using our new notation. Similarly, we
can apply the same equation to the case of N′ = 2N panels.:

I = IN′ + ch4
N′ (7.58)

Equating the right-hand sides of the last two equations gives us:

IN + ch4
N = IN′ + ch4

N′ (7.59)

which can be manipulated to give:

IN′ − IN = ch4
N − ch4

N′ (7.60)

If we now plug in our result from Eq. (7.56), recast as hN = 2hN′ , this gives us:

IN′ − IN = 15ch4
N′ (7.61)

But we already know that EN′ = ch4
N′ for Simpson’s rule. Thus, we have been able to derive

an expression for EN′ in terms of the two results IN and IN′ :

EN′ =
1

15
(IN′ − IN) (7.62)

This is good news: it means that we’ve been able to provide an estimate of the accuracy
of our result IN′ by using IN′ itself (a calculation for N′ panels) and IN (a calculation for
N panels). We’ve managed to provide a quantitative estimate of our ignorance, without
knowing the correct answer ahead of time.

Something analogous ends up holding for the trapezoid rule:

EN′ =
1
3

(IN′ − IN) (7.63)

and for the rectangle rule:

EN′ = IN′ − IN (7.64)

as you will explicitly show. The only difference is in the denominator. Incidentally, a larger
number in the denominator means that our absolute error is smaller: this is as it should be,
since Simpson’s rule is the most accurate method of the three.

7.3.2 Thoughts before Implementing

First, what do we do if going from N to N′ = 2N panels doesn’t give us an absolute error
that is small enough for our purposes? The answer is simple: we double again, and keep
doing so until we have reached the accuracy we want. Notation-wise, you can envision
schemes where you label the different iterations as Ni or something like that, but from a
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programming perspective it’s probably just easier to use N and N′ = 2N and then keep
renaming your variables.

Second, how do we pick the starting value of N? This isn’t too big a deal, either: simply
start with any value you want (if you’re using Simpson’s rule, make sure that’s an even
number) and double it to N′ = 2N as described above. If you start with N too small, you
might take too long (for your purposes) to meet your error tolerance. If you start with an N
that is too large, you might be wasting your time if EN′ is already much smaller than you
need.

Third, you should keep in mind that our integration routines were written in terms of n
(the number of points), not N (the number of panels). Thus, if you want to calculate IN and
IN′ using those routines you should make sure to pass in n and n′ instead of N and N′. This
is quite straightforward to do, too: for our starting value, we simply have N = n − 1, so
we pass in n = N + 1. When we double the number of panels, N′ = 2N, we don’t quite
double the number of points.14 We simply carry out this elementary bookkeeping exercise:
N′ = 2N combined with N = n − 1 and N′ = n′ − 1 leads to:

n′ = 2n − 1 (7.65)

As a trivial check, note that if n is odd, this expression gives an n′ that is also odd.

7.3.3 Implementation

Code 7.2 is a Python implementation of an adaptive integrator. There are quite a few things
to unpack here. First of all, note that the main program produces ans, the analytically
known answer, but only so that we may print it out and compare at the end, i.e., this is not
used anywhere inside the function we are defining.

Observe that we are employing a dictionary, using function names as the keys. Since
functions are first-class objects in Python, we can use them as we would any other en-
tity. This allows us to select a denominator value according to which integrating function
is passed in as an argument when we call adaptive()! This is an incredibly powerful
idiom: notice how the rest of the code simply uses integrator(), i.e., the code looks
the same whether we want to create an adaptive integrator for the rectangle, trapezoid, or
Simpson’s rules (except for the value of the denominator). To appreciate how nice this is,
you should try to implement your own version without looking at this solution: if you’re
still a beginner, you will likely end up having a cascade of if and elif, the bodies of
which are carrying out the same operations by a different name. This is an invitation for
trouble if, e.g., you later want to modify the algorithm, include an extra integrator, etc.

This code is making use of the for-else idiom, as usual; we set the return value to
None if we are unsuccessful in determining the answer. Speaking of the error tolerance, our
program sets that (arbitrarily) to 10−12. We use a relative error (εN′), not an absolute one
(EN′ ). This is in order to make sure that we always conserve roughly 11 or 12 significant
figures, but don’t try to accomplish the impossible.

As you will see when you run this code, the rectangle rule fails to reach an absolute

14 This would be an especially egregious mistake for Simpson’s rule, since we need to start with an odd number
of points n and also end up with an odd number of points n′.
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Code 7.2 adaptive.py Code 7.2

from newtoncotes import f, rectangle, trapezoid, simpson

import numpy as np

def adaptive(f,a,b,integrator,kmax = 20,tol = 1.e-12):

functodenom = {rectangle:1, trapezoid:3, simpson:15}
denom = functodenom[integrator]

n = 2

val = integrator(f,a,b,n)

for k in range(kmax):

nprime = 2*n-1

valprime = integrator(f,a,b,nprime)

err = abs(valprime-val)/denom

err /= abs(valprime)

print(nprime, valprime, err)

if err<tol:

break

n, val = nprime, valprime

else:

valprime = None

return valprime

if name == ‘ main ’:

ans = np.log(1 + np.sqrt(2))

print(ans); print("")

for integrator in (rectangle, trapezoid, simpson):

print(adaptive(f, 0., 1., integrator)); print("")

error below our tolerance (thus returning None), even after doubling the number of panels
20 times. This is consistent with what we saw in Fig. 7.4: for a million points, the rectangle
rule has an absolute error of order ≈10−7. The output for the trapezoid rule is analogous: we
reach our tolerance levels with a bit over a quarter of a million points, just like in Fig. 7.4.
Things are also fully analogous for Simpson’s rule: 257 points (i.e., 256 panels) are enough
to get the tiny absolute error we desire, highlighting the superiority of Simpson’s rule.15

This output also serves to provide justification for our earlier claims, around Fig. 7.4,

15 You shouldn’t put too much faith in the Simpson’s rule error bar for n = 3, as it follows from the Simpson’s
n = 2 answer and we already know that we should never apply Simpson’s rule for an even number of points.
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about the order-of-magnitude behavior of the error as h is decreased. For example, Simp-
son’s rule (which never gets up to 1000 points) jumps by more than four orders magnitude
when the number of panels goes from roughly 10 to roughly 100.

Before concluding, we note that here we have only presented a simple choice for an
adaptive integration scheme: keep doubling the number of panels, until the answer for the
integral has an acceptable error. In the implementation above, we throw away our earlier
calculations, but in the problem set you will see how to be less wasteful. In any case, we
have to keep re-doing the integral from a to b again and again. Another scheme might be

to divide the interval a to b in two: we then have two separate integrals,
∫ (a+b)/2

a
f (x)dx and∫ b

(a+b)/2
f (x)dx, to carry out; however, we can take the tolerance in each subinterval to be

one-half of the total desired tolerance. If that’s not good enough, we further sub-divide, and
continue doing this until we reach our desired sub-tolerance in each subinterval. This would
be an especially good idea for a function that changes a lot in one region and is “boring” in
another region; there’s no point in doubling the number of your panels everywhere if you’ve
already done a good enough job in a region where it’s easy to integrate the function.

7.4 Romberg Integration

We now turn to the topic of Romberg integration, which results from the combination of
the composite trapezoid rule together with Richardson extrapolation. The latter was first
introduced in section 3.3.7, where we proceeded to apply it to the problem of estimating
derivatives via finite differences. Here we do much the same, this time applied to numerical
integration. Some of the equations that follow will be very similar to what we saw in
section 7.3.1, when we were doubling the number of panels in the context of adaptive
integration.

7.4.1 Richardson Extrapolation

We start from summarizing our earlier results from section 3.3.7 on Richardson extrapola-
tion. The task there was to evaluate the quantity G. We made the assumption that the error
term could be written as a sum of powers of h:

G = g(h) + Ahp + Bhp+q +Chp+2q + · · · (7.66)

where A, B,C are constants, p denotes the order of the leading error term, and q is the
increment in the order for the error terms after that. The main idea behind Richardson
extrapolation was to apply Eq. (7.66) twice, once for a step size h and once for a step size
h/2. This gave us:

G =
2pg

(
h
2

)
− g(h)

2p − 1
+ O(hp+q) (7.67)

Thus, starting from a formula with a leading error of O(hp), we used two calculations (one
for a step size h and once for a step size h/2) and managed to eliminate the errorO(hp). This
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meant that we were left with a formula that has error O(hp+q). At the time, we observed
that this process could be repeated: by starting with two calculations each of which has
error O(hp+q), one can arrive at an answer with error O(hp+2q), and so on. We will soon
carry out precisely such a repetition.

Before we do that, we first re-express the main result of Richardson extrapolation in the

language of integrals, using our new notation. Our task is to evaluate I =
∫ b

a
f (x)dx. The

result for the value of the integral is IN when using N panels. Remember that the panel
width for this case is simply:

hN =
b − a

N
(7.68)

As above, we are interested in what happens when we start from a given panel number N
and then change the panel number to N′ = 2N. We saw in Eq. (7.56) that the new panel
width hN′ can be trivially related to the old panel width hN , via hN′ = hN/2. Thus, the
Richardson-extrapolated estimate, as per Eq. (7.67), can be rewritten as:

I =
2pIN′ − IN

2p − 1
+ O(hp+q

N ) (7.69)

where, as always, N′ = 2N. This applies to a method for which the leading error goes as
hp

N : the extrapolation cancels that leading term, leaving us with an error of hp+q
N .

In the spirit of being fully explicit, let us apply Eq. (7.69) for a few specific cases, which
will come in handy in the next subsection. First, we examine the case of the trapezoid rule,
where the absolute error behaves as:

E = c2h2
N + c4h4

N + c6h6
N + · · · (7.70)

as per Eq. (7.41). In this case, Eq. (7.69) gives us:

I =
22IN′ − IN

22 − 1
+ O(h4

N) =
4
3

IN′ −
1
3

IN + O(h4
N) (7.71)

where N′ = 2N. Since the leading error goes as hp
N , we have p = 2. Using two estimates,

each of which has an error of order O(h2
N), we end up with an estimate with error O(h4

N).
Second, imagine we were dealing with a situation where the absolute error behaves as:

E = c4h4
N + c6h6

N + c8h8
N + · · · (7.72)

In this case, Eq. (7.69) gives us:

I =
24IN′ − IN

24 − 1
+ O(h6

N) =
16
15

IN′ −
1

15
IN + O(h6

N) (7.73)

where N′ = 2N. Since the leading error goes as hp
N , we have p = 4; employing two

estimates with error of order O(h4
N), we get an estimate with error O(h6

N).
Third, imagine we were dealing with a situation where the absolute error behaves as:

E = c6h6
N + c8h8

N + c10h10
N + · · · (7.74)
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In this case, Eq. (7.69) gives us:

I =
26IN′ − IN

26 − 1
+ O(h8

N) =
64
63

IN′ −
1

63
IN + O(h8

N) (7.75)

where N′ = 2N. Since, the leading error goes as hp
N , here we have p = 6. Thus, using two

estimates with error O(h6
N), we end up with an estimate with error O(h8

N).

7.4.2 Romberg Recipe

Romberg integration amounts to using the trapezoid rule along with Richardson extrapo-
lation. As discussed in the previous subsection, Richardson extrapolation involves dou-
bling the number of panels, just like we did when discussing adaptive integration. In
short, we will combine (a small number of) actual trapezoid-rule integrations with repeated
Richardson-extrapolation steps. We note at this early stage that Romberg integration will
give disappointing results when our function (or its derivatives) exhibits pathological be-
havior. Instead, we will only study here our standard example, which does not suffer from
such problems.

Romberg integration uses some new notation, which can be confusing if you’re not pay-
ing close attention. The confusion may arise from the fact that the Romberg approach
involves some trapezoid rule results and some extrapolated results. In order to keep these
distinct, we will be very explicit in our derivation in what follows. Start from a trapezoid-
rule calculation that uses one panel. This was denoted by I1 in the previous section. Intro-
duce the new notation R0,0 = I1: as a mnemonic, think of this as your starting point in two
axes (which will be explained soon) the numbering for which starts at 0, as usual. This R0,0

is the result of a real calculation, not an extrapolation (it’s simply the trapezoid-rule result
for one panel I1). In order to carry out a Richardson extrapolation, we will need another
“raw” calculation. Take the case of the trapezoid-rule result for two panels, denoted by I2.
Introduce the new notation R1,0 = I2. Importantly, our new Ri, j entity has two indices, and
we’ve only increased the value of the first one. This will continue to be the case below
every time we carry out a new trapezoid-rule computation: whenever we carry out a new
trapezoid rule step the first index in Ri,0 will go up by one and the second index will be 0.

Now that we have access to the two trapezoid-rule results R0,0 and R1,0 (which we used
to call I1 and I2) we can carry out a Richardson-extrapolation step. The situation we’re
faced with is identical to what we were facing in the “first case” in the previous subsection.
We have at our disposal two results with errors that go as c2h2+c4h4+c6h6+ · · · so we can
apply Richardson extrapolation in the form of Eq. (7.71). Since we’re already introducing
new notation, let’s keep at it. We call the result of this first extrapolation step R1,1:

R1,1 =
22R1,0 − R0,0

22 − 1
=

4
3

R1,0 −
1
3

R0,0 (7.76)

In this definition, we don’t include the error term. Note how the second index on the left-
hand side increased by one. This will continue to happen below: whenever we carry out a
Richardson-extrapolation step the second index in Ri, j will go up by one.

Our situation can be conveniently recast using matrices. Our two trapezoid-rule results
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belong in the same column (the 0th one, since they both have the second index set to 0):⎛⎜⎜⎜⎜⎜⎜⎝R0,0

R1,0

⎞⎟⎟⎟⎟⎟⎟⎠ (7.77)

As we saw in Eq. (7.76), carrying out a Richardson extrapolation allows us to move into a
new column: ⎛⎜⎜⎜⎜⎜⎜⎝R0,0

R1,0 R1,1

⎞⎟⎟⎟⎟⎟⎟⎠ (7.78)

Importantly, both elements in the 0th column had a leading error term of the form O(h2),
so they allowed us to produce a new estimate with a leading error term of the form O(h4),
placed in the 1st column.

At this point, we decide to produce yet another “raw” calculation, namely the trapezoid-
rule result for four panels, denoted by I4 in the previous section. Since this is a new trape-
zoid result, we increase the first index in Ri,0 and store R2,0 = I4, obtaining:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0,0

R1,0 R1,1

R2,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7.79)

It is still the case that all the results in the 0th column have an error of O(h2). However, that
means that we are now free to perform yet another Richardson extrapolation: instead of
combining R0,0 and R1,0 (which gave us R1,1 above), we combine R1,0 and R2,0, to produce
an answer which we store in R2,1:

R2,1 =
22R2,0 − R1,0

22 − 1
=

4
3

R2,0 −
1
3

R1,0 (7.80)

As our notation clearly shows, this new value belongs in the 1st column. It goes under R1,1

and has an error O(h4) just like that value. But we now realize that we have access to two
values in the 1st column, R1,1 and R2,1, each of which has a leading error of O(h4). The
situation we’re faced with is identical to the “second case” in the previous subsection. We
have at our disposal two results with errors that go as c4h4 + c6h6 + · · · so we can apply
Richardson extrapolation in the form of Eq. (7.73):

R2,2 =
24R2,1 − R1,1

24 − 1
=

16
15

R2,1 −
1

15
R1,1 (7.81)

where you should observe that by combining two estimates with error O(h4) we have pro-
duced a new estimate with error O(h6). Thus, we have:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0,0

R1,0 R1,1

R2,0 R2,1 R2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7.82)

in matrix form. For reasons that will soon become clear, we now observe that we went from
the matrix in Eq. (7.78) to that in Eq. (7.82) by carrying out three steps: (a) a new trapezoid
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rule calculation, giving us R2,0, (b) a Richardson extrapolation as per Eq. (7.80) giving us
R2,1, and (c) a Richardson extrapolation as per Eq. (7.81) giving us R2,2. The most accurate
answer at our disposal is currently in R2,2, which is the bottom element on the diagonal.

You are probably starting to see how this works, but let’s evaluate another row explicitly,
to make things crystal clear. The 0th element in each new row is simply another “raw”
calculation. In this case we will have the trapezoid-rule result for eight panels, denoted by
I8 in the previous section. Since this is a new trapezoid result, we increase the first index
in Ri,0 and store R3,0 = I8, obtaining:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0,0

R1,0 R1,1

R2,0 R2,1 R2,2

R3,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.83)

As always, the results in the 0th column have an error of O(h2). Just like we did before,
we will now employ the previous row and the 0th element of the current row to carry
out several Richardson-extrapolation steps. First, we combine R2,0 and R3,0, to produce an
answer which we store in R3,1:

R3,1 =
22R3,0 − R2,0

22 − 1
=

4
3

R3,0 −
1
3

R2,0 (7.84)

This new value belongs in the 1st column because it has an error O(h4). Second, we now
realize that we have access to two values in the 1st column, R2,1 and R3,1, each of which
has a leading error of O(h4). This means that we can carry out yet another Richardson-
extrapolation step:

R3,2 =
24R3,1 − R2,1

24 − 1
=

16
15

R3,1 −
1
15

R2,1 (7.85)

Thus, by combining two estimates with error O(h4) we have produced a new estimate with
error O(h6), which belongs in the 2nd column. Third, we are now able to carry out yet
another step because the situation we’re faced with is identical to the “third case” in the
previous subsection. We have at our disposal two results with errors that go as c6h6+c8h8+

· · · so we can apply Richardson extrapolation in the form of Eq. (7.75):

R3,3 =
26R3,2 − R2,2

26 − 1
=

64
63

R3,2 −
1
63

R2,2 (7.86)

This new estimate belongs in the 3rd column because it has an error O(h8). Thus, we have:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0,0

R1,0 R1,1

R2,0 R2,1 R2,2

R3,0 R3,1 R3,2 R3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.87)

in matrix form. We now reiterate our main point about how to produce a new row in this
matrix, by observing how we went from the matrix in Eq. (7.82) to that in Eq. (7.87).
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First, we doubled the number of panels and carried out a new trapezoid-rule calculation
and, then, we carried out three Richardson-extrapolation steps in Eq. (7.84), Eq. (7.85),
and Eq. (7.86). The most accurate answer at our disposal is currently in R3,3, which is the
bottom element on the diagonal.

In summary, to produce a new row we first carry out a new trapezoid-rule calculation
for twice as many panels as before (placing that in the 0th column) and then carry out
Richardon extrapolation steps which require the previous row and the newly produced 0th-
column trapezoid result. This leads to a lower-triangular matrix. The 0th column contains
trapezoid-rule results, which therefore have error O(h2). The 1st column contains results
for one Richardson-extrapolation step, which therefore have error O(h4). The 2nd column
contains results of two Richardson-extrapolation steps, which therefore have error O(h6).
The pattern should be clear by now. As you go down the 0th column the number of panels
is doubled so the h becomes smaller. As you go to the right on any row you carry out
increasingly more Richardson-extrapolation steps. As a result, the bottom element on the
diagonal is the best estimate each time, so we compare our best value on this row with
our best value on the previous row and terminate this process when the difference between
these two “best estimates” is smaller than some set tolerance level. In equation form:

Ri,0 = IN (N = 2i, i = 0, 1, 2, . . .)

Ri, j =
4 jRi, j−1 − Ri−1, j−1

4 j − 1
(i = 1, 2, . . . and j = 1, 2, . . . , i)

(7.88)

Let’s try to unpack this. The first line simply says that the elements of the 0th column
are trapezoid-rule results, with the number of panels being doubled as we move down
the column: R0,0 is I1, R1,0 is I2, R2,0 is I4, R3,0 is I8, and so on.16 The second line simply
encapsulates how we carry out the Richardson extrapolation: we always use (a) the element
that’s in the previous column on the same row, and (b) the element that’s in the previous
column on the previous row. This equation on the second line gives us all the elements of
the lower-triangular matrix except for the 0th column. It’s also worth observing that the
second line in this pair of equations uses 4 j for the coefficient in the numerator and the
denominator. This is simply a result of noticing that the powers that show up are 22, 24, 26,
and so on, which are conveniently re-expressed by remembering that (22) j = 4 j.

As you can imagine from the expected scaling with h as you move to the right of the
matrix, Romberg integration is a nice way of starting from a crude integration method (the
trapezoid rule) and producing very accurate results with very few function evaluations (as
usual, assuming the integrand is not pathological). As a result, the very simple trapezoid
rule ends up being the workhorse of some very accurate calculations.

Before we turn to a Python implementation, applied to a specific problem, we note a
general feature of Romberg integration. This is that the 1st column (i.e., the one contain-
ing results of one Richardson-extrapolation step) of the Romberg matrix turns out to be

16 Note that we’ve avoided the use of the confusing-looking I2i .
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identical to Simpson’s rule results. To be more specific, as you will show in a problem, Ri,1

contains the Simpson’s 1/3 answer for 2i panels, for i = 1, 2, . . ..

7.4.3 Implementation

Thinking about the simplest way of implementing Romberg integration, a few things im-
mediately come to mind. First, since the 0th column elements will be trapezoid-rule results
while doubling the number of panels, it seems reasonable to use the adaptive-integration
code adaptive.py as a starting point. Second, in addition to carrying out these trapezoid-
rule calculations, we’ll also need to carry out the Richardson-extrapolation steps shown in
the second line of Eq. (7.88). Since these implement a specific equation, it stands to reason
that we should define a separate function encapsulating that process. What should that use
as parameters and as a return value? As already emphasized, to carry out the sequence of
Richardson-extrapolation steps that fill out an entire row, what we need (as parameters)
are the previous row and the newly produced 0th-column trapezoid estimate. The question
naturally arises as to how to store the Ri, j. Since these make up a matrix, it seems natural
to reach for a numpy array. However, we don’t really need to store the entire matrix: at any
point in time, all we need is the current row and the previous one, so we can simply use
two (one-dimensional) lists.

The above considerations lead to the implementation in Code 7.3. We skip (for now) the
prettyprint() function. As advertised, this code includes a function richardson()
which implements the second line of Eq. (7.88). It takes in a list containing the previous
row (Rprev) and a float containing the 0th element on the current row (Rincurr0).

As promised, the major function here, romberg(), merely keeps track of the current
row and the previous one (Rcurr and Rprev, respectively), not the entire matrix. The
doubling of the panels (implemented via n and nprime) is identical to what we had in the
earlier code. This code calls trapezoid() whenever a new 0th-column element needs to
be produced and richardson() for everything else. Note that the loop starting value is
different than in the older code, since i actually matters here: it is passed in as an argument
to richardson().

The error is estimated by using the last element on the current and the previous row. Note
that there’s no denominator here, since we are not employing an analytical expectation of
how these two elements are related: we simply expect that when the last diagonal elements
stop changing our work is done.

The only other point is the line saying Rprev = Rcurr[:] whose logic should be fa-
miliar enough by now: in the next iteration our current row will be treated as the previous
row. Copying the entire list (as opposed to renaming it) is not really necessary here (since
a new list is created inside richardson() each time), but it’s a good habit to maintain.

Running this code, we notice that the (absolute) error of our estimate is 10−11, even
though we only hard-coded a requirement for a (relative) error of 10−8 inside romberg().
This is good but, without knowing how many function evaluations were necessary, not
necessarily impressive. To find out how good our approach is, we could print out the value
of nprime as we did before. Instead, we could just uncomment the two lines containing
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Code 7.3 romberg.py Code 7.3

from newtoncotes import f, trapezoid

import numpy as np

def prettyprint(row):

for elem in row:

print("{0:1.10f} ".format(elem),end="")
print("")

def richardson(Rprev, Rincurr0, i):

Rcurr = [Rincurr0]

for j in range(1, i+1):

val = (4**j*Rcurr[j-1] - Rprev[j-1])/(4**j - 1)

Rcurr.append(val)

return Rcurr

def romberg(f,a,b,imax = 20,tol = 1.e-8):

n = 2

val = trapezoid(f,a,b,n)

Rprev = [val]

#prettyprint(Rprev)

for i in range(1,imax):

nprime = 2*n-1

Rincurr0 = trapezoid(f,a,b,nprime)

Rcurr = richardson(Rprev, Rincurr0, i)

#prettyprint(Rcurr)

err = abs(Rprev[-1] - Rcurr[-1])/abs(Rcurr[-1])

valprime = Rcurr[-1]

if err < tol:

break

n = nprime

Rprev = Rcurr[:]

else:

valprime = None

return valprime

if name == ‘ main ’:

ans = np.log(1 + np.sqrt(2))

print(ans)

print(romberg(f,0.,1.))
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calls to our beautifying prettyprint() function in the present code to get all the Ri, j’s
that came into the picture:

0.8535533906

0.8739902908 0.8808025909

0.8795307704 0.8813775970 0.8814159307

0.8809131418 0.8813739323 0.8813736880 0.8813730175

0.8812584924 0.8813736093 0.8813735877 0.8813735861 0.8813735884

0.8813448144 0.8813735884 0.8813735870 0.8813735870 0.8813735870 0.8813735870

Here, the first row corresponds to a trapezoid-rule calculation with one panel, I1. Going
down the 0th column we then encounter I2, I4, I8, I16, and finally I32. This means that
in order to arrive at our very accurate final result (the rightmost one in the last row) we
only needed to carry out 33 function evaluations (32 panels means 33 points). This is truly
spectacular, if you compare to the output of adaptive.py, where an error of 10−11 for the
trapezoid rule needed 65 537 points!

Well, not quite. As it so happens, our implementation of the Romberg recipe is wasteful:
it throws away the older trapezoid calculations when producing the new ones (e.g., the
function evaluations used to produce I8 are discarded when evaluating I16). As a result,
we actually carried out 2 + 3 + 5 + 9 + 17 + 33 = 69 function evaluations. Still, that’s
roughly a factor of a thousand fewer function evaluations than the non-Romberg trapezoid
approach. As a matter of fact, even Simpson’s rule needed roughly 100 points to produce
an estimate with an absolute error of 10−11. In a problem, you will write and test your own
non-wasteful Romberg integration code.

7.5 Gaussian Quadrature

The Newton–Cotes formulas we encountered have been cast in the same form, that of
Eq. (7.7), where we were dealing with n nodal abscissas xi and n weights ci. All of these
Newton–Cotes methods employ an evenly spaced grid, as per Eq. (7.8). In other words,
such methods all use pre-determined nodal abscissas xi and differ only in which weights ci

they employ; the latter are chosen in order to exactly integrate a low-degree polynomial.
In contradistinction to this, what the method(s) of Gaussian quadrature accomplish is both
simple and impressive: instead of limiting yourself to equally spaced nodal abscissas, ex-
pand your freedom so that both the n abscissas xi and the n weights ci are at your disposal.
Then, you will be able to integrate all polynomials up to degree 2n − 1 exactly! It should
be straightforward to see why this is impressive: it implies that even using a very small
number of points (say n = 5) allows us to integrate all polynomials up to quite high order
exactly (up to ninth order for n = 5). As you may have already guessed, the reason this is
possible is that we have doubled the number of parameters at our disposal: we can use the
2n parameters (the xi’s and the ci’s) to handle polynomials up to degree 2n − 1.

In our discussion of Newton–Cotes methods, we always started from an elementary
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interval and later generalized to a composite integration rule, which could handle the full
integral from a to b. Given the accuracy that Gaussian quadrature is capable of, we will
employ it directly in the full interval from a to b.17 Just like for the problem of interpolation
(chapter 6), using unequally spaced abscissas allows you to eliminate the issues that arise
with an equally spaced grid; as a result, you can use a single polynomial interpolant for
the entire interval instead of employing piecewise polynomial interpolation as we did for
Newton–Cotes integration above.

It is standard to take a = −1 and b = 1 at this stage: this is completely analogous to
what we did in our discussion of polynomial interpolation in section 6.2. Thus, we start
by focusing on the standard interval [−1, 1]; as we saw in Eq. (6.13) and will discuss
again below, it is straightforward to scale to the interval [a, b] after the fact. It is important
to understand that our use of the standard interval [−1, 1] is unrelated to an elementary
interval: as already mentioned, we will set up Gauss–Legendre directly on the full interval
(which happens to be [−1, 1]), i.e., we will not first study an elementary rule and later a
composite rule. Thus, our defining equation will be:

∫ 1

−1
f (x)dx ≈

n−1∑
k=0

ck f (xk) (7.89)

Our earlier claim was that by an intelligent choice of both the xk’s and the ck’s, we will
be able to integrate polynomials up to degree 2n − 1 exactly. It’s probably not too early to
point out that all Gaussian quadrature methods are open, so the xk’s are not to be identified
with −1 and +1. Let’s see how this all works.

7.5.1 Gauss–Legendre: n = 2 Case

We start from explicitly addressing the exact integrability of polynomials up to degree
2n−1 for the simplest non-trivial case, namely that of two points.18 We take Eq. (7.89) and
apply it to the case of n = 2:

∫ 1

−1
f (x)dx = c0 f (x0) + c1 f (x1) (7.90)

The abscissas x0 and x1 along with the weights c0 and c1 are the four quantities we need to
now determine. Since Gaussian quadrature methods are open, x0 and x1 will lie in (a, b).
As advertised, we will determine the four unknown parameters by demanding that all poly-
nomials up to order 2n − 1 = 3 can be integrated exactly.

It is simplest to use monomials, i.e., single powers of x, instead of polynomials (which

17 In practice, one sometimes slices up the integration interval “by hand”, using more points in regions that
exhibit more structure, and fewer points when the behavior of the integrand is pretty simple.

18 A problem invites you to study the even more basic case of n = 1, which is equivalent to the midpoint rule!
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can later be arrived at as linear combinations of monomials). Thus, we will take:

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0

x1

x2

x3

(7.91)

and assume that for all these cases Eq. (7.90) holds. This leads to the following four equa-
tions in four unknowns:∫ 1

−1
1dx = 2 = c0 + c1,

∫ 1

−1
xdx = 0 = c0x0 + c1x1,∫ 1

−1
x2dx =

2
3
= c0x2

0 + c1x2
1,

∫ 1

−1
x3dx = 0 = c0x3

0 + c1x3
1

(7.92)

In each of these cases the left-hand side is that of Eq. (7.90), the second step gives the
answer for that integral (calculated analytically), and the third step gives the right-hand
side of Eq. (7.90), applied to that specific monomial.

We are now faced with a set of nonlinear equations. The second of these gives us c0x0 =

−c1x1; this result, when combined with the fourth relation, leads to x2
0 = x2

1. Thus, since x0

and x1 are different from each other, we find x0 = −x1. Together with the second relation,
this implies c0 = c1. This result, together with the first relation in Eq. (7.92) gives c0 =

c1 = 1. The third relation in Eq. (7.92) now gives us x2
0 + x2

0 = 2/3, which can be solved by
taking x0 = −1/

√
3. Thus, we have arrived at the solution:

c0 = c1 = 1, x0 = −
1
√

3
, x1 =

1
√

3
(7.93)

This can now be used to recast Eq. (7.90) as:

∫ 1

−1
f (x)dx ≈ f

(
− 1
√

3

)
+ f

(
1
√

3

)
(7.94)

This employs two points and is exact for polynomials up to third order; it is approximate
for other functions. It’s worth pausing for a second to realize that our accomplishment is
already noteworthy: Simpson’s rule could integrate polynomials up to third order exactly,
but it needed at least three points in order to do that.

7.5.2 Gauss–Legendre: General Case

There are several ways one could go about introducing Gaussian quadrature. First, you
could try to generalize the approach of the previous section to the case of larger n. As
you can imagine, this will lead to a system of increasingly nonlinear equations; this is
precisely the task we tackled in one of the problems of chapter 5. This approach to Gauss–
Legendre integration involves a Vandermonde matrix and is therefore increasingly unsta-
ble as n gets larger. Second, one could employ the standard-textbook approach, which
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introduces the theory of orthogonal polynomials by fiat right about now, typically leav-
ing students scratching their heads. This involves a number of auxiliary entities and is
almost never carried through to the end, resorting instead to the dreaded phrase “it can be
shown”; for the sake of completeness, we briefly go over that alternative argument in one of
the problems. Intriguingly, there exists a third approach to implementing Gauss–Legendre
quadrature, known as the Golub–Welsch algorithm; this involves Jacobi matrices, which
were touched upon in a problem in chapter 5 and are further elaborated on in the present
chapter’s problem set. This happens to be a robust approach which is employed in state-of-
the-art libraries, but it assumes one is already convinced of the importance of orthogonal
polynomials to this problem.

In contradistinction to these approaches, in the present section we will follow a fourth
option, tackling Gaussian quadrature using Hermite interpolation, a subject we introduced
in section 6.2.4. As you may recall, Hermite interpolation arises when you wish to inter-
polate through both function and derivative values. At the simplest level, Hermite interpo-
lation is the only tool we’ve encountered that can handle polynomials of degree 2n − 1.
While the question of exactly how Hermite interpolation accomplishes the task at hand
may initially be a bit nebulous, everything will become clear soon enough and will then
follow straightforwardly from this one choice. Crucially, our approach will allow us to ex-
plain in a unified manner: (a) how to pick the nodes xk, thereby justifying the presence of
the name “Legendre” in Gauss–Legendre, (b) how to compute the weights ck, and (c) the
overall error scaling of Gauss–Legendre quadrature. We discuss these topics in turn, in the
following subsections.

Node Placement

In section 7.2.3 we saw how to produce Newton–Cotes quadrature rules starting from La-
grange interpolation, writing the interpolating polynomial p(x) of degree n − 1 in terms of
the function values at the grid points, as well as the cardinal polynomials, see Eq. (7.24).
We now write down the analogous formula for the case of Hermite interpolation, since we
are interested in studying polynomials of degree up to 2n − 1. This is Eq. (6.40):

p(x) =
n−1∑
k=0

f (xk)αk(x) +
n−1∑
k=0

f ′(xk)βk(x) (7.95)

where we have updated the notation to employ f (xk) and f ′(xk) for our integrand and
derivative values at the nodes; the αk(x) and βk(x) are determined in terms of the cardinal
polynomials as per Eq. (6.49). You may be worried about the fact that we are trying to
interpolate through the f ′(xk) values, which we don’t actually know; our goal is to express
an integral in terms of function values as per Eq. (7.89), not in terms of function-derivative
values. For now, you should be patient.

We are actually interested in integrating f (x): if we pick f (x) to be a polynomial of
degree 2n − 1 or less, then Eq. (7.95) will exactly match f (x). To see this, remember that
our error formula for Hermite interpolation from Eq. (6.50) involved a 2n-th derivative,
f (2n). For a polynomial of degree 2n − 1 or less, that derivative is always zero, implying
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that p(x) perfectly matches f (x) for this case. We are therefore free to integrate the p(x) of
Eq. (7.95) from −1 to +1:

∫ 1

−1
f (x)dx =

∫ 1

−1
p(x)dx =

n−1∑
k=0

f (xk)
∫ 1

−1
αk(x)dx +

n−1∑
k=0

f ′(xk)
∫ 1

−1
βk(x)dx

=

n−1∑
k=0

ck f (xk) +
n−1∑
k=0

dk f ′(xk) (7.96)

In the last step we defined:

ck =

∫ 1

−1
αk(x)dx, dk =

∫ 1

−1
βk(x)dx (7.97)

If we can now somehow make the dk’s vanish, we will have accomplished what we set out
to: the left-hand side of Eq. (7.96) is the integral we wish to evaluate and the last step in
Eq. (7.96) would express it (exactly) as a sum of weights times function values, precisely
as in Eq. (7.89). Also, if the dk’s dropped out of the problem then we would no longer have
to worry about the fact that we don’t know the f ′(xk) values.

To see how we could possibly make the dk’s vanish, we express the βk(x) in terms of the
cardinal polynomials as per Eq. (6.49):19

dk =

∫ 1

−1
βk(x)dx =

∫ 1

−1
(x − xk)L2

k(x)dx =
1

L′(xk)

∫ 1

−1
L(x)Lk(x)dx (7.98)

The xk in the second step are the interpolation nodes and similarly Lk(x) are the cardinal
polynomials defined for those nodes. In the last step, we expressed (one of) the Lk(x) in
terms of the node polynomial and its derivative, as per Eq. (6.27); we pulled the L′(xk)
outside the integral since it doesn’t depend on x.

We now recall the definition of the node polynomial from Eq. (6.24):

L(x) =
n−1∏
j=0

(x − x j) (7.99)

This is a monic polynomial in x of degree n, that vanishes at the interpolation nodes x j.
Similarly, we remember the definition of a cardinal polynomial from Eq. (6.19):

Lk(x) =

∏n−1
j=0, j�k(x − x j)∏n−1

j=0, j�k(xk − x j)
(7.100)

This is a polynomial in x of degree n − 1. The way to make progress is to demand that the
integral in Eq. (7.98) vanishes: we recall, from the problem on Gram–Schmidt orthogonal-
ization for functions in chapter 4, that we had derived:

(rn−1, qn) ≡
∫ 1

−1
rn−1qndx = 0 (7.101)

19 Since we’re integrating over the entire interval, we’re using entities like Lk(x), rather than the more awkward
notation of Li+ j(x) in Eq. (7.25).
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in Eq. (4.338). In this equation, rn−1(x) was a general polynomial of degree n − 1 and qn

was an orthogonal polynomial of degree n. This would be precisely the situation we are
faced with in Eq. (7.98) if L(x) was an orthogonal polynomial. However, we recall that the
interpolation nodes, i.e., the xk’s, are still at our disposal: if we take them to be the zeros of
the orthogonal polynomial of degree n, then L(x) will be the unique20 monic polynomial
of degree n that is orthogonal (in the interval [−1,+1]) to all polynomials of degree n − 1
or less. In that case all the dk’s will vanish and Eq. (7.96) will take the form:

∫ 1

−1
f (x)dx =

n−1∑
k=0

ck f (xk) (7.102)

where the ck can be determined from Eq. (7.97). As the preceding derivation shows, this
relation is exact when f (x) is a polynomial of degree up to 2n − 1 and the xk’s are taken to
be the roots of the orthogonal polynomial of degree n. As noted, there is no error term here,
since the 2n-th derivative, f (2n), vanishes. Similarly, there is no term involving f ′(xk) since
the dk’s vanish. In short, we have managed to employ Hermite interpolation to integrate
polynomials of degree 2n− 1 or less using n nodal abscissas, with the derivatives dropping
out of the problem.21 Crucially, this was a result following from orthogonality, i.e., inte-
gration: the dk’s (which involve an integral) vanish, whereas the βk(x)’s (which appear in
Hermite interpolation) do not vanish (outside the interpolation nodes).

At this point, we remember that in the chapter 4 problem on Gram–Schmidt orthogonal-
ization we had observed that the orthonormal qj we had been finding there were multiples
of the orthogonal Legendre polynomials, Pn(x). The same holds for our monic orthogo-
nal polynomials L(x): with the exception of an overall multiplicative constant, Pn(x) is the
same polynomial as L(x). We actually computed this multiplicative factor in Eq. (3.90),
using Rodrigues’ formula:

Pn(x) =
(2n)!

2n(n!)2
L(x) (7.103)

Most importantly for our purposes, the zeros of L(x) are the zeros of the Legendre poly-
nomial Pn(x) since, as we mentioned at the end of section 5.3, you will still find the same
roots if you multiply a polynomial with a number. As it so happens, we’ve already writ-
ten a Python code that computes the zeros of Legendre polynomials, legroots.py. You
can now see why we have been speaking of Gauss–Legendre quadrature: this is Gaussian
quadrature when the nodal abscissas are taken to be the roots of Legendre polynomials.
This also explains why we decided to focus on the interval [−1,+1] in the first place.

The main advantage of our derivation is that the theory of orthogonal polynomials (and
the placement of the nodes at their roots) occurs organically: we didn’t start the section
using Legendre polynomials, but these emerged naturally when we needed to make the
dk’s vanish, thereby managing to integrate exactly all polynomials of degree up to 2n − 1.

20 A problem guides you toward showing this uniqueness property.
21 Thus, the input is not xk , f (xk), and f ′(xk), but solely xk and f (xk).
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It’s worth observing that in this one subsection we have employed Legendre polynomials
from chapter 2, their leading coefficient from chapter 3, their orthogonality from chapter 4,
their zeros from chapter 5, as well as Hermite interpolation and cardinal polynomials from
chapter 6. This is a prominent example of the fact that the presentation in this book is
cumulative: we didn’t need to state anything without proof, but you will need to master the
earlier material in order to grasp how everything fits together.

Weight Computation

After deriving Eq. (7.102), we observed that the ck’s can be determined from Eq. (7.97),
which in its turn can make use of Eq. (6.48); this is true, and is an avenue you will ex-
plore in a problem; here, we realize that we can easily arrive at a simpler expression. Our
Eq. (7.102) holds for any polynomial of degree up to 2n − 1, which means it will also hold
for f (x) = Lj(x): since Lj(x) is a polynomial of degree n − 1, it can be exactly integrated
via Gauss–Legendre quadrature. Thus:

∫ 1

−1
Lj(x)dx =

n−1∑
k=0

ckL j(xk) =
n−1∑
k=0

ckδ jk (7.104)

where the last step followed from our general result on cardinal polynomials, Eq. (6.21).
Thus, we have been able to show that:

c j =

∫ 1

−1
Lj(x)dx (7.105)

Intriguingly, this is formally identical to what we had found for Newton–Cotes integration,
see Eq. (7.27). The only difference is that here we are not integrating over an elementary
interval, but directly over the full interval.

For the Newton–Cotes case, we studied only small n values, given that we were only
interested in an elementary interval, so we were able to explicitly carry out the integrals
giving the weights for the trapezoid and Simpson’s rules. In the Gauss–Legendre case,
we’re keeping n general, so we should try to see if we can re-express the integral involved.
It is straightforward to start doing so:

c j =

∫ 1

−1
Lj(x)dx =

∫ 1

−1

L(x)
(x − x j)L′(x j)

dx =
1

P′n(x j)

∫ 1

−1

Pn(x)
x − x j

dx (7.106)

In the second step we expressed the cardinal polynomial in terms of the node polynomial
and its derivative, as per Eq. (6.27), as in Eq. (7.98). In the third step we remembered that
L(x) is simply a multiple of the Legendre polynomial Pn(x), as per Eq. (7.103); since the
multiplicative factor appears on both the numerator and the denominator, it cancels.

This is progress, but we’re not quite there yet: Eq. (7.106) involves an integral, which
we cannot do numerically, since that’s why we’re computing the c j’s in the first place. To
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proceed, we invoke the Christoffel–Darboux identity for Legendre polynomials:
n∑

k=0

(2k + 1)Pk(x)Pk(y) = (n + 1)
Pn+1(x)Pn(y) − Pn(x)Pn+1(y)

x − y
(7.107)

which you are guided toward deriving in a problem. We now pick y = x j, where x j is a root
of Pn(x), i.e., Pn(x j) = 0. That makes the n-th term in the sum on the left-hand side as well
as the first term in the numerator on the right-hand side vanish, leaving us with:

n−1∑
k=0

(2k + 1)Pk(x j)Pk(x) = −(n + 1)Pn+1(x j)
Pn(x)
x − x j

(7.108)

We now recall from Eq. (2.79) that P0(x) = 1, so we can think of the left-hand side of
Eq. (7.108) as already containing P0(x). We can then integrate from −1 to +1 to find:

n−1∑
k=0

(2k + 1)Pk(x j)
∫ 1

−1
P0(x)Pk(x)dx = −(n + 1)Pn+1(x j)

∫ 1

−1

Pn(x)
x − x j

dx (7.109)

At this point, we employ the orthogonality of Legendre polynomials, which has the form:

(Pn(x), Pm(x)) ≡
∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δnm (7.110)

as we saw in Eq. (4.339). Using this on the left-hand side of Eq. (7.109) we get:

2 = −(n + 1)Pn+1(x j)
∫ 1

−1

Pn(x)
x − x j

dx (7.111)

where we dropped the P0(x j) on the left-hand side, since it’s equal to 1.
We now realize that the integral in Eq. (7.111) is the same as that appearing in Eq. (7.106);

putting these two equations together leads to:

c j = −
2

(n + 1)Pn+1(x j)P′n(x j)
(7.112)

This is, in principle, the end of our journey: as you may recall, legendre.py computed
not only the value of the Legendre polynomial, but also the value of its first derivative.
Thus, we could now proceed to a Python implementation of Eq. (7.112). However, this
formula involves a Legendre polynomial and its derivative for two different degrees; let us
further simplify our expression for the weights. From Eq. (2.89) we get:

(1 − x2)P′n(x) = −nxPn(x) + nPn−1(x) (7.113)

We can also write down Eq. (2.86) for the case of j = n:

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (7.114)

Adding the last two equations together, we eliminate nPn−1(x) to find:

(1 − x2)P′n(x) = (n + 1)xPn(x) − (n + 1)Pn+1(x) (7.115)

If we now apply this relation at x = x j, where as usual Pn(x j) = 0, we get:

(1 − x2
j )P
′
n(x j) = −(n + 1)Pn+1(x j) (7.116)



7.5 Gaussian Quadrature 435

which, combined with Eq. (7.112), gives for the weights in Gauss–Legendre quadrature:

c j =
2

(1 − x2
j )[P

′
n(x j)]2

(7.117)

As desired, this requires the value of the Legendre polynomial (derivative) of a single
degree. The plan of action, were one to implement things programmatically at this point,
should be clear: Gauss–Legendre quadrature amounts to employing Eq. (7.102), where the
xk’s are produced by finding the roots of Pn(x) and the ck’s are computed using Eq. (7.117).

We now produce an identity which must be obeyed by the Gauss–Legendre weights. We
have showed that Eq. (7.102) holds for all polynomials of degree 2n − 1 or less, so it also
holds for the case of a constant polynomial, f (x) = 1. This leads to:

n−1∑
k=0

ck = 2 (7.118)

The 2 on the right-hand side is the result of working in the standard interval; it would have
been b − a in the general case. As mentioned after Eq. (7.29), in one of the problems you
will show something analogous for Newton–Cotes methods. Speaking of the weights and
Newton–Cotes, there is another difference between those methods and Gaussian quadrature
ones: as you will show in another problem, in Gauss–Legendre integration all the weights
are positive. This turns out to be different from the behavior of Newton–Cotes weights,
where for higher degrees we tend to see both positive and negative weights (bringing to
mind the finite-difference formulas from chapter 3 and the accompanying error issues).

Error Analysis

Similarly to what we did in the case of the Newton–Cotes rules, we will now discuss the
error scaling in Gauss–Legendre quadrature. More specifically, just as we did for the trape-
zoid rule near Eq. (7.33) we will start from an interpolation error formula and then will
integrate that. Of course, this time we are dealing with Hermite (not Lagrange) interpola-
tion, and we are also dealing with the full (not elementary) interval.

In our derivation of Gauss–Legendre quadrature above, we were dealing with polyno-
mials of degree up to 2n − 1, which is why there was no error term in Eq. (7.96). We
will now address the general case, where our interpolating polynomial p(x) of degree up
to 2n − 1 may not fully capture the function f (x), which could be non-polynomial (or of
higher degree). Let us start from the Hermite-interpolation error formula, Eq. (6.50):

f (x) = p(x) +
f (2n)(ζ)

2n!

n−1∏
j=0

(x − x j)
2 (7.119)

where we slightly updated the notation. We move the p(x) to the left-hand side and identify
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the product over (x − x j)2 with the square of the node polynomial from Eq. (6.24):

f (x) − p(x) =
f (2n)(ζ)

2n!

n−1∏
j=0

L2(x) (7.120)

Integrating this difference from −1 to +1 gives us the error in Gauss–Legendre quadrature:

E =
∫ 1

−1

f (2n)(ζ)
2n!

L2(x)dx =
f (2n)(ξ)

2n!

∫ 1

−1
L2(x)dx (7.121)

In the second step we used the extended version of the integral mean-value theorem to
effectively pull out the derivative term. Similarly to the situation in Eq. (7.34), this is here
justified because L2(x) is non-negative.

If we now express the node polynomial L(x) in terms of the corresponding Legendre
polynomial Pn(x) as per Eq. (7.103), we will be left with an integral over P2

n(x). But that,
in its turn, can be straightforwardly carried out using the orthogonalization/normalization
relation for Legendre polynomials from Eq. (7.110). Putting it all together, we find the
following error formula for Gauss–Legendre quadrature:

E = 22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ξ) (7.122)

This is more inscrutable than the corresponding formulas for Newton–Cotes methods, for
two reasons: first, the 2n-th derivative is typically hard to estimate and, second, all the
powers and factorials make it hard to intuitively grasp how the error scales with n.

To elucidate things, we take one of the (2n)! terms from the denominator and group it
with the derivative term. The remaining prefactor can be approximated as follows:22

22n+1(n!)4

(2n + 1)[(2n)!]2
∼ π

4n
(7.123)

Using this asymptotic relation, we can now give our final expression for the (approxima-
tion) error scaling for Gauss–Legendre quadrature:

E ∼ π

4n

f (2n)(ξ)
(2n)!

