
PHYSICS
FIFTH EDITION

Alan Giambattista



Physics

Alan Giambattista
Cornell University

FIFTH EDITION



PHYSICS: FIFTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2020 by  
McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions  
© 2016, 2010, and 2008. No part of this publication may be reproduced or distributed in any form or by 
any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill 
Education, including, but not limited to, in any network or other electronic storage or transmission, or 
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the 
United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LWI 22 21 20 19

ISBN 978-1-260-48691-9
MHID 1-260-48691-5

Portfolio Manager: Thomas Scaife, Ph.D
Product Developer: Marisa Dobbeleare
Marketing Manager: Shannon O’Donnell
Content Project Managers: Laura Bies, Tammy Juran & Sandra Schnee
Buyer: Laura Fuller
Design: David W. Hash
Content Licensing Specialist: Melissa Homer
Cover Image: ©ostill/Shutterstock
Compositor: Aptara®, Inc.

All credits appearing on page or at the end of the book are considered to be an extension of the copyright 
page.

Library of Congress Cataloging-in-Publication Data

Names: Giambattista, Alan, author. | Richardson, Betty McCarthy, author. |
   Richardson, Robert C. (Robert Coleman), 1937-2013, author.
Title: Physics / Alan Giambattista, Betty McCarthy Richardson, Robert C.
   Richardson.
Description: Fifth edition. | New York, NY : McGraw-Hill Education, [2020] |
   Includes index.
Identifiers: LCCN 2018055989 | ISBN 9781260486919 (alk. paper)
Subjects:  LCSH: Physics—Textbooks.
Classification: LCC QC21.3 .G537 2020 | DDC 530—dc23 LC record available at  
https://lccn.loc.gov/2018055989

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website 
does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education 
does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered



iii

About the Author

Alan Giambattista hails from northern New Jersey. His teaching career got an 
early start when his fourth-grade teacher, Anne Berry, handed the class over to him 
to teach a few lessons about atoms and molecules. At Brigham Young University, he 
studied piano performance and physics. After graduate work at Cornell University, 
he joined the physics faculty and has taught introductory physics there for nearly three 
decades.

Alan still appears in concert regularly as a pianist and harpsichordist. When the 
long upstate New York winter is finally over, he is eager to get out on Cayuga 
Lake’s waves of blue for Sunday sailboat races. Alan met his wife Marion in a 
singing group and they have been making beautiful music together ever since. They 
live in an 1824 parsonage built for an abolitionist minister, which is now surrounded 
by an organic dairy farm. Besides taking care of the house, cats, and gardens, they 
love to travel together, especially to Italy. They also love to spoil their adorable 
grandchildren, Ivy and Leo.

Photo by Melvin Cabili



iv

Dedication
For Ivy and Leo



v

Brief Contents

Chapter 1 Introduction 1

 PART ONE Mechanics
Chapter 2 Motion Along a Line 27
Chapter 3 Motion in a Plane 59
Chapter 4 Force and Newton’s Laws of Motion 94
Chapter 5 Circular Motion 159
Chapter 6 Conservation of Energy 197
Chapter 7 Linear Momentum 241
Chapter 8 Torque and Angular Momentum 276
Chapter 9 Fluids 331
Chapter 10 Elasticity and Oscillations 373
Chapter 11 Waves 441
Chapter 12 Sound 442

 PART TWO Thermal Physics
Chapter 13 Temperature and the Ideal Gas 477
Chapter 14 Heat 511
Chapter 15 Thermodynamics 550

 PART THREE Electromagnetism
Chapter 16 Electric Forces and Fields 583
Chapter 17 Electric Potential 628
Chapter 18 Electric Current and Circuits 669
Chapter 19 Magnetic Forces and Fields 717
Chapter 20 Electromagnetic Induction 767
Chapter 21 Alternating Current 807

 PART FOUR Electromagnetic Waves and Optics
Chapter 22 Electromagnetic Waves 835
Chapter 23 Reflection and Refraction of Light 873
Chapter 24 Optical Instruments 917
Chapter 25 Interference and Diffraction 950

 PART FIVE Quantum and Particle Physics and Relativity
Chapter 26 Relativity 991
Chapter 27 Early Quantum Physics and the Photon 1022
Chapter 28 Quantum Physics 1055
Chapter 29 Nuclear Physics 1089
Chapter 30 Particle Physics 1132

 Appendix A Mathematics Review A-1

 Appendix B Reference Information B-1



vi

Contents

List of Selected Applications xii

Preface xvii

Acknowledgments xxvi

Chapter 1 Introduction 1

 1.1 Why Study Physics? 2
 1.2 Talking Physics 2
 1.3 The Use of Mathematics 3
 1.4 Scientific Notation and Significant Figures 5
 1.5 Units 9
 1.6 Dimensional Analysis 12
 1.7 Problem-Solving Techniques 14
 1.8 Approximation 15
 1.9 Graphs 16

Online Supplement: How to Succeed in Your Physics Class

PART ONE

Mechanics

Chapter 2 Motion Along a Line 27

 2.1 Position and Displacement  28
 2.2 Velocity: Rate of Change of Position  30
 2.3 Acceleration: Rate of Change of Velocity 36
 2.4 Visualizing Motion Along a Line with Constant 

Acceleration 40
 2.5 Kinematic Equations for Motion Along a Line 

with Constant Acceleration 41
 2.6 Free Fall 46

Chapter 3 Motion in a Plane 59

 3.1 Graphical Addition and Subtraction  
of Vectors 60

 3.2 Vector Addition and Subtraction  
Using Components 63

 3.3 Velocity 68
 3.4 Acceleration 70

 3.5 Motion in a Plane with Constant  Acceleration 72
 3.6 Velocity Is Relative; Reference Frames 78

Chapter 4 Force and Newton’s Laws 
of Motion 94

 4.1 Interactions and Forces 95
 4.2 Inertia and Equilibrium: Newton’s First Law 

of Motion 99
 4.3 Net Force, Mass, and Acceleration: Newton’s 

Second Law of Motion 103
 4.4 Interaction Pairs: Newton’s Third Law  

of Motion 106
 4.5 Gravitational Forces 108
 4.6 Contact Forces 111
 4.7 Tension 119
 4.8 Applying Newton’s Laws 124
 4.9 Reference Frames 133
 4.10 Apparent Weight  134
 4.11 Air Resistance 136
 4.12 Fundamental Forces 137

Online Supplement: Air Resistance

Chapter 5 Circular Motion 159

 5.1 Description of Uniform Circular Motion 160
 5.2 Radial Acceleration 166
 5.3 Unbanked and Banked Curves 171
 5.4 Circular Orbits of Satellites and Planets 174
 5.5 Nonuniform Circular Motion 178
 5.6 Angular Acceleration 182
 5.7 Apparent Weight and Artificial Gravity 184

Chapter 6 Conservation of Energy 197

 6.1 The Law of Conservation of Energy 198
 6.2 Work Done by a Constant Force 199
 6.3 Kinetic Energy 207
 6.4 Gravitational Potential Energy and  

Mechanical Energy 209
 6.5 Gravitational Potential Energy for an Orbit 215
 6.6 Work Done by Variable Forces 218



 CONTENTS vii CONTENTS vii

 9.10 Viscous Drag 357
 9.11 Surface Tension 359

Online Supplement: Turbulent Flow; Surface Tension

Chapter 10 Elasticity and Oscillations 373

 10.1 Elastic Deformations of Solids 374
 10.2 Hooke’s Law for Tensile and  

Compressive Forces 374
 10.3 Beyond Hooke’s Law 377
 10.4 Shear and Volume Deformations 380
 10.5 Simple Harmonic Motion 384
 10.6 The Period and Frequency for SHM 387
 10.7 Graphical Analysis of SHM 391
 10.8 The Pendulum 393
 10.9 Damped Oscillations 397
 10.10 Forced Oscillations and  

Resonance 398

Online Supplement: Period of a Physical Pendulum

Chapter 11 Waves 411

 11.1 Waves and Energy Transport 412
 11.2 Transverse and Longitudinal Waves 414
 11.3 Speed of Transverse Waves on a String 416
 11.4 Periodic Waves 418
 11.5 Mathematical Description of a Wave 419
 11.6 Graphing Waves 421
 11.7 Principle of Superposition 423
 11.8 Reflection and Refraction 424
 11.9 Interference and Diffraction 426
 11.10 Standing Waves 429

Online Supplement: Refraction

Chapter 12 Sound 442

 12.1 Sound Waves 443
 12.2 The Speed of Sound Waves 445
 12.3 Amplitude and Intensity of Sound Waves 447
 12.4 Standing Sound Waves 452
 12.5 Timbre 457
 12.6 The Human Ear 458
 12.7 Beats 460
 12.8 The Doppler Effect 462
 12.9 Echolocation and Medical Imaging 466

Online Supplement: Attenuation (Damping) of Sound 
Waves; Supersonic Flight

 6.7 Elastic Potential Energy 221
 6.8 Power 224

Chapter 7 Linear Momentum 241

 7.1 A Conservation Law for a Vector  
Quantity 242

 7.2 Momentum 242
 7.3 The Impulse-Momentum Theorem 244
 7.4 Conservation of Momentum 250
 7.5 Center of Mass 253
 7.6 Motion of the Center of Mass 256
 7.7 Collisions in One Dimension 258
 7.8 Collisions in Two Dimensions 262

Chapter 8 Torque and Angular 
Momentum 276

 8.1 Rotational Kinetic Energy and  
Rotational  Inertia 277

 8.2 Torque 282
 8.3 Calculating Work Done from  

the Torque 287
 8.4 Rotational Equilibrium 289
 8.5 Application: Equilibrium in the  

Human Body 298
 8.6 Rotational Form of Newton’s  

Second Law 302
 8.7 The Motion of Rolling Objects 303
 8.8 Angular Momentum 306
 8.9 The Vector Nature of Angular  

Momentum 310

Online Supplement: Mechanical Advantage;  
Rotational Inertia

Chapter 9 Fluids 331

 9.1 States of Matter 332
 9.2 Pressure 332
 9.3 Pascal’s Principle 334
 9.4 The Effect of Gravity on Fluid  

Pressure 336
 9.5 Measuring Pressure 339
 9.6 The Buoyant Force 342
 9.7 Fluid Flow 347
 9.8 Bernoulli’s Equation 350
 9.9 Viscosity 354



viii CONTENTS

PART THREE

Electromagnetism

Chapter 16 Electric Forces and Fields 583

 16.1 Electric Charge 584
 16.2 Electric Conductors and Insulators 588
 16.3 Coulomb’s Law 593
 16.4 The Electric Field 597
 16.5 Motion of a Point Charge in a Uniform  

Electric Field 605
 16.6 Conductors in Electrostatic Equilibrium 609
 16.7 Gauss’s Law for Electric Fields 612

Chapter 17 Electric Potential 628

 17.1 Electric Potential Energy 629
 17.2 Electric Potential 632
 17.3 The Relationship Between Electric Field  

and  Potential 639
 17.4 Conservation of Energy for Moving Charges 643
 17.5 Capacitors 644
 17.6 Dielectrics 647
 17.7 Energy Stored in a Capacitor 653

Chapter 18 Electric Current  
and Circuits 669

 18.1 Electric Current 670
 18.2 Emf and Circuits 671
 18.3 Microscopic View of Current in a Metal:  

The Free-Electron Model 674
 18.4 Resistance and Resistivity 676
 18.5 Kirchhoff’s Rules 683
 18.6 Series and Parallel Circuits 684
 18.7 Circuit Analysis Using Kirchhoff’s Rules 690
 18.8 Power and Energy in Circuits 693
 18.9 Measuring Currents and Voltages 695
 18.10 RC Circuits 696
 18.11 Electrical Safety 700

Chapter 19 Magnetic Forces  
and Fields 717

 19.1 Magnetic Fields 718
 19.2 Magnetic Force on a Point Charge 721

PART TWO

Thermal Physics

Chapter 13 Temperature and the  
Ideal Gas 477

 13.1 Temperature and Thermal Equilibrium 478
 13.2 Temperature Scales 478
 13.3 Thermal Expansion of Solids  

and Liquids 480
 13.4 Molecular Picture of a Gas 484
 13.5 Absolute Temperature and the Ideal  

Gas Law 487
 13.6 Kinetic Theory of the Ideal Gas 491
 13.7 Temperature and Reaction Rates 496
 13.8 Diffusion 498

Online Supplement: Mean Free Path

Chapter 14 Heat 511

 14.1 Internal Energy 512
 14.2 Heat 514
 14.3 Heat Capacity and Specific Heat 516
 14.4 Specific Heat of Ideal Gases 520
 14.5 Phase Transitions 522
 14.6 Thermal Conduction 527
 14.7 Thermal Convection 530
 14.8 Thermal Radiation 532

Online Supplement: Convection

Chapter 15 Thermodynamics 550

 15.1 The First Law of Thermodynamics 551
 15.2 Thermodynamic Processes 552
 15.3 Thermodynamic Processes  

for an Ideal Gas 556
 15.4 Reversible and Irreversible Processes 559
 15.5 Heat Engines 561
 15.6 Refrigerators and Heat Pumps 564
 15.7 Reversible Engines and Heat Pumps 566
 15.8 Entropy 569
 15.9 The Third Law of Thermodynamics 572

Online Supplement: A Reversible Engine Has the Maximum 
Possible Efficiency; Details of the Carnot Cycle; Entropy 
and Statistics



 CONTENTS ix

 22.2 Antennas 837
 22.3 The Electromagnetic Spectrum 840
 22.4 Speed of EM Waves in Vacuum and  

in  Matter 845
 22.5 Characteristics of Traveling Electromagnetic 

Waves in Vacuum 849
 22.6 Energy Transport by EM Waves 851
 22.7 Polarization 855
 22.8 The Doppler Effect for EM Waves 862

Online Supplement: Ampère-Maxwell Law

Chapter 23 Reflection and Refraction  
of Light 873

 23.1 Wavefronts, Rays, and Huygens’s  
Principle 874

 23.2 The Reflection of Light 877
 23.3 The Refraction of Light: Snell’s  

Law 878
 23.4 Total Internal Reflection 883
 23.5 Polarization by Reflection 888
 23.6 The Formation of Images Through Reflection  

or Refraction 890
 23.7 Plane Mirrors 892
 23.8 Spherical Mirrors 894
 23.9 Thin Lenses 900

Chapter 24 Optical Instruments 917

 24.1 Lenses in Combination 918
 24.2 Cameras 921
 24.3 The Eye 924
 24.4 Angular Magnification and the  

Simple  Magnifier 929
 24.5 Compound Microscopes 932
 24.6 Telescopes 934
 24.7 Aberrations of Lenses and Mirrors 938

Chapter 25 Interference and 
Diffraction 950

 25.1 Constructive and Destructive  
Interference 951

 25.2 The Michelson Interferometer 955
 25.3 Thin Films 957
 25.4 Young’s Double-Slit Experiment 963
 25.5 Gratings 966

 19.3 Charged Particle Moving Perpendicularly to  
a Uniform Magnetic Field 727

 19.4 Motion of a Charged Particle in a Uniform 
 Magnetic Field: General 732

 19.5 A Charged Particle in Crossed E
→

 and B
→

 
Fields 733

 19.6 Magnetic Force on a Current-Carrying Wire 737
 19.7 Torque on a Current Loop 739
 19.8 Magnetic Field due to an Electric Current 743
 19.9 Ampère’s Law 748
 19.10 Magnetic Materials 750

Chapter 20 Electromagnetic  
Induction 767

 20.1 Motional Emf 768
 20.2 Electric Generators 771
 20.3 Faraday’s Law 774
 20.4 Lenz’s Law 779
 20.5 Back Emf in a Motor 782
 20.6 Transformers 783
 20.7 Eddy Currents 785
 20.8 Induced Electric Fields 786
 20.9 Inductance 787
 20.10 LR Circuits 791

Chapter 21 Alternating Current 807

 21.1 Sinusoidal Currents and Voltages: Resistors  
in ac Circuits 808

 21.2 Electricity in the Home 810
 21.3 Capacitors in ac Circuits 811
 21.4 Inductors in ac Circuits 815
 21.5 RLC Series Circuits 816
 21.6 Resonance in an RLC Circuit 821
 21.7 Converting ac to dc; Filters 823

PART FOUR

Electromagnetic Waves and Optics

Chapter 22 Electromagnetic Waves 835

 22.1 Maxwell’s Equations and Electromagnetic 
Waves 836



x CONTENTS

 28.4 The Uncertainty Principle 1062
 28.5 Wave Functions for a Confined Particle 1064
 28.6 The Hydrogen Atom: Wave Functions  

and Quantum Numbers 1067
 28.7 The Exclusion Principle; Electron Configurations 

for Atoms Other Than Hydrogen 1069
 28.8 Electron Energy Levels in a Solid 1072
 28.9 Lasers 1074
 28.10 Tunneling 1077

Online Supplement: Energy Levels in Solids

Chapter 29 Nuclear Physics 1089

 29.1 Nuclear Structure 1090
 29.2 Binding Energy 1093
 29.3 Radioactivity 1097
 29.4 Radioactive Decay Rates and  

Half-Lives 1103
 29.5 Biological Effects of Radiation 1109
 29.6 Induced Nuclear Reactions 1115
 29.7 Fission 1117
 29.8 Fusion 1121

Chapter 30 Particle Physics 1132

 30.1 Fundamental Particles 1133
 30.2 Fundamental Interactions 1135
 30.3 Beyond the Standard Model 1138
 30.4 Particle Accelerators 1141
 30.5 Unanswered Questions  

in Particle Physics 1141

Appendix A
Mathematics Review  A-1

A.1 Algebra A-1
A.2 Graphs of Linear Functions A-2
A.3 Solving Equations A-2
A.4 Exponents and Logarithms A-4
A.5 Proportions and Ratios A-7
A.6 Geometry A-8
A.7 Trigonometry A-9
A.8 Sinusoidal Functions of Time A-11
A.9 Approximations A-12
A.10 Vectors A-13
A.11 Symbols Used in This Book A-15

 25.6 Diffraction and Huygens’s Principle 970
 25.7 Diffraction by a Single Slit 972
 25.8 Diffraction and the Resolution of  

Optical  Instruments 975
 25.9 X-Ray Diffraction 978
 25.10 Holography 979

PART FIVE

Quantum and Particle Physics  
and Relativity

Chapter 26 Relativity 991

 26.1 Postulates of Relativity 992
 26.2 Simultaneity and Ideal Observers 995
 26.3 Time Dilation 998
 26.4 Length Contraction 1001
 26.5 Velocities in Different Reference  

Frames 1003
 26.6 Relativistic Momentum 1005
 26.7 Mass and Energy 1007
 26.8 Relativistic Kinetic Energy 1009

Chapter 27 Early Quantum Physics  
and the Photon 1022

 27.1 Quantization 1023
 27.2 Blackbody Radiation 1023
 27.3 The Photoelectric Effect 1024
 27.4 X-Ray Production 1030
 27.5 Compton Scattering 1031
 27.6 Spectroscopy and Early Models of  

the Atom 1033
 27.7 The Bohr Model of the Hydrogen Atom; 

Atomic Energy Levels 1037
 27.8 Pair Annihilation and Pair Production 1043

Online Supplement: Radii of the Bohr Orbits

Chapter 28 Quantum Physics 1055

 28.1 The Wave-Particle Duality 1056
 28.2 Matter Waves 1057
 28.3 Electron Microscopes 1060



 CONTENTS xi

Answers to Selected Questions and  
Problems AP-1

Index I-1

Appendix B
Reference Information B-1

B.1 Physical Constants B-1
B.2 Unit Conversions B-2
B.3 SI Prefixes B-2
B.4 SI Derived Units B-3
B.5 Useful Physical Data B-3
B.6 Astrophysical Data B-3
B.7 Periodic Table of the Elements B-4
B.8 Properties of Selected Nuclides B-5



xii

Biology/Life Science
Bone density and osteoporosis, Ex. 1.1
Red blood cell count, PP 1.1
Surface area of alveoli in the lung, Ex. 1.7
Estimating the surface area of the human body, Ex. 1.10
Can the lion catch the buffalo?, Sec. 2.3
Doppler echocardiography, Ex. 2.6
Traction apparatus, Ex. 4.1
Newton’s third law: swimming, walking, skiing, Sec. 4.4
Tensile forces in the body, Sec. 4.7
Effects of acceleration on the human body, Sec. 4.10
Centrifuges, Ex. 5.2, Ex. 5.4
Effects of acceleration on organisms, Sec. 5.2; Ex. 5.4
Energy conversion in jumping athletes, kangaroos, and 

fleas, Sec. 6.7, Ex. 6.12, PP 6.12
Molecular motors in bacteria and in muscles, Ex. 6.13, PP 6.13
Protecting the body from injury, Sec. 7.3, Ex. 7.2, PP 7.2,
Ballistocardiography, Sec. 7.4
Jet propulsion in squid, Ex. 7.5
Exercise is good for you, PP 8.4
Posture and center of gravity of animals, athletes, Sec. 8.4, 

PP 8.9
Conditions for equilibrium in the human body, Sec. 8.5
Forces on human spine during heavy lifting, Sec. 8.5
Torque and equilibrium in the human body, Sec. 8.5, 

Ex. 8.10, PP 8.10
Flexor versus extensor muscles, Sec. 8.5
Force to hold arm horizontal, Ex. 8.10
Conservation of angular momentum in figure skaters, 

 divers, Sec. 8.8
Pressure on divers and animals underwater, Ex. 9.3
Sphygmomanometer and blood pressure, Sec. 9.5
Specific gravity measurements in medicine, Sec. 9.6
Animals manipulating their densities to float or sink,  

Sec. 9.6, Ex. 9.8
Specific-gravity measurements of blood and urine,  

Sec. 9.6
Speed of blood flow, Ex. 9.9
Plaque buildup and narrowed arteries, Ex. 9.9
Arterial flutter and aneurisms, Sec. 9.8
Narrowing arteries and high blood pressure, Sec. 9.9
Arterial blockage, Ex. 9.12
How insects can walk on the surface of a pond, Sec. 9.11
Surfactant in the lungs, Sec. 9.11
Lung pressure, Ex. 9.14
Elastic properties of bone, tendons, ligaments, and hair, 

Secs. 10.2–10.4

List of Selected Applications

Compression of the femur, Ex. 10.2
Osteoporosis, Sec. 10.3
Bone structure, Sec. 10.3
Size limitations on organisms, Sec. 10.3
How walking speed depends on leg length, Ex. 10.10
Sensitivity of the human ear, Sec. 11.1
Seismic waves used by animals, Sec. 11.2
Ultrasonography, Ex. 11.5
Frequency ranges of animal hearing, Sec. 12.1
Sound waves from a songbird, Ex. 12.2
The human ear, Sec. 12.6
Echolocation by bats and dolphins, Sec. 12.9
Ultrasound and ultrasonic imaging, Sec. 12.9
Temperature conversion, Sec. 13.2, Ex. 13.1
Regulation of body temperature, Ex. 13.1, Sec. 13.7
Breathing of divers, Ex. 13.6
Temperature dependence of biological processes, Sec. 13.7
Diffusion of O2, water, platelets, Sec. 13.8, Ex. 13.9
Why ponds freeze from the top down, Sec. 14.5
Using ice to protect buds from freezing, Sec. 14.5
Temperature regulation in the human body, Sec. 14.7
Forced convection in the human body, Sec. 14.7
Convection and radiation in global climate change,  

Sec. 14.7, Sec. 14.8
Thermography, Sec. 14.8
Heat loss and gain by plants and animals, Ex. 14.12,  

Ex. 14.14, PPs 14.13, 14.14
Changes in internal energy for biological processes,  

Ex. 15.1
Entropy and evolution, Sec. 15.8
Hydrogen bonding in water and in DNA, Sec. 16.1
Electrolocation in fish, Sec. 16.4
Gel electrophoresis, Sec. 16.5
Transmission of nerve impulses, Sec. 17.2
Electrocardiographs, electroencephalographs, and 

 electroretinographs, Sec. 17.2
Potential differences across cell membranes, Sec. 17.2,  

Ex. 17.11, PP 17.11
Neuron capacitance, Ex. 17.11
Defibrillator, Ex. 17.12
Propagation of nerve impulses, Sec. 18.10
Effects of current on the human body, Sec. 18.11
Defibrillator, Sec. 18.11
Magnetotactic bacteria, Sec. 19.1
Medical uses of cyclotrons, Sec. 19.3
Mass spectrometry, Sec. 19.3
Electromagnetic blood flowmeter, Sec. 19.5

Featuring

Biology/Life Science • Chemistry • Geology/Earth Science • Astronomy/Space Science 
Architecture • Technology/Machines • Transportation 

Sports • Everyday Life



(28) P 11–13, 73, 74. (29) CQ 9–12; P 32, 33, 36, 37, 
41, 42, 45–50, 55, 66, 79, 84, 85, 90.

Chemistry
Collision between krypton atom and water molecule, 

Ex. 7.9
Why reaction rates increase with temperature, Sec. 13.7
Polarization of charge in water, Sec. 16.1
Hydrogen bonding in water and in DNA, Sec. 16.1
Current in neon signs and fluorescent lights, Sec. 18.1
Spectroscopic analysis of elements, Sec. 27.6
Fluorescence, phosphorescence, and chemiluminescence, 

Sec. 27.7
Electronic configurations of arsenic, Ex.28.4
Understanding the periodic table, Sec. 28.4
Lasers in medicine, Sec. 28.9
Radiocarbon dating, Sec. 29.4
Dating archaeological sites, Ex. 29.9
Biological effect of radiation, Sec. 29.5
Radioactive tracers in medical diagnosis, Sec. 29.5
Gamma knife radio surgery, Sec. 29.5
Radiation therapy, Sec. 29.5
Problems (7) P 44. (13) CQ 13, 14; P 27–39, 57–70, 75, 77, 

82, 117. (16) P 19. (17) P 122. (18) MCQ 1; P 7. (19) 
P 29, 31–33, 95. (26) P 42, 91. (27) P 33–54, 63–66, 81, 
86, 88, 95. (28) CQ 12; P 6, 19, 30, 41, 55, 72, 82, 84. 
(29) P 3–17, 21, 25, 31–43, 51–65, 80, 81.

Geology/Earth Science
Angular speed of Earth, Ex. 5.1
Angular momentum of hurricanes, Sec. 8.8
Hidden depths of an iceberg, Ex. 9.7
Why ocean waves approach shore nearly head on, 

Sec. 11.8
Resonance and damage caused by earthquakes, Sec. 11.10
Ocean currents and global warming, Sec. 14.7
Global climate change, Sec. 14.8
Second law and evolution, Sec. 15.8
Second law and conserving fuel, Sec. 15.8
Electric potential energy in a thundercloud, Ex. 17.1
Thunderclouds and lightning, Sec. 17.6
Earth’s magnetic field, Sec. 19.1
Deflection of cosmic rays, Ex. 19.1
Magnetic force on an ion in the air, Ex. 19.2
Intensity of sunlight reaching the Earth, Ex. 22.6
Colors of the sky during the day and at sunset, Sec. 22.7
Rainbows, Sec. 23.3
Cosmic rays, Ex. 26.2
Radioactive dating of geologic formations, Sec. 29.4
Neutron activation analysis, Sec. 29.6
Problems (1) P 84, 88. (2) P 114, 115. (8) CQ 21. (9) CQ 8; 

P 52, 82, 92, 95. (11) CQ 9; P 80, 82, 83, 91, 93. (12) P 7,  
8, 52. (13) P 55. (14) CQ 4, 6; P 104, 120. (16) P 70, 83, 
88. (17) CQ 19; P 69, 81, 90. (18) P 133. (22) CQ 6, 7, 
11; P 49, 50, 64. (29) CQ 6; P 72.

Magnetic resonance imaging, Sec. 19.8
Magnetoencephalography, Sec. 20.3
Infrared detection by snakes, beetles, and bed bugs, 

Sec. 22.3
Thermograms of the human body, Sec. 22.3
Fluorescence, Sec. 22.3
Biological effects of UV exposure, Sec. 22.3
X-rays in medicine and dentistry, CAT scans, Sec. 22.3
Navigation of bees, Sec. 22.7
Endoscope, Sec. 23.4
Kingfisher looking for prey, Sec. 23.4
Human eye, Sec. 24.3
Correcting myopia, Sec. 24.3
Correcting hyperopia, Sec. 24.3
Astigmatism of the eye, Sec. 24.3
Microscopy, Sec. 24.5
Interference microscopy, Sec. 25.2
Iridescent colors in butterflies, birds, and other animals, 

Sec. 25.3
Resolution of the human eye, Sec. 25.8
X-ray diffraction studies of nucleic acids and proteins, 

Sec. 25.9
Medical x-rays, Ex. 27.4
Bioluminescence, Sec. 27.7
Positron emission tomography, Sec. 27.8
Electron microscopes, Sec. 28.3
Lasers in medicine, Sec. 28.9, Ex. 28.5, PP 28.5
Radiocarbon dating, Sec. 29.4, Ex. 29.9, PP 29.9
Biological effects of radiation, Sec. 29.5, Ex. 29.11
Radioactive tracers, Sec. 29.5
Positron emission tomography, Sec. 29.5
Radiation therapy, Sec. 29.5
Problems (1) P 5, 13, 14, 26, 27, 33, 37, 42, 54–56, 64, 66, 

70–75, 93, 95, 97. (2) P 7, 27, 43, 50, 75, 76, 86. (3) P 59, 
62, 64, 80, 101, 103, 105, 111. (4) CQ 4; P 6, 23, 29, 44, 
93, 101, 113, 126, 132, 154, 158, 176. (5) P 8, 14, 17, 53, 
54, 59, 62, 79, 84. (6) CQ 11; P 8, 33, 62, 69, 70, 81–83, 
85, 86, 106, 113, 114, 117, 131. (7) P 21, 33, 76, 97. 
(8) CQ 9–11, 15, 16; MCQ 10; P 18, 42–48, 53, 77–79, 
82, 83, 87, 90, 91, 94, 113, 119, 125. (9) CQ 7, 12, 14; 
P 7, 10, 15–17, 19, 24–26, 30, 39, 41, 42, 48, 61–62, 66, 
67, 69, 75, 78, 84–86, 94, 97–99, 113. (10) CQ 10; P 2, 
3, 8–10, 13–18, 27, 38–40, 47, 90, 91, 110. (11) CQ 10; 
P 2, 44. (12) CQ 4, 5, 8; P 3–5, 14–18, 26, 49, 55–58, 63, 
67–72. (13) P 31, 45, 70, 73, 74, 80, 81, 84, 92, 95, 96, 
104, 106, 115, 116. (14) P 17, 22, 23, 30, 31, 36, 46, 47, 
51, 63–67, 78–85, 91, 92, 98, 99, 101, 102. (15) P 16, 
44, 45, 67–70, 78, 85, 96. (16) P 19, 20, 28, 56, 91, 107. 
(17) CQ 16; P 43, 65, 75, 88, 89, 91, 102–108, 114, 122. 
(18) CQ 11–13; P 27–29, 86, 90, 100–102, 105. (19) 
P 25–28, 30–34, 43, 63, 66, 81, 93, 94, 96, 98–100, 105. 
(20) CQ 8; P 50, 69. (21) P 54–56, 74. (22) P 13, 68–70. 
(23) CQ 17, 20, 21; MCQ 1, 3, 4, 8, 10; P 10, 11, 26, 27, 
31, 50, 70, 75. (24) CQ 10–15; P 21–32, 41–51, 63, 74, 
82, 85. (25) CQ 16; P 20, 53, 57, 58, 60, 72, 73, 90, 97. 
(26) P 51–55. (27) CQ 2, 19; P 52, 55, 60, 65–68, 72, 92.  

 LIST OF SELECTED APPLICATIONS xiii



xiv LIST OF SELECTED APPLICATIONS

Hydraulic lifts, brakes, and controls, Sec. 9.3, Ex. 9.2
Mercury manometer, Ex. 9.5
Hot air balloons, Sec. 9.6
Venturi meter, Ex. 9.11
Sedimentation velocity and the centrifuge, Sec. 9.10
Operation of sonar and radar, Sec. 12.10
Bimetallic strip in a thermostat, Sec. 13.3
Volume expansion in thermometers, Sec. 13.3
Air temperature in car tires, Ex. 13.5
Heat engines, Sec. 15.5
Internal combustion engine, Sec. 15.5
Refrigerators and heat pumps, Sec. 15.6
Efficiency of an automobile engine, Ex. 15.7
Photocopiers and laser printers, Sec. 16.2
Cathode ray tube, Ex. 16.9
Electrostatic shielding, Sec. 16.6
Lightning rods, Sec. 16.6
Electrostatic precipitator, Sec. 16.6
Battery-powered lantern, Ex. 17.3
van de Graaf generator, Sec. 17.2
Transmission of nerve impulses, Sec. 17.2
Computer keyboard, Ex. 17.9
Condenser microphone, Sec. 17.5
Camera flash attachments, Sec. 17.5
Oscilloscope, Sec. 17.5
Random-access memory (RAM) chips, Sec. 17.5
Resistance thermometer, Sec. 18.4
Resistive heating, Ex 18.4
Battery connection in a flashlight, Sec. 18.6
Trying to start a car using flashlight batteries, Ex. 18.5
Electric fence, Sec. 18.11
Household wiring, Sec. 18.11
Bubble chamber, Sec. 19.3
Mass spectrometer, Sec. 19.3
Cyclotrons, Ex. 19.5
Velocity selector, Sec. 19.5
Hall effect, Sec. 19.5
Electric motor, Sec. 19.7
Galvanometer, Sec. 19.7
Audio speakers, Sec. 19.7
Electromagnets, Sec. 19.10
Magnetic storage, Sec. 19.10
Electric generators, Sec. 20.2
DC generator, Sec. 20.2
Back emf in a motor, Sec. 20.5
Ground fault interrupter, Sec. 20.3
Moving coil microphone, Sec. 20.3
Transformers, Sec. 20.6
Distribution of electricity, Sec. 20.6
Eddy-current braking, Sec. 20.7
Induction stove, Sec. 20.7
Radio’s tuning circuit, Ex. 21.3
Laptop power supply, Ex. 21.5
Tuning circuits, Sec. 21.6
Rectifiers, Sec. 21.7
Crossover networks, Sec. 21.7

Astronomy/Space Science
Mars Climate Orbiter failure, Sec. 1.5
Why Voyager probes keep moving, Sec. 4.2
Discovering planets in other solar systems Ex. 4.5
Orbiting satellites, Sec. 5.2, Sec. 5.4, Ex. 5.9, Ex. 5.10
Circular orbits, Sec. 5.4
Kepler’s laws of planetary motion, Sec. 5.4
Speed of Hubble Telescope orbiting Earth, Ex. 5.8
Geostationary orbits, Sec. 5.4
Apparent weightlessness of orbiting astronauts, Sec. 5.7
Artificial gravity and the human body, Sec. 5.7
Elliptical orbits, Sec. 6.2
Orbital speed of Mercury, Ex. 6.7
Escape speed from Earth, Ex. 6.8
Center of mass of binary star system, Ex. 7.7
Motion of an exploding model rocket, Ex. 7.8
Orbital speed of Earth, Ex. 8.15
Angular momentum of pulsars, Sec. 8.8
Composition of planetary atmospheres, Sec. 13.6
Temperature of the Sun, Ex. 14.13
Aurorae on Earth, Jupiter, and Saturn, Sec. 19.4
Cosmic microwave background radiation, Sec. 22.3
Light from a supernova, Ex. 22.2
Doppler radar and the expanding universe, Sec. 22.8
Telescopes, Sec. 24.5
Hubble Space Telescope, Sec. 24.6
Radio telescopes, Sec. 24.6
Observing active galactic nuclei, Sec. 26.2
Aging of astronauts during space voyages, Ex. 26.1
Nuclear fusion in stars, Sec. 29.8
Problems (1) P 15, 36, 82, 87, 93. (6) P 26, 48–57, 97.  

(7) P 108. (8) CQ 17; P 72, 89, 92. (9) CQ 5. (10) P 25. 
(11) P 1, 6. (13) P 68. (14) MCQ 1–3; P 25, 116. (16)  
P 88. (19) P 16, 17. (22) P 10, 32, 33, 37, 52, 54. 
(24) CQ 5, 17; MCQ 6; P 52–55, 57–59, 70, 77.  
(25) CQ 3, 4; P 54, 56, 67, 76. (26) CQ 8, 12; MCQ 2, 4; 
P 3, 5, 8, 9, 13–19, 22, 40, 64, 65, 67, 69, 70, 73, 76, 77, 
85, 88, 95. (27) CQ 4; P 91. (30) P 11.

Architecture
Cantilever building construction, Sec. 8.4
Strength of building materials, Sec. 10.3
Vibration of bridges and buildings, Sec. 10.10
Expansion joints in bridges and buildings, Sec. 13.3
Heat transfer through window glass, Ex. 14.10
Building heating systems, Sec. 14.7
Problems (9) CQ 4. (10) CQ 5, 12; P 1, 22, 82. (13) P 12, 

14, 90. (14) P 59, 71, 94. (15) CQ 12.

Technology/Machines
Catapults and projectile motion, Sec 3.5
Two-pulley system, Ex. 4.12
Products to protect the human body from injury, Ex. 7.2
Recoil of a rifle, Sec. 7.4
Atwood’s machine, Ex. 8.2
Angular momentum of a gyroscope, Sec. 8.9



 LIST OF SELECTED APPLICATIONS xv

Power of a car climbing a hill, Ex. 6.14
Momentum of a moving car, Ex. 7.1
Force acting on a car passenger in a crash, Ex. 7.3
Jet, rocket, and airplane wings, Sec. 7.4
Collision at a highway entry ramp, Ex. 7.10
Torque on a spinning bicycle wheel, Ex. 8.3
How a ship can float, Sec. 9.6
Airplane wings and lift, Sec. 9.8
Shock absorbers in a car, Sec. 10.9
Shock wave of a supersonic plane, Sec. 12.8
Regenerative braking, Sec. 20.2
AC generator, Ex. 20.2
Problems (1) P 96. (2) P 33, 43–47, 51, 55, 68, 70, 78. (3) P 12, 

46–49, 73–79, 82, 87, 88, 96, 100, 102, 108, 114. (4) P 12, 
81, 101, 103, 117, 130, 134, 138, 153, 157, 159, 169, 
174. (4) P 14, 18–19, 69, 79, 84, 85, 88, 101. (5) P 10, 
23–27, 29, 42, 92. (6) P 5. (7) P 71, 88. (8) CQ 6; P 93. 
(9) CQ 11, 16; P 8, 25, 48, 94, 111, 112. (10) CQ 16; 
P 24, 38, 39, 44, 68, 72. (12) P 14. (13) P 8, 9, 23, 39, 
40, 83, 96. (14) CQ 9, 10, 26. (15) P 24. (18) P 8, 10, 
11. (20) MCQ 5, 10.

Sports
Velocity and acceleration of an inline skater, Ex. 3.5
Rowing and current, PP 3.9
Hammer throw, Ex. 5.5
Bungee jumping, Ex. 6.4
Rock climbers rappelling, Ex. 6.5
Speed of a downhill skier, Ex. 6.6
Work done in drawing a bow, Sec. 6.6
Dart gun, Ex. 6.11
Choking up on a baseball bat, Sec. 8.1
Muscle forces for the iron cross (gymnastics), Sec. 8.5
Rotational inertia of a figure skater, Sec. 8.8
Pressure on a diver, Ex. 9.3
Compressed air tanks for a scuba driver, Ex. 13.6
Problems (1) P 34. (2) P 3, 15, 18, 24, 25, 34, 59, 73, 81. 

(3) MCQ 4, 12; P 4, 14, 36, 37, 68, 84, 89, 90. (4) P 17, 
44, 69, 127, 170. (5) P 2, 5, 22. (6) P 18, 22, 37, 42, 53, 
67, 68, 74, 75, 81, 83–85, 92, 97. (7) CQ 15, 17; P 12, 
16, 17, 24, 76, 77, 81, 83, 105. (8) CQ 7, 15, 19; MCQ 9; 
P 3, 8, 32–34, 53, 74, 75, 78, 79, 87, 114, 129. (9) CQ 18; 
P 74, 87. (10) CQ 9, 10; P 88. (11) P 19. (12) P 3.  
(14) P 4, 6, 7.

Everyday Life
Buying clothes, unit conversions, Ex. 1.6
Snow shoveling, Ex. 4.3
Hauling a crate up to a third-floor window, Ex. 4.10
Rotation of a DVD, Sec. 5.1
Speed of a roller coaster car in a vertical loop, Ex. 5.11
Rotation of a potter’s wheel, Ex. 5.13
Antique chest delivery, Ex. 6.1
Pulling a sled through snow, Ex. 6.2
Getting down to nuts and bolts, Ex. 6.10
Motion of a raft on a still lake, PP 7.8

Electric dipole antenna, Ex. 22.1
Microwave ovens, Sec. 22.3
Liquid crystal displays, Sec. 22.7
Periscope, Sec. 23.4
Fiber optics, Sec. 23.4
Zoom lens, Ex. 23.9
Cameras, Sec. 24.2
Microscopes, Sec. 24.5
Lens aberrations, Sec. 24.7
Reading a compact disk (CD), Sec. 25.1
Michelson interferometer, Sec. 25.2
Interference microscope, Sec. 25.2
Antireflective coating, Sec. 25.3
CD tracking, Sec. 25.5
Diffraction and photolithography, Ex. 25.7
Spectroscopy, Sec. 25.5
Resolution of a laser printer, Ex. 25.9
X-ray diffraction, Sec. 25.9
Holography, Sec. 25.10
Photocells for sound tracks, burglar alarms, garage door 

openers, Sec. 27.3
Diagnostic x-rays in medicine, Ex. 27.4
Quantum corral, Sec. 28.5
Lasers, Sec. 28.9
Scanning tunneling microscope, Sec. 28.10
Atomic clock, Sec. 28.10
Nuclear fission reactors, Sec. 29.7
Fusion reactors, Sec. 29.8
High-energy particle accelerators, Sec. 30.4
Problems (5) P 73, 74, 83, 85, 87. (6) P 6. (8) P 7, 12, 13, 

17, 28, 31, 50, 52, 54, 59, 73, 76, 81, 93, 97, 104. (10) 
CQ 7; P 32, 36, 42, 88. (12) P 17. (16) CQ 6; P 80, 93. 
(17) P 76. (18) P 4, 5, 12, 73, 95, 106. (19) CQ 5, 13,  
16, 21; P 55–57, 91, 102, 103. (20) CQ 1, 6, 7, 16;  
MCQ 1, 2, 7, 10; P 14, 15, 17–23, 25, 33–42, 48, 57, 99, 
100. (21) CQ 1–18; MCQ 1–10; P 1–10, 25, 39, 50, 
57–66, 67–97. (22) CQ 1, 2, 9; MCQ 4, 7, 9; P 1–14, 
16–22, 24–29, 55, 58, 59, 61, 64, 66, 67, 79, 81, 83, 85, 
86. (23) CQ 19; MCQ 2. (24) CQ 1, 4–7, 12, 14–16; 
MCQ 1, 2, 6, 7, 10; P 6, 7, 11–21, 34, 36–52, 54–57, 59, 
60, 63–65, 68, 72, 78, 85. (25) CQ 7; MCQ 4; P 1, 
10–12, 43. (26) P 24, 66. (27) CQ 18; P 15–21, 60, 71, 
93. (28) CQ 6, 13, 14; P 18. (29) CQ 13; P 7. (30) P 14, 
16, 19, 27.

Transportation
Braking a car, Ex. 2.4
Acceleration of a sports car, Ex. 2.5
Relative velocities for pilots and sailors, Sec. 3.5
Airplane flight in a wind, Ex. 3.9
Angular speed of a motorcycle wheel, Ex. 5.3
Banked roadways, Sec. 5.3
Banked and unbanked curves, Ex. 5.7
Banking angle of an airplane, Sec. 5.3
Circular motion of stunt pilot, Ex. 5.14
Damage in a high-speed collision, Ex. 6.3



xvi LIST OF SELECTED APPLICATIONS

Cosmetic mirrors and automobile headlights, Sec. 23.8
Side-view mirrors on cars, Ex. 23.7
Colors in soap films, oil slicks, Sec. 25.3
Neon signs and fluorescent lights, Sec. 27.6
Fluorescent dyes in laundry detergent, Sec. 27.6
Problems (1) P 1, 6, 11. (6) P 7–9, 27, 32, 72, 73, 117, 120. 

(7) CQ 1, 13; P 1, 15, 31, 47, 79, 87. (8) CQ 3, 12–14, 18; 
MCQ 1; P 11, 13–16, 18, 19, 21, 26, 30, 32, 35, 37, 50, 
54, 55, 68, 80, 92, 103, 112, 115. (9) CQ 2, 13; MCQ 2; 
P 2, 4, 13, 17, 28, 35, 39, 40, 42, 43, 49, 52, 56–58, 86, 
109. (10) CQ 2, 3; P 1, 25, 36, 45, 71, 79. (11) CQ 1–6; 
MCQ 3–5; P 2–4, 9, 10, 16, 18, 38, 46, 51, 53, 50–59, 
55–64, 72, 77, 81, 85, 88. (12) MCQ 1–3, 9, 10; P 13, 18, 
20–27, 36, 37, 40–45, 47, 53, 55, 62, 63, 69. (13) CQ 6, 
8, 19, 20; P 4, 6, 43, 44, 71, 89, 102, 103. (14) CQ 5, 11, 
12, 17, 19, 22; MCQ 5; P 14, 24, 29–38, 45, 53, 61, 65, 
70, 71, 74, 77, 79, 83, 91, 98, 108. (15) CQ 1, 2, 5–8, 11, 
13; MCQ 6; P 13, 29, 33, 35, 36, 41, 42, 44, 47, 51, 52, 
63, 73, 76, 97. (16) CQ 2, 12. (17) CQ 3, 16; P 67, 118. 
(18) CQ 1, 3, 9, 13, 18; P 1, 29, 61–63, 68, 71, 85,  
97–99, 110, 114, 115. (19) CQ 9. (20) CQ 14, 17; P 37, 
77. (21) P 1, 2, 6, 78, 97, 98. (22) P 9, 17, 19, 80, 56, 57. 
(23) CQ 5, 14, 26; P 19, 28, 29, 35, 44, 70, 83, 98, 101. 
(25) CQ 2; P 7, 14–17. (27) P 60.

Automatic screen door closer, Ex. 8.4
Work done on a potter’s wheel, Ex. 8.5
Climbing a ladder on a slippery floor, Ex. 8.7
Pushing a file cabinet so it doesn’t tip, Ex. 8.9
Torque on a grinding wheel, Ex. 8.11
Pressure exerted by high-heeled shoes, Ex. 9.1
Cutting action of a pair of scissors, Ex. 10.4
Difference between musical sound and noise, Sec. 11.4
Sound from a guitar, Sec. 12.1
Sound from a loudspeaker, Sec. 12.1
Sound level of two lathes, Ex. 12.4
Wind instruments, Sec. 12.4
Tuning a piano, Sec. 12.7
Chill caused by perspiration, Sec. 14.5
Double-paned windows, Ex. 14.10
Offshore and onshore breezes, Sec. 14.7
Incandescent lightbulb, Sec. 14.8
Static charge from walking across a carpet, Ex. 16.1
Grounding of fuel trucks, Sec. 16.2
Resistance of an extension cord, Ex. 18.3
Resistance heating, Sec. 21.1
Polarized sunglasses, Sec. 22.7
Colors from reflection and absorption of light, Sec. 23.1
Mirages, Sec. 23.3



xvii

Preface
Physics is intended for a two-semester college course in introductory physics using 
algebra and trigonometry. The main goals for this book are:

∙ to present the basic concepts of physics that students need to know for later 
courses and future careers,

∙ to emphasize that physics is a tool for understanding the real world, and
∙ to teach transferable problem-solving skills that students can use throughout their 

lives.

NEW TO THE FIFTH EDITION

Although the fundamental philosophy of the book has not changed, many improve-
ments have been made based on detailed feedback from instructors and students using 
the previous edition. Some of the most important updates include:

∙ The comprehensive math review, found in Appendix A, has been expanded for 
this edition. A new section A.8 (Sinusoidal Functions of Time) provides support 
for important topics such as oscillations, waves, Faraday’s law, and interference. 
Section A.6 (Geometry) has been rewritten to emphasize the skills most relevant 
to physics problems. Math skills have been added to the Concepts and Skills to 
Review on the chapter opener pages. New references to Appendix A have been 
added to the text.

∙ The visual presentation has been streamlined. The content of tips and warnings 
found in marginal icons and text highlighting, has been moved into Problem-
Solving Strategy boxes and/or into the end-of-chapter Master the Concepts 
boxes, as appropriate.

∙ Concepts and Skills to Review lists are now more prominently featured on the 
chapter opener page.

∙ Many of the figure legends have been expanded to help students learn more from 
the illustrations.

Notable revisions to the text include:

∙ Example 1.9 has been expanded to demonstrate an alternative method of per-
forming dimensional analysis. New problems have been added to Chapter 1 to 
give students more practice using ratios and proportions.

∙ Section 3.6 on relative velocity and reference frames has been revised to empha-
size that velocity of A relative to B is the vector difference of the two velocities 
as measured in a common reference frame.

∙ Example 4.9 has been rewritten to focus more clearly on Newton’s third law.
∙ Section 4.10 (Apparent Weight) no longer develops a formula for apparent 

weight. Instead, the section emphasizes fundamental skills (drawing an FBD and 
analyzing the forces) and summarizes the procedure in a new Problem-Solving 
Strategy box.

∙ In Chapter 5, the Problem-Solving Strategies for uniform and nonuniform circu-
lar motion have been revised to show a parallel structure. A new figure shows 
the forces acting on a car traveling around a banked curve.



∙ Chapter 6 has new Problem-Solving Strategies for work done by a constant force 
and for mechanical energy.

∙ In Section 8.2, the discussion of the lever arm has been clarified.
∙ Section 11.5 (Mathematical Description of a Wave) has been rewritten to be more 

accessible.
∙ Sections 12.7 and 12.8 (Beats, The Doppler Effect) have been rewritten. Formu-

lating the Doppler effect in terms of relative velocities makes an arbitrary sign 
convention unnecessary.

∙ Sections 15.5–15.7 contain improved explanations of heat engines and heat 
pumps.

∙ A table of circuit symbols is now included at the end of Chapter 18.
∙ Section 19.10 has been rewritten to provide a more complete description of para-

magnetism and diagmagnetism.
∙ Chapter 20’s treatment of inductance has been streamlined, with the quantitative 

material on mutual inductance moved into an online supplement. Chapter 20 has 
gained 10 new end-of-chapter problems on Faraday’s law.