(7.124)

The derivative term has been grouped in this way motivated by a standard Taylor series: as
you will recall, the n-th term is divided by n!; we have therefore divided our 2n-th derivative
by (2n)!; this ratio is quite often bounded. If that is indeed the case, then the simple prefac-
tor, π/4n, gives us a practical criterion for the scaling of the error with n: as we increase n to
n+ 1, we expect the error to decrease by a factor of roughly 4. This is a dramatically better
scaling than what we had for Newton–Cotes methods: for example, the absolute error in the
composite Simpson’s rule was proportional to h4, see Eq. (7.54), i.e., asymptotically 1/n4;
compare that to the 1/4n that we found in Eq. (7.124) for Gauss–Legendre quadrature. This
is the difference between a power law and an exponential scaling. Thus, it should come as
no surprise that Gaussian quadrature does a great job for many well-behaved functions.

22 To prove this, use Stirling’s formula, n! ∼
√

2πe−nnn+1/2.
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Integrating from a to b

Up to this point we’ve only discussed Gauss–Legendre integration from −1 to 1, as per
Eq. (7.89). We generally need to integrate from a to b. The solution is simply to carry out
a change of variables:

t =
b + a

2
+

b − a
2

x (7.125)

just like we did in our discussion of polynomial interpolation, see Eq. (6.13). We now use
Eq. (7.125) to get the integration measure:

dt =
b − a

2
dx (7.126)

At this point, we are able to recast our general task of computing
∫ b

a
f (t)dt into a form that

makes use of our earlier results on
∫ 1

−1
f (x)dx:∫ b

a
f (t)dt =

b − a
2

∫ 1

−1
f

(
b + a

2
+

b − a
2

x

)
dx (7.127)

If we now employ Eq. (7.89) to go from integral to sum, this becomes:

∫ b

a
f (t)dt ≈ b − a

2

n−1∑
i=0

ck f

(
b + a

2
+

b − a
2

xk

)
(7.128)

Here the xk and ck are the standard quantities we derived in earlier sections.

Implementation

A Python implementation of Gauss–Legendre quadrature is given in Code 7.4. As before,
we will compute the integral giving the electrostatic potential in Eq. (7.2); we import the
integrand from newtoncotes.py. Similarly, we bring in the Legendre polynomial roots
from legroots.py and derivatives from legendre.py. Observe that these two functions
do all the heavy lifting; as a result, our code is very short.

The first function in this code produces the xk’s by finding the roots of Pn(x) and the ck’s
by using Eq. (7.117). Observe that legroots() returns a numpy array, which we now call
xs. This is very convenient in the following line where, as usual, we don’t need to employ
any indices. Note also that we are calling legendre() passing in an array as the second
argument: even though this function was written in chapter 2, before we had started using
numpy arrays, it works seamlessly.

The next function, gauleg(), implements Eq. (7.128), taking us from x to t. This is
intentionally written to have the same interface as our Newton–Cotes functions: we pass in
the integrand, the integration limits, and n. As always, we carry out operations over entire
arrays, so no indices are necessary here, either. The output of running this code is:
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Code 7.4 gauleg.py Code 7.4

from legendre import legendre

from legroots import legroots

from newtoncotes import f

import numpy as np

def gauleg params(n):

xs = legroots(n)

cs = 2/((1-xs**2)*legendre(n,xs)[1]**2)

return xs, cs

def gauleg(f,a,b,n):

xs, cs = gauleg params(n)

coeffp = 0.5*(b+a)

coeffm = 0.5*(b-a)

ts = coeffp + coeffm*xs

contribs = cs*f(ts)

return coeffm*np.sum(contribs)

if name == ‘ main ’:

ans = np.log(1 + np.sqrt(2))

print(ans)

for n in range(2,10):

print(n, gauleg(f,0.,1,n))

0.88137358702

2 0.881789806445

3 0.881331201938

4 0.881375223073

5 0.881373570699

6 0.881373584915

7 0.881373587172

8 0.881373587015

9 0.88137358702

The function we’re integrating is non-polynomial, so we don’t expect Gauss–Legendre to
give the exact answer for the first few values of n. Overall, the results are quite impressive.
Gauss–Legendre gives us the correct answer to three decimal digits using only n = 2
points and to four decimal digits with only n = 3 points. By the time we get up to n =
9 we have already determined the right answer for all the digits that are printed: this is
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pretty spectacular. To compare, recall that Simpson’s rule needed over 100 points to get
to the same accuracy and even (non-wasteful) Romberg integration required 33 points. Of
course, as our discussion of the Gauss–Legendre error formula showed, the convergence
to the right answer is always impacted by specific properties of the function we choose to
integrate.

On the other hand, it is worth pointing out that each value of n necessitates completely
different values of the abscissas xk. This is not a problem if your f (x) is a simple func-
tion, as in the present example. However, you can imagine that in practical applications
computing f (x) may be rather costly. In one of the problems, you are guided toward im-
plementing a non-wasteful adaptive trapezoid integrator; something analogous cannot be
straightforwardly done for Gauss–Legendre integration. There are schemes, most notably
Gauss–Kronrod quadrature, where the Gauss–Legendre points are kept and accompanied
by new ones. Another option is Clenshaw–Curtis quadrature, which expands the integrand
using Chebyshev polynomials and can therefore compute the integration weights very ef-
ficiently, via the FFT; this method’s abscissas obey nesting, so they can be re-used as you
increase n. Even so, the plain Gauss–Legendre approach will be enough for us. From a
practical perspective, you can start with, say, n = 10 and then increase n by steps of your
choosing, to empirically test the convergence for your problem.

7.5.3 Other Gaussian Quadratures

In the previous sections, we focused on Gauss–Legendre quadrature only. This was partly
because that’s the more general and widely employed technique and partly for pedagogical
reasons: instead of giving a laundry list of formulas for many different cases, we studied
one case carefully, deriving everything by ourselves. In the present short section, we will
provide a qualitative argument of how one goes about generalizing things; some of the
problems investigate these new formulas further.23

The general form of the problem at hand is:

∫ b

a
w(x) f (x)dx ≈

n−1∑
i=0

ck f (xk) (7.129)

where w(x) is a non-negative weight function. As you can see, the presence of w(x) on the
left-hand side (only) is new. The weight function can be singular, but it needs to be inte-
grable; crucially, it can be non-polynomial. As before, the Gaussian quadrature approach
allows you to find the exact answer when f (x) is a polynomial of degree up to 2n − 1:
in that case, the full integrand does not need to be a polynomial. Here are three standard

23 As usual, our discussion in the main text is carried out pros ten chreian ikanos, i.e., sufficiently as to need, to
quote Aristotle (Nicomachean Ethics, 1133b); the alternative would be for us to continue ad taedium.
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choices for the weight function, which have been worked out in the literature:

Gauss–Chebyshev: w(x) =
1

√
1 − x2

Gauss–Laguerre: w(x) = xαe−x

Gauss–Hermite: w(x) = e−x2

(7.130)

Gauss–Legendre is equivalent to taking w(x) = 1, so a possible (but non-ideal) strategy for
avoiding other Gaussian quadratures is to treat the entire integrand w(x) f (x) as what used
to be called your f (x) and then apply Eq. (7.128).

A better line of reasoning goes as follows: once again, start from the Hermite interpola-
tion formula of Eq. (7.95). This time, multiply with w(x) before integrating over the general
interval [a, b], to find:∫ b

a
w(x) f (x)dx =

∫ b

a
w(x)p(x)dx

=

n−1∑
k=0

f (xk)
∫ b

a
w(x)αk(x)dx +

n−1∑
k=0

f ′(xk)
∫ b

a
w(x)βk(x)dx

=

n−1∑
k=0

ck f (xk) +
n−1∑
k=0

dk f ′(xk) (7.131)

In the last step we defined:

ck =

∫ b

a
w(x)αk(x)dx, dk =

∫ b

a
w(x)βk(x)dx (7.132)

As before, we will demand that the dk’s vanish. These are:

dk =

∫ b

a
w(x)βk(x)dx =

∫ b

a
w(x)(x − xk)L2

k(x)dx =
1

L′(xk)

∫ b

a
w(x)L(x)Lk(x)dx (7.133)

Once again, L(x) is a monic polynomial of degree n and Lk(x) is a polynomial of degree
n − 1. In Eq. (7.98) we ensured that this integral vanishes by taking the nodes, xk, to be
the roots of a Legendre polynomial. We did this because, for w(x) = 1 and in the interval
[−1,+1], it is precisely the Legendre polynomials that obey such an orthogonality criterion.

Our more general line of thinking here now leads us to the roots of polynomials that
are w-orthogonal in the interval from a to b. These turn out to be Chebyshev polynomials,
Laguerre polynomials, and Hermite polynomials for the cases listed in Eq. (7.130); the cor-
responding standard intervals are [−1, 1], [0,∞), and (−∞,∞), respectively. Incidentally,
you should make sure not to get confused by the presence of the name Hermite in Gauss–
Hermite: we have derived all Gaussian quadratures using Hermite interpolation. What’s
special about Gauss–Hermite quadrature is that it involves Hermite polynomials.24

We don’t go into specifics, but it should be relatively obvious that the weights can now be
computed by a generalization of Eq. (7.105), possibly augmented by a Christoffel–Darboux
identity for the specific set of polynomials, as well as the corresponding normalization

24 These were implemented in section 3.5 and you were asked to find their roots in a problem in chapter 5.
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and recurrence relation. Similarly, the error scaling will follow from the generalization of
Eq. (7.121) to include a w(x) in the integrand. In broad strokes, that’s all there is to it.

7.6 Complicating the Narrative

Most statements about errors that we’ve made in this chapter so far assumed we were
dealing with well-behaved Taylor series, with each term being smaller in magnitude than
the previous one. In practice, this is equivalent to saying that our function can be rea-
sonably well approximated locally by a polynomial. However, there are many cases, even
non-pathological ones, which cannot be effectively captured by polynomial behavior. For
example, as Forman Acton liked to point out, polynomials don’t have asymptotes [2]. In
what follows, we go over some cases where the error budget behaves differently than what
we saw above, we discuss analytical manipulations one can carry out before computing an
integral, discuss the problem of integrating over more than one variable, and close with
some advice on which integration approach(es) you should prefer.

7.6.1 Periodic Functions

Given the ability to use Gaussian quadrature or even Simpson’s rule, you may be tempted
to say that a method as simple as the trapezoid rule, with its O(h2) approximation error
as per Eq. (7.37), should never be employed. As you’ll see when you solve the relevant
problem, this conclusion is wrong; the problem studies the function f (x) = esin(2x), which
we’ve repeatedly encountered in earlier chapters, but the argument explaining what’s going
on is much more general.

As we saw when introducing the Romberg recipe, our conclusion for the trapezoid rule
was merely that the leading error is O(h2); in Eq. (7.70) we saw that the full expression
contains many more (even) degrees:

E = c2h2 + c4h4 + c6h6 + · · · (7.134)

This fact, namely that only even degrees survive, was all we needed to employ Richard-
son extrapolation repeatedly. This time around, we are interested in investigating the error
budget in more detail: Eq. (7.70) was actually merely a way of condensing our result em-
ploying the Euler–Maclaurin summation formula; this was Eq. (7.41), which explicitly
listed the coefficients of the powers of h:

E = − h2

12
[
f ′(b) − f ′(a)

]
+

h4

720
[
f ′′′(b) − f ′′′(a)

]
− h6

30 240

[
f (5)(b) − f (5)(a)

]
+

h8

1 209 600

[
f (7)(b) − f (7)(a)

]
+ · · · (7.135)

These coefficients involve Bernoulli numbers, factorials and, crucially, the differences be-
tween odd-order derivatives at the endpoints.

If you take a periodic function and integrate it over one full period (or more periods),
you will have f ′(a) = f ′(b), f ′′′(a) = f ′′′(b) , and so on; thus, the error estimate from
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Eq. (7.135) will have a zero coefficient for each power.25 This means that in such a case
the composite trapezoid rule will have a dramatically better error behavior than what you
usually find; as you will discover in the aforementioned problem, in some cases it even
outperforms Gauss–Legendre quadrature, whose praises we were singing in the previous
section. Of course, all these benefits vanish the second you decide to integrate a periodic
function over an interval which is not a period.

7.6.2 Singularities

A major complication arises when you are faced with an integrand that has a singularity,
or a singular derivative at one of the endpoints. If the singularity is not at an endpoint,
you can slice up your interval so that the singularity is at an endpoint. We will discuss five
examples here to give you a flavor of the techniques involved; the problems invite you to
apply analogous tricks to other integrals.

Singularity at the Left Endpoint
Examine the integral:

IA =

∫ 2

0

sin x
√

x
dx (7.136)

This has a singularity26 at the left endpoint, x = 0, so closed integration methods (e.g.,
the trapezoid rule) naively applied to this problem will give “not a number” (along with a
RuntimeWarning) or a ZeroDivisionError; furthermore, if you plot the integrand you
will see that it is vertical near the origin.

The solution is to make a change of variables; taking u =
√

x leads to:

IA =

∫ √
2

0
2 sin(u2)du (7.137)

This has no singularities and no vertical slopes, so closed methods will work just fine.

Discontinuous Derivative
Now take the following integral:

IB =

∫ 2

0

√
x sin xdx (7.138)

This time, the integrand is not singular, but its derivative(s) will be singular. A problem
asks you to apply the trapezoid rule to a similar integral; there you will see in action that
the error does not behave according to Eq. (7.134), i.e., it is much worse. To see why, recall
that Eq. (7.37) told us that the leading error for the trapezoid rule is not simply O(h2), but
actually −h2 f ′′(ξ)(b − a)/12. This means that you get in trouble if you are dealing with
non-smooth functions. We will now see three different ways of addressing this situation.

25 The only possible exception being the remainder term that was dropped from Eq. (7.39).
26 The integrand has a numerical singularity, since floats don’t know about L’Hôpital’s rule.
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First, we can make the same change of variables as above, namely u =
√

x. This gives:

IB =

∫ √
2

0
2u2 sin(u2)du (7.139)

Our new integrand is arbitrarily often differentiable in our interval.
Second, you can choose to slice up the integral:

IB =

∫ 0.01

0

√
x sin xdx +

∫ 2

0.01

√
x sin xdx (7.140)

where the 0.01 is, obviously, not set in stone but merely indicative of a “small” value.
Notice that for the second term, whose endpoints do not include the origin, the integrand
is arbitrarily often differentiable. For the first integral, since it only involves small values
of x, you are allowed to Taylor expand sin x in it:∫ 0.01

0

√
x sin xdx =

∫ 0.01

0

√
x

(
x − x3

6
+

x5

120
− · · ·

)
dx (7.141)

Each of these integrals can now be carried out analytically.
Third, we often try to subtract off the singularity, which in our case translates to sub-

tracting off the singularity in the derivative. Practically speaking, what this means is we
add in and subtract out another function that can be analytically integrated and exhibits the
same misbehavior as our integrand. In our case, this can be done as follows:

IB =

∫ 2

0

√
x sin xdx =

∫ 2

0

√
x(sin x − x)dx +

∫ 2

0

√
xxdx =

∫ 2

0

√
x(sin x − x)dx +

8
√

2
5

(7.142)
The integrand we are left with in the last step has a continuous third derivative, so an
approach like the trapezoid rule won’t have as hard a time tackling it.27

Singularity at the Right Endpoint
Examine the following integral:

IC =

∫ 1

0

sin x
√

1 − x
dx (7.143)

This one has a singularity at the right endpoint. The trick is to move the singularity to the
origin, by using the change of variables u = 1 − x, which leads to:

IC =

∫ 1

0

sin(1 − u)
√

u
du (7.144)

where the minus signs from the differential and the new limits of integration have balanced
each other out. We now have the same problem with a square root at the origin as in IA, so
we will make a further change of variables, namely v =

√
u, leading to:

IC =

∫ 1

0
2 sin(1 − v2)dv (7.145)

which has no issues with singularities or smoothness.
27 Of course, as you discovered in chapter 2, sin x − x suffers from subtractive cancellation for small x, so you

would benefit from employing a Taylor expansion here.
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Singularities at Both Endpoints
We now turn to a slightly different integral:

ID =

∫ 1

0

sin x
√

x(1 − x)
dx (7.146)

This looks similar to IC , but now has problems at both endpoints. The trick is to split it into
two integrals by hand:

ID =

∫ 1/2

0

sin x
√

x(1 − x)
dx +

∫ 1

1/2

sin x
√

x(1 − x)
dx (7.147)

where the matching point was arbitrarily chosen to be the midpoint. Now the first integrand
has a singularity at the left endpoint and the second integrand a singularity at the right
endpoint. The first integral should be tackled by saying u =

√
x and the second integral by

taking u = 1 − x followed by v =
√

u.

Again, Singularities at Both Endpoints
As our final example we look at another integral that raises concerns at both endpoints:

IE =

∫ 1

−1

sin x
√

1 − x2
dx (7.148)

This time taking u =
√

x complicates things at the left endpoint. What we’ll do, instead, is
to make the change of variables u =

√
1 − x, which leads to:

IE =

∫ √
2

0
2

sin(1 − u2)
√

2 − u2
du (7.149)

The denominator may look similar to the one we started from, but now it only has an issue
at the right endpoint.

You could now imagine employing yet another trick, most likely chosen from the list of
those we’ve already encountered. Instead, we recognize that IE is an example of a standard
Gaussian quadrature, namely Gauss–Chebyshev, as per Eq. (7.130); the weights have al-
ready been studied and tabulated, so this integral can be straightforwardly evaluated. The
lesson of this story is to always examine your integrals to see if they are of standard form
before you start using the tricks of the trade.

7.6.3 Infinite Intervals

We now turn to another scenario, one where an infinity appears not in the integrand but in
the endpoints of integration; as you may recall, these are called improper integrals.

One Infinity
Here’s a straightforward example:

IF =

∫ ∞

1

e−x

x + 1
dx (7.150)
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If you wanted to use a standard (Newton–Cotes or Gaussian) quadrature approach, you
would be faced with the question of how to handle the right endpoint. One possible solution
is to take it to be large but finite, say, 5 or 10; but is that enough? You could try increasing
it further to, say, 20 or 50 and see if the result of numerical integration keeps changing. The
problem is that once you do that, you need to also make sure you employ more integration
abscissas. But a simple plot of this integrand shows you that its values are tiny when x is
above 10 or so. This means that you would be employing the majority of the abscissas to
integrate a tiny tail of the function.

In the spirit of the previous section, what we do, instead, is a change of variables; taking
u = 1/x our integral becomes:

IF =

∫ 1

0

e−1/u

u(u + 1)
du (7.151)

Note how the new integration interval is not infinite. Of course, now there is a new singu-
larity at the origin, but that can be tackled using the techniques of the previous section.

Another Infinity
Of course, the trick we just introduced worked only because one of the endpoints was
infinite and the other endpoint was non-zero; you can immediately see that if we had been
faced with, say:

IG =

∫ ∞

0

1
√

x8 + x
dx (7.152)

then the change of variables u = 1/x would still lead to an infinite endpoint. One approach
is to manually slice this integral up:

IG =

∫ 1

0

1
√

x8 + x
dx +

∫ ∞

1

1
√

x8 + x
dx (7.153)

The first integral is over a finite interval and the second one is amenable to the change of
variables u = 1/x and will, crucially, have no singularities. The former integral doesn’t
have an infinite endpoint, but it does have a singularity at the origin; as in the previous
subsection, we can take u =

√
x to eliminate that.

Another approach involves a single transformation for the entire interval. This one is
sufficiently important that it deserves to be emphasized:28

u =
1

1 + x
(7.154)

It is straighforward to see that this leads to a finite interval (0 gets mapped onto 1 and ∞
onto 0). Similarly, it can be solved to give x = (1 − u)/u and dx = −du/u2. Using this
transformation, IG turns into:

IG =

∫ 1

0

u2√
(1 − u)8 + u7(1 − u)

du (7.155)

28 Of course, this is not unique; for example, u = x/(1 + x) is another choice.
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This has taken care of the infinite interval, but is suffering from a singularity at the right
endpoint. However, the sequence of steps discussed earlier can cure all issues here, as you
will discover in a problem.

Two Infinities
Sometimes we are faced with an integration from minus infinity to plus infinity:

IH =

∫ ∞

−∞

e−x2

√
x2 + 1

dx (7.156)

What’s typically done in these cases is to slice up the integral into two pieces, one going
from −∞ to 0 and the other one from 0 to +∞. In the present case, this allows us to cut the
work in half, since the integrand is even, but the technique is of wider applicability.

Yet another approach is to recognize that IH is an example of a standard Gaussian
quadrature, namely Gauss–Hermite, as per Eq. (7.130); that means that the weights have
already been studied and tabulated, so this integral can be straightforwardly evaluated. This
is a general feature: when faced with integrals from −∞ to +∞ you should always consider
Gauss–Hermite and, similarly, for integrals from 0 to ∞ (such as IG) you should think of
Gauss–Laguerre.

7.6.4 Multidimensional Integrals

It is, in principle, straightforward to generalize our earlier discussion to the case of mul-
tidimensional problems. The easiest way to do so is to use Fubini’s theorem, whereby a
multidimensional integral is written as a sequence of iterated one-dimensional integrals.

To be specific, let’s look at the following two-dimensional integral:

I =
∫ 1

−1

∫ 1

−1
f (x, y)dxdy (7.157)

We can re-express this by first defining:

F(y) =
∫ 1

−1
f (x, y)dx (7.158)

This keeps y fixed and carries out the integration over x. Then, we can use this new entity
to rewrite our original integral as follows:

I =
∫ 1

−1
F(y)dy (7.159)

which is also a one-dimensional integral.
Numerically, we can use either Newton–Cotes or Gauss–Legendre quadrature, both of

which take the form Eq. (7.7), to express the above steps as follows:

F(y) ≈
n−1∑
i=0

ci f (xi, y) (7.160)
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and then:

I ≈
n−1∑
j=0

c jF(y j) (7.161)

Putting the last two equations together leads to:

I ≈
n−1∑
i=0

n−1∑
j=0

cic j f (xi, y j) (7.162)

Implementing this should be straightforward. A problem asks you to employ Gaussian
quadrature for a five-dimensional integral: you simply generalize Eq. (7.162) to the five-
variable case, which also means you will employ five sets of abscissas and weights.

As you will learn when you attempt that problem, as you increase the number of di-
mensions, you are faced with the following issue: should you keep the number of points
in one dimension fixed, or the total number of points fixed? Let’s be specific: assume d is
the number of dimensions, n is the number of points in each dimension (just like in our
one-dimensional studies earlier in this chapter), and N = nd is the total number of points
across all dimensions. As is shown in Eq. (7.162), this N gives the total number of func-
tion evaluations you will need to perform.29 As we’ve noted repeatedly throughout this
volume, in the real world it is precisely a function evaluation that is the slowest part of a
computation: this is typically the result of separately running another lengthy calculation.

In practice, one is limited by “total wall-clock time”; this means that we are interested
in determining the scaling of a given approach with respect to the total number of function
evaluations, N . For all the (one-dimensional) quadrature methods we’ve encountered, we
can describe the leading error as O(hp), similarly to what we saw in section 7.4. Using
the definition of h from Eq. (7.9), we can express this leading error as O(n−p). Note that
the first use of O applies to small h, whereas when we switch to n we are interested in
large n. Of course, this is the error we make in one dimension, so in d dimensions we
should probably multiply it with d; however, if we are interested in examining the scaling
with n (or N), then d can be considered a constant prefactor which is therefore omitted.
If we now take our leading error, O(n−p), and express it in terms of the total number of
function evaluations, N = nd, we arrive at the following expression for the total error in
d-dimensional integration:

E = O
(
N−p/d

)
(7.163)

To reiterate, p is the power of the leading error in the quadrature rule we’re employing
(O(hp)), d is the number of dimensions, and N is the number of function evaluations.
When d is large, this scaling is very poor; for example, take Simpson’s rule, p = 4, applied

29 In the present chapter, n denotes the number of abscissas and N the number of panels; asymptotically, these
two are equal: O(n) = O(N). We are using a new symbol for the total number of function evaluations, N .
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to a 100-dimensional integral: the scaling is O(N−1/25), so as we double the total work, i.e.,
doubleN , the error is divided by 21/25 ≈ 1.03. This is known as the curse of dimensionality:
when d is large, doubling our effort is basically a waste of time.

This curse of dimensionality provides a natural entry point to section 7.7, which studies
an approach to integration known as Monte Carlo; as you will see there, Monte Carlo has
an error that scales as O(N−1/2). Crucially, Monte Carlo exhibits this scaling regardless
of the dimensionality! To return to our example of a 100-dimensional integral: in Monte
Carlo when you double the total work the error is divided by

√
2 ≈ 1.41. This means

that the effort you put in toward doubling N actually pays off. In practice, for one (or
a few) dimension(s) it is standard to employ conventional quadrature methods like those
discussed above, but for anything more complicated one has to choose a Monte Carlo
algorithm. Before we see how that all works, let’s do a brief recap.

7.6.5 Evaluating Different Integration Methods

We have encountered several quadrature techniques and seen their strengths and weak-
nesses. Here we summarize these comments:

• There is no substitute for plotting your integrand and thinking about it before you nu-
merically integrate.

• If you can use an analytical trick to eliminate a singularity or a singularity in the deriva-
tive or an infinite interval, you should do so ahead of time.

• If your integrand is periodic and you are integrating over a full period (or several peri-
ods), the composite trapezoid rule can do a great job.

• If your (proper or improper) integral is of a standard Gaussian quadrature form, you
should use the tabulated nodes and weights.

• For most smooth integrands where you need high accuracy, Romberg integration or
Gauss–Legendre integration are the go-to solutions.

• If you need your abscissas to nest, employ a Newton–Cotes rule (or Clenshaw–Curtis
quadrature).

• If you’re not too worried about the accuracy but need a dependable error30 (or if you are
externally constrained to use equally spaced nodes), you should employ an adaptive
Simpson’s rule; if you have an even number of points, remove one point and use the
trapezoid rule on the last panel.

• If you’re dealing with a multidimensional integral, use Gaussian quadrature in a few
dimensions and Monte Carlo in many dimensions.

7.7 Monte Carlo

The section’s title comes from the casino in Monaco and reflects the “chance” (or random)
aspects of such approaches. Monte Carlo techniques employ random numbers to tackle

30 Of course, the dependability of the error rests on a well-behaved Taylor expansion, i.e., a smooth integrand.
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either naturally stochastic31 processes or nonprobabilistic problems. In keeping with the
theme of the present chapter, we will focus on the latter, namely numerical integration. We
start by discussing what “random” numbers are and how to produce them; we then turn to
a detailed discussion of one-dimensional Monte Carlo quadrature, before addressing the
real-world problem of multidimensional integration.

7.7.1 Random Numbers

Determining the exact meaning of “random” can become complicated. A nice example of
patterns that we notice which may (or may not) really be there has to do with the decimal
digits of the number π. For most practical purposes, the digits of π are random. However,
when looking at two-digit repeats, we notice that the first such pair to re-appear is 26:

3.14159265358979323846264338327950 (7.164)

We also notice that the second occurrence of 26 shows up in the middle of a strange repe-
tition pattern: 79, 32, and 38 are repeated in reverse order contiguously, as 38, 32, and 79.
The moral of this story is that checking for patterns/correlations can easily devolve into nu-
merology. This is why one needs quantitative tests of the randomness of a given sequence.
We will only scratch the surface of this topic here.

Computers produce what are known as pseudorandom numbers: the use of the mod-
ifier “pseudo” is due to the fact that computers are (supposed to be) deterministic sys-
tems. Thus, they produce sequences where each number is completely determined by its
predecessor(s). However, if someone who does not have access to the random-number
generation algorithm is led to believe that the sequence is truly random, then we have a
“good” random-number generator. Thus, when dealing with good pseudorandom number
sequences we tend to simply drop the “pseudo” and speak simply of random-number se-
quences.

Linear Congruential Generator

We start with a simple approach that can produce reasonably good sequences of uniformly
distributed random numbers, namely a linear congruential generator. While high-quality
libraries typically employ more complicated algorithms, what we discuss here should be
enough to give you a flavor of what’s involved.

Integers

We first see how to produce randomly distributed integers and turn to floating-point num-
bers next. A linear congruential generator (LCG) produces integers from 0 to m− 1, where
m is an integer appearing in the formula:

31 The word comes from the Greek for “aim” or “guess”.
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ui = (aui−1 + c) mod m (7.165)

Here a and c are also integers. The way this works is that (for a fixed choice of a, c, and m)
we start with an integer ui−1 and this equation instructs us how to construct the next integer
in the sequence, ui. This sequence has to start somewhere: we call the first/0th number (the
one that jumpstarts the generation of numbers) the seed and denote it by u0.

As an example, assume a = 4, c = 1, and m = 15 and pick the seed to be u0 = 5:

u0 = 5, u1 = (4 × 5 + 1) mod 15 = 6, u2 = (4 × 6 + 1) mod 15 = 10,

u3 = (4 × 10 + 1) mod 15 = 11, u4 = (4 × 11 + 1) mod 15 = 0,

u5 = (4 × 0 + 1) mod 15 = 1, u6 = (4 × 1 + 1) mod 15 = 5 (7.166)

We have stopped here, because we know that as soon as we get a repeated number (5 in
this case) all the numbers to follow will be obeying the same trend: this is a deterministic
algorithm that will keep repeating the same sequence over and over again. The distinct
numbers are those from u0 to u5, so we say we have a period of 6. To be explicit, the
parameters we used here lead to the sequence:

5, 6, 10, 11, 0, 1, 5, . . . (7.167)

which is infinitely repeating. Obviously, this is not good enough for practical purposes.
Note that, in our example above, we divided with m = 15 but got a period of 6. It’s fairly

easy to see that an LCG sequence cannot have a period that is larger than m: since we’re
taking mod m, we’re producing numbers from 0 to m − 1. But there only exist m distinct
numbers from 0 to m − 1: the minute we get a repeat, we know the entire sequence will
repeat after that.32 Given that a fixed m leads to numbers from 0 to m− 1 and can therefore
have a maximum period of m, it stands to reason that we would like to have m be large; it
is standard to pick m to be 2 raised to a large power. However, simply increasing m is not
enough: it’s generally a good idea to also pick a to be large. Of course, using a large m and
a large a only addresses the question of the large period, not that of the “quality” of our
random number sequence; we return to this question below.

So far, we’ve been discussing Eq. (7.165): once the parameters a, c, and m are set, this
formula only requires knowledge of the current number in order to produce the next one.
However, one could concoct more complicated generators, which depend on a larger part
of the sequence’s history, for example:

ui =
(
aui− j + cui−k

)
mod m (7.168)

for fixed values of j and k. In this case, to jumpstart the generation of numbers one would
have to start not with one number (the seed), but with a sequence of such numbers.

32 Note that this holds for the LCG algorithm, not for random sequences in general.
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Floats

In applications, we often need not integer random numbers, but floats/real numbers. The
most common variety in which these are needed is (uniformly distributed) random numbers
from 0 to 1. It’s easy to see how to produce these numbers starting from a sequence of
integers generated using Eq. (7.165); simply divide with m:

ri =
ui

m
(7.169)

This automatically ensures that the output floats will be from 0 (inclusive) to 1 (exclusive).
Since our integers go from 0 to m− 1, we’ll never get an ri that is all the way up to 1 itself,
but that’s generally not a problem, for very large values of m.

To be explicit, the sequence of integers in Eq. (7.167) will (upon division with m = 15)
lead to the sequence of roughly:

0.3333, 0.4, 0.6667, 0.7333, 0.0, 0.0667, 0.3333, . . . (7.170)

This is still a random-number sequence (this time, of floats) of period 6.
In some applications we need random floats not in [0, 1) but in [a, b). Again, it’s easy to

do this. Starting from ri in [0, 1), we transform as follows:

xi = a + (b − a)ri (7.171)

where xi is now in [a, b). We can use this transformation when we need floats from −1 to
1: the relation above gives us xi = −1 + 2ri, which can be re-expressed as xi = 2(ri − 0.5).

Tests of Random Number Generators

In the preceding discussion, we saw that pseudorandom number generators eventually re-
peat, so one’s goal should be to have as large a period as possible. However, one should also
consider if the random-number generator has good statistical quality; this basically means
that there should not be glaring correlations along the sequence of random numbers. For
example, the sequence:

1, 2, 3, 4, 5, 6, . . . (7.172)

is clearly not random, since you can easily predict the next number in the sequence (i.e.,
you know that if your current number is 37 then your next number will be 38). Here’s
another example:

u0, 101 − u0, u1, 101 − u1, u2, 101 − u2, . . . (7.173)

This is also not a very random sequence: very often, if you know one number you can
predict the next one. For example, if you’re at the start of a new pair and the number 33
appears, then you know that the next number will be 68. This sequence contains strong
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�Fig. 7.5 Random numbers plotted pairwise for a “bad” (left) and a “good” (right) generator

pairwise correlations. Both these examples are hinting at what a random-number sequence
is by exhibiting its opposite: non-random number sequences, which are often predictable
(at least in part).

One way of testing for correlations is by plotting pairs of numbers, (xi, yi) = (ui−1, ui).
If such a plot exhibits regularity, something is wrong. The left panel of Fig. 7.5 shows the
result of generating 1000 uniformly distributed random numbers from the generator:

ui =
[
(218 + 1)ui−1 + 7

]
mod 232 (7.174)

and plotting them pairwise; the right panel employs a generator that is almost identical:
the only change is in the coefficient, a = 1 812 433 253. In both cases we started from the
seed u0 = 314 159 and have divided the u’s with 232. The left panel exhibits a clear pattern:
all the pairs end up in one of two bands; in a problem, you are asked to reproduce these
plots using Python. Of course, this test involves “visual inspection”, so it is still prone to
human error (e.g., is it obvious that the right panel is exhibiting no patterns whatsoever?);
in reality, this is merely the visual component of a systematic approach known as the serial
test, which checks tuples of successive numbers to see if they are independent of each
other. Another problem explores the equidistribution test: you are asked to divide up the
region from 0 to m − 1 into “bins” and then count how many numbers fall into each bin.

Even though up to this point we’ve been producing (or trying to produce) uniformly
distributed random numbers, it’s important to realize that random is not the same thing
as uniform. Random in the sense that we’re using it here means that there are few/no
correlations and that there is a very large period. If you’re dealing with numbers from,
say, 1 to 100, “random” does not necessarily mean that all numbers from 1 to 100 are
equally likely to occur. For example, we can have a random number sequence that follows
a normal/Gaussian distribution centered around 50: that means that numbers around 50 are
much more likely to occur than, say, numbers around 10 or 90, which are close to the tails of
the distribution. Such numbers are sometimes called normal deviates, in contradistinction
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to random numbers that are uniformly distributed, which are called uniform deviates. We
discuss how to produce non-uniformly distributed random numbers in later sections.

Random Numbers in Python

For industrial-scale applications, we typically do not rely on our own random-number gen-
erators. Python itself includes a high-quality generator in the random module:

>>> import random

>>> random.seed(314159)

>>> random.random()

0.19236379321481523

>>> random.random()

0.2868424512347926

We first call the random.seed() function to provide the seed. We then see that repeated in-
vocations to the random.random() function lead to new random numbers, uniformly dis-
tributed in [0, 1). Python’s random.random() uses a Mersenne Twister algorithm which
has very good statistical properties and a period of 219,937 − 1, which is large enough for
most practical applications.33 You will compare its properties to LCG ones in a problem.

If you need several random numbers stored in an array, you could hand-roll a solution
using random.random(). However, it’s probably best to directly employ the functionality
contained in numpy.random.uniform(); this function takes in three parameters: the first
two determine the interval [a, b) while the third one contains the shape of the output array:

>>> import numpy as np

>>> np.random.seed(314159)

>>> np.random.uniform(-1,1,4)

array([ 0.63584662, 0.10209259, -0.16044929, -0.80261629])

>>> np.random.uniform(-1,1,(2,3))

array([[ 0.6220415 , 0.93471281, -0.80358661],

[ 0.60372074, 0.20980423, 0.16953762]])

where we also showed the seeding taking place through a call to np.random.seed().34

7.7.2 Monte Carlo Quadrature

We now turn to the question of how random numbers can be used to compute integrals,
starting from the one-dimensional case for simplicity. At this point, you might want to
have a look at our brief recap on probability theory in Appendix C.3.

33 Such a number is known as a Mersenne prime; this explains the presence of Descartes’ chief correspondent in
the name of an algorithm developed in 1997.

34 While np.random.seed() is fine for our limited needs here, if you think you may end up needing independent
streams in the future you should use np.random.RandomState() instead.
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Population Mean and Population Variance

Our starting point will be Eq. (C.31), giving us the expectation (which is an integral) of a
function f of a continuous random variable X:

〈 f (X)〉 =
∫ +∞

−∞
p(x) f (x)dx (7.175)

For now, we take p(x), the probability density function, to be uniform from a to b, with the
value p(x) = 1/(b− a), and zero elsewhere35 (we’ll generalize this in section 7.7.3 below).
This leads to the following result:

〈 f (X)〉 = 1
b − a

∫ b

a
f (x)dx (7.176)

Except for the 1/(b − a) prefactor, the right-hand side is exactly of the form of Eq. (7.7),
which is the problem we’ve been solving this entire chapter. To keep the terminology
straight, we will call this 〈 f (X)〉 the population mean. Similarly, we can take Eq. (C.32),
giving us the variance of a function of a random variable, in terms of an integral:

var[ f (X)] = 〈[ f (X) − 〈 f (X)〉]2〉 = 〈 f 2(X)〉 − 〈 f (X)〉2 (7.177)

and specialize to the case where p(x) = 1/(b − a), to find:

var[ f (X)] =
1

b − a

∫ b

a
f 2(x)dx −

(
1

b − a

∫ b

a
f (x)dx

)2

(7.178)

To keep the terminology consistent, we call this the population variance. Obviously, its
square root gives us the population standard deviation,

√
var[ f (X)].

Crucially, both the population mean and the population variance, 〈 f (X)〉 and var[ f (X)],

are unknown, i.e., we don’t know the value of either
∫ b

a
f (x)dx or

∫ b

a
f 2(x)dx, which appear

in Eq. (7.176) and Eq. (7.178); this is precisely why we wish to employ Monte Carlo
integration. In what follows, we will learn how to estimate both 〈 f (X)〉 and var[ f (X)].

Sample Mean and Its Variance

Assume that the random variables X0, X1, X2, . . ., Xn−1 are drawn randomly from p(x),
which for us is uniform from a to b. For each of these random variables Xi, we act with the
function f , leading to n new random variables, f (X0), f (X1), f (X2), . . ., f (Xn−1). (Remem-
ber, a function of a random variable is another random variable.) Similarly, the arithmetic
average of several random variables is also a random variable. We define:

35 We do this to ensure that the probability density is normalized:
∫ +∞
−∞ p(x)dx =

∫ b
a 1/(b − a)dx = 1. If we were

interested in an improper integral, we would make a different choice here.
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f =
1
n

n−1∑
i=0

f (Xi) (7.179)

We call this the sample mean: it is the arithmetic average of the function value over n
samples. Crucially, this f is a quantity computed from a finite number of samples, n; this
means it is quite different from the population mean, 〈 f (X)〉, which as we see in Eq. (7.176)
is an integral over continuous values of x.

We will now see that the sample mean, f , can be used to estimate the population mean,
〈 f (X)〉. Let us examine the expectation of the sample mean:36

〈 f 〉 = 〈1
n

n−1∑
i=0

f (Xi)〉 =
1
n

n−1∑
i=0

〈 f (X)〉 = 〈 f (X)〉 (7.180)

In the first equality we substituted the definition of the sample mean from Eq. (7.179).
In the second equality we used (repeatedly) the addition rule for expectations of random
variables, from Appendix C.3. In the third equality we noticed that all n terms in the sum
are identical and therefore cancelled the denominator. In words, our result is that the ex-
pectation of the sample mean is equal to the population mean. This motivates our choice
to use f as an estimator of 〈 f (X)〉; for us an estimator is a useful approximation of a given
quantity. In a problem you will prove the weak law of large numbers, which tells us that as
n gets larger there is a high probability that the sample mean will be close to the population
mean. This is good news, but it doesn’t tell us the full story: we would like to know how
fast the sample mean approaches the population mean, so we can decide when to stop.

In order to quantify how well we’re doing, we turn to the variance of the sample mean:

var( f ) = var

⎛⎜⎜⎜⎜⎜⎜⎝1
n

n−1∑
i=0

f (Xi)

⎞⎟⎟⎟⎟⎟⎟⎠ = 1
n2

n−1∑
i=0

var[ f (X)] =
1
n

var[ f (X)] (7.181)

In the first equality we substituted the definition of the sample mean from Eq. (7.179). In
the second equality we used (repeatedly) the addition rule for variances of random vari-
ables, from Appendix C.3. In the third equality we noticed that all n terms in the sum
are identical and therefore cancelled one of the n’s in the denominator. Since var[ f (X)] is
fixed and given by Eq. (7.178), our result is telling us that the variance of the sample mean
decreases as 1/n. If we take the square root on both sides, we find:

√
var( f ) =

1
√

n

√
var[ f (X)] (7.182)

that is, the standard deviation of the sample mean goes as 1/
√

n: as you quadruple n, the
standard deviation is halved. As you will discover in a later section, this scaling persists
in the multidimensional version of Monte Carlo; as we saw in our discussion following

36 Since the sample mean is a random variable, we take its expectation to see if it gives the population mean.
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Eq. (7.163), this is why Monte Carlo vastly outperforms conventional quadrature methods
when integrating over many dimensions.

There is a slight complication, though: Eq. (7.181) relates var( f ) (the variance of the
sample mean) to var[ f (X)] (the population variance) which, as you may recall from our
discussion around Eq. (7.178), we don’t actually know. This means that we will need to
come up with an estimator for var[ f (X)]. Once we have a usable approximation for it, we
can employ Eq. (7.181) to produce an actual number that approximates the variance of
the sample mean. Given the standard definition of the variance of a random variable, we
propose an estimator for the population variance of the following form:

evar = f 2 − f
2
=

1
n

n−1∑
i=0

f 2(Xi) −
⎡⎢⎢⎢⎢⎢⎢⎣1
n

n−1∑
i=0

f (Xi)

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7.183)

which introduces the new notation f 2, whose meaning should be intuitive. It’s important to
note that the final expression makes use of the already observed values of f (Xi); this means
that it can readily be evaluated. As you will show in a problem, the expectation of this new
estimator evar is close to, but not quite the same as, the population variance:37

〈evar〉 =
n − 1

n
var[ f (X)] (7.184)

This implies that it is not an unbiased estimator (i.e., it is a biased estimator). An unbiased
estimator g of a quantity G is one for which the mean is equal to the quantity you’re trying
to estimate, 〈g〉 = G.38 It’s trivial to see how to produce an unbiased estimator of the
variance: simply multiply both sides with n and divide with n − 1, i.e., nevar/(n − 1) is
an unbiased estimator of the population variance (known as the sample variance). We can
now use this unbiased estimator to get:

var( f ) =
1
n

var[ f (X)] ≈ 1
n

n
n − 1

evar =
1

n − 1

(
f 2 − f

2
)

(7.185)

The first step is Eq. (7.181), namely the relationship between the variance of the sample
mean, on the one hand, and the population variance, on the other. The second step employs
the unbiased estimator of the population variance, i.e., the sample variance. The third step
cancelled the n and plugged in evar from Eq. (7.183). To summarize, we approximate the
population variance var[ f (X)] by the sample variance, nevar/(n − 1); then, we use that in
Eq. (7.181) to produce an estimate for the variance of the sample mean.39

Practical Prescription

Let’s back up for a second, to recall that our goal all this while has been to approximate an
integral. We can trivially recast Eq. (7.176) as:∫ b

a
f (x)dx = (b − a)〈 f (X)〉 (7.186)

37 Remember: evar is an estimator, so we take its expectation to see if it gives the population variance.
38 Obviously, for large values of n we have (n − 1)/n ≈ 1, so 〈evar〉 is basically equal to var[ f (X)].
39 You may wish to re-read the last few pages at this point, as the (standard) terminology can be somewhat

confusing. For example, the “variance of the sample mean” is not the same thing as the “sample variance”.
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Randomly chosen abscissas, each of which leads to a rectangle �Fig. 7.6

The previous subsection studied the approximation of the population mean 〈 f (X)〉 by the
sample mean f , Eq. (7.179). In terms of our integral, this gives:∫ b

a
f (x)dx ≈ (b − a) f ± (b − a)

√
var( f ) (7.187)

We took the square root of the variance of the sample mean here to produce the standard
deviation of the sample mean; in order to interpret that in the usual (Gaussian) sense of ±,
one also needs to make the assumption of a finite variance, which will always be true for us.
In other words, we employed the central limit theorem which tells us that asymptotically
the f obeys a normal/Gaussian distribution regardless of which p(x) was employed to draw
the samples (e.g., a uniform one in our case); this is derived in a problem.

Using Eq. (7.185) for the variance of the sample mean, we find:

∫ b

a
f (x)dx ≈ (b − a) f ± (b − a)

√
f 2 − f

2

n − 1
(7.188)

If we also take the opportunity to plug in f and f 2 from Eq. (7.179) and Eq. (7.183),
respectively, we arrive at the following practical formula for Monte Carlo integration:

∫ b

a
f (x)dx ≈ b − a

n

n−1∑
i=0

f (Xi) ±
b − a
√

n − 1

√√√
1
n

n−1∑
i=0

f 2(Xi) −
⎡⎢⎢⎢⎢⎢⎢⎣1
n

n−1∑
i=0

f (Xi)

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7.189)

where the Xi’s are chosen uniformly from a to b.
We will implement Eq. (7.189) in Python later, where we will see that the

√
n − 1 in

the denominator has the effect of slowly but surely decreasing the standard deviation of the
sample mean: more work pays off. For now, we limit ourselves to the first term on the right-
hand side: observe that this is an arithmetic average over terms of the form (b−a) f (Xi). This
is similar to the rectangle or midpoint methods, Fig. 7.2, in that the total area is evaluated
as a sum of rectangle areas. The difference here is that the width of the rectangles is always
b − a (i.e., each term corresponds to a big rectangle) and the height is determined by the
value of the function at the uniformly distributed Xi’s. This is illustrated in Fig. 7.6.
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7.7.3 Monte Carlo beyond the Uniform Distribution

Having understood how and why Monte Carlo quadrature works, we now see if we can
solve harder problems, or solve the same problems better. To give the punchline ahead of
time, this will involve non-uniformly distributed random numbers, a subject to which we
return in section 7.7.5 below, when we introduce the Metropolis–Hastings algorithm.

Generalizing to Weight Functions

The discussion in the previous section started from Eq. (7.175), which gives us the expec-
tation of a function of a continuous random variable:

〈 f (X)〉 =
∫ +∞

−∞
p(x) f (x)dx (7.190)

This time around, we take our probability density function to be w(x)/(b − a) from a to b
and zero elsewhere; this w(x) is kept general, except for being positive. This leads to:40

〈 f (X)〉 = 1
b − a

∫ b

a
w(x) f (x)dx (7.191)

Notice that the integral on the right-hand side is precisely of the form we encountered in
Eq. (7.129), in our discussion of general Gaussian quadrature. It should therefore come
as no surprise that w(x) is known as a weight function. For this new population mean, we
can write down the corresponding population variance; this follows from Eq. (7.177) and
would lead to a generalization of Eq. (7.178), where this time the integrands would be
[w(x) f (x)]2 and w(x) f (x).

We could now introduce a new sample mean, as per Eq. (7.179):

f =
1
n

n−1∑
i=0

f (Xi) (7.192)

where, crucially, this time the X0, X1, X2, . . ., Xn−1 are drawn randomly from the probability
density function w(x), i.e., not from a uniform distribution. Intriguingly, if you now go back
to our derivation on the expectation of the sample mean, Eq. (7.180), you can easily see
that all the steps carry over in exactly the same way. The only thing that’s changed is the
meaning of the expectation, which this time is given as per Eq. (7.191). Similarly, the
derivation on the variance of the sample mean is also identical to Eq. (7.181) and, finally,
the same holds for the expectation of our proposed estimator for the population variance,
Eq. (7.184). As before, the only thing that’s changed is the meaning of the expected value.
To make a long story short, the entire argument carries over, implying that we have a
practical formula for Monte Carlo integration with a general weight function:

40 We write things this way in order to ensure that w(x) = 1 takes us back to Eq. (7.176). Note that this implies

the following normalization of the weight function:
∫ +∞
−∞ p(x)dx = 1, so

∫ b
a w(x)dx = b − a.
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∫ b

a
w(x) f (x)dx ≈ b − a

n

n−1∑
i=0

f (Xi) ±
b − a
√

n − 1

√√√
1
n

n−1∑
i=0

f 2(Xi) −
⎡⎢⎢⎢⎢⎢⎢⎣1
n

n−1∑
i=0

f (Xi)

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7.193)

where this time the Xi’s are chosen from w(x), e.g., if w(x) is exponential, these are expo-
nentially distributed random numbers.

Inverse Transform Sampling

In the preceding discussion we took it for granted that the random variables X0, X1, X2, . . .,
Xn−1 could be drawn from the probability density function w(x). You may have wondered
how that is possible, given that section 7.7.1 only discussed the generation of uniformly dis-
tributed random numbers. We now go over a specific technique that helps you accomplish
this task, known as inverse transform sampling or, sometimes, simply inverse sampling.

The main idea is to somehow manage to convert the integrand w f in Eq. (7.193) to f , via
an appropriate change of variables; in calculus, this is known as integration by substitution.
As advertised, we wish to somehow “absorb” the w(x); with that in mind, we make the
following change of variables:41

du = w(x)dx (7.194)

This can be integrated:

u(x) =
∫ x

a
w(x′)dx′ (7.195)

If you have taken a course on probability, you will recognize this integral over the proba-
bility density function as the cumulative distribution function.42

We now realize that when x goes from a to b, u goes from 0 to b − a, i.e., u(a) = 0 and
u(b) = b − a. Since Eq. (7.195) gives us u as a function of x, i.e., u(x), we can (hope to be
able to) invert this to give x as a function of u, i.e., x(u). Having done that, we realize that
we’ve been able to recast the integral over x as an integral over u:∫ b

a
w(x) f (x)dx =

∫ b−a

0
f (x(u)) du (7.196)

where f (x(u)) means that we’ve expressed x in terms of u. Roughly speaking, in Eq. (7.194)
we equated the differentials, so we needed to integrate that relation in order to change f (x)
into something that depends on u.

At this point, we realize that the right-hand side is in the form of an unweighted integral

41 You can think of Eq. (7.194) as equating two probabilities, pu(u)du = px(x)dx, where pu(u) is 1.
42 In probability theory, this would be

∫ x
−∞ p(x)dx, but our p(x) is 0 below a; notice that we are using w(x), so

our normalization is different (because of the b − a term).
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over u, implying that we can use Eq. (7.189) to evaluate it by employing Ui’s that are
chosen uniformly:

∫ b

a
w(x) f (x)dx =

∫ b−a

0
f (x(u)) du ≈ b − a

n

n−1∑
i=0

f (X(Ui)) (7.197)

To reiterate, the Ui’s are uniformly distributed from 0 to b−a and as a result the Xi’s (which
are produced by our having inverted u(x) to give x(u)) are distributed according to w(x),
from a to b; basically, the Xi’s are w(x)-aware, via the inverse transform we carried out. In
summary, we’ve managed to employ uniform numbers, together with a transformation, to
apply Monte Carlo to a weighted integral.

To see how this all works in practice, let’s study a specific example:

I =
∫ 1

0
e−x cos xdx (7.198)

We could choose to treat the entire integrand as one piece here, f (x) = e−x cos x; we could
then directly apply Eq. (7.189) and use uniformly distributed random numbers to compute
it. While this is certainly an option, you can see why it is a wasteful one: the exponential
causes a considerable drop in the magnitude of the integrand; by choosing your abscissas
uniformly, you are not taking into consideration the fact that most of the contribution to
the integral comes from small values of x.

Thus, another choice is to try to apply Eq. (7.193) instead of Eq. (7.189); since you want
to ensure your weight function is normalized, you take w(x) = ce−x, where the normaliza-
tion gives c = e/(e − 1). To get the prefactors to cancel, you should take f (x) = cos x/c.
The problem you then face is that you don’t have access to a random-number generator
for exponentially distributed numbers.43 The inverse transform method then tells you to
evaluate u(x) as per Eq. (7.195):

u(x) = c
∫ x

0
e−x′dx′ = c(1 − e−x) (7.199)

This can be inverted to give:

x(u) = − ln
(
1 − u

c

)
(7.200)

in which case Eq. (7.197) for the integral in Eq. (7.198) becomes:

∫ 1

0
ce−x 1

c
cos xdx =

∫ 1

0

1
c

cos
(
− ln

[
1 − u

c

])
du ≈ 1

n

n−1∑
i=0

1
c

cos
(
− ln

[
1 − Ui

c

])
(7.201)

where the Ui’s are distributed uniformly from 0 to 1; a problem asks you to implement this
in Python. In short, you have managed to sample from an exponential distribution, even
though your input random-number generator was for a uniform distribution.

43 Actually, you have access to numpy.random.exponential(), but let’s pretend you don’t.
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Importance Sampling

You may be thinking that it was easy to handle an integrand of the form e−x cos x, with
its clean separation between an exponential suppression and everything else. This was
basically the integrand itself telling us which weight function to employ. As it turns out,
the technique we just introduced is much more useful than we’ve hinted at so far: even if
no weight function is present, you can introduce one yourself.

To see what we mean, let’s repeat the previous argument, for the case where the integrand
appears to be a single (i.e., unweighted) function:

∫ b

a
f (x)dx =

∫ b

a
w(x)

f (x)
w(x)

dx =
∫ b−a

0

f (x(u))
w (x(u))

du ≈ b − a
n

n−1∑
i=0

f (X(Ui))
w (X(Ui))

(7.202)

In the first equality we multiplied and divided with a positive weight function of our choos-
ing. In the second equality we used the change of variables from Eq. (7.195), in complete
analogy to what we saw in Eq. (7.196); the only difference is that this time after we carry
out the transform there is still a w left over in the denominator. In the third equality we
treated f /w as our (“unweighted”) integrand and therefore used Ui’s which are uniformly
distributed from 0 to b − a. The entire process is known as importance sampling.

You may be wondering why we went through the trouble of doing this. The answer is
as follows: if you choose a w(x) that behaves approximately the same way that f (x) does,
then your random numbers will be distributed in the most “important” regions, instead of
uniformly. To put the same idea differently: since our (unweighted) integrand is f /w, the
variance will be computed as per Eq. (7.189), with f /w in the place of f . Since w(x) is
chosen to be similar to f (x), we see that f /w will be less varying than f itself was; this
will lead to a reduction of the variance, i.e., a better overall estimate of the integral we are
trying to compute.

To see this in action, we turn to the example we’ve been revisiting throughout this chap-
ter, namely the electrostatic potential in Eq. (7.2), which integrates the function:

f (x) =
1

√
x2 + 1

(7.203)

from 0 to 1. As advertised, this integral doesn’t consist of two easily separable parts. Even
so, we can plot it to see what it looks like; this is done in the left panel of Fig. 7.7. We see
that f (x) is decreasing from 1 to 0.7 in our interval; with that in mind, we decide to employ
a linear weight function:

w(x) = c0 + c1x (7.204)

We wish w(x) to roughly track the behavior of f (x) in our interval; one way to do this is
to ensure that f (0)/w(0) is equal to f (1)/w(1). This gives one equation relating c0 and c1.

If we then also impose the normalization condition
∫ 1

0
w(x)dx = 1 we get another relation.

Thus, we are able to determine both parameters:

c0 = 4 − 2
√

2, c1 = −6 + 4
√

2 (7.205)
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It comes as no surprise that c1 is negative, since w(x) should be a decreasing function in
our interval. Our weight function is also plotted in the left panel of Fig. 7.7, together with
the ratio f /w: we see that f (x)/w(x) varies between 0.85 and 0.9, which is considerably
smaller than the variation of our original integrand. It will therefore not come as a surprise
in the following subsection that the computed variance in the importance-sampling case
turns out to be much smaller than the variance in the original, uniform-sampling case.

Backing up for a second, what we’re interested in doing is applying the importance-
sampling prescription in Eq. (7.202). Up to this point, we’ve only selected the w(x) we’ll
use. The next step is to carry out the change of variables as per Eq. (7.195):

u(x) =
∫ x

0
(c0 + c1x′)dx′ = c0x +

1
2

c1x2 (7.206)

After that, we need to invert this relation to find x(u); since we’re dealing with a quadratic,
we will have two roots. Of these, we pick the one that leads to x from 0 to 1 for u in [0, 1],
since that’s the interval we’re interested in. We get:

x(u) =
−c0 +

√
2c1u + c2

0

c1
(7.207)

Having calculated both the weight w(x) and the inverted x(u), we are now ready to apply
importance sampling to our problem, as per Eq. (7.202):

∫ 1

0

1
√

x2 + 1
dx ≈ 1

n

n−1∑
i=0

1√
X(Ui)2 + 1 (c0 + c1X(Ui))

(7.208)

where we get the X(Ui) from Eq. (7.207). As before, the Ui’s are uniformly distributed.
This is implemented in Python in the following section, where we will discover if all our
effort was worthwhile.

Incidentally, you may be wondering why we picked a linear w(x) in Eq. (7.204). As
the left panel of Fig. 7.7 clearly shows, our integrand itself is not linear. Thus, you may
feel tempted to pick a w(x) that is slightly more complicated (e.g., a quadratic), since this
would imply that the variation in f (x)/w(x) is even smaller. This is fine, in principle, but
in practice you have to remember that the integral of w(x), which you need to carry out for
the change of variables as per Eq. (7.195), must always remain invertible; for example, if
your w(x) is quadratic then you will need to invert a cubic. As this example shows, as you
introduce further structure into your w(x), the inversion becomes increasingly hard to do
analytically; of course, there’s nothing holding you from trying to carry out this inversion
numerically, but you will have to be careful about picking the right solution, as we saw in
Eq. (7.207). To provide a quick preview of coming attractions, we note that this approach
does not work that well if you try to generalize it to a multidimensional problem; we will
discover a better alternative in section 7.7.5 below.
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montecarlo.py Code 7.5

from newtoncotes import f

import numpy as np

def montecarlo(f,a,b,n,option="uniform"):

np.random.seed(314159)

us = np.random.uniform(a, b, n)

if option=="uniform":

fs = f(us)

else:

c0 = 4 - 2*np.sqrt(2)

c1 = -6 + 4*np.sqrt(2)

xs = (-c0 + np.sqrt(2*c1*us + c0**2))/c1

fs = f(xs)/(c0 + c1*xs)

fbar, err = stats(fs)

return (b-a)*fbar, (b-a)*err

def stats(fs):

n = fs.size

fbar = np.sum(fs)/n

fsq = np.sum(fs**2)/n

varfbar = (fsq - fbar**2)/(n - 1)

return fbar, np.sqrt(varfbar)

if name == ‘ main ’:

for n in 10**np.arange(2,7):

avu, erru = montecarlo(f, 0., 1., n)

avi, erri = montecarlo(f, 0., 1., n, option="is")

rowf = "{0:7d} {1:1.9f} {2:1.9f} {3:1.9f} {4:1.9f}"
print(rowf.format(n, avu, erru, avi, erri))

7.7.4 Implementation

Code 7.5 implements Monte Carlo quadrature for the case of a one-dimensional integral.
This is done in montecarlo(), which addresses both the case of uniform sampling and
that of importance sampling. Crucially, uniform sampling is the default parameter value,
which means that you can call this function with montecarlo(f,a,b,n), i.e., with pre-
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�Fig. 7.7 The integrand, the weight, and their ratio (left); results of MC integration (right)

cisely the same interface as our three integrators in newtoncotes.py and the one in
gauleg.py. In other words, this is a drop-in replacement for a general-purpose integra-
tion routine. In the function body, we start by seeding the random-number generator and
producing an array of n numbers, uniformly distributed from a to b, using numpy function-
ality described in section 7.7.1. With these in hand, the option of uniform sampling is a
straightforward application of Eq. (7.189). In the interest of separating our concerns, we
have farmed out the evaluation of f and f 2, which we need as per Eq. (7.188), to a separate
function, stats().44

For the importance-sampling case, we code up the parameters of the linear weight func-
tion, Eq. (7.205), then produce an array of Xi’s using X(Ui) from Eq. (7.207), and then
we remember to divide f (X(Ui)) with w(X(Ui)), just like in Eq. (7.202) or Eq. (7.208). As
always, we employ numpy functionality to carry out the division f /w for all i’s in one line;
that’s why, as usual, the code contains no indices. The same holds, of course, with respect
to stats(), where the squaring and the sums are carried out without needing explicit in-
dices. Incidentally, Eq. (7.202) shows only the sample mean, not its variance; that is taken
from our general formula for Monte Carlo integration, Eq. (7.189), with f /w in the place
of f . Finally, we note that the uniformly distributed numbers for this case should in general
go from 0 to b − a, not a to b; thus, our importance sampling option only works for a = 0
and b = 1. That’s fine, though, since the w(x) itself (i.e., both its values at the two endpoints
and the normalization) was tuned only to the interval [0, 1].

The main program picks n to be the first several powers of 10 and carries out Monte
Carlo integration using either uniform sampling, Eq. (7.189), or importance sampling,
Eq. (7.202), with a linear weight function. The output table format is then set up. For
comparison, recall that the exact answer for this integral is 0.88137358702. Running this
code produces the following output:

44 We could have used numpy.mean() and numpy.std() but, as usual, we prefer to roll our own.
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100 0.873135430 0.009827018 0.880184046 0.001397861

1000 0.878313494 0.003014040 0.880653976 0.000439206

10000 0.879343920 0.000933506 0.881029489 0.000139055

100000 0.881289768 0.000292906 0.881400087 0.000043577

1000000 0.881433836 0.000092589 0.881389786 0.000013775

First, looking at the uniform-sampling results we observe that they do converge to the
right answer as n is increased; the exact answer is always within a few standard deviations
of the sample mean (though often it lies within less than one standard deviation). However,
it’s fair to say that the convergence is quite slow: using a million points, the standard de-
viation is roughly 10−4. As you may recall, Gauss–Legendre quadrature got all the printed
digits right with only 10 points! Of course, this is an unfair comparison, since the true
strength of Monte Carlo is in multidimensional integration, where even Gauss–Legendre
can’t help you, as we saw in Eq. (7.163).

We now turn to the importance-sampled results. Overall, we see that the importance sam-
pling has helped reduce the standard deviation by roughly an order of magnitude, which
was certainly worthwhile. Note that, in both cases, we are not showing the absolute error
(i.e., comparing with the exact answer) but the standard deviation that comes out of the
Monte Carlo machinery. Incidentally, the n increases by a factor of 10 as you move to the
next row: as a result, we see the standard deviation get reduced by roughly a factor of 3
each time; this is consistent with a scaling of 1/

√
n. In order to drive this point home, the

right panel of Fig. 7.7 is a log-log plot of the standard deviation of the sample mean for
the two cases of uniform sampling and importance sampling; we’ve used more n points to
make the plot look good and that it does: the slope of −0.5 is pretty unmistakable in both
cases. Just like we found in our table of values, we again see that importance sampling
consistently helps us reduce the standard deviation by an order of magnitude.

7.7.5 Monte Carlo in Many Dimensions

We now turn to a truly relevant application of the Monte Carlo approach: multidimensional
integration. As in the one-dimensional case, we start from uniform sampling, but then try
to do a better job: we explain how to carry out weighted sampling via the Metropolis–
Hastings algorithm, which is one of the most successful methods ever.

Uniform Sampling

We briefly talked about multidimensional integration in section 7.6.4, where we saw an
example in Eq. (7.157):

I =
∫ 1

−1

∫ 1

−1
f (x, y)dxdy (7.209)

This notation can get cumbersome if we need many dimensions, so it makes more sense to
employ notation like the one used in section 5.5.2; thus we bundle together the variables
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x0, x1, . . . , xd−1 into x. We will be dealing with a scalar function of many variables, i.e.,
f (x) produces a single number when given d variables as input.45 We emphasize that the
number of dimensions (and therefore variables) is d. Our starting point is the same as in
section 7.7.2, i.e., we define a population mean:

〈 f (X)〉 = 1
V

∫
f (x)dd x (7.210)

where the expectation on the left-hand side is of a function of a multidimensional random
variable X. The multidimensional integration on the right-hand side is over the volume V:
this is the multidimensional generalization of writing p(x) = 1/(b − a) in Eq. (7.176).

At this point, there is nothing discrete going on: we simply defined the population mean
as the multidimensional integral in Eq. (7.210). We can now step through all the arguments
in section 7.7.2, defining the population variance, the sample mean and its variance, testing
that the sample mean is a good estimator of the population mean, and so on. The entire
argument carries over naturally, leading to the following practical formula for multidimen-
sional Monte Carlo integration:

∫
f (x)dd x ≈ V

N

N−1∑
i=0

f (Xi) ±
V

√
N − 1

√√√√
1
N

N−1∑
i=0

f 2(Xi) −
⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

N−1∑
i=0

f (Xi)

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7.211)

which is a d-dimensional generalization of Eq. (7.189). Thus, the Xi’s are chosen uni-
formly; this is a good time to unpack our notation a little. Each of the Xi’s on the right-hand
side is a d-dimensional random sample, whose components are (Xi)0, (Xi)1, . . . , (Xi)d−1. In
order to keep our notation consistent with that in section 7.6.4, in Eq. (7.211) we useN for
the total number of samples; this plays the role n played in the one-dimensional sections.

As before, we’ve approximated the expectation of a continuous random variable (i.e., the
population mean) with the arithmetic average of many function values taken at (discrete)
uniformly distributed points. Each Xi is made up of d uniformly distributed random num-
bers; crucially, the values of a given Xi are totally unrelated to those of another sample (i.e.,
say, X5 is chosen independently of X4). It should therefore be straightforward to see how
to implement this approach programmatically. A problem asks you to apply Eq. (7.211)
to a 5-dimensional integral and compare with the corresponding five-dimensional Gauss–
Legendre computation. The most significant feature of Eq. (7.211) is that the standard
deviation of the sample mean goes as 1/

√
N − 1, which is the standard Monte Carlo re-

sult that applies regardless of dimensionality: it involves N (the number of samples), not
d (the dimensionality of each sample). This is why Monte Carlo is to be preferred over
conventional quadrature for many-dimensional problems.

45 So our f here plays the role of φ in section 5.5.2. Of course, now we’re integrating, not minimizing.
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Weighted Sampling via the Metropolis–Hastings Algorithm

As you may recall from section 7.7.3, uniform sampling is not the best we can do. While
the simple prescription in Eq. (7.211) does work and does have the pleasant 1/

√
N − 1

scaling, it is far from perfect: since the Xi’s are chosen uniformly this may (and in practice
does) imply that many random samples are wasted trying to evaluate f (Xi) in regions of
the d-dimensional space where not much is going on. It would be nice to have a Monte
Carlo technique where the random samples, i.e., the Xi’s, are preferentially chosen to be
such that they can make a difference: an integrand-aware sampling would be considerably
more efficient than uniformly producing random samples.

You may have noticed a pattern in our discussion of Monte Carlo techniques: the main
feature (approximate the population mean via the sample mean) is always the same. Thus,
we can straightforwardly generalize the argument in section 7.7.3 to produce the following
practical formula for multidimensional weighted Monte Carlo integration:

∫
w(x) f (x)dd x ≈ V

N

N−1∑
i=0

f (Xi)±
V

√
N − 1

√√√√
1
N

N−1∑
i=0

f 2(Xi) −
⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

N−1∑
i=0

f (Xi)

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7.212)

where this time the Xi’s are drawn from w(x), e.g., if w(x) is exponential, these are samples
made up of exponentially distributed random numbers. Note that, just like f (x), the weight
function w(x) is now a function of d variables. If you’re interested in integrating over all of
space, simply drop the V term; to see why, picture Eq. (7.191) for the case of integrating
from −∞ to +∞: as per Eq. (7.190), you would have p(x) = w(x) and no (b−a) term would
appear on the right-hand side.

For the one-dimensional case, when we were faced with Eq. (7.193), we employed the
inverse transform sampling method to produce Xi’s which were drawn from the probability
density function w(x). In other words, we made the change of variables in Eq. (7.194),
integrated as per Eq. (7.195), then inverted, and were able to go from uniform samples to
weighted samples, Eq. (7.197). When you move on to a multidimensional problem, i.e.,
producing random samples drawn from w(x), our trivial change of variables would have
to be replaced by its generalization, namely the determinant of the Jacobian matrix. To
make matters worse, the generalization of the integral in Eq. (7.195) would have to be
carried out somehow (analytically). As if that weren’t enough, the inversion (in, say, 100
variables) cannot be carried out analytically; thus, you would have to employ one of the
multidimensional root-finders from chapter 5. As you know by now, these approaches are
prone to fail if you don’t start sufficiently near the root. In a multidimensional problem, you
will also likely have many roots and would be faced with the task of automatically selecting
the correct one. Putting it all together, this approach is not practical when the number of
dimensions is large. While other techniques exist to carry out weighted sampling in one-
dimensional problems, they also get in trouble when the dimensionality increases.
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Markov Chains

Basically the only thing that works as far as multidimensional weighted sampling is con-
cerned is Markov chain Monte Carlo (MCMC).46 The main new concept involved here is
that of a Markov chain: imagine you have a sequence of random samples X0,X1, . . . ,XN−1

for which a given sample Xi depends only on the previous one, i.e., on Xi−1, but not on
any of the earlier ones, i.e., Xi−2, Xi−3, and so on. In other words, one starts from a random
sample X0, uses that to produce sample X1, then uses that in its turn to produce sample
X2, and so on, always using the current sample to create the next one. This sequence of
samples, X0,X1, . . . ,XN−1, is known as a random walk.47 Note that this is quite different
from what we were doing in earlier sections: there the Xi (or the Ui) were independent from
one another, whereas now we use a given Xi−1 to produce the next one, i.e., Xi. The reason
Markov chains are so useful is that they can be produced such that they asymptotically
(i.e., as N → ∞) have the distribution we would like them to, which in our case would
be w(x). One could therefore do an increasingly better job at computing a d-dimensional
integral by continuing the Markov chain for larger values of N .

Detailed Balance

We wish to produce a Markov chain with an asymptotic distribution of our choosing, which
would therefore be the stationary distribution of the chain (if you don’t know what that
means, keep reading). Thus, we can borrow ideas from the statistical mechanics of systems
in equilibrium. A sufficient (but not necessary) condition of evolving toward equilibrium
and staying there is the principle of detailed balance:

w(X)T (X→ Y) = w(Y)T (Y→ X) (7.213)

Here T (X → Y) is the (conditional) probability density that you will move to Y if you
start at X; it is often called the transition probability.48 Since we’re dealing with a Markov
chain, we need to know how to go from one sample to the next; this is precisely what the
transition probability will allow us to do, soon. Since w(X) is the probability density of
being near X, w(X)T (X → Y) quantifies how likely it is overall to start at X and move
to Y. Similarly, w(Y)T (Y → X) tells us how likely it is to start at Y and move to X. In
words, Eq. (7.213) says that it is equally likely that we will go in one direction as in the
reverse direction. The principle of detailed balance is sometimes known as the reversibility
condition, due to the fact that the reverse process would result if everything went backward
in time. Intuitively, detailed balance tells us that if you’re in equilibrium then effectively
not much is changing: you could go somewhere, but you’re just as likely to come back.

46 For a rigorous treatment, have a look at the bibliography. Keep in mind that different authors mean different
things when they use terms like “recurrent”, “ergodic”, and so on.

47 In practice, one employs an ensemble of Markov chains, starting from several independent initial configura-
tions; this gives rise to distinct walkers, but we’ll stick to a single Markov chain for the sake of simplicity.

48 More generally, one often says “probability” instead of “probability density”; this is analogous to classical field
theory, where many times people will say “Lagrangian” even when they actually mean “Lagrangian density”.
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At this stage, detailed balance is just a condition: we haven’t shown how to actually pro-
duce a Markov chain that obeys it. Even so, we will now spend some time seeing exactly
how the detailed-balance condition can help us accomplish our goal. Instead of thinking
about moving from an individual sample to another one, it can be helpful to think in terms
of going from one probability density function to another. Assume that pi−1(X) is the dis-
tribution of values of the random variable Xi−1 and, similarly, pi(X) is the distribution of
Xi. We can straightforwardly relate pi(X) to pi−1(X) as follows:49

pi(X) = pi−1(X) +
∫ [

pi−1(Y)T (Y→ X) − pi−1(X)T (X→ Y)
]

ddY (7.214)

In words, what this is saying is that the probability of being near X at step i is equal
to the probability of being near X at step i − 1, plus the probability of leaving all other
configurations Y and coming to X, minus the probability of leaving X and going to any
other configurations Y. We will now put Eq. (7.214) together with the condition of detailed
balance, Eq. (7.213), to see what we get.

First, we will show that if Eq. (7.213) holds, then Eq. (7.214) shows that w(X) is a fixed
point of the iteration (see section 5.2.3). For pi−1(X) = w(X), Eq. (7.214) turns into:

pi(X) = w(X) +
∫

[w(Y)T (Y→ X) − w(X)T (X→ Y)] ddY = w(X) (7.215)

In the last step we noticed that the integrand vanishes, due to the detailed balance condition.
Thus, we have shown that pi(X) = pi−1(X) = w(X), i.e., we are dealing with a stationary
distribution. This is saying that if at some point of the iteration our distribution becomes
the desired weight distribution, then it will stay there.

Second, we would like to know that we are actually approaching that stationary distri-
bution: it wouldn’t do us much good if a fixed point existed but we could never reach it.50

To see this, divide Eq. (7.214) by the desired distribution, w(X):51

pi(X)
w(X)

=
pi−1(X)
w(X)

+

∫ [
pi−1(Y)

T (Y→ X)
w(X)

− pi−1(X)
T (X→ Y)

w(X)

]
ddY

=
pi−1(X)
w(X)

+

∫
T (X→ Y)

[
pi−1(Y)
w(Y)

− pi−1(X)
w(X)

]
ddY (7.216)

To get to the second line, we first used the detailed balance condition, Eq. (7.213), to
replace T (Y → X)/w(X) by T (X → Y)/w(Y) and then pulled out the common term
T (X → Y). Observe that the two terms inside the square brackets are expressed in terms
of “actual distribution” divided by “desired distribution”, i.e., pi−1/w. Keep in mind that
T (X → Y) is a conditional probability density and is therefore non-negative. Think about
what Eq. (7.216) tells us will happen to a pi−1(X)/w(X) that is near a maximum, i.e.,
is larger than other ratios, pi−1(Y)/w(Y): the square bracket will be negative, therefore the

49 Looking at the equivalent relation Eq. (7.257) may help you solidify your intuition.
50 We also need to (and will) satisfy a further condition at this point: it should be possible for the random walk

to return to the neighborhood of a given X, but this should not happen periodically.
51 The argument can be modified to employ differences between these entities (instead of ratios).
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entire right-hand side will drive this ratio down. Correspondingly, if pi−1(X)/w(X) is near a
minimum, i.e., is smaller than the other ratios, the square bracket will be positive, therefore
the entire right-hand side will drive this ratio up. In both cases, the ratio pi(X)/w(X) will
be closer to 1 than pi−1(X)/w(X) was.

While we still haven’t shown how to produce a Markov chain that obeys detailed bal-
ance, our two results in Eq. (7.215) and Eq. (7.216) are that if you have a Markov chain
that obeys detailed balance then: (a) w(X) is a stationary distribution, and (b) pi(X) asymp-
totically approaches that stationary distribution. In other words, our Markov chain will
approach a d-dimensional equilibrium distribution of our choosing. We will now introduce
an elegant trick that is able to produce a Markov chain obeying detailed balance.

Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm starts by splitting the transition probability:

T (X→ Y) = π(X→ Y)α(X→ Y) (7.217)

where π(X→ Y) is the probability of making a proposed step from X to Y and α(X→ Y)
is the probability of accepting that move. Note that since we are dealing with an acceptance
probability α(X→ Y), this means that some moves will be accepted (i.e., the system moves
from X to Y) and some moves will be rejected (i.e., the system will stay at X). The proposal
probability π(X→ Y) is not unique, and several choices are discussed in the literature. The
acceptance probability will be chosen in such a way that detailed balance is obeyed.

The Metropolis–Hastings algorithm proceeds by evaluating the following quantity:

R(X→ Y) =
w(Y)
w(X)

π(Y→ X)
π(X→ Y)

(7.218)

which is sometimes known as the Metropolis–Hastings ratio. Note that everything on the
right-hand side is known: the desired distribution w is of our choosing, as is also true
of the proposal distribution π. As a matter of fact, a simpler version of the Metropolis–
Hastings algorithm, known as the Metropolis algorithm since that’s how it was originally
put forward, employs a symmetric proposal distribution; when π(X → Y) = π(Y → X)
you can see that the ratio is simply R(X → Y) = w(Y)/w(X), namely the ratio of the
(analytically known) desired weight at the configuration Y and at the configuration X.

The next part of the Metropolis–Hastings algorithm is to use the ratio R(X → Y) to
determine the acceptance probability as follows:

α(X→ Y) = min [1,R(X→ Y)] (7.219)
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We already know that R(X → Y) is non-negative. What Eq. (7.219) does is to account
for the possibility that the ratio R(X → Y) is larger than 1: in that case, the acceptance
probability is taken to be 1 (i.e., the step is guaranteed to be taken). If R(X → Y) is less
than 1, then the proposed step is taken with probability α(X→ Y) (i.e., it is not taken with
probability 1 − α(X→ Y)).

As Eq. (7.219) now stands, it may not be totally obvious why we said that the acceptance
probability was selected so that we can satisfy detailed balance. It’s true that the evaluation
of α involves only π and w, both of which are known, but what does this have to do with
detailed balance? We will now explicitly answer this question; as you will see, showing
this is quite easy, now that you are comfortable with all the concepts involved. Let us start
with the left-hand side of the detailed-balance condition, Eq. (7.213):

w(X)T (X→ Y) = w(X)π(X→ Y)α(X→ Y) = w(X)π(X→ Y)
w(Y)
w(X)

π(Y→ X)
π(X→ Y)

= w(Y)π(Y→ X)α(Y→ X) = w(Y)T (Y→ X) (7.220)

In the first equality we split the transition probability into its two parts as per Eq. (7.217).
In the second equality we assumed that R(X → Y) < 1, in which case Eq. (7.219) tells
us that α(X → Y) = R(X → Y); we also took the opportunity to plug in the ratio as
per Eq. (7.218). In the third equality we cancelled what we could and also introduced an
α(Y → X) term: since we assumed that R(X → Y) < 1, the definition of R in Eq. (7.218)
shows that R(X → Y)R(Y → X) = 1 so we will have R(Y → X) > 1; but in that case,
Eq. (7.219) will lead to α(Y → X) = 1, meaning we were justified in including this term.
The fourth equality identified the two parts of the transition probability as per Eq. (7.217).
Thus, we have shown that for the Metropolis–Hastings algorithms, if R(X → Y) < 1, the
left-hand side of Eq. (7.213) is equal to the right-hand side, i.e., the condition of detailed
balance is met. The argument for the case of R(X → Y) > 1 is precisely analogous, this
time starting from the right-hand side and reaching the left.

In summary, we have shown that the Metropolis–Hastings algorithm satisfies detailed
balance. As we discussed after Eq. (7.216), obeying detailed balance means that w(X) is
a stationary distribution and our random walk will be asymptotically approaching that sta-
tionary distribution, i.e., our equilibrium distribution will be w(X). Thus, we have managed
to draw random samples from a d-dimensional distribution, which was our goal all along.
Once again, take a moment to appreciate how different this all is from what we were doing
in earlier sections of this chapter: our Xi’s now form a Markov chain. This means that they
are not statistically independent from one another. As one of the problems shows, some
care must be taken in evaluating averages along the random walk; we implement one pos-
sible strategy below, but other approaches also exist, e.g., “binning”. Even so, it’s important
to emphasize that the Metropolis–Hastings algorithm has allowed us to draw random sam-
ples from a d-dimensional w(X) simply by calculating ratios of w’s (and perhaps also of
π’s) at two configurations each time. There was no need to worry about a change of vari-
ables, no numerical multidimensional inversion, and so on. Simply by evaluating known
quantities at a given and a trial configuration, we managed to solve a complicated sampling
problem. This is why the Metropolis–Hastings prescription is routinely listed among the
most important algorithms of the twentieth century.
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How to Implement the Metropolis Algorithm

We now give a practical step-by-step summary of the Metropolis algorithm, which allows
us to sample from the d-dimensional distribution w(X).

0. Start at a random location, X0. It shouldn’t matter where you start, since the Markov
chain will “equilibrate”, reaching the same stationary distribution, anyway. You could
account for this “burn-in” time by discarding some early iterations or you could start
from an X0 that is not highly unlikely, i.e., pick X0 such that w(X0) is not too small.

1. Take Xi−1 as given (this is X0 the first time around) and produce a uniformly distributed
proposed step according to:

Yi = Xi−1 + θ × Ui (7.221)

where Ui is a d-dimensional sample of uniformly distributed random numbers from −1
to 1; here θ is a number that controls the “step size” and Yi is the proposed walker
configuration. This step, being uniformly52 distributed in a multidimensional cube of
side 2θ, is de facto employing a proposal distribution π that is symmetric; this means
that we are actually dealing with the simple Metropolis algorithm (as will also be the
case in the Project below). The value of θ is chosen such that roughly 15% to 50% of
the proposed steps are accepted.

2. We can combine Eq. (7.218) together with Eq. (7.219). Since we’re dealing with a
symmetric proposal distribution, the acceptance probability is:

α(Xi−1 → Yi) = min

[
1,

w(Yi)
w(Xi−1)

]
(7.222)

Only the ratio w(Yi)/w(Xi−1) matters: even if you don’t know w’s normalization, you
can still carry out the entire process, since the normalization constant cancels.

3. With probability α(Xi−1 → Yi), set Xi = Yi (the proposed step is accepted), otherwise
set Xi = Xi−1 (the proposed step is rejected). In practice, this is done as follows: generate
ξi, a random number uniformly distributed from 0 to 1. Then set:

Xi =

⎧⎪⎪⎨⎪⎪⎩Yi, if α(Xi−1 → Yi) ≥ ξi

Xi−1, if α(Xi−1 → Yi) < ξi

(7.223)

Note that random numbers appear in two distinct roles: first, they allow us to produce the
proposed walker configuration, Yi, as per Eq. (7.221), and, second, they help us decide
whether to accept or reject the proposed step as per Eq. (7.223). If α(Xi−1 → Yi) = 1 the
proposed step is accepted regardless of the value of ξi. Crucially, the next configuration
is determined by the magnitude of α(Xi−1 → Yi), which in its turn depends on the
value of the ratio w(Yi)/w(Xi−1); thus, two evaluations (one of which is new) of the
(analytically known) desired distribution w are enough to select a new sample.
At this point, you can appreciate our comment about how to pick the value of θ: if θ is
tiny, you’re taking a small step; since you were most likely already in a region where
w(Xi−1) was large, it’s reasonable to expect that w(Yi) will also be large, in which case
the step will likely be accepted; but in this case you’re not moving very far from where

52 This is, obviously, not a unique choice; an even more commonly employed step is normal, i.e., Gaussian.
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you started, so your sampling is of poor quality. On the other hand, if θ is huge, then
you are likely to leave the region of large w(Xi−1) and go to a region of small w(Yi),
in which case the step is likely to be rejected; in this case, too, your sampling is bad,
since you are not producing truly new (accepted) samples. By picking θ between these
two extremes, you ensure that you can carry out the sampling process efficiently; the
value of θ impacts the acceptance probability (which, as per Eq. (7.222), refers to a
single Metropolis step) and therefore also the acceptance rate (how many steps were
accepted overall, for the whole calculation). While the lore of computational physics
instructs you to aim for an acceptance rate of 50%, statisticians [80] have shown under
reasonably general conditions53 that the optimal acceptance rate is 23.4%. The detailed
argument can get complicated, but you shouldn’t lose sleep over this: an acceptance rate
from 15% to 50% is typically efficient enough.

4. Every nm steps, make a “measurement”, i.e., evaluate f (Xi). You will need this in order
to evaluate the right-hand side of Eq. (7.212); note that, because the Markov chain
samples are not statistically independent, we are computing the sample mean (and its
variance) using not every single sample, but every nm-th one. This is done in order to
eliminate the correlation between the samples.

5. Increment i by 1 and go back to step 1. Terminate the entire process when you’ve
generated sufficiently many samples/measurements (N) that you are comfortable with
the variance of the sample mean.

If this all seems too abstract to you, you’ll be pleased to hear that we will apply the
Metropolis algorithm to a 12-dimensional integral in the Project below. Another way of
becoming more comfortable with this algorithm is to implement it for the case of a one-
dimensional integral (as the problem set asks you to do): it’s always a good idea to first
apply a new algorithm to a problem you’ve solved before, where you know what to expect.

7.8 Project: Variational Quantum Monte Carlo

We will now see how the Metropolis algorithm can help us describe many-particle quantum-
mechanical systems. This is not the first time we have encountered quantum mechanics: the
project in chapter 3 revolved around taking the second derivative of a single-particle wave
function, whereas the project in chapter 4 studied several interacting spins. The latter in-
vestigation assumed that there were no orbital degrees of freedom and therefore turned into
a matrix eigenvalue problem. In the present section we will make the “opposite” assump-
tion, i.e., we will study spinless particles, leaving the fermionic case for the problem set.
Note that to fully solve the quantum-mechanical problem for many interacting particles,
one would need to solve the many-particle Schrödinger equation, an involved task that is
at the forefront of modern research; we provide the tools that will help you solve the sin-
gle-particle Schrödinger equation in the next chapter, which studies differential equations.
Our goal here will be more humble: we try to produce an upper bound on the ground-state

53 For a Gaussian proposal distribution which, as mentioned in the previous footnote, is the typical choice.
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energy of a many-particle quantum-mechanical system; this is a task that can be written
down in the form of a many-dimensional integral, allowing us to introduce the method
known as variational Monte Carlo (VMC).

Assume we are dealing with np particles, e.g., for np = 4 these would be the particles
labelled 0, 1, 2, and 3, as usual; their positions would be r0, r1, r2, and r3. Further assume
that we are dealing with nd-dimensional space, e.g., for nd = 3 we have the usual x, y, and
z Cartesian components; the components of the position of the 0th particle are therefore
(r0)x, (r0)y, and (r0)z. For np particles in nd dimensions, we have to keep track of npnd

components in total, e.g., 4 × 3 = 12 components for our running example. Employing the
notation used in our earlier Monte Carlo discussion, where X was a d-dimensional vector,
we can bundle the d = npnd components into a vector as follows:

X =
(
(r0)x (r0)y (r0)z (r1)x . . . (rnp−1)y (rnp−1)z

)T
(7.224)

One could employ an np × nd matrix, instead; regardless of how one stores them, the es-
sential point is that there will be d = npnd numbers to keep track of.

7.8.1 Hamiltonian and Wave Function

Our goal will be, in nd dimensions for np particles described by a Hamiltonian Ĥ, to de-
termine the ground-state energy of the system, E0, reasonably well, using a trial wave
function, ψT . In general, Ĥ will be complicated, so the problem will not be amenable to
an analytical solution. We will only provide a variational answer: our approximation of E0

will be an upper bound, i.e., is guaranteed to be larger than or equal to the true ground-state
energy; we will accomplish this by evaluating a multidimensional integral using techniques
from the present chapter. We will now pose a specific problem: four interacting particles in
a three-dimensional anisotropic harmonic oscillator.

Hamiltonian

Our chosen four-particle Hamiltonian consists of a (non-relativistic) kinetic energy, a one-
body potential energy, and a two-body interaction term:

Ĥ = − �
2

2m

3∑
j=0

∇2
j+

1
2

m
3∑

j=0

{
ω2

x[(r j)x]2 + ω2
y[(r j)y]2 + ω2

z [(r j)z]
2
}
+g

3∑
j,k=0
j<k

exp
[
−(r j − rk)2

]

(7.225)

where the particles have equal mass m and ∇2
j is the Laplacian taking the second derivative

with respect to position r j. The oscillator strength in each direction is determined by the
frequencies ωx, ωy, and ωz, i.e., we are allowing for the possibility of an anisotropic oscil-
lator (for which the frequencies are unequal); note the unmistakable quadratic dependence
on the position components, identifying this as a harmonic oscillator. The last term on the
right-hand side is the two-body interaction, which we have taken to be of Gaussian form;
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this interaction is characterized by a strength parameter g. Note the j < k, which ensures
that we’re not double-counting: if the 0th particle interacts with the 2nd particle, then you
shouldn’t separately include a term for the 2nd particle interacting with the 0th particle.

Let’s spend some time interpreting this Hamiltonian physically. The particles have ki-
netic energy: they’re free to move around. They also have a harmonic-trapping potential
energy: this is the result of each individual particle separately interacting with the external
field (i.e., the harmonic oscillator). Finally, the two-body interaction term has to do with
how strongly the particles attract or repel each other; we will study the case of positive
g, so the particles will be repelling each other (i.e., overall increasing the total energy);
the two-body term depends on the distance between each pair of particles. You can also
consider the Hamiltonian from the perspective afforded by perturbation theory: split it into
an analytically known term, on the one hand, and a complicated term, on the other, i.e.,
Ĥ = Ĥ0 + Ĥ1; in this case, Ĥ0 would be kinetic plus oscillator (which is the textbook prob-
lem we covered in section 3.5) and Ĥ1 would be the two-body interaction term. Note that,
in what follows, we will investigate general (i.e., not necessarily small) values of g.

Trial Wave Function

The split into Ĥ0 and Ĥ1 we just mentioned will also guide our choice of the trial wave
function. Perhaps we should first explain why this is called a trial wave function: the reason
is that the full Ĥ in Eq. (7.225) is quite complicated, so we won’t attempt to completely
solve the corresponding many-body Schrödinger equation. Instead, we will limit ourselves
to employing an Ansatz, which is a fancy way of saying “a guess”; we will choose a trial
wave function, denoted ψT , which will hopefully contain some of the physics involved in
our problem. As should be clear by this discussion, this is a never-ending process: unless
you can prove (via another method) that your wave function is the true ground state (and
therefore your estimate of the ground-state energy E0 is exact), you will always be able to
go back to the drawing board and design a new, hopefully better, trial wave function; the
problem set invites you to do better than we will with our choice below. Crucially, this is
not a directionless endeavor: since we will be obeying a variational principle, a trial wave
function that leads to a lower energy is better (i.e., closer to the, unknown, true ground-
state energy). This then becomes a practical question: if your new guesses no longer lead
to a marked improvement, then you can call it a day.

We won’t have to worry about the particles’ spin; this could mean either bosons or
boltzmannons, i.e., either indistinguishable particles obeying Bose–Einstein statistics, or
distinguishable particles obeying Maxwell–Boltzmann statistics.54 In that case, we can
place each of the four particles into the same single-particle state φ:

ψT (X) = φ(r0)φ(r1)φ(r2)φ(r3) (7.226)

54 This is merely the distinction between quantum mechanics and quantum statistics. Imagine neutrons and
protons with different spin projections, or ultracold atoms belonging to distinct species.
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On the left-hand side we are using our Monte-Carlo-esque notation from Eq. (7.224); obvi-
ously, our four-particle state is merely the product of four copies of the same single-particle
state. We stress that we are allowed to place all four particles in the same φ.

We pick this φ motivated by the split into Ĥ0 and Ĥ1: imagine for a moment that g = 0,
i.e., we didn’t have a two-body interaction term; the resulting Hamiltonian is then simply
the sum of four single-particle Hamiltonians. That means that our study in section 3.5
carries over; of course, there we were faced with a single particle in a single dimension,
so we first have to generalize to the three-dimensional case. The problems for each of the
three Cartesian components are totally decoupled, so φ can simply be another product, of
the wave functions solving those three problems:

φ(r0) = ϕnx

(
(r0)x

)
ϕny

(
(r0)y

)
ϕnz

(
(r0)z

)
(7.227)

where we chose the 0th particle for concreteness. Here the ϕnx , ϕny , and ϕnz have the form
of the one-dimensional solution in Eq. (3.72); be sure to distinguish between φ and ϕ. We
reiterate that there are two products involved here: Eq. (7.226) is a product over particle
labels and Eq. (7.227) a product over Cartesian components for a given particle label. Note
also that each Cartesian component gets its own quantum number; since we are studying
the ground-state of the system, we are justified in choosing each of these to be zero, i.e.,
nx = ny = nz = 0. Similarly to what we did in Code 3.3, i.e., psis.py, we also allow
for the possibility of including an extra variational parameter, α, in the exponent of the
Gaussian, leading to:

ϕ0 ((r0)x) = e−αmωx[(r0)x]2/(2�) (7.228)

and similarly for the y and z components. Note that if you take the two-particle interaction
(i.e., g in Eq. (7.225)) to be strong, you can find a minimizing α that is not the “obvious”
one (α = 1); we will see this explicitly below.

Putting the last three equations together, we are led to a many-particle wave function
that is a product of 12 terms: four φ’s, each of which is a product of three ϕ’s. For our
specific case, we can further manipulate the product to write it in terms of a sum in the
exponent. Note that this form is not set in stone: our steps motivate the wave function, but
do not derive it: one could envision more complicated choices being made (e.g., instead of
a single α, having different variational parameters in each direction).

Implementation

Before we proceed to develop the variational principle and the VMC method, let’s imple-
ment what we already have, namely the trial many-particle wave function of Eq. (7.226)
and the effect the Hamiltonian of Eq. (7.225) has on it. We now wish to quantify the latter;
we recall that in Eq. (3.83) we had defined the local kinetic energy. We generalize that to
the following definition of the local energy:

EL(X) =
ĤψT (X)
ψT (X)

(7.229)
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eloc.py Code 7.6

import numpy as np

def psi(al, oms, rs):

rexp = np.sum(oms*rs**2)

return np.exp(-0.5*al*rexp)

def ekin(al, oms, rs, h=0.01, hom = 1.):

npart, ndim = rs.shape

psiold = psi(al, oms, rs)

kin = 0.

for j in range(npart):

numer = 0.

for el in range(ndim):

r = rs[j,el]

rs[j,el] = r + h

psip = psi(al, oms, rs)

rs[j,el] = r - h

psim = psi(al, oms, rs)

rs[j,el] = r

numer += psip + psim - 2.*psiold

lapl = numer/h**2

kin += -0.5*hom*lapl/psiold

return kin

def epot(oms, rs, strength = 3, m = 1.):

npart, ndim = rs.shape

pot = 0.5*m*np.sum(oms**2*rs**2)

for k in range(1,npart):

for j in range(k):

r2 = np.sum((rs[j,:] - rs[k,:])**2)

pot += strength*np.exp(-r2)

return pot

if name == ‘ main ’:

npart, ndim, al = 4, 3, 0.6

oms = np.arange(1, 1 + ndim)

rs = np.arange(1, 1 + npart*ndim).reshape(npart, ndim)

rs = 1/rs

print(ekin(al, oms, rs), epot(oms, rs))
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Since this involves the full Hamiltonian, it is the local total energy. It’s called local because
it depends on the specific “walker” X you are at; in other words, it’s something you can
evaluate once you’ve placed all the particles at given locations, as per Eq. (7.224). In the
code, we will split this local energy into two parts, by dividing the full Hamiltonian into
kinetic plus potential energy, Ĥ = T̂ + V̂; note that this is different from the earlier split
Ĥ = Ĥ0 + Ĥ1, which was designed to capture as much as possible of the interactions in a
form that can be analytically handled; our latest split is simply bookkeeping: we separate
the kinetic energy (which, for a non-relativistic system, is always going to be the same)
from the potential energy (which depends on the specific problem).

Code 7.6 starts by defining psi(), a Python function that evaluates the wave function
of the many-particle system for a given variational parameter (α), a given set of oscilla-
tor frequencies (ωx, ωy, ωz), and a given set of particle positions (which bundles together
all the r j’s). This is an implementation of Eq. (7.226), Eq. (7.227), and Eq. (7.228), one
plugged into the other. Our example employs broadcasting of a 1d array with a 2d array,
which works in our case because the dimensions match: for our example of four particles
in three dimensions, oms has three components and rs is a 4×3 matrix. If you are not com-
fortable with this, you should write out the wave function evaluation the “naive” way. Note
that the code is quite general: if we wanted to study, say, 11 particles in two dimensions,
psi() would work equally well. We start this program with the wave function implemen-
tation, because the next function (ekin(), for the local kinetic energy) uses psi() without
receiving it as a parameter. However, it’s crucial to note that ekin() is general and will
work for a different wave function as soon as you change one or two lines in the body of
psi().