∙ Section 22.7 now includes a description of circular polarization.
∙ New Figure 23.47 is a ray diagram for the formation of a virtual image by a 

converging lens.
∙ Section 24.3 describes astigmatism of the eye. Section 24.7 contains an expanded  

explanation of lens aberrations.
∙ Chapter 25 simplifies the discussion of phase differences for constructive and 

destructive interference.
∙ Chapter 30 mentions the observation of gravitational waves by the LIGO 

 collaboration.

A CONCEPTS-FIRST APPROACH

Some students approach introductory physics with the idea that physics is just the 
memorization of a long list of equations and the ability to plug numbers into those 
equations. Physics emphasizes that a relatively small number of basic physics con-
cepts are applied to a wide variety of situations. Physics education research has 
shown that students do not automatically acquire conceptual understanding; the 
 concepts must be explained and the students given a chance to grapple with them. 
The presentation in Physics blends conceptual understanding with analytical skills. 
The “concepts-first” approach helps students develop intuition about how physics 
works; the “formulas” and problem-solving techniques serve as tools for applying 
the concepts. The  Conceptual Examples and Conceptual Practice Problems in the 
text and a variety of ranking tasks and Conceptual and Multiple-Choice Questions 
at  the end of each chapter give students a chance to check and to enhance their 
conceptual understanding.

INTRODUCING CONCEPTS INTUITIVELY

Key concepts and quantities are introduced in an informal and intuitive way, using a 
concrete example to establish why the concept or quantity is useful. Concepts moti-
vated in this way are easier for students to grasp and remember than are concepts 
introduced by seemingly arbitrary, formal definitions.

For example, in Chapter 8, the idea of rotational inertia emerges in a natural way 
from the concept of rotational kinetic energy. Students can understand that a rotating 
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rigid body has kinetic energy due to the motion of its particles. The text discusses 
why it is useful to be able to write this kinetic energy in terms of a single quantity 
common to all the particles (the angular speed), rather than as a sum involving par-
ticles with many different speeds. When students understand why rotational inertia is 
defined the way it is, they are better prepared to move on to the more difficult concepts 
of torque and angular momentum.

The text avoids presenting definitions or formulas without motivation. When 
an equation is not derived in the text, a conceptual explanation or a plausibility 
argument is given. For example, Section 9.9 introduces Poiseuille’s law with two 
identical pipes in series to show why the volume flow rate must be proportional 
to the pressure drop per unit length. The text then discusses why ΔV/Δt is propor-
tional to the fourth power of the radius (rather than to r2, as it would be for an 
ideal fluid).

Similarly, the definitions of the displacement and velocity vectors can seem 
arbitrary and counterintuitive to students if introduced without any motivation. 
Therefore, presentation of the kinematic quantities is preceded by an introduc-
tion to Newton’s laws, so students know that forces determine how the state of 
motion of an object changes. The conceptual groundwork for a concept is par-
ticularly important when its name is a common English word such as velocity or 
work.

DESIGNED FOR ACTIVE LEARNING

Previous editions of Physics have been tested for over 15 years in Cornell’s nontra-
ditional course, where students rely on the textbook as their primary source of infor-
mation because there are no lectures. The text is therefore well suited to use in flipped 
classrooms and other nontraditional course formats. Nonetheless, completeness and 
clarity are equally advantageous when the book is used in a more traditional classroom 
setting. Physics frees the instructor from having to try to “cover” everything. The 
instructor can then tailor class time to more important student needs—reinforcing 
difficult concepts, working through Example problems, engaging the students in peer 
instruction and cooperative learning activities, describing applications, or presenting 
demonstrations.

WRITTEN IN A CLEAR AND FRIENDLY STYLE

Physics was developed specifically for the algebra/trig-based course; it’s not 
a  spinoff of a calculus-based text for engineers or physics majors. The writing is 
intended to be down-to-earth and conversational in tone—the kind of language 
an  experienced teacher uses when sitting at a table working one-on-one with 
a  student. Students should feel confident that they can learn by studying the 
 textbook.

Although learning correct physics terminology is essential, Physics avoids 
unnecessary jargon—terminology that just gets in the way of the student’s 
 understanding. For example, the term centripetal force does not appear in the 
book, since its use sometimes leads students to add a spurious “centripetal force” 
to their free-body diagrams. Radial component of acceleration is preferred 
over  centripetal acceleration because it is less likely to introduce or reinforce 
misconceptions.
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MCAT® SUPPORT

Coverage of topics such as mechanical advantage, turbulence, surface tension, attenu-
ation of sound waves, magnetic materials, and circular polarization has been expanded 
or added to this edition based on the 2015 revision of the MCAT® exam. Students 
who plan to take the MCAT® can rest assured that all the physics topics on that exam 
are included in the text. 

PROVIDING STUDENTS WITH THE TOOLS THEY NEED

Problem-Solving Approach

Problem-solving skills are central to an introductory physics course. These skills 
are illustrated in the Example problems. Lists of problem-solving strategies can be 
useful; Physics presents such strategies when appropriate. However, the most elusive 
skills—perhaps the most important ones—are subtle points that defy being put into 
a neat list. To develop real problem-solving expertise, students must learn how to 
think critically and analytically. Problem solving is a multidimensional, complex 
process; an algorithmic approach is not adequate to instill real problem-solving 
skills.

An important problem-solving skill that many students need to practice is extract-
ing information from a graph or sketching a graph without plotting individual data 
points. Graphs often help students visualize physical relationships more clearly than 
they can with algebra alone. Graphs and sketches are emphasized in the text, in 
worked examples, and in the problems.

Strategy Each Example begins with a discussion—in language that the students 
can understand—of the strategy to be used in solving the problem. The strategy 
illustrates the kind of analytical thinking students must do when attacking a prob-
lem: How do I decide what approach to use? What laws of physics apply to the 
problem and which of them are useful in this solution? What clues are given in 
the statement of the question? What information is implied rather than stated out-
right? If there are several valid approaches, how do I determine which is the most 
efficient? What assumptions can I make? What kind of sketch or graph might help 
me solve the problem? Is a simplification or approximation called for? If so, how 
can I tell if the simplification is valid? Can I make a preliminary estimate of the 
answer? Only after considering these questions can the student effectively solve 
the problem.

Solution Next comes the detailed solution to the problem. Explanations are inter-
mingled with equations and step-by-step calculations to help the student understand 
the approach used to solve the problem.

Discussion The numerical or algebraic answer is not the end of the problem; the 
Examples end with a discussion. Students must learn how to determine whether 
their answer is consistent and reasonable by checking the order of magnitude of the 
answer, comparing the answer with a preliminary estimate, verifying the units, and 
doing an independent calculation when more than one approach is feasible. When 
several different approaches are possible, the discussion looks at the advantages and 
disadvantages of each approach. The discussion generalizes the problem-solving 
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techniques used in the solution, examines special cases, and considers “what if” 
scenarios.

Practice Problem After each Example, a Practice Problem gives students a 
chance to gain experience using the same physics principles and problem-solving 
tools. By comparing their answers with those provided at the end of each chapter, 
students can gauge their understanding and decide whether to move on to the next 
section.

Using Approximation, Estimation, and  
Proportional Reasoning

Physics is forthright about the constant use of simplified models and approximations 
in solving physics problems. One of the most difficult aspects of problem solving that 
students need to learn is that some kind of simplified model or approximation is usu-
ally required. The text discusses how to know when it is reasonable to ignore friction, 
treat g as constant, ignore viscosity, treat a charged object as a point charge, or ignore 
diffraction.

Some Examples and Problems require the student to make an estimate—a useful 
skill both in physics problem solving and in many other fields. Proportional reasoning 
is used as not only an elegant shortcut but also as a means to understanding patterns. 
Examples and problems frequently use percentages and ratios to give students practice 
in using and understanding them.

Helping Students See the Relevance of  
Physics in Their Lives

Students in an introductory college physics course have a wide range of back-
grounds and interests. To stimulate interest in physics, the text describes many 
applications relevant to students’ lives and aligned with their interests. Examples 
and end-of-chapter problems that involve applications help students learn that 
they  can answer questions of interest to them using physics concepts and 
skills.  The  text, Examples, and end-of-chapter problems draw from the everyday 
world; from familiar technological applications; and from other fields, such as 
biology, medicine, archaeology, astronomy, sports, environmental science, and 
geophysics. An icon ( ) identifies applications from the biological or medical 
sciences.

Everyday Physics Demos give students an opportunity to explore and see phys-
ics principles operate in their everyday lives. These activities are chosen for their 
simplicity and for their effectiveness in demonstrating physics principles.

Each Chapter Opener includes a photo and vignette, designed to capture 
student interest and maintain it throughout the chapter. The vignette describes 
the  situation shown in the photo and asks the student to consider the relevant 
physics. The vignette topic is then discussed at the appropriate place within the 
chapter text.

Focusing on the Concepts

A marginal Connections box helps students understand that what may seem like 
a new concept may really be an extension, application, or specialized form of a 
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concept previously introduced. The goal is for students to view physics as a small 
set of fundamental concepts that can be applied in many different situations, 
rather than as a collection of loosely related facts or equations. By identifying areas 
where important concepts are revisited, the Connections return the focus to core 
concepts.

The exercises in the Review & Synthesis sections help students see how the 
concepts in the previously covered group of chapters are interrelated. These exercises 
are also intended to help students prepare for tests, in which they must solve problems 
without having the section or chapter title given as a clue.

Checkpoint questions encourage students to pause and test their understanding 
of the concept explored within the current section. The answers to the Checkpoints 
are found at the end of the chapter so that students can confirm their knowledge 
without jumping too quickly to the provided answer.

Support for Essential Math Skills

In an introductory college physics course, students need to be confident using 
algebra, geometry, and trigonometry to solve problems. Weak math skills present 
a major obstacle to success in the course. Instructors seldom (if ever) feel they 
have enough class time to do enough math review. To help students review on their 
own and to serve as a comprehensive reference, Physics provides an exceptionally 
detailed Mathematics Review (Appendix A). For the fifth edition, more frequent 
references to Appendix A have been added to the text, especially in the early 
chapters, to encourage students to use the Appendix to reinforce their math skills. 
Appendix A has been expanded to include a new section on Sinusoidal Functions 
of Time.

While revising the Mathematics Review, the author also contributed to a 
major revision of the ALEKS® Math Prep for College Physics course by selecting 
learning objectives that align with the specific math skills most used in college 
physics.

Student Solutions Manual

The Student Solutions Manual contains complete worked-out solutions to selected 
end-of-chapter problems and questions, and to selected Review & Synthesis prob-
lems. The solutions in this manual follow the problem-solving strategy outlined in 
the text’s Examples and also guide students in creating diagrams for their own 
solutions.

DIGITAL RESOURCES

ALEKS® Math Prep for College Physics

ALEKS Math Prep for College Physics is a web-based program that provides targeted 
coverage of critical mathematics material necessary for student success in Physics. 
ALEKS uses artificial intelligence and adaptive questioning to assess  precisely a 
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 student’s preparedness and deliver personalized instruction on the exact topics the 
student is most ready to learn. Through comprehensive explanations, practice, and 
feedback, ALEKS enables students to quickly fill individual knowledge gaps in order 
to build a strong foundation of critical math skills.

Use ALEKS Math Prep for College Physics during the first six weeks of 
the  term to see improved student confidence and performance, as well as fewer 
dropouts.

ALEKS Math Prep for College Physics Features:

∙ Artificial Intelligence: Targets gaps in student knowledge
∙ Individualized Assessment and Learning: Ensure student mastery
∙ Adaptive, Open-Response Environment: Avoids multiple-choice questions
∙ Dynamic, Automated Reports: Monitor student and class progress

McGraw-Hill Connect®

Connect is a digital teaching and learning environment that improves student perfor-
mance over a variety of critical outcomes; it is easy to use; and it is proven effective. 
Connect empowers students by continually adapting to deliver precisely what they 
need, when they need it, and how they need it, so class time is more engaging and 
effective.

INSTRUCTOR RESOURCES

Build instructional materials wherever, whenever, and however you want!

Accessed through the instructor resources in Connect is, an online digital library 
containing photos, artwork, interactives, clicker questions, and other media types can 
be used to create customized lectures, visually enhanced tests and quizzes, compelling 
course websites, or attractive printed support materials. Assets are copyrighted by 
McGraw-Hill Higher Education, but can be used by instructors for classroom pur-
poses. The visual resources in this collection include

∙ Art Full-color digital files of all illustrations in the book can be readily 
 incorporated into lecture presentations, exams, or custom-made classroom 
materials.

∙ Photos The photos collection contains digital files of photographs from the text, 
which can be reproduced for multiple classroom uses.

∙ Workbook The workbook contains questions and ideas for classroom exercises 
that will get students thinking about physics in new and comprehensive ways. 
Students are led to discover physics for themselves, leading to a deeper intuitive 
understanding of the material.

∙ Lecture PowerPoints Ready-made presentations combine art and lecture notes 
for each chapter of the text.



∙ Test Bank A comprehensive bank of test questions that accompanies  Physics 
is available for instructors to create their own quizzes and exams. These 
same questions are also available and assignable through Connect for online 
tests.

∙ Instructor’s Resource Guide The guide includes many unique assets for instruc-
tors, such as demonstrations, suggested reform ideas from physics education 
research, and ideas for incorporating just-in-time teaching techniques.

∙ Instructor’s Solutions Manual The accompanying Instructor’s Solutions Manual 
includes answers to the end-of-chapter Conceptual Questions and complete, 
worked-out solutions for all the end-of-chapter Problems from the text.
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Concepts & Skills to Review

•	 math skills:	review	of	
	algebra,	geometry,	and	
trigonometry	(Appendices	
A.1,	A.6,	A.7)

•	 math skills:	graphs	of	
	linear	functions		
(Appendix	A.2)

•	 math skills:	exponents	
(Appendix	A.4)

•	 math skills:	proportions	
and	ratios	(Appendix	A.5)

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Bone density and osteo-
porosis (Example 1.1)

∙ Red blood cell count 
(Practice Problem 1.1)

∙ Surface area of alveoli in 
the lung (Example 1.7)

∙ Estimating the surface 
area of the human body 
(Example 1.10)

∙ Blood vessels and blood 
flow rates (Problems 13, 
14, 27, 37, 42, 75) 

∙ Mass dependence of met-
abolic rates (Problem 5)

∙ Speed of a nerve impulse 
(Problem 33)

∙ Sizes of organisms, xylem 
vessels, cells, viruses, and 
viroids (Problems 14, 27, 
70–73)

C H A P T E R

1
Introduction

NASA’s	Mars	 rover	Curiosity landed	on	 the	surface	of	Mars	 in	August	
2012.	 One	 of	 the	 mission’s	 primary	 objectives	 was	 to	 determine	
whether	Mars	ever	had	an	environment	capable	of	supporting	microbial	
life.	This	photo	taken	by	Curiosity shows	a	rock	outcrop	that	contains	
rounded	 pieces	 of	 gravel.	 The	 size,	 shape,	 and	 composition	 of	 the	
gravel	 led	scientists	 to	conclude	 that	a	stream	once	 flowed	here.
	 NASA’s	many	successful	missions	to	Mars	have	sent	back	a	wealth	
of	geologic	data.	However,	in	1998,	a	simple	mistake	caused	the	loss	
of	 the	Mars Climate Orbiter as	 it	 entered	 orbit	 around	Mars.	 In	 this	
chapter,	 you	will	 learn	how	 to	avoid	making	 this	 same	mistake.

Source:NASA/JPL-Caltech/MSSS
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1.1 WHY STUDY PHYSICS?

Physics is the branch of science that describes matter, energy, space, and time at the 
most fundamental level. Whether you are planning to study biology, architecture, med-
icine, music, chemistry, or art, some principles of physics are relevant to your field.

Physicists look for patterns in the physical phenomena that occur in the universe. 
They try to explain what is happening, and they perform experiments to see if the 
proposed explanation is valid. The goal is to find the most basic laws that govern the 
universe and to formulate those laws in the most precise way possible.

The study of physics is valuable for several reasons:

∙ Since physics describes matter and its basic interactions, all natural sciences are 
built on a foundation of the laws of physics. A full understanding of chemistry 
requires a knowledge of the physics of atoms. A full understanding of biological 
processes in turn is based on the underlying principles of physics and chemistry. 
Centuries ago, the study of natural philosophy encompassed what later became the 
separate fields of biology, chemistry, geology, astronomy, and physics. Today there 
are scientists who call themselves biophysicists, chemical physicists, astrophysicists, 
and geophysicists, demonstrating how thoroughly the sciences are intertwined.

∙ In today’s technological world, many important devices can be understood cor-
rectly only with a knowledge of the underlying physics. Just in the medical world, 
think of laser surgery, magnetic resonance imaging (Fig. 1.1), instant-read ther-
mometers, x-ray imaging, radioactive tracers, heart catheterizations, sonograms, 
pacemakers, microsurgery guided by optical fibers, ultrasonic dental drills, and 
radiation therapy.

∙ By studying physics, you acquire skills that are useful in other disciplines. These 
include thinking logically and analytically, solving problems, making simplifying 
assumptions, constructing mathematical models, using valid approximations, and 
making precise definitions.

∙ Society’s resources are limited, so it is important to use them in beneficial ways 
and not squander them on scientifically impossible projects. Political leaders and 
the voting public are too often led astray by a lack of understanding of scientific 
principles. Can a nuclear power plant supply energy safely to a community? What 
is the truth about global climate change, the ozone hole, and the danger of radon 
in the home? By studying physics, you learn some of the basic scientific prin-
ciples and acquire some of the intellectual skills necessary to ask probing ques-
tions and to formulate informed opinions on these important matters.

∙ Finally, we hope that by studying physics, you develop a sense of the beauty of 
the fundamental laws that describe the universe.

1.2 TALKING PHYSICS

Some of the words used in physics are familiar from everyday speech. This familiar-
ity can be misleading, however, since the scientific definition of a word may differ 
considerably from its common meaning. In physics, words must be precisely defined 
so that anyone reading a scientific paper or listening to a science lecture understands 
exactly what is meant. Some of the basic defined quantities, whose names are also 
words used in everyday speech, include time, length, force, velocity, acceleration, 
mass, energy, momentum, and temperature.

In everyday language, speed and velocity are synonyms. In physics, there is an 
important distinction between the two. In physics, velocity includes the direction of 
motion as well as the distance traveled per unit time. When a moving object changes 
direction, its velocity changes even though its speed may not have changed. Confusing 
the scientific definition of velocity with its everyday meaning will prevent a correct 
understanding of some of the basic laws of physics and will lead to incorrect answers.

Figure 1.1 A patient being 
prepared for magnetic reso-
nance imaging (MRI). MRI 
provides a detailed image of 
the internal structures of the 
patient’s body.
©ERproductions Ltd/Blend Images LLC
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Mass, as used in everyday language, has several different meanings. Sometimes 
mass and weight are used interchangeably. In physics, mass and weight are not inter-
changeable. Mass is a measure of inertia—the tendency of an object at rest to remain 
at rest or, if moving, to continue moving with the same velocity. Weight, on the other 
hand, is a measure of the gravitational pull on an object. 

There are two important reasons for the way in which we define physical quanti-
ties. First, physics is an experimental science. The results of an experiment must be 
stated unambiguously so that other scientists can perform similar experiments and 
compare their results. Quantities must be defined precisely to enable experimental 
measurements to be uniform no matter where they are made. Second, physics is a 
mathematical science. We use mathematics to quantify the relationships among phys-
ical quantities. These relationships can be expressed mathematically only if the quan-
tities being investigated have precise definitions.

1.3 THE USE OF MATHEMATICS

A working knowledge of algebra, trigonometry, and geometry is essential to the study 
of introductory physics. Some of the more important mathematical tools are reviewed 
in Appendix A. If you know that your mathematics background is shaky, you might 
want to test your mastery by doing some problems from a math textbook. You may 
find it useful to try the ALEKS® Math Prep for College Physics online course, avail-
able at www.aleks.com/highered/math.

Algebraic symbols in equations stand for quantities that consist of numbers and 
units. The number represents a measurement and the measurement is made in terms 
of some standard; the unit indicates what standard is used. In physics, using a number 
to specify a quantity is meaningless unless we also specify the unit of measurement. 
When buying silk to make a sari, do we need a length of 5 millimeters, 5 meters, or 
5 kilometers? Is the term paper due in 3 minutes, 3 days, or 3 weeks? Systems of 
units and unit conversions are discussed in Section 1.5.

There are not enough letters in the alphabet to assign a unique letter to each 
quantity. The same letter V can represent volume in one context and voltage in another. 
Avoid attempting to solve problems by picking equations that seem to have the correct 
letters. A skilled problem-solver understands specifically what quantity each symbol 
in a particular equation represents, can specify correct units for each quantity, and 
understands the situations to which the equation applies.

“Factors,” Proportions, and Ratios In the language of physics, the word factor 
is used frequently, often in a rather idiosyncratic way. If the power emitted by a radio 
transmitter has doubled, we might say that the power has “increased by a factor of 
2.” If the concentration of sodium ions in the bloodstream is half of what it was 
previously, we might say that the concentration has “decreased by a factor of 2,” or, 
in a blatantly inconsistent way, someone else might say that it has “decreased by a 
factor of 1

2.” The factor is the number by which a quantity is multiplied or divided 
when it is changed from one value to another. In other words, the factor is really a 
ratio. In the case of the radio transmitter, if P0 represents the initial power and P 
represents the power after new equipment is installed, we write

P

P0
= 2

It is also common to talk about “increasing 5%” or “decreasing 20%.” If a 
quantity increases n%, that is the same as saying that it is multiplied by a factor 
of 1 + (n/100). If a quantity decreases n%, then it is multiplied by a factor of 
1 − (n/100). For example, an increase of 5% means 1.05 times the original value, 
and a decrease of 4% means it is 0.96 times the original value. (See Percentages 
in Appendix A.5.)
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Physicists talk about increasing “by some factor” because it often simplifies a 
problem to think in terms of proportions. When we say that A is proportional to B 
(written A ∝ B), we mean that if B increases by some factor, then A must increase 
by the same factor. In other words, the ratio of two values of B is equal to the ratio 
of the corresponding values of A: B2/B1 = A2/A1. For instance, the circumference of 
a circle equals 2π times the radius: C = 2πr. Therefore C ∝ r. If the radius doubles, 
the circumference also doubles. The area of a circle is proportional to the square of 
the radius (A = πr2, so A ∝ r2). The area must increase by the same factor as the 
radius squared, so if the radius doubles, the area increases by a factor of 22 = 4. 
Written as a proportion, A2/A1 = (r2/r1)2 = 22 = 4. See Appendix A.5 for more infor-
mation about ratios and proportions.

Example 1.1

 Osteoporosis

Severe osteoporosis can cause the density of bone to decrease 
as much as 40% (Fig. 1.2). What is the bone density of this 
degraded bone if the density of healthy bone is 1.5 g/cm3?

Strategy A decrease of n% means the quantity is multi-
plied by 1 − (n/100).

Solution 1.5 g/cm3 × [1 − (40/100)] = 1.5 g/cm3 × 0.60  
= 0.90 g/cm3

Discussion Quick check: The final density is a bit more 
than half the original density, as expected for a 40% 
 decrease.

Practice Problem 1.1  Red Blood Cell Count

A hospital patient’s red blood count (RBC) is 5.0 × 106 cells 
per microliter (5.0 × 106 μL−1) on Tuesday; on Wednesday it 
is 4.8 × 106 μL−1. What is the percentage change in the 
RBC?

Figure 1.2
Colorized scanning electron micrograph of the porous structure 
inside an osteoporotic bone. Osteoporosis causes a reduction in 
bone density and an increase in porosity, resulting in increased 
brittleness and a greater risk of fracture. It is a common cause of 
fracture among the elderly.
©Steve Gschmeissner/Science Source

Example 1.2

Effect of Increasing Radius on the Volume  
of a Sphere

The volume of a sphere is given by the equation

V =
4
3

πr3

where V is the volume and r is the radius of the sphere. If a 
basketball has a radius of 12.4 cm and a tennis ball has a 
 radius of 3.20 cm, by what factor is the volume of the basket-
ball larger than the volume of the tennis ball?

Strategy The problem gives the values of the radii for the 
two balls. To keep track of which ball’s radius and  volume 
we mean, we use subscripts “b” for basketball and “t” for 
tennis ball. The radius of the basketball is rb and the radius 
of the tennis ball is rt. Since 4

3 and π are constants, we can 
work in terms of proportions.

continued on next page
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Example 1.2 continued

Solution The ratio of the basketball radius to that of the 
tennis ball is

rb

rt
=

12.4 cm
3.20 cm

= 3.875

The volume of a sphere is proportional to the cube of its ra-
dius [Eq. (A-47)]:

V ∝ r3

Since the basketball radius is larger by a factor of 3.875, and 
volume is proportional to the cube of the radius, the new 
volume should be bigger by a factor of 3.8753 ≈ 58.2.

Discussion A slight variation on the solution is to write 
out the proportionality in terms of ratios of the correspond-
ing sides of the two equations (Section A.5):

Vb

Vt
=

4
3πr3

b
4
3πr3

t
= (

rb

rt )
3

Substituting the ratio of rb to rt yields

Vb

Vt
= 3.18753 ≈ 58.2

which says that Vb is approximately 58.2 times Vt.

Practice Problem 1.2 Power Dissipated by a  
Lightbulb

The electrical power P dissipated by a lightbulb of resistance 
R is P = V2/R, where V represents the line voltage. During a 
brownout, the line voltage is 10.0% less than its normal 
value. How much power is drawn by a lightbulb during the 
brownout if it normally draws 60.0 W (watts)? Assume that 
the resistance does not change.

CHECKPOINT 1.3

If the radius of the sphere is increased by a factor of 3, by what factor does 
the volume of the sphere change?

1.4 SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES

In physics, we deal with some numbers that are very small and others that are very large. 
It can get cumbersome to write numbers in conventional decimal notation. In scientific 
notation, any number is written as a number between 1 and 10 times an integer power 
of ten. Thus the radius of Earth, approximately 6  380  000 m at the equator, can be writ-
ten 6.38 × 106 m; the radius of a hydrogen atom, 0.000 000 000 053 m, can be written 
5.3 × 10−11 m. Scientific notation eliminates the need to write zeros to locate the decimal 
point correctly. Tip: Learn how to use the button on your calculator (usually labeled EE) 
to enter a number in scientific  notation. To enter 1.2 × 108, press 1.2, EE, 8. See Appen-
dix A.4 for a review of how to do calculations  involving exponents.

In science, a measurement or the result of a calculation must indicate the precision 
to which the number is known. The precision of a device used to measure something 
is limited by the finest division on the scale. Using a meterstick with millimeter divi-
sions as the smallest separations, we can measure a length to a precise number of 
millimeters and we can estimate a fraction of a millimeter between two divisions. If 
the meterstick has centimeter divisions as the smallest separations, we measure a pre-
cise number of centimeters and estimate the fraction of a centimeter that remains.

Significant Figures The most basic way to indicate the precision of a quantity is to 
write it with the correct number of significant figures. The significant figures are all the 
digits that are known accurately plus the one estimated digit. If we say that the distance 
from here to the state line is 12 km, that does not mean we know the distance to be exactly 
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12 km. Rather, the distance is 12 km to the nearest kilometer. If instead we said that the 
distance is 12.0 km, that would indicate that we know the distance to the nearest tenth of 
a kilometer. More significant figures indicate a greater degree of precision.

Rules for Identifying Significant Figures

 1. Nonzero digits are always significant.
 2. Final or ending zeros written to the right of the decimal point are signifi-

cant.
 3. Zeros written to the right of the decimal point for the purpose of spacing 

the decimal point are not significant.
 4. Zeros written to the left of the decimal point may be significant, or they 

may only be there to space the decimal point. For example, 200 cm could 
have one, two, or three significant figures; it’s not clear whether the distance 
was measured to the nearest 1 cm, to the nearest 10 cm, or to the nearest 
100 cm. On the other hand, 200.0 cm has four significant figures (see rule 5). 
Rewriting the number in scientific notation is one way to remove the ambi-
guity. In this book, when a number has zeros to the left of the decimal 
point, you may assume a minimum of two significant figures.

 5. Zeros written between significant figures are significant.

Example 1.3

Identifying the Number of Significant Figures

For each of these values, identify the number of significant 
figures and rewrite it in standard scientific notation.

(a) 409.8 s
(b) 0.058 700 cm
(c) 9500 g
(d) 950.0 × 101 mL

Strategy We follow the rules for identifying significant 
figures as given. To rewrite a number in scientific notation, 
we move the decimal point so that the number to the left of 
the decimal point is between 1 and 10 and compensate by 
multiplying by the appropriate power of ten.

Solution (a) All four digits in 409.8 s are significant. The 
zero is between two significant figures, so it is significant. 
To write the number in scientific notation, we move the dec-
imal point two places to the left and compensate by multiply-
ing by 102: 4.098 × 102 s.

(b) The first two zeros in 0.058 700 cm are not significant; 
they are used to place the decimal point. The digits 5, 8, and 
7 are significant, as are the two final zeros. The answer has 
five significant figures: 5.8700 × 10−2 cm.

(c) The 9 and 5 in 9500 g are significant, but the zeros are 
ambiguous. This number could have two, three, or four 

 significant figures. If we take the most cautious approach 
and assume the zeros are not significant, then the number in 
scientific notation is 9.5 × 103 g.

(d) The final zero in 950.0 × 101 mL is significant since 
it  comes after the decimal point. The zero to its left is 
also significant since it comes between two other signifi-
cant digits. The result has four significant figures. The 
number is not in standard scientific notation since 950.0 
is not between 1 and 10; in scientific notation we write 
9.500 × 103 mL.

Discussion Scientific notation clearly indicates the num-
ber of significant figures since all zeros are significant; none 
are used only to place the decimal point. In (c), if the mea-
surement was made to the nearest gram, we would write 
9.500 × 103 g to show that the zeros are significant.

Practice Problem 1.3 Identifying Significant Figures

State the number of significant figures in each of these 
measurements and rewrite them in standard scientific 
 notation.

(a) 0.000 105 44 kg  (b) 0.005 800 cm  (c) 602 000 s
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Significant Figures in Calculations

 1. When two or more quantities are added or subtracted, the result is as precise 
as the least precise of the quantities (Example 1.4). If the quantities are 
written in scientific notation with different powers of ten, first rewrite them 
with the same power of ten. After adding or subtracting, round the result, 
keeping only as many decimal places as are significant in all of the quan-
tities that were added or subtracted.

 2. When quantities are multiplied or divided, the result has the same number 
of significant figures as the quantity with the smallest number of significant 
figures (see Example 1.5).

 3. In a series of calculations, rounding to the correct number of significant 
figures should be done only at the end, not at each step. Rounding at each 
step would increase the chance that roundoff error could snowball and 
adversely affect the accuracy of the final answer. It’s a good idea to keep 
at least two extra significant figures in calculations, then round at the end.

Example 1.4

Significant Figures in Addition

Calculate the sum 44.560 05 s + 0.0698 s + 1103.2 s.

Strategy The sum cannot be more precise than the least 
precise of the three quantities. The quantity 44.560 05 s is 
known to the nearest 0.000 01 s, 0.0698 s is known to the 
nearest 0.0001 s, and 1103.2 s is known to the nearest 0.1 s. 
Therefore the least precise is 1103.2 s. The sum has the same 
precision; it is known to the nearest tenth of a second.

Solution According to the calculator,

44.560 05 + 0.0698 + 1103.2 = 1147.829 85

We do not want to write all of those digits in the answer. That 
would imply greater precision than we actually have. Round-
ing to the nearest tenth of a second, the sum is written

= 1147.8 s

which has five significant figures.

Discussion Note that the least precise measurement is not 
necessarily the one with the fewest number of significant 
figures. The least precise is the one whose rightmost signifi-
cant figure represents the largest unit: the “2” in 1103.2 s 
represents 2 tenths of a second. In addition or subtraction, 
we are concerned with the precision rather than the number 
of significant figures. The three quantities to be added have 
seven, three, and five significant figures, respectively, but 
the sum has five significant figures.

Practice Problem 1.4 Significant Figures  
in Subtraction

Calculate the difference 568.42 m − 3.924 m and write the 
result in scientific notation. How many significant figures 
are in the result?

Example 1.5

Significant Figures in Multiplication

Find the product of 45.26 m/s and 2.41 s. How many signifi-
cant figures does the product have?

Strategy The product should have the same number of 
significant figures as the factor with the least number of sig-
nificant figures.

Solution A calculator gives

45.26 × 2.41 = 109.0766

Since the answer should have only three significant figures, 
we round the answer to

45.26 m/s × 2.41 s = 109 m
continued on next page
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Example 1.5 continued

Discussion Writing the answer as 109.0766 m would give 
the false impression that we know the answer to a precision 
of about 0.0001 m, whereas we actually have a precision of 
only about 1 m.

Note that although both factors were known to two 
decimal places, our solution is properly given with no dec-
imal places. It is the number of significant figures that 

matters in multiplication or division. In scientific notation, 
we write 1.09 × 102 m.

Practice Problem 1.5 Significant Figures in Division

Write the solution to 28.84 m divided by 6.2 s with the cor-
rect number of significant figures.

When an integer, or a fraction of integers, is used in an equation, the precision of 
the result is not affected by the integer or the fraction; the number of significant figures 
is limited only by the measured values in the problem. The fraction 1

2 in an equation is 
exact; it does not reduce the number of significant figures to one. In an equation such 
as C = 2πr for the circumference of a circle of radius r, the factors 2 and π are exact. 
We use as many digits for π as we need to maintain the precision of the other quantities.

Order-of-Magnitude Estimates Sometimes a problem may be too complicated to 
solve precisely, or information may be missing that would be necessary for a precise 
calculation. In such a case, an order-of-magnitude solution is the best we can do. 
By order of magnitude, we mean “roughly what power of ten?” (see Fig. 1.3). An 
order of magnitude calculation is done to at most one significant figure. Even when 
a more precise solution is feasible, it is often a good idea to start with a quick, “back-
of-the-envelope estimate” (a calculation so short that it could easily fit on the back 

Silicon atoms (radius ≈ 10–10 m) A child (height ≈ 100 m) Earth (diameter ≈ 107 m) A spiral galaxy
(diameter ≈ 1021 m) 

10–15 10–10 10–5 100 105 1010 1015 1020 1025

HIV (green, diameter ≈ 10–7 m)
invading a T lymphocyte
(a type of white blood cell) 

The Duomo (cathedral) in
Florence, Italy (height ≈ 102 m) 

The Sun (diameter ≈ 109 m) 

Distance to quasar
observed by Hubble
Telescope (≈ 1026 m) 

Hydrogen
nucleus
(radius ≈ 10–15 m) 

Figure 1.3 A few objects arranged according to the order of magnitude of their sizes. Note that the scale is logarithmic; 
moving to the right from one tic to the next increases the size by a factor of 100 000. From the size of the hydrogen 
nucleus to the distance to a quasar, these distances span 41 orders of magnitude.
©Andrew Dunn/Alamy; ©Jennifer Merlis; Source: NASA; ©Imaging nature/Getty Images; ©CDC/C. Goldsmith, P. Feorino, E. L. Palmer, W. R. 
McManus; ©Moment Open/Thomas Janisch/Getty Images; ©Digital Vision/Getty Image
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of an envelope). Why? Because we can often make a good guess about the correct 
order of magnitude of the answer to a problem, even before we start solving the 
problem. If the answer comes out with a different order of magnitude, we go back 
and search for an error. Suppose a problem concerns a vase that is knocked off a 
fourth-story window ledge. We can guess by experience the order of magnitude of 
the time it takes the vase to hit the ground. It might be 1 s, or 2 s, but we are certain 
that it is not 1000 s or 0.000 01 s.

CHECKPOINT 1.4

What	are	some	of	 the	 reasons	 for	making	order-of-magnitude	estimates?

1.5 UNITS

A metric system of units has been used for many years in scientific work and in 
European countries. The metric system is based on powers of ten. In 1960, the General 
Conference of Weights and Measures, an international authority on units, proposed a 
revised metric system called the Système International d’Unités in French (abbreviated 
SI), which uses the meter (m) for length, the kilogram (kg) for mass, the second (s) 
for time, and four more base units (Table 1.1). Derived units are constructed from 
combinations of the base units. For example, the SI unit of force is kg·m/s2 (which can 
also be written kg·m·s−2); this combination of units is given a special name, the new-
ton (N), in honor of Isaac Newton. When units are named after famous scientists, the 
name of the unit is written with a lowercase letter, even though it is based on a proper 
name; the symbol for the unit is written with an uppercase letter. Appendix B has a 
complete listing of the derived SI units used in this book. 

As an alternative to explicitly writing powers of ten, SI uses prefixes for units to 
indicate power of ten factors. Table 1.2 shows some of the powers of ten and the SI 
prefixes used for them. These are also listed in Appendix B. Note that when an SI 

Table 1.1 SI Base Units

Quantity Unit Name Symbol Present Definition (2017)*

Length meter m The distance traveled by light in vacuum during a time interval of 
1/299 792 458 s.

Mass kilogram kg The mass of the international prototype of the kilogram.
Time second s The duration of 9 192 631 770 periods of the radiation corresponding to 

the transition between the two hyperfine levels of the ground state of 
the cesium-133 atom.

Electric current ampere A The constant current in two long, thin, straight, parallel conductors 
placed 1 m apart in vacuum that would produce a force on the conduc-
tors of 2 × 10−7 newtons per meter of length.

Temperature kelvin K The fraction 1/273.16 of the thermodynamic temperature of the triple 
point of water.

Amount of substance mole mol The amount of substance that contains as many elementary entities as 
there are atoms in 0.012 kg of carbon-12.

Luminous intensity candela† cd The luminous intensity, in a given direction, of a source that emits radi-
ation of frequency 540 × 1012 Hz and that has a radiant intensity in that 
direction of 1/683 watts per steradian.

*New definitions of the SI base units are expected to be finalized in 2018.
†Not used in this book
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unit with a prefix is raised to a power, the prefix is also raised to that power. For 
example, 8 cm3 = 2 cm × 2 cm × 2 cm.

SI units are preferred in physics and are emphasized in this book. Since other 
units are sometimes used, we must know how to convert units. Various scientific 
fields, even in physics, sometimes use units other than SI units, whether for historical 
or practical reasons. For example, in atomic and nuclear physics, the SI unit of energy 
(the joule, J) is rarely used; instead the energy unit used is usually the electron-volt 
(eV). Biologists and chemists use units that are not ordinarily used by physicists. One 
reason that SI is preferred is that it provides a common denominator—all scientists 
are familiar with the SI units.

In most of the world, SI units are used in everyday life and in industry. In the 
United States, however, the U.S. customary units—sometimes called English units—
are still used. The base units for this system are the foot, the second, and the pound. 
The pound is legally defined in the United States as a unit of mass, but it is also 
commonly used as a unit of force (in which case it is sometimes called pound-force). 
Since mass and force are entirely different concepts in physics, this inconsistency is 
one good reason to use SI units.

Failure to specify units or to properly convert them can have catastrophic conse-
quences, as when in the autumn of 1999, to the chagrin of NASA, a $125 million 
spacecraft was destroyed as it was being maneuvered into orbit around Mars. The 
company building the booster rocket provided information about the rocket’s thrust in 
U.S. customary units, but the NASA scientists who were controlling the rocket thought 
the figures provided were in SI units. Arthur Stephenson, chairman of the Mars Cli-
mate Orbiter Mission Failure Investigation Board, stated that, “The ‘root cause’ of 
the loss of the spacecraft was the failed translation of English units into metric units 
in a segment of ground-based, navigation-related mission software.” After a journey 
of 122 million miles, the Climate Orbiter dipped about 15 miles too deep into the 
Martian atmosphere, causing the propulsion system to overheat. The discrepancy in 
units unfortunately caused a dramatic failure of the mission.

Converting Units If the statement of a problem includes a mixture of different 
units, the units must be converted to a single, consistent set before numerical calcula-
tions are carried out. Quantities to be added or subtracted must be expressed in the 
same units. Usually the best way is to convert everything to SI units. Common con-
version factors are listed in Appendix B.

Examples 1.6 and 1.7 illustrate the technique for converting units. The quantity 
to be converted is multiplied by one or more conversion factors, written as a fraction 
equal to 1. The units are multiplied or divided as algebraic quantities.

Some conversions are exact by definition. One meter is defined to be exactly 
equal to 100 cm; all SI prefixes are exactly a power of ten. The use of an exact con-
version factor (such as 1 m = 100 cm or 1 ft = 12 in) does not affect the precision 
of the result; the number of significant figures is limited only by the other quantities 
in the problem.

Table 1.2 SI  
Prefixes

Prefix  Power 
(abbreviation) of Ten

 peta- (P) 1015

 tera- (T) 1012

 giga- (G) 109

 mega- (M) 106

 kilo- (k) 103

 deci- (d) 10−1

 centi- (c) 10−2

 milli- (m) 10−3

 micro- (μ) 10−6

 nano- (n) 10−9

 pico- (p) 10−12

 femto- (f  ) 10−15

Example 1.6

Buying Clothes in a Foreign Country

Michel, an exchange student from France, is studying in the 
United States. He wishes to buy a new pair of jeans, but the 
sizes are all in inches. He does remember that 1 m = 3.28 ft 
and that 1 ft = 12 in. If his waist size is 82 cm, what is his 
waist size in inches?

Strategy Each conversion factor can be written as a frac-
tion. If 1 m = 3.28 ft, then

3.28 ft
1 m

= 1

continued on next page
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Example 1.6 continued

We can multiply any quantity by 1 without changing its 
value. We arrange each conversion factor in a fraction and 
multiply one at a time to get from centimeters to inches.

Solution We first convert cm to meters.

82 cm ×
1 m

100 cm

Now, we convert meters to feet.

82 cm ×
1 m

100 cm
×

3.28 ft
1 m

Finally, we convert feet to inches.

82 cm ×
1 m

100 cm
×

3.28 ft
1 m

×
12 in
1 ft

= 32 in

In each case, the fraction is written so that the unit we are 
converting from cancels out.

As a check:

cm ×
m
cm ×

ft
m ×

in
ft

= in

Discussion This problem could have been done in one 
step using a direct conversion factor from inches to centime-
ters (1 in = 2.54 cm). One of the great advantages of SI 
units is that all the conversion factors are powers of ten (see 
Table 1.2); there is no need to remember that there are 
12  inches in a foot, 4 quarts in a gallon, 16 ounces in a 
pound, 5280 feet in a mile, and so on.

Practice Problem 1.6 Driving on the Autobahn

A BMW convertible travels on the German Autobahn at a 
speed of 128 km/h. What is the speed of the car (a) in 
meters per second? (b) in miles per hour?

Example 1.7

 Area of the Alveoli

The total area of the alveoli in the human lung (Fig. 1.4) is 
about 70 m2. What is the area in (a) square centimeters and 
(b) square inches?

Strategy We can look up the conversion factors be-
tween meters, centimeters, and inches. Since there are two 
powers of meters to convert, we need to square the conver-
sion factors.

Solution (a) 1 m = 100 cm, so

70 m2 × (100 
cm
m )

2

= 7.0 × 105 cm2

(b) Using 1 in = 2.54 cm, we find that

7.0 × 105 cm2 × (
1 in

2.54 cm)
2

= 1.1 × 105 in2

Discussion Be careful when a unit is raised to a power 
other than 1; the conversion factor must be raised to the same 
power. Writing out the units to make sure they cancel pre-
vents mistakes. When a quantity is raised to a power, both 
the number and the unit must be raised to the same power. 
The quantity (100 cm)3 is equal to 1003 cm3 = 106 cm3; it is 
not equal to 100 cm3, nor is it equal to 106 cm.

Practice Problem 1.7 Surface Area of Earth

The radius of Earth is 6.4 × 103 km. Find the surface area of 
Earth in square meters and in square miles. (See Appendix A.6 
for the areas and volumes of important geometric shapes.)

Figure 1.4 
Scanning electron micrograph of alveoli in the human lung. The 
alveoli are hollow cavities around 200 μm in diameter. Hundreds 
of millions of alveoli in the lung provide a large surface area for 
the exchange of gas with the blood.
©Image Source/Getty Images
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Whenever a calculation is performed, always write out the units with each quan-
tity. Combine the units algebraically to find the units of the result. This small effort 
has three important benefits:

 1. It shows what the units of the result are. A common mistake is to get the correct 
numerical result of a calculation but to write it with the wrong units, making 
the answer wrong.

 2. It shows where unit conversions must be done. If units that should have canceled 
do not, we go back and perform the necessary conversion. When a distance is 
calculated and the result comes out with units of meter-seconds per hour (m·s/h), 
we should convert hours to seconds.

 3. It helps locate mistakes. If a distance is calculated and the units come out as 
meters per second (m/s), we know to look for an error.

CHECKPOINT 1.5

If	 1	 fluid	 ounce	 (fl	 oz)	 is	 approximately	 30	mL,	 how	many	 liters	 are	 in	 a	 half	
gallon	 (64	 fl	oz)	of	milk?

1.6 DIMENSIONAL ANALYSIS

Dimensions are basic types of units, such as time, length, and mass. (Note that the word 
dimension has several other meanings, such as in “three-dimensional space” or “the 
dimensions of a soccer field.”) Many different units of length exist: meters, inches, miles, 
nautical miles, fathoms, leagues, astronomical units, angstroms, and cubits, just to name 
a few. All have dimensions of length; each can be converted into any other. Pure numer-
ical factors are dimensionless. For example, the numerical factor 2π is dimensionless, so 
the circumference of a circle (2πr) has the same dimensions as the radius (r).

We can add, subtract, or equate quantities only if they have the same dimensions 
(although they may not necessarily be given in the same units). It is possible to add 
3 meters to 2 inches (after converting units), but it is not possible to add 3 meters to 
2 kilograms. To analyze dimensions, treat them as algebraic quantities, just as we did 
with units in Section 1.5. We use [M], [L], and [T] to stand for mass, length, and 
time dimensions, respectively. As an alternative, we can use the SI base units: kg for 
mass, m for length, and s for time.

Example 1.8

Dimensional Analysis for a Distance Equation

Analyze the dimensions of the equation d = vt, where d is 
distance traveled, v is speed, and t is elapsed time.

Strategy Replace each quantity with its dimensions. Dis-
tance has dimensions [L]. Speed has dimensions of length 
per unit time [L/T]. The equation is dimensionally consistent 
if the dimensions are the same on both sides.

Solution The right side has dimensions

[L]
[T]

× [T] = [L]

Since both sides of the equation have dimensions of length, 
the equation is dimensionally consistent.

Discussion If, by mistake, we wrote d = v/t for the rela-
tion between distance traveled and elapsed time, we could 
quickly catch the mistake by looking at the dimensions. On 
the right side, v/t would have dimensions [L/T2], which is not 
the same as the dimensions of d on the left side.

A quick dimensional analysis of this sort is a good way 
to catch algebraic errors. Whenever we are unsure whether 
an equation is correct, we can check the dimensions.

continued on next page
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Example 1.8 continued

Practice Problem 1.8 Testing Dimensions of  
Another Equation

Test the dimensions of the following equation:

d =
1
2

 at

where d is distance traveled, a is acceleration (which has 
SI units m/s2), and t is the elapsed time. If incorrect, can 
you suggest what might have been omitted?

Applying Dimensional Analysis Dimensional analysis is good for more than just 
checking equations. In some cases, we can completely solve a problem—up to a 
dimensionless factor like 1/(2π) or √3—using dimensional analysis. To do this, first 
list all the relevant quantities on which the answer might depend. Then determine 
what combinations of them have the same dimensions as the answer for which we are 
looking. If only one such combination exists, then we have the answer, except for a 
possible dimensionless multiplicative constant.

Example 1.9

Violin String Frequency

A violin string produces a tone with fre-
quency f measured in s−1; the frequency is 
the number of vibrations per second of the 
string. The frequency depends only on the 
string’s mass m, length L, and tension T. If 
the tension is increased 5.0%, how does the 
frequency change? Tension has SI units 
kg·m/s2.

Strategy We could make a study of violin strings, but let us 
see what we can find out by dimensional analysis. We want to 
find out how the frequency f can depend on m, L, and T. We 
won’t know if there is a dimensionless constant involved, but we 
can work by proportions so any such constant will divide out.

Solution The unit of tension T is kg·m/s2. The units of f do 
not contain kg or m; we can eliminate them from T by divid-
ing the tension by the length and the mass:

T

mL
 has SI units 

kg · m/s2

kg × m
= s−2

That is almost what we want; all we have to do is take the 
square root:

√
T

mL
 has SI units s−1

Therefore,

f = C√
T

mL

where C is some dimensionless constant. To answer the ques-
tion, let the original frequency and tension be f and T and the 
new frequency and tension be f′ and T′, where T′ = 1.050T. 
Frequency is proportional to the square root of tension, so

f′
f

= √
T′
T

= √1.050 = 1.025

The frequency increases 2.5%.

Discussion We’ll learn in Chapter 11 how to calculate the 
value of C, which is 1/2. That is the only thing we cannot get by 
dimensional analysis. There is no other way to combine T, m, 
and L to come up with a quantity that has the units of frequency.

A more formal way to solve this problem is to write

f = kTambLc

where a, b, and c are the exponents to find and k is a dimen-
sionless constant. Now substitute the SI units for each quantity:

s−1 = (
kg · m

s2 )
a

× kgb × mc = kga+bma+cs−2a

continued on next page

©Ryan McVay/ 
Getty Images
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CHECKPOINT 1.6

If two quantities have different dimensions, is it possible to (a) multiply, (b) divide, 
(c) add, (d) subtract them?

1.7 PROBLEM-SOLVING TECHNIQUES

No single method can be used to solve every physics problem. We demonstrate useful 
problem-solving techniques in the examples in every chapter of this text. Even for a 
particular problem, there may be more than one correct way to approach the solution. 
Problem-solving techniques are skills that must be practiced to be learned.

Think of the problem as a puzzle to be solved. Only in the easiest problems is the 
solution method immediately apparent. When you do not know the entire path to a 
solution, see where you can get by using the given information—find whatever you can. 
Exploration of this sort may lead to a solution by suggesting a path that had not been 
considered. Be willing to take chances. You may even find the challenge enjoyable!

When having some difficulty, it helps to work with a classmate or two. One way 
to clarify your thoughts is to put them into words. After you have solved a problem, 
try to explain it to a friend. If you can explain the problem’s solution, you really do 
understand it. Both of you will benefit. But do not rely too much on help from others; 
the goal is for each of you to develop your own problem-solving skills.

Example 1.9 continued

(See Appendix A.4 to review how to manipulate exponents.) 
The exponents must match on the two sides of the equation, so

a + b = 0, a + c = 0, −2a = −1

Solving these equations, we find a = 1/2 and b = c = −1/2, 
in agreement with the previous solution.