The function ekin() accepts the same parameters as psi(), as well as two other ones
(for the step size h and for the value of �2/m) which are given default values. We first ex-
tract the numbers of particles and dimensions, based on the position matrix that was passed
in: once again, this is all general and would work just as well for other problems. The core
of this function is very similar to code 3.4, i.e., kinetic.py from chapter 3; this time
around, in addition to studying a many-particle problem, we are also employing numpy
arrays instead of Python lists. Thus, we carry out one wave function evaluation at the start
and then six evaluations for each particle; this is simply the finite-difference approximation
to the Laplacians in Eq. (7.225). We are intentionally not being very Pythonic, since we
choose to iterate over indices explicitly. We use j for the particle index and l for the Carte-
sian-component index. Once again, we first read out the value of the element, modify it by
either adding or subtracting the step size, and then restore its original value at the end. It’s
important to emphasize that ekin() doesn’t depend on details of the wave function; if you
take the second derivatives analytically (as the problem set asks you to do) you will avoid
these 6np + 1 wave function evaluations (more generally: 2ndnp + 1 evaluations), thereby
producing a more efficient but less general code. As a matter of fact, ekin() doesn’t even
depend on details of the Hamiltonian in Eq. (7.225): even if you wanted to study a differ-
ent problem in the future (say, particles in a periodic box with no one-body potential and a
different two-body potential) the kinetic energy (function) would stay the same.

The function epot() is a straightforward implementation, corresponding to the one-
and two-body interaction terms in the Hamiltonian of Eq. (7.225). We mentioned above
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that ekin() doesn’t depend on the details of the Hamiltonian, since the kinetic energy is
always the same; epot() does depend on the details of the Hamiltonian, but it encapsulates
them, i.e., if you wish to use different interaction terms in the future you would have to
touch only these lines of code. Just like in ekin(), we start out by extracting the number
of particles and number of dimensions, meaning that everything that follows will be quite
general. The implementation of the one-body term uses broadcasting, just as we saw in
our discussion of psi(). The implementation of the two-body term imposes the j < k
condition in the summation by having the two indices take the values k = 1, 2, . . . , np − 1
and j = 0, 1, . . . , k − 1. It uses numpy array slicing to select r j and rk, and then carries
out the squaring and summing of the components automatically. It’s worth noting that we
have picked the default value of the strength g to be large; this will allow us, below, to
investigate a case that is not an already-solved problem. Note, finally, that epot() does
not take in α as a parameter; as a matter of fact, it doesn’t even call the function psi();
from the definition in Eq. (7.229) we see that for local interaction terms the wave function
cancels: V̂ψT (X)/ψT (X) = V(X).

The main program assigns specific values to our input parameters and then makes up an
arbitrary configuration of particle positions, merely as a test case. It then calls the kinetic
and potential functions, which evaluate the energies for that one configuration of particles.
The output of this code is not very important, since there is no deep physical meaning be-
hind the specific choice of where the particles are located. Incidentally, this entire program
does not involve any random numbers: for a given configuration, we can deterministically
evaluate the wave function, the local kinetic energy, and the local potential energy. There is
nothing stochastic going on so far: in the following section we’ll see how to combine these
functions together with Monte Carlo integration to approximate the ground-state energy of
the system (i.e., not the local energy for a single walker).

If you are looking to build some intuition around the magnitude of the numbers involved,
you may wish to turn off the two-body interaction (i.e., set g = 0) as a test case: if you also
take α = 1, then you can analytically calculate the energy of the system. Since there are no
two-body interactions in this scenario, we are dealing with four independent particles, so
we can focus on a single one. Then, the energy of a single particle in a given dimension,
say y, is simply (ny + 0.5)�ωy as per Eq. (3.71); for the specific set of frequencies we chose
(given also that nx = ny = nz = 0), we therefore expect each particle to contribute an
energy of 0.5+ 0.5× 2+ 0.5× 3 = 3, leading to a value of 12 in total; we expect to find this
regardless of the specific positions the particles are placed in (here and below, all energies
are given in units of �ωx). Of course, the function ekin() in Code 7.6 involves a default
step size,55 h, which may lead to a numerical error; for our example walker rs the code
gives 11.9994839168, which is showing that things are behaving as expected.

7.8.2 Variational Method

Code 7.6 evaluates the wave function and the local kinetic and local potential energies, but
doesn’t tell you how to pick the particle positions. The r j’s have to be selected somehow;

55 The finite-difference approximation to the Laplacian employs a “step size” h, but we also encountered another
“step size” θ in Eq. (7.221); the latter refers to the steps carried out in the d-dimensional space.
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in the present section, we see how to pick them stochastically, in a way that allows us to
approximate the ground-state energy.

Rayleigh–Ritz Principle

We now go over a very important result from elementary quantum mechanics: this is vari-
ously known as the Rayleigh–Ritz principle or the variational principle. In words, it says
that the (normalized) expectation value of the Hamiltonian Ĥ evaluated with a trial wave
function ψT is an upper bound on the true ground-state energy E0. If you’ve encountered
this principle in a course on quantum mechanics, this was most likely in the context of
single-particle wave functions; however, as you’ll soon see, the derivation and result are
fully general, which means that we’ll be able to apply this principle also in the context of
many-particle quantum mechanics.

Take the complete set of orthonormal eigenstates |un〉 of the Hamiltonian Ĥ:

Ĥ|un〉 = En|un〉 (7.230)

Note that this is “diagonal”, since the |un〉 are the exact energy eigenstates. The correspond-
ing eigenvalues are En and are ordered such that E0 ≤ E1 ≤ . . .; thus, the ground state has
the state vector |u0〉 and energy E0. Of course we don’t actually know these: if we did,
then we would have already solved a major problem in many-particle quantum mechanics.
Even so, we are free to expand our trial wave function (state vector) |ψT 〉 in terms of the
(unknown) exact eigenstates |un〉:

|ψT 〉 =
∞∑

n=0

γn|un〉 (7.231)

which is a step that is frequently carried out in quantum mechanics courses.56

We now decide to define the following variational energy EV :

EV =
〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉

(7.232)

and then write the kets and bras as per Eq. (7.231):

EV =

∑∞
n=0

∑∞
n′=0 γnγ

∗
n′ 〈un′ |Ĥ|un〉∑∞

n=0
∑∞

n′=0 γnγ
∗
n′ 〈un′ |un〉

=

∑∞
n=0

∑∞
n′=0 γnγ

∗
n′En〈un′ |un〉∑∞

n=0
∑∞

n′=0 γnγ
∗
n′ 〈un′ |un〉

=

∑∞
n=0 |γn|2En∑∞

n=0 |γn|2
(7.233)

In the second step we took advantage of the fact that we know what effect Ĥ has on the
energy eigenstates, as per Eq. (7.230). In the third step we employed the orthonormality of
the exact eigenstates (in both the numerator and the denominator) to get rid of the sum(s)
over n′. We now write En = E0 + En − E0 in the numerator to find:

EV = E0 +

∑∞
n=1 |γn|2(En − E0)∑∞

n=0 |γn|2
≥ E0 (7.234)

56 Another way of looking at this relation is by taking |ψT 〉 and inserting a resolution of the identity, i.e., |ψT 〉 =∑∞
n=0 |un〉〈un |ψT 〉, from which we immediately see that γn = 〈un |ψT 〉.
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where the last step follows from the positivity of |γn|2 and of En−E0; you can take the sum
in the numerator to start at n = 0 if you wish, but that term would give zero anyway.

In short, we have the foundation of the Rayleigh–Ritz (or variational) principle:

EV =
〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉

≥ E0 (7.235)

As advertised, this says that by forming the expectation value of the Hamiltonian with re-
spect to a trial wave function you produce an upper bound on the true ground-state energy.
When ψT is the exact ground-state wave function, then we reach the equality in this relation
(i.e., we get the exact ground-state energy).57 Of course, since the true ground state is actu-
ally unknown, what we do, instead, is write down ψT in terms of one or more variational58

parameters, like α in Eq. (7.228). Thus, ψT = ψT (α) leads to a variational energy which
also depends on the value of α, i.e., EV = EV (α). By minimizing EV (α) we will therefore
try to get as close to E0 as we can. As promised, none of these steps or conclusions have
anything to do with single-particle quantum mechanics; they are completely general.

Variational Monte Carlo

Armed with the Rayleigh–Ritz principle, we will now see how to practically evaluate the
variational EV ; if you have a way of accomplishing that task, then you can also minimize
EV to get a good upper bound on the ground-state energy.

Start by taking the variational energy from Eq. (7.235); this time, instead of expanding
in terms of the exact eigenstates like in Eq. (7.231), write out the matrix elements in terms
of integrals in coordinate space:59

EV =

∫
dd x ψ∗T (x)ĤψT (x)∫
dd x ψ∗T (x)ψT (x)

=

∫
dd x |ψT (x)|2 ĤψT (x)

ψT (x)∫
dd x |ψT (x)|2

=

∫
dd x

⎛⎜⎜⎜⎜⎜⎝ |ψT (x)|2∫
dd x |ψT (x)|2

⎞⎟⎟⎟⎟⎟⎠ ĤψT (x)
ψT (x)

(7.236)
where x is a d-dimensional entity. In the second step we multiplied and divided with the
wave function (in the numerator). In the third step we simply regrouped terms.

Our final result is now of a familiar form: it looks exactly like the
∫

w(x) f (x)dd x in
Eq. (7.212) for multidimensional weighted Monte Carlo integration, if we identify:

w(x) =
|ψT (x)|2∫

dd x |ψT (x)|2
, f (x) =

ĤψT (x)
ψT (x)

(7.237)

with the latter being none other than the local energy of Eq. (7.229). In words, we have
mapped the problem of computing the variational energy EV into a multidimensional inte-
gral with the weight being controlled by |ψT (x)|2 and the function we are integrating being
the local energy EL(x). This is probably a good time to note that the variational energy EV

57 You will explicitly show this in the problem set.
58 We can finally see why this parameter was called “variational” all this while.
59 Imagine inserting resolutions of the identity, this time in terms of position eigenstates:

∫
dd x|x〉〈x|.
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�Fig. 7.8 Consecutive local energies for α = 0.6 (left), variational minimization in action (right)

does not depend on the positions of the particles, since it integrates over all the x’s; this
makes it markedly different from the local energy EL, which is a function of x.

Given our mapping, we now have a prescription in Eq. (7.212) regarding how to pro-
duce the sample mean and its standard deviation: draw samples from w(x) and use them to
evaluate the local energy. The only complication is how to produce d-dimensional variates
drawn from w(x); but that, too, is a task we’ve already accomplished, via the Metropo-
lis algorithm, see Eq. (7.221) and below. As per Eq. (7.222), the acceptance probability
is determined by evaluating the ratio of the weight function at the proposed and current
walker configurations; from Eq. (7.237) we see that this is simply the ratio of the squares
of the moduli of the trial wave functions (the denominators cancel). Using this acceptance
probability in the Metropolis algorithm will lead to a random walk that is asymptotically
approaching the desired weight distribution. To reiterate:60

EV ≈
1
N

N−1∑
i=0

EL(Xi) ±
1

√
N − 1

√√√√
1
N

N−1∑
i=0

E2
L(Xi) −

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

N−1∑
i=0

EL(Xi)

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7.238)

This is merely Eq. (7.212) cast in the language of our problem; the Xi’s are drawn from
|ψT (x)|2 via the Metropolis algorithm.

At this point, let us return to Step 4 in our suggested implementation of the Metropolis
algorithm: this involved making a “measurement”, i.e., an evaluation of EL only every nm

steps, whereas the evaluation of the |ψT |2 ratio has to be carried out at every step in order
to make a decision. In order to see why, imagine making several hundred Metropolis steps
using a weight of |ψT |2 and evaluating EL at every single one of them (i.e., with nm = 1): the
result is shown in the left panel of Fig. 7.8, for the same input parameters as in Code 7.6.

60 As mentioned near Eq. (7.212), we dropped the V because we’re interested in integrating over all of space;
note that this V has nothing to do with the potential energy, V(X).
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It is in the nature of our algorithm to start from a given walker configuration and produce
a new one by making a small change (a step): as a result, the configurations making up our
Markov chain are clearly correlated. This can be seen in the figure from the fact that several
of the circles are overlapping, implying that very small steps can and do get accepted; if
you make θ smaller, you will encounter even more features of large-scale structure. You
can see, especially for the last 50 iterations of the figure, that if your walker gets “stuck”
in a region where the energy is unrealistically large, it takes a while to climb down to more
reasonable values. Our practical prescription is to only measure the local energy every once
in a while, letting the Markov chain de-correlate in the meantime; in the code that we are
about to introduce, the EL’s for the 1000 consecutive iterations (being produced by 1000
evaluations of the |ψT |2 ratio in the background) shown in the left panel of Fig. 7.8 will be
replaced by 10 EL evaluations. Note that Eq. (7.238) involves N evaluations of the local
energy: since we are making measurements every nm steps, this means we’ll need nmN
Metropolis steps in total. The problem set studies these issues in more detail.

Implementation

Code 7.7 starts out by importing the wave function, the local kinetic and local potential
energy functions from Code 7.6 and the statistics function from Code 7.5; note that the
latter is a one-dimensional code, but stats() works just as well here, since the evaluation
of the sample mean and its standard deviation in Eq. (7.238) is fully analogous to that in
Eq. (7.193); our walker is sampling a d-dimensional distribution and, similarly, the local
energy is a function of a d-dimensional variable, but at the end of the day we’re carrying
out the same basic statistical operations (mean and variance of a scalar). Having already
built all the necessary infrastructure, our VMC code is quite simple and is placed in a
single function, vmc(); our earlier point about stats() working in both one-dimensional
and d-dimensional settings has an analogue here: vmc() is written for the d-dimensional
case, manipulating walkers that are matrices with np × nd elements, but it is quite similar
to the one-dimensional Metropolis code that you are asked to develop in the problem set.

We now turn to a detailed discussion of vmc(). There is no parameter for the parti-
cle positions, since vmc() will generate the walker configurations itself; thus, the particle
number (np) and number of dimensions (nd) have to be explicitly passed in this time. As in
earlier functions, the next two parameters correspond to the variational parameter (α) and
the oscillator frequencies (ωx, ωy, ωz). The final parameter is the seed that gets the random
number sequence going, given a default value here. The first line in the body of vmc() sets
up three other quantities: the total number of evaluations of the local energy to be carried
out (N), the number controlling how often these evaluations should be carried out (nm), and
the quantity controlling the size of the proposed step in Eq. (7.221), namely θ; our chosen
value for nm is large enough that we are likely removing the correlations (but perhaps are
also being a little wasteful). We then pass the seed into numpy.random.seed(): note that
we employ numpy functionality instead of the standard Python one, as discussed at the end
of section 7.7.1. We then use numpy.random.uniform() to produce the initial (arbitrary)
walker configuration, X0: marvel at how convenient this is, generating an entire matrix of
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Code 7.7 vmc.py Code 7.7

from eloc import psi, ekin, epot

from montecarlo import stats

import numpy as np

def vmc(npart, ndim, al, oms, inseed=8735):

Ncal, nm, th = 10**4, 100, 0.8

np.random.seed(inseed)

rolds = np.random.uniform(-1, 1, (npart, ndim))

psiold = psi(al, oms, rolds)

iacc, imeas = 0, 0

eners = np.zeros(Ncal)

for itot in range(nm*Ncal):

rnews = rolds+th*np.random.uniform(-1,1,(npart, ndim))

psinew = psi(al, oms, rnews)

psiratio = (psinew/psiold)**2

if psiratio >= np.random.uniform(0,1):

rolds = np.copy(rnews)

psiold = psinew

iacc +=1

if (itot%nm)==0:

eners[imeas] = ekin(al,oms,rolds)+epot(oms,rolds)

imeas += 1

return iacc/(nm*Ncal), eners

if name == ‘ main ’:

npart, ndim, al = 4, 3, 0.6

oms = np.arange(1, 1 + ndim)

accrate, eners = vmc(npart, ndim, al, oms)

av, err = stats(eners)

print(accrate, av, err)

uniformly distributed numbers (with the dimensions we need) in one line of code. Later
in the program, numpy.random.uniform() is used twice more: first, when making a
proposed step; this is what Eq. (7.221) called Ui which, you may recall, is a d-dimensional
entity. Second, we also need the random number ξi as per Eq. (7.223); for this case we
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make use of the fact that if you don’t pass a third argument to numpy.random.uniform()
then it returns a single number.

It’s important to keep straight the different integers involved here: np, nd, N , and nm are
kept fixed for a given VMC run, i.e., they are “input” in a way. Knowing N ahead of time
allows us to set up a numpy array to keep track of the EL(Xi)’s that we will be evaluating.
In addition to these four constants, our function makes use of three more counters, itot,
iacc, and imeas. Of these, itot is the index that keeps track of every single Metropolis
step (i.e., plays the role of i in Eq. (7.223)); the total number of such steps is nmN , as
discussed earlier. Next, we have iacc which is an index we use to keep track of how many
proposed steps have been accepted so far; this allows us to return the acceptance rate when
the function is done, computed via iacc/(nm*Ncal). Finally, we also have imeas, an
index we use to store our energy measurements: itot goes from 0 to nmN − 1 and we
evaluate the local energy every nm-th time; when we do so, we increment imeas by 1, so
we can write the local energy into eners the next time we need to make a measurement.

Inside the loop over itot, we evaluate the square of the ratio of the trial wave function at
the new and old walker configurations: this is what the Metropolis algorithm of Eq. (7.222)
requires us to do for a weight function of |ψT (x)|2, as mentioned near Eq. (7.238). Instead of
the Xi−1, Xi, and Yi involved in Eq. (7.222) and Eq. (7.223) we here need only two walker
variables, rolds and rnews. When a proposed step is accepted, we use numpy.copy() to
update rolds; we could have used a simple assignment, but we wish to instill best prac-
tices, lest you get over-confident with re-assigning numpy arrays. If the step gets rejected,
we don’t have to explicitly do anything (i.e., there’s no need for an else:), since rolds
simply keeps the value it already had. Finally, when it’s time to make a measurement we
call our earlier functions ekin() and epot() and store their sum into eners.

It’s worth observing that when we evaluate a proposed step in vmc(), we move all the
particles at once, as per Eq. (7.221); there exist alternative Monte Carlo algorithms that
make “local updates” instead, which in our case could translate to moving one particle at a
time (before evaluating a new Metropolis ratio). Another scenario is to employ “heat-bath
updates” whereby a few variables are brought to equilibrium, while all the other ones are
kept fixed; this is most commonly used in lattice Monte Carlo approaches, a discussion of
which would take us too far afield. What we have here is enough for our purposes.

The main program sets up the input parameters, calls vmc() to produce the acceptance
rate and array of local energies, and then passes the latter to stats to compute the sample
mean and its standard deviation. If you repeat the entire exercise for many α’s, you will
find the results shown in the right panel of Fig. 7.8; we have chosen to tune θ to keep the
acceptance ratio reasonably stable and have also decided to use different seeds for different
α’s. The variational energy EV exhibits a clear minimum at α ≈ 0.75; crucially, α = 1
most certainly is not the minimum, meaning that our variational parameter has helped us
produce a (small) decrease in the energy. If the specific numbers shown in the right panel
of Fig. 7.8 don’t mean much to you, you may choose to turn off the two-body interaction
(i.e., set g = 0) and also take α = 1 as a test case: the energy is 12, so that’s what we expect
our VMC run to produce for every sample! If you carry out the test explicitly you therefore
find a tiny standard deviation.

It’s worth taking a moment to appreciate the significance of our achievement: we were
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dealing with a strongly interacting system of four particles in three dimensions, so this isn’t
really a problem we would have attempted to solve without the use of a computer; we were
able to produce an upper bound to the ground-state energy for this system, by evaluating
12-dimensional integrals via the Metropolis algorithm. Equally important is the fact that
we’ve kept the code sufficiently general to allow us to study in the future different particle
numbers, different dimensionalities, and different interactions.

It’s hard to avoid noticing that the right panel of Fig. 7.8 is minimizing by checking
different values of α “by hand”. You could envision using one of the minimization tech-
niques from section 5.5, instead of such a manual process; it’s important to realize that
in the present case our energy estimates are always associated with a statistical error, so
minimizing the sample mean is not enough. Of course, it’s always possible to use both
approaches in succession: use an automated minimizer to find the ballpark region where
you should then investigate in more detail manually.

7.9 Problems

1. We will see how to evaluate the following Gaussian integral analytically:

I =
∫ ∞

−∞
dxe−x2/2 (7.239)

The main trick is to first look at the square of the integral:

I2 =

∫ ∞

−∞
dxe−x2/2

∫ ∞

−∞
dye−y2/2 (7.240)

where we used a new name for the second integration variable. The next step is to go
from Cartesian coordinates, x and y, to polar coordinates, r and θ. It should be straight-
forward from there. Make sure to take the square root at the end of the entire process.

2. Carry out an error analysis for the midpoint rule (Taylor expand around xi + h/2 and
keep terms up to second order). This should include both the one-panel case and the
composite case. Then, implement the midpoint rule in Python for the usual case of
f (x) = 1/

√
x2 + 1 (a = 0, b = 1) for n = 51 and compare with the analytical answer, as

well as with the other methods.
3. Take f (x) = 1 in Eq. (7.26) and thereby show that, for a Newton–Cotes integration rule,

the sum of all the weights is equal to the width of the elementary interval.
4. Re-derive Simpson’s rule for an elementary interval, Eq. (7.45), the way you would if

you didn’t know about Lagrange interpolation: take f (x) ≈ p(x) = αx2 + βx + γ and
then integrate it from xi to xi+2. Then, enforce the fact that the quadratic passes through
the points f (xi), f (xi+1), and f (xi+2). You could now try to solve these three equations
for the three unknowns α, β, and γ. Instead, take a linear combination of these three
equations that gives the same answer as the result of integrating p(x) earlier in this
problem; you have thereby arrived at the two-panel Simpson’s rule.

5. In the main text we computed the leading error in the one-panel version of the trapezoid
rule starting from the Lagrange-interpolation error formula. You will now re-derive
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it using a Taylor expansion. Specifically, carry out a Taylor series expansion of f (x)
around xi, keeping terms up to second order. Re-express the first derivative using the
forward-difference approximation, Eq. (3.8), starting at the point xi. Integrate your
equation for f (x) from xi to xi+1 and compare the result with the sum of Eq. (7.30)
and Eq. (7.35).

6. In the main text we derived the error of the trapezoid rule beyond the leading term,
Eq. (7.41), by making use of Eq. (7.38). Here we see another way to arrive at the
same result. Specifically, write down two Taylor expansions: first, expand f (x) around
xi and, second, expand f (x) around xi+1. Add the two equations together and divide
with 2. Integrate from xi to xi+1 and then add together all the one-panel equations. Ob-
serve that the even-order derivative terms can be expressed as composite trapezoid-rule
approximations to integrals, e.g., the term proportional to h3 is an approximation to

(h2/6)
∫ b

a
f ′′(x)dx; note that these integrals can be trivially carried out. To find the error

in those terms, simply repeat the whole exercise, using f ′′(x) instead of f (x), and so on.

7. In the main text we carried out the derivation for the error in Simpson’s rule using a
Taylor expansion, see Eq. (7.48) and below. We now examine another derivation for the
same quantity, this time starting from the interpolation formula Eq. (6.38). In essence,
we need to carry out a more complicated version of the integral in Eq. (7.34); the impor-
tant difference is that the integrand changes sign and therefore you cannot immediately
employ the mean-value theorem (if you could pull out the derivative term, the remaining
integral would give zero, which is obviously wrong). Instead, employ:

Ei =
1
4!

f (4)(η)
∫ xi+2

xi

(x − xi)(x − xi+1)2(x − xi+2)dx (7.241)

The middle term is now squared. Carry out the integral and compare with Eq. (7.52).

8. By repeating the argument of section 7.3.1 (twice), prove Eq. (7.63) and Eq. (7.64).

9. Starting from the elementary-interval expressions for Simpson’s 3/8 rule and for Boole’s
rule given in Table 7.1, implement the composite versions of these approaches. Then,
generalize the derivation of section 7.3.1 to cover Boole’s rule and then modify our code
in adaptive.py so that it also works for this case.

10. In adaptive.py we gave a general adaptive integration routine. Note, however, that
this was wasteful: when you double the number of panels from N to N′ = 2N, you don’t
need to throw away all the function values that you’ve already computed. Explicitly
write out the first few cases (I1, I2, I4, I8) to convince yourself that:

IN′ =
1
2

IN + hN′

N′−1∑
k=1,3,...

f (a + khN′ ) (7.242)

Implement this approach to produce an adaptive trapezoid integrator that is efficient.

11. Observe that the second column in the output of romberg.py is identical to the first
few lines in the output for Simpson’s rule from adaptive.py. Motivated by this fact,
apply Eq. (7.88) to the case of j = 1, i.e., for Ri,1. You immediately see that this is
expressed in terms of Ri,0 and Ri−1,0. Both of these are from the first column, so they are
composite-trapezoid rule results; write them out in terms of function evaluations, use
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the resulting expressions to do the same for Ri,1, and then compare the final result with
the composite Simpson’s rule, Eq. (7.46).

12. In an earlier problem, you produced an efficient (i.e., non-wasteful) adaptive integrator.
Do the same for Romberg integration, i.e., rewrite romberg.py such that you don’t
throw away earlier function evaluations when you go from N to N′ = 2N panels.

13. Apply Eq. (7.89) to the case of n = 1, i.e., demand that you can exactly integrate
monomials up to order 2n − 1 = 1. Find c0 and x0 and compare the resulting formula
with the one-panel version of the midpoint rule, Eq. (7.20).

14. Show that the monic orthogonal polynomial of degree n is unique. To do so, employ
proof by contradiction, i.e., assume that there are two monic orthogonal polynomials,
pA

n (x) and pB
n (x); their difference is a polynomial of degree n − 1 and is therefore or-

thogonal to both pA
n (x) and pB

n (x). Write this out and figure out what it means for the
relationship between these two monic polynomials.

15. In order to derive the Christoffel–Darboux identity for Legendre polynomials, given in
Eq. (7.107), take the recurrence relation in Eq. (2.86) and multiply with Pj(y). Rewrite
your equation with x interchanged with y and then subtract these two equations from
each other. If you sum the result for j from 0 to n, you find a telescoping series, i.e., the
middle terms cancel. You should be left with Eq. (7.107).

16. If you compute (or look up) the weights for high-order Newton–Cotes rules, you will see
that some of these are negative. You will now show that for Gauss–Legendre quadrature
the weights are always positive. To see this, plug Eq. (6.48) into Eq. (7.97), split the
resulting expression into two integrals, and notice that the second one vanishes. The first
one is a definite integral of a non-negative function (and is therefore also non-negative).

17. For Gauss–Legendre quadrature with n = 5, 50, 100, plot the weights vs the abscissas,
i.e., the ck’s vs the xk’s that appear in Eq. (7.102).

18. As promised at the start of section 7.5.2, we now discuss another way of showing that
the nodal abscissas in Gauss–Legendre quadrature are given by roots of Legendre poly-
nomials. Take f (x) to be a polynomial of degree up to 2n − 1; divide f (x) with Pn(x),
the Legendre polynomial of degree n:

f (x) = Qn−1(x)Pn(x) + Rn−1(x) (7.243)

where the quotient and remainder are polynomials of degree up to n − 1. Integrate
both sides from −1 to +1 and justify why one of these integrals vanishes. Express the
non-vanishing integral as a sum over weights and function values, as in our defining
Eq. (7.7). Now take the xk’s to be the roots of Pn(x) and re-express the sum using
Eq. (7.243) evaluated at the xk’s.

19. Yet another approach to Gaussian quadrature was mentioned at the start of section 7.5.2:
the Golub–Welsch algorithm. In a problem in chapter 5 we saw how to cast computing
the roots of a Legendre polynomial in the form of evaluating the eigenvalues of tridiag-
onal Jacobi matrices; we now see how to get the weights from the eigenvectors. Use the
matrix J to produce the corresponding symmetric Jacobi matrix J̃:

J̃i,i = Ji,i, J̃i−1,i = J̃i,i−1 =
√

Ji−1,i Ji,i−1 (7.244)

First check (programmatically) that this new matrix J̃ is similar to J, i.e., it has the same
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eigenvalues. Then, find J̃’s normalized eigenvectors, v j, and compute the weights from
the formula c j = 2[(v j)0]2. Here (v j)0 is the first component of the eigenvector v j.

20. In Code 3.3, i.e., psis.py, we computed the values of Hermite polynomials and their
derivatives; then, in a problem in chapter 5 we saw how to compute their roots, by mod-
ifying Code 5.4, i.e., legroots.py. Following the approach outlined in section 7.5.3
one arrives at the following formula for the weights:

c j =
2n+1n!

√
π

[H′n(x j)]2
(7.245)

which is the Gauss–Hermite analogue of Eq. (7.117). Implement a general routine for
Gauss–Hermite quadrature; feel free to use numpy.sort() and numpy.argsort().
The factorials in our equation for the c j’s can cause problems, but our root-solver
doesn’t work for too large values of n, anyway, so don’t go above n = 20 or so. Compare
the results with what you get from numpy.polynomial.hermite.hermgauss().

21. Carry out the change of variables u =
√

x for the integral:

I =
∫ ∞

0

x2 + x
√

x
e−xdx (7.246)

and observe that you can compute it using Gauss–Hermite quadrature, if you also notice
that the integrand is now even. If you solved the previous problem use the function you
developed there, otherwise call numpy.polynomial.hermite.hermgauss().

22. Compare the trapezoid rule, Simpson’s rule, and Gauss–Legendre quadrature for:

I1 =

∫ 2π

0
esin(2x)dx, I2 =

∫ 2π

0

1
2 + cos x

dx, I3 =

∫ 1

−1
e−x2/2dx (7.247)

Do you understand why the trapezoid rule is not giving terrible results?
23. Apply the trapezoid rule to the following integral:

I =
∫ π

0

√
x cos xdx (7.248)

(a) Print out a table of values for increasing values of n, checking to see which digits are
no longer changing. Do you understand why this function is so slow to converge?

(b) Carry out the change of variables u =
√

x and then apply the trapezoid rule again.
Compare this convergence behavior with that in the previous part of this problem.

24. You will now manipulate the integral IG from the main text in two distinct ways. First,
apply the slicing and then a different transformation for each integral as discussed in
Eq. (7.153) and in the following discussion. Second, transform Eq. (7.155) twice, first
by taking v = 1 − u and then w =

√
v.

25. Manipulate the integral:

I =
∫ 1

10−6

e−x

x
dx (7.249)

using the techniques of section 7.6.2. Specifically, subtract off the singularity and then
use a Taylor expansion where necessary.
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26. Evaluate the following four integrals that arise in the study of the simple pendulum
beyond the small-angle approximation:

I1 =

∫ θ0

0

1
√

cos θ − cos θ0
dθ, I2 =

∫ π/2

0

1√
1 − A2 sin2 φ

dφ

I3 =

∫ θ0

0

√
cos θ − cos θ0 dθ, I4 =

∫ π/2

0

1 − sin2 φ√
1 − A2 sin2 φ

dφ

(7.250)

where A = sin(θ0/2) and we take θ0 = π/3. Of these, I3 and I4 appear when you use
“action-angle coordinates”, whereas I2 and I4 are known as elliptic integrals of the first
and second kind, respectively. Compute these integrals using the adaptive trapezoid rule
and Gauss–Legendre quadrature for a comparable number of points.

27. Reproduce both panels of Fig. 7.5. Then, make a pairwise plot using random.random().
28. We now introduce the equidistribution test for random-number generators. Split the

region from 0 to 1 into, say, nb = 10 bins of equal size. Generate n = 105 samples in
total and count the populations in each bin, nj, where j = 1, 2, . . . , nb. We expect to find
n/nb samples in each bin (so 104 for our example). Compute the following metric:

χ2 =
nb

n

nb∑
j=1

(
n j −

n
nb

)2

(7.251)

for the three generators used in the previous problem. A “good” χ2 is equal to the
number of degrees of freedom (as you learned in chapter 6). Since

∑
j n j = n, the nb

populations are not fully independent, so we actually have nb − 1 degrees of freedom.
29. The Chebyshev inequality for a general random variable X, whose population mean is
〈X〉, can be expressed as:

P (|X − 〈X〉| ≥ ε) ≤ var(X)
ε2

(7.252)

where ε is positive and arbitrarily small. In words, this says that the probability of the
random variable’s value being more than ε away from the population mean is less than
the population variance divided with ε2. To show this, apply the definition of the left-
hand side, then multiply the integrands by (x − 〈X〉)2/ε2 (why are you allowed to do
this?), extend the integration interval from −∞ to +∞, and then employ the definition
of the population variance from Eq. (7.177).
Having shown Eq. (7.252), one can apply it to our sample mean f which is, after all,
a random variable. Then, re-express the right-hand side using Eq. (7.181) and take the
limit n → ∞ ; since we’re working with a bounded var[ f (X)], the right-hand side goes
to 0. Of course, this also means that:

lim
n→∞

P
(
| f − 〈 f (X)〉| < ε

)
= 1 (7.253)

This result is known as the weak law of large numbers.
30. Given the definition of the estimator evar in Eq. (7.183), show that its expectation is as

per Eq. (7.184). To show this, explicitly take the expectation as defined in Eq. (7.175),
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following steps similar to those in Eq. (7.180). Crucially, when taking the expectation
of

[∑
i f (Xi)/n

]2 you have to distinguish between “diagonal” and “off-diagonal” terms
and also use the independence of different samples.

31. Assume that the random variables X0, X1, X2, . . ., Xn−1 are independent, identically
distributed according to p(x): p(x) could be any distribution with finite variance (i.e.,
not necessarily Gaussian); take each variable to have population mean μ and popula-
tion variance σ2.61 The central limit theorem tells us that the sample mean x obeys a
Gaussian distribution (asymptotically).
To see this, we first define the characteristic function of a random variable Z to be
ϕZ(t) = 〈eitZ〉. Write down the characteristic function of the variable Z =

∑
i Yi/
√

n and
show that it is equal to the characteristic function of one of the Yi’s, raised to the n-th
power. Then, write down the characteristic function of the variable Y0 = (X0−μ)/σ2 and
Taylor expand it. Combine the last two results to show that ϕZ(t) → e−t2/2 as n → ∞.
This is the characteristic function of a normal distribution with zero mean and variance
of one; use this result to show that the sample mean x obeys a normal distribution with
mean μ and variance σ2/n.

32. Produce a plot that looks like the right panel of Fig. 7.7, for the integral of Eq. (7.198),

i.e., I =
∫ 1

0
e−x cos xdx, for uniformly and exponentially distributed numbers.

33. We now discuss the Box–Muller method of producing normal deviates; this makes a
detour through two-dimensional distributions. Recall that in the one-dimensional case
we carried out the integration in Eq. (7.195); the analogue here is the joint cumulative
distribution function:

u(x0, x1) =
∫ x0

−∞

∫ x1

−∞
w(x′0, x

′
1)dx′0dx′1 =

∫ x0

−∞

∫ x1

−∞

e−(x′0)2/2

√
2π

e−(x′1)2/2

√
2π

dx′0dx′1 (7.254)

As an earlier problem showed, the Gaussian integral that seems complicated in one
dimension becomes near-trivial in two dimensions (in polar coordinates). You’ll find
that your result for u(r, θ) depends on r and θ separately, i.e., it is of the form u0(r)u1(θ).
Inverting these two functions, you can get r(u0) and θ(u1). Going back to Cartesian
coordinates (while recalling that if u0 is a uniform deviate, then so is 1− u0), show that:

x0 =
√
−2 log u0 cos(2πu1), x1 =

√
−2 log u0 sin(2πu1) (7.255)

This accomplishes our task of producing two normal deviates (x0 and x1) from two
uniform deviates (u0 and u1).

34. Generalize Eq. (7.162) so that you can tackle the following five-dimensional integral:

I =
∫ 1

−1
du dv dw dx dy

(
2 + u + v
5 + w + x

)y

(7.256)

using Gauss–Legendre quadrature and N = 100–200. Then, apply uniform multidi-
mensional Monte Carlo integration as per Eq. (7.211), withN = 107–108. Observe that
the N’s in the two cases are vastly different, but the total runtimes not so much.

35. This problem shows that the w(X) distribution is stationary when detailed balance holds,
employing a different argument than in the main text.

61 Using our earlier notation, these would be 〈Xi〉 and var(Xi), which are the same for different values of i.
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(a) Re-express Eq. (7.214) so that it takes the form:

pi(X) =
∫

pi−1(Y)T (Y→ X)ddY (7.257)

Feel free to employ the normalization of the transition probability.
(b) Integrate Eq. (7.213) over Y, use the normalization again, and combine your result

with Eq. (7.257) to show that w(X) is a stationary distribution.

36. The one-dimensional integral
∫ ∞

0
e−xx2dx is of the form

∫ ∞
0

w(x) f (x)dx, for w(x) = e−x

and f (x) = x2. Implement the Metropolis algorithm for n = 108; observing that you can
also employ Gauss–Laguerre quadrature, re-compute this integral using the function
numpy.polynomial.laguerre.laggauss() and n = 2.

37. We now show that, when the variational energy EV for the trial wave function ψT gives
the ground-state energy E0, then ψT is the ground-state wave function; imagine slightly
perturbing ψT such that Eq. (7.232) turns into:

E0 + ΔE =
(〈ψT | + 〈ΔψT |) Ĥ (|ψT 〉 + |ΔψT 〉)
(〈ψT | + 〈ΔψT |) (|ψT 〉 + |ΔψT 〉)

(7.258)

Manipulate this equation by neglecting terms of order 〈ΔψT |ΔψT 〉. Do this a second
time in order to move all |ΔψT 〉 terms onto the numerator. Then, set ΔE = 0 to show
that 〈ΔψT |(Ĥ − E0)|ψT 〉 = 0. Discuss what this equation implies on the status of |ψT 〉.

38. This problem studies the autocorrelation function, defined to be:62

C(k) =
f fk − f

2

f 2 − f
2

(7.259)

Here we repeatedly use the arithmetic average, defined in Eq. (7.179). It involves terms

we’ve encountered before, like f 2 and f
2

which are used in Eq. (7.183), as well as a
new, strange-looking term, f fk; this is simply shorthand for:

f fk =
1

N − k

N−k−1∑
i=0

f (Xi) f (Xi+k) (7.260)

In this equation, the value of f at a given sample is multiplied with that of f for the
sample that is k steps apart (and such pairwise multiplications are carried out for the
entire chain); for example, k = 1 would connect f (Xi) with f (Xi+1). Of course, given
our definition, C(0) = 1; C(1) would be smaller, and then at some point C(k) would
be small enough that you wouldn’t have to worry about it. The value of k at which this
happens (the correlation length) tells you how many steps you should skip in order to
minimize the correlation between succeeding walker configurations.
For our random walk in vmc.py, EL will play the role of f in the definition above. Note
that you need to take consecutive measurements to apply Eq. (7.259), i.e., nm = 1. Your
task is to plot the autocorrelation function for k = 0, 1, . . . , 100 for N = 106.

62 This is similar to concepts we introduced in chapter 6: in the present context of a random walk the numerator in
Eq. (7.259) is known as the autocovariance. In principle one should generalize our expression for the variance
in the main text to also involve the autocovariance: in the earlier problem on 〈evar〉 this term vanished, because
the samples were independent there.
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39. In our discussion of the Metropolis–Hastings algorithm we provided a general formula
for the acceptance probability, Eq. (7.219). This, however, is not unique; an alternative
choice, known as Barker’s algorithm, is:

α(X→ Y) =
R(X→ Y)

1 + R(X→ Y)
(7.261)

First, show that this acceptance probability allows you to satisfy detailed balance. Sec-
ond, update vmc.py to use this new criterion.

40. Rewrite vmc.py, breaking down the contributions to EV in terms of kinetic, one-body,
and two-body energies. Which contribution is the most important one?

41. Rewrite the function ekin() in eloc.py such that you don’t use any finite-difference
approximation (and therefore also no step size h). This means you first have to analyt-
ically take the second derivatives and then code up your expressions; make sure that
you (analytically) cancel any terms that do cancel. Compare your output with that of
eloc.py for different values of h.

42. To make this problem more manageable, study np = 4 and nd = 2. Observe from
the first equality in Eq. (7.236) that we have to compute eight-dimensional integrals.
However, if you write out Ĥ1 you will realize that the sum contains six terms, each
of which only couples a single pair of particles (the j-th and k-th particle each time).
Thus, the eight-dimensional integral decouples into an “easy” four-dimensional one
and a “hard” four-dimensional one. Carrying these out by Gauss–Legendre (or using
a software package), you should compare with the output of vmc.py; if it makes the
comparison easier, choose smaller values of g.

43. Generalize vmc.py to handle particles that obey Fermi–Dirac statistics (do you expect
the energy to increase or decrease?). The many-particle wave function is not a simple
product of individual φ’s as in Eq. (7.226), but has to be antisymmetrized, thereby giving
rise to a Slater determinant involving the φ’s; feel free to use Eq. (4.150) and ludec.py.
For concreteness, study only the case of four particles in three dimensions. Since you’re
dealing with fermions, you can place only a single particle in the state nx = ny = nz = 0;
the next particle goes in nx = 1, ny = nz = 0, and so on. When you code these up you
can use hermite() from psis.py, or simply hard-code the fact that H1(x) = 2x.

44. We will now come up with a better trial wave function ψT than the one we used in
vmc.py, by employing different variational parameters in each direction, i.e., αx, αy,
αz. For N = 103 and only four or five values of α in each direction (in order to speed
the computations up) set up a three-dimensional grid for the three parameters αx, αy, αz

and see if you can find any regions that lead to smaller values of EV than what we found
in Fig. 7.8.



8 Differential Equations

One thing might find out how to learn many,
if we could get even a small beginning of hope.

Sophocles

8.1 Motivation

This is the final chapter in the book, so we will take advantage of several of the tools
we have developed so far, most notably: finite differences (chapter 3), linear algebra (chap-
ter 4), root-finding (chapter 5), discrete Fourier transforms (chapter 6), and quadrature rules
(chapter 7). Our exposition is cumulative, so you are expected to have studied the preced-
ing material; even so, we provide specific references when we use techniques introduced
in earlier chapters, so you can brush up on selected topics if the need arises.

8.1.1 Examples from Physics

Differential equations are at the heart of physics and (together with linear algebra) are the
most prominent part of numerical analysis. As usual, here are a few examples:

1. Stellar structure with relativistic corrections
Assume you are given an equation of state, P(ρ), relating the pressure P and the mass
density ρ for a perfect fluid. We would like to see how to go from the equation of state
(which describes microphysics) to the structure of a star (which is a macrophysical
consequence). In other words, we wish to determine how the matter is distributed as
you start from the center of a star and go all the way out to its edge. In general relativity,
the structure of a spherically symmetric static star can be determined by combining the
Einstein field equations with an equation describing hydrostatic equilibrium; this gives
rise to the following relation, where c is the speed of light:

dP(r)
dr
= −Gm(r)ρ(r)

r2

[
1 +

P(r)
ρ(r)c2

] [
1 +

4πr3P(r)
m(r)c2

] [
1 − 2Gm(r)

c2r

]−1

(8.1)

known as the Tolman–Oppenheimer–Volkoff (TOV) equation; one way of recovering the
Newtonian limit is to take c2 → ∞. Here, G is Newton’s gravitational constant, r is the
radial coordinate, and m(r) is the mass inside a sphere of radius r, which satisfies:

dm(r)
dr

= 4πr2ρ(r) (8.2)

494
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Note that in the last two relations P, ρ, and m are functions of only r; as a result we
are dealing with a pair of ordinary differential equations. From the equation of state,
given ρ(r) you can determine P(ρ(r)), meaning that Eq. (8.1) and Eq. (8.2) are two
first-order differential equations for ρ(r) and m(r); crucially, these cannot be solved
independently of each other, since both of them involve m(r) and ρ(r); we say that these
are simultaneous differential equations (or coupled differential equations).
We start solving these simultaneous differential equations at the center of the star (where
we impose ρ(0) = ρc and m(0) = 0) and then integrate outward. The mass M and radius
R of the star are determined by P(R) = 0 and m(R) = M, i.e., the star ends when the
pressure vanishes, at which radius we get the star’s entire mass. Mathematically, this
is an initial-value problem, even though there’s no time involved here: “initial” means
that we know the starting values and are trying to determine the behavior elsewhere.

2. Projectile motion with air resistance
Consider a projectile of mass m in two dimensions. Its motion will obey Newton’s
second law, i.e., F = ma; recall that a = d2r/dt2, where r’s components are x and y.
In two dimensions we get a pair of second-order differential equations for x(t) and y(t).
Our projectile will feel the force of gravity and also air resistance; at large speeds, the
latter can be expressed as follows:

Fd = −kmv2 v
|v| (8.3)

This force is opposite to the direction of motion. The k is a parameter containing what
is known as the drag coefficient, though the details are not relevant here: what matters is
that the magnitude of the force in Eq. (8.3) is proportional to the square of the velocity.
Putting everything together, Newton’s second law takes the form:

d2x
dt2
= −k

dx
dt

√(
dx
dt

)2

+

(
dy
dt

)2

d2y
dt2
= −g − k

dy
dt

√(
dx
dt

)2

+

(
dy
dt

)2
(8.4)

where the acceleration due to gravity, g, is present only in the y direction. Note that
we have x = x(t) and y = y(t), i.e., both x and y depend only on t, so these are second-
order ordinary differential equations; even so, our problem consists of two simultaneous
ordinary differential equations, since x(t) and y(t) appear in both equations.
As you may recall, to start solving a second-order differential equation you need two
pieces of information, the starting value of the function and the starting value of its
derivative. For the projectile problem, we are faced with two second-order differential
equations, so our input information would have to be the four quantities x(0), vx(0), y(0),
and vy(0), where vx = dx/dt and vy = dy/dt. In other words, we need to know the start-
ing positions and starting velocities of the projectile. So far, this is another example
of an initial-value problem, like the one we encountered in solving the TOV equation.
Here’s a twist, though: what if, instead, you were given only x(0), vx(0), y(0), and y(T )?
These are still four numbers, namely the starting positions, one component of the start-
ing velocity, and one component of the final position. In physical terms: you shoot a
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cannonball at a given point and with a given vx and you know how much time passes
before it hits the ground (T where y(T ) = 0). This is no longer an initial-value problem,
since we don’t have all the starting information at our disposal; instead, it is a boundary-
value problem, where we know a final piece of information, which we’ll try to use to
extract the missing initial value, in this example vy(0).

3. Schrödinger equation(s)
We encountered the Schrödinger equation in section 4.5: at the time, we were studying
spins, so we needed its formulation in terms of state vectors. Here, we examine the
(simpler) scenario of a single spinless non-relativistic particle of mass m in one spatial
dimension, x, similarly to section 3.5. The system is described by its wave function
Ψ(x, t) which satisfies the time-dependent Schrödinger equation in the position basis:

i�
∂Ψ(x, t)
∂t

=

[
− �

2

2m
∂2

∂x2
+ V(x, t)

]
Ψ(x, t) (8.5)

The right-hand side is made up of a kinetic energy term (the second derivative) and a
potential energy term. Observe that Eq. (8.5) involves a second-order spatial deriva-
tive and a first-order time derivative.1 As you can see, the time-dependent Schrödinger
equation is a linear partial differential equation; it is a dynamical equation, allowing us
to determine how the wave function changes in time (i.e., it is an initial-value problem,
for a partial differental equation this time).
For the special case where the potential is time independent, V(x), Eq. (8.5) is separa-
ble, giving rise to a trivial time dependence:

Ψ(x, t) = ψ(x)e−iEt/� (8.6)

with ψ(x) obeying the time-independent Schrödinger equation in the position basis:[
− �

2

2m
d2

dx2
+ V(x)

]
ψ(x) = Eψ(x) (8.7)

Here the energy E is a real number. Crucially, Eq. (8.7) is no longer a dynamical equa-
tion but an eigenvalue problem: this equation has acceptable solutions only for specific
values of E. In one spatial dimension, the time-independent Schrödinger equation is
an ordinary differential equation. We had already seen the Schrödinger equation as an
eigenproblem in the case of interacting spins in section 4.5, but there we were naturally
faced with matrices. In the present case, we have an eigenvalue equation even though
we’re not using the language of matrices (yet).

8.1.2 The Problems to Be Solved

For most of this chapter, we will be tackling ordinary differential equations (ODEs). The
simplest case is when we are trying to solve a single differential equation for a single func-
tion, y(x), where x is known as the independent variable and y is the dependent variable,
namely the solution we are after.

One could start by studying equations involving, say, second-order derivatives of y. For

1 This asymmetry is lifted when you introduce special relativity, giving rise to the Klein–Gordon equation.
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reasons that will become clear in section 8.2.4 we, instead, focus on the more elementary
problem of a first-order derivative. Thus, the first class of equation we will tackle in this
chapter will be the following initial-value problem (IVP):

y′(x) = f (x, y(x)) , y(a) = c (8.8)

where y′ = dy/dx and f (x, y) is a known function (in general nonlinear) which could
depend on both x and y,2 e.g., f (x, y) = 3x5 − y3. We emphasize that f is known: what we
wish to solve for is y. This is called an initial-value problem because we know the value
of y(x) at a certain point, a (i.e., we know that y(a) = c, where c is given), so we start from
there and try to integrate up to, say, the point b. We used the word “integrate”, bringing to
mind the theme of chapter 7. Formally, we can integrate Eq. (8.8) to find:

y(x) = c +
∫ x

a
f (z, y(z))dz (8.9)

If we now pick the special case where f does not depend on y (i.e., the opposite of an
autonomous ODE) and set x = b, then our problem looks similar to Eq. (7.7). Thus, you
should not be surprised to find out that terms introduced in the previous chapter (midpoint,
trapezoid, Simpson’s) will re-appear in the present chapter. That being said, we are here
interested in producing not a single number (the value of a definite integral) but a full
function, y(x); also, in practice the function f most often does depend on y, so the problem
we are faced with is more complicated than that of the previous chapter.

For a higher-order ODE, we would have to specify all necessary information at the
starting point; for example, in an initial-value problem for a second-order ODE we would
need to specify the values of both y (the sought-after function) and y′ (its derivative) at a:

y′′ = f (x, y, y′), y(a) = c, y′(a) = d (8.10)

In this, more general, case we see that f could also depend on y′; in other words, we
have isolated the highest-order derivative on the left-hand side. Observe that both y(a) and
y′(a) are given at the same point, so this is still an initial-value problem. A much harder
problem, which we will also discuss in this chapter, arises when you are given the values of
the function at two distinct points, without being provided the starting value of y′. This is
known as a boundary-value problem (BVP), which we will tackle in its simplest possible
form, namely that of a second-order ODE:

y′′ = f (x, y, y′), y(a) = c, y(b) = d (8.11)

Our input data, y(a) = c and y(b) = d, are known as boundary conditions. While in
Eq. (8.10) we always got a unique solution, BVPs are more complicated: they can have
no solutions or infinitely many solutions, but we will mainly focus on BVPs which have a
single solution.

2 If f depends on x only through its dependence on y(x), we are dealing with an autonomous ODE.
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An even harder problem arises when f in Eq. (8.11) is generalized to depend not only
on x, y, and y′, but also on a parameter s; this is an eigenvalue problem (EVP):

y′′ = f (x, y, y′; s), y(a) = c, y(b) = d (8.12)

This equation only has non-trivial solutions for special values of s. This means that we will
need to computationally find the appropriate values of s. Viewed from another perspective,
in Eq. (8.10) or Eq. (8.11) we have a single equation which we try to solve, but our newest
problem in Eq. (8.12) describes a family of equations (and correspondingly more than one
solutions). Unsurprisingly, such an eigenvalue problem has close connections both to the
matrix eigenvalues which we encountered in chapter 4 and to the eigenvalues appearing
in the Schrödinger equation, as touched upon in section 8.1.1 (where the role played by s
here was played by the eigenenergy E).

All three problems discussed above appeared in the context of ordinary differential equa-
tions. Of course, in practice one is also faced with partial differential equations (PDEs),
namely equations where the dependent variable depends on more than one independent
variable. Here we will provide only the briefest of introductions to the subject, in sec-
tion 8.5. Specifically, we will tackle Poisson’s equation in two dimensions:

∂2φ

∂x2
+
∂2φ

∂y2
= f (x, y) (8.13)

employing a method that is different from what we used for ODEs (though tools that were
introduced earlier in the chapter are certainly also applicable to PDEs). Note that here our
dependent variable is φ, which depends on both x and y, i.e., φ(x, y). Crucially, this y is not
a dependent variable as in previous paragraphs.3

8.2 Initial-Value Problems

While this chapter discusses a variety of questions, most of it is dedicated to initial-value
problems, since the techniques that can be used to tackle these have wider applicability and
will re-appear later on. As mentioned above, we will write a general IVP in the form:

y′(x) = f (x, y(x)) , y(a) = c (8.14)

where y′ = dy/dx and f (x, y) is known. We wish to solve this equation for y(x), with x
going from a to b.
3 You may wish to think of this problem as y(x0, x1) instead, but it’s important not to get confused: x0 and x1

would then be independent variables in their own right, not points (e.g., x0 could be varied from a to b).
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In most of this chapter, we will employ a discretization, more specifically an equally
spaced grid of points, as for Newton–Cotes quadrature, Eq. (7.8). In other words, we will
be trying to compute the function y(x) at a set of n grid points x j, from a to b:

x j = a + jh (8.15)

where, as usual, j = 0, 1, . . . , n − 1. The step size h is obviously given by:

h =
b − a
n − 1

(8.16)

We could use different step sizes h in different regions, as touched upon in section 8.2.3,
but we will mostly stick to a fixed h, as per Eq. (8.16), in what follows.

Let us introduce some more notation. At a given grid point, x j, the exact solution of
our ODE will be y(x j); we will use the symbol y j to denote the approximate solution, i.e.,
the value that results from a given discretization scheme. We now turn to a discussion of
specific methods that will help us make y j increasingly closer to y(x j).

8.2.1 Euler’s Method

The simplest possible approach is known as Euler’s method. In what follows, we will
motivate it, discuss its error behavior, as well a scenario where it gets in trouble (and then
we’ll see what we can do about that).

Forward Euler

We can motivate what is known as the forward Euler method starting from the forward-
difference formula. Translating Eq. (3.8) into our present notation gives:

y′(x j) =
y(x j+1) − y(x j)

h
− h

2
y′′(ξ j) (8.17)

where, as usual, ξ j is a point between x j and x j+1. Here it is assumed that we are starting
at x j and trying to figure out how to make a step onto the next point, x j+1. Now, we know
that y(x j) is the exact solution at the point x j, so it must satisfy our ODE, Eq. (8.14):

y′(x j) = f (x j, y(x j)) (8.18)

We can use this equation to eliminate the first derivative from the left-hand side of Eq. (8.17):

y(x j+1) = y(x j) + h f (x j, y(x j)) +
h2

2
y′′(ξ j) (8.19)

We’ve made no approximations, which is why we don’t see any y’s with indices.
It is now time to make an approximation. Assuming h is small, the term proportional to

h2 will be less important, so we can drop it. This leads to the following prescription:
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�Fig. 8.1 Illustration of a step of the forward Euler method

y j+1 = y j + h f (x j, y j), j = 0, 1, . . . , n − 2

y0 = c
(8.20)

Since we started from the forward-difference formula in Eq. (8.17), the resulting method
is known as the forward Euler method. Note that this is an approximate formula, involving
y j and y j+1 instead of y(x j) and y(x j+1). As you have seen, higher-order terms in the Taylor
expansion are ignored. We’ll see how to do (much) better in later sections.

The method is illustrated in Fig. 8.1: since the right-hand side of Eq. (8.20) contains
a term proportional to f (x j, y j), and we know from our starting equation, Eq. (8.14), that
f (x j, y j) is (an approximation to) the slope of the tangent to the exact solution at x j, the
geometrical interpretation is reasonably straightforward. Note that in this figure we as-
sumed that y(x j) = y j for the purposes of illustration. This is certainly true when we start
(i.e., y(x0) = y0), but will most likely not continue to be true later on (i.e., the starting
point of the dashed line will not lie on top of the exact solution). Similarly, the forward
Euler method approximates the slope as f (x j, y j), whereas the true slope would have been
f (x j, y(x j)). However, that’s inevitable: at a given iteration, we have only y j at our disposal,
i.e., our approximation to the true y(x j).

Local and Global Error

We turn to the error incurred in a single step of the forward Euler method. This is known
as the local truncation error; you can think of this as the error made when you go from x0

to x1, i.e., the difference between y(x1) and y1. More generally, we define:

t j = y(x j+1) − y(x j) − h f (x j, y(x j)) (8.21)
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This is defined in terms of exact quantities (y(x j), not y j): this is because we are interested
in the error incurred in a single step assuming we were starting from the exact solution. For
the forward Euler method, we can immediately plug Eq. (8.19) into Eq. (8.21) to find:

t j =
1
2

h2y′′(ξ j) (8.22)

Thus, the local discretization error of the forward Euler method is O(h2). This is reminis-
cent of the absolute error in the one-panel rectangle formula, as per Eq. (7.17).4

Despite the simplicity (and popularity) of the analogy with the rectangle rule, if you
wanted to proceed by analogy to the composite rule, as per Eq. (7.18), you would be on
shaky ground. The reason is that here the different steps are not independent from one
another: the actual error at the j-th step is not given by Eq. (8.22) because, as hinted at
above, y(x j) is actually different from y j and therefore f (x j, y(x j)) is also different from
f (x j, y j), due to the errors made in previous iterations; in other words, the local truncation
error doesn’t tell the whole story.

Let’s be clear about our goal: we wish to determine the global error that accumulates
when we numerically integrate our differential equation from x0 = a to xn−1 = b, i.e.,

E = y(b) − yn−1 (8.23)

As in the previous chapter, this definition is of the form “exact minus approximate”. Work-
ing toward this goal, let us introduce some new notation:

e j = y(x j) − y j (8.24)

where, obviously, en−1 = E. We are consciously not calling this new quantity E j, in order
to emphasize the conceptual differences from what was carried out in the previous chapter.
With a view to seeing how the error in one step is related to that in the next step, subtract
Eq. (8.20) from Eq. (8.19) to find:

e j+1 = e j + h
[
f (x j, y(x j)) − f (x j, y j)

]
+ t j (8.25)

where we also made use of Eq. (8.22). If we take the absolute value and use the triangle
inequality, this gives:

|e j+1| ≤ |e j| + h
∣∣∣∣[ f (x j, y(x j)) − f (x j, y j)

]∣∣∣∣ + |t j| (8.26)

If we now assume that f satisfies Lipschitz continuity5 and also that the second derivatives
(contained in t j) are bounded by M, we get:

|e j+1| ≤ (1 + Lh)|e j| +
Mh2

2
(8.27)

where we grouped together the first two terms on the right-hand side.

4 Some authors define the local truncation error with a factor of h divided out. We work by analogy with the
scaling in chapter 7, where the local error is always one order higher than the global error.

5 Lipschitz continuity means that there exists a constant L such that | f (x, y) − f (x, ỹ)| ≤ L |y − ỹ| holds. This is
satisfied if f (x, y) has bounded partial derivatives, as will be the case for us.
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For j = 0, Eq. (8.27) gives:

|e1| ≤
Mh2

2
(8.28)

since e0 = y(x0) − y0 = 0. Similarly, for j = 1 we find:

|e2| ≤ (1 + Lh)|e1| +
Mh2

2
≤ [1 + (1 + Lh)]

Mh2

2
(8.29)

and the next step gives:

|e3| ≤ (1 + Lh)|e2| +
Mh2

2
≤

[
1 + (1 + Lh) + (1 + Lh)2

] Mh2

2
(8.30)

Repeating this until the end, and summing up the geometric series, leads to:

|E| = |en−1| ≤
(1 + Lh)n−1 − 1

Lh
Mh2

2
(8.31)

where we can cancel the h in the denominator.
A Maclaurin expansion for the exponential, as per Eq. (C.2), gives ex = 1 + x + x2eξ/2.

This implies that ex ≥ 1 + x and therefore (1 + x)n−1 ≤ e(n−1)x. Applied to our result:

|E| ≤ h
M
2L

(eL(b−a) − 1) (8.32)

where we also used (n − 1)h = b − a. Even if you need to re-read the above derivation, the
main conclusion is clear: the forward Euler method converges and its global error decreases
linearly, O(h). While a O(h) scaling is not great, it does imply that as h goes to 0 the global
error also goes to 0 (ignoring considerations arising from roundoff error). We say that this
is a convergent method. To reiterate, up to this point we were interested in what happened
as we kept making h smaller; we now turn to what happens for a fixed h (and find out that
we can get into serious trouble).

Stability Considerations

We now go over a pathological scenario: a case where the forward Euler method simply
fails to converge. Put another way, we’ll see an example where a small change in the step
size has a huge effect on the global error, considerably beyond what is captured in our O(h)
result.

To make the discussion concrete, we will examine the (aptly named) test equation:

y′(x) = μ y(x), y(0) = 1 (8.33)

where μ is real (and constant). This is a very simple autonomous ordinary differential
equation. Its exact solution can be straighforwardly seen to be y(x) = eμx.

The steps to follow will be for the test equation only but, as you will find out in the
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problem set, an appropriately generalized derivation can be carried out for any differential
equation. Basically, the behavior of solutions to the test equation is pretty representative of
more general features, so this equation will re-appear later in the chapter.

Stability of Forward Euler Method

Applying the forward Euler method, Eq. (8.20), to the test equation, Eq. (8.33), leads to
y j+1 = y j + hμy j, which can be re-expressed in the form:

y j+1 = (1 + μh)y j (8.34)

If we now repeatedly apply this equation from j = 0 to j = n − 2, we get:

yn−1 = (1 + μh)n−1y0 = (1 + μh)n−1 (8.35)

where, in the last step, we took advantage of the fact that y0 = 1.
When μ > 0, our result in Eq. (8.35) grows pretty rapidly, but that’s OK, since so does

the exact solution y(x) = eμx. We are more interested in the case of μ < 0, for which the
exact solution is decaying exponentially. We immediately realize that (1 + μh)n−1 may or
may not decay as n gets larger, depending on the value of μh. Thus, if we wish to ensure
that the solution gets smaller from one step to the next, i.e., |y j+1| < |y j|, we see from
Eq. (8.34) that we need to demand that:

|1 + μh| < 1 (8.36)

holds. In other words, we have arrived at the following stability condition:

h <
2
|μ| (8.37)

If this is not satisfied, the forward Euler method leads to a numerically unstable solution.
In Fig. 8.2 we show the result of applying the forward Euler method to the test equation

y′(x) = −20y(x), i.e., for the case of μ = −20. Based on the above criterion, we expect that
a qualitatively new feature emerges when we cross the h = 0.1 threshold. This expectation
is clearly borne out by the figure. The global error of the forward Euler method is supposed
to be O(h), but when we change n = 12 to n = 10 (i.e., go from h = 0.091 to h = 0.111) we
encounter a dramatic change in behavior. As a matter of fact, the n = 10 results oscillate
and grow considerably away from the exact solution; clearly, for this step size and μ, the
forward Euler method is unstable. To reiterate the main point: while accuracy requirements
may lead us to expect a given behavior for a given step size, stability requirements have
to be taken into account separately. In other words, the forward Euler global error is O(h),
only when the method is stable. This behavior is rarely acceptable, so we now try to see if
we can come up with other techniques that perform better.
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�Fig. 8.2 The forward and backward Euler methods applied to the test equation

Backward Euler Method

In Fig. 8.2 we also show a set of results for a mysterious “backward Euler” method, so let
us now see what that is. We will introduce this technique at a general level, i.e., for any
(first-order) differential equation. After that, we will see how the new method helps us do
better for the problem of the test equation.

The forward Euler method is so named because we motivated it starting from the forward-
difference approximation to the first derivative. We can do something analogous for the
backward-difference approximation; this means we can translate Eq. (3.11) to find:

y′(x j+1) =
y(x j+1) − y(x j)

h
+

h
2

y′′(ξ j) (8.38)

This certainly seems like an innocuous variation on what we were doing earlier. However,
we’ll now see that its impact is major. Recall that we are trying to solve our general ODE,
Eq. (8.14); since y(x j+1) is the exact solution at the point x j+1, we can eliminate the first
derivative from the left-hand side of Eq. (8.38), getting:

y(x j+1) = y(x j) + h f (x j+1, y(x j+1)) − h2

2
y′′(ξ j) (8.39)

This motivates our approximation, which is to drop the term proportional to h2:

y j+1 = y j + h f (x j+1, y j+1), j = 0, 1, . . . , n − 2

y0 = c
(8.40)

Since this time we started from the backward-difference formula in Eq. (8.38), the resulting
method is known as the backward Euler method. We observe that the local truncation error
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(i.e., the O(h2) term we dropped to go from Eq. (8.39) to Eq. (8.40)) is almost identical to
what we were faced with in the forward Euler case, but has the opposite sign.

While Eq. (8.40) appears, at first sight, to be quite similar to Eq. (8.20), in reality it is
very different: in Eq. (8.20) we have a way of producing the y j+1 on the left-hand side
simply by plugging in results from earlier steps, such as y j; methods that allow you to do
this are called explicit. However, Eq. (8.40) involves y j+1 on both the left-hand side and the
right-hand side. Since f (x, y) is in general a nonlinear function, we are thereby faced with
a root-finding problem of the form:

z = y j + h f (x j+1, z) (8.41)

at each iteration! Methods for which the evaluation of y j+1 implicitly depends on y j+1 itself
are called implicit. Based on what you know from chapter 5, in the general case such meth-
ods require considerably more computational effort per iteration than analogous explicit
methods; this immediately raises the question why anyone would bother implementing
them.

Stability of Backward Euler Method

To give the conclusion ahead of time: the backward Euler method has much better stability
properties, thereby justifying the extra work we need to put in per iteration. This happens
to be a general feature: implicit methods are often better from the perspective of stability.
In the rest of the chapter we will introduce a mixture of explicit and implicit methods: the
former are typically faster but, when they get in trouble, implicit methods can save the day.

In order to examine the stability features of the backward Euler method, we turn once
again to the test equation of Eq. (8.33). For such a simple right-hand side, it is straightfor-
ward not only to write down Eq. (8.40):

y j+1 = y j + hμy j+1 (8.42)

but also to analytically solve it for y j+1:

y j+1 =
1

1 − μh
y j (8.43)

As you go from the j-th step to the ( j + 1)-th one, this equation shows you that your
approximate solution for μ > 0 may grow; however, that’s fine, since we know that the
exact solution also grows. In reality, we are more interested in the case of μ < 0, for which
the forward Euler method could get into serious trouble. In the present case, you can see
from Eq. (8.43) that when μ < 0, regardless of the magnitude of h > 0, you will always
satisfy |y j+1| < |y j|. This is as it should be, since the exact solution will be decaying. In
other words, we have shown that, for the test equation with μ < 0, the backward Euler
method is unconditionally stable, i.e., is stable regardless of the value of μh. We have
thereby explained why this implicit method did so well in Fig. 8.2.
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8.2.2 Second-Order Runge–Kutta Methods

At a big-picture level, the Euler method (whether explicit or implicit) followed from trun-
cating a Taylor expansion to very low order. Thus, a way to produce increasingly better
methods would be to keep more terms in the Taylor expansion. Of course, higher-degree
terms are associated with derivatives of higher order, which are generally difficult or expen-
sive to compute. In this and the following section, we will investigate an alternative route:
so-called Runge–Kutta methods employ function evaluations (i.e., not derivatives) at x j or
x j+1 (or at points in between), appropriately combined such that the prescription’s Taylor
expansion matches the exact solution up to a given order. This may sound too abstract, so
let’s explicitly carry out a derivation that will lead to a family of second-order methods.

Derivation

Before considering the Runge–Kutta prescription (which will allow us to produce an ap-
proximate solution), let us examine the Taylor expansion of the exact solution. As adver-
tised, we will explicitly evaluate higher-order terms this time. We have:

y(x j+1) = y(x j) + hy′(x j) +
h2

2
y′′(x j) +

h3

6
y′′′(x j) + O(h4)

= y(x j) + h f (x j, y(x j)) +
h2

2
f ′ +

h3

6
f ′′ + O(h4)

= y(x j) + h f (x j, y(x j)) +
h2

2

(
∂ f
∂x
+ f

∂ f
∂y

)

+
h3

6

⎡⎢⎢⎢⎢⎢⎣∂2 f
∂x2
+ 2 f

∂2 f
∂x∂y

+
∂ f
∂x

∂ f
∂y
+ f 2 ∂

2 f
∂y2
+ f

(
∂ f
∂y

)2⎤⎥⎥⎥⎥⎥⎦ + O(h4) (8.44)

In the first equality we expanded y(x j + h) around the point x j. In the second equality we
employed the fact that y(x j) is the exact solution at the point x j, so it must satisfy our ODE,
Eq. (8.14), namely y′(x j) = f (x j, y(x j)); since the notation gets messy, we write f ′, where
it is implied that the derivatives are taken at the point x j, y(x j). To get to the third equality,
we noticed that when evaluating f ′ we need to account for both the explicit dependence on
x and for the fact that y depends on x:

f ′ =
∂ f
∂x
+
∂ f
∂y

∂y
∂x
=
∂ f
∂x
+
∂ f
∂y

f (8.45)

Similarly, the next order term in the third equality applied this fact again:

f ′′ =
∂

∂x

(
∂ f
∂x
+
∂ f
∂y

f

)
+
∂

∂y

(
∂ f
∂x
+
∂ f
∂y

f

)
∂y
∂x

(8.46)

Our final result in Eq. (8.44) is an expansion of the exact solution, explicitly listing all
the terms up to order h3. Any Ansatz, such as those we will introduce below, will have to
match these terms order by order, if it is to be correct up to a given order.

We now turn to the second-order Runge–Kutta prescription; as its name implies, this
will turn out to match Eq. (8.44) up to order h2 (i.e., it will have a local truncation error of
O(h3)). Crucially, it will accomplish this without needing to evaluate any derivatives:
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y j+1 = y j + c0h f (x j, y j) + c1h f
[
x j + c2h, y j + c2h f (x j, y j)

]
(8.47)

The c0, c1, and c2 will be determined below. This prescription requires two function evalua-
tions in order to carry out a single step: it may look as if there are three function evaluations,
but one of them is re-used. To see this, take:

k0 = h f (x j, y j)

y j+1 = y j + c0k0 + c1h f
[
x j + c2h, y j + c2k0

] (8.48)

As advertised, this doesn’t involve any derivatives; it does involve the evaluation of f at a
point other than x j, y j: this involves a shifting of both x j (to x j + c2h), as well as a more
complicated shifting of y j (to y j + c2h f (x j, y j)). However, if c0, c1, c2, x j, y j, and f are all
known, then the right-hand side can be immediately evaluated; in other words, we are here
dealing with an explicit Runge–Kutta prescription.

Our plan of action should now be clear: expand the last term in Eq. (8.47), grouping the
contributions according to which power of h they are multiplying; then, compare with the
exact solution expansion in Eq. (8.44) and see what you can match:

f
[
x j + c2h, y j + c2h f (x j, y j)

]
= f (x j, y j) + c2h

∂ f
∂x

+ c2h f (x j, y j)
∂ f
∂y
+

c2
2h2

2
∂2 f
∂x2
+

c2
2h2

2
2 f (x j, y j)

∂2 f
∂x∂y

+
c2

2h2

2
f 2(x j, y j)

∂2 f
∂y2
+ O(h3) (8.49)

It may be worthwhile at this point to emphasize that in Eq. (8.44) we expanded y(x j + h),
i.e., a function of a single variable. This is different from what we are faced with in the left-
hand side of Eq. (8.49), namely f , which is a function of both our independent variable and
our dependent variable. Our result on the right-hand side involves all the necessary partial
derivatives, similarly to what we did in the last step of Eq. (8.44).

If we now plug Eq. (8.49) into Eq. (8.47) and collect terms, we find:

y j+1 = y j + (c0 + c1)h f (x j, y j) + c1c2h2

[
∂ f
∂x
+ f (x j, y j)

∂ f
∂y

]

+
c1c2

2h3

2

[
∂2 f
∂x2
+ 2 f (x j, y j)

∂2 f
∂x∂y

+ f 2(x j, y j)
∂2 f
∂y2

]
+ O(h4) (8.50)

Comparing this result with the expansion for the exact solution, Eq. (8.44), we realize that
we can match the terms proportional to h and to h2 if we assume:

c0 + c1 = 1, c1c2 =
1
2

(8.51)

Unfortunately, this does not help us with the term that is proportional to h3. Simply put,
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the term in brackets in Eq. (8.44) contains more combinations of derivatives than the corre-
sponding term in Eq. (8.50). Thus, since we have agreement up to order h2, we have shown
that the explicit Runge–Kutta prescription in Eq. (8.47) has a local truncation error which
is O(h3), as desired.6 Since the local error of our Runge–Kutta prescription is O(h3), you
can guess that the global error is one order worse, i.e., O(h2), similarly to what we saw in
chapter 7 for the midpoint and trapezoid quadrature rules. You can now see why the present
section’s heading is second-order Runge–Kutta.

Explicit Midpoint and Trapezoid Methods

There is more than one way to satisfy Eq. (8.51); here we will examine two possible
choices. The first one obtains when you take the parameters to be:

c0 = 0, c1 = 1, c2 =
1
2

(8.52)

For this case, the prescription in Eq. (8.47) takes the form:

y j+1 = y j + h f

[
x j +

h
2
, y j +

h
2

f (x j, y j)

]
(8.53)

Things may be more transparent if we break up the evaluations into two stages:

k0 = h f (x j, y j)

y j+1 = y j + h f

[
x j +

h
2
, y j +

k0

2

]
(8.54)

This is an explicit method, since the right-hand side is already known; it is also a method
that employs the midpoint between x j and x j+1. Observe that the second argument passed
to f is y j + k0/2, namely the (approximation to the) slope of the tangent at the midpoint.
As a result, this is known as the explicit midpoint method.

Its interpretation can be understood from Fig. 8.3: recall that Fig. 8.1 showed Euler’s
method employing the slope at the point x j, y j. In contradistinction to this, here we are
finding the slope at the midpoint and then using that to make a move starting from the
point x j, y j.7 As a result, even in this illlustration it can be seen that the explicit midpoint
method does a better job than Euler’s method; of course, you already expected this to be
the case, since you know the local (or global) error to be better by one order.

We now turn to our second choice of how to satisfy the conditions in Eq. (8.51):

c0 =
1
2
, c1 =

1
2
, c2 = 1 (8.55)

For this case, the prescription in Eq. (8.47) takes the form:

y j+1 = y j +
h
2

f (x j, y j) +
h
2

f
[
x j + h, y j + h f (x j, y j)

]
(8.56)

6 This is better by one order compared to the local truncation error of the Euler method(s), which was O(h2).
On the other hand, Euler needs a single function evaluation per step, whereas our new method requires two.

7 As before, we are assuming here that y j = y(x j) for the purposes of illustration.
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Illustration of a step of the midpoint method �Fig. 8.3

Once again, this is slightly easier to understand if we break up the evaluations in two stages:

k0 = h f (x j, y j)

y j+1 = y j +
h
2

[
f (x j, y j) + f (x j+1, y j + k0)

] (8.57)

This, too, is an explicit method. Given that it involves a prefactor of h/2 multiplied with the
sum of the function values at the left endpoint and (what appears to be) the right endpoint,
you may not be surprised to hear that this is known as the explicit trapezoid method.8 Just
like the explicit midpoint method, this is a second-order Runge–Kutta technique; it requires
two function evaluations per step and is better than the basic Euler method.

Quadrature Motivation

So far, we’ve mentioned terms from the previous chapter on numerical integration several
times; we will now see in a bit more detail how these connections between the two chapters
arise. In the process, we will also introduce two more (implicit) methods.

The goal, as before, is to figure out how to make the step from x j to x j+1, i.e., how to
produce y j+1. We have:

y(x j+1) − y(x j) =
∫ x j+1

x j

dy
dx

dx =
∫ x j+1

x j

f (x, y(x))dx (8.58)

8 These methods are also known by several other names. For example, the explicit trapezoid method is some-
times called Heun’s method and the explicit midpoint method is known as the modified Euler method.
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This is similar to what we did in Eq. (8.9), only this time we are limiting ourselves to a
single step h. The first equality follows simply from the definition of a definite integral.
The second equality has plugged in our ODE from Eq. (8.14), y′ = f (x, y). The different
methods introduced earlier in this chapter will now be seen to be a result of evaluating
the integral in the last step of Eq. (8.58) at varying levels of sophistication. Of course, it
is important to note that the situation we are faced with here is not quite so clean: our f
depends on both x and y (which in its turn also depends on x).

First, we approximate the integral using the left-hand rectangle rule of Eq. (7.10):

y j+1 = y j + h f (x j, y j) (8.59)

Notice how y(x j) turned into y j and so on: we are making an approximation, in order to
produce the next step in our method. Observe that this result is identical to the forward
Euler method of Eq. (8.20). The connections between forward Euler and the rectangle rule
aren’t too surprising, since we’ve already seen that our expression for the local error in
the two cases was fully analogous. Of course, we could have just as easily employed the
right-hand rectangle rule, which would have led to:

y j+1 = y j + h f (x j+1, y j+1) (8.60)

Again, this is identical to the backward Euler method of Eq. (8.40). Of the last two methods,
the first was explicit and the second implicit, as you know.

Now, we approximate the integral in Eq. (8.58) using the midpoint rule of Eq. (7.20):

y j+1 = y j + h f

[
x j +

h
2
, y

(
x j +

h
2

)]
(8.61)

We are now faced with a problem: the last term involves y(x j +h/2) but that is off-grid. We
don’t (and will never) know the value of our dependent variable outside our grid points.9

What we can do is to further approximate y(x j + h/2) by the average of y j and y j+1:

y j+1 = y j + h f

(
x j +

h
2
,

y j + y j+1

2

)
(8.62)

This is easily identifiable as an implicit method: it involves y j+1 on both the left-hand side
and the right-hand side. (Note, however, that our earlier problem is resolved: y j and y j+1 are
approximate values at the grid points.) The resulting prescription is known as the implicit
midpoint method. At this point, you could choose to approximate y j+1 on the right-hand
side by the forward Euler method; if you do that, you will find that you recover the explicit
midpoint method. If in the previous section you had any lingering doubts about why this
method was so named, these should have been put to rest by now.

We can also approximate the integral in Eq. (8.58) using the trapezoid rule of Eq. (7.30):

9 Of course, you could imagine changing the definition of your grid: if you take h → h/2, then what used to be
a midpoint is now a grid point. If you do that, you also have to update the equations appropriately.
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y j+1 = y j +
h
2

[
f (x j, y j) + f (x j+1, y j+1)

]
(8.63)

You’re probably getting the hang of it by now: since this is an implicit method that resulted
from using the trapezoid rule, it is called the implicit trapezoid method. Just like we did
in the previous paragraph, we could now approximate y j+1 on the right-hand side by the
forward Euler method; unsurprisingly, doing that leads to the explicit trapezoid method.
You may have noticed that we didn’t actually prove that the implicit midpoint and trapezoid
methods are second-order; the previous section carried out the Taylor-expansion matching
for the explicit Runge–Kutta prescription in Eq. (8.47). One of the problems asks you to
check the order of the error for the implicit case.

8.2.3 Fourth-Order Runge–Kutta Method

Up to this point, we’ve introduced six distinct methods: Euler, midpoint, and trapezoid,
with each one appearing in an implicit or explicit version. We also saw the connections
of these techniques with the corresponding quadrature rules from the previous chapter.
Higher-order methods can be arrived at by applying higher-order quadrature rules; un-
fortunately, the connection betwen the former and the latter stops being as clean. One
(unpleasant) option would then be to completely drop the connection with quadrature and
revert to a Taylor expansion of a higher-order prescription, generalizing Eq. (8.47), and
then matching terms order-by-order. One of the problems guides you toward that goal.

Before we go any farther, let us write down a very important prescription, belonging to
the fourth-order Runge–Kutta method:

k0 = h f (x j, y j)

k1 = h f

(
x j +

h
2
, y j +

k0

2

)

k2 = h f

(
x j +

h
2
, y j +

k1

2

)
k3 = h f

(
x j + h, y j + k2

)
y j+1 = y j +

1
6

(k0 + 2k1 + 2k2 + k3)

(8.64)

This Ansatz is sufficiently widespread that it is also known as classic Runge–Kutta or RK4.
It requires four function evaluations in order to produce y j+1 starting from y j; the fact that
it can accomplish this task tells us that this is an explicit method.

Just like our earlier prescriptions, RK4 does not need to evaluate any derivatives. Even
though it is more costly than any of the other methods we’ve seen up to now, it is certainly
a worthwhile investment, as RK4 has a local error of O(h5), which is two orders better than
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anything we encountered before. There are many other methods on the market, e.g., higher-
order Runge–Kutta techniques, multistep methods, Richardson-extrapolation approaches,
or techniques tailored to specific types of ODEs; the problem set introduces several of
these. For most practical purposes, however, the fourth-order Runge–Kutta method is an
efficient and dependable tool which is likely to be your technique of choice.

The broad outlines of a graphic interpretation of Eq. (8.64) are easy to grasp: the pre-
scription involves evaluations at x j and x j+1, as well as at their midpoint. Similarly, k0, k1,
k2, and k3 are approximations to the slope at the endpoints and the midpoint. Of course,
you may be wondering exactly why these ki’s have been chosen to have this specific form
(and also end up being combined in the final line in precisely that manner). As mentioned
above, a full Taylor-expansion derivation is quite messy, without providing any new in-
sights. However, the essential points can be grasped if we examine two extreme cases for
f (x, y): (a) the case where f does not depend on y, and (b) the case where f does not
depend on x (an autonomous ODE). We take these up in turn.

First Case: Quadrature

As advertised, we first consider the case where f depends only on our independent variable
x. Then, Eq. (8.58) takes the form:

y(x j+1) − y(x j) =
∫ x j+1

x j

f (x)dx (8.65)

This is now not similar to what we had in the previous chapter, but identical. We’ve al-
ready seen the rectangle, midpoint, and trapezoid rule approximations to this integral. The
next quadrature formula we encountered in the previous chapter was Simpson’s rule, see
Eq. (7.45). Applied to Eq. (8.65), this gives:

y j+1 = y j +
h
6

[
f (x j) + 4 f

(
x j +

h
2

)
+ f (x j+1)

]
(8.66)

where we took care of the fact that Eq. (7.45) was written down for two panels (i.e., from
x j to x j+2). If we now look at the RK4 prescription of Eq. (8.64), we realize that when f
does not depend on y we have k1 = k2 = h f (x j + h/2). Thus, Eq. (8.66) exactly matches
the RK4 prescription. We have therefore accomplished (the first part of) what we set out to
do: the fourth-order Runge–Kutta method is equivalent to Simpson’s rule (for the, simpler,
case where f does not depend on y). This is one way of seeing that RK4 has a local error
of O(h5), as shown for Simpson’s rule in Eq. (7.52).

Incidentally, the connections between the numerical integration of ODEs, on the one
hand, and plain quadrature, on the other, do not stop here. We’ve focused on Newton–Cotes
methods, but one could just as well employ Gauss–Legendre quadrature schemes; as a
matter of fact, the midpoint method is a trivial example of this. One could, analogously, in-
troduce fourth-order or sixth-order implicit Gauss–Legendre Runge–Kutta methods. That
being said, we won’t need to do so, since RK4 is enough for our purposes.
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Second Case: Autonomous

So far, we’ve only accomplished half of what we wanted: we’ve seen what happens when
we are faced with f (x). We’ll now examine the other extreme, that of an autonomous
differential equation, namely one with f (y). To make things concrete, we will study (again)
the test equation of Eq. (8.33):

y′(x) = μy(x) (8.67)

Since this is a case where we explicitly know the right-hand side (which also happens to
be simple), we can follow the explicit route we opted against in the general case: we can
compare the RK4 prescription with a Taylor expansion of the exact solution.

We start by explicitly applying the RK4 prescription of Eq. (8.64) to the test equation:

k0 = h f (x j, y j) = μhy j

k1 = h f

(
x j +

h
2
, y j +

k0

2

)
=

[
μh +

(μh)2

2

]
y j

k2 = h f

(
x j +

h
2
, y j +

k1

2

)
=

[
μh +

(μh)2

2
+

(μh)3

4

]
y j

k3 = h f
(
x j + h, y j + k2

)
=

[
μh + (μh)2 +

(μh)3

2
+

(μh)4

4

]
y j

y j+1 = y j +
1
6

(k0 + 2k1 + 2k2 + k3) =

[
1 + μh +

(μh)2

2
+

(μh)3

6
+

(μh)4

24

]
y j

(8.68)

The last step in the first four lines plugs in f (y) = μy (and earlier results as they are
produced). The last step in the final line grouped all the terms together.

We now recall that the exact solution to the test equation is y(x) = ceμx. We can apply
this at the two grid points of interest:

y(x j) = ceμx j , y(x j+1) = ceμ(x j+h),
y(x j+1)

y(x j)
= eμh (8.69)

where in the last equation we formed the ratio, in order to emphasize that the specific
starting point does not matter here. As usual, we now Taylor expand eμh up to a sufficienty
high order:

y(x j+1)

y(x j)
= 1 + μh +

(μh)2

2
+

(μh)3

6
+

(μh)4

24
+

(μh)5

120
+ O(h6) (8.70)

Comparing y j+1/y j to y(x j+1)/y(x j) we find perfect agreement up to h4; significantly, when
evaluating y j+1/y j we did not have to evaluate any derivatives! The RK4 prescription does
not capture the term (μh)5/120 (or any higher-order terms), so we see that the local error is
O(h5). This completes the second half of our investigation of the local error of RK4. Since
this is O(h5), we see that the global error of the fourth-order Runge–Kutta prescription of
Eq. (8.64) is O(h4), as expected.
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Code 8.1 ivp one.py Code 8.1

import numpy as np

def f(x,y):

return - (30/(1-x**2)) + ((2*x)/(1-x**2))*y - y**2

def euler(f,a,b,n,yinit):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

ys = np.zeros(n)

y = yinit

for j,x in enumerate(xs):

ys[j] = y

y += h*f(x, y)

return xs, ys

def rk4(f,a,b,n,yinit):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

ys = np.zeros(n)

y = yinit

for j,x in enumerate(xs):

ys[j] = y

k0 = h*f(x, y)

k1 = h*f(x+h/2, y+k0/2)

k2 = h*f(x+h/2, y+k1/2)

k3 = h*f(x+h, y+k2)

y += (k0 + 2*k1 + 2*k2 + k3)/6

return xs, ys

if name == ‘ main ’:

a, b, n, yinit = 0.05, 0.49, 12, 19.53

xs, ys = euler(f,a,b,n,yinit); print(ys)

xs, ys = rk4(f,a,b,n,yinit); print(ys)

Implementation

While developing all these ODE integration techniques up to this point, we didn’t say
anything about whether or not f is linear or nonlinear. This is because for the initial-value
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problem of an ordinary differential equation our methods are so robust that the nonlinearity
of the equation typically doesn’t really matter.10 To drive this point home we will now solve
the following (mildly nonlinear) Riccati equation:

y′(x) = − 30
1 − x2

+
2x

1 − x2
y(x) − y2(x), y(0.05) = 19.53 (8.71)

The right-hand side here depends on both x and y; recall that the nonlinearity comes from
y2(x), not from the x dependence. Since this is an initial-value problem, we have pulled an
initial value out of a hat, in order to get things going.

We are now ready to solve this equation in Python, using two of the seven numerical-
integration techniques introduced so far; the result is Code 8.1. If you’ve been reading
this book straight through, your programming maturity will have been developing apace.
Thus, our comments on this and the following codes will be less extensive than in earlier
chapters.

We start with a function implementing the right-hand side of Eq. (8.71). As usual, the
main workhorses of the code are general, i.e., they allow you to solve a different ODE with
a different initial value with minimal code modifications. This is obvious in the definition
of euler(), which implements the forward Euler method of Eq. (8.20) and takes in as
parameters the right-hand side of the ODE to be solved, the starting and ending points, the
number of integration points to be used, as well as the initial value (i.e., the value of the
dependent variable at the starting point). The body of the function is standard: we define the
step size, set up the grid of x j’s, initialize y0, and then step through the y j’s as per Eq. (8.20).
We try to be Pythonic in the sense of minimizing index use, but even so we require a call to
enumerate() to help us store the latest y j in the appropriate slot. The function rk4() is a
straightforward generalization of euler(): this time we are implementing Eq. (8.64) line
by line. The main program simply sets up the input parameters and calls the two solvers
one after the other.

In Fig. 8.4 we have taken the liberty of plotting the output produced in the main pro-
gram. We’ve also included a curve marked as the exact solution: we won’t tell you how we
produced that for now (but stay tuned). Overall, we see that the fourth-order Runge–Kutta
method does an excellent job integrating out from our starting point, despite the fact that
we used a very coarse grid, i.e., only 12 points in total. The same cannot quite be said
about the forward Euler method: already after the first point, we are visibly distinct from
the exact solution. As a matter of fact, for this specific ODE, it is the first and last steps for
which Euler does a bad job: these are the regions where the function is most interesting.
Since Euler doesn’t build in extra information (other than the slope at the left point), it fails
to capture complicated behavior. In a problem, you will implement the explicit midpoint
and trapezoid methods for the same ODE in order to see if they do any better.

10 It may appear that this statement is somewhat softened in the following subsection, but even there the cause of
trouble is not the nonlinearity.



516 Differential Equations

�Fig. 8.4 Forward Euler and Runge–Kutta methods for our nonlinear initial-value problem

Stiffness

As mentioned earlier, the fourth-order Runge–Kutta method is fairly robust and should
usually be your go-to solution. As another example of how well it does, we can solve the
test equation for which, as we saw in our discussion of Fig. 8.2, the forward Euler method
faced stability issues. The left panel of Fig. 8.5 shows the fourth-order Runge–Kutta and
the backward Euler methods for y′(x) = −20y(x). Overall, we see that RK4 is certainly
decent: for n = 10 it does slightly more poorly than the backward Euler method, but
qualitatively the behavior is the same for both n = 10 and n = 12. This doesn’t really come
as a surprise: RK4 has a local error of O(h5), so it can “get the most out” of a finite step
size h; in other words, it does a dramatically better job than the forward Euler method and
that’s enough. Based on this panel, you might be tempted to think that our earlier digression
on stability and implicit methods was pointless: you can use a high-order explicit method
without having to worry about complicated root-finding steps.

Of course, this is too good to be true. In earlier chapters (especially in our discussion
of linear algebra in chapter 4) we’ve seen that one must distinguish between the stability
of a given method and the ill-conditioning of a given problem. There are well-conditioned
problems which some methods fail to solve (we say they are unstable) and other methods
manage to solve (we say they are stable). On the other hand, there exist ill-conditioned
problems, which no method can hope to attack very fruitfully. In between these two ex-
tremes, there are mildly ill-conditioned problems which can be hard to solve even if you’re
employing a generally stable method. The ill-conditioning of a differential equation is
known as stiffness: a stiff ODE makes many methods unstable. Quantifying stiffness in
the general case can get quite complicated (but see below for more on this), so let’s look at
a specific example to see stiffness in action.

Here’s an example that will put our earlier RK4-oriented triumphalism to rest:

y′(x) = 501ex − 500y(x), y(0) = 0 (8.72)
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RK4 and backward Euler applied to the test equation (left) and our stiff problem (right) �Fig. 8.5

As usual, this is a first-order initial-value problem; its exact solution is y(x) = ex − e−500x.
The exact solution is already warning us of what could go wrong: one needs to keep track of
two very different scales: a growing exponential that has x in the exponent and a decaying
exponential that has −500x in the exponent. Roughly speaking, stiff equations will always
exhibit this feature of needing to keep track of two different scales at the same time. As you
may have imagined, in order to be able to handle both scales, one needs to employ a step
size h that is short enough to resolve the smallest of the scales in our problem: of course,
that means that the calculation is likely to be pretty expensive.

This discussion is made concrete in the right panel of Fig. 8.5, where we show the
backward Euler and RK4 methods applied to Eq. (8.72). We find that, even for a small
number of points (n = 28) the backward Euler method does a reasonably good job. On
the other hand, we find that RK4 behaves strangely: the global error of this Runge–Kutta
method is supposed to be O(h4), but when we change n = 28 to n = 30 (i.e., go from
h = 0.0056 to h = 0.0052) we, once again, encounter a dramatic change in behavior. In
short, RK4 becomes unstable at some point, even though the (implicit) backward Euler
method has no trouble handling the same problem. While it is true that if you “throw more
points at the problem” RK4 will behave properly (i.e., converge), the figure shows that
sometimes even this solid technique gets in trouble. Of course, Eq. (8.72) was hand-picked
to emphasize the problems that arise when dealing with stiff ODEs. In the problem set you
will encounter other, more innocuous-looking, cases; pretty often, such issues arise when
you have to deal with two (or more) exponentials or two (or more) oscillatory behaviors.
You can sometimes transform your troubles away, i.e., employ an analytical trick before
you apply a technique such as RK4.

A general point should be made here: in these figures we have been employing a small
number of points (n = 10 or n = 30). In practical applications, you typically use more
points; this is fine if the evaluation of your right-hand side f is trivial but, as is sometimes
the case, if your ODE itself is the result of another computation, it may be very costly
to use, say, n = 1000 points or more. As always, one tries to employ as few points as



518 Differential Equations

possible, given one’s accuracy requirements. The point we’ve been making/repeating in
this section is that if you find yourself dealing with a stiff ODE, then you also have to take
into consideration stability requirements in addition to accuracy requirements. Of course,
you might not know ahead of time that your ODE is stiff, so some care is needed when
determining the number of points used in a numerical integrator.

Adaptive Stepping

Our discussion of stiffODEs and our need to resolve the finer scale involved in our problem
raises the wider question of how many points we should use in our numerical integration.
In earlier sections we’ve (implicitly) made two assumptions: (a) we can determine which
n is good enough by manually checking a few cases, and (b) the same step size h will be
employed throughout the integration region. As the reader may have already guessed, both
of these assumptions are not tenable in heavy-duty applications: it would be nice to have
an automatic routine, which determines on its own how many steps to use; it would be
even better if such a routine can sub-divide the problem into “easy” and “hard” regions,
distributing the total number of points appopriately. In this section, we remove each of
these assumptions in turn, slowly ramping up the complications that have to be introduced
into the algorithm. The problem set asks you to recover our results by implementing such
adaptive integration schemes yourself.

Global Adjustment

The simplest tack is completely analogous to our adaptive-integration schemes in sec-
tion 7.3, where we were doubling the number of panels.11 To refresh your memory, what we
did there was to carry out a calculation employing N panels and another one for N′ = 2N
panels. We then took advantage of the fact that the error in the composite Simpson’s rule
is ch4

N in the first case and ch4
N′ in the second. After a brief derivation, we were able to

show that the error in the calculation employing N′ = 2N panels can be expressed in terms
of the difference between the two estimates (employing N and N′ panels, respectively).
Crucially, this was a derivation for the composite Simpson’s rule: in the first case we were
using n = N − 1 points and in the second case n′ = N′ − 1 points; as per Eq. (7.65), the
two numbers are related by n′ = 2n − 1. Both n and n′ were expected to get quite large,
depending on the error budget one was dealing with.

Repeating that derivation for the present case (of integrating an IVP from a to b) would
entail first carrying out a calculation using n points (where the best approximation to y(b)
would be yn−1) and then another calculation using n′ points (where the best approximation
to y(b) would be yn′−1); as before, n′ = 2n − 1. Observe that yn−1 and yn′−1 correspond to
two distinct calculations. Since the global error for the RK4 method, just like the error in
the composite Simpson’s rule, is O(h4), the derivation is completely analogous:

y(b) = yn−1 + ch4
N = yn′−1 + ch4

N′ (8.73)

11 Step halving is also used in ODE solvers that employ Richardson extrapolation, as you will discover when you
solve the relevant problem.
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Global and shifted local adaptive RK4 (left) and the step size for the local case (right) �Fig. 8.6

This, together with hN = 2hN′ , can be manipulated to eliminate hN′ , thereby giving:

E = 1
15

(yn′−1 − yn−1) (8.74)

where the 15 in the denominator is a direct consequence of using RK4. Note that this is
the absolute error; you can divide with yn′−1 (i.e., the best of the two estimates) if you want
to approximate the relative error. Just like for Simpson’s rule, we have here been doing
calculations with many points which are equally spaced from a to b.

As you will find out when you solve the relevant problem, applying this scheme to our
nonlinear Riccati equation from Eq. (8.71) leads to the points shown with diamonds in the
left panel of Fig. 8.6. The trend is identical to that in Fig. 8.4, only this time we are not
manually choosing a specific value of n: instead, we have pre-set a specific global tolerance
for our approximation to y(b) and then keep doubling the number of panels until we meet
our accuracy goals. The advantage of such an adaptive scheme is that we don’t have to
worry too much about the details of our problem: the algorithm will keep on using more
points until the error tolerance goals are met.

Local Adjustment

As should be immediately obvious from the distribution of our diamond points, the global
adaptive scheme can be quite wasteful: it employs equally spaced points and doubles the
total number of panels used every time, without regard to the behavior of the solution. In
other words, this scheme has no way of accounting for the possibility that our function
may exhibit lots of structure in one region but have almost nothing going on elsewhere: the
points are always equally spaced in x. This is highlighted by how our diamonds are placed
for this example near a and b: since this is where our function shows most of its structure,
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the points appear to be farther apart (in y) than they are elsewhere, where they appear
tightly packed. This behavior ties in to our earlier comments on stiff ODEs: if you’re using
the same step size everywhere, and you wish to effectively capture two different length
scales, you will be forced to use a tiny step size everywhere.12

Thus, with a view to being non-wasteful, we should come up with a way of locally
adjusting the step size h. The formalism ends up looking quite similar to what we did in
the previous subsection, but conceptually what we’re up to is quite different: we will start
at a given point x j and take one or two steps away from it. Specifically, we can take a single
step from x j to x j + h, getting the following relation for the exact solution y(x j + h):

y(x j + h) = ỹ j+1 + κh
5 + O(h6) (8.75)

Let’s take a moment to unpack the notation here: ỹ j+1 is the result of starting at the point
x j, y j, and taking a step as per Eq. (8.64): we’re using a tilde to emphasize that this is a
single step, but other than that we haven’t done anything new; you can think of y j as ỹ j if
it helps; we use Eq. (8.64) to produce ỹ j+1 from ỹ j, implicitly assuming that we knew the
starting value exactly. We’re explicitly showing the local error for this one step, κh5, and
then capturing all higher-order terms with O(h6).