Practice Problem 1.9 Increase in Kinetic Energy

When an object of mass m is moving with a speed v, it has 
kinetic energy associated with its motion. Energy is 
 measured in kg·m2·s−2. If the speed of a moving object is 
increased by 25% while its mass remains constant, by what 
percentage does the kinetic energy increase?

General Guidelines for Problem Solving

 1. Read the problem carefully and all the way through. Identify the goal of 
the problem: What are you trying to find?

 2. Reread the problem and draw a sketch or diagram to help you visualize 
what is happening. If the problem involves motion or change, sketch it at 
different times (especially the initial and final situations).

 3. Write down and organize the given information. Some of the information 
can be written in labels on the diagram. Be sure that the labels are unam-
biguous. Identify in the diagram the object, the position, the instant of time, 
or the time interval to which the quantity applies. Sometimes information 
might be usefully written in a table beside the diagram. Look at the word-
ing of the problem again for information that is implied or stated indirectly. 
Decide on algebraic symbols to stand for each quantity and make sure your 
notation is clear and unambiguous.

 4. Identify the units appropriate for the answer. If possible, make an estimate 
to determine the order of magnitude of the answer. This estimate is useful 
as a check on the final result to see if it is reasonable.

continued on next page
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 5. Think about how to get from the given information to the final desired 
information. Do not rush this step. Which principles of physics can be 
applied to the problem? Which will help get to the solution? How are the 
known and unknown quantities related? Are all of the known quantities 
relevant, or might some of them not affect the answer? Which equations 
are relevant and may lead to the solution to the problem?

 6. Frequently, the solution involves more than one step. Intermediate quantities 
might have to be found first and then used to find the final answer. Try to map 
out a path from the given information to the solution. Whenever possible, a 
good strategy is to divide a complex problem into several simpler subproblems.

 7. Perform algebraic manipulations with algebraic symbols (letters) as far as 
possible. Substituting the numbers in too early has a way of hiding mistakes.

 8. Finally, if the problem requires a numerical answer, substitute the known 
numerical quantities, with their units, into the appropriate equation. Leaving 
out the units is a common source of error. Writing the units shows when a 
unit conversion needs to be done—and also may help identify an algebra 
mistake. In a series of calculations, round to the correct number of sig-
nificant figures at the end, not at each step.

 9. Once the solution is found, don’t be in a hurry to move on. Check the 
answer—is it reasonable?  Test your solution in special cases or with lim-
iting values of quantities to see if the solution makes sense. (For example, 
what happens if the mass is very large? What happens as it approaches 
zero?) Try to think of other ways to solve the same problem. Many prob-
lems can be solved in several different ways. Besides providing a check on 
the answer, finding more than one method of solution deepens our under-
standing of the principles of physics and develops problem-solving skills 
that will help solve other problems.

1.8 APPROXIMATION

Physics is about building conceptual and mathematical models and comparing obser-
vations of the real world with the model. Simplified models help us to analyze com-
plex situations. In various contexts we assume there is no friction, or no air resistance, 
no heat loss, or no wind blowing, and so forth. If we tried to take all these things 
into consideration with every problem, the problems would become vastly more com-
plicated to solve. We never can take account of every possible influence. We freely 
make approximations whenever possible to turn a complex problem into an easier one, 
as long as the answer will be accurate enough for our purposes. Refer to Appendix A.9 
for information about the most important mathematical approximations.

A valuable skill to develop is the ability to know when an assumption or approxima-
tion is reasonable. It might be permissible to ignore air resistance when dropping a stone, 
but not when dropping a beach ball. Why? We must always be prepared to justify any 
approximation we make by showing the answer is not changed very much by its use.

As well as making simplifying approximations in models, we also recognize that 
measurements are approximate. Every measured quantity has some uncertainty; it is 
impossible for a measurement to be exact to an arbitrarily large number of significant 
figures. Every measuring device has limits on the precision and accuracy of its 
 measurements.

Estimation Sometimes it is difficult or impossible to measure precisely a quantity that 
is needed for a problem. Then we have to make a reasonable estimate. Suppose we need 
to know the approximate surface area of a human being to determine the heat loss by 
radiation in a cold room. Example 1.10 demonstrates how we might make an estimate.
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Example 1.10

 Estimating the Surface Area of the  
Human Body

Estimate the average surface area of the adult human body.

Strategy We can estimate the height of an average person. 
We can also estimate the average circumference around the 
waist or hips. Approximating the shape of a human body as 
a cylinder, we can estimate the surface area by calculating 
the surface area of a cylinder with the same height and cir-
cumference (Fig. 1.5a).

Solution Although there is considerable variation between 
individuals, we estimate the average adult height to be around 
1.7 m (5.6 ft). For the circumference of the cylinder, consider an 
average waist or hip size—perhaps about 0.9 m (35 in). From 
Table A.1 in Appendix A.6, the surface area of a cylinder is

A = 2πr(r + h)
where h is the height and r is the radius. The circumference 
and radius are related by C = 2πr.

Therefore, r = C/(2π) and

A = (0.9 m)(
0.9 m

2π
+ 1.7 m) ≈ 1.7 m2

Discussion For a more precise estimate, we might consider 
a more refined model. For instance, we might approximate the 
arms, legs, trunk, and head and neck as cylinders of various 
sizes (Fig. 1.5b). This wouldn’t be necessary for a rough esti-

mate of the average surface area, but might be  useful when 
approximating the area of a particular person or body type.

The equation given in Table A.1 includes the areas of 
the two circles at the ends (2 × πr2). If we didn’t want to in-
clude the ends, the area would be A = 2πrh.

Practice Problem 1.10 Drinking Water Consumed 
in the United States

How many liters of water are swallowed by the people living 
in the United States in one year? This is a type of problem 
made famous by the physicist Enrico Fermi (1901–1954), 
who was a master at this sort of back-of-the-envelope calcu-
lation. Such problems are often called Fermi problems in his 
honor. (Note: 1 liter = 10−3 m3 ≈ 1 quart.)

1.9 GRAPHS

Graphs are used to help us see a pattern in the relationship between two quantities. 
It is much easier to see a pattern on a graph than to see it in a table of numerical 
values. When we do experiments in physics, we change one quantity (the independent 
variable) and see what happens to another (the dependent variable). We want to see 
how one variable depends on another. The value of the independent variable is usually 
plotted along the horizontal axis of the graph. In a plot of p versus q, which means 
p is plotted on the vertical axis and q on the horizontal axis, normally p is the depen-
dent variable and q is the independent variable.

Some general guidelines for recording data and making graphs are given next.

Recording Data and Making Data Tables

 1. Label columns with the names of the data being measured and be sure to include 
the units for the measurements. Do not erase any data, but just draw a line 
through data that you think are erroneous. Sometimes you may decide later that 
the data were correct after all.

 2. Try to make a realistic estimate of the precision of the data being taken when 
recording numbers. For example, if the timer says 2.3673 s, but you know your 
reaction time can vary by as much as 0.1 s, the time should be recorded as 2.4 s. 
When doing calculations using measured values, remember to round the final 
answer to the correct number of significant figures.

(b)(a)

Figure 1.5 
Approximation of human body 
by one or more cylinders to es-
timate the body’s surface area.
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 3. Do not wait until you have collected all of your data to start a graph. It is much 
better to graph each data point as it is measured. By doing so, you can often 
identify equipment malfunction or measurement mistakes. You can also spot 
where something interesting happens and take data points closer together there. 
Graphing as you go means that you need to find out the range of values for 
both the independent and dependent variables.

Graphing Data

 1. Make large, neat graphs. A tiny graph is not very illuminating. Use at least half 
a page. A graph made carelessly obscures the pattern between the two variables.

 2. Label axes with the name of the quantities graphed and their units. Write a 
meaningful title.

 3. When a linear relation is expected, use a ruler or straightedge to draw the best-
fit straight line. Do not assume that the line must go through the origin—make 
a measurement to find out, if possible. Some of the data points will probably 
fall above the line and some will fall below the line.

 4. Determine the slope of a best-fit line by measuring the ratio Δy/Δx using as 
large a range of the graph as possible. The notation Δy is read aloud as “delta 
y” and represents a change in the value of y. (See Appendix A.2, Graphs of 
Linear Functions.) Do not choose two data points to calculate the slope; instead, 
read values from two points on the best-fit line. Show the calculations. Do not 
forget to write the units; slopes of graphs in physics have units, since the quan-
tities graphed have units.

 5. When a nonlinear relationship is expected between the two variables, the best way 
to test that relationship is to manipulate the data algebraically so that a linear 
graph is expected. The human eye is a good judge of whether a straight line fits 
a set of data points. It is not so good at deciding whether a curve is parabolic, 
cubic, or exponential. To test the relationship x = 1

2at2, where x and t are the 
quantities measured, and a is a constant graph x versus t2 instead of x versus t.

 6. If one data point does not lie near the line or smooth curve connecting the other 
data points, that data point should be investigated to see whether an error was made 
in the measurement or whether some interesting event is occurring at that point. If 
something unusual is happening there, obtain additional data points in the vicinity.

 7. When the slope of a graph is used to calculate some quantity, pay attention to 
the equation of the line and the units along the axes. The quantity to be found 
may be the inverse of the slope or twice the slope or one half the slope. The 
equation of the line will tell you how to interpret the slope and intercept of the 
line. For example, if the expected relationship is v2 = v2

0 + 2ax and you plot v2 
versus x, rewrite the equation as (v2) = (2a)x + (v2

0) . This shows that the slope 
of the line is 2a and the vertical intercept is v2

0.

Example 1.11

Length of a Spring

In an introductory physics laboratory experiment, students are 
investigating how the length of a spring varies with the weight 
hanging from it. Various objects with weights up to 6.00 N can 
be hung from the spring; then the length of the spring is mea-
sured with a meterstick (Fig. 1.6). The goal is to see if the 
weight F and length L are related by

F = kx

where L0 is the length of the spring when no weight is hang-
ing from it, x = (L − L0), and k is called the spring constant 
of the spring. Graph the data in the table and calculate k for 
this spring.

F (N): 0 0.50 1.00 2.50 3.00 3.50 4.00 5.00 6.00
L (cm): 9.4 10.2 12.5 17.9 19.7 22.5 23.0 28.8 29.5

continued on next page
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Example 1.11 continued

Strategy Weight is the independent variable, so it is plot-
ted on the horizontal axis. After plotting the data points, we 
draw the best-fit straight line. Then we calculate the slope of 
the line, using two points on the line that are widely sepa-
rated and that cross gridlines of the graph (so the values are 
easy to read). The slope of the graph is not k; we must solve 
the equation for L, since length is plotted on the vertical axis.

Solution Figure 1.7 shows a graph with data points and a 
best-fit straight line. There is some scatter in the data, but a 
linear relationship is plausible.

Two points where the line crosses gridlines of the graph 
are (0.80 N, 12.0 cm) and (4.40 N, 25.0 cm). From these, we 
calculate the slope (Section A.2):

slope =
ΔL

ΔF
=

25.0 cm − 12.0 cm
4.40 N − 0.80 N

= 3.61 
cm
N

By analyzing the units of the equation F = k(L − L0), it is 
clear that the slope cannot be the spring constant; k has the 
same units as weight divided by length (N/cm). Is the slope 
equal to 1/k? The units would be correct for that case. To 
be sure, we solve the equation of the line for L:

L = (
1
k)F + L0

We recognize the equation of a line in the familiar form 
y = mx + b, where the dependent variable L replaces y and 
the independent variable F replaces x. The intercept is b = 
L0 and the slope is m = 1/k. Therefore,

k =
1

3.61 cm/N
= 0.277 N/cm

Discussion As discussed in the graphing guidelines, 
the slope of the straight-line graph is calculated from two 
widely spaced values along the best-fit line. We do not 
subtract values of actual data points. We are looking for an 
average value from the data; using two data points to find 
the slope would defeat the purpose of plotting a graph or 
of taking more than two data measurements. The values 
read from the graph, including the units, are indicated in 
Fig. 1.7. The units for the slope are cm/N, since we plotted 
centimeters versus newtons. For this particular problem 
the inverse of the slope is the quantity we seek, the spring 
constant in N/cm.

Practice Problem 1.11 Another Weight on Spring

What is the length of the spring of Example 1.11 when an 
8.00 N object is suspended? Assume that the relationship 
found in Example 1.11 still holds for this weight.
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Figure 1.6 
A hanging weight makes a spring stretch. In this experiment, stu-
dents measure the length L of the spring when different weights 
are hung from it.
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ΔL = 13.0 cm

ΔF = 3.60 N

(4.40 N, 25.0 cm)

(0.80 N, 12.0 cm)

Best-fit line

Figure 1.7 
The students’ graph of spring length 
L versus hanging weight F. After 
drawing a best-fit line, they calcu-
late the slope using two points on 
the line.
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CHECKPOINT 1.9

What	value	of	k	would	you	calculate	by	using	only	the	first	and	last	data	points	
in	Fig.	1.7?	Why	 is	 it	better	 to	use	 the	value	obtained	 from	 the	best-fit	 line?

Conceptual Questions

 1. Give a few reasons for studying physics.
 2. Why must words be carefully defined for scientific use?
 3. Why are simplified models used in scientific study if 

they do not exactly match real conditions?
 4. Once the solution of a problem has been found, what 

should be done before moving on to solve another 
problem?

 5. What are some of the advantages of scientific notation?
 6. After which numeral is the decimal point usually placed 

in scientific notation? What determines the number of 
numerical digits written in scientific notation?

 7. Are all the digits listed as “significant figures” defi-
nitely known? Might any of the significant digits be less 
definitely known than others? Explain.

 8. Why is it important to write quantities with the correct 
number of significant figures?

Master the Concepts

 ∙ Terms used in physics must be precisely defined. A 
term may have a different meaning in physics from the 
meaning of the same word in other contexts.

 ∙ A working knowledge of algebra, geometry, and trigo-
nometry is essential in the study of physics.

 ∙ The factor by which a quantity is increased or decreased 
is the ratio of the new value to the original value.

 ∙ When we say that A is proportional to B (written A ∝ B), 
we mean that if B increases by some factor, then A must 
increase by the same factor.

 ∙ In scientific notation, a number is written as the product 
of a number between 1 and 10 and a whole-number 
power of ten.

 ∙ Significant figures are the basic grammar of precision. 
They enable us to communicate quantitative informa-
tion and indicate the precision to which that information 
is known.

 ∙ When two or more quantities are added or subtracted, the 
result is as precise as the least precise of the quantities. 
The least precise measurement is not necessarily the one 
with the fewest number of significant figures. When quan-
tities are multiplied or divided, the result has the same 
number of significant figures as the quantity with the 
smallest number of significant figures. In a series of calcu-
lations, rounding to the correct number of significant fig-
ures should be done only at the end, not at each step.

 ∙ Order-of-magnitude estimates and calculations are made 
to be sure that the more precise calculations are realistic.

 ∙ In physics, using a number to specify a quantity is 
meaningless unless we also specify the unit of measure-
ment. The units used for scientific work are those from 
the Système International (SI). SI uses seven base units, 
which include the meter (m), the kilogram (kg), and the 
second (s) for length, mass, and time, respectively. 

 Using combinations of the base units, we can construct 
other derived units. When an SI unit with a prefix is 
raised to a power, the prefix is also raised to that power.

 ∙ Whenever a calculation is performed, always write out 
the units with each quantity. Then simplify the units al-
gebraically to find the units of the result. If the state-
ment of a problem includes a mixture of different units, 
the units should be converted to a single, consistent set 
before numerical calculations are carried out. Usually 
the best way is to convert everything to SI units.

 ∙ Dimensional analysis is used as a quick check on the 
validity of equations. Whenever quantities are added, 
subtracted, or equated, they must have the same dimen-
sions (although they may not necessarily be given in the 
same units).

 ∙ Mathematical approximations aid in simplifying com-
plicated problems.

 ∙ Problem-solving techniques are skills that must be prac-
ticed to be learned.

 ∙ Don’t solve problems by picking equations that seem to 
have the correct letters. A skilled problem-solver under-
stands specifically what quantity each symbol in a par-
ticular equation represents, can specify correct units for 
each quantity, and understands the situations to which 
the equation applies.

 ∙ A graph is plotted to give a picture of the data and to 
show how one variable changes with respect to another. 
Graphs are used to help us see a pattern in the relation-
ship between two variables. Do not choose two data 
points to calculate the slope; instead, read values from 
two points on the best-fit line.

 ∙ Whenever possible, make a careful choice of the 
 variables plotted so that the graph displays a linear 
relationship.
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 9. List three of the base units used in SI.
 10. What are some of the differences between the SI and the 

customary U.S. system of units? Why is SI preferred for 
scientific work?

 11. Sort the following units into three groups of dimen-
sions and identify the dimensions: fathoms, grams, 
years, kilometers, miles, months, kilograms, inches, 
seconds.

 12. What are the first two steps to be followed in solving 
almost any physics problem?

 13. Why do scientists plot graphs of their data instead of 
just listing values?

 14. A student’s lab report concludes, “The speed of sound 
in air is 327.” What is wrong with that statement?

Multiple-Choice Questions

 1. One kilometer is approximately
 (a) 2 miles  (b) 1/2 mile  (c) 1/10 mile  (d) 1/4 mile
 2. By what factor does the volume of a cube increase if the 

length of the edges are doubled?
 (a) 16 (b) 8 (c) 4 (d) 2 (e) √2
 3. 55 mi/h is approximately
 (a) 90 km/h (b) 30 km/h (c) 10 km/h (d) 2 km/h
 4. If the length of a box is reduced to one third of its origi-

nal value and the width and height are doubled, by what 
factor has the volume changed?

 (a) 2/3   (b) 1   (c) 4/3   (d) 3/2
 (e) depends on relative proportion of length to height 

and width
 5. If the area of a circle is found to be half of its original 

value after the radius is multiplied by a certain factor, 
what was the factor used?

 (a) 1/(2π) (b) 1/2 (c) √2 (d)1/√2 (e) 1/4
 6. An equation for potential energy states U = mgh. If U is 

in kg·m2·s−2, m is in kg, and g is in m·s−2, what are the 
units of h?

 (a) s (b) s2 (c) m−1 (d) m (e) g−1

 7. In terms of the original diameter d, what new diameter 
will result in a new spherical volume that is a factor of 
eight times the original volume?

 (a) 8d (b) 2d (c) d/2 (d) d ×√3 2 (e) d/8
 8. How many significant figures should be written in the 

sum 4.56 g + 9.032 g + 580.0078 g + 540.439 g?
 (a) 3 (b) 4 (c) 5 (d) 6 (e) 7
 9. The equation for the speed of sound in a gas states that 

v = √γkBT/m. Speed v is measured in m/s, γ is a dimen-
sionless constant, T is temperature in kelvins (K), and m 
is mass in kg. What are the units of the Boltzmann con-
stant, kB?

 (a) kg·m2·s2·K (b) kg·m2·s−2·K−1 (c) kg−1·m−2·s2·K
 (d) kg·m/s   (e) kg·m2·s−2

 10. How many significant figures should be written in the 
product 0.007 840 6 m × 9.450 20 m?

 (a) 3 (b) 4 (c) 5 (d) 6 (e) 7

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

1.3 The Use of Mathematics
 1. A homeowner is told that she must increase the height 

of her fences 37% if she wants to keep the deer from 
jumping in to eat the foliage and blossoms. If the current 
fence is 1.8 m high, how high must the new fence be?

 2. A spherical balloon is partially blown up and its surface 
area is measured. More air is then added, increasing the 
volume of the balloon. If the surface area of the balloon 
expands by a factor of 2.0 during this procedure, by 
what factor does the radius of the balloon change?

 3. A spherical balloon expands when it is taken from the 
cold outdoors to the inside of a warm house. If its sur-
face area increases 16.0%, by what percentage does the 
radius of the balloon change?

 4. Samantha is 1.50 m tall on her eleventh birthday and 
1.65 m tall on her twelfth birthday. By what factor has 
her height increased? By what percentage?

 5.  A study finds that the metabolic rate of mammals is 
proportional to m3/4, where m is total body mass. By 
what factor does the metabolic rate of a 70 kg human 
exceed that of a 5.0 kg cat?

 6.  On Monday, a stock market index goes up 5.00%. 
On Tuesday, the index goes down 5.00%. What is the 
net percentage change in the index for the two days? 
Explain why it is not zero.

 7. The “scale” of a certain map is 1/10 000. This means 
the length of, say, a road as represented on the map is 
1/10 000 the actual length of the road. What is the ratio 
of the area of a park as represented on the map to the 
actual area of the park?

Problems 8–10. The quantity of energy Q transferred by heat 
conduction through an insulating pad in time interval Δt is 
described by Q/Δt = κA ΔT/d, where κ is the thermal conduc-
tivity of the material, A is the face area of the pad (perpendicu-
lar to the direction of heat flow), ΔT is the difference in 
temperature across the pad, and d is the thickness of the pad. In 
one trial to test material as lining for sleeping bags, 86.0 J of 
heat is transferred through a 3.40 cm thick pad when the tem-
perature on one side is 37.0°C and on the other side is 2.0°C.
 8. In a trial of the same duration with the same tempera-

tures, how much heat will be transferred when more of 
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the material is added to form a pad with the same face 
area and total thickness 5.20 cm?

 9. In a trial with the same duration, material, and face area, 
but with a temperature difference of 48.0°C, what thick-
ness would result in the transfer of 47.0 J of heat?

 10. In a trial with the same material, temperature difference, 
and face area, but with a thickness of 4.10 cm, by what 
factor would the duration of the trial have to increase so 
86.0 J of heat is still transferred?

 11. A poster advertising a student election candidate is too 
large according to the election rules. The candidate is 
told she must reduce the length and width of the poster 
by 20.0%. By what percentage must the area of the 
poster be reduced?

 12. An architect is redesigning a rectangular room on the 
blueprints of the house. He decides to double the width 
of the room, increase the length by 50%, and increase 
the height by 20%. By what factor has the volume of the 
room increased?

 13.  In cleaning out the artery of a patient, a doctor in-
creases the radius of the opening by a factor of 2.0. By 
what factor does the cross-sectional area of the artery 
change?

 14.   A scanning electron micrograph of xylem vessels 
in a corn root shows the vessels magnified by a factor of 
600. In the micrograph the xylem vessel is 3.0 cm in 
diameter. (a) What is the diameter of the vessel itself? 
(b) By what factor has the cross-sectional area of the 
vessel been increased in the micrograph?

 15. According to Kepler’s third law, the orbital period T of 
a planet is related to the radius R of its orbit by T 2 ∝ R3. 
Jupiter’s orbit is larger than Earth’s by a factor of 5.19. 
What is Jupiter’s orbital period? (Earth’s orbital period 
is 1 yr.)

1.4 Scientific Notation and Significant Figures
 16. Rank these measurements of surface area in order of the 

number of significant figures, from fewest to greatest:
 (a) 20 145 m2; (b) 1.750 × 103 cm2; (c) 0.000 36 mm2; 

(d) 8.0 × 10−2 mm2; (e) 0.200 cm2.
 17. Perform these operations with the appropriate number 

of significant figures.
 (a) 3.783 × 106 kg + 1.25 × 108 kg
 (b) (3.783 × 106 m)/(3.0 × 10−2 s)
 18. Write these numbers in scientific notation: (a) the mass 

of a blue whale, 170 000 kg; (b) the diameter of a  helium 
nucleus, 0.000 000 000 000 003 8 m.

 19. In the following calculations, be sure to use an appropri-
ate number of significant figures.

 (a) 3.68 × 107 g − 4.759 × 105 g

 (b) 
6.497 × 104 m2

5.1037 × 102 m

 20. Rank the results of the following calculations in order of 
the number of significant figures, from least to greatest.

 (a) 6.85 × 10−5 m + 2.7 × 10−7 m
 (b) 702.35 km + 1897.648 km
 (c) 5.0 m × 4.302 m
 (d) (0.040/π) m
 21. Find the product below and express the answer with 

units and in scientific notation with the appropriate 
number of significant figures:

 (3.209 m) × (4.0 × 10−3 m) × (1.25 × 10−8 m)

 22. Rank these measurements in order of the number of sig-
nificant figures, from least to greatest.

 (a) 7.68 g (b) 0.420 kg
 (c) 0.073 m (d) 7.68 × 105 g
 (e) 4.20 × 103 kg (f) 7.3 × 10−2 m
 (g) 2.300 × 104 s
 23. Given these measurements, identify the number of 

significant figures and rewrite in standard scientific 
notation.

 (a) 0.005 74 kg (b) 2 m (c) 0.450 × 10−2 m
 (d) 45.0 kg (e) 10.09 × 104 s (f) 0.095 00 × 105 mL
 24. Solve the following problem and express the answer in 

meters with the appropriate number of significant fig-
ures and in scientific notation:

3.08 × 10−1 km + 2.00 × 103 cm

 25. Solve the following problem and express the answer in 
meters per second (m/s) with the appropriate number of 
significant figures: (3.21 m)/(7.00 ms) = ? [Hint: Note 
that ms stands for milliseconds.]

1.5 Units
 26.  The density of body fat is 0.9 g/cm3. Find the den-

sity in kg/m3.
 27.  A cell membrane is 7.0 nm thick. How thick is it in 

inches?
 28. Rank the following lengths from smallest to greatest:
 (a) 1 μm; (b) 1000 nm; (c) 100 000 pm;
 (d) 0.01 cm; (e) 0.000 000 000 1 km.
 29. Rank these speed measurements from smallest to greatest:
 (a) 55 mi/h; (b) 82 km/h; (c) 33 m/s;
 (d) 3.0 cm/ms; (e) 1.0 mi/min.
 30. The label on a small soda bottle lists the volume of the 

drink as 355 mL. Use the conversion factor 1 gal = 
128 fl oz. (a) How many fluid ounces are in the bottle? 
(b) A competitor’s drink is labeled 16.0 fl oz. How 
many milliliters are in that drink?

 31. The length of the river span of the Brooklyn Bridge is 
1595.5 ft. The total length of the bridge is 6016 ft. Con-
vert both of these lengths to meters.

 32. A beaker contains 255 mL of water. What is the vol-
ume of the water in (a) cubic centimeters? (b) cubic 
meters?
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 33.  A nerve impulse travels along a myelinated neuron 
at 80 m/s. What is this speed in (a) mi/h and (b) cm/ms?

 34. The first modern Olympics in 1896 had a marathon dis-
tance of 40 km. In 1908, for the Olympic marathon in 
London, the length was changed to 42.195 km to pro-
vide the British royal family with a better view of the 
race. This distance was adopted as the official marathon 
length in 1921. What is the official length of the mara-
thon in miles?

 35. At the end of 2006 an expert economist predicted a 
drop in the value of the U.S. dollar against the euro of 
10% over the next five years. If the exchange rate was 
$1.27 to 1 euro on November 5, 2006, and was $1.45 
to 1 euro on November 5, 2007, what was the actual 
percentage drop in the value of the dollar over the 
first year?

 36. The intensity of the Sun’s radiation that reaches Earth’s 
atmosphere is 1.4 kW/m2 (kW = kilowatt; W = watt). 
Convert this to W/cm2.

 37.  Blood flows through the aorta at an average speed 
of v = 18 cm/s. The aorta is roughly cylindrical with a 
radius r = 12 mm. The volume rate of blood flow 
through the aorta is π r2v. Calculate the volume rate of 
blood flow through the aorta in L/min.

 38. A molecule in air is moving at a speed of 459 m/s. How 
far would the molecule move during 7.00 ms (millisec-
onds) if it didn’t collide with any other molecules?

 39. Express this product in units of km3 with the appropri-
ate number of significant figures: 

(3.2 km) × (4.0 m) × (13.24 × 10−3 mm)

 40. (a) How many square centimeters are in 1 square foot? 
(1 in = 2.54 cm.) (b) How many square centimeters are 
in 1 square meter? 

 41. A snail crawls at a pace of 5.0 cm/min. Express the 
snail’s speed in (a) ft/s and (b) mi/h.

 42.  An average-sized capillary in the human body has a 
cross-sectional area of about 150 μm2. What is this area 
in square millimeters (mm2)?

1.6 Dimensional Analysis
 43. An equation for potential energy states U = mgy. If U 

is in joules (J), with m in kg, y in m, and g in m/s2, find 
the combination of SI base units that is equivalent to 
joules.

 44. One equation involving force states that Fnet = ma, 
where Fnet is in newtons (N), m is in kg, and a is in 
m·s−2. Another equation states that F = −kx, where F 
is in newtons, k is in kg·s−2, and x is in m. (a) Ana-
lyze the dimensions of ma and kx to show they are 
equivalent. (b) Express the newton in terms of SI 
base units.

 45. The relationship between kinetic energy K (SI unit 
kg·m2·s−2) and momentum p is K = p2/(2m), where m 
stands for mass. What is the SI unit of momentum?

 46. An equation for the period T of a planet (the time to 
make one orbit about the Sun) is 4π2r3/(GM), where T is 
in s, r is in m, G is in m3/(kg·s2), and M is in kg. Show 
that the equation is dimensionally correct.

 47. An expression for buoyant force is FB = ρgV, where FB 
has dimensions [MLT−2], ρ (density) has dimensions 
[ML−3], and g (gravitational field strength) has dimen-
sions [LT−2]. (a) What must be the dimensions of V? (b) 
Which could be the correct interpretation of V: velocity 
or volume?

 48.  An object moving at constant speed v around a circle 
of radius r has an acceleration a directed toward the 
center of the circle. The SI unit of acceleration is m/s2. 
(a) Use dimensional analysis to find how a depends on 
v and r (i.e., find n and m so that a is proportional to 
vnrm). (b) If the speed is increased 10.0%, by what per-
centage does the radial acceleration increase?

1.8 Approximation
 49. What is the approximate distance from your eyes to a 

book you are reading?
 50. Estimate the volume of a soccer ball in cubic centime-

ters (cm3).
 51. Estimate the average mass of a person’s leg.
 52. Estimate the average number of times a human heart 

beats during its lifetime.
 53. What is the order of magnitude of the height (in meters) 

of a 40-story building?
 54.  Average-sized cells in the human body are about 

10 μm in diameter. How many cells are in the human 
body? Make an order-of-magnitude estimate.

1.9 Graphs
 55.  A patient’s temperature was 97.0°F at 8:05 a.m. and 

101.0°F at 12:05 p.m. If the temperature change with re-
spect to elapsed time was linear throughout the day, what 
would the patient’s temperature be at 3:35 p.m.?

 56.   A nurse recorded the values shown in the fol-
lowing chart for a patient’s temperature. Plot a graph of 
temperature versus elapsed time. From the graph, find 
(a) an estimate of the temperature at noon and (b) the 
slope of the graph. (c) Would you expect the graph to 
follow the same trend over the next 12 hours? Explain.

 Time Temp (°F)
 10:00 a.m. 100.00
 10:30 a.m. 100.45
 11:00 a.m. 100.90
 11:30 a.m. 101.35
 12:45 a.m. 102.48



 57. A physics student plots results of an experiment as v 
versus t. The equation that describes the line is given by 
at = v − v0. (a) What is the slope of this line? (b) What 
is the vertical axis intercept of this line?

 58. A linear plot of speed versus elapsed time has a slope of 
6.0 m/s2 and a vertical intercept of 3.0 m/s. (a) What is 
the change in speed in the time interval between 4.0 s 
and 6.0 s? (b) What is the speed when the elapsed time 
is equal to 5.0 s?

 59. An object is moving in the x-direction. A graph of its 
position (i.e., its x-coordinate) as a function of time is 
shown. (a) What are the slope and vertical axis inter-
cept? (Be sure to include units.) (b) What physical sig-
nificance do the slope and intercept on the vertical axis 
have for this graph?
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 60. You have just performed an experiment in which you 
measured many values of two quantities, A and B. 
 According to theory, A = cB3 + A0. You want to verify that 
the values of c and A0 are correct by making a graph of 
your data that enables you to determine their values from 
a slope and a vertical axis intercept. What quantities do 
you put on the vertical and horizontal axes of the plot?

 61. A graph of x versus t4, with x on the vertical axis and t4 
on the horizontal axis, is linear. Its slope is 25 m/s4 and 
its vertical axis intercept is 3 m. Write an equation for x 
as a function of t.

 62.  In a laboratory you measure the decay rate of a sam-
ple of radioactive carbon. You write down the following 
measurements:

Time (min) 0 15 30 45 60 75 90
Decay rate 
(decays/s) 405 237 140 90 55 32 19

 (a) Plot the decay rate versus time. (b) Plot the natural 
logarithm of the decay rate versus the time. Explain why 
the presentation of the data in this form might be useful.

 63. In a physics lab, students measure the sedimentation 
velocity v of spheres with radius r falling through a 
fluid. The expected relationship is v = 2r2 g( ρ − ρf)/(9η). 
(a) How should the students plot the data to test this 
 relationship? (b) How could they determine the value of 
η from their plot, assuming values of the other constants 
are known?

Collaborative Problems

 64.  (a) Estimate the number of breaths you take in one 
year. (b) Estimate the volume of air you breathe in dur-
ing one year.

 65. Use dimensional analysis to determine how the linear 
speed (v in m/s) of a particle traveling in a circle de-
pends on some, or all, of the following properties: r is 
the radius of the circle; ω is an angular frequency in s−1 
with which the particle orbits about the circle, and m is 
the mass of the particle.

 66.   The weight of a baby measured over the first 
10 months is given in the following table. (a) Plot the 
baby’s weight versus age. (b) What was the average 
monthly weight gain for this baby over the period 
from birth to 5 months? How do you find this value 
from the graph? (c) What was the average monthly 
weight gain for the baby over the period from 
5  months to 10 months? (d) If a baby continued to 
grow at the same rate as in the first 5 months of life, 
what would the child weigh on her twelfth birthday?

 Weight of Baby Versus Age

 Weight (lb) Age (months)
 6.6 0 (birth)
 7.4 1.0
 9.6 2.0
 11.2 3.0
 12.0 4.0
 13.6 5.0
 13.8 6.0
 15.0 8.0
 17.5 10.0

 67. Estimate the number of automobile repair shops in your 
city by considering its population, how often an auto-
mobile needs repairs, and how many cars each shop can 
service per day. Then do a web search to see if your es-
timate has the right order of magnitude.

 68. It is useful to know when a small number is negligible. 
Perform the following computations: (a) 186.300 + 
0.0030, (b) 186.300 − 0.0030, (c) 186.300 × 0.0030, 
(d) 186.300/0.0030. (e) For cases (a) and (b), what 
percent error will result if you ignore the 0.0030? 
Explain why you can never ignore the smaller num-
ber, 0.0030, for case (c) and case (d). (f) What rule 
can you make about ignoring small values?

 69.  Estimate the number of hairs on the average human 
head. [Hint: Consider the number of hairs in an area of 
1 cm2 and then consider the area covered by hair on 
the head.]
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Comprehensive Problems

 70.  You are given these approximate measurements: 
(a) the radius of Earth is 6 × 106 m, (b) the length of a 
human body is 6 ft, (c) a cell’s diameter is 2 × 10−6 m, 
(d) the width of the hemoglobin molecule is 3 × 10−9 m, 
and (e) the distance between two atoms (carbon and 
 nitrogen) is 3 × 10−10 m. Write these measurements in 
metric prefix form without using scientific notation (in 
either nm, Mm, μm, or whatever works best).

 71.  A typical virus is a packet of protein and DNA (or 
RNA) and can be spherical in shape. The influenza A 
virus is a spherical virus that has a diameter of 85 nm. If 
the volume of saliva coughed onto you by your friend 
with the flu is 0.010 cm3 and 10−9 is the fraction of that 
volume that consists of viral particles, how many influ-
enza viruses have just landed on you?

 72.  The smallest “living” thing is probably a type of 
infectious agent known as a viroid. Viroids are plant 
pathogens that consist of a circular loop of single-
stranded RNA, containing about 300 bases. (Think of 
the bases as beads strung on a circular RNA string.) The 
distance from one base to the next (measured along the 
circumference of the circular loop) is about 0.35 nm. 
What is the diameter of a viroid in (a) meters, (b) microm-
eters, and (c) inches?

 73.  The largest known living creature is the blue whale, 
which has an average length of 70 ft. The largest blue 
whale on record was 1.10 × 102 ft long. (a) Convert this 
length to meters. (b) If a double-decker London bus is 
8.0 m long, how many double-decker-bus lengths is the 
record whale?

  Problems	73	and	74

 74.  The record blue whale in Problem 73 had a mass of 
1.9 × 105 kg. Assuming that its average density was 
0.85 g/cm3, as has been measured for other blue whales, 
what was the volume of the whale in cubic meters (m3)? 
(Average density is mass divided by volume.)

 75.  The total length of the blood vessels in the body is 
roughly 100 000 km. Most of this length is due to the 
capillaries, which have an average diameter of 8 μm. 
Estimate the total volume of blood in the human body 
by assuming that all the blood is found in the capillaries 
and that they are always full of blood.

 76. A sheet of paper has length 27.95 cm, width 8.5 in., 
and thickness 0.10 mm. What is the volume of a sheet 
of paper in cubic meters? (Volume = length × width × 
thickness.)

 77.  The average speed of a nitrogen molecule in air is 
proportional to the square root of the temperature in 
kelvins (K). If the average speed is 475 m/s on a warm 
summer day (temperature = 300.0 K), what is the aver-
age speed on a frigid winter day (250.0 K)?

 78. A furlong is 220 yd; a fortnight is 14 d. How fast is 
1 furlong per fortnight (a) in μm/s? (b) in km/d?

 79. In the United States, we often use miles per hour 
(mi/h) when discussing speed, but the SI unit of speed 
is m/s. What is the conversion factor for changing m/s 
to mi/h?

 80. Two thieves, escaping after a bank robbery, drop a sack 
of money on the sidewalk. Estimate the mass if the sack 
contains $1 000 000 in $20 bills.

 81. The weight W of an object is given by W = mg, where m 
is the object’s mass and g is the gravitational field 
strength. The SI unit of field strength g, expressed in SI 
base units, is m/s2. What is the SI unit for weight, 
 expressed in base units?

 82. Kepler’s third law of planetary motion says that the 
square of the period of a planet (T2) is proportional to the 
cube of the distance of the planet from the Sun (r3). Mars 
is about twice as far from the Sun as Venus. How does the 
period of Mars compare with the period of Venus?

 83.  One morning you read in the New York Times that a 
certain billionaire has a net worth of $59 000 000 000. 
Later that day you see her on the street, and she gives 
you a $100 bill. What is her net worth now? (Think of 
significant figures.)

 84. The average depth of the oceans is about 4 km, and 
oceans cover about 70% of Earth’s surface. Make an 
order-of-magnitude estimate of the volume of water in 
the oceans. Do not look up any data. (Use your ingenu-
ity to estimate the radius or circumference of Earth. One 
method is to estimate the distance between two cities 
and then estimate what fraction of Earth’s circumfer-
ence that distance represents by visualizing the two cit-
ies on a globe.)

 85. Suppose you have a pair of Seven League Boots. 
These are magic boots that enable you to stride along 
a distance of 7.0 leagues with each step. (a) If you 
march along at a military march pace of 120 paces per 
minute, what is your speed in km/h? (b) Assuming 
you could march on top of the oceans when you step 
off the continents, find the time interval (in minutes) 
required for you to march around Earth at the equator. 
(1 league = 3 mi = 4.8 km.)

 86. A car has a gas tank that holds 12.5 U.S. gal. Using the 
conversion factors from Appendix B, (a) determine 
the size of the gas tank in cubic inches. (b) A cubit is 
an ancient measurement of length that was defined as 
the distance from the elbow to the tip of the finger, 
about 18 in. long. What is the size of the gas tank in 
cubic cubits?
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 87.  The weight of an object at the surface of a planet is 
proportional to the planet’s mass and inversely propor-
tional to the square of the radius of the planet. Jupiter’s 
radius is 11 times Earth’s, and its mass is 320 times 
Earth’s. An apple weighs 1.0 N on Earth. How much 
would it weigh on Jupiter?

 88.  The speed of ocean waves depends on their wave-
length λ (measured in meters) and the gravitational field 
strength g (measured in m/s2) in this way:

v = Kλpgq

  where K is a dimensionless constant. Find the values of 
the exponents p and q.

 89.  Without looking up any data, make an order-of- 
magnitude estimate of the annual consumption of gaso-
line (in gallons) by passenger cars in the United States. 
Make reasonable estimates for any quantities you need. 
Think in terms of average quantities. (1 gal ≈ 4 L.)

 90.  The electric power P drawn from a generator by a 
lightbulb of resistance R is P = V2/R, where V is the line 
voltage. The resistance of bulb B is 42% greater than the 
resistance of bulb A. What is the ratio PB/PA of the 
power drawn by bulb B to the power drawn by bulb A if 
the line voltages are the same?

 91.  Three of the fundamental constants of physics are the 
speed of light, c = 3.0 × 108 m/s, the universal gravita-
tional constant, G = 6.7 × 10−11 m3·kg−1·s−2, and 
Planck’s constant, h = 6.6 × 10−34 kg·m2·s−1.

 (a) Find a combination of these three constants that has 
the dimensions of time. This time is called the Planck 
time and represents the age of the universe before which 
the laws of physics as presently understood cannot be 
applied. (b) Using the formula for the Planck time de-
rived in part (a), what is the time in seconds?

 92.  Use dimensional 
analysis to determine 
how the period T of a 
swinging pendulum 
(the elapsed time for a 
complete cycle of mo-
tion) depends on some, 
or all, of these proper-
ties: the length L of the 
pendulum, the mass m 
of the pendulum bob, 
and the gravitational 
field strength g (in m/s2). Assume that the amplitude of 
the swing (the maximum angle that the string makes 
with the vertical) has no effect on the period.

93.   Astronauts aboard the International Space Sta-
tion use a massing chair to measure their mass. The chair 
is attached to a spring and is free to oscillate back and 
forth. The frequency of the oscillation is measured and is 
used to calculate the total mass m attached to the spring. 
If the spring constant of the spring k is measured in kg/s2 

and the chair’s frequency f is 0.50 s−1 for a 62 kg astro-
naut, what is the chair’s frequency for a 75 kg astronaut? 
The chair itself has a mass of 10.0 kg. [Hint: Use dimen-
sional analysis to find out how f depends on m and k.]

94. (a) How many center-stripe road reflectors, separated 
by 17.6 yd, are required along a 2.20 mile section of 
curving mountain roadway? (b) Solve the same prob-
lem for a road length of 3.54 km with the markers 
placed every 16.0 m. Would you prefer to be the high-
way engineer in a country with a metric system or U.S. 
customary units?

95.  A baby was persistently spitting up after nursing, 
so the pediatrician prescribed ranitidine syrup to re-
duce the baby’s stomach acid. The prescription called 
for 0.75 mL to be taken twice a day for a month. The 
pharmacist printed a label for the bottle of syrup that 
said “3/4 tsp. twice a day.” By what factor was the 
baby overmedicated until the error was discovered? 
[Hint: 1 tsp = 4.9 mL.]

96. On April 15, 1999, a South Korean cargo plane crashed 
due to a confusion over units. After takeoff, the first of-
ficer was instructed by the Shanghai tower to climb to 
1500 m and maintain that altitude. The captain, after 
reaching 1450 m, twice asked the first officer at what 
altitude they should fly. Each time, the first officer 
 replied incorrectly that they were to fly at 1500 ft. The 
captain started a steep descent; the plane could not re-
cover from the dive and crashed. How far above the cor-
rect altitude were they when they started the rapid 
descent? (Aircraft altitudes are given in feet throughout 
the world except in China, Mongolia, and the former 
Soviet states, where meters are used.)

97.   The population of a culture of yeast cells is stud-
ied to see the effects of limited resources (food, space) 
on population growth. (a) Make a graph of the yeast 
population (measured as the total mass of yeast cells, 
tabulated below) versus time. Draw a best-fit smooth 
curve. (b) After a long time, the population approaches 
a maximum known as the carrying capacity. Estimate 
the carrying capacity for this population. (c) When the 
population is much smaller than the carrying capacity, 
the growth is expected to be exponential: m(t) = m0e

rt, 
where m is the population at any time t, m0 is the initial 
population, r is the intrinsic growth rate (i.e., the growth 
rate in the absence of limits), and e is the base of natural 
logarithms (see Appendix A.4). To obtain a straight-line 
graph from this exponential relationship, we can plot 
the natural logarithm of m/m0:

ln 
m

m0
= ln ert = rt

  Make a graph of ln (m/m0) versus t from t = 0 to t = 6.0 h, 
and use it to estimate the intrinsic growth rate r for the 
yeast population.

L

Pendulum
bobm
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Mass of Yeast Culture versus Time

 Time (h) Mass (g)
 0.0 3.2
 2.0 5.9
 4.0 10.8
 6.0 19.1
 8.0 31.2
 10.0 46.5
 12.0 62.0
 14.0 74.9
 16.0 83.7
 18.0 89.3
 20.0 92.5
 22.0 94.0
 24.0 95.1

Answers to Practice Problems

1.1 a 4% decrease
1.2 48.6 W
1.3 (a) five; 1.0544 × 10−4 kg; (b) four; 5.800 × 10−3 cm;  
(c) ambiguous, three to six; if three, 6.02 × 105 s
1.4 The least precise value is to the nearest hundredth of a 
meter, so we round the result to the nearest hundredth of a 
meter: 564.50 m or, in scientific notation, 5.6450 × 102 m; 
five significant figures.
1.5 4.7 m/s
1.6 (a) 35.6 m/s; (b) 79.5 mi/h

1.7 5.1 × 1014 m2; 2.0 × 108 mi2

1.8 The equation is dimensionally inconsistent; the right 
side has dimensions [L/T]. To have matching dimensions we 
must multiply the right side by [T]; the equation must in-
volve time squared: d = 1

2at2.
1.9 kinetic energy = (constant) × mv2; kinetic energy in-
creases by 56%.
1.10 1011 L (Make a rough estimate of the population to be 
about 3 × 108 people, each drinking about 1.5 L/day.)
1.11 38.0 cm

Answers to Checkpoints

1.3 The volume increases by a factor of 27.
1.4 Order-of-magnitude estimates provide a quick method 
for obtaining limited precision solutions to problems. Even 
if greater accuracy is required, order-of-magnitude calcula-
tions are still useful as they provide a check as to the accu-
racy of the higher precision calculation.
1.5 1.9 L
1.6 (a) and (b) It is possible to multiply or divide quantities 
with different dimensions. (c) and (d) To be added or sub-
tracted, quantities must have the same dimensions.
1.9 0.299 N/cm. The value from the best-fit line takes all 
the data into account. Using just two data points would 
 ignore all the rest of the data and would magnify the effect of 
measurement errors in those two data points.
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Concepts & Skills to Review

•	 scientific	notation	and	
significant	figures	
(Section	1.4)

•	 converting	units	
(Section 1.5)

•	 problem-solving	
techniques	(Section	1.7)

•	 meaning	of	velocity	in	
physics	(Section	1.2)

•	 math skill:	graphs	of	
linear	functions	
(Appendix A.2)

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Doppler echocardiography 
(Example 2.6)

∙ Speed and acceleration of 
animals (Section 2.3; 
Problems 7, 27, 43, 75, 76)

∙ Spore dispersal and 
sneezes (PP 2.6; 
Problem 50)

∙ Action potentials in 
neurons (Problem 86)

Despite	its	enormous	mass	(425–900	kg),	the	Cape	buffalo	is	capable	
of	running	at	a	top	speed	of	about	55	km/h	(34	mi/h).	Since	the	top	
speed	 of	 the	 African	 lion	 is	 about	 the	 same,	 how	 is	 it	 ever	 possible	
for	a	lion	to	catch	the	buffalo,	especially	since	the	lion	typically	makes	
its	move	 from	a	distance	of	20	 to	30	m	 from	 the	buffalo?
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2.1 POSITION AND DISPLACEMENT

Position

To describe motion unambiguously, we need a way to say where an object is located. 
Suppose that at 3:00 p.m. a train stops on an east-west track as a result of an engine 
problem. The engineer wants to call the railroad office to report the problem. How 
can he tell them where to find the train? He might say something like “three kilometers 
east of the old trestle bridge.” Notice that he uses a point of reference: the old trestle 
bridge. Then he states how far the train is from that point and in what direction. If 
he omits any of the three pieces (the reference point, the distance, or the direction), 
then his description of the train’s whereabouts is ambiguous.

The same thing is done in physics. First, we choose a reference point, called the 
origin. Then, to describe the location of something, we give its distance from the 
origin and the direction. For motion along a line, we can choose the line of motion 
to be the x-axis of a coordinate system. The origin is the point x = 0. The position 
of an object can be described by its x-coordinate, which tells us both how far the 
object is from the origin and on which side. (For an extended object that is not rotat-
ing, we can choose any reference point on the object to define the position.) For the 
train in Fig. 2.1, we choose the origin at the center of the bridge and the +x-direction 
to the east. Then x = +3 km means the train is 3 km east of the bridge and x = −26 km 
means the train is 26 km west of the bridge.

Displacement

Once the train is under way, we might want to describe its motion. At 3:14 p.m., it 
leaves its initial position, 3 km east of the origin (see Fig. 2.1). At 3:56 p.m., the train 
is 26 km west of the origin, which is 29 km to the west of its initial position. 
Displacement is defined as the change of the position—the final position minus the 
initial position. The displacement is written Δx, where the symbol Δ (the uppercase 
Greek letter delta) means the change in the quantity that follows.

Displacement

 Δx = xf − xi (2-1)

We can subtract x-coordinates to find the displacement of the train. If we choose 
the x-axis to the east, then xi = +3 km and xf = −26 km. The displacement is

Δx = xf − xi = (−26 km) − (+3 km) = −29 km

The displacement is 29 km in the −x-direction (west) (Fig. 2.2).

CONNECTION:

The topic of Chapters 2 and 3 
is kinematics: the mathemat-
ical description of motion. 
Beginning in Chapter 4, we 
will learn the principles of 
physics that predict and 
explain why objects move 
the way they do.

+x

Trestle
bridge

Initial position
3:14 P.M.

3 km

10 km

–26 km

OriginFinal position
3:56 P.M.

xf = –26 km 0
W E

xi = +3 km

Figure 2.1 Initial (xi) and final (xf) positions of a train. (Train not to scale.)
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Displacement Versus Distance Notice that the magnitude of the displacement is 
not necessarily equal to the distance traveled. Suppose the train first travels 7 km to 
the east, putting it 10 km east of the origin, and then reverses direction and travels 
36 km to the west. The total distance traveled in that case is (7 km + 36 km) = 43 km, 
but the magnitude of the displacement—which is the distance between the initial and 
final positions—is 29 km. The displacement depends only on the starting and ending 
positions, not on the path taken.

Initial position
3:14 P.M.
xi = +3 km

Final position
3:56 P.M.
xf = –26 km

Δx = xf – xi = –29 km (29 km west) x

Figure 2.2 With the x-axis pointing east, Δx = xf − xi = −26 km − (+3 km) = −29 km. The train’s displacement is 
29 km west.