Now picture taking two steps instead of one: first, from x j to x j + h/2 and then from
x j + h/2 to x j + h. The error for the first step will look like:

y

(
x j +

h
2

)
= ˜̃y j+1/2 + κ

(
h
2

)5

+ O(h6) (8.76)

where we are using double-tildes to emphasize that in this scenario we will be taking two
steps to go from x j to x j + h. In Eq. (8.76) we used Eq. (8.64) to go from y j to ˜̃y j+1/2. After
we take the second step we will have:

y
(
x j + h

)
= ˜̃y j+1 + 2κ

(
h
2

)5

+ O(h6) (8.77)

where now there is an extra factor of 2 in the error, because we didn’t actually start from
y(x j + h/2) but from ˜̃y j+1/2; we are assuming that κ stays constant from x j to x j + h, which
is likely true for small steps.

If we now equate Eq. (8.75) and Eq. (8.77), we find:

˜̃y j+1 − ỹ j+1 =
15
16
κh5 (8.78)

which clearly shows that the difference between our two estimates, ˜̃y j+1 − ỹ j+1, is propor-
tional to h5. We can now plug this relation back in to Eq. (8.77) to get:

y
(
x j + h

)
= ˜̃y j+1 +

1
15

(
˜̃y j+1 − ỹ j+1

)
+ O(h6) (8.79)

12 The exact solution to Eq. (8.72) consists of two exponentials with little overlap, so it’s not obvious why one
should use the same step size everywhere.
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This quantifies the error in our best estimate of the value y
(
x j + h

)
. Observe that both

Eq. (8.74) and Eq. (8.79) involve the number 15, though the origins are not quite the same:
in order to derive the first we dealt with global errors which are O(h4), whereas for the
second we used the local error which is O(h5). Furthermore, the two function values we
are subtracting in Eq. (8.79) both correspond to the point x j + h, whereas in Eq. (8.74) we
were dealing with estimates of the function at xn−1 = xn′−1 = b.

We don’t have to stop here, though: we can take advantage of the fact that the difference
of the two estimates scales as h5, in order to produce a guess for the next step size! In other
words, for a given h we get a ˜̃y j+1 − ỹ j+1 that is proportional to h5. We can reverse the
argument, to ask: which h̄ should we use if we want the estimate-difference to be equal to
an absolute tolerance, Δ? In equation form:

| ˜̃y j+1 − ỹ j+1|
Δ

=

(
h

h̄

)5

(8.80)

This relationship can be solved for h̄; we choose to be conservative and multiply the result
of this equation with a safety factor, α < 1:

h̄ = αh

∣∣∣∣∣∣ Δ

˜̃y j+1 − ỹ j+1

∣∣∣∣∣∣
0.2

(8.81)

The safety factor ensures that we make the estimate even smaller, just in case; typical
values used are 0.8 or 0.9. As a secondary precaution, one can choose to employ Eq. (8.81)
only if it’s telling us to increase the step size by a factor of, say, up to 5: this ensures that
we don’t have huge jumps in the magnitude of the step size.

Let’s interpret what’s going on here. In the right-hand side of Eq. (8.79) we’ve seen a way
to quantify the error in ˜̃y j+1. Then, Eq. (8.81) tells us how to use the scaling of Eq. (8.78)
in order to guess the next step size: (a) if ˜̃y j+1 − ỹ j+1 is larger in magnitude than the desired
tolerance Δ, then this equation tells us how to pick a new step size before re-trying the
current step (from x j to x j + h); the step size will be decreasing, to allow us to have better
chances at succeeding this time around, and (b) if ˜̃y j+1 − ỹ j+1 is smaller in magnitude than
the desired tolerance Δ, then that means that we’ve already met the tolerance requirement
for the present step and can now turn to the next step (from x j + h to x j + 2h); in that
scenario, Eq. (8.81) tells us by how much we can increase the step size for that next step
(except when α reduces it slightly). The only thing we’ve left out is which h to pick for the
very first step: the short answer is that it doesn’t really matter; if our first guess is too large,
the algorithm will keep applying Eq. (8.81) until the tolerance test is successful.

One of the problems asks you to implement this local adaptive scheme using RK4 for the
usual nonlinear Riccati equation. The results are shown in the left panel of Fig. 8.6: note
that the two sets of results (global and local) lie on the same curve, but we have artificially
shifted one set in order to help you distinguish it from the other. We have chosen the
tolerances (global and local, respectively) such that both approaches give rise to roughly
50 points in total. The most prominent feature is that the circles are not equally spaced in
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x: as advertised, they have been placed according to the behavior of the function we are
solving for. As a consequence of this, we see that the large spacing (in y) that was exhibited
by the global method near a and b is not a feature of the local method: our algorithm has
figured out that the step size needs to be small in those regions and therefore placed more
points there. You will also notice a larger density of points near the middle of the plot,
but more diluteness on either side of the middle. Once again, this is the algorithm itself
determining whether it needs a large or small step size, according to the solution’s trend.
To drive this point home, the right panel of Fig. 8.6 shows the step size h corresponding to
each point in x:13 you can immediately see that this is fully consistent with the statements
we made in connection with the left panel. Crucially, for this example, we see a variation
of more than a factor of 4: the local adaptive method dedicates fewer points and therefore
spends less time in regions where nothing exciting is taking place.

Before concluding this section, we note that we have only discussed the simplest pos-
sible approaches to (global and local) adaptive integration; both of these employed RK4,
which has been the best method we’ve seen so far. In the problem set you will encounter
higher-order methods, including RK5; it is possible to use a combination of RK4 and RK5
as a way of quantifying the local error, instead of the single-step and double-step calcula-
tions employed above.

8.2.4 Simultaneous Differential Equations

We’ve spent quite a few pages up to this point discussing initial-value problems, all of
which have had the form of Eq. (8.8), namely they have been first-order ordinary differen-
tial equations. The motivation behind this is that everything we’ve learned so far can also
be applied to systems of simultaneous first-order differential equations (with many depen-
dent variables) with minimal modification. As a matter of fact, even single ODEs of higher
order can be cast as such systems; as a result, the techniques we’ve introduced (such as
fourth-order Runge–Kutta) can be very straightforwardly generalized to solve much more
complicated initial-value problems. Let us take some time to unpack these statements.

Two Equations

In physical problems, it is quite common that one has to solve two ordinary differential
equations together: take the independent variable to be x (as before) and the two indepen-
dent variables to be y0(x) and y1(x); note that there is nothing discretized going on here:
y0(x) and y1(x) are functions of x which we must solve for. An example of such coupled
ODEs is given by the TOV problem which we discussed at the start of this chapter. In the
general case, the two ODEs we need to solve are:

13 This is always the successful step size, i.e., the one that was able to meet our tolerance requirement.
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y′0(x) = f0 (x, y0(x), y1(x))

y′1(x) = f1 (x, y0(x), y1(x))

y0(a) = c0, y1(a) = c1

(8.82)

Note that since we have two independent variables, y0(x) and y1(x), we also have two
equations, two right-hand sides, f0 and f1, and two known initial-values, y0(a) and y1(a).

Crucially, the prototypical problem of a (single) second-order IVP, given in Eq. (8.10):14

w′′ = f (x,w,w′), w(a) = c, w′(a) = d (8.83)

can be re-cast as a set of two simultaneous first-order ODEs. To see that, examine the
following two definitions:

y0(x) = w(x)

y1(x) = w′(x) = y′0(x)
(8.84)

Our first new function is equal to our starting w(x) and the second new function is equal to
w(x)’s derivative. In the last step of the second relation we used the first relation. We can
now combine these two equations together with Eq. (8.83) to get:

y′0(x) = y1(x)

y′1(x) = f (x, y0(x), y1(x))

y0(a) = c, y1(a) = d

(8.85)

The first equation is simply the second relation in Eq. (8.84), written with the derivative on
the left-hand side. The second relation is Eq. (8.83) expressed in terms of y0(x) and y1(x).
Similarly, we’ve translated the initial values into our new language. All in all, Eq. (8.85)
is precisely of the form of Eq. (8.82): observe that f0 is in this case particularly simple,
whereas f1 is the f contained in the second-order ODE. Thus, we have validated our earlier
claim that second-order equations can be seen as simultaneous first-order ones.

General Case

Everything we discussed in the previous subsection can be straightforwardly generalized
to the case of ν coupled equations (or that of a single ODE of ν-th order). Specifically,
Eq. (8.82) takes the form:

y′i(x) = fi (x, y0(x), y1(x), . . . , yν−1(x))

yi(a) = ci, i = 0, 1, . . . , ν − 1
(8.86)

This is just begging to be converted into vector notation:

14 We are calling the dependent variable w(x) for clarity, but we could just as well have called it y(x).
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y′(x) = f (x, y(x))

y(a) = c
(8.87)

where y(x) bundles together ν functions, f stands for ν right-hand sides, and c is a vector
of ν numbers (the initial values). Keep in mind that x, a, and b are not vectors but plain
scalars. Since a single ODE of ν-th order is just a special case of Eq. (8.87), you should
assume that whatever we say below applies to that case, also.

Armed with our vector notation, we are now in a position to start discretizing. Instead of
re-deriving all the methods for IVPs in ODEs that we introduced in earlier sections, we will
merely observe that they all carry over if you make the obviously necessary modifications.
For example, the backward Euler method of Eq. (8.40) now takes the form:

y j+1 = y j + h f(x j+1, y j+1), j = 0, 1, . . . , n − 2

y0 = c
(8.88)

Take a moment to realize that we are no longer dealing with exact solutions (which are
functions of x) but with discretizations (which are approximations that exist only at specific
grid points). Also, note that y j is the approximate value of all ν functions at x j. If you need
to spell things out, you will have to employ some extra notation here: for example, y0

groups together all the function values at the initial endpoint; that means that it contains
the components (y0)0, (y1)0, and so on. Crucially, n controls how many grid points we use
from a to b, whereas ν tells us how many simultaneous equations we need to solve.

Similarly, the forward Euler method of Eq. (8.20) now becomes:

y j+1 = y j + h f(x j, y j), j = 0, 1, . . . , n − 2

y0 = c
(8.89)

Our workhorse, the fourth-order Runge–Kutta prescription of Eq. (8.64), turns into:

k0 = h f(x j, y j)

k1 = h f
(
x j +

h
2
, y j +

k0

2

)

k2 = h f
(
x j +

h
2
, y j +

k1

2

)
k3 = h f

(
x j + h, y j + k2

)
y j+1 = y j +

1
6

(k0 + 2k1 + 2k2 + k3)

(8.90)

Marvel at how straightforward our generalization is. It should come as no surprise that
NumPy’s array functionality is perfectly matched to such vector manipulations, a topic we
turn to next.
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ivp two.py Code 8.2

import numpy as np

def fs(x,yvals):

y0, y1 = yvals

f0 = y1

f1 = - (30/(1-x**2))*y0 + ((2*x)/(1-x**2))*y1

return np.array([f0, f1])

def rk4 gen(fs,a,b,n,yinits):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

ys = np.zeros((n, yinits.size))

yvals = np.copy(yinits)

for j,x in enumerate(xs):

ys[j,:] = yvals

k0 = h*fs(x, yvals)

k1 = h*fs(x+h/2, yvals+k0/2)

k2 = h*fs(x+h/2, yvals+k1/2)

k3 = h*fs(x+h, yvals+k2)

yvals += (k0 + 2*k1 + 2*k2 + k3)/6

return xs, ys

if name == ‘ main ’:

a, b, n = 0.05, 0.49, 12

yinits = np.array([0.0926587109375, 1.80962109375])

xs, ys = rk4 gen(fs,a,b,n,yinits)

print(ys)

Implementation

We start this section with a confession: our earlier implementation example (the Riccati
equation of Eq. (8.71)) was chosen because it can be re-purposed to exemplify many dis-
tinct questions. We already saw how to solve this nonlinear first-order initial-value problem
in Code 8.1. We now see that that equation can be recast if one makes the following Riccati
transformation: y(x) = w′(x)/w(x), where w(x) is a new function. Using this transforma-
tion, Eq. (8.71) turns into:
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w′′(x) = − 30
1 − x2

w(x) +
2x

1 − x2
w′(x)

w(0.05) = 0.0926587109375, w′(0.05) = 1.80962109375
(8.91)

This is now a second-order ODE. Crucially the y2(x) has dropped out of the problem,
meaning that this is now a linear ODE! Since it’s of second order, we need to supply two
initial values: w(a) and w′(a). It’s time for a second confession: this is not just any old
second-order linear ODE. It’s the Legendre differential equation, namely the differential
equation whose solution gives us Legendre polynomials; given the presence of the number
30 on the right-hand side (which is the result of 6 × 5), we expect our solution to be P5(x):
this is how we have produced the initial values at a = 0.05, namely by using Code 2.8, i.e.,
legendre.py.15

We can now rewrite our problem in Eq. (8.91) in the form of two coupled first-order
ODEs, as per Eq. (8.85):

y′0(x) = y1(x)

y′1(x) = − 30
1 − x2

y0(x) +
2x

1 − x2
y1(x)

y0(0.05) = 0.0926587109375, y1(0.05) = 1.80962109375

(8.92)

This is now in sufficiently general form to allow us to solve it via minimal modifications
of our earlier code.

Code 8.2 shows a Python implementation that solves this IVP problem of two simulta-
neous ODEs. Specifically, the function fs expects as input the x j and a one-dimensional
numpy array of two values, representing y j at a given x j. It evaluates the two right-hand
sides in Eq. (8.92) and then returns its own array of two values. You may be thinking that
this is too formal for a simple problem involving only two ODEs. The reason we’ve done
things this way is because the other function in this program, rk4 gen(), is completely
general: it is an implementation of Eq. (8.90) that works for the ν-dimensional problem
just as well as for our two-dimensional problem here; as mentioned after that equation,
NumPy functionality is very convenient, in that the code closely follows the vector re-
lations. The specialization to the case of two equations is carried out only in the input
parameter yinits, which bundles together the initial values, i.e., y0. This is completely
analogous to what we did in Code 5.5, i.e., multi newton.py, when implementing New-
ton’s multidimensional root-finding method.16 We employ an n × 2 array to store all the
y j’s together; we move to a new row each time we step on to the next x j.

The main program sets up the integration interval and the number of points, as well as the
initial values, calls our numerical integrator, and prints out the 12 × 2 ys array, suppressed
here for brevity; if you’re solely interested in the wj’s, you can look at the 0th column
only. We’re not plotting the result here because you already know what it looks like: it’s

15 Almost every chapter in this book has had some relation to Legendre polynomials!
16 Note also that our implementation is a linear combination of the two previous subsections: rk4 gen() applies

to the case of ν equations, but fs() to the case of two equations.
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simply P5(x) from Fig. 2.6; as a matter of fact, the 1st column can also be benchmarked by
comparing to P′5(x) in the right panel of that figure.

Stability and Stiffness for Simultaneous Equations

Having introduced and implemented the more general problem of ν simultaneous first-
order ODEs, we now take some time to investigate the aforementioned concepts of stability
and stiffness as they apply to this problem. You may recall that stability was introduced in
the context of Euler’s method and stiffness in the context of RK4, but these are much
broader concepts: stability has to do with the method one is employing (Euler, RK4, etc.)
while stiffness has to do with properties of the problem, which then impacts which methods
are stable (and which aren’t). We will now examine these two concepts in turn for the
general problem of ν simultaneous ODEs.

First, we wish to discuss the idea of stability of a given method for the problem of ν
simultaneous equations. We introduced stability (of a given method) by studying the test
equation, Eq. (8.33). The most obvious way of generalizing this to ν equations is:

y′(x) = Ay(x), y(0) = c (8.93)

where, for us, A is a ν×νmatrix made up of real numbers. This is the minimal modification
to the test equation: it contains a first-order derivative on the left-hand side and the function
itself (i.e., the functions themselves) on the right-hand side. Obviously, these are coupled
ODEs: the first equation contains y′0(x) on the left-hand side but, due to the presence of A
on the right-hand side, involves all the y0(x), y1(x), . . . , yν−1(x). Note that this is a linear
system of ODEs.

We would have preferred it if we had been faced with the problem where the ODE for
y′0(x) only involves y0(x), the one for y′1(x) only y1(x), and so on. In short, we would like to
diagonalize this problem. We immediately remember Eq. (4.173), which taught us how to
diagonalize a matrix:17 A = VΛV−1; hereΛ is the diagonal “eigenvalue matrix” made up of
the eigenvalues λi and V is the “eigenvector matrix”, whose columns are the eigenvectors
vi (have a look at section 4.4 if you need a refresher). If we express A in this way and then
multiply with V−1 on the left, our equation becomes:

V−1y′(x) = ΛV−1y(x), V−1y(0) = V−1c (8.94)

If we now introduce a new (vector) variable:18

z(x) = V−1y(x) (8.95)

our equation takes the form:

z′(x) = Λz(x), z(0) = V−1c (8.96)

17 Incidentally, the present stability analysis requires the ability to handle nonsymmetric matrices.
18 This entire argument is very similar to the derivation around Eq. (4.212).
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or, in index notation:

z′i(x) = λizi(x), zi(0) =
(
V−1c

)
i
, i = 0, 1, . . . , ν − 1 (8.97)

We have accomplished what we set out to: z′i(x) = λizi(x) involves only a single function,
so it is of the form of the original test equation, Eq. (8.33). This means that each of these
equations can be immediately solved to give the analytical solution zi(x) = eλi xzi(0). We
will only deal with real eigenvalues; thus, we see that if all the eigenvalues are negative,
then all the zi(x)’s will be decaying functions of x (i.e., zi(x) goes to 0 as x goes to infinity).
From Eq. (8.95) we see that y(x) = Vz(x), meaning that all the yi(x)’s will also decay away.

Note that up to this point in this subsection we haven’t actually studied any specific
method, i.e., we were dealing with a system of ODEs, not with a discretization scheme. Let
us now investigate a specific technique, namely the forward Euler method of Eq. (8.89);
for the system in Eq. (8.93) this gives:

y j+1 = y j + h Ay j (8.98)

If we now repeatedly apply this equation from j = 0 to j = n − 2, we get:

yn−1 = (I + hA)n−1y0 (8.99)

In order to get a decaying solution as n → ∞, we need to impose as a condition that the
eigenvalues of the matrix I +hA are all strictly less than one in magnitude. We learned this
fact in our discussion of the power method, section 4.4.1; at the time this was an unwanted
side-effect, but here we want the solution to decay. If λi are the eigenvalues of A, then the
eigenvalues of I + hA are simply 1 + hλi; take a moment to see that this is true.

In other words, we have reached the requirement:

|1 + hλi| < 1 (8.100)

for any i. If we now assume, as per Eq. (4.176), that our eigenvalues are sorted, with λ0

being the dominant eigenvalue, we can formulate the following stability condition:

h <
2
|λ0|

(8.101)

If this condition is not satisfied, the forward Euler method will lead to a numerically unsta-
ble solution. It’s worth pausing to appreciate that the eigenvalues of the matrix A appeared
both in our study of the system of ODEs, Eq. (8.94), and in our analysis of the forward
Euler method’s stability, Eq. (8.101); in the former case, we saw that a decaying solution
corresponds to all the eigenvalues being negative, whereas in the latter case it implied a
specific constraint on the step size: it needs to be smaller than 2/|λ0|.

It is now time to discuss a stiff system of ODEs. Our earlier analysis tells us that we
will need a step size that is very small if the largest eigenvalue is very large. You can
see that if the eigenvalues are several orders of magnitude apart, we will need to step
through our system with a tiny step determined by the largest eigenvalue, even though the
exact solution might not be severely impacted by that term; otherwise, we risk our method
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becoming unstable, at which point we don’t trust its results at all. Let’s look at a specific
example:

y′(x) =

⎛⎜⎜⎜⎜⎜⎜⎝ 98 198

−99 −199

⎞⎟⎟⎟⎟⎟⎟⎠ y(x), y(0) =

⎛⎜⎜⎜⎜⎜⎜⎝10
⎞⎟⎟⎟⎟⎟⎟⎠ (8.102)

The exact solution is:

y0(x) = 2e−x − e−100x, y1(x) = −e−x + e−100x (8.103)

as you can verify by substitution. We immediately see that the exact solution contains two
contributions of very different scales: e−100x and e−x. This is consistent with the fact that the
two eigenvalues here are −100 and −1. The stability condition in Eq. (8.101) tells us that we
need to take h < 2/100 if we want the forward Euler method to be stable: this, despite the
fact that e−100x is considerably smaller than e−x, so we wouldn’t have expected the presence
of e−100x to matter for reasonable values of x. This is a clear-cut case of a stiff system of
ODEs: the two eigenvalues are orders of magnitude apart, thereby imposing a stringent
stability step size, much beyond what we would have needed for accuracy purposes. As in
earlier examples, implicit methods do a better job for such stiff problems; you will see this
in action in one of the problems.

8.3 Boundary-Value Problems

As mentioned at the start of section 8.2, this chapter is not limited to initial-value problems;
even so, the techniques we introduced earlier will also be helpful in what follows. Given
this, the present section, tackling boundary-value problems, as well as the following one, on
eigenvalue problems, will be shorter; the emphasis will be on implementation (of already
known methods, this time for the new problems) and on introducing new implicit methods.

Our prototypical boundary-value problem will be a second-order ODE:

w′′ = f (x,w,w′), w(a) = c, w(b) = d (8.104)

where w(a) = c and w(b) = d are the boundary conditions; observe that we do not know
w′(a), so this is not an initial-value problem. In other words, we can’t just start from x = a
and then step through the ODE using Euler, RK4, or any of the earlier methods. The f
in Eq. (8.104) could be either linear or nonlinear; the latter case is harder, as you will
discover in the problem set. Similarly, the boundary conditions specified could also be
more complicated: what we have in Eq. (8.104), where the function’s value is provided at
the endpoint, w(b), is known as a Dirichlet boundary condition. The problem set examines
the alternative case, where the function-derivative’s value is given at the endpoint, w′(b), a
scenario known as a Neumann boundary condition.

Below, we will discuss two general approaches to solving this BVP: (a) treat it as a
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�Fig. 8.7 Illustration of the shooting method for a boundary-value problem

more complicated version of an initial-value problem, or (b) face head-on the fact that we
know two boundary conditions and set up a method accordingly. We discuss these two
approaches in turn.

8.3.1 Shooting Method

We said (correctly) that Eq. (8.104) is not an initial-value problem, because we do not
have all the necessary information to start integrating out from a. In other words, we can’t
blindly apply the material of section 8.2.4 to this problem. The simplest way to approach
this problem is: what if we could treat this as an initial-value problem? It’s true that we
don’t know w′(a), but why not simply guess it and see if that works? This is illustrated in
Fig. 8.7: what we do have as input are the values of w(a) and w(b), shown with circles in the
figure. We then guess w′(a) and see what happens. Obviously, a random guess is extremely
unlikely to be able to satisfy the boundary condition w(b); that’s OK, though, because we
can try again. In the example of this figure, it’s easy to see that the value for w′(a) we
first chose was too small; we can simply adjust that to be larger and try again. The second
attempt doesn’t satisfy the boundary condition w(b) either; we can keep playing this game,
though. This time, we reduce the value of w′(a) and try again. Eventually, this process will
lead to a value of w′(a) that is “just right”, allowing us to go through the point w(b), as
desired. (The figure shows the, highly optimistic, scenario where it only took us three tries
to get there.) This iterative procedure is obviously analogous to aiming at a target and, as a
result, is known as the shooting method.

Let us try to recast the above prescription in a more systematic way. Our input is w(a) = c
and w(b) = d. In the language of our discretization scheme(s), these input conditions can
be expressed as w0 = c and wn−1 = d. What we do not know is w′(a), but let’s assume
that its (unknown) value is σ, i.e, w′(a) = σ. A moment’s thought will convince you that
you can take c and σ, plug them into a numerical integrator, like those in section 8.2.4,



8.3 Boundary-Value Problems 531

and determine the corresponding wn−1 value that comes out. In other words, a method
like RK4 for this problem transforms the input guess σ into a specific output at the right
endpoint, wn−1; mathematically, we can say that our integration method is a function that
takes us from σ to wn−1, i.e., g(σ) = wn−1, where g is a new function describing the effect
of solving our ODE with a given σ, from a to b. In this language, since our goal is that
wn−1 = d, we can demand that:

g(σ) = d (8.105)

To reiterate, g is not an analytically known function (like f , which is the right-hand side
in Eq. (8.104)); instead, it is the result of carrying out a full initial-value problem solution
from a to b. Then, what we are faced with in Eq. (8.105) is a root-finding problem, like
those we spent so much time studying in chapter 5. The function g may be linear or nonlin-
ear, but this is irrelevant, since we know already how to solve a general algebraic equation;
as a matter of fact, f itself may be linear or nonlinear, but this doesn’t really change how
the shooting method works. To summarize, the shooting method combines initial-value
solvers like forward Euler with iterative solvers like Newton’s method: for each guess of σ
an IVP needs to be solved. This confirms our earlier claim that boundary-value problems
are more complicated to solve than initial-value problems.

Implementation

A code implementing the shooting method will fuse two elements: a numerical integrator
and a root-finder. As already mentioned, this is a general feature, regardless of whether
or not the ODE we are faced with is linear. For the sake of concreteness, we will here
tackle the Legendre differential equation (again) that, in its latest incarnation, was used
to illustrate the solution of two simultaneous differential equations, Eq. (8.91). This time
around, instead of providing w(a) and w′(a) like before, our input will be w(a) and w(b):

w′′(x) = − 30
1 − x2

w(x) +
2x

1 − x2
w′(x)

w(0.05) = 0.0926587109375, w(0.49) = 0.1117705085875
(8.106)

If you’re wondering where we got the value of w(0.49), the answer is that we already know
the solution: we know this should be the Legendre polynomial P5(x), so we can simply
use legendre.py. Alternatively, we can look at the output of running ivp two.py. Put
another way, we already know what w′(a) should be in order to get the w(0.49) shown in
Eq. (8.106): we could simply look at the input provided in ivp two.py. Of course, these
avenues would not be open to us in general: we would simply be given the ODE and the
boundary values and would have to solve for w′(a). In other words, in what follows we
ignore all prior knowledge other than what is shown in Eq. (8.106).
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Code 8.3 bvp shoot.py Code 8.3

from secant import secant

from ivp two import fs, rk4 gen

import numpy as np

def shoot(sig):

a, b, n = 0.05, 0.49, 100

yinits = np.array([0.0926587109375, sig])

xs, ys = rk4 gen(fs,a,b,n,yinits)

wfinal = 0.11177050858750004

return ys[-1, 0] - wfinal

if name == ‘ main ’:

wder = secant(shoot,0.,1.)

print(wder)

Code 8.3 shows a Python implementation of the shooting method for our problem. From
a practical perspective, we plan to re-use two of our earlier codes: we are faced with a
second-order differential equation, so we’ll use rk4 gen() from ivp two.py; as a matter
of fact, since the ODE hasn’t changed, we can also re-use fs() from the same code. The
only thing that will be different this time around is the input: we (pretend to) no longer
know both of the elements of yinits that rk4 gen() expects to receive as input. We will
also need a general root-finding function; Newton’s method requires information on the
derivative, so it’s simply easier to reach for the secant method from secant.py. Other
than importing these three functions, our code doesn’t actually do very much: we define
a new function, shoot(), which plays the role of g(σ) − d in Eq. (8.105). It does this by
carrying out an RK4 solution for the given σ argument and then subtracting the desired
w(b) from the value of wn−1 it has produced. Make sure you understand why we wrote
ys[-1, 0]: the first index corresponds to the discretization of the x j’s and the second
index to the equation we are solving, see Eq. (8.85).

The main program simply calls secant(), giving it shoot() as the function whose root
we’re after. As you may recall, the secant method requires two initial guesses to get going,
so we arbitrarily provide it with two numbers; as you will discover when you run this code,
these don’t really matter: in any case, this code solves g(σ) = d very quickly, giving us the
w′(a) that respects our desired boundary condition w(b).

8.3.2 Matrix Approach

Let’s do a brief recap: the shooting method approaches the second-order ODE boundary-
value problem of Eq. (8.104) by casting it as a set of two simultaneous ODEs, guessing
one initial value, and then combining an IVP solver (for simultaneous first-order ODEs)
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with a root-finder (for algebraic equations in one variable). We now turn to an alternative
approach, which tackles our second-order ODE directly: to see what this means, remember
that we started our discussion of IVP methods in section 8.2 by discussing the forward and
backward Euler methods; these were motivated by finite-difference approximations to the
first derivative, since that’s what was involved in the ODE we were faced with at the time.
Here, we will follow a similar route: use a finite-difference approximation for both the
second and the first derivative involved in Eq. (8.104).

To be explicit, we first repeat our problem from Eq. (8.104):

w′′ = f (x,w,w′), w(a) = c, w(b) = d (8.107)

We now reach for the central-difference approximation to the first and second derivatives,
for points on a grid. That is precisely what we studied in section 3.3.6, so all we need to do
is to apply Eq. (3.38) and Eq. (3.39), thereby transforming our problem into:

wj−1 − 2wj + wj+1

h2
= f

(
x j,wj,

wj+1 − wj−1

2h

)
, j = 1, 2, . . . , n − 2

w0 = c, wn−1 = d
(8.108)

Note that this set of equations involves only the wj’s, i.e., there are no derivatives left.
Posing and solving these equations is a process that is completely different from what we
were doing for IVPs above: we cannot start at the left endpoint and work our way to the
right one; instead, we need to solve for all of these wj values at the same time. Another
way of putting the same fact: wj−1, wj, and wj+1 appear on both the left-hand side and the
right-hand side, bringing to mind the implicit methods we encountered earlier (only this
time it’s not just y j+1 on both sides). These features will become clearer in the following
subsection, where we discuss a specific example.

The approach given in Eq. (8.108) is known by many names in the literature, e.g., finite-
difference method or equilibrium method. In order to avoid any confusion, and so as to
emphasize its difference from the shooting method, we here keep things general and call it
the matrix approach to BVPs. Observe that we haven’t said much about f so far: if this is
linear (as in our example below), then Eq. (8.108) gives rise to a linear system of equations
(with a single solution), of the type that we spent much of chapter 4 solving (section 4.3);
if, on the other hand, f is nonlinear, then we would be faced with a system of nonlinear
equations which, as we learned in section 5.4, is a formidable task, especially if you don’t
have a decent initial guess for the (entire) solution, as is usually the case. Since we need to
solve for all the w j’s simultaneously, you can see that taking, say, n = 100 for the nonlinear
case is already a highly non-trivial task. It might help to recall that the shooting method
employed a root-finder regardless of the linearity of f ; however, that was a root-finding
problem in a single variable and therefore reasonably straightforward. If you’re wondering
why you would need to use such a large n with the matrix approach, you may benefit
from recalling the truncation error involved in our finite-difference approximations for the
first and second derivatives, Eq. (3.38) and Eq. (3.39); in both cases, the error was O(h2),
which is considerably worse than the O(h5) exhibited by RK4. On the other hand, the
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matrix approach satisfies the boundary condition exactly, which reflects its better stability
properties (barring the extreme case where the matrix involved is singular).

Matrix Method Applied to Our Equation

This might all be a tad too abstract for you (e.g., what matrix are we referring to?); to shed
some light, let us apply Eq. (8.108) to a specific example. To keep things simple, we will
study the BVP of the (linear) Legendre differential equation, Eq. (8.106), again. For this
case, the right-hand side of Eq. (8.107) takes the form:

f (x,w,w′) = − 30
1 − x2

w(x) +
2x

1 − x2
w′(x) (8.109)

We can now plug this equation into Eq. (8.108) to find:

wj−1 − 2wj + wj+1 = −h2 30

1 − x2
j

w j +
hx j

1 − x2
j

(wj+1 − wj−1), j = 1, 2, . . . , n − 2

w0 = 0.0926587109375, wn−1 = 0.1117705085875

(8.110)

The equation on the first line involves wj−1, wj, and wj+1 on both the left-hand side and on
the right-hand side. If we group terms appropriately, we can re-express this problem as:

w0 = 0.0926587109375

α jw j−1 + β jw j + γ jw j+1 = 0, j = 1, 2, . . . , n − 2

wn−1 = 0.1117705085875

(8.111)

where we’ve defined:

α j = 1 +
hx j

1 − x2
j

, β j = −2 +
30h2

1 − x2
j

, γ j = 1 −
hx j

1 − x2
j

(8.112)

in order to make the notation less cumbersome. Now, Eq. (8.111) can be straightforwardly
re-expressed in matrix format:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0

α1 β1 γ1 . . . 0 0 0

0 α2 β2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . βn−3 γn−3 0

0 0 0 . . . αn−2 βn−2 γn−2

0 0 0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0

w1

w2

...

wn−3

wn−2

wn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0926587109375

0

0
...

0

0

0.1117705085875

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.113)

where you can, finally, see why this is called the matrix approach. Crucially, Eq. (8.113) is
of the form Ax = b: the n quantities wj are unknown and everything else in this equation
is already known. As noted above, you can’t simply step through the elements from left to
right (or from right to left). You might benefit from writing out the n = 6 case explicitly: w0

is immediately known; the next row gives an equation relating w1 to w2, neither of which
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bvp matrix.py Code 8.4

from gauelim pivot import gauelim pivot

import numpy as np

def matsetup(a,b,n):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

A = np.zeros((n,n))

np.fill diagonal(A, -2 + 30*h**2/(1-xs**2))

A[0,0] = 1; A[-1,-1] = 1

np.fill diagonal(A[1:,:], 1 + h*xs[1:]/(1-xs[1:]**2))

A[-1,-2] = 0

np.fill diagonal(A[:,1:], 1 - h*xs/(1-xs**2))

A[0,1] = 0

bs = np.zeros(n)

bs[0] = 0.0926587109375

bs[-1] = 0.11177050858750004

return A, bs

def riccati(a,b,n):

A, bs = matsetup(a, b, n)

ws = gauelim pivot(A, bs)

return ws

if name == ‘ main ’:

a, b, n = 0.05, 0.49, 400

ws = riccati(a, b, n); print(ws)

is known; the row after that an equation involving w1, w2, and w3, but we still have more
unknowns than equations. However, if you write out all the corresponding equations then
you can solve them together; after all, this is a linear system of equations. Here we merely
wanted to emphasize that the matrix approach to the BVP is conceptually different from
how we used finite differences in section 8.2 to produce a given function value from the
previous one (remember: we were studying single-step techniques).

Our matrix equation, Eq. (8.113), can be solved via, say, Gaussian elimination. Of
course, this is a tridiagonal coefficient matrix, so applying a general-purpose method
like Gaussian elimination is quite wasteful; this is why we introduced the Jacobi itera-
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tive method, the Gauss–Seidel method, or an LU method which was tailored to tridiagonal
matrices in the main text and the problem set of chapter 4. Here we are not interested in the
details of the implementation or its efficiency, but in the big-picture concepts differentiating
the shooting method from the matrix approach to BVPs.

Implementation

Code 8.4 is a Python implementation of Eq. (8.113). Most of the code is inside a single
function, matsetup(), which sets up the coefficient matrix and the constant vector. Just
like in earlier codes, this is accomplished by slicing the arrays we pass as the first argument
to numpy.fill diagonal(). We manually set some special values as needed. The only
other function in this code, riccati(), calls matsetup() and then our earlier Gaussian-
elimination-with-pivoting function from chapter 4. This is all quite straightforward. The
main program sets up the problem and then calls riccati(). The (standard) notation here
is potentially confusing: a and b are the (scalar) endpoints, while A and b (a matrix and
a vector, respectively) define the system of Eq. (8.113). In other words, a is not A and,
similarly, b is not bs.

Keep in mind that this time around ws is a 1d array (as opposed to ys in bvp shoot.py,
which was a 2d array). This is as it should be, since Eq. (8.113) was set up by discretizing
Eq. (8.107) directly, i.e., without having to introduce a new function corresponding to the
derivative values. We don’t display the output, since it closely matches what we encoun-
tered earlier: this is the same Legendre differential equation solution we’ve been studying
for the last few sections. Of course, a few minor tweaks in how you set up the matrix would
allow you to study totally different problems on your own.

8.4 Eigenvalue Problems

We now turn to a specific subclass of boundary-value problems, which is sufficiently dis-
tinct that it gets its own section. This is the case where the boundary-value problem’s equa-
tion involves (in addition to x, w(x), w′(x), and w′′(x)) a parameter s: this one parameter,
known as the eigenvalue, will make a world of difference in how this problem is tackled.
Our prototypical eigenvalue problem will be a second-order ODE:

w′′ = f (x,w,w′; s), w(a) = c, w(b) = d (8.114)

This looks an awful lot like Eq. (8.104); the only difference is the presence of s. This
means that we are not faced with a single differential equation, but a family of ODEs. For
given values of s there may be no solution to the corresponding ODE; thus, we will have
to compute the “interesting” values of s (i.e., the ones that lead to a solution) in addition
to producing an approximation to w(x). The f contained in Eq. (8.114) could be quite
complicated, but then the EVP typically becomes intractable. We will here focus on the
special case of a linear second-order differential equation such as:

w′′(x) = ζ(x)w′(x) + η(x)w(x) + θ(x) s w(x) (8.115)
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where the functions ζ(x), η(x), and θ(x) are known. If we also impose homogeneous bound-
ary conditions, this is (close enough to) a Sturm–Liouville form.

We could now proceed to see how to solve this general problem. The obvious candidates
are the techniques we introduced in the previous section on BVPs: the shooting method
and the matrix approach. Especially in the latter case, the details of the derivation become
cumbersome; we opt, instead, to study a specific example of a linear second-order eigen-
value problem, for which we will show all the details explicitly. The problem set guides
you to study other physical scenarios, including some drawn from quantum mechanics.
Our problem of choice will be the Mathieu equation, which appears in the study of string
vibrations and a host of other topics in physics:

w′′(x) = (2q cos 2x − s) w(x), w(0) = w(2π) (8.116)

We didn’t actually specify the values of the function at the two boundaries; we merely
stated that the solution is periodic. You should not be surprised that the solution (can) be
periodic: the equation contains a cos 2x term, so it is certainly plausible that that “drives”
a corresponding periodicity in w(x); we will see below that the solution to this ODE does
not have to be periodic, in which case it is not a solution to our eigenvalue problem (since
it doesn’t obey the boundary condition we have imposed).

The s parameter will be very important below: we will need to find the values of s
that lead to non-trivial (i.e., non-zero) solutions for w(x). The q parameter determines the
strength of the cosine term and will be held fixed (at a finite value) in what follows. Take
a moment to appreciate that when q = 0 this ODE takes the form w′′(x) + sw(x) = 0, on
which you have spent a good chunk of your undergraduate education. The mere fact that
we are now exploring possible values of q and s shows that this problem is qualitatively
different from what we were studying earlier in this chapter. Let us see how to solve the
Mathieu equation in practice.

8.4.1 Shooting Method

As you may recall, the shooting method amounts to guessing a value of w′(a), solving an
IVP problem, and seeing if you managed to hit upon w(b). Obviously, this process can be
systematized, as we saw earlier when we employed the secant root-finding method to pro-
duce a better guess for w′(a), by finding the root(s) of Eq. (8.105), g(σ) = d. Unfortunately,
this approach doesn’t trivially generalize to the problem at hand. To see that, let’s look at
the Mathieu equation again:

w′′(x) = (2q cos 2x − s) w(x), w(0) = w(2π) = 0 (8.117)

This time around we took w(0) = w(2π) = 0, i.e., we are searching for odd solutions.19

19 As we’ll find out soon enough, the solutions will have a period that is at most 2π.
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�Fig. 8.8 Mathieu solutions for q = 1.5: s = 4.25 (left) and w′(0) = 1 (right)

One problem with applying the shooting method as described above to this equation is
that we don’t actually know the value of s. But let’s assume you do. Even then, you will
have trouble using the solution of the IVP to get the derivative at the first endpoint. Let’s
see why. For this linear ODE, if w(x) is a solution then so is αw(x), where α is an arbitrary
constant. Observe that if w(0) = w(2π) then αw(0) = αw(2π) also holds. But that means
that trying out different values of w′(0) won’t get us anywhere, since the first derivative
of αw(x) at x = 0 is αw′(0) and α could be anything. As you may know from a course
on quantum mechanics, determining the α in αw(x) is a process known as normalization,
which has nothing to do with actually satisfying our boundary conditions (since those
are satisfied regardless of the value of α). If you haven’t studied quantum mechanics yet,
there’s no need to worry: we are merely stating that you will need an external requirement
if you wish to find α.

If you think this is too vague, look at the left panel of Fig. 8.8: we’ve arbitrarily picked q
and s. We see that, for our choice of s, the boundary condition is simply not met (here and
below we keep q = 1.5 fixed). Then, by changing the value of w′(0) all we’re accomplishing
is to multiply the entire solution by a constant: if it didn’t meet the boundary condition for
one initial value w′(0), then no amount of stretching is going to save us. In other words,
the value of w′(0) is related to the normalization, but doesn’t help us accomplish our goal.
The right panel of the same figure shows that it is s which might help us actually satisfy
the boundary conditions in Eq. (8.117): this time around we know that the value of w′(0) is
irrelevant, so we keep it fixed. We see that as we tune s we get close to satisfying w(2π) = 0;
obviously, we need to come up with a systematic way of doing so.

Our goal can be accomplished by slightly tweaking our earlier argument: instead of
using a root-finder to determine w′(0) (a hopeless task), arbitrarily pick w′(0) and then use
a root-finder to determine s. Our input boundary conditions w(0) = w(2π) = 0 can, for
our discretization scheme(s), be expressed as w0 = wn−1 = 0. As explained, we are free
to randomly guess a value of w′(0) = σ. What we do next is to take our starting w0 and
σ, plug them into a numerical integrator, like those in section 8.2.4, and determine the
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corresponding wn−1 value that comes out. For a randomly picked value of s this approach
is fated to fail: for a given s, a method like RK4 transforms the input s into a specific
output at the right endpoint, wn−1, without caring about the “desired” value of wn−1 = 0;
mathematically, we can say that our integration method is a function that takes us from s
to wn−1, i.e., g(s) = wn−1, where g is a new function describing the effect of solving our
ODE with a given s, with x going from 0 to 2π. This g is (analogous to, but) different from
that appearing in Eq. (8.105): the latest g is a function of the s parameter in our Mathieu
equation. In this language, since our goal is that wn−1 = 0, we can demand that:

g(s) = 0 (8.118)

As before, g is the result of carrying out a full initial-value problem solution from 0 to
2π. Once again, we can apply a root-finding algorithm to solve this equation; the only
difference is that this time we are not searching for a starting derivative value, but for the
value of s for which our boundary condition w(2π) = 0 can be met.

Implementation

Implementing the shooting method for eigenvalue problems should be simple enough. Af-
ter all, we’re still combining the same tools as in the BVP case: a numerical integrator for
an IVP (like RK4) and a root-finder (like the secant method). Just as in Fig. 8.8, we are
setting the cosine strength to q = 1.5, but it’s totally straightforward to explore other values
later. Thinking of how to proceed, our first thought is that Code 8.3, i.e., bvp shoot.py
might be a good template. However, things are not so simple. In that program we imported
fs() and rk4 gen() from ivp two.py, which made sense at the time, since we were
faced with a well-defined second-order ODE, namely the Legendre differential equation of
Eq. (8.106). In the present case, this won’t work: even keeping q fixed, we cannot avoid
the fact that our differential equation itself depends on the value of the s parameter. As a
result, rk4 gen() cannot be used, since it assumes the entire differential equation is given
(i.e., not parameter dependent).

One could consider using a closure here, “binding” one parameter to fixed values for
selected purposes. Instead, in Code 8.5 we follow the quick-and-dirty route, writing new
versions of the f and RK4 routines. This still follows the general philosophy of casting
a second-order ODE as two first-order ODEs, as per Eq. (8.85), but this time our f and
RK4 functions take in an extra parameter corresponding to s. This allows us, in the new
version of shoot(), to solve for s by determining the value that satisfies Eq. (8.118), i.e.,
the one that leads to wn−1 = 0. As advertised, we pass in an arbitrary value of w′(0) which
shouldn’t (and doesn’t) affect anything other than the normalization.

In the main program, we provide a few initial guesses and then print out the correspond-
ing solutions (for the s’s). The output of running this code is:
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Code 8.5 evp shoot.py Code 8.5

from secant import secant

import numpy as np

def fs(x,yvals,s):

q = 1.5

y0, y1 = yvals

f0 = y1

f1 = (2*q*np.cos(2*x) - s)*y0

return np.array([f0, f1])

def rk4 gen eig(fs,a,b,n,yinits,s):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

ys = np.zeros((n, yinits.size))

yvals = np.copy(yinits)

for j,x in enumerate(xs):

ys[j,:] = yvals

k0 = h*fs(x, yvals,s)

k1 = h*fs(x+h/2, yvals+k0/2,s)

k2 = h*fs(x+h/2, yvals+k1/2,s)

k3 = h*fs(x+h, yvals+k2,s)

yvals += (k0 + 2*k1 + 2*k2 + k3)/6

return xs, ys

def shoot(s):

a, b, n = 0, 2*np.pi, 500

yinits = np.array([0., 5.])

xs, ys = rk4 gen eig(fs,a,b,n,yinits,s)

wfinal = 0.

return ys[-1, 0] - wfinal

if name == ‘ main ’:

for sinit in (-0.4, 3.3, 8.5):

sval = secant(shoot,sinit,sinit+0.5)

print(sval, end=" ")
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Eigenfunctions for the Mathieu problem: odd (left) and even (right) �Fig. 8.9

-0.73326514905 3.81429091649 9.09260876706

where we have suppressed the intermediate print-outs from secant(). We had implied
this before, but now have irrefutable evidence: there is more than one value of s for which
we can solve our eigenvalue problem (i.e., there is more than one eigenvalue).

Each eigenvalue (i.e., each value of s for which we can satisfy the boundary condi-
tions non-trivially) corresponds to a solution for w(x); unsurprisingly, these are known as
eigenfunctions. In the left panel of Fig. 8.9 we are plotting the three eigenfunctions corre-
sponding to the three eigenvalues of the output. We’ve taken the opportunity to label these
eigenfunctions according to their standard names from the theory of Mathieu functions,
but this doesn’t really matter for our purposes. What does matter is that these are periodic
functions that look almost like sines, but not quite; all three of them are odd functions of
x. The difference from a sine is more pronounced in the case of se1. Note that one of these
curves has period of π and the other two a period of 2π; of course, even se2, which has a
period of π, still satisfies the desired boundary condition, w(0) = w(2π) = 0. This happens
to be the solution that the right panel of Fig. 8.8 was moving toward. You should play
around with the main program, trying to find the next eigenvalue/eigenfunction pairs.

Intriguingly, we have computed these eigenvalues and eigenfunctions by building on our
earlier concepts: no complicated theory needed to be invoked. Even better: our techniques
are of much wider applicability than the one problem of the Mathieu equation.

8.4.2 Matrix Approach

We just saw how to tweak the idea of the shooting method developed for the BVP, in order
to have it work for the EVP. In the present subsection we’ll do something analogous for the
matrix approach. In other words, similarly to what we did in Eq. (8.108), we can directly
tackle the second-order ODE of Eq. (8.114), replacing the second and first derivatives
with the corresponding central-difference approximations. Once again, this is most easily
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�Fig. 8.10 Grid for the x j’s, with solid dots showing our actual points and open dots implied ones

grasped for a specific case; thus, we will now apply such a discretization scheme to the
Mathieu equation of Eq. (8.116), repeated here for your convenience:

w′′(x) = (2q cos 2x − s) w(x), w(0) = w(2π) (8.119)

This time around, we will not assume that w(0) = w(2π) = 0 as we did for the shooting
method. Rather, we will only enforce that the solution be periodic, thereby getting both the
odd functions seen above, as well as some new (even) functions.