Example 2.1

A Mule Hauling Corn to Market

A mule hauls the farmer’s wagon along a straight road for 
4.3  km directly east to the neighboring farm where a few 
bushels of corn are loaded onto the wagon. Then the farmer 
drives the mule back along the same straight road, heading 
west for 7.2 km to the market. Find the displacement of the 
mule from the starting point to the market.

Strategy The problem gives us two successive displace-
ments along a straight line. Let’s choose the +x-axis to point 
east and an arbitrary point along the road to be the origin. 
Suppose the mule starts at position x1 (Fig. 2.3). It goes east 
until it reaches the neighbor’s farm at position x2. The dis-
placement to the neighbor’s farm is x2 − x1 = 4.3 km east. 

Then the mule goes 7.2 km west to reach the market at posi-
tion x3. The displacement from the neighbor’s farm to the 
market is x3 − x2 = −7.2 km (negative because the displace-
ment is in the −x-direction). The problem asks for the 
displacement of the mule from x1 to x3.

Solution We can eliminate x2, the intermediate position, 
by adding the two displacements:

(x3 − x2) + (x2 − x1) = −7.2 km + 4.3 km
x3 − x1 = −2.9 km

The displacement is 2.9 km west.

Discussion When we added the two displacements, the 
intermediate position x2 dropped out, as it must since the dis-
placement is independent of the path taken from the initial 
position to the final position. The result does not depend on 
the choice of origin.

Practice Problem 2.1 A Nervous Squirrel

A nervous squirrel, trying to cross a road, first moves 3.0 m 
east, then 4.0 m west, then 1.2 m west, then 6.0 m east. What 
is the squirrel’s total displacement?

Origin

y

x East
x3 x1 x2

North

x3 – x1

x3 – x2

x2 – x1

Figure 2.3
The total displacement is the sum of two successive displacements: 
x3 − x1 = (x3 − x2) + (x2 − x1).

Adding Displacements Generalizing the result of Example 2.1, we see that the 
total displacement for a trip with several parts is the sum of the displacements for 
each part of the trip. Although x-coordinates depend on the choice of origin, displace-
ments (changes in x-coordinates) do not depend on the choice of origin.
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CHECKPOINT 2.1

In	 Example	 2.1,	 is	 the	 magnitude	 of	 the	 displacement	 equal	 to	 the	 distance	
traveled?	Explain.

2.2 VELOCITY: RATE OF CHANGE OF POSITION

We introduced velocity as a quantity with magnitude and direction in Section 1.2. The 
magnitude is the speed with which the object moves and the direction is the direction 
of motion. Now we develop a mathematical definition of velocity that fits that descrip-
tion. Note that displacement indicates by how much and in what direction the position 
has changed, but implies nothing about how long it took to move from one point to 
the other. Velocity depends on both the displacement and the time interval.

Average Velocity

When a displacement Δx occurs during a time interval Δt, the average velocity during 
that time interval is

Average velocity

 vav,x =
Δx

Δt
 (2-2)

Since Δt is always positive, the direction of the average velocity is the same as the 
direction of the displacement. The symbol Δ does not stand alone and cannot be 
canceled in equations because it modifies the quantity that follows it:

 
Δx

Δt
=

xf − xi

tf − ti
 (2-3)

Example 2.2

Average Velocity of a Train

Find the average velocity in kilometers per hour of the train 
shown in Fig. 2.1 during the time interval between 3:14 p.m., 
when the train is 3 km east of the origin, and 3:56 p.m., when 
it is 26 km west of the origin.

Strategy We choose the +x-axis to the east, as before. 
Then the displacement is Δx = −29 km, which means 29 km 
to the west. The average velocity is also to the west, so vav,x 
is negative. We convert Δt to hours to find the average 
velocity in kilometers per hour.

Solution The time interval is Δt = 56 min − 14 min = 
42 min. Converting to hours, we find

Δt = 42 min ×
1 h

60 min
= 0.70 h

The average velocity is

vav,x =
Δx

Δt
=

−29 km
0.70 h

= −41 km/h

The negative sign means that the average velocity is directed 
along the negative x-axis, or to the west.

Discussion If the train had started at the same instant of 
time, 3:14 p.m., and had traveled directly west at a constant 
41 km/h, it would have ended up in the same place—26 km 
west of the trestle bridge—at 3:56 p.m.

Had we started measuring time from when we first 
spotted the motionless train at 3:00 p.m., instead of 3:14 p.m., 
we would have found the average velocity over a different 
time interval, changing the average velocity. The average 
velocity depends on the time interval considered.

continued on next page
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Average Speed Versus Average Velocity The average velocity does not convey 
detailed information about the motion during the corresponding time interval Δt. 
The  average velocity would be the same for any other motion that takes the object 
through the same displacement in the same amount of time. However, the average 
speed, defined as the total distance traveled divided by the time interval, depends on 
the path traveled.

CHECKPOINT 2.2A

Can	 average	 speed	 ever	 be	 greater	 than	 the	 magnitude	 of	 the	 average	
velocity? Explain.

Instantaneous Velocity

The speedometer of a car does not indicate the average speed for an entire trip. When 
a speedometer reads 55 mi/h, it does not necessarily mean that the car travels 55 miles 
in the next hour; the car could change its speed or direction or stop during that hour. 
The speedometer reading can be used to calculate how far the car travels during a 
very short time interval—short enough that the speed does not change appreciably. 
For instance, at 55 mi/h (= 25 m/s), we can calculate that in 0.010 s the car moves 
25 m/s × 0.010 s = 0.25 m, as long as the speed does not change significantly during 
that 0.010 s interval.

Similarly, the instantaneous velocity is a quantity whose magnitude is the speed 
and whose direction is the direction of motion. When we refer simply to the velocity, 
we always mean the instantaneous velocity. The velocity can be used to calculate the 
displacement of the object during a very short time interval, as long as neither the 
speed nor the direction of motion change significantly during that time interval. The 
sign of the velocity vx indicates the direction of motion (positive for the +x-direction 
or negative for the −x-direction).

Thus, the velocity at some instant of time t is the average velocity during a very 
short time interval:

Instantaneous velocity

 vx = lim
Δt→0

 
Δx

Δt
 (2-4)

(Δx is the displacement during a very short time interval Δt)

The notation lim
Δt→0

 is read “the limit, as Δt approaches zero, of . . . .” In other words, 
let the time interval get smaller and smaller, approaching—but never reaching—zero. 
This notation in Eq. (2-4) reminds you that Δt must be a very short time interval. 

The magnitude of the train’s average velocity is not 
equal to the total distance traveled divided by the time 
interval for the complete trip. The latter quantity is called the 
average speed. The total distance is 7 km + 36 km = 43 km, 
so we have

average speed =
distance traveled

total time
=

43 km
0.70 h

= 61 km/h

The distinction arises because the average velocity is the 
constant velocity that would result in the same displacement 

(during the given time interval), while the average speed is 
the constant speed that would result in the same distance 
traveled (during the same time interval).

Practice Problem 2.2 Average Velocity for a 
Different Time Interval

What is the average velocity of the same train during the 
time interval from 3:28 p.m., when it is at x = 10 km, to 
3:56 p.m., when it is at x = −26 km?

CONNECTION:

Couldn’t we omit “x” sub-
scripts in average (vav,x) and 
instantaneous (vx) velocity? If 
we wanted to understand only 
motion along a line, then we 
certainly would. However, in 
Chapter 3 we generalize the 
definitions of position, dis-
placement, velocity, and ac-
celeration as vector quantities 
in three dimensions. Using the 
“x” subscripts now lets us 
carry forward everything in 
Chapter 2 without requiring a 
change in notation. Then, 
when you look back to review 
Chapter 2, you won’t have to 
remember different definitions 
for the same symbol. For 
example, in Chapter 3 we’ll 
learn that v (without the 
subscript) stands for the 
magnitude of the velocity 
(the speed), which can never 
be negative.

Example 2.2 continued
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How short a time interval is short enough? If you use a shorter time interval and the 
calculation of vx always gives the same value (to within the precision of your measure-
ments), then Δt is short enough. In other words, Δt must be short enough that we can 
treat the velocity as constant during that time interval. When vx is constant, cutting 
Δt in half also cuts the displacement in half, giving the same value for Δx/Δt.

Motion Diagrams

Suppose a cart moves to the right with increasing speed. Imagine shooting a video of 
the cart. Each frame in the video shows the positions of the cart at equally spaced 
times. If the images are compiled from successive frames into a single image, the 
resulting motion diagram (Fig. 2.4a) shows the position of the cart at equally spaced 
times. It’s easier and just as useful to draw a motion diagram as a series of dots 
(Fig.  2.4b). This motion diagram shows that the speed is increasing because the 
displacements are getting larger. In Fig. 2.4c, black and red arrows represent the cart’s 
displacement and velocity, respectively.

A motion diagram is closely related to a graph of x versus t. Let’s choose the 
x-direction to the right in Fig. 2.4. The notation x(t) represents position x as a function 
of time t. On a graph of x(t), the x-axis is vertical, so let’s rotate the motion diagram 
so the x-axis points up the page (Fig. 2.5). Then each dot on the motion diagram 
shows the vertical position of a point on the graph; these points are equally spaced 
along the time axis because Δt is constant.

CHECKPOINT 2.2B

The	motion	 diagram	 (Fig.	 2.6)	 shows	 a	 cart	moving	 to	 the	 right.	 Describe	 the	
motion	 in	words,	and	sketch	a	graph	of	x(t).

(b)

(c)

(a)

Figure 2.4 (a) The motion diagram for a cart that moves to the right with increasing speed. The cart’s position is 
shown at equally spaced times. Because the speed is increasing, the distance between successive images increases. 
(b) A simplified motion diagram for the cart. (c) Black arrows show the change in position (i.e., the displacement) 
from one “frame” to the next. Red arrows above each dot represent the cart’s velocity at that instant. The red arrow 
gets  longer from one frame to the next, illustrating that the speed of the cart is increasing.

t0

Graph of x versus t
for the cart

Motion
diagram

x x

Figure 2.5 The motion diagram for the cart, rotated so the x-axis is parallel to the x-axis on the graph of x(t). Each 
dot on the motion diagram shows the vertical position of a point on the graph. The graph points are equally spaced 
along the time axis because the motion diagram shows the cart’s position at equal time intervals.
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Graphical Relationships Between Position and Velocity

For motion along the x-axis, the displacement is Δx. The average velocity can be 
represented on the graph of x(t) as the slope of a line connecting two points (called 
a chord). In Fig. 2.7a, the displacement Δx = x3 − x1 is the rise of the graph (the 
change along the vertical axis) and the time interval Δt = t3 − t1 is the run of the 
graph (the change along the horizontal axis). The slope of the chord is the rise over 
the run:

 slope of chord =
rise
run =

Δx

Δt
= vav,x (2-5)

The slope of the chord is the average velocity for that time interval.

Finding vx on a Graph of x(t) To find the instantaneous velocity at some time 
t = t2, we draw lines showing the average velocity for shorter and shorter time inter-
vals. As the time interval is reduced (Fig. 2.7b), the average velocity changes. As Δt 
gets shorter and shorter, the chord approaches a tangent line to the graph at t2. Thus,

vx is the slope of the line tangent to the graph of x(t) at the chosen time.

In Fig. 2.8, the position of the train considered in Example 2.2 is graphed as a 
function of time, where 3:00 p.m. is chosen as t = 0. The graph of position versus 
time shows a curving line, but that does not mean the train travels along a curved 
path. The motion of the train is along a straight line since the track runs in an east-
west direction.

A horizontal portion of the graph indicates that the position is not changing during 
that time interval and, therefore, it is at rest (its velocity is zero). Sloping portions of 
the graph indicate that the train is moving. The steeper the graph, the larger the speed 
of the train. The sign of the slope indicates the direction of motion. A positive slope 
indicates motion in the +x-direction, and a negative slope indicates motion in the 
−x-direction. In Fig. 2.8, the train is at rest from t = 0 to t = 14 min. Then it moves 
east, speeding up at first and then slowing down until it comes to rest at t = 23 min. 
It remains at rest until t = 28 min, after which it moves west. The speed is increasing 
until about t = 45 min; then it slows slightly while still moving west.

Figure 2.6 Motion diagram 
for a cart moving to the right.
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Figure 2.7 A graph of x(t) for an object moving along the x-axis. (a) The average velocity vx,av for the time interval 
t1  to t3 is the slope of the chord connecting those two points on the graph. (b) The average velocity measured over a 
shorter time interval. As the time interval gets shorter and shorter, the average velocity approaches the instantaneous 
velocity vx at the instant t2. The slope of the tangent line to the graph is vx at that instant.
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CHECKPOINT 2.2C

The	 graph	 (Fig.	 2.9)	 shows	 the	 train’s	 position	 between	 t	 =	 14	 min	 and	
t = 23 min.	Points	on	the	graph	show	the	train’s	position	at	equal	time	intervals	
of	1.5	min.	Draw	a	motion	diagram	and	sketch	a	qualitative	graph	of	vx(t).	(Don’t	
worry	about	numerical	 values—just	sketch	 the	shape	of	 the	graph.)

Figure 2.8 Graph of position 
x versus time t for the train. 
The positions of the train at 
various times are marked with 
dots. The position would 
have  to be measured at more 
 frequent time intervals to 
 accurately trace out the shape 
of the graph.

Figure 2.9 A more detailed 
graph of the train’s position 
from t = 14 min to t = 23 min. 
Points on the graph show the 
train’s position at equal time 
intervals of 1.5 min.
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continued on next page

Example 2.3

Velocity of the Train

Use Fig. 2.8 to estimate the velocity of the train in kilometers 
per hour at t = 40 min.

Strategy Figure 2.8 is a graph of x(t). The slope of a line 
tangent to the graph at t = 40 min is vx at that instant. After 
sketching a tangent line on the graph, we find its slope from 
the rise divided by the run (Appendix A.2).

Solution Figure 2.10 shows a tangent line drawn on the 
graph. Using the endpoints of the tangent line, the rise is 
(−25 km) − (15 km) = −40 km. The run is approximately 
(57 min) − (30 min) = 27 min = 0.45 h. Then

vx ≈ (−40 km)/(0.45 h) ≈ −89 km/h
The velocity is approximately 89 km/h in the −x-direction 
(west).

Figure 2.10
On the graph of x(t), the slope of a line tangent to the graph at 
t = 40 min is vx at t = 40 min.

Time t (min)
0 10 20 30 40 50 60

Po
sit

io
n 

x (
km

)

–30

–20

–10

0

10

x = –25 km
t = 57 min

x = 15 km
t = 30 min



 2.2 VELOCITY:	RATE	OF	CHANGE	OF	POSITION 35

Finding Displacement with Constant Velocity What about the other way around? 
Given a graph of vx(t), how can we determine the displacement (change in position)? 
If vx is constant during a time interval, then the average velocity is equal to the 
instantaneous velocity:

 vx = vav,x =
Δx

Δt
 (for constant vx)  (2-6)

and therefore

 Δx = vx  
Δt (for constant vx)  (2-7)

The graph of Fig. 2.11 shows vx versus t for an object moving along the x-axis 
with constant velocity v1 from time t1 to t2. The displacement Δx during the time 
interval Δt = t2 − t1 is v1 Δt. The shaded rectangle has “height” v1 and “width” Δt. 
Since the area of a rectangle is the product of the height and width, the displacement 
Δx is represented by the area of the rectangle between the graph of vx(t) and the time 
axis for the time interval considered.

When we speak of “area” on a graph, we are not talking about the literal number 
of square centimeters of paper or computer screen. The units of the area on a graph are 
determined by the units used on the axes of the graph. Here, vx is in meters per second 
and t is in seconds, so the area has units of height × width = (m/s) × (s) = meters.

Finding Displacement with Changing Velocity What if the velocity is not 
constant? The displacement Δx during a very small time interval Δt can be found in 
the same way as for constant velocity since, during a short enough time interval, the 
velocity does not change appreciably. Then vx and Δt are the height and width of a 
narrow rectangle (Fig. 2.12a) and the displacement during that short time interval is 
the area of the rectangle. To find the total displacement during any time interval, the 
areas of all the narrow rectangles are added together (Fig. 2.12b). To improve the 
approximation, we let the time interval Δt approach zero and find that the displacement 
Δx during any time interval equals the area under the graph of vx(t) (Fig. 2.12c). When 
vx is negative, x is decreasing and the displacement is in the −x-direction, so we must 
count the area as negative when it is below the time axis.

Example 2.3 continued

Discussion Since the slope of a line is constant, any two 
points on the tangent line would give the same value for the 
slope. Using widely spaced points gives a more precise value 
for the slope.

Practice Problem 2.3 Maximum Eastward Velocity

Use Fig. 2.9 to estimate the maximum velocity of the train in 
kilometers per hour during the time it moves east (t = 14 min 
to t = 23 min).

Figure 2.11 Displacement Δx 
between t1 and t2 is represented 
by the shaded area because 
Δx = vx Δt.

t1 t2
t

v1

vx

Δx

Figure 2.12 (a) Displacement Δx during a short time interval is approximately the 
area of a rectangle of height vx and width Δt. (b) During a longer time interval, the 
displacement is approximately the sum of the areas of the rectangles. (c) The area 
between the vx graph and the time (horizontal) axis for any time interval represents 
the displacement during that interval.

vx

(a)
Δt t t t

(b)
t1 t2

(c)

Δx = area

vx

t1 t2

vx

During a very
small Δt,
Δx = vx Δt



36 CHAPTER	2 Motion Along a Line

Δx is the area between the graph of vx(t) and the time (horizontal) axis. The 
area is negative when the graph is beneath the time axis (vx < 0). (Usually, we 
say “the area under the graph” in place of “the area between the graph and the 
horizontal axis.”)

The magnitude of the train’s displacement is represented as the shaded areas in 
Fig. 2.13. The train’s displacement from t = 14 min to t = 23 min is +7 km (area 
above the t-axis means displacement in the +x-direction) and from t = 28 min to 
t  = 56 min it is −36 km (area below the t-axis means displacement in the 
−x-direction). The total displacement from t = 0 to t = 56 min is Δx = (+7 km) + 
(−36 km) = −29 km.

2.3 ACCELERATION: RATE OF CHANGE OF VELOCITY

The rate of change of the velocity is called the acceleration. The use of the word 
acceleration in everyday language is often imprecise and not in accord with its 
scientific definition. In everyday language, it usually means “an increase in speed.” 
In physics, acceleration can indicate any kind of change in velocity, whether it be a 
change in direction, an increase in speed, a decrease in speed, or a simultaneous 
change in speed and direction.

The concept of acceleration is much less intuitive for most people than the concept 
of velocity. Keep reminding yourself that the acceleration tells you how the velocity 
is changing. The direction of the change in velocity is not necessarily the same as the 
direction of either the initial or final velocities.

Average Acceleration

The average acceleration during a time interval Δt is:

 aav,x =
Δvx

Δt
 (2-8)

CONNECTION:

The slope of a graph and the 
area under a graph have a 
consistent interpretation: On 
a graph of any quantity Q as 
a function of time, the slope 
of the graph represents the 
instantaneous rate of change 
of Q. On a graph of the rate 
of change of Q as a function 
of time, the area under the 
graph represents ΔQ. The 
slope of a graph of x(t) is vx, 
the rate of change of x; the 
area under a graph of vx(t) is 
Δx. In Section 2.3, we’ll 
learn a similar graphical rela-
tionship between velocity and 
acceleration. The slope of a 
graph of vx(t) is ax, the rate of 
change of vx; the area under a 
graph of ax(t) is Δvx.
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Δx = 60 × (–600 m)
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Area of one rectangle
= 2 m/s × 5 min
= 2 m/s × 300 s = 600 m

vx(t)
(m/s)

Figure 2.13 A graph of train velocity versus time. The train’s displacement from t = 14 min to t = 23 min is the 
shaded area under the graph during that time interval. To estimate the area, count the number of grid boxes under the 
curve, estimating the fraction of the boxes that are only partly below the curve. Each box is 2 m/s in height and 5 min 
(= 300 s) in width, so each box represents an “area” (displacement) of 2 m/s × 300 s = 600 m. The total number of 
shaded boxes for this time interval is about 12, so the displacement is about Δx ≈ 12 × 600 m = 7200 m, which is 
close to the actual value of 7 km (during this time interval the train went from +3 km to +10 km). The shaded area for 
the time interval t = 28 min to t = 56 min is below the time axis; this negative area represents displacement in the 
−x-direction (west). The number of shaded grid boxes in this interval is about 60, so the displacement during this time 
interval is Δx ≈ 60 × (−600 m) = −36 000 m = −36 km.
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Since average acceleration is the change in velocity divided by the corresponding time 
interval, the SI units of acceleration are (m/s)/s = m/s2, read as “meters per second 
squared.” Thinking of m/s2 as “m/s per second” can help you develop an understand-
ing of what acceleration is. Suppose an object has a constant acceleration ax =  
+3.0 m/s2. Then vx increases 3.0 m/s during every second of elapsed time (the change 
in vx is +3.0 m/s per second). If ax = −2.0 m/s2, then vx would decrease 2.0 m/s dur-
ing every second (the change in vx is −2.0 m/s per second).

For example, suppose it takes 30 s for a truck to slow down from 25 m/s to 
10 m/s while traveling east. With the x-axis pointing east, the truck’s average accel-
eration during that time interval is

aav,x =
Δvx

Δt
=

−15 m/s
30 s

= −0.50 m/s2

or 0.50 m/s2 to the west.

Instantaneous Acceleration

To find the instantaneous acceleration, we calculate the average acceleration during 
a very short time interval:

Definition of instantaneous acceleration

 ax = lim
Δt→0

 
Δvx

Δt
 (2-9)

(Δvx is the change in velocity during a very short time interval Δt)

The time interval Δt must be short enough that we can treat the acceleration as constant 
during that time interval. Just as with instantaneous velocity, the word instantaneous is 
not always repeated. Acceleration without the adjective means instantaneous acceleration.

The chapter opener asked how an African lion can ever catch a Cape buffalo. 
Although Cape buffaloes and African lions have about the same top speed, lions are 
capable of much larger accelerations than are buffaloes. Starting from rest, it takes a 
buffalo much longer to get to its top speed. On the other hand, lions have much less 
stamina. Once the buffalo reaches its top speed, it can maintain that speed much 
longer than the lion can. Thus, a Cape buffalo is capable of outrunning a lion unless 
the stalking lion can get fairly close before charging.

CONNECTION:

Compare average acceleration 
[Eq. (2-8)] and average 
velocity [Eq. (2-2)]. Each is 
the change in a quantity 
divided by the time interval 
during which the change 
occurs. Each can have 
different values for different 
time intervals.

CONNECTION:

The rate of change of any 
quantity Q is

lim
Δt→0

 
ΔQ

Δt

Velocity is the rate of change 
of position and acceleration is 
the rate of change of velocity.

Conceptual Example 2.4

Direction of Acceleration While Slowing Down

Damon moves in the −x-direction on his motor scooter. He 
slows down as he approaches a stop sign. While slowing 
down, is the scooter’s acceleration component ax positive or 
negative? Sketch a graph of vx(t) to illustrate how vx changes.

Strategy The acceleration has the same direction as the 
change in the velocity.

Solution and Discussion Damon is moving in the 
−x-direction, so vx is negative. He is slowing down, so vx is 
getting smaller in magnitude (i.e., closer to zero). Therefore, 
the change in vx is positive (Δvx > 0). Since Δvx is positive, 
ax is positive. The acceleration is in the +x-direction.

We know that vx starts out negative (because Damon 
moves in the −x-direction), decreases in magnitude (because 
he slows down), and reaches zero when he comes to rest. A 
plausible graph is shown in Fig. 2.14. (We don’t have enough 
information to determine the precise shape.)

Conceptual Practice Problem 2.4 Continuing on 
His Way

As Damon pulls away from the stop sign, continuing in the 
−x-direction, his speed gradually increases. What is the 
sign of ax? What is the direction of the acceleration? Sketch 
a motion diagram.

Figure 2.14
A graph of vx(t), showing that vx starts out negative and increases 
until it is zero.

t

At rest
vx
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The Direction of the Acceleration

Suppose an object moves along the x-axis. Generalizing Example 2.4, we find that 
when the acceleration is in the same direction as the velocity, the object is speeding 
up. If vx and ax are both positive, the object is moving in the +x-direction and is 
speeding up. If they are both negative, the object is moving in the −x-direction and 
is speeding up.

When the acceleration and velocity are in opposite directions, the object is 
slowing down. When vx is positive and ax is negative, the object is moving in the 
positive x-direction and is slowing down. When vx is negative and ax is positive, the 
object is moving in the negative x-direction and is slowing down.

In straight-line motion, the acceleration is always in the same direction as the 
velocity, in the direction opposite to the velocity, or zero.

Graphical Relationships Between Velocity and Acceleration

Both velocity and acceleration measure rates of change: velocity is the rate of change 
of position and acceleration is the rate of change of velocity. Therefore, the graphical 
relationship of acceleration to velocity is the same as the graphical relationship of 
velocity to position:

ax is the slope on a graph of vx(t) and Δvx is the area under a graph of ax(t).

Figure 2.15 shows a graph of vx versus t for Damon slowing down on his scooter. 
He is moving in the −x-direction, so vx < 0, and his speed is decreasing, so ∣ vx ∣ is 
decreasing. The slope of a tangent line to the graph is ax at that instant. Three tangent 
lines are drawn, showing that ax is positive (the slopes are positive) and is not constant 
(the slopes are not all the same).

Figure 2.15 In this graph of 
vx versus t, as Damon is stop-
ping, vx is negative, but ax (the 
slope) is positive. The value of 
vx is increasing, but—since it is 
less than zero to begin with 
and is getting closer to zero as 
time goes on—the speed is 
decreasing. The slopes of the 
three tangent lines shown 
represent the instantaneous 
accelerations (ax) at three 
different times.
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Example 2.5

Acceleration of a Sports Car
Figure 2.16 shows data for vx as a function of time as a sports 
car starts from rest and travels in a straight line in the +x-
direction, with the driver speeding up as quickly as possible. 
(a) What is the average acceleration of the sports car from 0 
to 30 m/s? (b) What is the maximum acceleration of the car? 
(c) What is the car’s displacement from t = 0 to t = 19.0 s 
(when it reaches 60 m/s)? (d) What is the car’s average 
velocity during the entire 19.0 s interval?

Strategy (a) To find the average acceleration, the change 
in velocity for the time interval is divided by the time 
interval. (b) The instantaneous acceleration is the slope of 
the velocity graph, so it is maximum where the graph is 
steepest. At that point, the velocity is changing at a high rate. 
We expect the maximum acceleration to take place early on; 
the magnitude of acceleration must decrease as the velocity 
gets higher and higher—there is a maximum velocity for the 

continued on next page
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Example 2.5 continued

car, after all. (c) The displacement Δx is the area under the 
vx(t) graph. The graph is not a simple shape such as a triangle 
or rectangle, so an estimate of the area is made. (d) Once we 
have a value for the displacement, we can apply the defini-
tion of average velocity.

Given: Graph of vx(t) in Fig. 2.16.
To find: (a) aav,x for vx = 0 to 30 m/s
   (b) maximum value of ax

   (c) Δx from vx = 0 to 60 m/s
   (d) vav,x from t = 0 to 19.0 s

Solution (a) The car starts from rest, so v ix = 0. It reaches 
vx = 30 m/s at t = 4.9 s, according to the data table. Then for 
this time interval,

aav,x =
Δvx

Δt
=

30 m/s − 0 m/s
4.9 s − 0 s

= 6.1 m/s2

The average acceleration for this time interval is 6.1 m/s2 in 
the +x-direction.
(b) The acceleration ax, at any instant of time, is the slope of 
the tangent line to the vx(t) graph at that time. To find the 
maximum acceleration, we look for the steepest part of the 
graph. In this case, the largest slope occurs near t = 0, just as 
the car is starting out. In Fig. 2.16 a tangent line to the vx(t) 
graph at t = 0 is drawn and labeled. Values for the rise and 
run to calculate the slope of the tangent line are read from 
the graph. The tangent line passes through the two points 
(t = 0, vx = 0) and (t = 6.0 s, vx = 55 m/s) on the graph, so 
the rise is 55 m/s for a run of 6.0 s. The slope of this line is

ax =
rise
run =

55 m/s − 0 m/s
6.0 s − 0 s

= +9.2 m/s2

The maximum acceleration is 9.2 m/s2 in the +x-direction.

(c) Δx is the area under the vx(t) graph shown shaded in  
Fig. 2.16. The area can be estimated by counting the number 
of grid boxes under the curve. Each box is 5.0 m/s in height 
and 2.0 s in width, so each represents an “area” (displace-
ment) of 10 m. When counting the number of boxes under the 
curve, a best estimate is made for the fraction of the boxes 
that are only partly below the curve. Approximately 75 boxes 
lie below the curve, so the displacement is Δx = 75 × 10 m = 
750 m. Since the car travels along a straight line and does not 
change direction, 750 m is also the distance traveled. (d) The 
average velocity during the 19.0 s interval is

vav,x =
Δx

Δt
=

750 m
19.0 s

= 39 m/s

Discussion The graph of velocity as a function of time 
is often the most helpful graph to have when solving a 
problem. If that graph is not given in the problem, it is 
useful to sketch one. The vx(t) graph shows displacement, 
velocity, and acceleration at once: the velocity vx is given 
by the points or the curve graphed, the displacement Δx is 
the area under the curve, and the acceleration ax is the slope 
of the curve.

Why is the average velocity 39 m/s? Why is it not half-
way between the initial velocity (0 m/s) and the final velocity 
(60 m/s)? If the acceleration were constant, the average 
velocity would indeed be 1

2(0 + 60 m/s) = 30 m/s. The 
actual average velocity is somewhat higher than that—the 
acceleration is greater at the start, so less of the time interval 
is spent going (relatively) slow and more is spent going fast. 
The speed is less than 30 m/s for only 4.9 s, but is greater 
than 30 m/s for 14.2 s.

Practice Problem 2.5 Acceleration at a Later Time

What is the instantaneous acceleration of the car at  
t = 14.0 s?

t (s)
0 2 4 6 8 10 12 14 16 18 20

0

10

20

vx (m/s)

30

40

50

60

vx (m/s) 0
t (s) 0

15
2.0

20
2.9

25
3.8

30
4.9

35
6.2

45
9.1

40
7.6

50
11.2

55
14.0

60
19.0

55 m/s

Tangent at t = 0

6.0 s

Figure 2.16
Data table and graph of vx(t) for a sports car.

CHECKPOINT 2.3

What	 physical	 quantity	 does	 the	 slope	 of	 the	 tangent	 to	 a	 graph	 of	 vx	 versus	
time	 represent?
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2.4 VISUALIZING MOTION ALONG A LINE WITH 
CONSTANT ACCELERATION

Motion Diagrams In Fig. 2.17, three carts move in the same direction with three 
different values of constant acceleration. The position of each cart is depicted in a 
motion diagram with a time interval of 1.0 s. Red arrows representing the cart’s 
velocity are shown above each position.

The yellow cart has zero acceleration and, therefore, constant velocity. During each 
1.0 s time interval, its displacement is the same: 1.0 m/s × 1.0 s = 1.0 m to the right.

The red cart has a constant acceleration of 0.2 m/s2 to the right. Although m/s2 
is normally read “meters per second squared,” it can be useful to think of it as “m/s 
per second”: the cart’s velocity component vx increases 0.2 m/s during each 1.0 s time 
interval. In this case, acceleration is in the same direction as the velocity, so the speed 
increases. The motion diagram shows that displacement of the cart during successive 
1.0 s time intervals gets larger and larger.

The blue cart has a constant acceleration of 0.2 m/s2 in the −x-direction, which 
is the direction opposite to the velocity. The velocity component vx decreases by 
0.2  m/s during each 1.0 s interval. The velocity and acceleration are in opposite 
directions, so the speed is decreasing. Now the motion diagram shows that displace-
ments during 1.0 s intervals get smaller and smaller.

Graphs Figure 2.18 shows graphs of x(t), vx(t), and ax(t) for each of the carts. The 
acceleration graphs are horizontal since each of the carts has a constant acceleration. 
All three vx graphs are straight lines. Since ax is the rate of change of vx, the slope of 
the vx(t) graph is ax at that time t. With constant acceleration, the slope is the same 
everywhere and the graph is linear. Remember that a positive ax does mean that vx is 
increasing, but not necessarily that the speed is increasing. If vx is negative, then a 
positive ax indicates a decreasing speed. (See Conceptual Example 2.4.) Speed is 
increasing when the acceleration and velocity are in the same direction (ax and vx both 
positive or both negative). Speed is decreasing when acceleration and velocity are in 
opposite directions—when ax and vx have opposite signs.

The position graph is linear for the yellow cart because it has constant velocity. 
For the red cart, the x(t) graph curves with increasing slope, showing that vx is increas-
ing. For the blue cart, the x(t) graph curves with decreasing slope, showing that vx is 
decreasing.

CHECKPOINT 2.4

Do	the	red	and	blue	carts	in	Fig.	2.17	ever	have	the	same	velocity?	If	so,	when?

Figure 2.17 Each cart is shown in a motion diagram at 1.0 s time intervals. The arrows above each cart indicate the 
instantaneous velocities. All three carts move with constant acceleration.

x (m)

Positions of the carts at 1.0 s intervals

0 1 2 3 4 5 6 7 8

ax = 0.2 m/s2,
vix = 1.0 m/s

ax = –0.2 m/s2,
vix = 2.0 m/s

ax = 0,
vix = 1.0 m/s

1.0 m/s 1.0 m/s 1.0 m/s 1.0 m/s 1.0 m/s1.0 m/s

1.0 m/s 1.2 m/s 1.4 m/s 1.6 m/s 1.8 m/s 2.0 m/s

2.0 m/s 1.8 m/s 1.6 m/s 1.4 m/s 1.2 m/s 1.0 m/s

0 s

0 s

0 s 1 s 2 s 3 s 4 s 5 s

1 s 2 s 3 s 4 s 5 s

1 s 2 s 3 s 4 s 5 s
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2.5 KINEMATIC EQUATIONS FOR MOTION ALONG A LINE 
WITH CONSTANT ACCELERATION

The kinematic equations we introduce next are relationships between position, velocity, 
acceleration, and time that apply to the important special case of an object whose accel-
eration is constant (both in magnitude and direction). Although a graph of vx(t) can be 
used to find the position of an object as a function of time, having an algebraic method 
at our disposal will be very convenient. First, let us agree on a consistent notation:

∙ Choose an origin and a direction for the positive axis. (For vertical motion, it is 
conventional to use the y-axis instead of the x-axis, where the +y-direction is up.)

∙ At time ti, the “initial” position and velocity are xi and vix.
∙ At a later time tf = ti + Δt, the “final” position and velocity are xf and vfx.
∙ The “initial” and “final” times are not necessarily the beginning and end of the 

object’s motion. We can choose ti and tf as convenient, as long as the acceleration 
is constant during the entire interval from ti to tf.

Two essential relationships between position, velocity, and acceleration enable us 
to find the position of an object moving along a line with constant acceleration:

 1. Since the acceleration ax is constant, the change in velocity over a given time 
interval Δt = tf − ti is the acceleration—the rate of change of velocity—times 
the elapsed time:

 Δvx = vfx − vix = ax Δt (2-10)

(if ax is constant during the entire time interval)

  Equation (2-10) is the definition of ax [Eq. (2-9)] with the assumption that ax 
is constant.

Figure 2.18 Graphs of posi-
tion, velocity, and acceleration 
as functions of time for the 
carts of Fig. 2.17. The slope of 
the x(t) graph at any time is the 
velocity vx at that time. The 
slope of the vx(t) graph at any 
time is the acceleration ax at 
that time.

t (s)

x 
(m

)

2 40

4

8

Po
si

tio
n

t (s)

x 
(m

)

2 40

4

8

t (s)

x 
(m

)

2 40

4

8

Ve
lo

ci
ty

t (s)

v x
 (m

/s
)

2 40

1

2

v x
 (m

/s
)

t (s)
2 40

1

2

v x
 (m

/s
)

t (s)
2 40

1

2

A
cc

el
er

at
io

n

ax = 0 m/s2

t (s)

a x
 (m

/s
2 )

2 4
0

0.2

–0.2

ax = 0.2 m/s2

t (s)

a x
 (m

/s
2 )

2 4
0

0.2

–0.2

ax = –0.2 m/s2

t (s)

a x
 (m

/s
2 )

2 4
0

0.2

–0.2



42 CHAPTER	2 Motion Along a Line

 2. Since the velocity changes linearly with time, the average velocity is given by:

 vav,x =
1
2

 (vfx + vix)  (constant ax)  (2-11)

Equation (2-11) is not true in general, but it is true for constant acceleration. To see 
why, refer to the vx(t) graph in Fig. 2.19a. The graph is linear because the acceleration— 
the slope of the graph—is constant. The displacement during any time interval is 
represented by the area under the graph. The average velocity is found by forming a 
rectangle with an area equal to the area under the curve in Fig. 2.19a, because the 
average velocity should give the same displacement in the same time interval. Figure 
2.19b shows that, to make the excluded area above vav,x (triangle 1) equal to the extra 
area under vav,x (triangle 2), the average velocity must be halfway between the initial 
and final velocities. Combining Eq. (2-11) with the definition of average velocity,

 Δx = xf − xi = vav,x Δt (2-2)

gives our second essential relationship for constant acceleration:

 Δx =
1
2

 (vfx + vix) Δt (2-12)

(if ax is constant during the entire time interval)

If the acceleration is not constant, there is no reason why the average velocity 
has to be halfway between the initial and the final velocity. As an illustration, imagine 
a trip where you drive along a straight highway at 80 km/h for 50 min and then at 
60 km/h for 30 min. Your acceleration is zero for the entire trip except during the few 
seconds while you slowed from 80 km/h to 60 km/h. The magnitude of your average 
velocity is not 70 km/h. You spent more time going 80 km/h than you did going 
60 km/h, so the magnitude of your average velocity would be greater than 70 km/h.

Other Useful Relationships for Constant Acceleration Two more useful rela-
tionships can be formed between the various quantities (displacement, initial and final 
velocities, acceleration, and time interval) by eliminating some quantity from  
Eqs. (2-10) and (2-12). For example, suppose we don’t know the final velocity vfx. 
Then we can solve Eq. (2-10) for vfx, substitute into Eq. (2-12), and simplify:

 Δx =
1
2

 (vfx + vix) Δt =
1
2

 [ (vix + ax 
Δt) + vix] Δt (2-13)

 Δx = vix Δt +
1
2

 ax(Δt)2  (constant ax)  (2-14)

We can interpret Eq. (2-14) graphically. Figure 2.20 shows a vx(t) graph for 
motion with constant acceleration. The displacement that occurs between ti and a later 
time tf is the area under the graph for that time interval. Partition this area into a 
rectangle plus a triangle. The area of the rectangle is

 base × height = vix Δt (2-15)

The height of the triangle is the change in velocity, which is equal to ax Δt. The area 
of the triangle is

 
1
2

  base × height =
1
2

 Δt × ax Δt =
1
2

  ax(Δt)2 (2-16)

Adding these areas gives Eq. (2-14).
Another useful relationship comes from eliminating the time interval Δt:

 Δx =
1
2

 (vfx + vix) Δt =
1
2

 (vfx + vix)(
vfx − vix

ax ) =
v2

fx − v2
ix

2ax

 (2-17)

Figure 2.19 Finding the 
average velocity when the 
acceleration is constant. (a) On 
a graph of vx(t), the area under 
the graph is the displacement 
during that time interval. 
(b) The average velocity is the 
value of vx that would produce 
the same displacement during 
the same time interval, so the 
areas under the two graphs 
are equal.

vfx

vx

vix

ti tf
t

vx

t

(a)

vfx

vix

ti tf
(b)

vav,x
1

2

vfx

vx

vix

vix

ti tf t

Δvx = ax Δt

Δt

Figure 2.20 Graphical inter-
pretation of Eq. (2-14). The 
area of the blue rectangle is  
vix Δt. The area of the yellow 
triangle is
1
2 base × height = 1

2(Δt) (ax 
Δt)
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Rearranging terms, we obtain

 v2
fx − v2

ix = 2ax Δx  (constant ax)  (2-18)

CHECKPOINT 2.5

At	3:00	 p.m.,	 an	 airplane	 is	moving	due	west	 at	460	km/h.	 At	3:05	 p.m.,	 it	 is	
moving	due	west	 at	480	km/h.	 Is	 its	 average	 velocity	 during	 the	 time	 interval	
necessarily	470	km/h	west?	Explain.

Rounded to two significant figures, the acceleration is 31 m/s2.
(b) From Eq. (2-12), the displacement is

 Δx = 1
2(vfx + vix)Δt = 1

2(1.29 m/s + 0.10 m/s)(38 × 10−3 s) 
 = 0.026 m = 2.6 cm

Discussion Quick check using Eq. (2-14):

Δx = vix Δt + 1
2ax (Δt)2 = 0.10 m/s × 38 × 10−3 s

+ 1
2 × 31.32 m/s2 × (38 × 10−3 s)2 = 2.6 cm

This isn’t an independent check because Eq. (2-14) is derived 
from Eqs. (2-10) and (2-12); it’s just a quick check to see if 
we made any algebra mistakes.

The value of ax calculated from the velocity data could 
be used by a cardiologist to draw conclusions about the 
forces acting on the blood and thus to evaluate cardiac 
function.

Practice Problem 2.6  Ejection of Moss Spores

Measurements of sphagnum moss spores indicate that they 
undergo accelerations up to 360 000 m/s2 as they are ejected 
from the parent moss plant. (a) Assuming a constant accel-
eration of this magnitude, how far will a sphagnum moss 
spore travel in 0.40 ms, starting from rest? (b) How fast will 
it be moving at that time?

continued on next page

Example 2.6

 Doppler Echocardiography

The maximum acceleration of blood in the aorta can be used 
to test ventricular function. The period during which maxi-
mum acceleration of the blood in the aorta occurs is during 
the first portion of the left ventricle’s pumping action. 
During this period, the acceleration is essentially constant. 
Doppler echocardiography uses ultrasound to measure blood 
speeds in the aorta. The results for one patient show that the 
blood in the aorta begins at a speed of 0.10 m/s and under-
goes constant acceleration for 38 ms, reaching a peak speed 
of 1.29 m/s. (a) What is the acceleration reflected in these 
data? (b) How far does the blood travel during this period?

Strategy Choose the x-axis in the direction of blood flow. 
Then the given information is: Δt = 38 ms = 38 × 10−3 s; 
vix = 0.10 m/s; vfx = 1.29 m/s. The goal of the problem is to 
find ax and Δx. Equation (2-10) can be solved for ax in terms 
of the three given quantities. Equation (2-12) can be solved 
for Δx in terms of the three given quantities. Equations 
(2-14) and (2-15) contain both of the unknowns, so using 
them is correct but would lead to more complicated algebra.

Solution (a) The velocity change is
Δvx = vfx − vix = 1.29 m/s − 0.10 m/s = 1.19 m/s

The time interval is Δt = 38 × 10−3 s. The acceleration is then

ax =
Δvx

Δt
=

1.19 m/s
38 × 10−3 s

= 31.32 m/s2

Example 2.7

A Sliding Brick

Starting from rest, a brick slides along a straight line down 
an icy roof with a constant acceleration of magnitude 
4.9 m/s2 (Fig. 2.21). How fast is the brick moving when it 
reaches the edge of the roof 0.90 s later?

x Figure 2.21
A brick sliding down an icy 
roof.
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Example 2.7 continued

Strategy What is the direction of the acceleration? It has to 
be downward along the roof, in the same direction as the brick’s 
velocity. An acceleration opposite the velocity would make the 
brick slow down, but since it starts from rest, a constant accel-
eration can only make it speed up. We choose the +x-axis in 
the direction of the acceleration. Then we use the acceleration 
to find how the velocity changes during the time interval.

Solution With the x-axis in the direction of the accelera-
tion, ax = +4.9 m/s2. The brick is initially at rest so vix = 0. 
We want to know vfx at the end of the time interval Δt = 0.90 s. 
Since ax is constant, vx changes at a constant rate:

Δvx = vfx − vix = ax Δt = (+4.9 m/s2) × (0.90 s) = 4.4 m/s

At the edge of the roof, the brick is moving at 4.4 m/s parallel 
to the roof.

Discussion Conceptual check: ax = +4.9 m/s2 means that 
vx increases 4.9 m/s every second. The brick slides for a bit 
less than 1 s, so the increase in vx is a bit less than 4.9 m/s.

Practice Problem 2.7 Displacement of the Brick

How far from the edge of the roof was the brick when it 
started sliding?

This equation has two solutions—there are two times at 
which the spaceships are at the same position. One solution 
is Δt = 0. We already knew that the two spaceships started at 
the same initial position. The other solution, which gives the 
time at which one spaceship overtakes the other, is found by 
setting the expression in parentheses equal to zero. Solving 
for Δt, we find

Δt =
2(visx − vibx)

abx − asx
=

2 × (2.00 km/s − 6.00 km/s)
−0.400 km/s2 − 0.400 km/s2 = 10.0 s

The silver spaceship overtakes the black spaceship 10.0 s 
after they leave the starting point.

(b) Figure 2.22 shows the vx(t) graphs with ti = 0. Note that 
the area under the graphs from ti to tf is the same in the two 
graphs: the spaceships have the same displacement during 
that interval.

Example 2.8

Two Spaceships

Two spaceships are moving from the same starting point in 
the +x-direction with constant accelerations. The silver 
spaceship has an initial velocity of +2.00 km/s and an 
acceleration of +0.400 km/s2. The black spaceship has an 
initial velocity of +6.00 km/s and an acceleration of 
−0.400 km/s2. (a) Find the time at which the silver spaceship 
just overtakes the black spaceship. (b) Sketch graphs of vx(t) 
for the two spaceships. (c) Sketch a motion diagram showing 
the positions of the two spaceships at 1.0 s intervals.

Strategy We can find the positions of the spaceships at 
later times from the initial velocities and the accelerations. 
At first, the black spaceship is moving faster, so it pulls out 
ahead. Later, the silver ship overtakes the black ship at the 
instant their positions are equal.

Solution (a) The position of either spaceship at a later 
time is given by Eq. (2-14):

xf = xi + Δx = xi + vix Δt + 1
2ax (Δt)2

We will use subscripts to avoid confusion between similar 
quantities. The subscripts s and b will stand for silver and 
black, respectively. The subscripts i and f will stand for ini-
tial and final, respectively. A skilled problem-solver con-
structs algebraic symbols that are explicit and unambiguous.

We set the final position of the silver spaceship equal to 
that of the black spaceship (xfs = xfb):

xis = visx Δt + 1
2asx (Δt)2 = xib + vibx Δt + 1

2abx (Δt)2

The initial positions are the same: xis = xib. Subtracting 
the initial positions from each side, moving all terms to one 
side, and factoring out one power of Δt yields

(Δt) (visx + 1
2asx Δt − vibx − 1

2abx Δt) = 0

t (s)100

vx (km/s)
Silver

6

t (s)100

vx (km/s)
Black

6

2

0

2

0

Figure 2.22
Graphs of vx versus t for the 
silver and black spaceships. 
The shaded area under each 
graph represents the 
displacement Δx during 
the time interval.

continued on next page
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Example 2.8 continued

(c) Equation (2-14) can be used to find the position of each 
spaceship as a function of time. Choosing xi = 0, ti = 0, and 
tf = t, the position as a function of time t is

x(t) = 0 + vix(t − 0) + 1
2ax(t − 0)2 = 0 + vixt + 1

2axt
2

Figure 2.23 shows the data table calculated this way and the 
corresponding motion diagram.

Discussion Quick check: the two ships must have the 
same displacement at Δt = 10.0 s.

Δxs = visx Δt + 1
2asx(Δt)2

 = 2.00 km/s × 10.0 s + 1
2 × 0.400 km/s2 × (10.0 s)2

 = 40.0 km

Δxb = vibx Δt + 1
2abx(Δt)2

= 6.00 km/s × 10.0 s + 1
2 × (−0.400 km/s2) × (10.0 s)2

 = 40.0 km

Practice Problem 2.8 Time to Reach the Same 
Velocity

When do the two spaceships have the same velocity? What 
is the value of the velocity then?

x (km)0 10 20 30 40

t (s)
xs (km)
xb (km)

0
0
0

1.0
2.2
5.8

2.0
4.8

11.2

3.0
7.8

16.2

4.0
11.2
20.8

5.0
15.0
25.0

6.0
19.2
28.8

7.0
23.8
32.2

8.0
28.8
35.2

9.0
34.2
37.8

10.0
40.0
40.0

0

0 1.0 s 2.0 s 3.0 s 4.0 s 5.0 s 6.0 s 7.0 s 8.0 s 9.0 s10.0 s

1.0 s 2.0 s 3.0 s 4.0 s 5.0 s 6.0 s 7.0 s 8.0 s 9.0 s 10.0 s

Figure 2.23
Calculated positions of the spaceships at 1.0 s time intervals and a motion diagram.

Example 2.9

Displacement of a Motorboat

A motorboat starts from rest at a dock and heads due east 
with a constant acceleration of magnitude 2.8 m/s2. After 
traveling for 140 m, the motor is throttled down to slow 
down the boat at 1.2 m/s2 (while still moving east) until its 
speed is 16 m/s. Just as the boat attains the speed of 16 m/s, 
it passes a buoy due east of the dock. (a) Sketch a qualitative 
graph of vx(t) for the motorboat from the dock to the buoy. 
Let the +x-axis point east. (b) What is the distance between 
the dock and the buoy?

Strategy This problem involves two different values of 
acceleration, so it must be divided into two subproblems. 
The equations for constant acceleration cannot be applied to 
a time interval during which the acceleration changes. But 
for each of two time intervals, the acceleration of the boat is 
constant: from t1 to t2, a1x = +2.8 m/s2; from t2 to t3, a2x = 
−1.2 m/s2. The two subproblems are connected by the 
position and velocity of the boat at the instant the accelera-
tion changes. This is reflected in the graph of vx(t): It consists 
of two different straightline segments with different slopes 
that connect with the same value of vx at time t2.

For subproblem 1, the boat speeds up with a constant 
acceleration of 2.8 m/s2 to the east. We know the accelera-
tion, the displacement (140 m east), and the initial velocity: 
the boat starts from rest, so the initial velocity v1x is zero. We 
need to calculate the final velocity v2x, which then becomes 
the initial velocity for the second subproblem. The boat is 
always headed to the east, so we choose east as the positive 
x-direction.

Subproblem 1

Known:  v1x = 0; a1x = +2.8 m/s2;  
Δx21 = x2 − x1 = 140 m.

To find: v2x.

For subproblem 2, we know the acceleration and the 
final velocity v3x, and we have just found the initial velocity 
v2x from subproblem 1. Because the boat is slowing down, its 
acceleration is in the direction opposite its velocity; therefore, 
a2x < 0. From these three quantities we can find the displace-
ment of the boat during the second time interval.

continued on next page
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Subproblem 2

Known:  v2x from subproblem 1;  
a2x = −1.2 m/s2; v3x = +16 m/s.

To find: Δx32 = x3 − x2.

Adding the displacements for the two time intervals 
gives the total displacement. The magnitude of the total 
displacement is the distance between the dock and 
the buoy.

Solution (a) The graph starts with vx = 0 at t = t1. We 
choose t1 = 0 for simplicity. The graph is a straight line 
with slope +2.8 m/s2 until t = t2. Then, starting from where 
the graph left off, the graph continues as a straight line with 
slope −1.2 m/s2 until the graph reaches vx = 16 m/s at t = t3. 
Figure 2.24 shows the vx(t) graph. It is not quantitatively 
accurate because we have not calculated the values of 
t2 and t3.

(b1) To find v2x without knowing the time interval, we can 
apply Eq. (2-18):

v2
2x − v2

1x = 2a1x  
Δx21

Solving for v2x yields

v2x = ±√v2
1x + 2a1x Δx = ±√0 + 2 × 2.8 m/s2 × 140 m

= ±28 m/s

The boat is moving east, in the +x-direction, so the correct 
sign here is positive: v2x = +28 m/s.

(b2) The final velocity for the first interval (v2x) is the initial 
velocity for the second interval. The final velocity is v3x. 
Again using Eq. (2-18), we have

Δx32 =
v2

3x − v2
2x

2a2x

=
(16 m/s)2 − (28 m/s)2

2 × (−1.2 m/s2)
= +220 m

The total displacement is

x3 − x1 = (x3 − x2) + (x2 − x1) = 220 m + 140 m = +360 m

The buoy is 360 m from the dock.

Discussion The natural division of the problem into two 
parts occurs because the boat has two different constant 
accelerations during two different time periods. In problems 
that can be subdivided in this way, the final velocity and 
position found in the first part becomes the initial velocity 
and position for the second part.

Practice Problem 2.9 Time to Reach the Buoy

What is the time required by the boat in Example 2.9 to reach 
the buoy?

Example 2.9 continued

2.6 FREE FALL

Suppose you are standing on a bridge over a deep gorge. If you drop a stone into the 
gorge, how fast does it fall? You know from experience that it does not fall at a 
constant velocity; the longer it falls, the faster it goes. A better question is: What is 
the stone’s acceleration?

First, let us simplify the problem. If the stone were moving very fast, air resistance 
would oppose its motion. When it is not falling so fast, the effect of air resistance is 
negligibly small. In free fall, we assume that no forces act on an object other than 
the gravitational force that makes the object fall. On Earth, free fall is an idealization 
since there is always some air resistance. We also assume that the stone’s change in 
altitude is small enough that Earth’s gravitational pull on it is constant.

Free-fall Acceleration An object in free fall has a constant downward acceleration, 
called the free-fall acceleration. The magnitude of this acceleration varies a little from 
one place to another near Earth’s surface, but at any given place, it has the same value 
for every object, regardless of the mass of the object. The symbol g represents the mag-
nitude of the free-fall acceleration. Unless another value is given in a particular problem, 
please assume that the magnitude of the free-fall acceleration near Earth’s surface is

 g = 9.80 m/s2 (2-19)

CONNECTION:

Free fall is an example of 
motion with constant 
acceleration.

Figure 2.24
Graph of vx versus t for 
the motorboat. tt3t1 = 0 t2

vx

v2x

16 m/s
(v3x)



 2.6 FREE	FALL 47

When dealing with vertical motion, the y-axis is usually chosen to be positive 
pointing upward. The direction of the free-fall acceleration is down, so ay = −g. The 
same techniques and equations used for other constant acceleration situations are used 
with free fall.

Earth’s gravity always pulls downward, so the acceleration of an object in free 
fall is always downward and constant in magnitude, regardless of whether the object 
is moving up, moving down, or is instantaneously at the highest point. If the object 
is moving downward, the downward acceleration makes it speed up; if it is moving 
upward, the downward acceleration makes it slow down.

Acceleration at Highest Point If an object is thrown straight up, its velocity is 
zero at the highest point of its flight. Why? On the way up, its velocity vy is positive 
(if the positive y-axis is pointing up). On the way down, vy is negative. Since vy 
changes continuously, it must pass through zero to change sign, but the slope does 
not change (Fig. 2.25). Therefore, at the highest point, the velocity vy is zero but the 
acceleration ay is not zero. (If the acceleration were to suddenly become zero at the top 
of flight, the velocity would no longer change; the object would get stuck at the top 
rather than fall back down!)

CHECKPOINT 2.6

Is	 it	possible	 for	an	object	 in	 free	 fall	 to	be	moving	upward?	Explain.

vy

t
0

Slope = –g

Moving
down

vy < 0
Moving

up

vy > 0

Top of
flight
vy = 0

Figure 2.25 Graph of vy 
versus t for an object thrown 
upward. The slope of the graph 
has the same constant value 
(ay = −g) on the way up, at the 
top of flight, and on the way 
down.

the water. During free fall, the stone’s acceleration is constant 
and equal to 9.80 m/s2 downward. Known: ay = −9.80 m/s2; 
Δy = −44.1 m at Δt = 4.00 s. To find: viy and vfy.

Solution (a) Let’s choose the origin at the release point so 
the stone starts at y = 0. As the stone moves up, y increases 
until it reaches the maximum height. Then it moves 
downward until it hits the stream at a point below y = 0. The 
graph of vy(t) is a straight line because the acceleration is 
constant. The stone initially moves upward (vy > 0). At the 
top of flight, vy = 0. Then vy < 0 as the stone moves 
downward. The value of vy is the slope of the y(t) graph: 
initially positive, steadily decreasing until it is zero at the 
top of flight; then the slope continues to decrease, becoming 

Example 2.10

Throwing Stones

Standing on a bridge, you throw a stone straight upward. The 
stone hits a stream, 44.1 m below the point at which you 
release it, 4.00 s later. (a) Sketch graphs of y(t) and vy(t). The 
positive y-axis points up. (b) What is the velocity of the 
stone just after it leaves your hand? (c) What is the velocity 
of the stone just before it hits the water? (d) Draw a motion 
diagram for the stone, showing its position at 0.1 s intervals 
during the first 0.9 s of its motion.

Strategy Ignoring air resistance, the stone is in free fall 
once your hand releases it and until it hits the water. For the 
time interval during which the stone is in free fall, the initial 
velocity is the velocity of the stone just after it leaves your 
hand and the final velocity is the velocity just before it hits 

continued on next page
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in vy since Δvy = ay Δt. Because the acceleration is constant, 
the average velocity is halfway between the initial and final 
velocities. Therefore, the initial velocity is the average veloc-
ity minus half of the change, while the final velocity is the 
average velocity plus half of the change.

Practice Problem 2.10 Height Attained by Stone

(a) How high above the bridge does the stone go? [Hint: What 
is vy at the highest point?] (b) If you dropped the stone instead 
of throwing it, how long would it take to hit the water?

Figure 2.26
Graphs of y(t) and vy(t) for 
the stone.

Figure 2.27
Motion diagram for the stone while moving 
straight up.

t

t

y

0

0

Top of
flight

vy

0.0 s

0.1 s

0.2 s

0.3 s

0.4 s

0.5 s

0.9 s
0.8 s
0.7 s

0.6 s

0

3.5

2.5

2.0

3.0

0.5

1.5

1.0

y (m)negative. From these observations, we can sketch the graphs 
of y(t) and vy(t) (Fig. 2.26).

(b) Equation (2-14) can be used to solve for viy since all the 
other quantities in it (Δy, Δt, and ay) are known.

Δy = viy Δt +
1
2

ay(Δt)2

We can solve this equation for viy:

  viy =
Δy

Δt
−

1
2

 ay Δt (1)

=
−44.1 m

4.00 s
−

1
2

(−9.80 m/s2 × 4.00 s)

= −11.0 m/s + 19.6 m/s = 8.6 m/s

The initial velocity is 8.6 m/s upward.

(c) The change in vy is ay Δt from Eq. (2-10):

vfy = viy + ay Δt

Substituting the expression for viy found previously yields

 vfy = (
Δy

Δt
−

1
2

ay Δt) + ay Δt =
Δy

Δt
+

1
2

 ay Δt (2)

=
−44.1 m

4.00 s
+

1
2

 (−9.80 m/s2 × 4.00 s)

= −11.0 m/s − 19.6 m/s = −30.6 m/s

The final velocity is 30.6 m/s downward.

(d) Choosing yi = 0 and ti = 0, the position of the stone as a 
function of time is

y(t) = viyt +
1
2

 ayt
2

The motion diagram is shown in Fig. 2.27.

Discussion The final speed is greater than the initial 
speed, as expected. Equations (1) and (2) have a direct inter-
pretation, which is a good check on their validity. The first 
term, Δy/Δt, is the average velocity of the stone during the 
4.00 s of free fall. The second term, −1

2ay Δt, is half the change 

Example 2.10 continued

 ∙ Displacement is the change in position: Δx = xf − xi. 
The displacement depends only on the starting and 
ending positions, not on details of the motion. The mag-
nitude of the displacement is not necessarily equal to the 
total distance traveled; it is the straight-line distance 
from the initial position to the final position.

 ∙ Average velocity is the constant velocity that would 
cause the same displacement in the same amount of 

time. The average velocity depends on the time interval 
considered.

vav,x =
Δx

Δt
  (for any time interval Δt)  (2-2)

 ∙ Velocity is a measure of how fast and in what direction 
something moves. Its direction is the direction of the 
object’s motion and its magnitude is the instantaneous 
speed. It is the instantaneous rate of change of the 

Master the Concepts

continued on next page
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position. The direction of the change in velocity is not 
necessarily the same as the direction of either the initial 
or final velocities.

 vx = lim
Δt→0

 
Δx

Δt
  (for a very short Δt)  (2-4)

 ∙ Average acceleration is the constant acceleration that 
would cause the same velocity change in the same 
amount of time.

 aav,x =
Δvx

Δt
  (for any time interval Δt)  (2-8)

 ∙ Acceleration is the instantaneous rate of change of the 
velocity.

 ax = lim
Δt→0

 
Δvx

Δt
  (for a very short Δt)  (2-9)

  Acceleration does not necessarily mean the speed is in-
creasing. A positive value of ax means that vx is increasing, 
but not necessarily that the speed is increasing.

 ∙ The graph of velocity as a function of time is often 
the most helpful graph to have when solving a prob-
lem. If that graph is not given in the problem, it is 
useful to sketch one. On a graph of x(t), the slope at 
any point is vx. On a graph of vx(t), the slope at any 
point is ax, and the area between the graph and the 
time axis during any time interval is the displacement 
Δx during that time interval. If vx is negative, the 

Master the Concepts continued

 displacement is also negative, so we must count the 
area as negative when it is below the time axis. Slopes 
and areas on graphs have units based on the units of 
the quantities being graphed. On a graph of ax(t), the 
area under the curve is Δvx, the change in vx during 
that time interval.

 ∙ Essential relationships for constant acceleration prob-
lems: if ax is constant during the entire time interval Δt 
from ti until a later time tf = ti + Δt,
 Δvx = vfx − vix = ax Δt (2-10)

 Δx =
1
2

 (vfx + vix)Δt (2-12)

 Δx = vix Δt +
1
2

 ax(Δt)2 (2-14)

 v2
fx − v2

ix = 2ax Δx (2-18)
  These same relationships hold for position, velocity, and 

acceleration along the y-axis if ay is constant.

vfx

vx

vix

vix

ti tf t

Δvx = ax Δt

Δt

 ∙ An object in free fall has a constant downward 
acceleration. The magnitude of the acceleration g varies 
a little from place to place near Earth’s surface. A typical 
value is g = 9.80 m/s2. The acceleration is downward, 
regardless of whether the object is moving up, moving 
down, or is instantaneously at rest. At the highest point, 
the vertical component of velocity is zero but the 
acceleration is not zero.

Conceptual Questions

 1. Explain how these quantities differ: distance traveled, 
displacement, and displacement magnitude.

 2. Explain the difference between speed and velocity.
 3. On a graph of vx versus time, what quantity does the 

area under the graph represent?
 4. On a graph of vx versus time, what quantity does the 

slope of the graph represent?
 5. On a graph of ax versus time, what quantity does the 

area under the graph represent?

 6. On a graph of x versus time, what quantity does the 
slope of the graph represent?

 7. What is the relationship between average velocity and 
instantaneous velocity? An object can have different 
instantaneous velocities at different times. Can the same 
object have different average velocities? Explain.

 8. Can the velocity of an object be zero and the accelera-
tion be nonzero at the same time? Explain.

 9. You are bicycling along a straight north-south road. Let 
the x-axis point north. Describe your motion in each of 
the following cases. Example: ax > 0 and vx > 0 means 
you are moving north and speeding up. (a) ax > 0 and 

vx

tt1 t2

Δx = area
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vx < 0. (b) ax = 0 and vx < 0. (c) ax < 0 and vx = 0. 
(d) ax < 0 and vx < 0. (e) Based on your answers, explain 
why it is not a good idea to use the expression “negative 
acceleration” to mean slowing down.

 10. When a coin is tossed straight up, what can you say 
about its velocity and acceleration at the highest point of 
its motion?

 11. You throw a ball up with initial speed vi, and when it 
reaches its high point at height h, you throw another ball 
into the air with the same initial speed vi. Will the two 
balls cross at half the height h, more than half, or less 
than half? Explain.

Multiple-Choice Questions

 1. A ball is thrown straight up into the air. Ignore air 
resistance. While the ball is in the air its acceleration

 (a) increases.
 (b) is zero.
 (c) remains constant.
 (d) decreases on the way up and increases on the way 

down.
 (e) changes direction.
 2. Which car has a westward acceleration?
 (a) a car traveling westward at constant speed
 (b) a car traveling eastward and speeding up
 (c) a car traveling westward and slowing down
 (d) a car traveling eastward and slowing down
 (e) a car starting from rest and moving toward the east

Questions 3 and 4. A toy rocket is propelled straight upward 
from the ground and reaches a height H. After an elapsed 
time Δt, measured from the time the rocket was first fired 
off, the rocket has fallen back down to the ground, landing at 
the same spot from which it was launched.
 Answer choices:

 (a) zero  (b) 2 

H

Δt

 (c) 
H

Δt
  (d) 

1
2

 
H

Δt

 3. What is the magnitude of the average velocity of the 
rocket during this time?

 4. What is the average speed of the rocket during this time?

 5. A leopard starts from rest at t = 0 and runs in a straight 
line with a constant acceleration until t = 3.0 s. 
The distance covered by the leopard between t = 1.0 s 
and t = 2.0 s is

 (a) the same as the distance covered during the first 
second.

 (b) twice the distance covered during the first second.
 (c) three times the distance covered during the first 

second.
 (d) four times the distance covered during the first second.

Questions 6–15.  A jogger is exercising along a long, 
straight road that runs north-south. She starts out heading 
north. Her motion is described by the following graph  
of vx(t).

t (min)

0 10 30

–2

0

vx
(m/s)

2

4

6

20

A

B
C D

E F

G

H

Multiple-Choice	Questions	6–15

 6. What is the displacement of the jogger from t = 18.0 min 
to t = 24.0 min?

 (a) 720 m, south (b) 720 m, north
 (c) 2160 m, south (d) 3600 m, north

 7. What is the displacement of the jogger for the entire 
30.0 min?

 (a) 3120 m, south (b) 2400 m, north
 (c) 2400 m, south (d) 3840 m, north

 8. What is the total distance traveled by the jogger in  
30.0 min?

 (a) 3840 m (b) 2340 m (c) 2400 m (d) 3600 m

 9. What is the average velocity of the jogger during the 
30.0 min?

 (a) 1.3 m/s, north (b) 1.7 m/s, north
 (c) 2.1 m/s, north (d) 2.9 m/s, north

 10. What is the average speed of the jogger for the 
30 min?

 (a) 1.4 m/s (b) 1.7 m/s (c) 2.1 m/s (d) 2.9 m/s

 11. In what direction is she running at time t = 20 min?
 (a) south (b) north (c) not enough information

 12. In which region of the graph is ax positive?
 (a) A to B (b) C to D (c) E to F (d) G to H

 13. In which region is ax negative?
 (a) A to B (b) C to D (c) E to F (d) G to H

 14. In which region is the velocity directed to the south?
 (a) A to B (b) C to D (c) E to F (d) G to H

 15. What distance does the jogger travel during the first 
10.0 min (t = 0 to 10.0 min)?

 (a) 8.5 m (b) 510 m (c) 900 m (d) 1020 m
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 16. The following figure shows four graphs of x versus time. 
Which graph shows a constant, positive, nonzero 
velocity?

(a) (b) (c) (d)

Multiple-Choice	Questions	16–20

 3. A runner, jogging along a straight-line path, starts at a 
position 60 m east of a milestone marker and heads 
west. After a short time interval he is 20 m west of the 
mile marker. Choose east to be the positive x-direction. 
(a) What is the runner’s displacement from his starting 
point? (b) What is his displacement from the milestone? 
(c) The runner then turns around and heads east. If at a 
later time the runner is 140 m east of the milestone, 
what is his displacement from the starting point at this 
time? (d) What is the total distance traveled from the 
starting point if the runner stops at the final position 
listed in part (c)?

 4. At 3:00 p.m. a car is located 20 km south of its starting 
point. One hour later it is 96 km farther south. After two 
more hours, it is 12 km south of the original starting 
point. (a) What is the displacement of the car between 
3:00 p.m. and 6:00 p.m.? (b) What is the displacement of 
the car from the starting point to the location at 
4:00  p.m.? (c) What is the displacement of the car 
between 4:00 p.m. and 6:00 p.m.?

2.2 Velocity: Rate of Change of Position
 5. For the train of Example 2.2, find the average veloc-

ity between 3:14 p.m. when the train is at 3 km east of 
the origin and 3:28 p.m. when it is 10 km east of the 
origin.

 6. A cyclist travels 10.0 km east in a time of 11 min 40 s. 
What is his average velocity in meters per second?

 7.  One of the fastest known animals is the Indian 
spine-tailed swift. If a swift flies 3.2 km due north in a 
time of 32.8 s, what is its average velocity? Express 
your answer in both m/s and mi/h.

 8. Jason drives due west with a speed of 35.0 mi/h for 
30.0 min, continues in the same direction with a speed 
of 60.0 mi/h for 2.00 h, and then drives still farther west 
at 25.0 mi/h for 10.0 min. What is Jason’s average veloc-
ity for the entire trip? Sketch a motion diagram at 10 min 
intervals.

 9. Two cars, a Porsche Boxster convertible and a Toyota 
Scion xB, are traveling at constant speeds in the same 
direction, although the Boxster is 186 m behind the 
Scion. The speed of the Boxster is 24.4 m/s and the 
speed of the Scion is 18.6 m/s. Sketch graphs of x(t) for 
the two cars on the same axes. How much time does it 
take for the Boxster to catch the Scion? [Hint: What 
must be true about the displacement of the two cars 
when they meet?]

 10. Speedometer readings are obtained and graphed as a car 
skids to a stop along a straight-line path. How far does 
the car move between t = 0 and t = 16 s? Sketch a 
motion diagram showing the position of the car at 2 s 
intervals and sketch a graph of x(t).

Questions 17–20. The four graphs show vx versus time.
 17. Which graph shows a constant velocity?
 18. Which graph shows ax constant and positive?
 19. Which graph shows ax constant and negative?
 20. Which graph shows a changing ax that is always 

positive?

Questions 21–30. Each row of the table describes an object 
moving along the x-axis. Based on the information given in 
two of the columns, choose the correct entry for the other 
columns. The question number is in parentheses.

Sign of vx Sign of ax

Moving in  
what direction?

Change in  
speed

? (21) + ? (22) increasing
− 0 ? (23) ? (24)
+ ? (25) ? (26) decreasing

? (27) ? (28) −x not changing
− + ? (29) ? (30)

Problems

  Combination conceptual/quantitative problem
  Biological or medical application
  Challenging problem
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

2.1 Position and Displacement
 1. A displacement of 32 cm east is followed by displace-

ments of 48 cm east and then 64 cm west. What is the 
total displacement?

 2. A squirrel is trying to locate some nuts he buried for the 
winter. He moves 4.0 m to the right of a stone and digs 
unsuccessfully. Then he moves 1.0 m to the left of his 
hole, changes his mind, and moves 6.5 m to the right of 
that position and digs a second hole. No luck. Then he 
moves 8.3 m to the left and digs again. He finds a nut at 
last. What is the squirrel’s total displacement from its 
starting point?
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t (s)0
0 4 8 12 162 6 10 14

5
10
15
20
25

vx
(m/s)

Problems	10	and	36

Problems 11–14. A bicycle is moving along a straight line. 
The graph shows its position from the starting point as a 
function of time. Consider the 1 s time intervals 0–1 s, 1–2 s, 
and so on.
 11. Rank the time intervals in order of increasing displace-

ment, from largest negative to largest positive.

 12. Rank the time intervals in order of increasing speed.

 13. Rank the time intervals in order of decreasing velocity 
vx, from largest positive to largest negative.

 14. How far does the object move from t = 0 to t = 3 s?

t (s)0 2 4 61 3 5
0

40

30

20

10

x (m)

Problems	11–14

 15. A ball thrown by a pitcher on a women’s softball team is 
timed at 65.0 mi/h. The distance from the pitching 
rubber to home plate is 43.0 ft. In Major League Base-
ball the corresponding distance is 60.5 ft. If the batter in 
the softball game and the batter in the baseball game are 
to have equal times to react to the pitch, with what speed 
must the baseball be thrown? Assume the ball travels 
with a constant velocity. [Hint: There is no need to con-
vert units; set up a ratio.]

 16. A graph is plotted of the vertical velocity vy of an 
elevator versus time. The y-axis points up. (a) How high 
is the elevator above the starting point (t = 0) after 20 s 
has elapsed? (b) When is the elevator at its highest 
location above the starting point? (c) Describe the 
motion in words. (d) Sketch a graph of y(t).

t (s)

vy
(m/s)

40 8 12 16 20

0

2

–2

Problems	16	and	30

 17. A motor scooter travels east at a speed of 12 m/s. The 
driver then reverses direction and heads west at 15 m/s. 
What is the change in velocity of the scooter? Give 
magnitude and direction.

 18.  To pass a physical fitness test, Massimo must run 
1000 m at an average rate of 4.0 m/s. He runs the first 
900 m in 250 s. Is it possible for Massimo to pass the 
test? If so, how fast must he run the last 100 m to pass 
the test? Explain.

 19. The graph shows x(t) for a skater traveling along the 
x-axis. (a) What is vav,x for the interval from t = 0 to 
t = 4.0 s? (b) From t = 0 to t = 5.0 s?

 20. The graph shows x(t) for a skater traveling along the 
x-axis. What is vx at t = 2.0 s?

 21. The graph shows x(t) for an object traveling along the 
x-axis. Plot vx as a function of time for this object from 
t = 0 to t = 8 s.

t (s)40 8
0

4

8
vx (m/s)
OR
x (m)

Problems	19–22	and	29

 22. The graph shows vx in meters per second versus t in 
seconds for a skateboard moving along the x-axis. How 
far does the board move between t = 3.00 s and t = 8.00 s? 
Sketch a motion diagram and a graph of x(t) for the 
same time interval.

 23. A chipmunk, trying to cross a road, first moves 80 cm to 
the right, then 30 cm to the left, then 90 cm to the right, 
and finally 310 cm to the left. (a) What is the chip-
munk’s total displacement? (b) If the elapsed time was 
18 s, what was the chipmunk’s average speed? (c) What 
was its average velocity?
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 24. Rita Jeptoo of Kenya was the first female finisher in the 
110th Boston Marathon. She ran the first 10.0 km in a 
time of 0.5689 h. Assume the race course to be along a 
straight line. (a) What was her average speed during the 
first 10.0 km segment of the race? (b) She completed the 
entire race, a distance of 42.195 km, in a time of 2.3939 h. 
What was her average speed for the race?

 25. A relay race is run along a straight-line track of length 
300.0 m running south to north. The first runner starts at 
the south end of the track and passes the baton to a 
teammate at the north end of the track. The second run-
ner races back to the start line and passes the baton to a 
third runner who races 100.0 m northward to the finish 
line. The magnitudes of the average velocities of the 
first, second, and third runners during their parts of the 
race are 7.30 m/s, 7.20 m/s, and 7.80 m/s, respectively. 
What is the average velocity of the baton for the entire 
race? [Hint: You will need to find the time spent by each 
runner in completing her portion of the race.]

 26. Using Fig. 2.8, estimate the train’s maximum speed.

2.3 Acceleration: Rate of Change of Velocity
 27.  One of the fastest land animals of North America 

is  the pronghorn antelope. If a pronghorn antelope 
 accelerates from rest in a straight line with a constant 
acceleration of 1.7 m/s2, how much time does it take for 
the antelope to reach a speed of 22 m/s?

 28. If a car traveling at 28 m/s is brought to a full stop in 
4.0  s after the brakes are applied, find the average 
acceleration during braking.

 29. The graph with Problem 19 shows vx(t) for a skateboard 
moving along the x-axis. Rank the times t = 0.5 s, 1.5 s, 
2.5 s, 3.5 s, 4.5 s, and 5.5 s, in order of the magnitude of 
the acceleration, from largest to smallest.

 30. Sketch the acceleration of the elevator in Problem 16 as 
a function of time.

 31. An airplane starts from rest; 8.0 s later it reaches its 
takeoff speed of 35 m/s. What is the average accelera-
tion of the airplane during this time?

 32. In each motion diagram, the dots are labeled with the 
“frame” number (frame 1 is the first position of the 
object). Choose the x-axis pointing to the right. For each 
diagram, sketch graphs of x(t), vx(t), and ax(t) and 
describe the motion in words.

+x

1

6

1, 7 2, 6 3, 5 4

5 4 3 2 1

2 3 4 5 6

21 3 4 5 6
(a)

(b)

(c)

(d)

 33. An automobile is traveling along a straight road head-
ing to the southeast at 24 m/s when the driver sees a 
deer begin to cross the road ahead of her. She steps on 
the brake and brings the car to a complete stop in an 
elapsed time of 8.0 s. A data recording device, trig-
gered by the sudden braking action, records the follow-
ing velocities and times as the car slows. Let the 
positive x-axis be directed to the southeast. Plot a graph 
of vx versus t and find (a) the average acceleration as the 
car comes to a stop and (b) the instantaneous accelera-
tion at t = 2.0 s.

vx (m/s) 24 17.3 12.0 8.7 6.0 3.5 2.0 0.75 0
t (s) 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

 34. Draw a motion diagram and sketch graphs of x(t), vx(t), 
and ax(t) for a sprinter running a short race on a straight 
track, from just before the start of the race until the 
sprinter has stopped after finishing the race.

 35. (a) In Fig. 2.16, what is the instantaneous acceleration 
of the sports car of Example 2.5 at the time of 14 s from 
the start? (b) What is the displacement of the car from  
t = 12.0 s to t = 16.0 s? (c) What is the average velocity 
of the car in the 4.0 s time interval from 12.0 s to 16.0 s?

 36. The graph with Problem 10 shows speedometer read-
ings as a car skids to a stop on a straight roadway. What 
is the magnitude of the acceleration at t = 7.0 s? Sketch 
a graph of ax(t).

 37. The figure shows a plot of vx(t) for a car traveling in a 
straight line. (a) What is aav,x between t = 6 s and 
t = 11 s? (b) What is vav,x for the same time interval? 
(c) What is vav,x for the interval t = 0 to t = 20 s? (d) What 
is the increase in the car’s speed between 10 s and 15 s? 
(e) How far does the car travel from time t = 10 s to time 
t = 15 s?

t (s)0 5 10 15 20

20

15

10

5

0

vx (m/s)

Problems	37	and	38

 38. Sketch a graph of ax(t) for the car in Problem 37.
 39. The graph shows vx versus t for an object moving along 

the x-axis. (a) What is ax at t = 11 s? (b) What is ax at 
t = 3 s? (c) Sketch a graph of ax(t). (d) How far does the 
object travel from t = 12 s to t = 14 s?
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 46. A train is traveling south at 24.0 m/s when the brakes 
are applied. It slows down with constant acceleration to 
a speed of 6.00 m/s in a time of 9.00 s. (a) Draw a graph 
of vx versus t for a 12 s interval (starting 2 s before the 
brakes are applied and ending 1 s after the brakes are 
released). Let the x-axis point to the north. (b) What is 
the acceleration of the train during the 9.00 s interval? 
(c) How far does the train travel during the 9.00 s?

 47.  An airplane starts from rest and moves forward with a 
constant acceleration of magnitude 5.00 m/s2 along a run-
way that is 250 m long. (a) How long does it take the 
plane to reach a speed of 46.0 m/s? (b) How far along the 
runway has the plane moved when it reaches 46.0 m/s?

 48. A car is speeding up and has an instantaneous velocity 
of 1.0 m/s in the +x-direction when a stopwatch reads 
10.0 s. It has a constant acceleration of 2.0 m/s2 in the 
+x-direction. (a) What is the speed when the stopwatch 
reads 12.0 s? (b) How far does the car move between 
t = 10.0 s and t = 12.0 s?

 49. You are driving your car along a country road at a speed 
of 27.0 m/s. As you come over the crest of a hill, you 
notice a farm tractor 25.0 m ahead of you on the road, 
moving in the same direction as you at a speed of 
10.0  m/s. You immediately slam on your brakes and 
slow down with a constant acceleration of magnitude 
7.00 m/s2. Will you hit the tractor before you stop? How 
far will you travel before you stop or collide with the 
tractor? If you stop, how far is the tractor in front of you 
when you finally stop?

 50.  A typical sneeze expels material at a maximum 
speed of 44 m/s. Suppose the material begins inside the 
nose at rest, 2.0 cm from the nostrils. It has a constant 
acceleration for the first 0.25 cm and then moves at 
constant velocity for the remainder of the distance. 
(a) What is the acceleration as it moves the first 0.25 cm? 
(b) How long does it take to move the 2.0 cm distance in 
the nose? (c) Sketch a graph of vx(t).

 51. A train is traveling along a straight, level track at 
26.8 m/s. Suddenly the engineer sees a truck stalled on 
the tracks 184 m ahead. If the maximum possible 
braking acceleration has magnitude 1.52 m/s2, can the 
train be stopped in time?

 52. In a cathode ray tube in an old TV, electrons are acceler-
ated from rest with a constant acceleration of magnitude 
7.03 × 1013 m/s2 during the first 2.0 cm of the tube’s 
length; then they move at essentially constant velocity 
another 45 cm before hitting the screen. (a) Find the 
speed of the electrons when they hit the screen. (b) How 
long does it take them to travel the length of the tube?

 53. The graph is of vx versus t for an object moving along 
the x-axis. Sketch a motion diagram between t = 9.0 s 
and t = 13.0 s and describe the motion in words. How 
far does the object move between t = 9.0 s and t = 13.0 s? 
Solve using two methods: a graphical analysis and an 
algebraic solution.
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 40. (a) Using Fig. 2.15, estimate Damon’s acceleration at 
t = 2.0 s. (b) Estimate his average velocity between t = 0 
and t = 10.0 s.

2.4 Visualizing Motion Along a Line with 
Constant Acceleration; 2.5 Kinematic Equations 
for Motion Along a Line with Constant 
Acceleration
 41. Four objects move to the right with constant accelera-

tion. Rank the motion diagrams in order of the magnitude 
of the acceleration, from greatest to least. The time 
interval between dots is the same in each diagram.

(b)
(c)
(d)

(a)

 42.  A toboggan is sliding in a straight line down a 
snowy slope. The table shows the speed of the toboggan 
at various times during its trip. (a) Make a graph of the 
speed as a function of time. (b) Judging by the graph, is 
it plausible that the toboggan’s acceleration is constant? 
If so, what is the acceleration?

 Time Elapsed, t (s) Speed of Toboggan, v (m/s)
 0 0
 1.14 2.8
 1.62 3.9
 2.29 5.6
 2.80 6.8

 43.  A pilot without special training or equipment can 
tolerate a horizontal acceleration of up to about 9g for a 
short period of time (about a minute) without losing 
consciousness. (a) How long would it take a supersonic 
jet in horizontal flight to accelerate from 200 m/s to 
700 m/s at an acceleration of 9.0g? (b) How far would 
the jet travel during this time?

 44. The St. Charles streetcar in New Orleans starts from 
rest and has a constant acceleration of 1.20 m/s2 for 
12.0 s. (a) Draw a graph of vx versus t. (b) How far has 
the train traveled at the end of the 12.0 s? (c) What is 
the speed of the train at the end of the 12.0 s? (d) Draw 
a motion diagram, showing the streetcar’s position at 
2.0 s intervals.

 45. An airplane lands and starts down the runway with a 
southwest velocity of 55 m/s. What constant accelera-
tion allows it to come to a stop in 1.0 km? Sketch a 
graph of vx(t).
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 54. The graph is of vx versus t for an object moving along 
the x-axis. Sketch a motion diagram between t = 5.0 s 
and t = 9.0 s and describe the motion in words. What is 
the acceleration between t = 5.0 s and t = 9.0 s?
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Problems	53–54

 55. A train, traveling at a constant speed of 22 m/s, comes to an 
incline with a constant slope. While going up the incline, 
the train slows down with a constant acceleration of mag-
nitude 1.4 m/s2. (a) Draw a graph of vx versus t where the 
x-axis points up the incline. (b) What is the speed of the 
train after 8.0 s on the incline? (c) How far has the train 
traveled up the incline after 8.0 s? (d) Draw a motion 
diagram, showing the train’s position at 2.0 s intervals.

2.6 Free Fall
In the problems, please assume the free-fall acceleration 
g = 9.80 m/s2 unless a different value is given in the problem 
statement. Ignore air resistance.

 56. A brick is thrown vertically upward with an initial speed 
of 3.00 m/s from the roof of a building. If the building is 
78.4 m tall, how much time passes before the brick 
lands on the ground?

 57. A penny is dropped from the observation deck of the 
Empire State building (369 m above ground). With what 
velocity would it strike the ground if air resistance were 
negligible?

 58. (a) How long does it take for a golf ball to fall from rest 
for a distance of 12.0 m? (b) How far would the ball fall 
in twice that time?

 59. Grant jumps 1.3 m straight up into the air to slam-dunk 
a basketball into the net. With what speed did he leave 
the floor?

 60. During a walk on the Moon, an astronaut accidentally drops 
his camera over a 20.0 m cliff. It leaves his hands with zero 
speed, and after 2.0 s it has attained a velocity of 3.3 m/s 
downward. How far has the camera fallen after 4.0 s?

 61. Glenda drops a coin from ear level down a wishing well. 
The coin falls a distance of 7.00 m before it strikes the 
water. If the speed of sound is 343 m/s, how long after 
Glenda releases the coin will she hear a splash?

 62. A stone is launched straight up by a slingshot. Its initial 
speed is 19.6 m/s and the stone is 1.50 m above the 
ground when launched. (a) How high above the ground 
does the stone rise? (b) How much time elapses before 
the stone hits the ground?

 63. A 55 kg lead ball is dropped from the leaning tower of 
Pisa. The tower is 55 m high. (a) How far does the ball fall 
in the first 3.0 s of flight? (b) What is the speed of the ball 
after it has traveled 2.5 m downward? (c) What is the 
speed of the ball 3.0 s after it is released?

 64.  A balloonist, riding in the basket of a hot air balloon 
that is rising vertically with a constant velocity of 
10.0 m/s, releases a sandbag when the balloon is 40.8 m 
above the ground. What is the bag’s speed when it hits 
the ground?

 65.  Superman is standing 120 m horizontally away from 
Lois Lane. A villain throws a rock vertically downward 
with a speed of 2.8 m/s from 14.0 m directly above Lois. 
(a) If Superman is to intervene and catch the rock just 
before it hits Lois, what should be his minimum constant 
acceleration? (b) How fast will Superman be traveling 
when he reaches Lois?

 66. An apple, starting from rest, falls from a tree branch 
2.0  m above the ground. When it hits the ground, its 
speed is vf. At what distance below the branch is the 
speed of the apple 0.50vf?

 67.  You drop a stone into a deep well and hear it hit the 
bottom 3.20 s later. This is the time it takes for the stone 
to fall to the bottom of the well, plus the time it takes 
for  the sound of the stone hitting the bottom to reach 
you. Sound travels about 343 m/s in air. How deep is 
the well?

Collaborative Problems

 68.  A rocket engine can accelerate a rocket launched 
from rest vertically up with an acceleration of 20.0 m/s2. 
However, after 50.0 s of flight the engine fails. Ignore 
air resistance. (a) What is the rocket’s altitude when the 
engine fails? (b) When does it reach its maximum 
height? (c) What is the maximum height reached? [Hint: 
A graphical solution may be easiest.] (d) What is the 
velocity of the rocket just before it hits the ground?

 69. An unmarked police car starts from rest just as a 
speeding car passes at a speed of v. If the police car 
speeds up with a constant acceleration of magnitude a, 
what is the speed of the police car when it catches up to 
the speeder, who does not realize she is being pursued 
and does not vary her speed?

 70.  Find the point of no return for an airport runway 
1.50 mi in length if a jet plane can speed up at 10.0 ft/s2 
and slow down at 7.00 ft/s2. The point of no return is the 
point where the pilot can no longer abort the takeoff 
without running out of runway. How much time is avail-
able from the start of the motion to decide on a course 
of action?

 71.  A student, looking toward his fourth-floor dormitory 
window, sees a flowerpot with nasturtiums (originally 
on a window sill above) pass his 1.0 m high window in 
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 77. A rocket is launched from rest. After 8.0 min, it is 160 km 
above Earth’s surface and is moving at a speed of 7.6 km/s. 
Assuming the rocket moves up in a straight line, what are 
its (a) average velocity and (b) average acceleration?

 78. A streetcar named Desire travels between two stations 
0.60 km apart. Leaving the first station, it accelerates for 
10.0 s at 1.0 m/s2 and then travels at a constant speed until 
it is near the second station, when it brakes at 2.0 m/s2 in 
order to stop at the station. Sketch a graph of vx(t). How 
long did this trip take? [Hint: What’s the average velocity?]

 79. A stone is thrown vertically downward from the roof of 
a building. It passes a window 16.0 m below the roof 
with a speed of 25.0 m/s. It lands on the ground 3.00 s 
after it was thrown. What was (a) the initial velocity of 
the stone and (b) how tall is the building?

 80. A car traveling at 29 m/s (65 mi/h) runs into a bridge abut-
ment after the driver falls asleep at the wheel. (a) If the 
driver is wearing a seat belt and comes to rest within a 
1.0 m distance, what is his acceleration (assumed constant)? 
(b) A passenger who isn’t wearing a seat belt is thrown 
into the windshield and comes to a stop in a distance of 
10.0 cm. What is the acceleration of the passenger?

 81. To pass a physical fitness test, Marcella must run 
1.00 km at an average speed of 3.33 m/s. She runs the 
first 0.500 km at an average of 4.20 m/s. (a) How much 
time does she have to run the remaining 0.500 km? 
(b) What should be her average speed over the last 500 m 
in order to finish with an overall average speed of  
3.33 m/s?

 82. At 3:00 p.m., a bank robber is spotted driving north on 
I-15 at milepost 126. His speed is 112.0 mi/h. At 
3:37 p.m., he is spotted at milepost 185 doing 105.0 mi/h. 
During this time interval, what are the bank robber’s 
displacement, average velocity, and average accelera-
tion? (Assume a straight highway.)

 83.   The graph shows the vertical velocity vy of a 
bouncing ball as a function of time. The y-axis points 
up. Answer these questions based on the data in the 
graph. (a) At what time does the ball reach its maximum 
height? (b) For how long is the ball in contact with the 
floor? (c) What is the maximum height of the ball? 
(d) What is the acceleration of the ball while in the air? 
(e) What is the average acceleration of the ball while in 
contact with the floor?
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0.051 s. The distance between floors in the dormitory is 
4.0 m. From a window on which floor did the flowerpot 
fall?

 72.   An elevator starts at rest on the ninth floor. At 
t = 0, a passenger pushes a button to go to another floor. 
The graph for this problem shows the acceleration ay of 
the elevator as a function of time. Let the y-axis point 
upward. (a) Has the passenger gone to a higher or lower 
floor? (b) Sketch a graph of the velocity vy of the elevator 
versus time. (c) Sketch a qualitative graph of the posi-
tion y of the elevator versus time.
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Comprehensive Problems

In the problems, please assume the free-fall acceleration 
g = 9.80 m/s2 unless a different value is given in the problem 
statement. Ignore air resistance.
 73. (a) If a freestyle swimmer traveled 1500 m in a time of  

14 min 53 s, how fast was his average speed? (b) If the pool 
was rectangular and 50 m in length, how does the speed you 
found compare with his sustained swimming speed of 1.54 m/s 
during one length of the pool after he had been swimming 
for 10 min? What might account for the difference?

 74. While passing a slower car on the highway, you 
accelerate uniformly from 17.4 m/s to 27.3 m/s in a time 
of 10.0 s. (a) How far do you travel during this time? 
(b) What is your acceleration magnitude?

 75.   Fish don’t move as fast as you might think. A 
small trout has a top swimming speed of only about 
2 m/s, which is about the speed of a brisk walk (for a 
human, not a fish!). It may seem to move faster because 
it is capable of large accelerations—it can dart about, 
changing its speed or direction very quickly. If a trout 
starts from rest and accelerates to 2.0 m/s in 0.050 s, 
what is the trout’s average acceleration?

 76.  A cheetah can accelerate from rest to 24 m/s in 
2.0  s. Assuming the acceleration is constant over the 
time interval, (a) what is the magnitude of the accelera-
tion of the cheetah? (b) What is the distance traveled by 
the cheetah in these 2.0 s? (c) A runner can accelerate 
from rest to 6.0 m/s in the same time, 2.0 s. What is the 
magnitude of the acceleration of the runner? By what 
factor is the cheetah’s average acceleration magnitude 
greater than that of the runner?
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 84.  A motorcycle is speeding on a straight, level high-
way at constant speed. At t = 0, the motorcycle passes a 
police car that is initially at rest. The officer gives chase, 
but the motorcyclist doesn’t notice and keeps moving at 
constant speed. The graph shows vx(t) for both. (a) When 
are the motorcycle and police car moving at the same 
speed? (b) At t = 16 s, has the police car caught up with 
the speeder? Explain.
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 85.  The graph shows the position x of a switch engine in 
a rail yard as a function of time t. At which of the labeled 
times t0 to t7 is (a) ax < 0, (b) ax = 0, (c) ax > 0, (d) vx = 0, 
(e) the speed decreasing?

x

t0 t1

t3 t5t4

t2 t6 t7

t

 86.  In the human nervous system, signals are 
transmitted along neurons as action potentials that 
travel at speeds of up to 100 m/s. (An action potential 
is a traveling influx of sodium ions through the mem-
brane of a neuron.) The signal is passed from one neu-
ron to another by the release of neurotransmitters in 
the synapse. Suppose someone steps on your toe. The 
pain signal travels along a 1.00 m long sensory neuron 
to the spinal column, across a synapse to a second 
1.00 m long neuron, and across a second synapse to 
the brain. Suppose that the synapses are each 100 nm 
wide, that it takes 0.10 ms for the signal to cross each 
synapse, and that the action potentials travel at 100.0 m/s. 
(a) At what average speed does the signal cross a syn-
apse? (b) How long does it take the signal to reach the 
brain? (c) What is the average speed of propagation of 
the signal?

Answers to Practice Problems

2.1 3.8 m east
2.2  vav,x = Δx/Δt = (−36 km)/(28 min)

= −1.29 km/min = −77 km/h
The average velocity is 77 km/h in the −x-direction (west).
2.3 About 100 to 110 km/h in the +x-direction (east)
2.4 The velocity is increasing in magnitude, so the accelera-
tion is in the same direction as the velocity (the −x-direction). 
Thus, ax is negative; the acceleration is in the −x-direction.

   
6 5 4 3 2 1

2.5 A tangent line at t = 14.0 s intersects the axes at 
approximately (t, vx) = (0, 35 m/s) and at (t, vx) = (17 s, 
60 m/s). The acceleration is the slope of this tangent line:

ax = (60 m/s − 35 m/s)/(17 s − 0) = 1.5 m/s2

2.6 (a) Δx = vix Δt + 1
2ax (Δt)2

   = 0 + 1
2 × 360 000 m/s2 × (0.40 × 10−3 s)2

  = 2.9 cm
(b)  Δvx = ax Δt = 360 000 m/s2 × 0.40 × 10−3 s = 140 m/s 

With vix = 0, vfx = 140 m/s.
2.7 Δx = 1

2ax(Δt)2 = 2.0 m
2.8 Set the velocities equal: visx + asxt = vibx + abxt. Solving 
for t yields

t =
vibx − visx

asx − abx
=

4.00 km/s
0.800 km/s2 = 5.00 s

At that time, vsx = vbx = 4.00 km/s (in the +x-direction). If 
the two graphs in Figure 2.22 are superposed, this is the 
point where the graph lines intersect.
2.9 From subproblem 1, solving Δx21 = v1xt2 + 1

2a1xt
2
2 

yields t2 = 10.0 s. From subproblem 2, solving  
v3x = v2x + a2x(t3 − t2) yields t3 − t2 = 10.0 s. Then 
t3 = 20 s; it takes 20 s to reach the buoy.
2.10 (a) From release to the top of flight, 
Δy = (v2

y − v2
iy)/(2ay) = −(8.6 m/s)2/(−19.6 m/s2) = 3.8 m.

(b) With an initial velocity of zero, −44.1 m = Δy = −1
2gt2 

and t = √−2 Δy/g = 3.00 s.

Answers to Checkpoints

2.1 No. The magnitude of the displacement is the shortest 
distance between two points. The distance traveled can be 
greater than or equal to the displacement, depending on the 
path taken. In Example 2.1 the displacement is 2.9 km to the 
west, and the distance traveled is 11.5 km.
2.2A Yes. Average speed is the distance traveled divided by 
the time interval in moving from point A to point B. Average 
velocity is the displacement from point A to point B divided 
by the same time interval. The magnitude of the displacement 
is the shortest possible distance from A to B. Thus, the average 
velocity magnitude is less than or equal to the average speed.
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2.2B The cart is moving to the right at constant speed because 
the distance from one “frame” to the next stays the same.

t (s)
x (

m
)

2.2C The slope of the x(t) graph represents the value of vx. 
The slope begins at zero, increases to a maximum around 
t = 18.5 min, and then decreases back to zero. The motion 
diagram shows dots closely spaced when the speed is low 
and widely spaced where it is high.

t (min)

vx

Graph of vx (t)

14 15 16 17 18 19 20 21 22 23

Motion diagram for the train
from t = 14 min to t = 23 min.

x

2.3 The slope of the tangent to a graph of vx versus time is 
the instantaneous acceleration ax at the time.
2.4 Yes; between 2 s and 3 s, the red cart’s velocity compo-
nent vx increases from 1.4 m/s to 1.6 m/s while the blue cart’s 
decreases from 1.6 m/s to 1.4 m/s, so they must be equal 
sometime during that interval.
2.5 Only if the plane’s acceleration is constant must its 
average velocity be 470 km/h west. If its acceleration is not 
constant, the average velocity is not necessarily 470 km/h 
west. To find the average velocity, we would divide the 
plane’s displacement by the time interval.
2.6 Yes. If you throw a ball upward, it is in free fall as soon 
as it loses contact with your hand.
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3
Concepts & Skills to Review

•	 math skill:	trigonometric	
functions—sine,	cosine,	
and	tangent	(Appendix A.7)

•	 math skill: Pythagorean	
theorem	(Appendix	A.6)

•	 position,	displacement,	
velocity,	and	acceleration	
(Sections	2.1–2.3)

•	 average	and	
instantaneous	quantities	
(Sections	2.2–2.3)

•	 motion	along	a	line	with	
constant	acceleration	
(Sections	2.4–2.6)

•	 math skill:	direct	and	
inverse	proportions	
(Appendix	A.5)

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Lunchtime for a 
Gull (Example 
3.6, Problem 103)

∙ Jumping locusts and 
snow leopards 
(Problems 59, 101)

∙ Spitting archer fish 
(Problem 62)

∙ Seed dispersal 
(Problem 64)

∙ Acceleration in a 
centrifuge (Problem 105)

∙ Fish ladders (Problem 111)

©Edgar Feliz/Shutterstock

A	 gull	 scoops	 up	 a	 clam	 and	 takes	 it	 high	 above	 the	 ground.	 While	
flying	 parallel	 to	 the	 ground,	 the	 gull	 lets	 go	 of	 the	 clam.	 The	 clam	
lands	 on	 a	 rock	 below	 and	 cracks	 open.	 Then	 the	 gull	 alights	 and	
enjoys	 lunch.	 A	 beachcomber	on	 the	beach	 sees	 the	 clam	 fall	 along	
a	 parabolic	 path,	 just	 as	 a	 projectile	 would.	Why	 does	 the	 clam	 not	
drop	straight	down?	What	does	 the	path	of	 the	 falling	clam	 look	 like	
to	 the	gull?
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3.1 GRAPHICAL ADDITION AND SUBTRACTION OF VECTORS

Chapter 2 introduced the quantities position, displacement, velocity, and acceleration 
to describe motion along a line—that is, motion in one dimension of space. To 
describe motion in more than one dimension, we need a full treatment of vector addi-
tion and subtraction because position, displacement, velocity, and acceleration are 
vectors. (Other vectors you will study in this book include force, momentum, angular 
momentum, torque, and the electric and magnetic fields.)

Vectors and Scalars All vectors have a direction in space as well as a magnitude. 
The direction of any vector is always a physical direction in space such as up, down, 
north, or 35° south of west.

Vector quantities are usually drawn as arrows pointing in the direction of the 
vector; the length of the arrow is proportional to the magnitude of the vector. By 
contrast, a scalar quantity can have magnitude, algebraic sign (positive or negative), 
and units, but not a direction in space. It wouldn’t make sense to draw an arrow to 
represent a scalar such as mass!

In this book, an arrow over a boldface symbol indicates a vector quantity ( r→). 
(Some books use boldface without the arrow or the arrow without boldface.) When 
writing by hand, always draw an arrow over a vector symbol to distinguish it from 
a scalar. When the symbol for a vector is written without the arrow and in italics 
rather than boldface (r), it stands for the magnitude of the vector (which is a scalar). 
Absolute value bars are also used to stand for the magnitude of a vector, so r = ∣r→∣. 
The magnitude of a vector may have units and is never negative; it can be positive 
or zero.