We wish to build the periodicity in to our method. To do so, we recall that we had faced
a similar situation in chapter 6: specifically, in Eq. (6.83) we set up a grid accordingly:

x j =
2π j
n
, j = 0, 1, . . . , n − 1 (8.120)

Observe that, unlike the grid of Eq. (8.15), here we include the left endpoint but not the
right endpoint: this is because we know our function is periodic, so we avoid storing need-
less information. Of course, as always, we are still dealing with n points; this is illustrated
in Fig. 8.10. Take a moment to compare to what we did for the shooting method: there we
started at the left endpoint, 0, and explicitly integrated all the way up to the right one, 2π,
in order to check if our solution has the desired value there. In the present case, we will
always satisfy the boundary condition exactly. Of course, just as in the case of the BVP,
this pleasant feature has to be weighed against the unfortunate detail that the truncation
error involved in our finite-difference approximations for the first and second derivatives,
Eq. (3.38) and Eq. (3.39), is O(h2), which is much worse than the O(h5) exhibited by RK4.

The Mathieu equation involves w′′(x) and w(x), but not w′(x): this means we only need
to use the central-difference approximation to the second derivative, Eq. (3.39). Doing so
leads to the following set of equations:

wj−1 − 2wj + wj+1

h2
=

(
2q cos 2x j − s

)
wj, j = 0, 1, . . . , n − 1 (8.121)

We can now group terms, to get:

wj−1 + α jw j + wj+1 = −h2swj, j = 0, 1, . . . , n − 1 (8.122)

where we defined:

α j = −2 − 2h2q cos 2x j (8.123)

for ease of reading. Observe that both in Eq. (8.121) and in Eq. (8.122), we made no
mention of the boundary terms. If you actually write down Eq. (8.122) for j = 0 and
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j = n− 1, you are faced with the pesky terms w−1 and wn which don’t actually exist, if you
take our grid in Eq. (8.120) seriously. We interpret these in the most natural way possible:

w−1 ≡ wn−1, wn ≡ w0 (8.124)

These definitions are fully consistent with the spirit of Fig. 8.10. With that clarification in
mind, we are now in a position to write out the n equations of Eq. (8.122) in matrix form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 1 0 . . . 0 0 1

1 α1 1 . . . 0 0 0

0 1 α2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . αn−3 1 0

0 0 0 . . . 1 αn−2 1

1 0 0 . . . 0 1 αn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0

w1

w2

...

wn−3

wn−2

wn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −h2s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0

w1

w2

...

wn−3

wn−2

wn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.125)

Unmistakably, this is of the form Av = λv, eliminating any lingering doubts you may have
had about why this is called an eigenvalue problem. Seeing the role that s plays in this
equation similarly justifies why the s in Eq. (8.116) is called an eigenvalue.

Take a moment to compare this equation with our result for the matrix approach as ap-
plied to the BVP, Eq. (8.113), which was of the form Ax = b. There, the right-hand side
was known, whereas here the unknown wj’s appear on both the left-hand side and the
right-hand side. The n × n matrix on the left-hand side of Eq. (8.125) is cyclic tridiagonal,
similar to the one we ecountered in the problem set of chapter 4. You should think about
the origin of those two units (at the bottom left and top right). Gratifyingly, our final result
allows us to apply the eigenvalue/eigenvector methods we spent much of chapter 4 (sec-
tion 4.4) developing. As advertised, we are building in the periodicity, but not making any
assumptions about the value of the solution at the endpoints (i.e., we are not limited to ho-
mogeneous boundary conditions). Finally, Eq. (8.125) allows us to produce the spectrum
of eigenvalues, not just the lowest one (or few); using n points you produce approxima-
tions for n eigenvalues. This deserves to be emphasized: in the shooting method you need
to zero-in on candidate eigenvalues manually; you may end up getting the same solution
more than once, or you might accidentally skip over a given solution (a fact you would try
to determine by counting nodes/zeros in the eigenfunctions). In contradistinction to this,
the matrix approach gives you estimates for n eigenvalues. In a problem, you will explore
if it does equally well for all eigenvalues.

Implementation

Code 8.6 is an implementation of the matrix approach to the eigenvalue problem for
the Mathieu equation. Just like in Code 8.4, most lines are dedicated to a function set-
ting up the coefficient matrix, matsetup(). This implements Eq. (8.125), once again us-
ing numpy.fill diagonal() and a couple of manual assignments. A separate function,
mathieu(), calls matsetup() and then qrmet() from chapter 4 to apply the QR method
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Code 8.6 evp matrix.py Code 8.6

from qrmet import qrmet

import numpy as np

def matsetup(q,n):

h = 2*np.pi/n

xs = np.arange(n)*h

A = np.zeros((n,n))

np.fill diagonal(A, -2 - 2*h**2*q*np.cos(2*xs))

np.fill diagonal(A[1:,:], 1)

np.fill diagonal(A[:,1:], 1)

A[0,-1] = 1

A[-1,0] = 1

return A

def mathieu(q,n):

A = matsetup(q, n)

qreigvals = qrmet(A,200)

h = 2*np.pi/n

qreigvals = np.sort(-qreigvals/h**2)

return qreigvals

if name == ‘ main ’:

q, n = 1.5, 200

qreigvals = mathieu(q, n)

print(qreigvals[:6])

for eigenvalue evaluation. We then divide with −h2 and sort so that we can extract the s’s in
order. As expected, the quality of the output (for a given finite-difference approximation)
gets better as the number of points n increases; of course, given the (lack of) efficiency in
our implementation of the QR method, this slows things down, practically speaking. Even
so, it’s typically worth the wait since, as noted, our output consists of the first n eigenvalues.

The main program sets up the cosine strength, q, and the number of points on our grid,
n, and calls mathieu(). We limit the output to the first six eigenvalues:

[-0.93706036 -0.73350696 2.16553604 3.81267332 4.74538385 9.08581402]

Every other number here is (close to) the output of Code 8.5, i.e., evp shoot.py: we
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have produced all the eigenvalues; half correspond to odd eigenfunctions and half to even
eigenfunctions. We have plotted the latter in the right panel of Fig. 8.9, where you can see
that two have a period of π and one has a period of 2π; these look somewhat like cosines
but, especially in the case of ce1, they are clearly different. Note that this approach can be
used to produce the left panel of Fig. 8.9, as well. While we didn’t explicitly say so, the
Mathieu equation also arises in quantum mechanics (the “quantum pendulum”).

8.5 Project: Poisson’s Equation in Two Dimensions

Having spent the entire chapter up to this point studying ordinary differential equations, we
now turn to partial differential equations; this is a huge subject, deserving of its own book.
To accurately solve PDEs, you typically require specialized techniques, tailored to a given
equation. In the spirit of the rest of this volume, in this chapter we’ve been examining
general techniques of wide applicability; several of these can be (and are) also applied
to PDEs. Instead of ending the volume on that uninspiring note, however, we here first
provide some general comments about different types of PDEs, then choose a specific one,
and solve it using techniques introduced in chapter 6. This charming example is meant to
emphasize the significance of discrete Fourier transforms in all of scientific computing.

8.5.1 Examples of PDEs

Formally speaking, partial differential equations are usually divided into three classes: hy-
perbolic, parabolic, and elliptic. In order to keep things simple, we now briefly discuss a
few specific examples of partial differential equations that are very important in physics:

• A typical example of a hyperbolic PDE is the wave equation involving φ(x, t):

∂2φ

∂t2
− c2 ∂

2φ

∂x2
= 0 (8.126)

where c > 0 and we assumed one spatial dimension. This equation involves a second-
order time derivative and a second-order space derivative, which have opposite signs.

• A typical example of a parabolic PDE is the heat equation involving φ(x, t):

∂φ

∂t
− α∂

2φ

∂x2
= 0 (8.127)

where α > 0 and we assumed one spatial dimension. This equation involves a first-
order time derivative and a second-order space derivative, with opposite signs.20

• A typical example of an elliptic PDE is Poisson’s equation involving φ(x, y):

∂2φ

∂x2
+
∂2φ

∂y2
= f (x, y) (8.128)

20 The time-dependent Schrödinger equation, Eq. (8.5), almost fits the bill; however, (a) it contains a pesky i on
the left-hand side instead of having opposite signs, and (b) the wave function Ψ(x, t) is, in general, complex.
It’s more appropriate to introduce a fourth class, dispersive PDEs, to capture these features.
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where we assumed two spatial dimensions. Note that this involves two second-order
spatial derivatives, which come in with the same sign.

Here’s another way of looking at the classification of PDEs: Eq. (8.126) and Eq. (8.127)
describe time evolution, which starts at a given point; thus, such dynamical equations cor-
respond to what we called initial-value problems. On the other hand, Eq. (8.128) does not
involve time; such a static situation involves specified boundary conditions, thereby giving
rise to a boundary-value problem. In the interest of being concrete, we will now focus on
the latter scenario, namely the boundary-value problem involving Poisson’s equation.

8.5.2 Poisson’s Equation via FFT

In a course on electromagnetism, you’ve seen Poisson’s equation, Eq. (8.128), with the
right-hand side −ρ(x, y)/ε0 where ε0 is the permittivity of free space, ρ(x, y) is a specified
electric charge density, and our dependent variable is the electric potential φ(x, y); we’re
studying the two-dimensional case in order to make the visualizations easier, but there’s no
a priori reason keeping you from tackling the three-dimensional case. Thus, this problem is
very closely related to the projects of chapters 1 and 2 at the start of the book, where we saw
how to visualize fields and carry out the multipole expansion, respectively; the problem set
discusses such “textbook” approaches to Poisson’s equation. Finally, you may know that,
in addition to appearing in electromagnetism, Poisson’s equation is also very significant to
astrophysics, in which case φ is the gravitational potential and the right-hand side takes the
form −4πGρ(x, y) (again in two spatial dimensions), with ρ(x, y) being the mass density and
G Newton’s gravitational constant. Regardless of the physical application, mathematically
speaking our problem is a constant-coefficient elliptic equation and we’ll also specialize it
further, studying only periodic boundary conditions.

Problem and Discretization

In order to be concrete, we will tackle the following specific problem:

∂2φ

∂x2
+
∂2φ

∂y2
= f (x, y), f (x, y) = cos(3x + 4y) − cos(5x − 2y)

φ(x, 0) = φ(x, 2π), φ(0, y) = φ(2π, y)

(8.129)

As advertised, this is a periodic problem, both in its boundary conditions and in its forcing
term. You may be thinking that you can solve this problem analytically, in which case you
may not see the point of using a computer; but what if you were dealing with Mathieu
functions instead of cosines? The computational tools we’ll introduce below will apply
even if the right-hand side of Poisson’s equation is not an analytically known function, as
you will discover when you tackle the problem set.
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Two-dimensional periodic grid, with examples �Fig. 8.11

We are now ready to discretize, placing our points on a grid:21

xp =
2πp

n
, p = 0, 1, . . . , n − 1 (8.130)

where we are building in the fact that our problem is periodic: the last point is at 2π(n−1)/n,
not at 2π, because we already know that all quantities have the same value at 2π as at 0.
Since we’re dealing with a two-dimensional problem, we also need to discretize the y’s and
therefore employ another index:

yq =
2πq

n
, q = 0, 1, . . . , n − 1 (8.131)

We have chosen to use the same discretization scheme for both coordinates: they both go
from 0 to 2π, involving n points for each dimension. This is simply because that’s what
we’ll need in what follows, but you will go beyond this in the problem set.

Similarly to what we did for the BVP and EVP, we now apply the central-difference
approximation to the second-derivative (once for the x’s and once for the y’s) of Eq. (3.39):

φp+1,q − 2φp,q + φp−1,q

h2
+
φp,q+1 − 2φp,q + φp,q−1

h2
= fpq, p, q = 0, 1 . . . , n − 1 (8.132)

which can be slightly manipulated into the form:

φp+1,q + φp−1,q + φp,q+1 + φp,q−1 − 4φpq = h2 fpq (8.133)

Again, p and q are spatial indices, as per Eq. (8.130) and Eq. (8.131). Our two-dimensional
grid is illustrated in Fig. 8.11, which generalizes Fig. 8.10 for our case; as before, solid
circles show actual points and open circles are implied points. Each point φpq enters the

21 Since n is already the number of points and i is the imaginary unit, we have to introduce new symbols.
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discretized Poisson’s equation, Eq. (8.133), together with its four nearest neighbors.22 The
figure also shows a couple of examples, highlighting the fact that our setup works equally
well if φpq is somewhere in the middle of the grid, or right at its edge. This is not always the
case: very often in the study of PDEs the implementation of the boundary conditions has to
be handled separately (and can be a headache). Here, as in several other places throughout
this volume, we study a periodic problem (because these show up in physics all the time)
and therefore tailor our solution to the problem at hand.

You can solve Eq. (8.133) with linear algebra machinery, just like we did earlier: it is
nothing other than a finite-difference result for a PDE. However, notice that the problem
here is more complicated than before: for example, in Eq. (8.113) we were faced with an
equation of the form Ax = b; here our unknowns are the φpq’s that together make up a
matrix, not a vector! Of course, there are ways of organizing our n2 equations in such a
way that we can solve one problem of the form Ax = b at a time; this is what you would
encounter in a course on the numerical solution of PDEs. At its core, this is not a new
method, just a messier version of what we saw earlier. Instead, we here opt for a totally
different approach which solves Eq. (8.133) using the fast Fourier transform; in addition to
being a nice application of the material we introduced in chapter 6, this also happens to be
a very efficient approach, which obviates solving linear systems of equations altogether.

Solution via DFT

For the sake of (re)orientation, we remind you that in Eq. (8.133) we know the values
of the fpq’s on the right-hand side: these are simply the result of evaluating the f (x, y)
in Eq. (8.129) at the xp’s and yq’s given by Eq. (8.130) and Eq. (8.131). What we are
trying to determine are the φpq’s on the left-hand side. Keep in mind that the left-hand side
in Eq. (8.133) is basically the Laplacian operator in discretized coordinates. As you may
recall from Fourier analysis (see chapter 6), derivatives turn into multiplications in Fourier
(wave number) space. That means that we can be hopeful the complicated left-hand side
in Eq. (8.133) will be dramatically simplified if we turn to the (two-dimensional) discrete
Fourier transform; we haven’t seen this before, but it is a straightforward generalization
of the one-dimensional case. At a big-picture level, we are about to trade the p, q, which
are spatial indices, with k, l, which are going to be Fourier indices. As mentioned, we are
willing to go to Fourier space in order to simplify the effect of the derivative(s).

Generalizing Eq. (6.99) to the two-dimensional case allows us to write the inverse dis-
crete Fourier transform of the discretized φ as follows:

φpq =
1
n2

n−1∑
k=0

n−1∑
l=0

φ̃kle
2πikp/ne2πilq/n, p, q = 0, 1 . . . , n − 1 (8.134)

where we assumed we are using the same number of points, n, for each of the two dimen-
sions in the problem, as above. We can do the same thing for the function appearing on the

22 This is sometimes called a five-point stencil, though we generally prefer the term “discretization scheme”.
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right-hand side of Poisson’s equation, namely the discretized f :

fpq =
1
n2

n−1∑
k=0

n−1∑
l=0

f̃kle
2πikp/ne2πilq/n, p, q = 0, 1, . . . , n − 1 (8.135)

Plugging these two relations into the equation we wish to solve, Eq. (8.133), we get:

1
n2

n−1∑
k=0

n−1∑
l=0

e2πikp/ne2πilq/n
[
φ̃kl

(
e2πik/n + e−2πik/n + e2πil/n + e−2πil/n − 4

)
− h2 f̃kl

]
= 0

(8.136)
At this point, we can use the orthogonality of complex exponentials in the discrete case,
Eq. (6.92), to eliminate the sums. Explicitly, we multiply with e−2πik′p/n and then sum over
p and, similarly, multiply with e−2πil′q/n and then sum over q. If we also replace the four
exponentials inside the parentheses with two cosines, we are led to:

φ̃kl =
1
2

h2 f̃kl

cos(2πk/n) + cos(2πl/n) − 2
(8.137)

Thus, we can produce the φ̃kl by taking the f̃kl and plugging them into Eq. (8.137).
We’re almost done: since we’ve already computed φ̃kl, all that’s left is for us to use the

inverse DFT in Eq. (8.134) to evaluate the real-space φpq. That was our goal all along and
we reached it without having to explicitly solve a linear system of n2 coupled equations
as per Eq. (8.133). The one thing we skipped over is that Eq. (8.137) involves f̃kl on the
right-hand side, not the fpq which is actually our input. That’s OK, though, because we can
simply use the following definition of the direct DFT in the two-dimensional case, which
is a generalization of Eq. (6.97):

f̃kl =

n−1∑
p=0

n−1∑
q=0

fpqe−2πikp/ne−2πilq/n, k, l = 0, 1, . . . , n − 1 (8.138)

Our strategy is: (a) take fpq, (b) use it to get f̃kl from the direct DFT in Eq. (8.138), (c) use
that to evaluate φ̃kl from Eq. (8.137), and (d) take the inverse DFT in Eq. (8.134) to get φpq.

Implementation

Thinking about how to implement the above approach to solving Poisson’s equation, we
realize that we don’t actually have an implementation of a two-dimensional FFT (or even
DFT, for that matter) available.23 This is not a major obstacle: we will simply use the one-
dimensional FFT implementation of Code 6.4, i.e., fft.py, to build up a two-dimensional
version. In order to see how we could do that, we return to Eq. (8.138) and group the terms

23 Of course, numpy has one but, as usual, it’s more educational to write our own. Incidentally, in this section we
use DFT and FFT interchangeably: the latter is the efficient implementation of the former, as always.
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in a more suggestive manner:

f̃kl =

n−1∑
p=0

⎡⎢⎢⎢⎢⎢⎢⎣
n−1∑
q=0

fpqe−2πilq/n

⎤⎥⎥⎥⎥⎥⎥⎦ e−2πikp/n (8.139)

As the brackets emphasize, it is possible to first take the one-dimensional DFT of each
row (i.e., fpq with p held fixed each time), and then take the one-dimensional DFT of each
column of the result. Having applied the one-dimensional DFT algorithm 2n times, we
have accomplished what we set out to do.

The only thing left is to figure out how to implement the two-dimensional inverse DFT
when we have an implementation of the two-dimensional direct DFT at our disposal (as
per the previous paragraph). We saw how to code up the one-dimensional inverse DFT in a
problem in chapter 6; the idea generalizes straightforwardly to the two-dimensional case.
Take the complex conjugate of the inverse DFT in Eq. (8.135):

f ∗pq =
1
n2

n−1∑
k=0

n−1∑
l=0

f̃ ∗kle
−2πikp/ne−2πilq/n, p, q = 0, 1, . . . , n − 1 (8.140)

Thus, the direct DFT of f̃ ∗kl, divided by n2, is simply f ∗pq. But that means that, in order to
produce the inverse DFT, we can simply: (a) take the complex conjugate of f̃kl, (b) carry
out the direct DFT of that, (c) divide by n2, and (d) take the complex conjugate at the end.

Code 8.7 starts by importing the one-dimensional FFT functionality of fft.py. It then
uses the procedure described above to define two functions that carry out the direct and in-
verse two-dimensional FFT. Note how both of these functions are very easy to write, given
the Python and NumPy syntax and functionality. Another function is defined to provide the
f (x, y) from the right-hand side of Poisson’s equation.

The physics is contained in the longest function in this program, called poisson().
After defining a one-dimensional grid of points, this function calls numpy.meshgrid()
to produce two coordinate matrices: these are created in such a way that taking the [p,q]
element from Xs and the [p,q] element from Ys gives you the pair (xp, yq).24 The rows of
Xs repeat the xp’s and the columns of Ys repeat the yq’s. In short, numpy.meshgrid() has
allowed us to produce coordinate matrices, which we pass into func() to produce the { fpq}
matrix in a single line of code. The next line calls our brand-new two-dimensional FFT
function to create the { f̃kl} matrix. We then do something analogous for the Fourier-space
indices, i.e., we create two coordinate matrices for the k’s and l’s, which we use to carry out
the division in Eq. (8.137) most simply. There is a slight complication involved here: the
element [0,0] leads to division with zero, which gives rise to a RuntimeWarning. We’re
not really worried about this, however: this is simply the DC component; our boundary
conditions are periodic, as per Eq. (8.129), so we are only able to determine the potential
φpq up to an overall constant. Thus, after our division we set this overall offset to obey
our chosen normalization. As per our earlier strategy, we then take the inverse DFT in
Eq. (8.134) to calculate φpq from φ̃kl and then we’re done.

The main program calls our function poisson(), passing in n = 128: as you may

24 Actually, it returns (xq, yp), if you don’t employ the optional indexing argument. In any case, for us the xs
and the ys are identical, so nothing changes. Try out a simple example if this is not transparent.
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poisson.py Code 8.7

from fft import fft

import numpy as np

def fft2(A):

B = A.astype(complex)

for i, row in enumerate(A):

B[i,:] = fft(row)

for j, col in enumerate(B.T):

B[:,j] = fft(col)

return B

def inversefft2(A):

n2 = A.size

newA = fft2(np.conjugate(A))/n2

return np.conjugate(newA)

def func(x,y):

return np.cos(3*x+4*y) - np.cos(5*x-2*y)

def poisson(a,b,n):

h = (b-a)/(n-1)

xs = a + np.arange(n)*h

Xs, Ys = np.meshgrid(xs,xs)

F = func(Xs, Ys)

Ftil = fft2(F)

ks = np.arange(n)

Kxs, Kys = np.meshgrid(ks,ks)

Denom = np.cos(2*np.pi*Kxs/n) + np.cos(2*np.pi*Kys/n) - 2

Phitil = 0.5*Ftil*h**2/Denom

Phitil[0,0] = 0

Phi = np.real(inversefft2(Phitil))

return Phi

if name == ‘ main ’:

Phi = poisson(0, 2*np.pi, 128); print(Phi)
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�Fig. 8.12 Poisson-equation solution for a two-dimensional periodic boundary-value problem

recall from chapter 6, our implementation of the (one-dimensional) FFT algorithm kept
halving, so it relied on n being a power of 2. This routine is here used to carry out the two-
dimensional direct and inverse FFT, which in our case gives rise to matrices of dimension
128 × 128. (You might want to try larger values of n and compare the timing with that re-
sulting from the “slow” DFT implementation.) In Fig. 8.12 we are attempting to visualize
the {φpq}, which is our final result. We are showing two different ways of plotting the value
of the electric field. Unsurprisingly, the solution is periodic; the coefficients in the argu-
ments of the cosines in the f (x, y) term have led to rapid modulations. In all, we managed
to solve a two-dimensional boundary-value problem with a minimum of fuss (and a code
that fits on a single page).

8.6 Problems

1. It is standard to assume that a (linear) second-order ODE doesn’t have a first-order
derivative term. To see why this is legitimate, start with y′′(x)+ p(x)y′(x)+q(x) = 0 and
make the substitution:

z(x) = y(x)e
1
2

∫
p(x)dx (8.141)

Show that you get the ODE z′′(x) + r(x)z(x) = 0, which contains no first-order term.
2. In the main text we investigated the stability of the Euler method(s) using the test equa-

tion, see Eq. (8.33) and below; here we generalize that discussion. Start from Eq. (8.25),
which relates e j+1 to e j. Multiply and divide the term in square brackets with e j and then
interpret the fraction appropriately. One of the terms on the right-hand side should be
e j times a factor that is linear in h; explain what this means.

3. Reproduce Fig. 8.4, augmented to also include results for the explicit midpoint and
explicit trapezoid methods, Eq. (8.54) and Eq. (8.57).
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4. Implement the backward Euler method for the Riccati equation, Eq (8.71). You could
use a root-finder or simply solve the quadratic equation “by hand”; as part of this pro-
cess, you need to pick one of the two roots (justify your choice).

5. Show that the implicit trapezoid method, Eq. (8.63), has local error O(h3). To do so,
you can re-use the first equality in Eq. (8.44). The main trick involved is that, just like
y′(x j) = f (x j, y(x j)) holds, we can also take y′(x j+1) = f (x j+1, y(x j+1)) and then Taylor
expand y′(x j+1) around x j.

6. In the main text we explicitly derived the prescription for second-order Runge–Kutta
methods, see section 8.2.2. When we studied the fourth-order Runge–Kutta method,
we provided motivation from quadrature and then carried out an explicit derivation for
the test equation. We now turn to third-order Runge–Kutta methods; to make things
manageable, focus on an autonomous ODE, y′ = f (y), which is a specific case, but still
more general than the single example of the test equation. The prescription is:

k0 = h f (y j), k1 = h f
(
y j + c0k0

)
, k2 = h f

(
y j + c1k0 + c2k1

)
y j+1 = y j + d0k0 + d1k1 + d2k2

(8.142)

Your task is, by carrying out a number of Taylor expansions as before, to derive the
relations these c and d parameters need to obey.

7. Implement the following (explicit) two-step Adams–Bashforth method:

y j+1 = y j +
h
2

[
3 f (x j, y j) − f (x j−1, y j−1)

]
(8.143)

for the Riccati equation, Eq (8.71). Obviously, you’ll need two y values to get going
(y0 and y1); since a first-order IVP corresponds to only a single input y value (y0), we’ll
need to produce an estimate of y1 before we can start applying this method; use the
forward Euler method to do that.

8. Reproduce the two plots shown in Fig. 8.5. Note that you will need to tailor the back-
ward Euler routine to the specific equation you are tackling each time.

9. Tackle the problem in Eq. (8.72) by setting u(x) = y(x) + e−500x. As you will discover
when you implement this yourself, this trick eliminates RK4’s troubles, even though
the ODE is unchanged. Do you understand why?

10. Use RK4 to solve the following problem:

y′(x) = 100 (sin x − y) , y(0) = 0 (8.144)

from x = 0 to x = 8, with n = 285 and n = 290 points. Do you understand why the two
results are so dramatically different?

11. Generalize Code 8.1 to use Chebyshev points. Then, employ Lagrange interpolation in
between the points and produce a new version of Fig. 8.4.

12. Implement global and local adaptive stepping in RK4, to reproduce the panels in Fig. 8.6.
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13. The Runge–Kutta–Fehlberg method (RK5), with local error O(h6), follows the steps:

k0 = h f (x j, y j)

k1 = h f

(
x j +

h
4
, y j +

k0

4

)

k2 = h f

(
x j +

3
8

h, y j +
3

32
k0 +

9
32

k1

)

k3 = h f

(
x j +

12
13

h, y j +
1932
2197

k0 −
7200
2197

k1 +
7296
2197

k2

)

k4 = h f

(
x j + h, y j +

439
216

k0 − 8k1 +
3680
513

k2 −
845

4104
k3

)

k5 = h f

(
x j +

h
2
, y j −

8
27

k0 + 2k1 −
3544
2565

k2 +
1859
4104

k3 −
11
40

k4

)

y j+1 = y j +
16

135
k0 +

6656
12825

k2 +
28561
56430

k3 −
9
50

k4 +
2

55
k5

(8.145)

The reason this approach is popular is that one can embed a fourth-order (Runge–Kutta)
technique in it (which has local error O(h5)), which we denote by ỹ j+1; subtracting the
two estimates gives us an expression for the error:

y j+1 − ỹ j+1 =
1

360
k0 −

128
4275

k2 −
2197

75240
k3 +

1
50

k4 +
2

55
k5 (8.146)

This doesn’t require the step-halving that we employed for RK4, see Eq. (8.76) and
below. Implement both the technique itself and its error estimate programmatically for
the Riccati equation, Eq (8.71), and compare with RK4 for fixed n = 7.

14. In molecular dynamics simulations, the velocity Verlet algorithm,25 tackles the second-
order ODE w′′ = f (x,w,w′) by splitting it into two first-order ODEs, employing the
definitions in Eq. (8.84), as usual. However, instead of bundling y0(x) and y1(x) into
a vector y(x) and stepping through each in parallel like we did in the main text, the
velocity Verlet method employs different steps for each of the two functions:

k = (y1) j +
h
2

f [x j, (y0) j, (y1) j]

(y0) j+1 = (y0) j + hk, (y1) j+1 = k +
h
2

f [x j+1, (y0) j+1, k]
(8.147)

Implement this explicit method and compare its output with RK4 for the Legendre
differential equation, Eq. (8.91), for n = 6 and n = 100.

15. To solve the time-independent Schrödinger equation, one often employs Numerov’s
method. For w′′(x) = f (x)w(x), which is a linear second-order ODE, the Numerov
algorithm produces the next value of the function by:

wj+1 =

[
2 + 5

6 h2 f (x j)
]

wj −
[
1 − 1

12 h2 f (x j−1)
]

wj−1

1 − 1
12 h2 f (x j+1)

(8.148)

25 The same idea goes under the name of the leapfrog method in the study of partial differential equations.
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This discretizes the w(x) directly, i.e., in contradistinction to what we did for other
methods, here we do not define y0(x) and y1(x). Solve the problem:

w′′(x) =
5

1 + x2
w(x), w(0) = 1, w′(0) = 0 (8.149)

using both Numerov’s method and RK4. Observe that Numerov’s method is not self-
starting, since it requires two w values to get going; however, in adition to w0 = w(0),
you also know w′(0), so you can use it to approximate w1.

16. Use RK4 to solve the following Lotka–Volterra equations, used to describe the popula-
tions of a predator and a prey species:

y′0(x) = 0.1y0(x) − 0.01y0(x)y1(x), y′1(x) = −0.5y1(x) + 0.01y0(x)y1(x),

y0(0) = 60, y1(0) = 20 (8.150)

Plot y0(x) and y1(x), integrating up to x = 80.

17. Derive Eq. (8.4) for the problem of the two-dimensional projectile in the presence of air
resistance. Implement this programmatically, using rk4 gen() and plot the trajectory
(i.e., y(t) as a function of x(t)). To be concrete, take k = 1, g = 9.81, x(0) = 1, vx(0) =
2, y(0) = 5, and vy(0) = 7.808; integrate from t = 0 up to t = 2.5.

18. Solve the following IVP using RK4:

w′′(x) = −w(x) − 1
x

w′(x), w(0) = 1, w′(0) = 0 (8.151)

integrating up to x = 0.5. Applying rk4 gen() gets you in trouble due to the 1/x term
at x = 0. Apply L’Hôpital’s rule to that term, getting another contribution of w′′(x) at the
origin; code up fs() so that it takes into account both possibilities. (This is the Bessel
equation for the Bessel function J0(x), so you may wish to use scipy.special.jv().)

19. First, repeat the analysis in Eq. (8.98) and below, this time for the case of the backward
Euler method. Then, apply both the forward and the backward Euler methods for the
system of ODEs in Eq. (8.102) integrating up to x = 0.1; start with n = 1000 to make
sure you implemented both techniques correctly, and then repeat the exercise for n = 6.

20. Generalize the discussion on stability of the backward Euler method from the previous
problem, for the case of an autonomous, possibly nonlinear, system of equations:

y j+1 = y j + hf(y j+1) (8.152)

Linearize this system, by Taylor expanding f(y j+1) around y j, just like in Eq. (5.76)
when introducing Newton’s method for root-finding in many dimensions. Formally
solve the resulting equation for y j+1 and discuss what condition needs to be satisfied
in order for you to do so in a dependable manner.

21. Solve Eq. (8.4) for the problem of the two-dimensional projectile in the presence of air
resistance, this time as a BVP, i.e., with the input being x(0) = 2, vx(0) = 3, y(0) = 4,
and y(2.5) = 0, compute the needed vy(0). While benchmarking, try out the starting
values given in an earlier problem (where you know how large vy(0) turns out to be).
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22. Apply the shooting method to the following fourth-order BVP:

w′′′′(x) = −13w′′(x) − 36w(x), w(0) = 0, w′(0) = −3, w(π) = 2, w′(π) = −9
(8.153)

Note that we are missing two pieces of information at the starting point, w′′(0) and
w′′′(0), so you will have to use the multidimensional Newton’s method. Specifically,
make sure to define one function for the four right-hand sides of our system of ODEs
(after you rewrite our fourth-order ODE) and another function for the two conditions
we wish to satisfy (w(π) − 2 = 0 and w′(π) + 9 = 0).

23. We will now see how to handle Neumann boundary conditions in the matrix approach
to the BVP. Specifically, take the following problem:

w′′(x) = − 30
1 − x2

w(x) +
2x

1 − x2
w′(x)

w′(0.05) = 1.80962109375, w(0.49) = 0.1117705085875
(8.154)

which is a variation on Eq. (8.106). Our finite-difference scheme leads to equations like
those in Eq. (8.111), with the first one being replaced by:

w1 − w−1

2h
= 1.80962109375 (8.155)

Here the solution is not required to be periodic, so you cannot assume w−1 = wn−1 holds,
as in Eq. (8.124): w−1 is simply outside the solution domain. Apply the discretized
ODE, Eq. (8.110), for the case of j = 0; combining this with Eq. (8.155) allows you to
eliminate w−1. Implement the solution to this BVP programmatically.

24. After introducing the matrix approach to the BVP in Eq. (8.108), we discussed the er-
ror stemming from the finite-difference approximations employed. If you consider the
problem more carefully, you will realize that the error in approximating the derivatives
is not necessarily the same as the error in approximating w(x j) by wj (which quantifies
how well or how poorly we are satisfying the ODE we are trying to solve). Expand
w(x j+1) and w(x j−1), both around x j, to explicitly investigate how good an approxima-
tion wj is, for the case of a linear BVP.

25. Solve the following nonlinear BVP:

w′′(x) = −ew(x), w(0) = 1, w(1) = 0 (8.156)

using both the shooting method and the matrix approach. Note that you’ll need a root-
finder for both cases (one-dimensional and multidimensional, respectively). Try out
different initial guesses to find two solutions to this problem. For the matrix approach,
have your initial guess vector be either zero or 20x − 20x2; you could evaluate the
Jacobian numerically (as in multi newton.py) or analytically.

26. Experiment with the shooting method for an eigenvalue problem. Specifically, repro-
duce Fig. 8.8 which shows that it is the eigenvalue, and not the starting derivative,
which allows us to satisfy the boundary condition.

27. Reproduce our plots of the Mathieu functions in Fig. 8.9 using evp shoot.py for the
left panel and evp matrix.py for the right panel.
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28. Use the shooting method for the quantum-mechanical eigenvalue problem of the in-
finite square well (which is different from the periodic box we encountered earlier).
Specifically, take the potential to be zero for −a < x < a and infinite at the boundaries;
compute the first six eigenvalues and compare with:

En =
�2π2

8ma2
n2 (8.157)

which you learned in a course on quantum mechanics. Take �2/m = 1 and a = 0.5.
29. Use Code 8.6 to tackle the quantum harmonic oscillator, for which the “potential” term

in Eq. (8.116) is 0.5qx2 instead of 2q cos 2x. Write separate functions for two finite-
difference discretization schemes: first, Eq. (8.121) which has error O(h2) and, second,
the approximation which has error O(h4). Feel free to use numpy.linalg.eigvals().
The eigenfunctions are “periodic” in that they are expected to die off at large distances.
Compare the answer to the (analytically known) eigenvalues of Eq. (3.71).

30. For the first six eigenvalues of the quantum harmonic oscillator of the previous prob-
lem, apply Richardson extrapolation: for a given finite-difference approximation to the
second derivative, say, that of Eq. (8.121), carry out a calculation for step size h and
another one for h/2 and use Eq. (3.47); compare with the “unextrapolated” values.

31. If you take q = 0 in Code 8.6, i.e., evp matrix.py, then you get the non-interacting
particle in a box (of length 2π), see section 3.5.1. From Eq. (3.82) the energy is analyt-
ically known to be (proportional to) n2; this means that (except for the 0th eigenvalue)
the energies will come in pairs, e.g., n = ±3. For the first 50 distinct eigenvalues, plot:
(a) the exact eigenvalue, and (b) the numerical answer for matrix-approach discretiza-
tions using n = 100, 200, 300, 400, 500 vs the cardinal number of the eigenvalue; feel
free to use numpy.linalg.eigvals(). Do you notice a pattern?

32. In quantum mechanics, the Mathieu equation takes the form:

− �
2

2m
ψ′′(x) + 2q cos 2x ψ(x) = Eψ(x) (8.158)

In the spirit of the Project in section 7.8, we can view the Hamiltonian on the left-
hand side as Ĥ = Ĥ0 + Ĥ1. We will now see how to tackle this problem in perturba-
tion theory. In the previous problem we took q → 0: this leads to the non-interacting
particle-in-box, with the eigenfunctions and eigenenergies being given by Eq. (3.80)
and Eq. (3.82), respectively; let us denote the state vector of the non-interacting prob-
lem by |n(0)〉 and the corresponding energy by E(0)

n . Show that the first-order correction
to the energy, E(1)

n = 〈n(0)|Ĥ1|n(0)〉, vanishes. Then, derive a simple analytical expression
for the second-order correction to the energy, starting from:

E(2)
n =

∑
k�n

|〈n(0)|Ĥ1|k(0)〉|2

E(0)
n − E(0)

k

(8.159)

33. Compute the first six eigenvalues of the Mathieu equation (for q = 1.5 with n =
150) using a higher-order approximation for the second derivative. That is, instead of
Eq. (8.121) which has errorO(h2), use a finite-difference approximation which has error
O(h8).
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34. In the main text (implicitly) and in earlier problems (explicitly), we have been treating
the Schrödinger equation as a differential equation, working in the position basis. We
now learn that it can be cast and solved as an integral equation, by working in the mo-
mentum basis. First, show that, by using the resolution of the identity in one dimension,∫

dk|k〉〈k|, the Schrödinger equation in Eq. (4.342) takes the form:

k2

2m
ψ(k) +

∫
dk′V(k, k′)ψ(k′) = Eψ(k) (8.160)

Use numerical quadrature and show that this equation is equivalent to:∑
j

Hi jψ j = Eψ j (8.161)

This is the eigenvalue problem Hψψψ = Eψψψ, see Eq. (4.262). Finally, compute the ground-
state energy for V(k, k′) = −e−(k−k′)2/4/(2

√
π); use 100 Gauss–Legendre points from

−10 to +10. While benchmarking, use the matrix approach to also solve the corre-
sponding differential equation in coordinate space, for V(x) = −e−x2

.
35. Compute φ(x, y) for the problem of Eq. (8.129), allowing for different discretizations in

the x and y coordinates. Specifically, reproduce Fig. 8.12 for nx = 64 and ny = 128.
36. In a course on electromagnetism you’ve probably seen how to solve Poisson’s equation

via the use of Green’s functions; for the two-dimensional case this takes the form:

φ(x, y) =
∫

f (x′, y′)
|r − r′| d2r′ (8.162)

Compute the electric potential for the problem of Eq. (8.129) by carrying out this two-
dimensional integral numerically, say, via Gauss–Legendre quadrature; note that you
need to compute such an integral for each value of x and y. As if that wasn’t bad enough,
you now have to worry about the denominator value(s) being close to zero.

37. Tackle the problem of Eq. (8.129) by setting up Eq. (8.133) as a linear algebra problem
and solving it. Take n = 4 and assume that φ = 7 at the boundary. This leads to nine
equations for the nine unknown φp,q’s, for the interior points. Start from p = q = 1:
some of the terms in Eq. (8.133) are known from the boundary condition, so they can
be moved to the right-hand side. Explicitly write out the other eight equations, grouping
everything into the form Ax = b, where x bundles the nine interior φp,q’s column-wise:
that means it contains φ1,1, φ2,1, φ3,1, φ1,2, φ2,2, . . ..

38. Solve a problem that is similar to Eq. (8.129), but this time for a driving term which is
f (x, y) = ce1(3x + 4y) − ce1(5x − 2y), where ce1 is the second even Mathieu function
for the case of q = 1.5; make sure to normalize this Mathieu function in such a way that
ce1(0) = 1. You want to be able to evaluate the right-hand side of Poisson’s equation for
any possible argument, so implement ce1 as a combination of an eigenvalue-problem (to
produce the function on a grid) and an interpolation via FFT (to allow you to compute
its value for points off the grid).

Someone had been reading aloud for a long time and was about to finish; pointing to
the blank space on the scroll, Diogenes cried: “Cheer up, fellows, land is in sight!”.

Diogenes Laërtius (on Diogenes the Cynic)
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A Installation

Whether you fall into a small pool or into the middle of the largest sea,
you still have to swim all the same.

Plato

Python packages The packages we touch upon can be divided into two categories:

• Required: Python 3 and its standard library; Matplotlib; NumPy.
• Mentioned, but not required: Jupyter Notebook; SciPy; SymPy; JAX.

The matrix-related material uses Python’s infix @ operator instead of numpy.dot(); thus,
for a seamless experience you should be using Python 3.5 or a later version. Incidentally,
if you’re still using Python 2 but would like to follow along, you should read the relevant
section in our online tutorial (though you really should switch to Python 3).

Installation The easiest way to download and install the needed packages is via the Ana-
conda Distribution. Actually, this also includes functionality that we don’t use, like pandas,
TensorFlow, or Numba; if you keep doing numerical work with Python, you are likely to
run into many of Anaconda’s packages in the future. Practically speaking, you should
head on over to www.anaconda.com/distribution and click on “Download”. There
are packaged versions for Windows, macOS, or Linux. If you are asked to choose be-
tween Python 2.n and Python 3.n, choose the latter. Follow the instructions after that and
all should be well. Another option is to use Enthought’s Canopy distribution. Finally, you
could try to install the reference implementation, CPython, and the other needed libraries
“by hand”, but if this is your first foray into the Python world it’s probably best to stick to
a distribution, which takes care of all the technical details for you.

Running The simplest way of using Python is to launch the Python interpreter; in addi-
tion to interactive sessions, you can also use a text editor (like vim or emacs) to save code
into a file, which you then run. Another popular option is the Spyder integrated develop-
ment environment (IDE), which allows you to edit, debug, and profile your programs. A
third option is to use Jupyter Notebook, which involves interactive documents that combine
code, text, equations, and plots all in one place (displayed in your browser). If you used the
Anaconda distribution, then you already have both Spyder and Jupyter Notebook installed
on your system; in that case, you can work through our Python and NumPy tutorials inter-
actively (otherwise, you can read the html versions). You can access the tutorials and the
codes discussed in the main text at the companion website www.numphyspy.org or at the
publisher’s website.
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There is no art in being commonly intelligible,
if one sacrifices all well-grounded insight.

Immanuel Kant

We now discuss floating-point numbers more carefully than in chapter 2. As you may
recall, computers use binary digits or bits: bits can take on only two possible values, by
convention 0 or 1; compare with decimal digits, which can take on 10 different values,
from 0 to 9. Bits are grouped to form bytes: 1 byte ≡ 1 B ≡ 8 bits ≡ 8 b.

B.1 Integers

The number of bytes needed to store variables of different type varies (by implementation,
language, etc.), but nowadays it is common that characters use 1 B, integers use 4 B, and
long integers use 8 B; trying to store an integer that’s larger than that leads to overflow. This
doesn’t actually happen in Python, because Python employs arbitrary-precision integers.

For simplicity, let us start with an example for the case of 4 bits:

11002 = 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 = 1210 (B.1)

We use subscripts to denote binary and decimal numbers; the equality sign is here used
loosely. We’re interested only in unsigned integers, where all bits are used to represent
powers of 2. Applying the logic of this equation, you can also show that, e.g., 00112 = 310.
We see that, using 4 bits, the biggest integer we can represent is:

11112 = 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 = 1510 (B.2)

Note that 24 − 1 = 15. More generally, with n bits we can represent integers in the range
[0, 2n), i.e., the largest integer possible is 2n − 1. Here’s another example with n = 6 bits:

1001012 = 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 3710 (B.3)

Explicitly check that the maximum integer representable with 6 bits is 26 − 1 = 63.
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Illustration of exactly representable floating-point numbers �Fig. B.1

B.2 Real Numbers

Several ways of storing real numbers on a computer exist. The simplest is known as fixed-
point representation, but this is not commonly used in computational science. Most often,
real numbers on a computer employ floating-point representation: ± mantissa × 10exponent.
For example, the speed of light in scientific notation is +2.997 924 58× 108 m/s. The man-
tissa here has nine significant figures.

Computers store only a finite number of bits, so cannot store exactly all possible real
numbers. As a result, there are “only” finitely many exact representations/machine num-
bers; this refers to finitely many decimal numbers that can be stored exactly using a
floating-point representation. There are three ways of losing precision, as shown quali-
tatively in Fig. B.1 (which you also encountered as Fig. 2.2): underflow for very small
numbers, overflow for very large numbers, and rounding for decimal numbers whose value
falls between two exactly representable numbers.

In the past, there existed a polyphony of conventions (in programming languages and op-
erating systems) on how to treat floating-point representations; nowadays, the Institute of
Electrical and Electronics Engineers has established a Standard for Floating-Point Arith-
metic (known as IEEE 754), which is widely implemented. As usual, we go over only
selected features.1 The general convention is:

xfloating point = (−1)s × 1. f × 2e−bias (B.4)

where: (a) s is the sign bit, (b) 1. f follows the convention of starting with a 1 (called a
hidden bit) and then having the fraction of the mantissa,2 and (c) the (fixed-value) bias
allows us to use an exponent e that’s always positive, i.e., it is an unsigned integer (but then
e−bias can range from negative to positive values). We need to store s, f , and e, following
the above convention. We go over two cases: singles and doubles.

1 We do not discuss the alternative concept of universal numbers, unums, and their latest incarnation as posits.
This mention of them should be enough for you if you want to delve into this topic further.

2 What we colloquially refer to as the mantissa is more properly called the significand.
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B.2.1 Single-Precision Floating-Point Numbers

These are also called “singles” or “floats”; note that Python floats are actually doubles.3

The storage of singles uses 4 B or 32 b in total. These are distributed as follows: 1 b for the
sign s, 8 b for the exponent e, and 23 b for the fraction of the mantissa f (the bias doesn’t
have to be stored for any given single, as it has the same value for all singles.) Specifically,
we store the sign s in the most-significant bit, then the exponent e, and then the fraction of
the mantissa f , so the 32 bits are stored as:

s e f

31 30 . . . 23 22 . . . 0 (B.5)

If s = 0 we have (−1)s = +1, whereas if s = 1 we have (−1)s = −1.

Exponent The e is always positive (unsigned) and stored in 8 bits so, given that 28 − 1 =
255, the exponent values go from 0000 00002 = 010 to 1111 11112 = 25510. Thus, we have
0 ≤ e ≤ 255. In reality, e = 0 and e = 255 are special cases, so we have 1 ≤ e ≤ 254.
The bias for all singles is bias = 127 so the actual exponent in 2e−bias takes the values
−126 ≤ e − 127 ≤ 127. In other words, numbers with 1 ≤ e ≤ 254 are called normal and
are represented as per Eq. (B.4):

xnormal single = (−1)s × 1. f × 2e−127 (B.6)

Now for the special cases:

• e = 255 with f = 0: this is either +∞ (for s = 0) or −∞ (for s = 1).
• e = 255 with f � 0: this is NaN (not a number).

We return to the remaining special case, e = 0, below.

Mantissa We have at our disposal 23 bits for the fraction f of the mantissa. Denoting them
by m22,m21,m20, . . . ,m1,m0, they are combined together as follows:

normal single mantissa = 1. f = 1 + m22 × 2−1 + m21 × 2−2 + · · · + m0 × 2−23 (B.7)

This expression only includes powers of inverse 2, i.e., it cannot be used to represent num-
bers that cannot be expressed as a sum of powers of inverse 2. You’ll do an example of a
“middle-of-the-road” floating-point single-precision number in a problem.

Largest normal single For now, let us examine the largest possible positive normal single.
The largest possible f is all 1s, so:4

normal single mantissa
∣∣∣∣∣
max
= 1.1111 1111 1111 1111 1111 111

= 1 + 0.5 + 0.25 + · · · ≈ 2 (B.8)

3 Core Python has no singles, but NumPy allows you to control the data type in finer detail, see section 1.6.
4 We stop explicitly denoting numbers as binary or decimal; the distinction should be clear from the context.
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On the other hand, we already know that the largest possible normal exponent e is 254
(since 255 is a special case, as seen above). In binary, this is 1111 1110. Putting it all
together, the largest normal single is stored as:

xnormal single

∣∣∣∣∣
max
= 0 1111 1110 1111 1111 1111 1111 1111 111 (B.9)

This starts with a positive sign bit, then moves on to the largest normal exponent, and then
on to the largest possible fraction of the mantissa. Its value is:

(−1)s × 1. f × 2e−127 ≈ +1 × 2 × 2127 = 2128 ≈ 3.4 × 1038 (B.10)

Subnormal singles We left the special case e = 0 for last. This is used to represent num-
bers that are smaller than the smallest normal number, as per Fig. B.1. These are called
subnormal numbers and are represented as follows:

xsubnormal single = (−1)s × 0. f × 2−126 (B.11)

Comparing this with Eq. (B.6) we observe, first, that the sign convention is the same.
Second, the subnormal mantissa convention is slightly different: it’s written 0. f , so the bits
in the fraction of the mantissa for subnormals are interpreted as:

subnormal single mantissa = 0. f = m22 × 2−1 + m21 × 2−2 + · · · + m0 × 2−23 (B.12)

where there is no leading 1 (since there is a leading 0). Third, the exponent term is 2−126,
which is different from what we would get from Eq. (B.6) if we plugged in e = 0. The
vertical lines in Fig. B.1 are not equidistant from each other: this is most easily seen in the
case of subnormal numbers, which are more closely spaced than normal numbers.