CONNECTION:

Vector quantities must be 
added and subtracted accord- 
ing to special rules that take 
their directions into account. 
All vector quantities follow 
the same rules of addition 
and subtraction.

Conceptual Example 3.1

 Body Temperature

Normal body temperature is 37°C. An adult with the flu 
might have a body temperature of around 39°C. Is tempera-
ture a vector quantity or a scalar quantity?

Strategy If a quantity is a vector, it must have both a mag-
nitude and a physical direction in space.

Solution and Discussion Does temperature have a direc-
tion? A temperature in Fahrenheit (°F) or Celsius (°C) can be 
above or below zero—is that a direction? No. A vector must 
have a physical direction in space. It does not make sense to 
say that the body temperature of a patient is “38.4°C in the 
southwest direction.” “The patient’s temperature is up 1.4°C 
today,” means that it has increased, not that it is pointing 
vertically upward. Temperature is a scalar. If we need to 

subtract temperatures to find the change in temperature, we 
subtract them like ordinary numbers. If the patient’s tem-
perature changes from 38.4°C to 37.7°C, the temperature 
change is

ΔT = Tfinal − Tinitial = 37.7°C − 38.4°C = −0.7°C

We define the change in a quantity as the final value minus 
the original value—not as the larger value minus the 
smaller—so a decrease is a negative change.

Conceptual Practice Problem 3.1 Bank Balance

When you deposit a paycheck, the balance of your checking 
account “goes up.” When you pay a bill, it “goes down.” Is 
the balance of your account a vector quantity?

When scalars are added or subtracted, they do so in the usual way: 3 kg of water 
plus 2 kg of water is equal to 5 kg of water. Adding or subtracting vectors is different. 
Vectors follow rules of addition and subtraction that take into account the directions 
of the vectors as well as their magnitudes. Whenever you need to add or subtract 
quantities, check whether they are vectors. If so, be sure to add or subtract them cor-
rectly as vectors. Do not just add or subtract their magnitudes. A plus sign (+) 
between vector quantities indicates vector addition, not ordinary addition. An equals 
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sign (=) between vector quantities means that the vectors are identical in magnitude 
and direction, not simply that their magnitudes are equal.

Graphical Vector Addition The sum of two or more vectors is called the resultant. 
We start with a graphical method to help develop your intuition. To add two vectors 
graphically, first draw an arrow to represent one of them (Fig. 3.1a). It does not matter 
in what order vectors are added:

 A
→

+ B
→

= B
→

+ A
→

 (3-1)

The arrow points in the direction of the vector and its length is proportional to the mag-
nitude of the vector. It doesn’t matter where you start drawing the arrow. The value of a 
vector is not changed by moving it as long as its direction and magnitude are not changed.

Now draw the second vector arrow starting where the first ends. In other words, 
place the “tail” of the second arrow at the “tip” of the first (Fig 3.1b). Finally, draw 
an arrow starting from the tail of the first and ending at the tip of the second. This 
arrow represents the sum of the two vectors (Fig. 3.1c). Caution: A common error is 
to draw the sum from the tip of the second to the tail of the first (Fig. 3.1d). If the 
lengths and directions of the vectors are drawn accurately to scale, using a ruler and 
a protractor, then the length and direction of the sum can be determined with the ruler 
and protractor. To add more than two vectors, continue drawing them tip to tail. The 
sum of two or more vectors is called the resultant.

Vector Subtraction To subtract a vector is to add its opposite (a vector with the 
same magnitude but opposite direction):

 r→f − r→i = r→f + (−r→i)  (3-2)

Multiplying a vector by the scalar −1 reverses the vector’s direction while leaving its 
magnitude unchanged, so −r→i = −1 × r→i is a vector equal in magnitude and opposite 
in direction to r→i. When the symbol Δ is used with a vector quantity, it always rep-
resents vector subtraction.

Using the Cardinal Directions of the Compass Any direction in the horizontal 
plane can be specified by giving an angle with respect to north, south, east, or west. 
For example, the direction of the vector in Fig. 3.2 is “20° north of east,” which means 
that the vector makes a 20° angle with the east direction and is on the north (rather 
than the south) side of east. The same direction could be described as “70° east of 
north,” although it is customary to use the smaller angle. Northeast means “45° north 
of east” or, equivalently, “45° east of north.”

Position and Displacement

The position r→ of an object can be represented as a vector arrow drawn from the 
origin to the location of the object (Fig. 3.3). Its magnitude is the distance from the 

A A

B
A B+

(a) (c)

A

B
A B; the+

(d)

A

B

(b)

This is not

direction is
wrong.

Tail of B
Tip of A

Figure 3.1 Adding two vectors graphically. (a) Draw one vector arrow. (b) Draw 
the second, starting where the first arrow ended (“tip to tail”). (c) The sum of the 
two is represented by an arrow drawn from the start of the first to the end of the 
second. (d) Be careful to avoid this common mistake.

Figure 3.2 The direction of 
this vector is 20° north of east 
(20° N of E).

20°
N

S

EW

Figure 3.3 The position 
vector r→ is drawn starting from 
the origin of the coordinate 
system and ending at the 
object’s location.

y

xOrigin

r Location
of object
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origin. The displacement is literally the change in position (the final position vector 
minus the initial position vector):

Displacement

 Δr→ = r→f − r→i (3-3)

Figure 3.4 shows the graphical subtraction of two position vectors to illustrate the 
displacement for a trip from Killarney to Cork. This same procedure is used to subtract 
any kind of vector quantity (velocity, acceleration, etc.). Note that the order matters:

 B
→

− A
→

= −(A
→

− B
→

) (3-4)

Successive Displacements Can Be Added as Vectors As in Example 2.1, the 
total displacement for a trip with several parts is the vector sum of the displacements 
for each part of the trip because

 r→3 − r→1 = ( r→3 − r→2) + ( r→2 − r→1)  (3-5)

Note that position vectors are subtracted to find the displacement, whereas successive 
displacements are added to find the total displacement. Example 3.2 explores this idea 
further.

Figure 3.4 (a) Two position vectors, r→i and r→f, drawn from an arbitrary origin to 
the starting point (Killarney) and to the ending point (Cork) of a trip. The final posi-
tion vector minus the initial position vector is the displacement Δr→, drawn from the 
tip of r→i to the tip of r→f. (b) Adding −r→i + r→f gives the same result for Δr→.

Killarney

Origin

ri

rf

(a)

Δr = rf – ri

Killarney

Cork

–ri

(b)

rf

Δr = –ri + rf

Origin

Cork

and the ruler is used to draw them with the correct lengths. 
Then the length and direction of the sum can be determined 
with the ruler and protractor.

Example 3.2

An Irish Adventure (1)

On a trip from Killarney to Cork, Charlotte and Shona drive 
27° west of south for 18 km to Kenmare, then directly south 
for 17 km to Glengariff, and then finally 13° north of east for 
48 km to Cork. Find the displacement vector for the entire 
trip by adding the three displacements graphically.

Strategy To add the displacement vectors, place the tail 
of each successive vector at the tip of the preceding vector. 
The value of a vector is not changed by moving it as long as 
its direction and magnitude are not changed, so a vector can 
be drawn starting at any point. The sum of the three displace-
ments is then drawn from the tail of the first vector to the tip 
of the last vector. To add vectors graphically and get an ac-
curate result, we use a ruler and a protractor. The protractor 
is used to draw the vector arrows in the correct directions 

Blarney castle.
©Oliver Benn/Getty Images

continued on next page
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Solution Let’s call the four positions r→1 (Killarney), r→2 
(Kenmare), r→3 (Glengariff), and r→4 (Cork). The displace-
ment for the whole trip is r→4 − r→1. The problem gives the 
displacements for the three parts of the trip; let’s call them  
A
→

= r→2 − r→1 = 18 km, 27° west of south; B
→

= r→3 − r→2 = 
17 km, south; and C

→
= r4 − r3 = 48 km, 13° north of east. 

The sum of these three displacements is the total displace-
ment because

A
→

+ B
→

+ C
→

= ( r→2 − r→1) + ( r→3 − r→2) + ( r→4 − r→3)
= r→4 − r→1

Next we choose a convenient scale for the lengths of the 
vector arrows. Here we choose to represent 1 km as an arrow 
length of 0.2 cm, so the length of the vector arrow for A

→
 

should be

18 km ×
0.2 cm
1 km

= 3.6 cm

Similarly, the arrows for B
→

 and C
→

 should be 3.4 cm and 
9.6 cm long, respectively.

After drawing the three vector arrows tip to tail, the 
arrow from the tail of the first vector to the tip of the last 
vector represents the sum (Fig. 3.5). This arrow is measured 
to have length 8.9 cm and its direction is 30° south of east. 
The total displacement has magnitude

8.9 cm ×
1 km

0.2 cm
= 44.5 km

Rounding to two significant figures, the total displacement 
A
→

+ B
→

+ C
→

 has magnitude 45 km and is directed 30° south 
of east.

Discussion Note that the answer includes both the magni-
tude and direction of the displacement. If a homework or exam 
question has you calculate a vector quantity such as position or 
velocity, don’t forget to specify the direction as well as the 
magnitude in your answer. One without the other is incomplete.

Example 3.2 continued

Although the magnitude and direction of a position 
vector depends on the choice of origin, the magnitude and 
direction of a displacement (change of position) does not 
depend on the choice of origin.

The total distance traveled by Charlotte and Shona is 
18 km + 17 km + 48 km = 83 km, which is not equal to the 
magnitude of the total displacement. Finding the total dis-
tance involves adding three scalars, while finding the total 
displacement involves adding three vectors. The magnitude 
of the total displacement is the straight-line distance from 
Killarney to Cork.

Practice Problem 3.2 A Traveling Executive

An executive flies from Kansas City to Chicago (displace-
ment = 400 mi in the direction 30° north of east) and then 
from Chicago to Tulsa (600 mi, 45° south of west). Add the 
two displacements graphically to find the total displacement 
from Kansas City to Tulsa.

Figure 3.5
Graphical addition of the displacement vectors for the trip 
from Killarney to Cork via Kenmare and Glengariff. The 
gridlines on the graph paper are 1 cm apart.
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A
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3.2 VECTOR ADDITION AND SUBTRACTION USING 
COMPONENTS

Components of a Vector

Any vector can be expressed as the sum of vectors parallel to the x-, y-, and (if needed) 
z-axes. The x-, y-, and z-components of a vector indicate the magnitude and direction 
of the three vectors along the three perpendicular axes. The sign of a component 
indicates the direction along that axis. The x-, y-, and z-components of vector A

→
 are 

written with subscripts as follows: Ax, Ay, and Az. One exception to this otherwise 
consistent notation is that the x-, y-, and z-components of a position vector r→ are 
usually written x, y, and z (instead of rx, ry, and rz). For now we will deal only with 
vectors in the xy-plane.
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The x-component of a position vector r→ is x, the x-coordinate. For all other 
vectors, the x-component is designated by a subscript x. For example, the x-component 
of a velocity vector v→ is written vx. Components of vectors have magnitude, units, 
and an algebraic sign. The sign indicates the direction: a positive x-component 
indicates the direction of the positive x-axis, while a negative x-component indicates 
the opposite direction (the negative x-axis).

Finding Components The process of finding the components of a vector is called 
resolving the vector into its components. Before resolving a vector into components, 
we must choose a coordinate system (the directions of the x- and y-axes). Consider 
the velocity vector v→ in Fig. 3.6, which has magnitude 9.4 m/s and is directed 58° 
below the +x-axis. We can think of v→ as the sum of two vectors, one parallel to the 
x-axis and the other parallel to the y-axis. The magnitudes of these two vectors are 
the magnitudes (absolute values) of the x- and y-components of v→. We can find the 
magnitudes of the components using the right triangle in Fig. 3.6 and the trigonomet-
ric functions in Fig. 3.7. The length of the arrow represents the magnitude of the 
vector (v = 9.4 m/s), so

cos 58° =
adjacent

hypotenuse
=

∣vx∣
v
  and  sin 58° =

opposite
hypotenuse

=
∣vy∣
v

 (3-6)

Now we must determine the correct algebraic sign for each of the components. 
From Fig. 3.6, the vector along the x-axis points in the positive x-direction and the 
vector along the y-axis points in the negative y-direction, so in this case,

 vx = +v cos 58° = 5.0 m/s  and  vy = −v sin 58° = −8.0 m/s (3-7)

Using the right triangle in Fig. 3.8 gives the same values for the x- and y-components 
of v→ since cos 32° = sin 58° and sin 32° = cos 58°.

Problem-Solving Strategy: Finding the x- and y-Components of a 
Vector from its Magnitude and Direction

 1. Draw a right triangle with the vector as the hypotenuse and the other two 
sides parallel to the x- and y-axes.

 2. Determine one of the unknown angles in the triangle.
 3. Use trigonometric functions to find the magnitudes of the components. 

Make sure your calculator is in “degree mode” to evaluate trigonometric 
functions of angles in degrees and “radian mode” for angles in radians.

 4. Determine the correct algebraic sign for each component.

Sometimes a vector is written as a list of its components in order, separated by 
a comma, inside parentheses. The velocity vector of Fig. 3.6 can be written: 
v→ = (5.0 N, −8.0 N).

Finding Magnitude and Direction We must also know how to reverse the process 
to find a vector’s magnitude and direction from its component.

Problem-Solving Strategy: Finding the Magnitude and Direction of 
a Vector A

→
 from its x- and y-Components

 1. Sketch the vector on a set of x- and y-axes in the correct quadrant, according 
to the signs of the components.

 2. Draw a right triangle with the vector as the hypotenuse and the other two 
sides parallel to the x- and y-axes.

Figure 3.6 Resolving a 
velocity vector v→ into x- and 
y-components by drawing a 
right triangle with the vector 
arrow as the hypotenuse and 
the sides parallel to the x- and 
y-axes. Here, vx = v cos 58° 
and vy = −v sin 58°.

vy

vx

v

x

y

58°

Figure 3.7 Review of the 
trigonometric functions 
(see Appendix A.7 for more 
information).

θ

ϕ = 90° – θ

ϕ

90°
b

c

a

Right triangle

______________sin θ  = = = cos ϕ

= sin ϕ

= cot ϕ

hypotenuse
side opposite ∠θ _

c
b

______________cos θ  = =hypotenuse
side adjacent ∠θ _

c
a

______________tan θ  = =side adjacent ∠θ
side opposite ∠θ _

a
b

Figure 3.8 Resolving the 
velocity vector into components 
using a different right triangle. 
Note that the vector arrow is 
still the hypotenuse, and the 
sides are still parallel to the 
x- and y-axes.

32°

x

y

vy

vx

v

continued on next page
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 3. In the right triangle, decide which of the unknown angles you want to 
determine.

 4. Use the inverse tangent function to find the angle. The lengths of the sides 
of the triangle represent ∣ Ax ∣ and ∣ Ay ∣. If θ is opposite the side parallel to 
the x-axis, then tan θ = opposite/adjacent = ∣ Ax/Ay ∣. If θ is opposite the side 
parallel to the y-axis, then tan θ = opposite/adjacent = ∣ Ay/Ax ∣. If your 
calculator is in “degree mode,” then the result of the inverse tangent 
operation will be in degrees. [In general, the inverse tangent has two 
possible values between 0 and 360° because tan α = tan(α + 180°). However, 
when the inverse tangent is used to find one of the angles in a right tri-
angle, the result can never be greater than 90°, so the value the calculator 
returns is the one you want.]

 5. Interpret the angle: specify whether it is the angle below the horizontal, or 
the angle west of south, or the angle clockwise from the negative y-axis, 
and so forth.

 6. Use the Pythagorean theorem (see Table A.1) to find the magnitude of the 
vector.

 A = √A2
x + A2

y  (3-8)

Suppose we knew the components of the velocity vector in Fig. 3.6, but not the 
magnitude and direction. Let us find the angle θ between v→ and the +x-axis:

 θ = tan−1 
opposite
adjacent

= tan−1 
∣vy∣
∣vx∣

= tan−1 
8.0 m/s
5.0 m/s

= 58° (3-9)

From the Pythagorean theorem, the magnitude of v→ is

 v = √v2
x + v2

y = √(+5.0 m/s)2 + (−8.0 m/s)2 = 9.4 m/s (3-10)

Adding Vectors Using Components

It is generally easier and more accurate to add vectors algebraically rather than graph-
ically. The algebraic method relies on adding the components of the vectors. Remem-
ber that each vector is thought of as the sum of vectors parallel to the axes (Fig. 3.9a). 
When adding vectors, we can add them in any order and group them as we please. 
So we can sum the x-components to find the x-component of the sum (Fig. 3.9b) and 
then do the same with the y-components (Fig. 3.9c):

 C
→

= A
→

+ B
→
 if and only if Cx = Ax + Bx and Cy = Ay + By (3-11)

Figure 3.9 (a) C
→

= A
→

+ B
→

, shown graphically with the x- and y-components of 
each vector illustrated. (b) Cx = Ax + Bx; (c) Cy = Ay + By. This illustrates the fact 
that vector addition can be done by components.

Cx

AxBx

A
B

Cx

Cy

By

Ay

Cy

By

Ay

AxBx

(a) (c)(b)

C A B= +
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Estimation Using Graphical Addition Even when using the component method 
to add vectors, the graphical method is an important first step. A rough sketch of 
vector addition, even one made without carefully measuring the lengths or the angles, 
has important benefits. Sketching the vectors makes it much easier to get the signs of 
the components correct. The graphical addition also serves as a check on the answer—
it provides an estimate of the magnitude and direction of the sum, which can be used 
to check the algebraic answer. Graphical addition gives you a mental picture of what 
is going on and an intuitive feel for the algebraic calculations.

CHECKPOINT 3.2A

Two	displacements	A
→
	and	B

→
	have	x-	and	y-components	as	follows:	Ax	=	+3.0 km,	

Ay	=	−6.0	km,	Bx	=	−8.5	km,	By	=	−1.2	km.	The	total	displacement	is	C
→

= A
→

+ B
→
.	

What	are	 the	x-	 and	y-components	of	C
→
?

Choosing x- and y-Axes

A problem can be made easier to solve with a good choice of axes. We can choose 
any direction we want for the x- and y-axes, as long as they are perpendicular to one 
another. Three common choices are

∙ x-axis horizontal and y-axis vertical, when the vectors all lie in a vertical plane;
∙ x-axis east and y-axis north, when the vectors all lie in a horizontal plane; and
∙ x-axis parallel to an inclined surface and y-axis perpendicular to it.

using components, we first choose directions for the x- and 
y-axes. Then we find the x- and y-components of the three 
displacements by drawing right triangles with the vector as 
the hypotenuse and the sides parallel to the x- and y-axes 
(Fig. 3.7). Adding the x- or y-components of the three dis-
placements gives the x- or y-component of the total displace-
ment. Finally, from the components we find the magnitude 
and direction of the total displacement.

Example 3.3

An Irish Adventure (2)

In the trip of Example 3.2, Charlotte and Shona drive 27° west 
of south for 18 km to Kenmare, then directly south for 17 km 
to Glengariff, and then finally 13° north of east for 48 km to 
Cork. Use the component method to find the magnitude and 
direction of the displacement vector for the entire trip.

Strategy As before, let’s call the three successive dis-
placements A

→
, B

→
, and C

→
 respectively. To add the vectors 

continued on next page

In Eq. (3-11), Ax + Bx represents ordinary addition since the signs of the components 
carry the direction information.

Problem-Solving Strategy: Adding Vectors Using Components

 1. Find the x- and y-components of each vector to be added.
 2. Add the x-components (with their algebraic signs) of the vectors to find 

the x-component of the sum. (If the signs are not correct, the sum will not 
be correct.)

 3. Add the y-components (with their algebraic signs) of the vectors to find the 
y-component of the sum.

 4. If necessary, use the x- and y-components of the sum to find the magnitude 
and direction of the sum.
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CHECKPOINT 3.2B

Sketch	 a	 vector	 arrow	 representing	 a	 displacement	with	 x-component	−6.0	m	
and	y-component	+2.0	m.

Unit Vector Notation

The same concept of vector components may be used to write vectors in a compact 
way. The unit vectors x̂ (read aloud as “x hat”), ŷ, and ẑ are defined as vectors of 
magnitude 1 that point in the +x-, +y-, and +z-directions, respectively. (In some 

Solution A good choice is the conventional one: x-axis to 
the east and the y-axis to the north. The first displacement 
(A

→
) is directed 27° west of south. Both of its components 

are negative since west is the −x-direction and south is the 
−y-direction. To find the components, we draw a right 
triangle with the vector as the hypotenuse and the sides 
parallel to the x- and y-axes (Fig. 3.10). Using the right 
triangle in Fig. 3.10, the side of the triangle opposite the 27° 
angle is parallel to the x-axis. The sine function relates the 
opposite side to the hypotenuse:

Ax = −A sin 27° = −18 km × 0.454 = −8.17 km
where A is the magnitude of A

→
. The cosine relates the adja-

cent side to the hypotenuse:
Ay = −A cos 27° = −18 km × 0.891 = −16.0 km

Displacement B
→

 has no x-component since its direction 
is south. Therefore,

Bx = 0 and By = −17 km
The direction of C

→
 is 13° north of east. Both its compo-

nents are positive. From Fig. 3.10, the side of the right 
triangle opposite the 13° angle is parallel to the y-axis, so

Cx = +C cos 13° = +48 km × 0.974 = +46.8 km
Cy = +C sin 13° = +48 km × 0.225 = +10.8 km
Now we sum the x- and y-components separately to find 

the x- and y-components of the total displacement:

Δx = Ax + Bx + Cx

= (−8.17 km) + 0 + 46.8 km = +38.63 km
Δy = Ay + By + Cy

= (−16.0 km) + (−17 km) + 10.8 km = −22.2 km
The magnitude and direction of Δr→ can be found from 

the right triangle in Fig. 3.11. The magnitude is represented 
by the hypotenuse. Using the Pythagorean theorem, we find

Δr = √(Δx)2 + (Δy)2 = √(38.63 km)2 + (−22.2 km)2

= 45 km
The angle θ is found from the inverse tangent of opposite 
over adjacent.

θ = tan−1 
opposite
adjacent

= tan−1 
22.2 km
36.63 km

= 30°

Since +x is east and −y is south, the direction of the dis-
placement is 30° south of east. The magnitude and direction 
of the displacement found using components agree with the 
displacement found graphically in Fig. 3.5.

Discussion Note that the x-component of one displacement 
was found using the sine function while another was found 
using the cosine. The x-component (or the y-component) of the 
vector can be related to either the sine or the cosine, depending 
on which angle in the right triangle is used.

Practice Problem 3.3 Changing the Coordinate Axes

Find the x- and y-components of the displacements for the 
three legs of the trip if the x-axis points south and the y-axis 
points east.

A = 18 km 27°

13°
A Ay

Cy

CxAx

B = 17 km

B

C = 48 km
C

y

x

Figure 3.10
Resolving A

→
, B

→
, and C

→
 into x- and y-components by drawing 

right triangles. The magnitudes of the components are found 
from the trigonometric functions; the signs of the components 
must be determined by comparing the directions to those of the 
positive axes.

38.63 km
y

x

–22.2 km

rΔ

θ

Figure 3.11
Using a right triangle to find the 
magnitude and direction of Δr→. 
The magnitude is calculated 
using the Pythagorean theorem. 
The angle θ is calculated from 
the inverse tangent function.

Example 3.3 continued
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books, you may see them written as î, ĵ, and k̂, respectively.) They are called unit 
vectors because the magnitude of each is the pure number 1—they do not have 
physical units such as kilograms or meters. Any vector A

→
 can be written as the sum 

of three vectors along the coordinate axes:

 A
→

= Axx̂ + Ayŷ + Azẑ (3-12)

Here Ax is the x-component of A
→

 which has physical units and can be positive or nega-
tive. Axx̂ is a vector of magnitude ∣ Ax ∣ directed in the +x-direction if Ax > 0 and in the 
−x-direction if Ax < 0. For example, consider the velocity vector v→ of Fig.  3.8. v→ has 
x-component vx = +5.0 m/s and y-component vy = −8.0 m/s, so v→ = (+5.0 m/s) x̂ +  
(−8.0 m/s)ŷ.

Using unit vector notation is one way to keep track of vector components in vec-
tor addition and subtraction without writing separate equations for each component. 
Adding two vectors in the xy-plane looks like this:
 A

→
1 + A

→
2 = (A1xx̂ + A1yŷ) + (A2xx̂ + A2yŷ)  (3-13)

Regrouping the terms shows that the x-component of the sum is the sum of the 
x-components and likewise for the y-components:
 A

→
1 + A

→
2 = (A1x + A2x)x̂ + (A1y + A2y)ŷ (3-14)

3.3 VELOCITY

The definitions of average velocity, instantaneous velocity, average acceleration, 
and instantaneous acceleration from Chapter 2 still apply when the motion is not 
in a straight line as long as we add and subtract them as vectors. Suppose we 
want to know the instantaneous velocity of a race car at point P as it goes around 
a curved section of a racetrack (Fig. 3.12a). At a slightly later time the race car 
is at point Q. Let r→i be the position of the car at P and r→f be the position at 
point Q.

Average Velocity The displacement Δr→ = r→f − r→i is represented as an arrow 
from P to Q. Alternatively, to subtract r→i from r→f the two vectors can be drawn 
with their tails at the same point. After reversing the direction of r→i to represent 
−r→i (Fig. 3.12b), the arrows are tip to tail and ready to add: Δr→ = r→f + (−r→i) . The 
average velocity during this time interval is the displacement Δr→ divided by the 
time interval:

 v→av =
r→f − r→i

tf − ti
=

Δr→

Δt
 (3-15)

The direction of the average velocity is the direction of the displacement Δr→.

Instantaneous Velocity The instantaneous velocity at P is the limit of the 
average velocity as Δt approaches zero. As we shorten the time interval between 
the initial and final positions by moving point Q closer and closer to P, the 
direction of the displacement vector Δr→ gradually changes, approaching the tan-
gent to the curved path at P (Fig. 3.12c). Expressed in mathematical terminology, 
the instantaneous velocity is the limit of Δr→/Δt  as the time interval approaches 
zero:

Velocity

 v→ = lim
Δt→0

 
Δr→

Δt
 (3-16)

(Δr→ is the change in velocity during a very short time interval Δt)

CONNECTION:

The rate of change of any 
vector quantity Q

→
 is

lim
Δt→0

 
ΔQ

→

Δt
Velocity is the rate of change 
of the position vector, and 
 acceleration is the rate of 
change of the velocity vector.
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average speed =
83 km
1.4 h

= 59 km/h

Therefore, ∣v→av∣ is not equal to the average speed. Further-
more, average velocity is a vector quantity with a direction in 
space, and average speed is a scalar.

Practice Problem 3.4 Average Velocity Versus 
Average Speed

In Example 3.4, ∣v→av∣ was less than the average speed. Can 
∣v→av∣ ever be greater than the average speed? Can ∣v→av∣ ever 
be equal to the average speed? Explain.

Example 3.4

An Irish Adventure (3)

In their trip from Kenmare to Cork via Glengariff, Charlotte 
and Shona travel a total distance of 83 km in 1.4 h. The total 
displacement for the trip is 45 km, 30° south of east. What is 
their average velocity? Contrast it with their average speed, 
defined as the total distance divided by the time interval.

Strategy The average velocity is calculated from the dis-
placement—not from the distance traveled.

Solution The magnitude of the average velocity is

∣v→av∣ =
∣Δr→∣
Δt

=
45 km
1.4 h

= 32 km/h

The average velocity has the same direction as the displacement, 
so v→av = 32 km/h, 30° south of east. The average speed is

(a) (b) (c) (d)

y

rf

v

ri

x

Q

P

P

Q1

Q2

vx

vy

Tangent at P

rf

rf – ri = Δr

Δr

Δr2

Δr1

–ri P

Δr

Figure 3.12 (a) Position vectors for two points on the curve. (b) The displacement 
Δr→ from point P to point Q. (c) As the time interval is decreased, the final point 
moves closer and closer to P; the direction of the displacement Δr→ approaches the 
tangent to the curve at P. (d) Instantaneous velocity can be resolved into components 
along perpendicular axes.

With this definition, the instantaneous velocity at P becomes tangent to the curve 
at P (Fig. 3.12d). Here we are talking about a tangent to the actual path through space, 
not a tangent line on a graph of position versus time. The magnitude of the velocity 
vector is the speed at which the object moves and the direction of the velocity vector 
is the direction of motion.

Component Equations A vector equation is always equivalent to a set of equa-
tions, one for each component. The x- and y-components of the average velocity are

 vav,x =
Δx

Δt
 and vav,y =

Δy

Δt
 (3-17)

The x- and y-components of the instantaneous velocity are

 vx = lim
Δt→0

 
Δx

Δt
  and vy = lim

Δt→0
 
Δy

Δt
 (3-18)

To put Eq. (3-18) into words, the x-component of an object’s velocity is the rate of 
change of its x-coordinate and the y-component of its velocity is the rate of change 
of its y-coordinate.
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3.4 ACCELERATION

The average acceleration a→av is the change in velocity divided by the elapsed time:

 a→av =
v→f − v→i

tf − ti
=

Δv→

Δt
 (3-19)

For motion in a plane, this vector equation is equivalent to two component equations:

 aav,x =
Δvx

Δt
 and aav,y =

Δvy

Δt
 (3-20)

The direction of a→av is the same as the direction of Δv→ (Fig. 3.13).

CHECKPOINT 3.4A

Four	airplanes	are	initially	all	moving	south	at	200	m/s.	Ten	minutes	later,	plane	
A	 is	moving	 south	 at	200	m/s,	 plane	B	 is	moving	 east	 at	200	m/s,	 plane	C	
is	moving	 south	at	300	m/s,	 and	plane	D	 is	moving	north	at	200	m/s.	Rank	
the	 four	 planes	 in	 decreasing	 order	 of	 ∣a→av∣,	 the	 magnitude	 of	 the	 average	
acceleration.

Instantaneous acceleration is the limit of the average acceleration as the time 
interval approaches zero:

Acceleration

 a→ = lim
Δt→0

 
Δv→

Δt
 (3-21)

(Δv→ is the change in velocity during a very short time interval Δt)

In component form,

 ax = lim
Δt→0

 
Δvx

Δt
 and ay = lim

Δt→0
 
Δvy

Δt
 (3-22)

In straight-line motion the acceleration is always along the same line as the 
velocity. For motion in two dimensions, the acceleration vector can make any angle 
with the velocity vector because the velocity vector can change in magnitude, in 
direction, or both. The direction of the acceleration is the direction of the change in 
velocity Δv→ during a very short time interval.

The concept of the acceleration vector is much less intuitive for most people than 
the concept of the velocity vector. Always stop to think: the acceleration vector tells 
you how the velocity vector is changing.

CHECKPOINT 3.4B

An	airplane	is	initially	moving	due	north	at	400	km/h.	After	making	a	slight	course	
correction,	 it	 is	moving	at	the	same	speed	but	 in	a	direction	2.0°	east	of	north.	
Is	 the	plane’s	average	acceleration	during	 this	 time	 interval	 zero?	Explain.

Figure 3.13 Two examples 
to illustrate that the average 
acceleration is always in the 
same direction as the change 
in velocity Δv→ during the same 
time interval.

vΔvf

vi
vΔ

vf

vi

aav

aav

Turning while
keeping speed
constant

Turning while
increasing speed
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Now we subtract the components to find the components of 
Δv→:

Δvx = vfx − vix = (6.91 − 8.94) m/s = −2.03 m/s

and
Δvy = vfy − viy = (1.85 − 0) m/s = +1.85 m/s

To find the magnitude of Δv→, we apply the Pythagorean 
 theorem (Fig. 3.16):

∣Δv→∣2 = (Δvx)2 + (Δvy)2 = (−2.03 m/s)2 + (1.85 m/s)2

 = 7.54 (m/s)2

 ∣Δv→∣ = 2.75 m/s

The angle is found from

tan ϕ =
opposite
adjacent

= ∣ Δvy

Δvx
∣ =

1.85 m/s
2.03 m/s

= 0.9113

ϕ = tan−1 0.9113 = 42.3°

The direction of the change in velocity Δv→ is 42.3° above the 
negative x-axis.

(b) The magnitude of the average acceleration is

∣a→av∣ =
∣Δv→∣
Δt

=
2.75 m/s
120.0 s

= 0.0229 m/s2

The direction of the average acceleration is the same as the 
direction of Δv→: 42.3° above the negative x-axis.

Discussion Checking back with the graphical subtraction 
in Fig. 3.14b, the magnitude of Δv→ appears to be roughly 1

4 
to 1

3 the magnitude of Δv→. Since 1
4 × 8.94 m/s = 2.24 m/s 

and 1
3 × 8.94 m/s = 2.98 m/s, the answer of 2.75 m/s is 

reasonable.
Figure 3.14b also shows the direction of Δv→ to be 

roughly midway between the +y- and −x-axes. We found the 
direction of Δv→ to be 42.3° above the −x-axis and, therefore, 
47.7° from the +y-axis. So the direction we calculated is also 
reasonable based on the graphical subtraction.

Example 3.5

Skating Uphill

An inline skater is traveling 
on a level road with a speed 
of 8.94 m/s; 120.0  s later 
she is climbing a hill with a 
15.0° angle of incline at a 
speed of 7.15 m/s. (a) What 
is the change in her veloc-
ity? (b) What is her average 
acceleration during the 120.0 s time interval?

Strategy The change in velocity is not 8.94 m/s − 7.15 m/s 
= 1.79 m/s. That is the change in speed. The change in 
velocity is found by subtracting the initial velocity vector 
from the final velocity vector. After first making a graphical 
sketch, we use the component method. The average accelera-
tion is the change in velocity divided by the elapsed time.

Solution (a) Figure 3.14a shows the initial and final 
velocity vectors and the slope of the hill. The initial velocity 
is horizontal as the skater skates on level ground. The final 
velocity is 15.0° above the horizontal. To subtract the two 
velocity vectors graphically, we place the tails of the vectors 
together. The change in velocity Δv→ is found by drawing a 
vector arrow from the tip of v→i to the tip of v→f. Judging by 
the graphical subtraction in Fig. 3.14b, the change in velocity 
is roughly at a 45° angle above the −x-axis. Its magnitude is 
smaller than the magnitudes of the initial and final velocity 
vectors—something like 2 to 3 m/s.

The components vfx and vfy can be found from a right 
triangle (Fig. 3.15):

vfx = vf cos θ = 7.15 m/s × 0.9659 = 6.91 m/s
vfy = vf sin θ = 7.15 m/s × 0.2588 = 1.85 m/s

Since vi has only an x-component,

viy = 0 and vix = vi = 8.94 m/s

©Ascent/PKS Media Inc./Getty Images

Figure 3.14
(a) Change in velocity as 
the skater slows going 
uphill and (b) graphical 
subtraction of velocity 
vectors.(b)

vf – vi = Δv

Δv

vi

vf

(a)

vi = 8.94 m/s 
vf = 7.15 m/s 

15.0° vi

vix

vfx

vfy

y

x

vf
θ

y

x

Δvx

Δvy
Δv

ϕ

Figure 3.15
Initial and final velocity vec-
tors resolved into components.

Figure 3.16
Reconstruction of Δv→ from its 
components (not to scale).

continued on next page
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Practice Problem 3.5 Change in Sailboat Velocity

A sailboat named Lorelei is sailing at 12.0 knots (6.17 m/s) 
directly east across the harbor. When a gust of wind comes 
up, the boat changes its direction to 11.0° north of east and 
its speed increases to 14.0 knots (7.20 m/s). [A boat’s speed 
is customarily expressed in knots, which means nautical 

Example 3.5 continued

miles per hour. A nautical mile (6076 ft) is a little longer 
than a statute mile (5280 ft).] (a) What is the magnitude and 
direction of the change in velocity of the sailboat in meters 
per second? (b) If this velocity change occurs during a 2.0 s 
time interval, what is the average acceleration of the sailboat 
during that interval?

CHECKPOINT 3.4C

For	an	object	moving	 in	a	straight	 line,	how	does	the	direction	of	the	accelera-
tion	 vector	compare	with	 that	of	 the	velocity	 vector?

3.5 MOTION IN A PLANE WITH CONSTANT ACCELERATION

If an object moves in the xy-plane with constant acceleration, then both ax and ay 
are constant. By looking separately at the motion along two perpendicular axes, 
the y-direction and the x-direction, each component becomes a one-dimensional 
problem, which we studied in Chapter 2. We can apply any of the constant accel-
eration relationships from Section 2.5 separately to the x-components and to the 
y-components.

It is generally easiest to choose the axes so that the acceleration has only one 
nonzero component. Suppose we choose the axes so that the acceleration is in the 
positive or negative y-direction. Then ax = 0 and vx is constant. With this choice, the 
constant acceleration relationships developed in Section 2.5 become

x-axis: ax = 0 y-axis: constant ay

Δvx = 0   (vx is constant)  Δvy = ay Δt (3-23)
Δx = vx 

Δt Δy = 1
2(vfy + viy)Δt (3-24)

 Δy = viy 
Δt + 1

2ay(Δt)2 (3-25)
 v2

fy − v2
iy = 2ay Δy (3-26)

Why are only two equations shown in the column for the x-axis? The other two are 
redundant when ax = 0.

Note that there is no mixing of components in Eqs. (3-23) through (3-26). Each 
equation pertains either to the x-components or to the y-components; none contains the 
x-component of one vector quantity and the y-component of another. The only quantity 
that appears in both x- and y-component equations is the time interval—a scalar.

Motion of Projectiles

An object in free fall near Earth’s surface has a constant acceleration. As long as air 
resistance is negligible, the constant downward pull of gravity gives the object a 
constant downward acceleration with magnitude g. In Section 2.6 we considered 
objects in free fall, but only when they had no horizontal velocity component, so they 
moved straight up or straight down. Now we consider objects (called projectiles) in 

CONNECTION:

Projectile motion is free fall 
for objects with a nonzero 
horizontal velocity 
component.
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free fall that have a nonzero horizontal velocity component. The motion of a projectile 
takes place in a vertical plane.

Suppose some medieval marauders are attacking a castle. They have a catapult 
that propels large stones into the air to bombard the walls of the castle (Fig. 3.17). 
Picture a stone leaving the catapult with initial velocity v→i. (v→i is the initial velocity 
for the interval during which the stone moves as a projectile. In other words, it is the 
velocity of the stone just as it loses contact with the catapult.) The angle of elevation 
is the angle of the initial velocity above the horizontal. Once the stone is in the air, 
the only force acting on it is the downward gravitational force, provided that the air 
resistance has a negligible effect on the motion. The trajectory (path) of the stone is 
shown in Fig. 3.18. The positive x-axis is chosen in the horizontal direction (to the 
right) and the positive y-axis is upward.

If the initial velocity v→i is at an angle θ above the horizontal, then resolving it 
into components gives

 vix = vi cos θ and viy = vi sin θ (3-27)
 (+y-axis up, θ measured from the horizontal x-axis)

With the y-axis pointing up, ay = −g because the acceleration is downward (in the 
−y-direction). The acceleration has no x-component (ax = 0), so the stone’s horizon-
tal velocity component vx is constant. The vertical velocity component vy changes at 
a constant rate, just as if the stone were propelled straight up with an initial speed of 
viy. The initially positive vy decreases until, at the top of flight, vy = 0. Then the pull 
of gravity makes the projectile fall back downward. During the downward trip, vy is 
still changing at the same constant rate with which it changed on the way up and at 
the top of the path. The acceleration has the same constant value—magnitude and 
direction—for the entire path.

The motion of a projectile when air resistance is negligible is the superposition 
of horizontal motion with constant velocity and vertical motion with constant accel-
eration. The vertical and horizontal motions each proceed independently, as if the 
other motion were not present. In the experiment of Fig. 3.19, one ball was dropped 
and, at the same instant, another was projected horizontally. The photo shows the two 
balls at equally spaced times, just as a motion diagram does. The vertical motion of 
the two is identical; at every instant, the two are at the same height. The fact that they 
have different horizontal motion does not affect their vertical motion. (This statement 
would not be true if air resistance were significant.)

x

viy

vfy

vy

vy
vy = 0

vix
vy

vy

vix

vix

vix

vix

vix

vix

y

Figure 3.18 Motion diagram showing the trajectory of a projectile. The position 
is drawn at equal time intervals. Superimposed are the velocity vectors along with 
their x- and y-components. The horizontal velocity component is constant because 
no horizontal force acts. The vertical component changes due to the downward 
gravitational force.

vi

θ

Figure 3.17 A medieval 
catapult projects a stone into 
the air. The velocity of the 
stone when it loses contact 
with the catapult is v→i.
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EVERYDAY PHYSICS DEMO

Take	two	coins	with	different	masses	 to	a	 room	with	a	high	 table	or	counter-
top.	 Place	 the	 lighter	 one	 at	 the	 edge	 of	 the	 table	 and	 then	 slide	 the	more	
massive	one	so	they	collide.	Listen	for	the	sound	of	the	two	coins	hitting	the	
floor.	 The	 coins	 will	 slide	 off	 the	 table	 with	 different	 horizontal	 velocities	 but	
will	 land	at	 the	same	 time.

y

x

Figure 3.19 Demonstration that, in the absence of air resistance, the vertical 
motion of a projectile is independent of the horizontal motion. At t = 0, one ball is 
dropped (viy = 0 and vix = 0) and the other is projected in the x-direction (viy = 0 
and vix > 0). The vertical positions and velocity components are equal at any 
later time.
© Fouad A. Saad/Shutterstock

 Δy = y − yi = y − 0 = viyt +
1
2

 ayt
2 = 0 +

1
2

 ayt
2 (3-25)

We can solve the first equation for t (t = x/vix) and substitute 
into the second.

y =
1
2

 ay(
x

vix)
2

= (
ay

2v2
ix

)x2

This is the equation of a parabola with A = ay /(2v2
ix), B = 0, 

C = 0.

(b) While it is carried by the gull, the clam has the same 
horizontal velocity as the gull. Once it is released, the clam 
retains that horizontal velocity component because the 
acceleration is vertical.

Discussion If we made a different choice for the origin 
in (a), the path of the clam would still have the same shape 
(parabolic). The equation for y as a function of x would 
still come out in the form of a parabola, y = Ax2 + Bx + C. 
The values of B and C would be different, but this only 
shifts the location of the parabola; it doesn’t change the 
shape.

Example 3.6

 Lunchtime for a Gull

A gull scoops up a clam and takes it high above the ground 
(Fig. 3.20). While flying parallel to the ground, the gull lets 
go of the clam. The clam lands on a rock below and cracks 
open. Then the gull alights and enjoys lunch. (Ignore air 
resistance.) (a) Show that the path of the clam as viewed by 
a beachcomber on the beach is a parabola (i.e., it can be 
described by an equation of the form y = Ax2 + Bx + C). 
(b) Explain why the clam does not drop straight down.

Strategy The clam is a projectile with a constant down-
ward acceleration. Choosing the y-axis up, we can apply 
Eq. (3-25) with ay = −g. We need to find y as a function of x. 
The quantity that appears in both the x- and y-component 
equations is the time, so we plan to start with equations for 
y(t) and x(t) and then eliminate t.

Solution (a) Choose the origin at the point where the clam 
has just been released. Then xi = 0 and yi = 0. Choose ti = 0 
just as the clam is released. Its initial velocity is the same as 
that of the gull, which is horizontal. Therefore, viy = 0. Now 
we find its position at time tf = t:

 Δx = x − xi = x − 0 = vixt (3-24)
continued on next page
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Conceptual Practice Problem 3.6 Throwing Stones

You stand at the edge of a cliff and throw stones horizontally 
into the river below. To double the horizontal displacement 

Example 3.6 continued

of a stone from the cliff to where it lands, by what factor 
must you increase the stone’s initial speed? Ignore air 
 resistance.

Figure 3.20
After digging up a clam, a gull takes it high above the ground and 
drops it to try to crack open the shell.
© Edgar Feliz/Shutterstock

Figure 3.21
The path of the clam after being released is parabolic.

Graphing Projectile Motion Figure 3.22 shows graphs of the x- and y-components 
of the position and velocity of a projectile as functions of time. In this case, the 
projectile is launched above flat ground at t = 0 and returns to the same elevation at 
a later time tf. The y-component of velocity decreases linearly from its initial value; 
the slope of the line is ay = −g. When vy = 0, the projectile is at the apex of its 
trajectory. Then vy continues to decrease at the same rate and is now negative with 
its magnitude getting larger and larger. At tf, when the projectile has returned to its 
original altitude, the y-component of the velocity has the same magnitude as at t = 0 
but with the opposite sign (vy = −viy).
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Figure 3.22 Projectile 
motion: graphs of y, vy, x, and 
vx as functions of time.
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The graph of y(t) indicates that the projectile moves upward, quickly at first and 
then gradually slowing, until it reaches the maximum height. The slope of the tangent 
to the y(t) graph at any particular moment of time is vy at that instant. At the highest 
point of the y(t) graph, the tangent is horizontal and vy = 0. After that, gravity makes 
the projectile start to fall downward. The shape of the graph of y(t) is parabolic, but 
remember that this is y as a function of time, not the trajectory (y as a function of x).

The horizontal velocity is constant, so the graph of vx(t) is a horizontal line. The 
horizontal position x increases uniformly in time because the object is moving with 
a constant vx.

CHECKPOINT 3.5A

When	a	basketball	 is	thrown	in	an	arc	toward	the	net,	what	can	you	say	about	
its	 velocity	and	acceleration	at	 the	highest	point	of	 the	arc?

find tf is to find the time to reach maximum height and then 
double it (see Fig. 3.22). (Other methods include setting 
Δy = 0 or setting vy = −viy.)

Solution (a) First we find the x- and y-components of the 
initial velocity for an angle of elevation θ = 30.0°.

viy = vi sin θ and vix = vi cos θ
The maximum height is the vertical displacement Δy when 
vfy = 0. Since we don’t know the time interval yet, the 
quickest way to solve for Δy is to use Eq. (3-26).

Δy =
v2

fy − v2
iy

2ay

=
0 − (vi sin θ)2

2ay

=
−(50.0 m/s × sin 30.0°)2

2 × (−9.80 m/s2)
= 31.9 m

The maximum height of the projectile is 31.9 m above its 
launch height.

(c) The initial and final heights are the same. Due to this 
symmetry, the time of flight (tf) is twice the time it takes the 

Example 3.7

Attacking the Castle Walls

The catapult used by the marauders hurls a stone with a 
velocity of 50.0 m/s at a 30.0° angle of elevation (Fig. 3.23). 
(a) What is the maximum height reached by the stone? 
(b) What is its range (defined as the horizontal distance traveled 
when the stone returns to its original height)? (c) How long has 
the stone been in the air when it returns to its original height?

Strategy The problem gives both the magnitude and 
direction of the initial velocity of the stone. Ignoring air 
resistance, the stone has a constant downward acceleration 
once it has been launched—until it hits the ground or some 
obstacle. We choose the positive y-axis upward and the posi-
tive x-axis in the direction of horizontal motion of the stone 
(toward the castle). When the stone reaches its maximum 
height, the velocity component in the y-direction is zero 
since the stone goes no higher. When the stone returns to its 
original height, Δy = 0 and vy = −viy. The range can be found 
once the time of flight tf is known—time is the quantity that 
connects the x-component equations to the y-component 
equations. Therefore, we solve (c) before (b). One way to 

viy

vix

Maximum
height

vi

Range

Initial launch height

30.0°

Figure 3.23
A catapult projects a stone into the air in an attack on a castle wall.

continued on next page
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projectile to reach its maximum height. The time to reach the 
maximum height can be found from

vfy = 0 = viy + ay 
Δt

Solving for Δt, we find

Δt =
−viy

ay

The time of flight is

tf = 2Δt = 2 ×
−50.0 m/s ×  sin  30.0°

−9.80 m/s2 = 5.10 s

(b) The range is
Δx = vixtf = (50.0 m/s × cos 30.0°) × 5.10 s = 221 m

Discussion Quick check: using

yf − yi = viy Δt +
1
2

ay(Δt)2

we can check that Δy = 31.9 m when Δt = 1
2 × 5.10 s and that 

Δy = 0 when Δt = 5.10 s. Here we check the first of these:

Example 3.7 continued

Δy = (50.0 m/s sin 30.0°)(2.55 s) +
1
2

 (−9.80 m/s2)(2.55 s)2

= 63.8 m + (−31.9 m) = 31.9 m

which is correct. This is not an independent check, since this 
equation can be derived from the others, but it can reveal 
algebra or calculation errors.

Since we analyze the horizontal motion independently 
from the vertical motion, we start by resolving the given 
initial velocity into x- and y-components. Time is what 
connects the horizontal and vertical motions.

Practice Problem 3.7 Maximum Height for Arrows

Archers have joined in the attack on the castle and are shoot-
ing arrows over the walls. If the angle of elevation for an 
arrow is 45°, find an expression for the maximum height of 
the arrow in terms of vi and g. [Hint: Simplify the expression 
using sin 45° = cos 45° = 1/√2.]

EVERYDAY PHYSICS DEMO

On	a	warm	day,	take	a	garden	hose	(or	squirt	gun)	and	aim	the	nozzle	so	that	
the	 water	 streams	 upward	 at	 an	 angle	 above	 the	 horizontal.	 Set	 the	 nozzle	
for	a	 fast,	narrow	stream	for	best	effect.	Once	the	water	 leaves	the	nozzle,	 it	
becomes	a	projectile	with	a	constant	downward	acceleration	(ignoring	the	small	
effect	 of	 air	 resistance).	 The	 continuous	 stream	 of	 water	 lets	 us	 see	 the	
parabolic	path	easily.	Stand	in	one	place	and	try	aiming	the	nozzle	at	different	
angles	of	elevation	to	 find	an	angle	that	gives	the	maximum	range.	Aim	for	a	
particular	 spot	 on	 the	 ground	 (at	 a	 distance	 less	 than	 the	maximum	 range)	
and	 see	 if	 you	 can	 find	 two	 different	 angles	 of	 elevated	 nozzle	 position	 that	
allow	 the	 stream	 to	 hit	 the	 target	 spot	 (Fig.	 3.24).	 If	 you	 don’t	 have	 a	 hose	
or	squirt	gun	handy,	try	tossing	a	ball	at	different	angles,	with	the	same	initial	
speed	each	 time.
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Figure 3.24 Parabolic trajec-
tories of projectiles launched 
over level ground with the same 
initial speed (vi = 34.3 m/s) at 
five different angles. The ranges 
of projectiles launched at angles 
θ and 90° − θ are the same. 
The maximum range occurs for 
θ = 45°.
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CHECKPOINT 3.5B

Two	 projectiles	 launched	 at	 30°	 and	 at	 60°	 with	 the	 same	 initial	 speed	 will	
land	at	the	same	point	(see	Fig.	3.24).	 If	they	are	launched	simultaneously,	do	
they	 land	at	 the	same	 time?	 If	not,	which	 lands	 first?

3.6 VELOCITY IS RELATIVE; REFERENCE FRAMES

Until now, we have tacitly assumed in most situations that displacements, velocities, 
and accelerations should be measured in a reference frame attached to Earth’s 
surface—that is, using a coordinate system in which the origin is a fixed point relative 
to Earth’s surface and in which the coordinate axes have fixed directions relative to 
Earth’s surface. This choice of reference frame is one of convenience, not necessity. 
The principles of physics are not restricted to one particular choice of reference 
frame; they have the same form in any two reference frames whose relative velocity 
is constant.

Some of the ideas about relativity arose centuries before Einstein’s theory. In the 
fourteenth century, the prevailing view was that the Sun and Moon revolve around a 
fixed Earth. The scholastic philosopher Nicole Oresme (1323–1382) argued instead 
that Earth rotates around its axis. He wrote that the motion of one object can only be 
perceived relative to some other object. Therefore, we don’t notice Earth’s rotation 
because everything around us is moving with us.

Relative Velocity

Suppose Wanda is walking down the aisle of a train moving along the track at a 
constant velocity (Fig. 3.25). Imagine asking, “How fast is Wanda moving?” This 
question is not well defined. Do we mean her speed as measured by Tim, a passenger 
on the train, or her speed as measured by Greg, who is standing on the ground and 
looking into the train as it passes by? The answer to the question “How fast?” depends 
on the observer.

Figure 3.26 shows Wanda walking from one end of the car to the other during a 
time interval Δt. The displacement of Wanda as measured by Tim—her displacement 

CONNECTION:

In Chapter 4, we introduce 
the central idea of relativity: 
that the same principles of 
physics valid in one reference 
frame are also valid in any 
other reference frame that 
moves at constant velocity 
with respect to the first.

Greg

Wanda
TimvWT vTGFigure 3.25 Tim and Greg 

watch Wanda walk down the aisle 
of a train. Wanda’s velocity with 
respect to Tim (or with respect to 
the train) is v→WT; Tim’s velocity 
with respect to Greg (or with 
respect to the ground) is v→TG.

ΔrWG = vWG Δt 

ΔrTG = vTG Δt ΔrWT = vWT Δt 

ti tf = ti + Δt

Figure 3.26 Wanda’s displace-
ment relative to the ground is the 
sum of her displacement relative to 
the train and the displacement of 
the train relative to the ground.
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relative to the train—is Δr→WT = v→WT Δt. During the same time interval, the train’s 
displacement relative to Greg is Δr→TG = v→TG Δt. As measured by Greg, Wanda’s dis-
placement is partly due to her motion relative to the train and partly due to the motion 
of the train relative to the ground. Figure 3.26 shows that Δr→WT + Δr→TG = Δr→WG. 
Dividing by the time interval Δt gives the relationship between the three velocities:
 v→WT + v→TG = v→WG (3-28)

Solving for v→WT, we find that the velocity of Wanda relative to the train is her 
velocity minus the train’s velocity, both measured in the same reference frame.

Relative Velocity

 v→WT = v→WG − v→TG (3-29)

Generalizing Eq. (3-29), we see that the velocity of A relative to B is the vector dif-
ference of the two velocities as measured in a common reference frame. When work-
ing with relative velocities, we sometimes need to change the order of the subscripts, 
which reverses the direction. For example, Tim moves to the right relative to Greg, 
while Greg moves to the left relative to Tim: v→GT = −v→TG.

Applications: Relative Velocities for Pilots and Sailors Relative velocities are 
of enormous practical interest to pilots of aircraft, sailors, and captains of ocean 
freighters. The pilot of an airplane is ultimately concerned with the motion of the 
plane with respect to the ground—the takeoff and landing points are fixed points on 
the ground. However, the controls of the plane (engines, rudder, ailerons, and spoilers) 
affect the motion of the plane with respect to the air. Pilots refer to airspeed, the 
speed of the plane with respect to the air, and groundspeed, the speed of the plane 
with respect to the ground. The course of a plane is the intended direction of its 
motion with respect to the ground, while the heading is the direction of its motion 
with respect to the air. The direction that the nose of the plane is pointing is its 
heading, not its course.

A sailor has to consider three different velocities of the boat: with respect to shore 
(for launching and landing), with respect to the air (for the behavior of the sails), and 
with respect to the water (for the behavior of the rudder). The heading of a boat is 
the direction of its motion with respect to the water, which is not the same as its 
course if there is a current. As for an airplane, the direction that a boat is pointing is 
its heading, not its course.

CHECKPOINT 3.6

In	Fig.	3.25,	 if	the	train	 is	moving	at	18.0	m/s	with	respect	to	the	ground	and	
Wanda	walks	 at	1.5	m/s	with	 respect	 to	 the	 train,	 how	 fast	 is	Wanda	moving	
(a)	with	 respect	 to	Greg	and	 (b)	with	 respect	 to	Tim?

Sailing was one of Einstein’s 
favorite pastimes throughout his life. 
Perhaps he started thinking about 
relativity while out on his sailboat?
© Photo 12/Getty Images

plane is up in the air, the behavior of the wings, control 
surfaces, and so on, depends on how fast the air is rushing 
by; the ground speed is irrelevant. But it is not irrelevant for 
the passengers, who are interested in a displacement relative 
to the ground.

Example 3.8

Flight from Denver to Chicago

An airplane flies from Denver to Chicago (1770 km) in 4.4 h 
when no wind blows. On a day with a tailwind, the plane makes 
the trip in 4.0 h. (a) What is the wind speed? (b) If a headwind 
blows with the same speed, how long does the trip take?

Strategy We assume the plane has the same airspeed—
the same speed relative to the air—in both cases. Once the continued on next page
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Solution Let v→PG and v→PA represent the velocity of the 
plane relative to the ground and the velocity of the plane 
relative to the air, respectively. The wind velocity—the 
velocity of the air relative to the ground—can be written 
v→AG. The three velocities are related by

v→PA = v→PG − v→AG

With no wind,

vPA = vPG =
ΔxPG

Δt
=

1770 km
4.4 h

= 400 km/h

(a) On the day with the tailwind,

vPG =
ΔxPG

Δt
=

1770 km
4.0 h

= 440 km/h

We expect vPA to be the same regardless of whether there is 
a wind or not. Since we are dealing with a tailwind, v→PA and 
v→AG are in the same direction, which we label as the  
+x-direction in Fig. 3.27. Then,

vPAx = vPGx − vAGx

vAGx = vPGx − vPAx

= 440 km/h − 400 km/h = 40 km/h
Since vAGy = 0, the wind speed is vAG = 40 km/h.

Example 3.8 continued

(b) With a 40 km/h headwind, v→PA and v→AG are in opposite 
directions (Fig. 3.28). The velocity of the plane with respect 
to the ground is

vPGx = vPAx + vAGx = 400 km/h + (−40 km/h) = 360 km/h

The ground speed of the plane is 360 km/h and the trip takes

Δt =
ΔxPG

vPG
=

1770 km
360 km/h

= 4.9 h

Discussion Quick check: the trip takes longer with a 
headwind (4.9 h) than with no wind (4.4 h), as we expect.

Practice Problem 3.8 Rowing Across the Bay

Jamil, practicing to get on the crew team at school, rows a 
one-person racing shell to the north shore of the bay for a 
distance of 3.6 km to his friend’s dock. On a day when the 
water is still (no current flowing), it takes him 20 min 
(1200 s) to reach his friend. On another day when a current 
flows southward, it takes him 30 min (1800 s) to row the 
same course. Ignore air resistance. (a) What is the speed of 
the current in meters per second? (b) How long does it take 
Jamil to return home with that same current flowing?

Figure 3.27
Addition of velocity 
vectors in the case of a 
tailwind. Lengths of 
vectors are not to scale.

Figure 3.28
Addition of velocity vectors in the 
case of a headwind. Lengths of 
vectors are not to scale.

vPA (400 km/h)

vPG (440 km/h)

vAG (40 km/h)

x x

vPG (360 km/h)

vPA (400 km/h)

vAG (40 km/h)

Relative Velocities in Two Dimensions The vector equations (3-28) and (3-29) 
apply to situations where the velocities are not all along the same line, as illustrated 
in Example 3.9.

Example 3.9

Rowing Across a River

Jack wants to row directly across a river from the east shore 
to a point on the west shore. The width of the river is 250 m 
and the current flows from north to south at 0.61 m/s. The 
trip takes Jack 4.2 min. In what direction did he head his 
rowboat to follow a course due west across the river? At 
what speed with respect to still water is Jack able to row?

Strategy We start with a sketch of the situation (Fig. 3.29). 
To keep the various velocities straight, we choose subscripts 
as follows: R = rowboat; W = water; S = shore. The velocity 

continued on next page

Path of rowboat
relative to shore

250 m

Not to scale

Shore

EW

S

N

Shore
vWS 

vRS

vRW

vRS is velocity of
 rowboat with
 respect to shore
vRW   is velocity of
 rowboat with
 respect to water

vWS is velocity of
 water with
 respect to shoreWater current

Figure 3.29
Rowing across a river. To go due west across the river, Jack must 
head his boat at some angle upstream (north of west); otherwise 
the current would carry him downstream.
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of the current given is the velocity of the water relative to the 
shore: v→ws = 0.61 m/s, south. The velocity of the rowboat 
relative to shore (v→Rs) is due west. The magnitude of v→RS can 
be found from the displacement relative to shore and the 
time interval, both of which are given. The question asks for 
the magnitude and direction of the velocity of the rowboat 
relative to the water (v→RW). The three velocities are related by
 v→RW = v→RS − v→WS (3-29)

or
 v→RW + v→WS = v→RS (3-28)

To compensate for the current carrying the rowboat south 
with respect to shore, Jack heads (points) the rowboat up-
stream (against the current) at some angle to the north of west.

Solution In a sketch of the vector addition (Fig. 3.30), the 
velocity of the rowboat with respect to the water is at an 
angle θ north of west. With respect to shore, Jack travels 
250 m in 4.2 min, so his speed with respect to shore is

vRS =
250 m

4.2 min × 60 s/min
= 0.992 m/s

We can find the angle at which the rowboat should be 
headed by finding the tangent of the angle between v→RW and 
v→RS:

tan θ =
vWS

vRS
=

0.61 m/s
0.992 m/s

θ = 32°N of W

The speed at which Jack is able to row with respect to 
still water is the magnitude of v→RW. Since v→RS and v→WS are 
perpendicular, the Pythagorean theorem yields

Example 3.9 continued

∣v→RW∣ = √v2
WS + v2

RS = √(0.61 m/s)2 + (0.992 m/s)2

= 1.16 m/s
Jack rows at a speed of 1.16 m/s with respect to the water. 
(This result has three significant figures due to the addition 
inside the square root.)

Discussion If v→RS and v→WS had not been perpendicular, 
we could not have used the Pythagorean theorem in this way. 
Rather, we would use the component method to add the two 
vectors.

If Jack had headed the rowboat directly west, the current 
would have carried him south, so he would have traveled in 
a direction south of west relative to shore. He has to 
compensate by heading upstream at just such an angle that 
his velocity relative to shore is directed west.

Practice Problem 3.9 Heading Straight Across

If Jack were to head straight across the river, in what direc-
tion with respect to shore would he travel? How long would 
it take him to cross? How far downstream would he be 
carried? Assume that he rows at the same speed with respect 
to the water as in Example 3.9.

Figure 3.30
Graphical addition of the velocity vectors: v→RS + v→WS = v→RS

vRW

vRS

vWS

θ

EVERYDAY PHYSICS DEMO

The	next	time	you’re	on	the	escalator	 in	a	department	store,	watch	someone	
on	 the	 neighboring	 escalator	 and	 visualize	 his	 position	 relative to you.	 From	
the	change	 in	his	position	relative	to	you,	what	 is	the	direction	of	his	velocity	
relative to you?	Think	about	his	and	your	velocities	relative	to	the	building	and	
see	 if	Eq.	 (3-29)	supports	 your	conclusion.

At the beginning of this chapter, we asked what the path followed by the falling 
clam looks like as seen by the gull flying through the air. If the gull continues to fly 
at the same horizontal velocity after dropping the clam, it is directly overhead when 
the clam hits the rock because they both have the same constant horizontal component 
of velocity with respect to the ground (Fig. 3.31a). The clam drop illustrates that the 
vertical motion of a projectile (in the absence of air resistance) is independent of the 
horizontal motion. A motion diagram for the clam in the reference frame of the ground 
would look like the object moving straight down in Fig. 3.19; in the reference frame 
of the gull it would look like the object moving on a parabola.

In the gull’s reference frame—that is, using its own position as the origin of the 
coordinate axes—the velocity of the clam just after being released is zero. Therefore, 
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the gull sees the clam fall straight down; it sees the rocks and other objects on the 
beach moving horizontally (Fig. 3.31b). Both observers agree that when the clam hits 
the rocks, the gull is directly overhead. At any instant, if the velocity of the clam with 
respect to the gull is v→CG, the velocity of the gull with respect to the rocks is v→GR, 
and the velocity of the clam with respect to the rocks is v→CR, then v→CG = v→CR − v→GR.

vRR = 0

= gull
= clam
= rocks

G 
C 
R 

(a) (b)

vGG = 0

vCG

vRG

vGR

vCR

vCRx

vCRy

Figure 3.31 Trajectory of the 
clam in two different reference 
frames. (a) Beachcomber view: 
The gull flies along a horizontal 
line while the clam follows a 
parabolic path. (b) Bird’s eye view: 
The gull sees the rocks moving 
while the clam drops straight 
down, landing on the rocks just as 
the rocks move under the clam. 
The relative velocities are labeled 
using subscripts (e.g., v→CG is the 
velocity of the clam with respect 
to the gull). In the beachcomber 
view, the gull and the rock have 
the same nonzero horizontal 
 velocity component; in the bird’s 
eye view, both have zero horizontal 
velocity component.

Master the Concepts

 ∙ Whenever you need to add or subtract quantities, check 
whether they are vectors. Vectors have magnitude and 
direction and are added according to special rules. 
Vectors are added graphically by drawing each vector so 
that its tail is placed at the tip of the previous vector. The 
sum is drawn as a vector arrow from the tail of the first 
vector to the tip of the last. Addition of vectors is 
commutative: A

→
+ B

→
= B

→
+ A

→
.

A

B
A B+

 ∙ Vectors are subtracted by adding the opposite of the 
second vector: A

→
− B

→
= A

→
+ (−B

→
).

 ∙ Addition and subtraction of vectors algebraically using 
components is generally easier and more precise than 
the graphical method. The graphical method is still a 
useful first step to get an approximate answer.

 ∙ Before resolving a vector into components, we must 
first choose a coordinate system (the directions of the 
x- and y-axes). Next, draw a right triangle with the vec-
tor as the hypotenuse and the other two sides parallel to 
the x- and y-axes. Then use the trigonometric functions 
to find the magnitudes of the components. The correct 

algebraic sign must be determined for each component. 
The same triangle can be used to find the magnitude and 
direction of a vector if its components are known.

vy

vx

v

x

y

58°

 ∙ To add vectors algebraically, add their components to 
find the components of the sum:

A
→

+ B
→

= C
→

 if and only if
Ax + Bx = Cx and Ay + By = Cy

 ∙ The x- and y-axes are chosen to make the problem 
easiest to solve. Any choice is valid as long as the two 
are perpendicular. If the direction of the acceleration is 
known, choose x- and y-axes so that the acceleration 
vector is parallel to one of the axes.

 ∙ Position, displacement, velocity, and acceleration are 
vector quantities with both magnitude and direction. 
They must be added and subtracted as vectors.

continued on next page
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 ∙ The equations for position, displacement, average 
velocity, instantaneous velocity, average acceleration, 
and instantaneous acceleration in Chapter 2 apply to 
each perpendicular component of the corresponding 
vector quantities for motion in two or three dimensions.

 ∙ The instantaneous velocity vector is tangent to the path 
of motion.

v

vx

vy

Tangent at P

P

 ∙ The instantaneous acceleration vector does not have to 
be tangent to the path of motion, since velocities can 
change both in direction and in magnitude. The accel-
eration vector tells you how the velocity vector is 
changing.

 ∙ For a projectile or any object moving with constant 
acceleration in the ±y-direction, the motion in the x- and 
y-directions can be treated separately. Since ax = 0, vx is 
constant. Thus, the motion is a superposition of constant 
velocity motion in the x-direction and constant accelera-
tion motion in the y-direction.
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 ∙ The kinematic equations for an object moving in two 
dimensions with constant acceleration along the y-axis are
x-axis: ax = 0 y-axis: constant ay

Δvx = 0 Δvy = ay Δt (3-23)

Δx = vx Δt Δy =
1
2

(vfy + viy)Δt  (3-24)

 Δy = viy Δt +
1
2

ay(Δt)2 (3-25)

 v2
fy − v2

iy = 2ay Δy (3-26)
 ∙ To relate the velocities of objects measured in different 

reference frames, use the vector equation
 v→AB = v→AC − v→BC (3-29)

  where v→AB represents the velocity of A relative to B, 
and so forth.

Master the Concepts continued

Conceptual Questions

 1. If two vectors have the same magnitude, are they neces-
sarily equal? If not, why not? Can two vectors with 
different magnitudes ever be equal?

 2. (a) Is it possible for the sum of two vectors to be smaller 
in magnitude than the magnitude of either vector? (b) Is 
it possible for the magnitude of the sum of two vectors 
to be larger than the sum of the magnitudes of the two 
vectors?

 3. What is the distinction between a vector and a scalar 
quantity? Give two examples of each.

 4. Is it possible for two identical projectiles with identical 
initial speeds, but with two different angles of elevation, 
to land in the same spot? Explain. Ignore air resistance 
and sketch the trajectories.

 5. If the trajectory is parabolic in one reference frame, is it 
always, never, or sometimes parabolic in another refer-
ence frame that moves at constant velocity with respect 
to the first reference frame? If the trajectory can be other 
than parabolic, what else can it be?

 6. You are standing on a balcony overlooking the beach. 
You throw a ball straight up into the air with speed vi 

and throw an identical ball straight down with speed vi. 
Ignoring air resistance, how do the speeds of the balls 
compare just before they hit the ground?

 7. Why is the muzzle of a rifle not aimed directly at the 
center of the target? Why is this more important at 
longer ranges?

 8. If an object is traveling at a constant velocity, is it neces-
sarily traveling in a straight line? Explain.

 9. Can the average speed and the magnitude of the average 
velocity ever be equal? If so, under what circumstances?

 10. Give an example of an object whose acceleration is 
(1) in the same direction as its velocity, (2) opposite its 
velocity, and (3) perpendicular to its velocity.

 11. Name a situation where the speed of an object is con-
stant while the velocity is not.

 12. Tell whether or not each of the following objects has a 
constant velocity and explain your reasoning. (a) A car 
driving around a curve at constant speed on a flat road. 
(b) A car driving straight up a 6° incline at constant 
speed.

 13. Explain how to add two displacement vectors of magni-
tudes 3L and 4L so that the vector sum has magnitude 
(a) L; (b) 7L; (c) 5L.



84 CHAPTER	3 Motion in a Plane

 14. Compare the advantages and disadvantages of the two 
methods of vector addition (graphical and algebraic).

 15. Can the x-component of a vector ever be greater than the 
magnitude of the vector? Explain.

Multiple-Choice Questions

 1. Vector A
→

 in the drawing is equal to
 (a) C

→
+ D

→
. (b) C

→
+ D

→
+ E

→
. (c) C

→
+ F

→
.

 (d) B
→

+ C
→

. (e) B
→

+ F
→

.

CF

AE

DB

Questions	1	and	2

 2. Which sum is not equal to zero?
 (a) C

→
+ D

→
+ E

→
 (b) B

→
+ C

→
+ F

→

 (c) D
→

+ F
→

 (d) A
→

+ B
→

+ F
→

 3. A runner moves along a circular track at a constant 
speed.

 (a) Her acceleration is zero.
 (b) Her velocity is constant.
 (c) Both (a) and (b) are true.
 (d) Both her acceleration and her velocity are changing.
 4. A kicker kicks a football from the 5 yard line to the 

45 yard line (both on the same half of the field). Ignoring 
air resistance, where along the trajectory is the speed of 
the football a minimum?

 (a) at the 5 yard line, just after the football leaves the 
kicker’s foot

 (b) at the 45 yard line, just before the football hits the 
ground

 (c) at the 15 yard line, while the ball is still going higher
 (d) at the 35 yard line, while the ball is coming down
 (e) at the 25 yard line, when the ball is at the top of its 

trajectory
 5. Two balls, identical except for color, are projected hori-

zontally from the roof of a tall building at the same 
instant. The initial speed of the red ball is twice the 
initial speed of the blue ball. Ignoring air resistance,

 (a) the red ball reaches the ground first.
 (b) the blue ball reaches the ground first.
 (c) both balls land at the same instant with different 

speeds.
 (d) both balls land at the same instant with the same 

speed.
 6. A person stands on the roof garden of a tall building 

with one ball in each hand. If the red ball is thrown 
horizontally off the roof and the blue ball is simultane-
ously dropped over the edge, which statement is true?

 (a) Both balls hit the ground at the same time, but the 
red ball has a higher speed just before it strikes the 
ground.

 (b) The blue ball strikes the ground first, but with a 
lower speed than the red ball.

 (c) The red ball strikes the ground first with a higher 
speed than the blue ball.

 (d) Both balls hit the ground at the same time with the 
same speed.

 7. A ball is thrown into the air and follows a parabolic 
trajectory. At the highest point in the trajectory,

 (a) the velocity is zero, but the acceleration is not zero.
 (b) both the velocity and the acceleration are zero.
 (c) the acceleration is zero, but the velocity is not zero.
 (d) neither the acceleration nor the velocity is zero.
 8. A ball is thrown into the air and follows a parabolic tra-

jectory. Point A is the highest point in the trajectory and 
point B is a point as the ball is falling back to the ground. 
Choose the correct relationship between the speeds and 
the magnitudes of the acceleration at the two points.

 (a) vA > vB and aA = aB (b) vA < vB and aA > aB

 (c) vA = vB and aA ≠ aB (d) vA < vB and aA = aB

Questions 9–11.  Two projectiles launched with the same 
initial speed but at different launch angles 30° and 60° 
land at the same spot (see Fig. 3.24). Ignore air resistance. 
Answer choices:
 (a) projectile launched at 30°
 (b) projectile launched at 60°
 (c) They are equal.
 9. Which has the larger horizontal velocity component vx?
 10. Which has a longer time of flight Δt (time interval 

between launch and hitting the ground)?
 11. For which is the product vx Δt larger?

 12. A sailor climbs the mast in a bosun’s chair to make an 
emergency repair while the boat is moving forward at a 
steady 3.0 m/s (5.8 knots). At the top of the mast, he 
drops his wrench. If air resistance is negligible, the 
wrench lands on the deck

 (a) significantly in front of the mast.
 (b) significantly behind the mast.
 (c) at the base of the mast.
 13. A stone is thrown at an angle of 20° below the horizon-

tal from the top of a cliff. Assume no air resistance. One 
second after being thrown, the stone’s acceleration 
makes an angle θ below the horizontal. Which is true?

 (a) θ = 0  (b) θ = 20° (c) 0 < θ < 20°
 (d) 20° < θ < 90° (e) θ = 90°
 14. A stone is thrown at an angle of 20° below the horizon-

tal from the top of a cliff. Assume no air resistance. One 
second after being thrown, the stone’s velocity is at an-
gle θ below the horizontal. Which is true?

 (a) θ = 0  (b) θ = 20° (c) 0 < θ < 20°
 (d) 20° < θ < 90° (e) θ = 90°
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15. A boy plans to cross a river in a rubber raft. The current 
flows from north to south at 1 m/s. In what direction 
should he head to get across the river to the east bank in 
the least amount of time if he is able to paddle the raft at 
1.5 m/s in still water?

 (a) directly to the east
 (b) south of east
 (c) north of east
 (d) The three directions require the same time to cross 

the river.
 16. A boy plans to paddle a rubber raft across a river to the 

east bank while the current flows downriver from north 
to south at 1 m/s. He is able to paddle the raft at 1.5 m/s 
in still water. In what direction should he head the raft to 
go straight east across the river to the opposite bank?

 (a) directly to the east (b) south of east
 (c) north of east (d) north (e) south

Problems

  Combination conceptual/quantitative problem
  Biological or medical application
  Challenging problem
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

3.1 Graphical Addition and Subtraction of Vectors
 1. Displacement vector A

→
 is directed to the west and has 

magnitude 2.56 km. A second displacement vector is 
also directed to the west and has magnitude 7.44 km. 
(a)  What are the magnitude and direction of A

→
+ B

→
? 

(b)  What are the magnitude and direction of A
→

− B
→

? 
(c) What are the magnitude and direction of B

→
− A

→
?

 2. Vector A
→

 is directed along the positive x-axis and has 
magnitude 1.73 units. Vector B

→
 is directed along the 

negative x-axis and has magnitude 1.00 unit. (a) What 
are the magnitude and direction of A

→
+ B

→
? (b) What are 

the magnitude and direction of A
→

− B
→

? (c) What are the 
magnitude and direction of B

→
− A

→
?

 3. Two vectors have magnitudes 3.0 and 4.0. How are the 
directions of the two vectors related if (a) the sum has 
magnitude 7.0, or (b) if the sum has magnitude 5.0? 
(c) What relationship between the directions gives the 
smallest magnitude sum and what is this magnitude?

 4. A runner is practicing on a circular track that is 300 m 
in circumference. From the point farthest to the west on 
the track, he starts off running due north and follows the 
track as it curves around toward the east. (a) If he runs 
halfway around the track and stops at the farthest east-
ern point of the track, what is the distance he traveled? 
(b) What is his displacement?

 5. Two displacement vectors each have magnitude 20 km. 
One is directed 60° above the +x-axis; the other is 

directed 60° below the +x-axis. What is the vector sum 
of these two displacements?

 6. Orville walks 320 m due east. He then continues walk-
ing along a straight line, but in a different direction, and 
stops 200 m northeast of his starting point. How far did 
he walk during the second portion of the trip and in 
what direction?

 7. Rank the vectors A
→

, B
→

, and C
→

 in order of increasing 
magnitude. Explain your reasoning.

C

A

B

Problems	7,	8,	15,	and	17

 8. Vectors A
→

, B
→

, and C
→

 are shown in the figure. Draw 
vectors D

→
 and E

→
, where D

→
= A

→
+ B

→
 and E

→
= A

→
+ C

→
. 

(b) Show that A
→

+ B
→

= B
→

+ A
→

 by graphical means.
 9. What is the vector sum D

→
+ E

→
+ F

→
 if each grid square 

is 2 cm on a side?

D

E

F

EW

S

N

Problems	9,	10,	and	16

10. Rank the vectors D
→

, E
→

, and F
→

 in order of increasing 
magnitude. Explain your reasoning.

 11. Two vectors, each of magnitude 4.0 cm, are directed at 
an angle α below the horizontal, as shown. (The grid 
is 1 cm on a side.) (a) Let C

→
= A

→
+ B

→
. Sketch C

→
 and 

estimate its magnitude. (b) Let D
→

= A
→

− B
→

. Sketch D
→

 
and estimate its magnitude.

4.0 cm4.0 cm
BA

α α

Problems	11,	22,	and	23

 12. Michaela is planning a trip in Ireland from Killarney to 
Cork to visit Blarney Castle. (See Example 3.2.) She 
also wants to visit Mallow, which is located 39 km due 
east of Killarney and 22 km due north of Cork. Draw the 
displacement vectors for the trip when she travels from 
Killarney to Mallow to Cork. (a) What is the magnitude 
of her displacement once she reaches Cork? Use graph 
paper, ruler, and protractor to find a graphical solution. 
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(b) How much additional distance does Michaela travel 
in going to Cork by way of Mallow instead of going 
directly from Killarney to Cork?

 13. A scout troop is practicing its orienteering skills with 
map and compass. First they walk due east for 1.2 km. 
Next, they walk 45° west of north for 2.7 km. In what 
direction must they walk to go directly back to their 
starting point? How far will they have to walk? Use 
graph paper, ruler, and protractor to find a graphical 
solution.

 14. A sailboat sails from Marblehead Harbor directly east 
for 45 nautical miles, then 60° south of east for 
20.0 nautical miles, east for 30.0 nautical miles, 30° east 
of north for 10.0 nautical miles, and finally west for 
62 nautical miles. At that time the wind dies, and the 
auxiliary engine fails to start. The crew decides to notify 
the Coast Guard of their position. Using graph paper, 
ruler, and protractor, sketch a graphical addition of the 
displacement vectors to find the sailboat’s displacement 
from the harbor.

3.2 Vector Addition and Subtraction Using 
Components

15. Rank vectors A
→

, B
→

, and C
→

 in Problem 7 in order of 
increasing x-component. The x-axis points to the right. 
Explain your reasoning.

 16. With the y-axis pointing north, rank vectors D
→

, E
→

, and 
F
→

 in Problem 9 in order of increasing y-component. 
Explain your reasoning.

 17. Rank, in order of increasing x-component, A
→

+ B
→

, 
B
→

+ C
→

, and A
→

+ C
→

 in Problem 7. The x-axis points to 
the right. Explain your reasoning.

 18. A vector is 20.0 m long and makes an angle of 60.0° coun-
terclockwise from the y-axis (on the side of the –x-axis). 
What are the x- and y-components of this vector?

 19. Vector A
→

 has magnitude 4.0 units; vector B
→

 has magni-
tude 6.0 units. The angle between A

→
 and B

→
 is 60.0°. 

What is the magnitude of A
→

+ B
→

?
 20. Vector A

→
 is directed along the positive y-axis and has 

magnitude √3.0 units. Vector B
→

 is directed along the 
negative x-axis and has magnitude 1.0 unit. (a) What 
are the magnitude and direction of A

→
+ B

→
? (b) What are 

the magnitude and direction of A
→

− B
→

? (c) What are the 
x- and y-components of B

→
− A

→
?

 21. Vector a→ has components ax = −3.0 m/s2 and ay = 
+4.0 m/s2. (a) What is the magnitude of a→? (b) What is 
the direction of a→? Give an angle with respect to one of 
the coordinate axes.

 22. In Problem 11, α = 10°. Find the magnitude of vector C
→

 
using the component method.

 23. In Problem 11, α = 10°. Find the magnitude of vector D
→

 
using the component method.

 24. Find the x- and y-components of the four vectors shown 
in the drawing.

A

20.0°
7.0 m

x

y

B

20.0°
7.0 m/s

x

y

xC

7.0 m

x

y

D 20.0°

7.0 m/s

y

20.0°

Problems	24–26

 25. Suppose the vector B
→

 is doubled in magnitude without 
changing its direction. What happens to its x- and 
y-components? Explain your reasoning.

 26. Sketch a vector that has the same y-component as B
→

 but 
with an x-component that is reversed in sign.

 27. The velocity vector of a sprinting cheetah has x- and 
y-components vx = +16.4 m/s and vy = −26.3 m/s. 
(a)  What is the magnitude of the velocity vector? 
(b) What angle does the velocity vector make with the 
+x- and −y-axes?

 28. In each case, the x- and y-components of a vector are 
given. Find the magnitude and direction of the vector. 
(a) Ax = −5.0 m/s, Ay = +8.0 m/s; (b) Bx = +120 m, 
By  =  −60.0 m; (c) Cx = −13.7 m/s, Cy = −8.8 m/s; 
(d) Dx = 2.3 m/s2, Dy = 6.5 cm/s2.

 29. A vector A
→

 has a magnitude of 22.2 cm and makes an 
angle of 130.0° with the positive x-axis. What are the 
x- and y-components of this vector?

 30. Vector B
→

 has magnitude 7.1 and direction 14° below 
the +x-axis. Vector C

→
 has x-component Cx = −1.8 and 

y-component Cy = −6.7. Compute (a) the x- and 
y-components of B

→
; (b) the magnitude and direction of 

C
→

; (c) the magnitude and direction of C
→

+ B
→

; (d) the 
magnitude and direction of C

→
− B

→
; (e) the x- and 

y-components of C
→

− B
→

.
 31. Margaret walks to the store using the following path: 

0.500 mi west, 0.200 mi north, 0.300 mi east. What is her 
total displacement? That is, what is the length and direc-
tion of the vector that points from her house directly to 
the store? Use vector components to find the answer.

 32. Jerry bicycles from his dorm to the local fitness center: 
3.00 mi east and 2.00 mi north. Cindy’s apartment is 
located 1.50 mi west of Jerry’s dorm. If Cindy is able to 
meet Jerry at the fitness center by bicycling in a straight 
line, what is the length and direction she must travel?

 33. Repeat Problem 13 using the component (algebraic) 
method.

 34. Use the component method to obtain a more precise 
description of the sailboat’s location in Problem 14.
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 35. You will be hiking to a lake with some of your friends 
by following the trails indicated on a map at the trail-
head. The map says that you will travel 1.6 mi directly 
north, then 2.2 mi in a direction 35° east of north, then 
finally 1.1 mi in a direction 15° north of east. At the end 
of this hike, how far will you be from where you started, 
and what direction will you be from your starting point?

3.3 Velocity
 36. A runner times his speed around a circular track with a 

circumference of 0.478 mi. At the start he is running 
toward the east and the track starts bending toward the 
north. If he goes halfway around, he will be running 
toward the west. He finds that he has run a distance of 
0.750 mi in 4.00 min. What is his (a) average speed and 
(b) average velocity in m/s?

 37. A runner times his speed around a track with a circum-
ference of 0.50 mi. He finds that he has run a distance of 
1.00 mi in 4.0 min. What is his (a) average speed and 
(b) average velocity magnitude in m/s?

 38. Peggy drives from Cornwall to Atkins Glen in 45 min. 
Cornwall is 73.6 km from Illium in a direction 25° west 
of south. Atkins Glen is 27.2 km from Illium in a 
direction 15° south of west. Using Illium as your origin, 
(a) draw the initial and final position vectors, (b) find 
the displacement during the trip, and (c) find Peggy’s 
average velocity for the trip.

 39. To get to a concert in time, a harpsichordist has to drive 
122 mi in 2.00 h. (a) If he drove at an average speed of 
55.0 mi/h in a due west direction for the first 1.20 h, 
what must be his average speed if he drives 30.0° south 
of west for the remaining 48.0 min? (b) What is his aver-
age velocity for the entire trip?

 40. A bicycle travels 3.2 km due east in 0.10 h, then 4.8 km 
at 15.0° east of north in 0.15 h, and finally another 
3.2 km due east in 0.10 h to reach its destination. The 
time lost in turning is negligible. What is the average 
velocity for the entire trip?

 41. A car travels east at 96 km/h for 1.0 h. It then travels 
30.0° east of north at 128 km/h for 1.0 h. (a) What is the 
average speed for the trip? (b) What is the average 
velocity for the trip?

 42. A speedboat moves west at 108 km/h for 20.0 min. It 
then moves at 60.0° south of west at 90.0 km/h for 
10.0  min. (a) What is the average speed for the trip? 
(b) What is the average velocity for the trip?

 43. See Problem 12. During Michaela’s travel from Killarney 
to Cork via Mallow, her actual travel time in the car is 
48 min. (a) What is her average speed in m/s? (b) What 
is the magnitude of her average velocity in m/s?

 44.  Geoffrey drives from his home town due east at 
90.0  km/h for 80.0 min. After visiting a friend for 
15.0 min, he drives in a direction 30.0° south of west at 
76.0 km/h for 45.0 min to visit another friend. (a) How 

far is it to his home from the second town? (b) If it takes 
him 45.0 min to drive directly home, what is his average 
velocity on the third leg of the trip? (c) What is his 
average velocity during the first two legs of his trip? 
(d)  What is his average velocity over the entire trip? 
(e) What is his average speed during the entire trip if he 
spent 55.0 min visiting the second friend?

3.4 Acceleration
 45. A hawk is flying north at 2.0 m/s with respect to the 

ground; 10.0 s later, it is flying south at 5.0 m/s. What is 
its average acceleration during this time interval?

 46. A skydiver is falling straight down at 55 m/s when 
he opens his parachute and slows to 8.3 m/s in 3.5 s. 
What is the average acceleration of the skydiver during 
those 3.5 s?

 47.  A car travels three quarters of the way around a 
circle of radius 20.0 m in a time of 8.50 s at a constant 
speed. The initial velocity is west and the final velocity 
is south. (a)  Find its average velocity for this trip. 
(b) What is the car’s average acceleration during these 
8.50 s? (c) Explain how a car moving at constant speed 
has a nonzero average acceleration.

Final 
Position 

Initial 
Position 

S

EW

N

 48. At t = 0, an automobile traveling north begins to make a 
turn. It follows one-quarter of the arc of a circle with a 
radius of 10.0 m until, at t = 1.60 s, it is traveling east. 
The car does not alter its speed during the turn. Find 
(a) the car’s speed, (b) the change in its velocity during 
the turn, and (c) its average acceleration during the turn.

 49. At the beginning of a 3.0 h plane trip, you are traveling 
due north at 192 km/h. At the end, you are traveling 
240 km/h in the northwest direction (45° west of north). 
(a) Draw your initial and final velocity vectors. (b) Find 
the change in your velocity. (c) What is your average 
acceleration during the trip?

 50. John drives 16 km directly west from Orion to Chester 
at a speed of 90 km/h, amd then directly south for 8.0 km 
to Seiling at a speed of 80 km/h, and then finally 34 km 



88 CHAPTER	3 Motion in a Plane

southeast to Oakwood at a speed of 100 km/h. Assume 
he travels at constant velocity during each of the three 
segments. (a) What was the change in velocity during 
this trip? [Hint: Do not assume he starts from rest and 
stops at the end.] (b) What was the average acceleration 
during this trip?

 51. A particle’s constant acceleration is south at 2.50 m/s2. 
At t = 0, its velocity is 40.0 m/s east. What is its velocity 
at t = 8.00 s?

 52. A particle’s constant acceleration is north at 100 m/s2. 
At t = 0, its velocity vector is 60 m/s east. At what time 
will the magnitude of the velocity be 100 m/s?

3.5 Motion in a Plane with Constant Acceleration
 53. Rank the projectiles in Fig. 3.24 in order of increasing 

time of flight.
 54. A baseball is thrown horizontally from a height of 

9.60  m above the ground with a speed of 30.0 m/s. 
Where is the ball after 1.40 s has elapsed?

 55. A clump of soft clay is thrown horizontally from 8.50 m 
above the ground with a speed of 20.0 m/s. Where is the 
clay after 1.50 s? Assume it sticks in place when it hits 
the ground.

 56. A tennis ball is thrown horizontally from an elevation of 
14.0 m above the ground with a speed of 20.0 m/s. 
(a) Where is the ball after 1.60 s? (b) If the ball is still in 
the air, how long before it hits the ground and where 
will it be with respect to the starting point once it lands?

 57. A ball is thrown from a point 1.0 m above the ground. 
The initial velocity is 19.6 m/s at an angle of 30.0° 
above the horizontal. (a) Find the maximum height of 
the ball above the ground. (b) Calculate the speed of the 
ball at the highest point in the trajectory.

 58. An arrow is shot into the air at an angle of 60.0° above 
the horizontal with a speed of 20.0 m/s. (a) What are the 
x- and y-components of the velocity of the arrow 3.0 s 
after it leaves the bowstring? (b) What are the x- and 
y-components of the displacement of the arrow during 
the 3.0 s interval?

 59.  The snow leopard (Uncia uncia) is an endangered 
species that lives in the mountains of central Asia. It is 
thought to be the longest jumper in the animal king-
dom. If a snow leopard jumps at 35° above the horizon-
tal and lands 15.0 m away on flat ground, what was its 
initial speed?

 60. You have been employed by the local circus to plan their 
human cannonball performance. For this act, a spring-
loaded cannon will shoot a human projectile, the Great 
Flyinski, across the big top to a net below. The net is 
located 5.0 m lower than the muzzle of the cannon from 
which the Great Flyinski is launched. The cannon will 
shoot the Great Flyinski at an angle of 35.0° above the 
horizontal and at a speed of 18.0 m/s. The ringmaster has 
asked that you decide how far from the cannon to place 

the net so that the Great Flyinski will land in the net and 
not be splattered on the floor, which would greatly 
disturb the audience. What do you tell the ringmaster?

 61.  A cannonball is catapulted toward a castle. The can-
nonball’s velocity when it leaves the catapult is 40 m/s 
at an angle of 37° with respect to the horizontal and the 
cannonball is 7.0 m above the ground at this time. 
(a)  What is the maximum height above the ground 
reached by the cannonball? (b) Assuming the cannon-
ball makes it over the castle walls and lands back down 
on the ground, at what horizontal distance from its 
release point will it land? (c) What are the x- and 
y-components of the cannonball’s velocity just before it 
lands? The y-axis points up.

 62.  An archer fish spies a meal of a grasshopper sitting 
on a long stalk of grass at the edge of the pond in which 
he is swimming. If the fish is to successfully spit at and 
strike the grasshopper, which is 0.200 m away horizon-
tally and 0.525 m above his mouth, what is the minimum 
speed at which the archer fish must spit? What angle 
above the horizontal must he spit?

 63. After being assaulted by flying cannonballs, the knights 
on the castle walls (12 m above the ground) respond by 
propelling flaming pitch balls at their assailants. One 
ball lands on the ground at a distance of 50 m from the 
castle walls. If it was launched at an angle of 53° above 
the horizontal, what was its initial speed?

 64.  The orange jewelweed (Impatiens capensis) has 
seed pods that explode when lightly touched, launching 
the seeds as projectiles to disperse them. Suppose a seed 
is launched at 1.2 m/s from a height of 1.1 m. Assume 
air resistance is negligible and that the seed follows a 
clear path to the ground. (a) If the seed is launched hor-
izontally, at what horizontal distance from the seed pod 
does the seed hit the ground? (b) If the seed is launched 
at 17° above the horizontal, at what horizontal distance 
does the seed hit the ground? (c) In the second case, the 
horizontal distance measured is 0.44 m. Was air resis-
tance negligible?

 65. The range R of a projectile is defined as the magnitude 
of the horizontal displacement of the projectile when it 
returns to its original altitude. (In other words, the range 
is the distance between the launch point and the impact 
point on flat ground.) A projectile is launched at t = 0 
with initial speed vi at an angle θ above the horizontal. 
(a) Find the time t at which the projectile returns to its 
original altitude. (b) Show that the range is

R =
v2

i  sin 2θ

g

  [Hint: Use a trigonometric identity from Appendix A.7.]
 66. Use the expression in Problem 65 to find (a) the 

maximum range of a projectile with launch speed vi 
and  (b)  the launch angle θ at which the maximum 
range occurs.
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 67. A projectile is launched at t = 0 with initial speed vi at 
an angle θ above the horizontal. (a) What are vx and vy at 
the projectile’s highest point? (b) Find the time t at 
which the projectile reaches its maximum height. 
(c) Show that the maximum height H of the projectile is

H =
(vi sin θ)2

2g
 68.  A ballplayer standing at home plate hits a baseball 

that is caught by another player at the same height above 
the ground from which it was hit. The ball is hit with an 
initial velocity of 22.0 m/s at an angle of 60.0° above the 
horizontal. (a) How high will the ball rise? (b) How 
much time will elapse from the time the ball leaves the 
bat until it reaches the fielder? (c) At what distance from 
home plate will the fielder be when he catches the ball?

 69.  A circus performer is shot out of a cannon and flies 
over a vertical net that is placed at a horizontal distance 
of 6.0 m from the cannon. When the cannon is aimed at 
an angle of 40° above the horizontal, the performer is 
moving in the horizontal direction and just barely clears 
the net as he passes over it. What is the muzzle speed of 
the cannon and how high is the net?

3.6 Velocity Is Relative; Reference Frames
70. Two cars are driving toward each other on a straight, flat 

Kansas road. The Jeep Wrangler is traveling at 82 km/h 
north and the Ford Taurus is traveling at 48 km/h south, 
both measured relative to the road. What is the velocity 
of the Jeep relative to an observer in the Ford?

 71. Two cars are driving toward each other on a straight and 
level road in Alaska. The BMW is traveling at 100.0 km/h 
north and the VW is traveling at 42 km/h south, both 
velocities constant and measured relative to the road. At 
a certain instant, the distance between the cars is 10.0 km. 
After what time interval, starting from that moment, 
will the two cars meet? [Hint: Consider a reference 
frame in which one of the cars is at rest.]

 72. A car is driving directly north on the freeway at a speed 
of 110 km/h and a truck is leaving the freeway driving 
85 km/h in a direction that is 35° west of north. What is 
the velocity of the truck relative to the car?

 73. A Nile cruise ship takes 20.8 h to go upstream from 
Luxor to Aswan, a distance of 208 km, and 19.2 h to 
make the return trip downstream. Assuming the ship’s 
speed relative to the water is the same in both cases, 
calculate the speed of the current in the Nile.

 74. An airplane has a velocity relative to the ground of 
210 m/s toward the east. The pilot measures his airspeed 
(the speed of the plane relative to the air) to be 160 m/s. 
What is the minimum wind velocity possible?

 75. A small plane is flying directly west with an airspeed of 
30.0 m/s. The plane flies into a region where the wind is 
blowing at 10.0 m/s at an angle of 30° to the south of 
west. (a) If the pilot does not change the heading of the 

plane, what will be the ground speed of the airplane? 
(b) What will be the new course, relative to the ground, 
of the airplane?

 76. A small plane is flying directly west with an airspeed of 
30.0 m/s. The plane flies into a region where the wind is 
blowing at 10.0 m/s at an angle of 30° to the south of 
west. In that region, the pilot changes the heading to 
maintain her due west course. (a) What is the change 
she makes in the heading to compensate for the wind? 
(b) After the heading change, what is the ground speed 
of the airplane?

 77. A boat that can travel at 4.0 km/h in still water crosses a 
river with a current of 1.8 km/h. At what angle must the 
boat be pointed upstream to travel straight across the 
river? In other words, in what direction is the velocity of 
the boat relative to the water?

 78. At an antique car rally, a Stanley Steamer automobile 
travels north at 40 km/h and a Pierce Arrow automobile 
travels east at 50 km/h. Relative to an observer riding in 
the Stanley Steamer, what are the x- and y-components 
of the velocity of the Pierce Arrow car? The x-axis is to 
the east and the y-axis is to the north.

 79. Sheena can row a boat at 3.00 mi/h in still water. She 
needs to cross a river that is 1.20 mi wide with a current 
flowing at 1.60 mi/h. Not having her calculator ready, 
she guesses that to go straight across, she should head 
upstream at an angle of 60.0° from the direction straight 
across the river. (a) What is her speed with respect to the 
starting point on the bank? (b) How long does it take her 
to cross the river? (c) How far upstream or downstream 
from her starting point will she reach the opposite bank? 
(d) In order to go straight across, what angle upstream 
should she have headed?

 80.  A dolphin wants to swim directly back to its home 
bay, which is 0.80 km due west. It can swim at a speed 
of 4.00 m/s relative to the water, but a uniform water 
current flows with speed 2.83 m/s in the southeast 
direction. (a) What direction should the dolphin head? 
(b) How long does it take the dolphin to swim the 
0.80 km distance home?

 81.  A boy swims across a river in the shortest time he 
can, by always heading straight for the opposite bank. 
He can swim at a speed of 0.500 m/s relative to the 
water. The river is 25.0 m wide and the boy ends up at 
50.0 m downstream from his starting point. (a) How fast 
is the current flowing in the river? (b) What is the speed 
of the boy relative to a friend standing on the riverbank?

 82.  An aircraft has to fly between two cities, one of 
which is 600.0 km north of the other. The pilot starts 
from the southern city and encounters a steady 
100.0  km/h wind that blows from the northeast. The 
plane has a cruising speed of 300.0 km/h in still air. 
(a)  In what direction (relative to east) must the pilot 
head her plane? (b) How long does the flight take?
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different directions for the true wind. (a) In each case, 
draw a vector diagram to establish the magnitude and 
direction of the apparent wind. (b) In which of the three 
cases is the apparent wind speed greater than the true 
wind speed? (Assume that the speed of the boat relative 
to the water is less than the true wind speed.) (c) In which 
of the three cases is the direction of the apparent wind 
direction forward of the true wind? [“Forward” means 
coming from a direction more nearly straight ahead. For 
example, (1) is forward of (2), which is forward of (3).]

(1)

(3)

(2)

Velocity of
boat relative
to water

 90. (Note: In this problem you practice thinking about how 
the same events look in different reference frames. You 
won’t need to use the “relative velocity formula.”) 
Samantha goes kayaking on a straight river. After she 
has paddled upstream for a while, she realizes she 
dropped a lifejacket overboard when she launched so 
she turns around and paddles downstream to retrieve it. 
The lifejacket has been drifting along with the current 
the whole time, but eventually Samantha catches up to 
it. Assume the river current flows at a constant speed 
and that Samantha uses the same paddling effort 
upstream and downstream, so her speeds relative to the 
water are the same. (a) Draw vectors to represent 
Samantha’s upstream displacement (from launch to 
turnaround) and her downstream displacement (from 
turnaround to lifejacket retrieval) in the reference frame 
of the riverbank. If the magnitudes are unequal, be sure 
to show which is larger. (b) Now draw vectors represent-
ing Samantha’s total (upstream + downstream) dis-
placement and the total displacement of the lifejacket, 
both in the reference frame of the riverbank. (c) In the 
reference frame of the water, the lifejacket is at rest the 
whole time. What does that tell you about Samantha’s 
total displacement relative to the water? Sketch vector 
arrows showing her upstream and downstream displace-
ments in the reference frame of the water. (d) Does 
Samantha spend more time paddling upstream, more 
time paddling downstream, or the same time each way? 
Explain your reasoning.

Collaborative Problems

83. A suspension bridge is 60.0 m above the level base of a 
gorge. A stone is thrown or dropped from the bridge. 
Ignore air resistance. At the location of the bridge g has 
been measured to be 9.83 m/s2. (a) If you drop the stone, 
how long does it take for it to fall to the base of the 
gorge? (b) If you throw the stone straight down with a 
speed of 20.0 m/s, how long before it hits the ground? 
(c) If you throw the stone with a velocity of 20.0 m/s at 
30.0° above the horizontal, how far from the point 
directly below the bridge will it hit the level ground?

 84. A baseball batter hits a long fly ball, giving it an initial 
velocity 45° above the horizontal. The ball rises to a max-
imum height of 44 m. An outfielder on the opposing team 
starts running at 7.6 m/s the instant the ball is hit. What is 
the farthest the fielder can be from where the ball will 
land so that it is possible for him to catch the ball?