Incidentally, note that if all the bits in f are 0 we are left with the number zero: since
we still have a sign bit, s, this gives rise to a signed zero, meaning that +0 and −0 are two
different ways of representing the same real number.

Smallest subnormal single The smallest possible (non-zero) positive subnormal single is
also the smallest possible positive single-precision floating-point number (since subnor-
mals are smaller than normals). The smallest possible positive subnormal single has only
a single 1 in the mantissa:

subnormal single mantissa
∣∣∣∣∣
min
= 0.0000 0000 0000 0000 0000 001 = 2−23 (B.13)

On the other hand, we already know that the exponent is e = 0, since we’re dealing with a
subnormal. Putting it all together:

xsubnormal single

∣∣∣∣∣
min
= 0 0000 0000 0000 0000 0000 0000 0000 001 (B.14)

This starts with a positive sign bit, then moves on to an exponent that is zero, and then on
to the smallest possible fraction of the mantissa. Its value is:

(−1)s × 0. f × 2−126 = +1 × 2−23 × 2−126 = 2−149 ≈ 1.4 × 10−45 (B.15)
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Summary Singles can represent:

± 1.4 × 10−45 ↔ ±3.4 × 1038 (B.16)

This refers to the ability to store very large or very small numbers; most of this ability
is found in the term corresponding to the exponent. If we try to represent a number that’s
larger than 2128 ≈ 3.4×1038 we get overflow (up to infinity). Similarly, if we try to represent
a number that’s smaller than 2−149 ≈ 1.4 × 10−45 we get underflow (down to 0).

Being able to represent 1.4×10−45 does not mean that we are able to store 45 significant
figures in a single. The number of significant figures (and the related concept of precision)
is found in the mantissa. For singles, the precision is 1 part in 223 ≈ 1.2 × 10−7, which
amounts to six or seven decimal digits.

B.2.2 Double-Precision Floating-Point Numbers

These are also called “doubles”; keep in mind that Python floats are actually doubles. You
will probe these more deeply in a problem – here we just summarize several facts. Their
storage uses 8 B or 64 b in total. These are distributed as follows: 1 b for the sign s, 11 b
for the exponent e, and 52 b for the fraction of the mantissa f .5 Specifically, we store the
sign s in the most-significant bit, then the exponent e, and then the fraction of the mantissa
f . In other words, similarly to what we did for singles, the 64 bits of a double are stored as
follows:

s e f

63 62 . . . 52 51 . . . 0 (B.17)

Exponent The e is always positive (unsigned) and stored in 11 bits so, given that 211 − 1 =
2047, the exponent goes from 0000 0000 0002 = 010 to 1111 1111 1112 = 204710. Thus,
we have 0 ≤ e ≤ 2047. As you may have guessed, e = 0 and e = 2047 are special
cases, so we have 1 ≤ e ≤ 2046. The bias for all doubles is bias = 1023 so the actual
exponent in 2e−bias takes the values −1022 ≤ e − 1023 ≤ 1023. In other words, numbers
with 1 ≤ e ≤ 2046 are called normal and are represented as per Eq. (B.4):

xnormal double = (−1)s × 1. f × 2e−1023 (B.18)

Mantissa The fraction of the mantissa is interpreted analogously to what we did for singles.
There are 52 bits, m51,m50,m49, . . . ,m1,m0, which appear in:

normal double mantissa = 1. f = 1 + m51 × 2−1 + m50 × 2−2 + · · · + m0 × 2−52 (B.19)

for normal doubles. We do not provide more details here because everything works by
analogy to the case of singles.

5 Again, the bias doesn’t have to be stored, as it has the same value for all doubles.
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Summary Doubles can represent:

± 4.9 × 10−324 ↔ ±1.8 × 10308 (B.20)

This refers to the ability to store very large or very small numbers. As mentioned above,
most of this ability is found in the term corresponding to the exponent. If we try to represent
a number that’s larger than 1.8 × 10308 we get overflow. Similarly, if we try to represent a
number that’s smaller than 4.9 × 10−324 we get underflow.

Again, being able to represent 4.9 × 10−324 does not mean that we are able to store 324
significant figures in a double. The number of significant figures (and the related concept of
precision) is found in the mantissa. For doubles, the precision is 1 part in 252 ≈ 2.2×10−16,
which amounts to 15 or 16 decimal digits. Observe that both the digits of precision and the
range in Eq. (B.20) are much better than the corresponding results for singles.

B.3 Problems

1. We saw how to convert binary integers to decimal, for example:
01012 → 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 510

By analogy to this, write a program that breaks decimal numbers down, e.g.:
519210 → 5 × 103 + 1 × 102 + 9 × 101 + 2 × 100

Do this for any four-digit integer the user inputs. (Use * instead of ×). Can you gener-
alize this to work for an integer of any number of digits?

2. Convert the following single-precision floating point numbers from binary to decimal:

(a) 0 0000 0011 0111 1011 0000 0000 0000 000
(b) 1 0101 0101 0111 0110 0000 0000 0001 011

3. Find the smallest possible (non-zero) normal single-precision floating-point number.
4. Repeat our singles argument for doubles and thereby explicitly show Eq. (B.20).



C Appendix C Math Background

I treat deep problems the same way I treat cold baths — get in and get out.
Friedrich Nietzsche

Given the finitude of this book, we cannot cover everything about everything; there are
some prerequisites that will help you benefit from our exposition. We assume you’ve al-
ready taken courses on calculus, linear algebra, and differential equations; some familiarity
with probability and statistics (e.g., that gained in a lab course) is also necessary. Here we
provide the briefest of summaries on some essential topics, in order to refresh your mem-
ory; this is intended as reference (i.e., not pedagogical) material.

C.1 Taylor Series

We use a Taylor series to express a real function f (x) about the point x0 as an infinite sum:

f (x) = f (x0)+ (x− x0) f ′(x0)+
(x − x0)2

2!
f ′′(x0)+

(x − x0)3

3!
f ′′′(x0)+

(x − x0)4

4!
f (4)(x0)+ · · ·

(C.1)
If x0 = 0, this is known as a Maclaurin series. Except for a few counter-examples in
section 7.6, we will always assume that these derivatives exist. We typically express the
Taylor series as a sum over a finite number of terms plus the Lagrange remainder:

f (x) = f (x0) + (x − x0) f ′(x0) +
(x − x0)2

2!
f ′′(x0) +

(x − x0)3

3!
f ′′′(x0) + · · ·

+
(x − x0)n−1

(n − 1)!
f (n−1)(x0) +

(x − x0)n

n!
f (n)(ξ) (C.2)

where ξ is some point between x0 and x.
We will often encounter this series in different forms, e.g., expanding f (x+h) around the

point x: you should be able to apply Eq. (C.1) to such scenarios. To help you get oriented,
let’s see this Taylor series for the case where we only keep the first few terms:

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f (4)(ξ) (C.3)

If we have no further information on f (4)(ξ), this can be compactly expressed by saying
that the remainder is of fourth order, also known as O(h4). This is a way of listing only the
most crucial dependence, dropping constants, prefactors, etc.

We will also encounter the case of a scalar function of many variables, i.e., φ(x), where

566
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x bundles together the variables x0, x1, . . . , xn−1 but φ produces scalar values. We can then
employ a multidimensional Taylor expansion, which takes the form:

φ(x + h) = φ(x) +
n−1∑
j=0

∂φ

∂x j
h j +

1
2

n−1∑
i, j=0

∂φ

∂xi∂x j
hih j + · · · (C.4)

where h bundles together the steps h0, h1, . . . , hn−1. This can be recast as:

φ(x + h) = φ(x) + (∇φ(x))T h +
1
2

hT H(x)h + · · · (C.5)

where ∇φ(x) is the gradient vector and H(x) is the Hessian matrix. This is more compact,
but it assumes you know what the bold symbols mean, a topic we now turn to.

C.2 Matrix Terminology

Here we establish the matrix-related notation and terminology to be used in chapter 4.
Crucially, in order to be consistent with Python’s 0-indexing, we will employ notation that
goes from 0 to n − 1; this is different from most (all?) books on linear algebra; even so,
having both the equations and the code employ the same notation seems to be an advantage,
helping one avoid frustrating “off-by-one” errors.

Definitions A matrix is a rectangular array of numbers. We will be mainly dealing with
square matrices, i.e., matrices of dimensions n × n (in fact, we will often refer to these
simply as matrices). Here’s a 3 × 3 example:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (C.6)

We denote the whole square matrix A (in bold) and the individual elements Ai j (where each
of the indices goes from 0 to n−1). Note that the first index denotes the row and the second
one the column. Since this is a 3 × 3 matrix, it has three rows and three columns.

You may encounter the notation
{
Ai j

}
, where a matrix element is surrounded by curly

braces; here the braces mean that you should imagine i and j taking on all their possible
values (and as a result, you get all possible matrix elements). In other words, this notation
implies A =

{
Ai j

}
.

We will also be using column vectors, which have a single column, e.g.:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0

x1

x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (C.7)

Here we denote the whole column vector x (in bold) and the individual elements xi. Viewed
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as a matrix, this has dimensions 3×1, i.e., three rows and one column. Similarly, one could
define a row vector, which has a single row, for example:

y =
(
y0 y1 y2

)
(C.8)

We denote the whole row vector y (in bold) and the individual elements yi. This matrix has
dimensions 1 × 3, i.e., one row and three columns.

Operations There are several mathematical operations one can carry out using matrices.
For example, multiplication by a scalar can be expressed as either B = κA or Bi j = κAi j.
The most interesting operations are matrix-vector multiplication:

y = Ax, yi =

n−1∑
j=0

Ai jx j (C.9)

and (two)-matrix multiplication:

C = AB, Ci j =

n−1∑
k=0

AikBk j (C.10)

You could also take the transpose of a matrix:

B = AT , Bi j = Aji (C.11)

A further definition: the trace of a square matrix A is the sum of the diagonal elements.
Finally, note that, if x is a 5 × 1 column vector, it is easier to display its transpose:

xT =
(
x0 x1 x2 x3 x4

)
(C.12)

since it fits on one line. Our lower-case bold symbols will always be column vectors, so
we’ll be using the transpose to save space on the page.

Special matrices There are several special matrices that you already know: diagonal matri-
ces, the identity matrix, triangular matrices, symmetric matrices, real matrices, Hermitian
matrices, and so on. Make sure you remember what these definitions mean; for example,
symmetric means A = AT or Ai j = Aji. In numerical linear algebra an important class
consists of sparse matrices, for which most matrix elements are zero. Equally important
are tridiagonal matrices, for which the only non-zero elements are on the main diagonal
and on the two diagonals next to the main diagonal (more generally, banded matrices have
non-zero elements on one or more diagonals).

Finally, a diagonally dominant matrix is one where each diagonal element is larger than
or equal to (in absolute value) the sum of the magnitudes of all other elements on the same
row. This might be easier to grasp by writing out an example:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−3 2 −7

−9 1 6

1 −5 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−9 1 6

1 −5 −2

−3 2 −7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (C.13)
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A is not diagonally dominant, but B is (though we simply re-arranged the rows).

Determinant For a square matrix A, one can evaluate a number known as the determinant,
denoted by det(A) or |A|. It’s easiest to start with the 2 × 2 case:

|A| =

∣∣∣∣∣∣∣A00 A01

A10 A11

∣∣∣∣∣∣∣ = A00A11 − A01A10 (C.14)

This is nothing other than a sum of products of matrix elements. For the n × n case:

|A| =
n−1∑

i0,i1,...,in−1=0

(−1)kA0,i0 A1,i1 . . . A(n−1),in−1 (C.15)

This sum is over all the n! permutations of degree n and k is the number of interchanges
needed to put the i j indices in the order 0, 1, 2, . . . , n − 1. Qualitatively, we have a product
of n elements with the appropriate sign and are dealing with n! such products.

This is not the most efficient way of evaluating determinants. For a 10 × 10 matrix,
we will need to sum 10! = 3 628 800 products, each of which involves nine multiplica-
tions (since you need nine multiplications to multiply 10 elements together). In total, this
requires 9 × 3 628 800 = 32 659 200 multiplications and 3 628 799 additions/subtractions
(since we were faced with 3 628 800 products to be added together). We would also need
to keep track of the interchanges in order to make sure we are using the correct sign. In
practice, one, instead, relies on the fact that the determinant of a triangular matrix is the
product of the diagonal elements:

|A| =
n−1∏
i=0

Aii (C.16)

In chapter 4 we see how to transform a matrix without changing the determinant; thus, we
will be able to compute the determinant of a non-triangular matrix simply by evaluating
the determinant of a “corresponding” triangular matrix.

Inverse Often, we can define the inverse of a matrix A, denoted by A−1, as follows:

A−1A = AA−1 = I (C.17)

where I is the identity matrix having the same dimensions as A (and A−1). Sometimes
(rarely), we are not able to define the inverse: this happens when the determinant of the
matrix is 0; we say the matrix is singular: such a matrix is made up of linearly dependent
rows (or columns).

We are now in a position to introduce two more definitions of “special matrices”. First,
an orthogonal matrix has a transpose that is equal to the inverse:

∑n−1
k=0 AikA jk = δi j or

A−1 = AT . Second, a unitary matrix has a Hermitian conjugate that is equal to the in-
verse:

∑n−1
k=0 AikA∗jk = δi j or A−1 = A†. There are several other important cases (e.g., skew-

symmetric: AT = −A, skew-Hermitian: A† = −A), but what we have here is enough for
our purposes.
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C.3 Probability

In chapter 7 we discuss how to use random numbers in order to compute integrals. Here,
we provide a brief summary of results from the theory of probability.

C.3.1 Discrete Random Variables

Consider a discrete random variable X: its possible values are xi, each one appearing with
the corresponding probability pX

i . Observe that we are using an upper-case symbol for the
random variable and a lower-case symbol for its possible values.

Mean and variance The expectation of this random variable (also known as the mean
value or expected value) is simply:

〈X〉 =
∑

i

pX
i xi (C.18)

One can take the expected value of other quantities, for example the random variable X2.
This is called the second moment of X and is simply:

〈X2〉 =
∑

i

pX
i x2

i (C.19)

This helps us calculate another useful quantity, known as the variance, var(X). The variance
is the expectation of the random variable (X − 〈X〉)2:

var(X) = 〈[X − 〈X〉]2〉 (C.20)

A simple calculation leads to an alternative expression for the variance:

var(X) =
∑

i

pX
i (xi − 〈X〉)2 =

∑
i

pX
i x2

i − 2
∑

i

pX
i xi〈X〉 +

∑
i

pX
i 〈X〉2

= 〈X2〉 − 2〈X〉2 + 〈X〉2 = 〈X2〉 − 〈X〉2 (C.21)

In the first equality we applied the definition of an expected value. In the second equality
we expanded out the square. In the third equality we identified a couple of expected values
and used

∑
i pX

i = 1. In the fourth equality we collected terms. This final result is very often
the expression used to evaluate the variance. Another concept that is often used is that of
the standard deviation; this is simply the square root of the variance,

√
var(X).

Before concluding our discussion we note that, if X is a random variable, then f (X) is
also a random variable. That means that its expectation is:

〈 f (X)〉 =
∑

i

pX
i f (xi) (C.22)

and, similarly, its variance is:

var[ f (X)] = 〈[ f (X) − 〈 f (X)〉]2〉 = 〈 f 2(X)〉 − 〈 f (X)〉2 (C.23)

where the second step follows from a derivation analogous to that above.
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Properties of the mean and variance We now turn to the problem of two random vari-
ables, X and Y . Specifically, we apply the definition of the expectaction to a linear combi-
nation of the two random variables:

〈λ1X + λ2Y〉 =
∑
i, j

pXY
i j (λ1xi + λ2y j) = λ1

∑
i, j

pXY
i j xi + λ2

∑
i, j

pXY
i j y j

= λ1

∑
i

pX
i xi + λ2

∑
j

pY
j y j = λ1〈X〉 + λ2〈Y〉 (C.24)

In the first equality we employed the joint probabilities pXY
i j . In the third equality we eval-

uated sums like
∑

j pXY
i j = pX

i , leading to the marginal probabilities. Our result is known as
the addition rule for expectations of random variables: the expectation of a linear combina-
tion of random variables is the same linear combination of the expectations of the random
variables. This trivially generalizes to more random variables.

We now examine the variance of a linear combination of random variables:

var (λ1X + λ2Y) = 〈(λ1X + λ2Y)2〉 − 〈λ1X + λ2Y〉2

= 〈λ2
1X2 + λ2

2Y2 + 2λ1λ2XY〉 − (λ1〈X〉 + λ2〈Y〉)2

= λ2
1〈X

2〉 + λ2
2〈Y

2〉 + 2λ1λ2〈XY〉 − λ2
1〈X〉

2 − λ2
2〈Y〉

2 − 2λ1λ2〈X〉〈Y〉
= λ2

1var(X) + λ2
2var(Y) + 2λ1λ2 [〈XY〉 − 〈X〉〈Y〉]

= λ2
1var(X) + λ2

2var(Y) + 2λ1λ2cov(X,Y) (C.25)

In the first line we applied the definition of the variance. In the second line we expanded out
the square (in the first term) and used the addition rule that we established in the previous
derivation (in the second term). In the third line we used the same addition rule again (in
the first term) and expanded out the square (in the second term). In the fourth line we
grouped terms (first and fourth, second and fifth, third and sixth, respectively). In the fifth
line we introduced the covariance, cov(X,Y) = 〈XY〉 − 〈X〉〈Y〉, which measures the degree
of independence of two random variables X and Y .

We now make our statement on the interpretation of the covariance more concrete. If X
and Y are two independent random variables, then pXY

i j = pX
i pY

j , so the 〈XY〉 that appears
on the right-hand side in the definition of the covariance can be calculated as follows:

〈XY〉 =
∑
i, j

pXY
i j xiy j =

∑
i

pX
i xi

∑
j

pY
j y j = 〈X〉〈Y〉 (C.26)

implying that the covariance vanishes for two independent random variables.1

We now specialize the main result in our second derivation, Eq. (C.25), to the case of
two independent random variables (and therefore vanishing covariance), to find:

var (λ1X + λ2Y) = λ2
1var(X) + λ2

2var(Y) (C.27)

In words, we find that for independent random variables the variance of a linear combina-
tion of the variables is a new linear combination of the variances of the random variables
we started with: the coefficients on the right-hand side turn out to be squared. We will

1 The reverse is not true: you can have two random variables that are not independent but give zero covariance.
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refer to this as the addition rule for the variances of random variables. This, too, trivially
generalizes to more random variables.

C.3.2 Continuous Random Variables

For the case of a continuous random variable X we are faced with a probability density
function, p(x), which plays the role pX

i played in the discrete case. We typically assume
that the probability density function is normalized, i.e.:∫ +∞

−∞
p(x)dx = 1 (C.28)

holds. This time around, the definition of the expectation is:

〈X〉 =
∫ +∞

−∞
xp(x)dx (C.29)

Similarly, we have for the variance:

var(X) = 〈[X − 〈X〉]2〉 =
∫ +∞

−∞
(x − 〈X〉)2 p(x)dx

= 〈X2〉 − 〈X〉2 =
∫ +∞

−∞
x2 p(x)dx −

(∫ +∞

−∞
xp(x)dx

)2

(C.30)

where the second line follows from a derivation that is completely analogous to that in the
discrete-variable case.

Just like in the previous subsection, if X is a random variable, then f (X) is also a random
variable; its expectation is:

〈 f (X)〉 =
∫ +∞

−∞
f (x)p(x)dx (C.31)

and, similarly, its variance is:

var[ f (X)] = 〈[ f (X) − 〈 f (X)〉]2〉 = 〈 f 2(X)〉 − 〈 f (X)〉2 (C.32)

Note that both steps are identical to Eq. (C.23) but, of course, the meaning of the expecta-
tion is now different.

In complete analogy to the discrete-variable case, we can take linear combinations of
random variables. For the expectation we find:

〈λ1X + λ2Y〉 = λ1〈X〉 + λ2〈Y〉 (C.33)

and for the variance, for independent random variables, we get:

var (λ1X + λ2Y) = λ2
1var(X) + λ2

2var(Y) (C.34)

Observe that these two results are identical to Eq. (C.24) and to Eq. (C.27), respectively,
but once again the expectation should now be interpreted as an integral instead of a sum.
In other words, the addition rule for expectations or variances of random variables is the
same, regardless of whether the variables are discrete or continuous.
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golden ratio, 267
Golub–Welsch algorithm, 307, 430, 488
gradient descent, 292, 294–296, 304
gradient vector, 290, 291, 300, 303, 312, 567
Gram–Schmidt, 188, 190–193, 196, 237, 238, 275,

431, 432
Grassmann variable, 105

gravitation, 60, 244, 494, 546
Green’s function, 558
grid points, see points on a grid

Hadamard product, 20
Hamilton’s principle, 298, 299, 304
Hamiltonian, 109, 206, 210, 211, 221, 222, 225, 226,

228–230, 232, 242, 474–476, 478–481, 557
harmonic oscillator, 109–112, 115, 119, 241, 474,

475, 557
heat equation, 545
heat-bath update, 485
Heraclitus of Ephesus, xiv, xvi, 243
Hermite interpolation, 331, 333, 387, 388, 430, 432,

433, 440
Hermite polynomial, 110, 113, 307, 440, 489
Hermitian conjugate, 138, 569
Hermitian matrices, 171, 568
Hero of Alexandria, 245
Hesiod, xvi, 121
Hessenberg form, 203
Hessian matrix, 290, 291, 296, 301, 372, 567
Heun’s method, 509
hexadecapole, 72
hidden bit, 561
Higham, Nicholas John, 46
Hilbert space, 190, 206, 212, 213, 223
Horner’s rule, 46, 79, 80, 274
Householder transformation, 177, 193, 203, 239
Hubble’s law, 312, 313
hyperbolic, 393, 545

ideal gas, 243, 394
identity matrix, 18, 124, 162, 164, 195, 216, 218, 225,

229, 282, 286, 308, 324, 568, 569
IEEE 754, 561
if, see conditional expression
ill-conditioned, 133–137, 140, 142, 145, 146, 176,

234, 248, 249, 264, 273, 274, 319, 321, 322, 324,
368, 372, 391, 516

imaginary unit, 105, 273, 343, 352, 547
immutable object, 7, 9
implicit midpoint method, 510
implicit trapezoid method, 511, 553
importance sampling, 461–465
improper integral, 444, 454
indentation, 5, 8, 12
independent variable, see dependent variable
induction, 197, 198, 201, 387
inequality, see Cauchy–Schwarz inequality,

Chebyshev inequality, triangle inequality
infinite interval, 444, 446, 448
infinite-dimensional, 190, 241
infinity norm, 129, 131, 233, 237, 341
infix, 20, 559
inflection point, 288
information hiding, see separation of concerns
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initial-value problem, 48, 495–498, 515–517, 522,
529–531, 539, 546

instability, see unstable
integer division, see floor division
integral equation, 558
integration, see Gaussian quadrature, Monte Carlo

integration, Newton–Cotes methods
integration by substitution, 459
interacting spins, 219, 221, 222, 226, 473, 496
intermediate-value theorem, 257
interpolating polynomial, 312, 320, 321, 323, 324,

326, 328, 329, 331, 332, 334, 340, 344–346,
349–351, 358, 359, 361, 388, 401, 430, 435

interpolation, see barycentric formula, cubic spline,
Hermite interpolation, Lagrange interpolation,
Newton interpolation, polynomial interpolation,
trigonometric interpolation

interpreter, 2, 4, 18, 43, 559
inverse, see inverse DFT, inverse-power method,

inverse transform sampling, matrix inverse
inverse DFT, 350, 351, 353, 358, 390, 549, 550
inverse transform sampling, 459, 467
inverse-power method, 176, 181–184, 186, 187, 202,

204, 205, 242
iterative method, 171–173, 176, 181, 192, 235, 236,

248, 250, 251, 256, 280, 282, 536

Jacobi matrix, 307, 488
Jacobi method, 172, 173, 176, 177, 236, 250
Jacobian matrix, 281–283, 285, 286, 296, 307, 382
joint probabilities, 571
Julia, 1
Jupyter Notebook, 559

Kahan, William Morton, xvi, 48, 49, 81, 126
Kant, Immanuel, xvi, 560
Kernighan, Brian Wilson, 3
ket, see state vector
keys, 8, 10, 11, 26, 27, 63, 417
keyword argument, 9, 14, 15, 21
kinetic energy, 28, 97, 109, 111, 114, 115, 120, 206,

297, 474–476, 478, 479
kinetic theory, 391
Klein–Gordon equation, 496
knot, 333
Kronecker delta, 122, 300, 323
Kronecker product, 216–220, 224–229, 232, 242

L’Hôpital’s rule, 58, 78, 442, 555
Lagrange interpolation, 322, 329, 331, 333, 336, 340,

341, 348, 368, 387, 388, 401, 430, 486, 553
Lagrange polynomial, see cardinal polynomials
Lagrange remainder, 90, 566
Lagrangian, xiii, 85, 297, 298, 468
Laguerre polynomial, 440
Laguerre’s method, 277
LAPACK, 169, 180
Laplacian, 474, 478, 479, 548

lattice Monte Carlo, 85, 485
Laurent polynomial, 349
law of large numbers, 490
leading error, 101–103, 400, 405, 410, 419–423, 442,

447, 486
leakage, 351
leapfrog method, 554
least-squares fitting, 315–317, 361, 362, 364, 366,

368, 374, 376, 377, 380
left eigenvectors, 138, 140
Legendre differential equation, 526, 531, 539
Legendre polynomial, 60, 65–69, 71, 82, 83, 110, 118,

190, 239, 275–277, 307, 319, 331, 387, 432–437,
440, 488, 526, 531

lemma, see Danielson–Lanczos lemma
Levenberg–Marquardt, 377
line style, 14
line-search, 295, 309
linear algebra, see eigenvalue problem,

ill-conditioned, linear system
linear congruential generator, 449
linear fitting, see least-squares fitting
linear system, 122, 125–127, 131–135, 137, 138, 141,

164, 182, 183, 186, 194, 233–236, 238, 241, 248,
280, 282, 283, 285, 287, 292, 296, 314, 319, 321,
322, 324, 336, 338, 339, 344, 365, 368, 370, 374,
377, 382, 533, 548, 549

linearly independent, 123, 144, 175, 188, 190, 195,
198, 314, 321, 371

Lipschitz continuity, 501
list, see Python list
list comprehension, 3, 10, 13, 15, 24, 49, 65, 76, 93,

229, 231
literal, 5, 12, 45, 58
local energy, 476, 478, 479, 481–483, 485
local error, 501, 508, 510–513, 520–522, 553, 554
local kinetic energy, 109, 114, 115, 476, 478, 479
local minimum, 287, 288, 290–292, 372
local update, 485
logarithm, 16, 25, 27, 31, 36, 254, 377, 380, 381, 392,

412
logistic map, 305
loop, see Python keywords
Lotka–Volterra equations, 555
LU decomposition, 159–164, 169, 183, 186, 187, 194,

203, 234, 235
Lummer and Pringsheim, 380, 381, 392

machine number, 38, 42, 44, 45, 561
machine precision, 40–42, 105, 108, 166, 192, 341,

393
Maclaurin series, 51, 58, 502, 566
magnetic field, 210, 211, 221–223, 225, 226, 230,

232, 391
mantissa, 38, 40, 561–565
many-particle, 473, 474, 476, 478, 480, 493
marginal probabilities, see joint probabilities
marker, 14, 70, 71
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Markov chain, 468–473, 483
Mathieu equation, 537, 539, 541–543, 545, 557
matrix approach, 532–537, 541, 543, 556, 558
matrix inverse, 135, 164
matrix multiplication, 20, 26, 151, 189, 192, 201, 203,

209, 218, 219, 229, 241, 242, 279, 357, 370, 373,
568

matrix norm, 129, 130
matrix representation, 208, 209, 211, 214, 218, 219,

224
matrix-vector multiplication, 151, 179, 181, 183, 209,

354, 355, 370, 374, 568
Matthew effect, 322
maximal error, 31, 33, 46, 365
maximization, see minimization
maximum likelihood, 363
Maxwell, James Clerk, 379, 391, 394, 475
Maxwell–Boltzmann statistics, 394, 475
mean-value theorem, 255, 256, 330, 405, 436, 487
mechanics, see classical mechanics, quantum

mechanics, statistical mechanics
Mersenne prime, 453
mesh points, see points on a grid
Metropolis ratio, 485
Metropolis–Hastings algorithm, 458, 465, 470, 471,

493
midpoint rule, 398, 400, 401, 405, 411, 428, 486, 488,

510
Millikan, Robert Andrews, 28, 29, 313
minimax approximation, 316
minimization, 287, 289, 292, 296, 297, 299–302, 304,

309, 317, 363, 370, 377, 378, 382, 384, 482, 486
model selection, 382
modified Gram–Schmidt, 193, 237, 238
modules
cmath, 112
copy, 7
functools, 384
jax, 105, 119, 559
math, 5
matplotlib, 13, 559
numpy.linalg, 125, 150, 179, 234
numpy.random, 453
numpy, 2, 16, 559
random, 453
scipy, 2, 555, 559
sympy, 87, 117, 559
timeit, 26, 389

molecular dynamics, xiii, 554
moment of inertia, 122
momentum basis, 558
monic polynomial, 278, 279, 330, 431, 432, 440, 488
monomial basis, 319–322, 324, 326, 329, 334
Monte Carlo integration, 46, 396, 454, 457, 458, 464,

466, 467, 481, 491
multidimensional integral, 394, 446, 448, 474, 481

multidimensional minimization, 289, 292, 297, 299,
301, 304, 309, 370, 377, 378

multiple assignment, 5, 168
multiple roots, 263, 264, 273, 305
multiplication, see matrix multiplication,

matrix-vector multiplication
multipole expansion, 60, 65, 71–76, 84, 275, 546
multistep method, see Adams–Bashforth method

n-th roots of unity, 354
NaN, see not a number
natural spline, 334, 336, 388
near-singular, 130–132
nested functions, 9
nesting, 319, 439
Neumann boundary condition, 529, 556
neutron, 207, 475
Newton interpolation, 322
Newton potential, 60, 66
Newton’s method, 249, 256, 260–265, 267, 269, 272,

274, 275, 279, 281, 282, 287, 295, 296, 299, 300,
305–309, 382, 384–386, 531, 532, 555, 556

Newton–Cotes methods, 395, 396, 402, 411, 427, 435,
436, 512

Newton–Raphson method, see Newton’s method
Nietzsche, Friedrich Wilhelm, xvi, 566
nodal abscissas, 395, 427, 432, 488
node polynomial, 324–326, 330, 331, 387, 431, 433,

436
noisy data, 86, 312
non-bracketing method, see bracketing method
noncentral difference, see backward difference,

forward difference
nonlinear equation, 243–247, 251, 254, 272, 274, 279,

280, 296, 297, 308, 321, 378, 382, 386, 429
nonlinear fitting, 382
nonsymmetric matrices, 121, 122, 171, 176, 321, 335,

527
norm, see Euclidean norm, Frobenius norm, infinity

norm, matrix norm
normal distribution, 374, 491
normal equations, 317, 368–370, 377, 384, 391
normal number, 38, 42, 81, 563
normalization, 190, 197, 238, 239, 436, 440, 458–461,

464, 472, 492, 538, 539, 550
not a number, 166, 442, 562
nuclear physics, see neutron, proton
numerical analysis, xiv, 494
numerology, 449
Numerov’s method, 554, 555
NumPy array, xiv, 15–17, 19, 21, 23–27, 149, 205,

226, 227, 229, 235
NumPy functions
arange(), 16
argmax(), 17, 27, 168, 340
argsort(), 489
array(), 16
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concatenate(), 17, 361
conjugate(), 550
copy(), 17
dot(), 20
empty(), 149
fill diagonal(), 21, 27, 303, 338, 536, 543
kron(), 227
linalg.det(), 234
linalg.eig(), 179
linalg.inv(), 234
linalg.solve(), 150
linspace(), 16
logspace(), 16
meshgrid(), 21, 550
nonzero(), 27
ones(), 16
outer(), 20, 287
polynomial.hermite.hermgauss(), 307
polynomial.legendre.leggauss(), 277
random.randn(), 374
random.seed(), 374, 453
random.uniform(), 453, 483
sort(), 489, 543
sqrt(), 17
sum(), 17
transpose(), 20
where(), 17, 27, 328
zeros(), 16

object orientation, 3, 119, 301, 382
octupole, 72
one-dimensional quantum mechanics, see barrier,

harmonic oscillator, particle in a box, quantum
pendulum, square well

one-pass, 79
open methods, 395, 411
operation count, xiv, 151, 152, 158, 163, 181, 186,

203, 241, 282, 354, 357
operator, 6, 20, 109, 206–216, 218–221, 223–225,

227, 241, 242, 548, 559
order of convergence, 248, 249, 267, 305, 306
ordinary differential equation, 48, 495, 496, 498, 502,

515, 522
orthogonal iteration, see simultaneous iteration
orthogonal matrix, 187–190, 194, 200, 233, 240, 569
orthogonal polynomial, 430, 432, 488
orthogonalization, 188, 190, 193, 196, 275, 372, 431,

432, 436
orthonormal, 188–190, 196–198, 207, 208, 215, 238,

239, 432, 480
oscillator, see harmonic oscillator, quartic oscillator
outer product, 20, 287
overdetermined, 316, 362
overfitting, 363, 368, 376, 390
overflow, 38, 39, 51, 77, 253, 560, 561, 564, 565

page faults, 2
panel, see subinterval

parabolic, 545
parameter estimation, 363, 382
partial differential equation, 496, 498, 545, 554
partial pivoting, see pivoting
partial sum, 48
particle in a box, 111, 120, 557
partition function, 394
pass-by-assignment, 9
pass-by-reference, 9
pass-by-value, 9
pathological, 126, 272, 319, 421, 424, 441, 502
Pauli spin matrices, 208, 219, 220, 226
pendulum, see quantum pendulum, simple pendulum
PEP 8, 3
periodic boundary, 236, 552
periodic function, 346, 351, 441, 442, 541
perturbation theory, xiv, 125, 475, 557
photoelectric effect, 28, 29, 313
photon, 28, 391
piecewise interpolation, see cubic spline
Pindar, xv
pivot element, 156, 166–168, 170
pivot row, 153–160, 165–168, 170, 171
pivoting, 124, 159, 165, 167–171, 173, 235, 283, 319,

338, 340, 374, 536
Planck, Max Karl Ernst Ludwig, 28, 109, 298, 379,

392
Plato, xvi, 317, 559
points on a grid, 97, 99, 100, 119, 298, 314, 353, 395,

396, 533, 547
Poisson’s equation, 498, 545, 546, 548, 549
polynomial interpolation, 315, 317, 319, 320, 322,

329, 331, 333, 341, 346, 349, 402, 404, 428, 437
polynomials, see Bernoulli polynomial, Chebyshev

polynomial, Hermite polynomial, Laguerre
polynomial, Laurent polynomial, Legendre
polynomial, orthogonal polynomial

population mean, 454, 455, 457, 458, 466, 490, 491
population variance, 454, 456, 458, 466, 490, 491
posit, see unum
position basis, 109, 241, 496, 558
positional argument, 13, 15
positive definite, 171, 290, 291, 296, 371, 372
positive semidefinite, 370
potential energy, 28, 109, 115, 301, 474, 475, 478, 479
potential well, see square well
power method, 176, 177, 181–184, 186, 187,

194–196, 198, 202, 204, 205, 237, 242, 528
precision, see arbitrary precision, double precision,

machine precision, single precision
predator-prey, see Lotka–Volterra equations
pressure, 243, 379, 391, 494, 495
principal axes, 122
principle of superposition, 21, 61, 122
probability, see acceptance probability, joint
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probabilities, probability density, proposal
probability

probability density, 110, 111, 454, 458, 459, 467–469,
572

Proclus Lycaeus, 402
product basis, 212
projectile, 495, 555
proof by contradiction, 488
proof by induction, see induction
proof by intimidation, xiv
proof by omission, xiv
propagation of error, see error propagation
proposal probability, 470
proton, 207, 211, 475
pseudorandom, 449, 451
Python built-ins and library functions
abs(), 44
deepcopy(), 7, 23
default timer(), 26, 389
enumerate(), 11
exp() from cmath, 113
exp() from math, 8
format(), 8
partial(), 384
random(), 453
range(), 5
reversed(), 11
seed(), 453
sqrt(), 5
zip(), 11

Python keywords
break, 5, 12, 13, 175
continue, 5, 328
def, 8
else, 5, 12
for, 5
global, 9
if, 5
import, 5
lambda, 9
None, 9
nonlocal, 9
return, 9
True, 5
while, 5

Python list, 2, 15, 16, 18, 24, 98, 149, 226, 478
Python modules, see modules
Python versions

Python 2, 559
Python 3, xiv, 2, 20, 559

QR decomposition, 187, 190–193, 196, 197, 200, 202,
203, 238, 240, 241, 368, 391

QR method, 176, 187, 192, 193, 199–203, 205, 241,
543, 544

quadratic convergence, 249, 264, 272, 287, 307
quadratic equation, 35, 77, 269, 306, 553

quadrature, see Gaussian quadrature, Monte Carlo
integration, Newton–Cotes methods

quadrupole, 72, 82
quantization, 28, 110
quantum mechanics, xv, 109, 111, 190, 206–208, 214,

241, 243, 244, 312, 473, 480, 481, 538, 545, 557
quantum Monte Carlo, 115
quantum number, 111, 112, 114, 207, 208, 214, 476
quantum pendulum, 545
quantum statistics, see Bose–Einstein statistics,

Fermi–Dirac statistics
quartic oscillator, 301, 310

Racah W-coefficients, 223
random number, 374, 396, 448–453, 458–461, 466,

467, 472, 479, 483, 484, 570
random variable, 46, 454–456, 458, 459, 466, 469,

490, 491, 570–572
random walk, 468, 469, 471, 482, 492
rational function, 46, 47, 80, 326
Rayleigh quotient, 178, 179, 181, 182, 184, 186, 196,

198, 202, 240
Rayleigh–Ritz principle, 480, 481
real numbers, 30, 33, 35, 38, 42–44, 47, 52, 60, 105,

106, 108, 112, 343, 451, 527, 561
recoupling, 223, 242
rectangle rule, 299, 395, 397–401, 404, 407, 409, 412,

416–418, 501, 510
rectangular matrix, 369, 374, 391
recurrence relation, 60, 67–69, 82–84, 110, 118, 307,

308, 441, 488
recursion, see backward recursion, forward recursion,

recurrence relation
reduced QR decomposition, 391
regula falsi, 306
reinventing the wheel, 4
relative error, 30, 32, 34–38, 41–43, 46, 49, 54, 76,

84, 90, 173, 417, 519
relativity, see general relativity, special relativity
relaxation method, see iterative method
remainder, see Lagrange remainder
residual vector, 126, 173, 191, 316, 362
residuals, 382, 384, 390
resolution of the identity, 210, 219, 221, 480, 481, 558
reversibility condition, 468
Riccati equation, 515, 521, 525, 553, 554
Richardson extrapolation, 101–104, 119, 315, 396,

419–424, 441, 518, 557
Ridders’ method, 257, 269, 271, 272
Riemann integral, 398
Riemann zeta function, 81
right eigenvectors, 138, 140, 144, 145, 176
RK4, 511–513, 516–519, 521, 522, 527, 529,

531–533, 539, 542, 553–555
rocket surgery, 415
Rodrigues’ formula, 118, 432
Rolle’s theorem, 330
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Romberg integration, 396, 407, 419, 421, 424, 425,
427, 448, 488

root suppression, see suppress an already-found root
root-finding, 172, 246, 256, 264, 273–275, 277, 287,

288, 295, 304, 309, 317, 378, 384, 494, 505, 516,
526, 531–533, 537, 539, 555

roots of unity, see n-th roots of unity
rotation, 121, 122
rounding error, 30, 45, 46, 48, 58, 77, 78, 80, 125,

128, 283
row major, 21
row vector, 20, 138, 568
rule of thumb, 10, 134, 145, 363
Runge function, 322, 341
Runge–Kutta method, 506, 511, 512, 515–517, 553
Runge–Kutta–Fehlberg method, 554
RuntimeWarning, 442, 550

saddle point, 288, 289, 292, 296
safety factor, 521
sample mean, 454–458, 464–467, 473, 482, 483, 486,

490, 491
sample variance, 456
sampling, see importance sampling, inverse transform

sampling, uniform sampling, weighted sampling
scalar function, 60, 287, 289, 291, 293, 295, 296, 299,

466, 566
Schrödinger equation, 109, 111, 115, 206, 210, 211,

221, 225, 241, 243, 473, 475, 496, 498, 545, 558
scientific notation, 38, 561
secant method, 247, 249, 265–268, 272, 285, 288,

306, 308, 532, 539
second derivative, 86, 91, 96, 97, 100, 109, 114–120,

261, 262, 288, 296, 300, 301, 333, 334, 336–338,
371, 388, 389, 405, 409, 474, 478, 493, 496, 501,
533, 542, 557

seed, 374, 375, 450, 452, 453, 463, 464, 483–485,
583, 584

self-correcting, 172, 256
seminormal equations, 391
separation of concerns, 13, 69, 149, 275, 464
serial test, 452
series, see Basel problem, Fourier series, Maclaurin

series, Taylor series, telescoping series
Shakespeare, William, xvi, 85
shifted DFT, 352
shifting, see eigenvalue shifting
shooting method, 530–533, 536–539, 541–543, 556,

557
sign bit, 561, 563
signed zero, see ±0
significand, 561
significant figure, 39, 42, 43, 58, 78, 126, 417, 561,

564, 565
similarity transformation, 187, 193, 194, 198
simple eigenvalue, 135, 137, 139, 145
simple pendulum, 490

Simpson’s rule, 403, 407–412, 414–419, 425, 427,
429, 436, 441, 447, 448, 487–489, 512, 518

simultaneous differential equations, 495, 522, 531
simultaneous iteration, 187, 194–196, 199–201, 240
single precision, 562, 563, 565
singularity, 321, 341, 395, 442–446, 448, 489
Slater determinant, 493
slicing, 3, 6, 7, 16, 19, 149, 168, 169, 175, 303, 338,

346, 361, 479, 489, 536
Sophocles, xvi, 393, 494
sorting, 2, 48, 489, 544
sparse, 147, 157, 171, 176, 235, 282, 354, 391, 568
special relativity, 496
spectral differentiation, 312, 389
spin matrices, see Pauli spin matrices
spinor, 208, 209
spline, see clamped spline, cubic spline, natural spline
Spyder, 559
square matrix, 187, 567, 568
square well, 243, 557
stability, 57, 165, 171, 319, 372, 502, 503, 505, 516,

518, 527–529, 534, 552, 555
standard deviation, 34, 46, 366, 390, 454, 455, 457,

465, 466, 482, 483, 485, 570
standard error, 31, 46, 365
standard form, 124, 444
standard order of DFT, see shifted DFT
state vector, 206, 208–216, 218, 220, 223, 224, 480,

496, 557
stationary, 287, 298, 304, 468–472, 491, 492, 585
stationary distribution, 468, 469, 471, 472
statistical inference, 363
statistical mechanics, xv, 243, 394, 468
statistics, see autocovariance, average, covariance,

population mean, population variance, sample
mean, sample variance, standard error, variance

steepest descent, see gradient descent
Stefan–Boltzmann law, 377, 379–381, 385
Steffensen’s method, 307
stellar structure, 494
stencil, see discretization
step size, 92–94, 99–102, 115, 117, 419, 472, 478,

479, 493, 499, 503, 515–522, 528, 529, 557
stiffness, 516, 527
Stirling’s formula, 436
stochastic, 46, 374, 396, 449, 479, 480
stress-energy tensor, 391
Sturm–Liouville form, 537
subinterval, 98, 315, 333, 334, 336, 338, 396, 399,

400, 405
subnormal, 38, 81, 563
subtract off the singularity, 443, 489
subtractive cancellation, see catastrophic cancellation
summation, see Basel problem, compensated

summation, Euler–Maclaurin summation
formula, partial sum
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superlinear convergence, 267, 272
superposition, see principle of superposition
suppress an already-found root, 274, 306
Swift, Jonathan, 131
symbolic differentiation, see analytical differentiation
symmetric matrices, 121, 140, 171, 176, 198, 335, 568
synthetic division, 306

Taylor series, 30, 54, 81, 83, 86–89, 97, 102, 103,
118, 119, 399, 409, 410, 436, 441, 487, 566

telescoping series, 234, 406, 488
temperature, 32, 243, 378, 379, 381, 385, 391, 394
tensor product, 212, 213, 216, 218, 220, 223, 224
termination criterion, 173, 174, 198, 202, 241, 250,

256, 258, 259, 276, 281, 283, 304, 305, 386
test equation, 502–505, 513, 517, 527, 528, 552, 553
test function, 115, 116, 205
theorem, see binomial theorem, Bolzano’s theorem,

central limit theorem, Fubini’s theorem,
fundamental theorem of algebra,
intermediate-value theorem, mean-value
theorem, Rolle’s theorem, Weierstrass
approximation theorem

thermodynamic, 379, 391
thin QR decomposition, see reduced QR

decomposition
timing, 26, 389, 552
Tolman–Oppenheimer–Volkoff, 494
trace, 21, 242, 391, 568
trajectory, 295, 297, 298, 303, 304, 555
transcendental equation, 243, 244
transpose, 20, 126, 138, 179, 187, 191, 192, 200, 205,

370, 568, 569, 583
trapeziform, see trapezoid rule
trapezoid rule, 402–409, 411, 412, 414–416, 418, 420,

421, 423, 424, 427, 435, 441–443, 448, 487, 489,
490, 511, 512

Trefethen, Lloyd Nicholas, xvi, 317
triangle inequality, 33, 35, 130, 501
triangular matrix, 134, 136, 147, 151, 152, 157–160,

162, 165, 170, 187, 188, 190, 198, 233, 236, 238,
240, 424, 569

tridiagonal, 235, 236, 241, 301, 308, 335, 338, 488,
535, 536, 543, 568

trigonometric interpolation, 315, 341, 343, 344, 346,
348, 351, 358, 389

truncation error, 500, 501, 504, 506, 508, 533, 542
tuple, 7–9, 11, 17, 18, 69, 71, 76, 212, 226, 227, 229,

276, 328, 452
two-dimensional FFT, 549, 550
two-pass, 79
type hints, 3

unbiased estimator, 456
unconditionally stable, 505
uncoupled representation, see coupled representation
underdetermined, 285
underflow, 38–40, 51, 77, 561, 564, 565

unequally spaced abscissas, 396, 428
uniform distribution, 458
uniform sampling, 463–465, 467
uniqueness, 325, 432
unit circle, 318, 349, 354
unit roundoff, 41
unitary, 194, 569
unshifted DFT, 351
unsigned integer, 560, 561
unstable, 54, 170, 319, 322, 429, 503, 516, 517, 528,

529
unum, 561
upper bound, 473, 474, 480, 481, 486
user-defined function, 8, 20

van der Waals, 243
Vandermonde matrix, 321, 322, 324, 368, 387, 429
variance, 79, 364, 366, 372–374, 382, 390–392,

454–458, 461, 462, 464, 466, 473, 483, 490–492,
570–572

variational method, 479
variational Monte Carlo, 481
variational principle, see Rayleigh–Ritz principle
vector field, 21, 22
vectorization, 17
velocity, 85, 311, 313, 391, 394, 495, 554
Vergil (Publius Vergilius Maro), xvi, 311
Verlet algorithm, 300, 554
vibrations, 85, 537
vim, 559
virial expansion, 243
visualization, xiii, 1, 60, 62, 546

w-orthogonal, 440
walker, 468, 472, 478, 479, 482, 483, 485, 492
Waring, Edward, 322
wave equation, 545
wave function, 97, 109–117, 120, 244, 312, 473–476,

478–483, 485, 492, 493, 496, 545
wave number, 112, 342, 352, 356, 359, 548
wave vector, 120
Weierstrass approximation theorem, 317
weight function, 439, 440, 458, 460–462, 464, 467,

482, 485
weighted sampling, 465, 467, 468
well-conditioned, 125, 133, 134, 136, 140–142, 145,

165, 166, 170, 176, 248, 319, 516
Wigner 6j-symbols, 223
Wilkinson, James Hardy, xvi, 125, 135, 241, 273, 274
windowing, 351
Wordsworth, William, xiii, xv

Yang–Mills Lagrangian, xiii

Zeeman effect, 230
zero-point motion, 110
ZeroDivisionError, 50, 442
zeros of polynomials, 272, 274, 297
zeta function, see Riemann zeta function
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