 85. From the edge of the rooftop of a building, a boy throws 
a stone at an angle 25.0° above the horizontal. The stone 
hits the ground 4.20 s later, 105 m away from the base of 
the building. (Ignore air resistance.) (a) Find the initial 
velocity of the stone. (b) Find the initial height from 
which the stone was thrown. (c) Find the maximum 
height reached by the stone.

 86. You are serving as a consultant for the newest James 
Bond film. In one scene, Bond must fire a projectile 
from a cannon and hit the enemy headquarters located 
on the top of a cliff 75.0 m above and 350 m from the 
cannon. The cannon will shoot the projectile at an angle 
of 40.0° above the horizontal. The director wants to 
know what the speed of the projectile must be when it is 
fired from the cannon so that it will hit the enemy head-
quarters. What do you tell her? [Hint: Don’t assume the 
projectile will hit the headquarters at the highest point 
of its flight.]

 87. A helicopter is flying horizontally at 8.0 m/s and an 
altitude of 18 m when a package of emergency medical 
supplies is ejected horizontally backward with a speed 
of 12 m/s relative to the helicopter. Ignoring air resis-
tance, what is the horizontal distance between the pack-
age and the helicopter when the package hits the ground?

 88.  A spotter plane sees a school of tuna swimming at a 
steady 5.00 km/h northwest. The pilot informs a fishing 
trawler, which is just then 100.0 km due south of the 
fish. The trawler sails along a straight-line course and 
intercepts the tuna after 4.0 h. How fast did the trawler 
move? [Hint: First find the velocity of the trawler 
relative to the tuna.]

 89.   One of the tricky things about learning to sail is 
distinguishing the “true wind” from the “apparent 
wind.” The true wind is the velocity of the air relative to 
the water, whereas the apparent wind is the velocity of 
the air relative to the sailboat. The figure shows three 
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  direction 20.0° N of E. The pilot heads directly for 
Sparta and flies at an airspeed of 160 km/h. After fly-
ing for 2.0 h, the pilot expects to be at Sparta, but in-
stead he finds himself 20 km due west of Sparta. He 
has forgotten to correct for the wind. (a) What is the 
velocity of the plane relative to the air? (b) Find the 
velocity (magnitude and direction) of the plane relative 
to the ground. (c) Find the wind speed and direction.

  99. A particle has a constant acceleration of 5.0 m/s2 to the 
east. At time t = 0, it is 2.0 m east of the origin and its 
velocity is 20 m/s north. What are the components of 
its position vector at t = 2.0 s?

 100. The pilot of a small plane finds that the airport where 
he intended to land is fogged in. He flies 55 mi west to 
another airport to find that conditions there are too icy 
for him to land. He flies 25 mi at 15° east of south and 
is finally able to land at the third airport. (a) How far 
and in what direction must he fly the next day to go 
directly to his original destination? (b) How many extra 
miles beyond his original flight plan has he flown?

 101.  A locust jumps at an angle of 55.0° and lands 
0.800 m from where it jumped. (a) What is the maxi-
mum height of the locust during its jump? Ignore air 
resistance. (b) If it jumps with the same initial speed at 
an angle of 45.0°, would the maximum height be larger 
or smaller? (c) What about the range? (d) Calculate the 
maximum height and range for this angle.

 102. An airplane is traveling from New York to Paris, a 
distance of 5.80 × 103 km. Ignore the curvature of 
Earth’s surface. (a) If the cruising speed of the airplane 
is 350.0 km/h, how much time will it take for the air-
plane to make the round-trip on a calm day? (b) If, at 
the plane’s altitude, a steady wind blows from New 
York to Paris at 60.0 km/h, how much time will the 
round-trip take? (c) How much time will it take if there 
is a crosswind of 60.0 km/h?

 103.  A gull is flying horizontally 8.00 m above the ground 
at 6.00 m/s. The bird is carrying a clam in its beak and 
plans to crack the clamshell by dropping it on some rocks 
below. Ignoring air resistance, (a) what is the horizontal 
distance to the rocks at the moment that the gull should let 
go of the clam? (b) With what speed relative to the rocks 
does the clam smash into the rocks? (c) With what speed 
relative to the gull does the clam smash into the rocks?

 104. A beanbag is thrown horizontally from a dorm room 
window a height h above the ground. It hits the ground 
a horizontal distance h (the same distance h) from the 
dorm wall directly below the window from which it 
was thrown. Ignoring air resistance, find the direction 
of the beanbag’s velocity just before impact.

 105.   A sample in a centrifuge moves in a circle of ra-
dius 8.0 cm at a constant speed of 500 m/s. (a) How 
much time does it take for the velocity’s direction to 
change by 45° (1/8 of a revolution)? (b) What is the 
magnitude of the average acceleration during that time?

Comprehensive Problems

 91. Harrison traveled 2.00 km west, then 5.00 km in a direc-
tion 53.0° south of west, then 1.00 km in a direction 
60.0° north of west. (a) In what direction, and for how 
far, should Harrison travel to return to his starting point? 
(b) If Harrison returns directly to his starting point with 
a speed of 5.00 m/s, how long will the return trip take?

 92. Paula swims across a river that is 10.2 m wide. She can 
swim at 0.833 m/s in still water, but the river flows with a 
speed of 1.43 m/s. If Paula swims in such a way that she 
crosses the river in as short a time as possible, how far 
downstream is she when she gets to the opposite shore?

93. Imagine a trip where you drive along an east-west 
highway at 80.0 km/h for 45.0 min and then you turn 
onto a highway that runs 38.0° north of east and travel at 
60.0 km/h for 30.0 min. (a) What is your average 
velocity for the trip? (b) What is your average velocity 
on the return trip when you drive 38.0° south of west at 
60.0 km/h for the first 30.0 min and then west at 
80.0 km/h for the last 45.0 min?

 94. Jason is practicing his tennis stroke by hitting balls 
against a wall. The ball leaves his racquet at a height of 
60 cm above the ground at an angle of 80° with respect 
to the vertical. (a) The speed of the ball as it leaves the 
racquet is 20 m/s and it must travel a distance of 10 m 
before it reaches the wall. How far above the ground 
does the ball strike the wall? (b) Is the ball on its way up 
or down when it hits the wall?

 95. An African swallow carrying a very small coconut is 
flying horizontally with a speed of 18 m/s. (a) If it drops 
the coconut from a height of 100 m above the ground, 
how long will it take before the coconut strikes the 
ground? (b) At what horizontal distance from the release 
point will the coconut strike the ground?

 96. A jetliner flies east for 600.0 km, then turns 30.0° 
toward the south and flies another 300.0 km. (a) How 
far is the plane from its starting point? (b) In what direc-
tion could the jetliner have flown directly to the same 
destination (in a straight-line path)? (c) If the jetliner 
flew at a constant speed of 400.0 km/h, how long did the 
trip take? (d) Moving at the same speed, how long 
would the direct flight have taken?

 97. The citizens of Paris were terrified during World War I 
when they were suddenly bombarded with shells fired 
from a long-range gun known as Big Bertha. The barrel 
of the gun was 36.6 m long and it had a muzzle speed of 
1.46 km/s. When the gun’s angle of elevation was set to 
55°, what would be the range? For the purposes of solv-
ing this problem, neglect air resistance. (The actual 
range at this elevation was 121 km; air resistance cannot 
be ignored due to the high muzzle speed of the shells.)

 98. A pilot starting from Athens, New York, wishes to fly to 
Sparta, New York, which is 320 km from Athens in the
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 106.  The invention of the cannon in the fourteenth cen-
tury made the catapult unnecessary and ended the 
safety of castle walls. Stone walls were no match for 
balls shot from cannons. Suppose a cannonball of mass 
5.00 kg is launched from a height of 1.10 m, at an angle 
of elevation of 30.0° with an initial velocity of 50.0 m/s, 
toward a castle wall of height 30 m and located 215 m 
away from the cannon. (a) The range of a projectile is 
defined as the horizontal distance traveled when the 
projectile returns to its original height. What will be the 
range reached by the projectile if it is not intercepted by 
the wall? (b) If the cannonball travels far enough to hit 
the wall, find the height at which it strikes.

 107.  In a plate glass factory, sheets of glass move along 
a conveyor belt at a speed of 15.0 cm/s. An automatic 
cutting tool descends at preset intervals to cut the glass 
to size. Since the assembly belt must keep moving at 
constant speed, the cutter is set to cut at an angle to 
compensate for the motion of the glass. The glass is 
72.0 cm wide and the cutter moves from one edge to 
the other in 3.0 s. The cutter should be set to move at 
what angle to the width of the sheet?

 108.  A pilot wants to fly from Dallas to Oklahoma City, 
a distance of 330 km at an angle of 10.0° west of north. 
The pilot heads directly toward Oklahoma City with an 
airspeed of 200 km/h. After flying for 1.0 h, the pilot 
finds that he is 15 km off course to the west of where 
he expected to be after 1.0 h, assuming there was no 
wind. (a) What is the velocity and direction of the 
wind? (b) In what direction should the pilot have 
headed his plane to fly directly to Oklahoma City with-
out being blown off course?

 109. A ball is thrown horizontally off the edge of a cliff 
with an initial speed of 20.0 m/s. (a) How long does it 
take for the ball to fall to the ground 20.0 m below? 
(b) How long would it take for the ball to reach the 
ground if it were dropped from rest off the cliff edge? 
(c) How long would it take the ball to fall to the ground 
if it were thrown at an initial velocity of 20.0 m/s but 
18° below the horizontal?

 110.  A marble is rolled so that it is projected horizontally 
off the top landing of a staircase. The initial speed of 
the marble is 3.0 m/s. Each step is 0.18 m high and 
0.30 m wide. Which step does the marble strike first?

 111.   When fish head upstream to spawn, they may 
encounter a waterfall. If the water is not moving too 
fast, the fish can swim right up through the falling wa-
ter. Otherwise, the fish jump out of the water to get to 
a place in the waterfall where the water is not falling so 
fast. When humans build dams that interrupt the usual 
route followed by the fish, artificial fish ladders must 
be built. They consist of a series of small waterfalls 
with still pools of water in between them (see the 
photo). Suppose the fish can swim at 5.0 m/s with re-
spect to the water. (a) What is the maximum height of 

a waterfall up which the fish can swim without having 
to jump? (b) If a waterfall is 1.5 m high, how high must 
the fish jump to get to water through which it can 
swim? Assume that they jump straight up. (c) What 
initial speed must a fish have to jump the height found 
in part (b)? (d) For a 1.0 m high waterfall, how fast will 
the fish be swimming with respect to the ground when 
it starts swimming up the waterfall?

©Tammy Fullum/Getty Images

 112.  A motor scooter rounds a curve on the highway at a 
constant speed of 20.0 m/s. The original direction of 
the scooter was due east; after rounding the curve the 
scooter is going 36° north of east. The radius of curva-
ture of the road at the location of the curve is 150 m. 
What is the average acceleration of the scooter as it 
rounds the curve?

 113.  You want to make a plot of the trajectory of a pro-
jectile. That is, you want to make a plot of the height y 
of the projectile as a function of horizontal distance x. 
The projectile is launched from the origin with initial 
velocity components vix and viy. Show that the equation 
of the trajectory followed by the projectile is

y = (
viy

vix)
+ (

−g

2v2
ix

)x2

 114.  A person climbs from a Paris metro station to the 
street level by walking up a stalled escalator in 94 s. It 
takes 66 s to ride the same distance when standing on 
the escalator when it is operating normally. How long 
would it take for him to climb from the station to the 
street by walking up the moving escalator?

Answers to Practice Problems

3.1 No; the checkbook balance may increase or decrease, 
but there is no spatial direction associated with it. When we 
say it “goes down,” we do not mean that it moves in a direc-
tion toward the center of Earth! Rather, we really mean that 
it decreases. The balance is a scalar.
3.2 240 mi 20° W of S
3.3 Ax = +16 km; Ay = −8.2 km; Bx = +17 km; By = 0 km; 
Cx = −11 km; Cy = +47 km
3.4 ∣v→av∣ can never be greater than the average speed because 
the magnitude of the displacement cannot be greater than the 
distance traveled. ∣v→av∣ can be equal to the average speed if 
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the magnitude of the displacement is equal to the distance 
traveled, which is true when the motion is along a straight 
line with no change in direction.
3.5 (a) 1.64 m/s directed 33° east of north; (b) 0.82 m/s2 
directed 33° east of north
3.6 2
3.7 vi

2/(4g)
3.8 (a) 1.0 m/s; (b) 15 min
3.9 28° south of west; 3.6 min; 130 m

Answers to Checkpoints

3.2A Cx = −5.5 km and Cy = −7.2 km
3.2B  

x (m)

2

–2–4–6

y (m)

Δr

3.4A  The average acceleration is the change in velocity 
divided by the time interval. The time interval is the same for 
all four, so the largest change in velocity produces the largest 
average acceleration. The change in velocity of plane A is 
zero. The vector diagrams illustrate the change in velocity 
for the other planes. In decreasing order: D, B, C, A.

vf

vi vΔ
vf

vi

vΔ

vf

Plane B Plane C Plane D

vi

vΔ

3.4B  Velocity is a vector quantity. The plane’s speed does 
not change, but its velocity does. Therefore, Δv→ ≠ 0 and 
a→av = Δv→/Δt ≠ 0.
3.4C  For straight-line motion, the acceleration vector is 
either in the same or in the opposite direction to the velocity 
vector. If the speed is increasing, a→ is in the same direction 
as v→; if the speed is decreasing, a→ is in the direction opposite 
to v→. If the velocity is constant, then a→ = 0.
3.5A The horizontal velocity component does not change. 
The vertical component is zero at the highest point, so the 
velocity vector is directed horizontally. The acceleration is 
constant and directed vertically downward throughout the 
flight, including at the highest point.
3.5B  No, the projectile launched at 30° lands first because 
its initial vy is smaller, so it doesn’t go as high. (Remember 
that we can treat the horizontal and vertical motions inde-
pendently.) It has a larger initial vx, which allows it to go the 
same horizontal distance as the 60° projectile but in a shorter 
time.
3.6 (a) 19.5 m/s (b) 1.5 m/s



Force and Newton’s Laws 
of Motion

C H A P T E R

4

A sailplane (or “glider”) is a small, unpowered, high-performance aircraft. 
A sailplane must be initially towed a few thousand feet into the air by 
a small airplane, after which it relies on regions of upward-moving air, 
such as thermals and ridge currents, to ascend farther. Suppose a 
small plane requires about 120 m of runway to take off by itself. When 
it is towing a sailplane, how much runway does it need?

©Richard Thornton/ShutterstockSELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Tensile and contact forces 
in the body (Section 4.7; 
Problems 6, 29, 113, 132, 
154, 158)

∙ Traction apparatus 
(Example 4.1; 
Problem 126)

∙ Newton’s third law: 
swimming, walking, 
skiing (Section 4.4)

∙ Peak force on a runner’s 
foot (Problem 44)

∙ Effects of acceleration on 
the body (Section 4.10)

∙ Jumping locusts 
(Problem 176)

•	 math skills: addition and 
subtraction of vectors; 
vector components 
 (Sections 3.1, 3.2; 
 Appendix A.10)

•	 acceleration (Sections 
2.3, 3.4)

•	 motion with constant 
acceleration (Sections 2.4, 
2.5, 3.5)

•	 motion diagrams 
(Section 2.4)

•	 problem-solving 
 techniques (Section 1.7)

•	 meanings of velocity 
and mass in physics 
(Section 1.2)

Concepts & Skills to Review
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4.1 INTERACTIONS AND FORCES

This chapter begins our study of mechanics, the branch of physics that considers how 
interactions between objects affect the motion of those objects. Just as human life 
would be dull without social interactions, the physical universe would be dull without 
physical interactions. Social interactions with friends and family change our behavior; 
physical interactions change the “behavior” (motion, temperature, etc.) of matter.

An interaction between two objects can be described and measured in terms of 
two forces, one exerted on each of the two interacting objects. A force is a push or 
a pull. When you play soccer, your foot exerts a force on the ball while the two are 
in contact, thereby changing the speed and direction of the ball’s motion. At the same 
time, the ball exerts a force on your foot, the effect of which you can feel. To under-
stand the motion of an object, whether it be a soccer ball or the International Space 
Station, we need to analyze the forces acting on the object.

To correctly identify forces, you should be able to describe them as (type of force) 
exerted on (object) by (object). For example: contact force exerted on the ball by the 
foot; gravitational force exerted on the Space Station by Earth.

Long-Range Forces Forces exerted on macroscopic objects—objects that are large 
enough for us to observe without instrumentation—can be either long-range forces or 
contact forces. Long-range forces do not require the two objects to be touching. These 
forces can exist even if the two objects are far apart and even if there are other objects 
between the two. For example, gravity is a long-range force. The gravitational force 
exerted on Earth by the Sun keeps Earth in orbit around the Sun, despite the great 
distance between them and despite other planets that occasionally come between them. 
Earth also exerts a long-range gravitational force on objects on or near its surface. 
We call the size of the gravitational force (also called the strength, or magnitude, of 
the force) that a planet or moon exerts on a nearby object the object’s weight.

Part 3 of this book treats electromagnetic forces in detail. Until then, you can 
safely assume that gravity is the only significant long-range interaction unless the 
statement of a problem indicates otherwise.

EVERYDAY PHYSICS DEMO

Besides gravity, other long-range forces are electric or magnetic in nature. On 
a dry day, run a plastic comb vigorously through your hair or rub it on a wool 
sweater until you hear some crackling. Now hold the comb close to small 
pieces of a torn paper napkin. Observe the long-range electrical interaction 
between the paper and the comb.

Now take a refrigerator magnet. Hold it near but not touching the refrig-
erator door or another magnet. You can feel the effect of a long-range magnetic 
interaction.

Contact Forces All forces exerted on macroscopic objects, other than long-range 
gravitational and electromagnetic forces, involve contact. Contact forces exist only 
as long as the objects are touching one another. Your foot has no noticeable effect on 
a soccer ball’s motion until the two come into contact, and the force lasts only as long 
as they are in contact (Fig. 4.1). Once the ball moves away from your foot, your foot 
has no further influence over the ball’s motion.

The idea of contact is a useful simplification for macroscopic objects. What we 
call a single contact force is really the net effect of enormous numbers of electromag-
netic forces between atoms on the surfaces of the two objects. On an atomic scale, 
the idea of “contact” breaks down. There is no way to define “contact” between two 
atoms—in other words, there is no unique distance between the atoms at which the 
forces they exert on one another suddenly become zero.

CONNECTION:

Newton’s third law (Section 4.4) 
tells us not only that forces 
 always come in interaction  
pairs but also how the magni-
tudes and directions of the  
forces are related.
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CHECKPOINT 4.1A

Identify the forces acting on the soccer player in Fig. 4.1. Describe each as 
(type of force) exerted on the player by (object).

Measuring Forces

If the concept of force is to be useful in physics, there must be a way to measure 
forces. Consider a simple spring scale (Fig. 4.2). As the bottom of the scale is pulled 
down, a spring is stretched. The harder you pull, the more the spring stretches. As 
the spring stretches, an attached pointer moves. Then all we have to do to measure 
the force applied to the bottom of the scale is to calibrate the scale so the amount of 
stretch measures the magnitude of the force. For many springs, the extension is 
approximately proportional to the force, which makes calibration easy.

In the United States, supermarket scales are generally calibrated to measure forces 
in pounds (lb). In the SI system, the unit of force is the newton (N). To convert 
pounds to newtons, use the approximate conversion factors
 1 lb = 4.448 N or 1 N = 0.2248 lb (4-1)

There are more sophisticated means for measuring forces than a supermarket 
scale. Even so, many operate on the same principle as the supermarket scale: a force 
is measured by the deformation—change of size or shape—it produces in some object.

Force Is a Vector Quantity

The magnitude of a force is not a complete description of the force. The direction of 
the force is equally important. The direction of the brief contact force exerted by a 
soccer player’s foot on the ball can make the difference between scoring a goal or 
not. Force is a vector quantity that must be added (or subtracted) using the same 
methods used for other vector quantities such as position, velocity, and acceleration.

Figure 4.1 A soccer player’s 
foot exerts a force on the ball 
only when they are touching. 
The ball also exerts a force on 
the foot, but only while they 
touch. Once it loses contact 
with the foot, the only forces 
acting on the ball are a long-
range gravitational force due to 
Earth and a contact force due 
to the air.
©BluIz60/Shutterstock
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Figure 4.2 As the bottom of 
a spring scale is pulled down-
ward, the spring stretches. We 
can measure the force by mea-
suring the extension of the 
spring. For many springs, the 
extension is approximately 
proportional to the force, which 
makes calibration easy. Note 
that there is a pull on both 
ends of the scale. The ceiling 
pulls up on the scale and 
supports the scale from above. 
(Bathroom scales are similar, 
but they measure the 
compression of a spring.)
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The y-components of the forces are
F1y = F2y = (22.0 N) sin 45.0°
F3y = (−22.0 N) sin 30.0°

The sum of the x-components is
Fx = F1x + F2x + F3x

= 2 × (22.0 N) cos 45.0° + (22.0 N) cos 30.0°
= 31.11 N + 19.05 N = 50.16 N

We keep an extra decimal place for now to minimize round-
off error. The sum of the y-components is

Fy = F1y + F2y + F3y

= 2 × (22.0 N) sin 45.0° + (−22.0 N) sin 30.0°
= 31.11 N − 11.00 N = 20.11 N

The magnitude of the sum is (Fig. 4.6):

F = √F2
x + F2

y = √(50.16 N)2 + (20.11 N)2 = 54.0 N
and the direction of the sum is

θ = tan−1
  

opposite
adjacent

= tan−1
  

20.11 N
50.16 N

= 21.8°

The sum of the forces exerted on the pulley by the three cord 
segments is 54.0 N at an angle 21.8° above the +x-axis.

Discussion To check the answer, look back at the graph-
ical estimate. The magnitude of the sum (54 N) is some-
what larger than 44 N and the direction is at an angle very 
nearly half of 45° above the horizontal.

Practice Problem 4.1 Changing the Pulley Angles

The pulleys are moved, after which F
→

1 and F
→

2 are at an angle 
of 30.0° above the x-axis and F

→
3 is 60.0° below the x-axis. 

(a) What is the sum of these three forces in component form? 
(b) What is the magnitude of the sum? (c) At what angle 
with the horizontal is the sum?

Example 4.1

 Traction on a Foot

In a traction apparatus, three segments of a cord pull on 
the central pulley, each with magnitude 22.0 N, in the direc-
tions shown in Fig. 4.3. What is the sum of the forces 
exerted on the central pulley by the three cord segments? 
Give the magnitude and direction of the sum.

Strategy First, we sketch the graphical addition of the 
three forces to get an estimate of the magnitude and direction 
of the sum. Then, to get a precise answer, we resolve the three 
forces into their x- and y-components, sum the components, 
and then calculate the magnitude and direction of the sum.

Solution Figure 4.4 shows the graphical addition of the 
three forces exerted on the central pulley by the cord segments. 
From this sketch, we can tell that the sum of the three forces 
is at a relatively small angle above the horizontal (roughly 
half of 45°) and has a magnitude a bit larger than 44 N.

To find an algebraic solution, we find the components 
along the x- and y-axes and add them (Fig. 4.5). The 
x-components of the forces are

F1x = F2x = (22.0 N) cos 45.0°
F3x = (22.0 N) cos 30.0°

F1

F1x
= F1 cos 45.0°

F1y = F1 sin 45.0°
45.0°

30.0°

(a)

y

x
F3

F3y = –F3 sin 30.0°

(b)

x

F3x = F3 cos 30.0°
y 20.11 N

50.16 N

θ

Figure 4.6
Finding the sum from its 
components. The magni-
tude is found using the 
Pythagorean theorem; the 
angle θ is found from the 
inverse tangent of opposite 
over adjacent.

22.0 N

45.0°

30.0°
45.0°

30.0°

(a) (b)

F3

F2

F1

Figure 4.3
(a) A foot in traction; (b) the three forces exerted on the central 
pulley by the cord segments.

x

y

F3
F2

F1
F

θ

Figure 4.4
Graphical sum of the forces 
on the pulley due to the cord 
segments: F

→
= F

→
1 + F

→
2 + F

→
3.

Figure 4.5
Using right triangles to find the components of (a) F

→
1 and (b) F

→
3. For 

clarity, the vector arrows are drawn twice as long as they were in Fig. 4.4.
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Net Force

When more than one force acts on an object, the subsequent motion of the object is 
determined by the net force acting on the object. The net force is the vector sum of 
all the forces acting on an object.

Definition of net force
If F

→
1, F

→
2, . . . , F

→
n are all the forces acting on an object, then the net force 

F
→

net acting on that object is the vector sum of those forces:

 F
→

net = ∑F
→

= F
→

1 + F
→

2 + · · · + F
→

n (4-2)

The net force can also be called the total force or the sum of the forces. The symbol 
Σ is a capital Greek letter sigma that stands for “sum.” (Refer to Appendix A.11 to 
find a list of mathematical symbols and their meanings.)

CHECKPOINT 4.1B

In Example 4.1, is the sum of the forces due to the three cord segments the 
net force on the central pulley?

Free-Body Diagrams

An essential tool used to find the net force acting on an object is a free-body diagram 
(FBD): a simplified sketch of a single object with force vectors drawn to represent 
every force acting on that object. The net force must not include any forces that act 
on other objects. To draw an FBD:

∙ Draw the object in a simplified way—you don’t have to be Michelangelo to solve 
physics problems! Almost any object can be represented as a box or a circle, or 
even a dot.

∙ Identify all the forces that are exerted on the object. Take care not to omit any 
forces that are exerted on the object. Consider that everything touching the object 
may exert one or more contact forces. Then identify long-range forces (for now, 
just gravity unless electric or magnetic forces are specified in the problem).

∙ Check your list of forces to make sure that each force is exerted on the object of 
interest by some other object. Make sure you have not included any forces that 
are exerted on other objects.

∙ Write down anything you know about the magnitude and direction of each force 
in the list.

∙ Draw vector arrows representing all the forces acting on the object. We usually 
draw the vectors as arrows that start on the object and point away from it. Draw 
the arrows so they correctly illustrate the directions of the forces. If you have 
enough information to do so, draw the lengths of the arrows so they are propor-
tional to the magnitudes of the forces. Label each arrow with the name of the 
force or the algebraic symbol you will use for that force.

CONNECTION:

In this chapter, we learn 
about a few kinds of forces. 
Later, when we learn about 
other forces, we always treat 
them the same: we add up all 
the forces acting on an object 
to find the net force.

drag  =  0.8  kN, west. (Lift, thrust, and drag are three 
forces that the air exerts on the plane.) What is the net 
force on the plane?

Example 4.2

Net Force on an Airplane

The forces on an airplane in flight heading eastward are as 
follows: gravity = 16.0 kN (kilonewtons), downward; 
lift  =  16.0 kN, upward; thrust = 1.8 kN, east; and 

continued on next page
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Strategy All the forces acting on the plane are given in the 
statement of the problem. After drawing these forces in the 
FBD for the plane, we add the forces to find the net force. To 
resolve the force vectors into components, we choose x- and 
y-axes pointing east and up respectively. All four forces are 
then lined up with the axes, so each will have only one non-
zero component, with a sign that indicates the direction 
along that axis. For example, the drag force points in  
the −x-direction, so its x-component is negative and its  
y-component is zero.

Solution Figure 4.7a is the FBD for the plane, using L
→

, 
T
→

, and D
→

 for the lift, thrust, and drag, respectively. W⟶  
stands for the gravitational force on the plane; its magnitude 
is the plane’s weight W. The sum of the x-components of the 
forces is

∑Fx = Lx + Tx + Wx + Dx

= 0 + (1.8 kN) + 0 + (−0.8 kN) = 1.0 kN

The sum of the y-components of the forces is

∑Fy = Ly + Ty + Wy + Dy

= (16 kN) + 0 + (−16 kN) + 0 = 0

The net force is 1.0 kN east.

Example 4.2 continued

Discussion A graphical check of the vector addition is a 
good idea. Figure 4.7b shows that the sum of the four forces 
is indeed in the +x-direction (east).

Practice Problem 4.2 New Forces on the Airplane

Find the net force on the airplane if the forces are gravity = 
16.0 kN, downward; lift = 15.5 kN, upward; thrust = 1.2 kN, 
north; drag = 1.2 kN, south.

L

(Up)

(Down)

(West) (East)

T

W

D

(a)

x

y

(b)

T

DFΣ

L W

Figure 4.7
(a) Free-body diagram for the airplane. (b) Graphical addition of 
the four force vectors yields the net force, ΣF

→
.

4.2 INERTIA AND EQUILIBRIUM: NEWTON’S 
FIRST LAW OF MOTION

In 1687, Isaac Newton (1643–1727) published one of the greatest scientific works of 
all time, his Philosophiae Naturalis Principia Mathematica (or Principia for short). 
The Latin title translates as The Mathematical Principles of Natural Philosophy. In 
the Principia, Newton stated three laws of motion that form the basis of classical 
mechanics. These laws describe how one or more forces acting on an object affect its 
motion and how the forces that interacting objects exert on one another are related.

Together with his law of universal gravitation, Newton’s laws of motion showed 
for the first time that the motion of the heavenly bodies (the Sun, the planets, and 
their satellites) and the motion of earthly bodies can be understood using the same 
physical principles. To pre-Newtonian thinkers, it seemed that there must be two dif-
ferent sets of physical laws: one set to describe the motion of the heavenly bodies, 
thought to be perfect and enduring, and another to describe the motion of earthly 
bodies that always come to rest.

Newton’s First Law of Motion

Newton’s first law says that an object acted on by zero net force moves in a straight 
line with constant speed, or, if it is at rest, remains at rest. Using the concept of the 
velocity vector, which is a measure of both the speed and the direction of motion of 
an object, we can state the first law:

Newton’s First Law of Motion

An object’s velocity vector v→ remains constant if and only if the net force acting 
on the object is zero.
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This concise statement of Newton’s first law includes both the case of an object at 
rest (zero velocity) and a moving object (nonzero velocity). Certainly it makes sense 
that an object at rest remains at rest unless some force acts on it to make it start to 
move. On the other hand, it may not be obvious that an object can continue to move 
without forces acting to keep it moving. In our experience, most moving objects come 
to rest because of forces that oppose motion, such as friction and air resistance. A 
hockey puck can slide the entire length of a rink with very little change in speed or 
direction because the ice is slippery (frictional forces are small). If we could remove 
all the resistive forces, including friction and air resistance, the puck would slide 
without changing its speed or direction at all.

No force is required to keep an object in motion if there are no forces opposing 
its motion. When a hockey player strikes the puck with his stick, the brief contact 
force exerted on the puck by the stick changes the puck’s velocity, but once the puck 
loses contact with the stick, it continues to slide along the ice even though the stick 
no longer exerts a force on it.

Inertia Newton’s first law is also called the law of inertia. In physics, inertia means 
resistance to changes in velocity. It does not mean resistance to the continuation of 
motion (or the tendency to come to rest). Newton based the law of inertia on the ideas 
of some of his predecessors, including Galileo Galilei (1564–1642) and Renè Descartes 
(1596–1650). In a series of clever experiments in which he rolled a ball up inclines 
of different angles, Galileo postulated that, if he could eliminate all resistive forces, 
a ball rolling on a horizontal surface would never stop (Fig. 4.8). Galileo made a 
brilliant conceptual leap from the real world with friction to an imagined, ideal world, 
free of friction. The law of inertia contradicted the view of the Greek philosopher 
Aristotle (384–322 b.c.e.). Almost 2000 years before Galileo, Aristotle had formulated 
his view that the natural state of an object is to be at rest; and, for an object to remain 
in motion, a force would have to act on it continuously. Galileo conjectured that, in 
the absence of friction and other resistive forces, an object in motion will continue to 
move even though no force is pushing or pulling it.

However, Galileo thought that the sustained motion of an object would be in a 
great circle around Earth. Shortly after Galileo’s death, Descartes argued that the 
motion of an object free of any forces should be along a straight line rather than a 
circle. Newton acknowledged his debt to Galileo, Descartes, and others when he wrote: 
“If I have seen farther, it is because I was standing on the shoulders of giants.”

Figure 4.8 (a) Galileo found that a ball rolled down an incline stops when it 
reaches almost the same height on the second incline. He decided that it would reach 
the same height if resistive forces could be eliminated. (b) As the second incline is 
made less and less steep, the ball rolls farther and farther before stopping. (c) If the 
second incline is horizontal and there are no resistive forces, the ball would never stop.

Start Stop

(a) h1 h2

Start Stop

(b) h1 h2

Start

Rolls on and on

(c)
h1
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Solution and Discussion Imagine scooping up a shovel-
ful of snow and swinging the shovel forward toward the side 
of the driveway. The snow and the shovel are both in motion. 
Then suddenly the forward motion of the shovel stops, but 
the snow continues to move forward because of its inertia; it 
slides forward off the shovel, to be pulled down to the ground 
by gravity. The snow does not stop moving forward when the 
forward force due to the shovel is removed.

This procedure works best with fairly dry snow. Wet 
sticky snow tends to cling to the shovel. The frictional force 
on the snow due to the shovel keeps it from moving forward 
and makes the job far more difficult. In this case, it might 
help to give the shovel a thin coating of cooking oil to reduce 
the frictional force the shovel exerts on the snow.

Conceptual Practice Problem 4.3 Inertia on the 
Subway

Emma, a college student, stands on a subway car, holding on 
to an overhead strap. As the train starts to pull out of the 
station, she feels thrust toward the rear of the car; as the train 
comes to a stop at the next station, she feels thrust forward. 
Explain the role played by inertia in this situation.

Conceptual Example 4.3

Snow Shoveling

The task of shoveling newly fallen snow from the driveway 
can be thought of as a struggle against the inertia of the snow. 
Without the application of a net force, the snow remains at 
rest on the ground. However, there is an important way that 
the inertia of the snow makes it easier to shovel. Explain.

Strategy Think about the physical motions used when 
shoveling snow. (If you live where there is no snow, think 
about shoveling gravel from a wheelbarrow to line a garden 
path.) In order for the shoveling to be facilitated by the 
snow’s inertia, there must be a time when the snow is moving 
on its own, without the shovel pushing it.

©Karl Weatherly/Getty Imgaes

CHECKPOINT 4.2

The Voyager 1 and Voyager 2 space probes were launched in 1977 to explore 
the large planets of the outer solar system (Jupiter, Saturn, Uranus, and  Neptune) 
and 48 of their moons (Fig. 4.9). The Voyager probes are now exploring the 
outer reaches of the solar system more than 14 billion kilometers from the 
Sun. They are heading out of the solar system at speeds of about 16 km/s, 
without being propelled by rockets or any other kind of engine. How can they 
continue to move at such high speeds for many years without an engine to 
drive them?

EVERYDAY PHYSICS DEMO

For an easy demonstration of inertia, place a quarter on top of an index card, 
or a credit card, balanced on top of a drinking glass (Fig. 4.10a). With your 
thumb and forefinger, flick the card so it flies out horizontally from under the 
quarter. What happens to the quarter? The horizontal force on the coin due 
to friction is small. With a negligibly small horizontal force, the coin tends to 
remain motionless while the card slides out from under it (Fig. 4.10b). Once 
the card is gone, gravity pulls the coin down into the glass (Fig. 4.10c).

Figure 4.9 Io, one of the 
moons of Jupiter, as photo-
graphed by Voyager 1 from a 
distance of 862 000 km.
Source: NASA-JPL
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An Object in Equilibrium Moves with Constant Velocity

When the net force acting on an object is zero, the object is said to be in translational 
equilibrium:

For an object in equilibrium,

 ∑F
→

= 0 (4-3)

Equilibrium conveys the idea that the forces are in balance; there is as much force 
upward as there is downward, as much to the right as to the left, and so forth. Translation 
refers to motion without rotation. Any object moving with a constant velocity, whether 
at rest or moving in a straight line at constant speed, is in translational equilibrium. A 
vector can only have zero magnitude if all of its components are zero, so

For an object in equilibrium,

 ∑Fx = 0 and ∑Fy = 0 (and ∑Fz = 0) (4-4)

In an equilibrium problem, choose x- and y-axes so the fewest number of force vectors 
have both x- and y-components. It is always good practice to make a conscious choice 
of axes and then to draw them in the FBDs and any other sketches that you make in 
solving the problem.

(a) (c)(b)

Figure 4.10 A demonstration of inertia. A similar demonstration that you may 
have seen is pulling a tablecloth out from under a table setting, leaving all the 
dishes and glasses in place. (If you want to try this, please practice first with plas-
tic dishes, not your grandmother’s china.)

Example 4.4

Sliding a Chest

In order to slide a chest that weighs 750 N across the floor at 
constant velocity, you must push it horizontally with a force 
of 450 N (Fig. 4.11). Find the contact force that the floor 
exerts on the chest.

Strategy The chest moves with constant velocity, so it is 
in equilibrium. The net force acting on it is zero. We will 
identify all the forces acting on the chest, draw an FBD, do a 
graphical addition of the forces, choose x- and y-axes, resolve 

Figure 4.11
Sliding a chest across 
the floor.

continued on next page
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the forces into their x- and y-components, and then set ΣFx = 0 
and ΣFy = 0.

Solution There are three forces acting on the chest. The 
gravitational force W⟶  has magnitude 750 N and is directed 
downward. Your push F

→
 has magnitude 450 N and its direction 

is horizontal. The contact force due to the floor C
→

 has un-
known magnitude and direction. However, remembering that 
the chest is in equilibrium, upward and downward force com-
ponents must balance, as must the horizontal force compo-
nents. Therefore, C

→
 must be roughly in the direction shown in 

the FBD (Fig. 4.12a), as is confirmed by adding the three 
forces graphically (Fig. 4.12b). The sum is zero because the 
tip of the last vector ends up at the tail of the first one.

Choosing the x-axis to the right and the y-axis up means 
that two of the three force vectors, W⟶  and F

→
, have one com-

ponent that is zero:

Wx = 0 and Wy = −750 N
Fx = 450 N and Fy = 0

Now we set the x- and y-components of the net force each 
equal to zero because the chest is in equilibrium.

 ∑Fx = Wx + Fx + Cx = 0 + 450 N + Cx = 0
 ∑Fy = Wy + Fy + Cy = −750 N + 0 + Cy = 0

These equations tell us the components of C
→

: Cx = −450 N 
and Cy = +750 N. Then the magnitude of the contact force 
is (Fig. 4.12c)

C = √C2
x + C2

y = √(−450 N)2 + (750 N)2 = 870 N

θ = tan−1
  

opposite
adjacent

= tan−1
  

750 N
450 N

= 59°

Example 4.4 continued

The contact force due to the floor is 870 N, directed 59° 
above the leftward horizontal (−x-axis).

Note that we didn’t need to know any details about 
contact forces to solve this problem. We explore contact 
forces in more detail in Section 4.6.

Discussion The x- and y-components of the contact force 
and its magnitude and direction are all reasonable based on 
the graphical addition, so we can be confident that we did 
not make an error such as a sign error with one of the com-
ponents.

Practice Problem 4.4 The Chest at Rest

Suppose the same chest is at rest. You push it horizontally 
with a force of 110 N but it does not budge. What is the 
contact force on the chest due to the floor during the time 
you are pushing?

(a)

W

F

C

(b)

W

F

C

(c)

y

Cx

CyC

x
θ

θ

Figure 4.12
(a) A free-body diagram for the chest; (b) graphical addition of the 
three forces showing that the sum is zero. (c) Finding the magni-
tude and direction of the contact force.

Application: Spring Scale

Using Newton’s first law, we can understand how a spring scale can be used to mea-
sure weight (the magnitude of the gravitational force exerted on an object). If a melon 
remains at rest in the pan of the scale, the net force on the melon must be zero. There 
are only two forces acting on the melon: gravity pulls down and the scale pulls up. 
Then these two forces must be equal in magnitude and opposite in direction. The scale 
measures the magnitude of the force it exerts on the melon, which is equal to the 
weight of the melon.

4.3 NET FORCE, MASS, AND ACCELERATION: NEWTON’S 
SECOND LAW OF MOTION

When a nonzero net force acts on an object, the object’s velocity changes. New-
ton’s second law says that the rate of change of the object’s velocity—that is, the 
object’s acceleration—is proportional to the net force acting on it and inversely 
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a

ΣF
a

ΣF

Larger mass
⇒ smaller
acceleration

Smaller mass
⇒ larger
acceleration

Figure 4.14 The same net force acting on two different objects produces accel-
erations in inverse proportion to the masses.

a

ΣF

a

ΣF

Larger net
force ⇒ larger
acceleration

Smaller net
force ⇒ smaller
acceleration

Figure 4.13 The acceleration 
of a baseball is proportional to 
the net force acting on it.

proportional to its mass. (See Appendix A.5 for a review of direct and inverse 
proportions.)

Newton’s Second Law of Motion

 a→ =
1
m
∑F

→
 or ∑F

→
= ma→ (4-5)

If the net force is zero, then the acceleration is zero, in accordance with Newton’s 
first law. If the net force is not zero, then the acceleration has the same direction as 
the net force. When the net force is constant, the acceleration is also constant. In 
component form, Newton’s second law is

 ∑Fx = max and ∑Fy = may (4-6)

If all the forces acting on an object are known, then Eq. (4-5) can be used to calculate 
its acceleration. Alternatively, sometimes we know the object’s acceleration but we 
have incomplete information about the forces acting on it; then Eq. (4-5) provides 
information about the unknown forces.

SI Unit of Force

The SI unit of force, the newton, is defined so that a net force of 1 N gives a 1 kg 
mass an acceleration of 1 m/s2:

 1 N = 1 kg · m/s2 (4-7)

Defining the unit of force in this way makes it possible to write Eqs. (4-5) and (4-6) 
without needing a constant of proportionality to convert between the force unit and 
kg · m/s2.

What Is Mass?

The acceleration of an object is proportional to the net force on it and is in the same 
direction (Fig. 4.13). A larger net force causes a more rapid change in the velocity 
vector. Newton’s second law also says that the acceleration is inversely proportional 
to the object’s mass. The same net force acting on two different objects causes a 
smaller acceleration on the object with greater mass (Fig. 4.14). Mass is a measure 
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of an object’s inertia—the amount of resistance to changes in velocity. Newton’s 
second law serves as our definition of mass.

In everyday language mass and weight are sometimes used as synonyms, but 
in physics, mass and weight are different physical properties. The mass of an 
object is a measure of its inertia, but its weight is the magnitude of the gravita-
tional force acting on it. Imagine taking a shuffleboard puck to the Moon. Since 
the Moon’s surface gravity is weaker than Earth’s, the puck’s weight would be 
smaller on the Moon, but the puck’s mass would be the same as on Earth. Ignor-
ing the effects of friction, an astronaut playing shuffleboard on the Moon would 
have to exert the same horizontal force on the puck as on Earth to give it the 
same acceleration (Fig. 4.15).

N

FC

W

(b)

FΣ

N
FC

W

(d)

Earth Moon

(a) (c)

FΣ

a a

Figure 4.15 An astronaut playing shuffleboard on (a) Earth and (c) the Moon. 
FBDs for a puck of mass m being given the same push (the contact force F

→
C) on a 

frictionless court on (b) Earth and (d) the Moon. The acceleration (a→) of the puck 
must be the same since the mass of the puck is the same: ΣF

→
= F

→
C = ma→.

N

FC

W

(b)

FΣ

N
FC

W

(d)

Earth Moon

(a) (c)

FΣ

a a
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4.4 INTERACTION PAIRS: NEWTON’S  
THIRD LAW OF MOTION

In Section 4.1, we learned that forces always exist in pairs. Every force is part 
of an interaction between two objects and each of the interacting objects exerts 
a force on the other. We call the two forces an interaction pair; each force is 
the interaction partner of the other. When you push open a door, the door 
pushes you. When two cars collide, each exerts a force on the other. Note that 
interaction partners always act on different objects—the two objects that are 
interacting.

Newton’s third law of motion says that interaction partners always have the same 
magnitude and are in opposite directions.

Newton’s Third Law of Motion

In an interaction between two objects, each object exerts a force on the other. 
These two forces are equal in magnitude and opposite in direction.

Equivalently, we can write

 F
→

BA = −F
→

AB (4-8)

In Eq. (4-8), F
→

BA is the force exerted on B by A and F
→

AB is the force exerted on A by B. 
The negative sign indicates that the forces have opposite directions.

Do not assume that Newton’s third law is involved every time two forces happen 
to be equal and opposite—it ain’t necessarily so! You will encounter many situations 
in which two equal and opposite forces act on a single object. These forces cannot be 
interaction partners because they act on the same object. Interaction partners act on 
different objects, one on each of the two objects that are interacting. Note also that 
interaction partners are always of the same type (both gravitational, or both magnetic, 
or both frictional, etc.).

We will use Newton’s third law frequently when analyzing forces. For instance, 
in Conceptual Example 4.9, Newton’s third law is used to analyze forces that act when 
a horse pulls a sleigh.

Earth orbiting the satellite? Newton’s third law says that the 
interaction partners are equal in magnitude, but does not say 
that these two forces have equal effects. The effect of a net 
force on an object’s motion depends on the object’s mass. 
These two forces of equal magnitude have vastly different 
effects due to the great discrepancy between the masses of 
Earth and the satellite.

On the other hand, if a massive planet orbits a star in a 
relatively small orbit, the gravitational force that the planet 
exerts on the star can make the star wobble enough to be 
observed. The wobble enables astronomers to discover planets 
orbiting stars other than the Sun. The planets do not reflect 
enough light toward Earth to be seen, but their presence can 
be inferred from the effect they have on the star’s motion.

Conceptual Example 4.5

An Orbiting Satellite

Earth exerts a gravitational force on an orbiting communica-
tions satellite. What is the interaction partner of this force?

Strategy The question concerns a gravitational interac-
tion between two objects: Earth and the satellite. In this 
interaction, each object exerts a gravitational force on the 
other.

Solution The interaction partner is the gravitational force 
exerted on Earth by the satellite.

Discussion Does the satellite really exert a force on Earth 
with the same magnitude as the force Earth exerts on the 
satellite? If so, why does the satellite orbit Earth rather than 

continued on next page
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Figure 4.16 Two children 
fighting over a toy.
©Zabavna/Shutterstock

CHECKPOINT 4.4

In Fig. 4.16, two children are pulling on a toy. If they are exerting equal and 
opposite forces on the toy, are these two forces interaction partners? Why or 
why not?

EVERYDAY PHYSICS DEMO

The next time you go swimming, notice that you use Newton’s third law to 
get the water to push you forward. When you push down and backward on 
the water with your arms and legs, the water pushes up and forward on you. 
The various swimming strokes are devised so that you exert as large a force 
as possible backward on the water during the power part of the stroke, and 
then as small a force as possible forward on the water during the return part 
of the stroke. Notice a similar effect when you are walking, skating, or skiing. 
To get the ground to push you forward, your feet push backward on the ground. 
Conceptual Example 4.9 explores these forces in more detail.

Internal and External Forces

When we say that a soccer ball interacts with Earth (gravity), with a player’s foot, 
and with the air, we are treating the ball as a single entity. But the ball really consists 
of an enormous number of protons, neutrons, and electrons, all interacting with each 
other. The protons and neutrons interact with each other to form atomic nuclei; the 
nuclei interact with electrons to form atoms; interactions between atoms form mole-
cules; and the molecules interact to form the structure of the thing we call a soccer 
ball. It would be difficult to have to deal with all of these interactions to predict the 
motion of a soccer ball.

Defining a System Let us call the set of particles that constitute the soccer ball a 
system. Once we have defined a system, we can classify all the interactions that affect 
the system as either internal or external to the system. For an internal interaction, 
both interacting objects are part of the system. When we add up all the forces acting 
on the system to find the net force, every internal interaction contributes two forces—
an interaction pair—that always add to zero. For an external interaction, only one of 
the two interaction partners is exerted on the system. The other partner is exerted on 
an object outside the system and does not contribute to the net force on the system. 
Therefore, to find the net force on the system, we can ignore all the internal forces 
and just add the external forces.

The insight that internal forces always add to zero is particularly powerful 
because the choice of what constitutes a system is completely arbitrary. We can 
choose any set of objects and define it to be a system. In one problem, it may be 
convenient to think of the soccer ball as a system; in another, we may choose a 

Conceptual Practice Problem 4.5 Interaction 
 Partner of a Surface Contact Force

In Example 4.4, the contact force exerted on the chest by the 
floor was 870 N, directed 59° above the leftward horizontal 

Conceptual Example 4.5 continued

(−x-axis). Describe the interaction partner of this force—in 
other words, what object exerts it on what other object? 
What are the magnitude and direction of the interaction 
partner?
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system consisting of both the soccer ball and the player’s foot. The second choice 
might be useful if we do not have detailed information about the interaction between 
the foot and the ball.

4.5 GRAVITATIONAL FORCES

Newton’s Law of Universal Gravitation

Now we turn our attention to learning about a few forces in more detail, beginning 
with gravity. According to Newton’s law of universal gravitation, any two objects 
exert gravitational forces on each other that are proportional to the masses (m1 and m2) 
of the two objects and inversely proportional to the square of the distance (r) between 
their centers. (See Appendix A.5 for a review of direct and inverse proportions.) 
Strictly speaking, the law of gravitation as presented here applies only to point par-
ticles and symmetrical spheres. (The point particle is a common model in physics 
used when the size of an object is negligibly small and the internal structure is irrel-
evant.) Nevertheless, the law of gravitation is approximately true for any two objects 
if the distance between their centers is large compared with their sizes.

In mathematical language, the magnitude of the gravitational force is written in 
Eq. (4-9):

Magnitude of the Gravitational Force

 F =
Gm1m2

r2  (4-9)

The constant of proportionality (G = 6.674 × 10−11 N · m2/kg2) is called the universal 
gravitational constant. Equation (4-9) is only part of the law of universal gravitation 
because it gives only the magnitudes of the gravitational forces that each object exerts 
on the other. The directions are equally important: each object is pulled toward the 
other’s center (Fig. 4.17). In other words, gravity is an attractive force. The forces on 
the two objects are equal in magnitude and the directions are opposite, as they must 
be since they form an interaction pair.

Gravitational forces exerted by ordinary objects on each other are so small as to 
be negligible in most cases (see Practice Problem 4.6). Gravitational forces exerted 
by Earth, on the other hand, are much larger due to Earth’s large mass.

Earth

Moon
Gravitational force
exerted on Earth
by the Moon

Equal magnitudes, opposite directions

Gravitational force
exerted on the Moon
by Earth

Figure 4.17 Gravity is always an attractive force. The force that each body exerts 
on the other is equal in magnitude, even though the masses may be very different. 
The force exerted on the Moon by Earth is of the same magnitude as the force 
exerted on Earth by the Moon. The directions are opposite.
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same in the two cases, so it is efficient to write a ratio of the 
weights and let those factors cancel out.

Solution The ratio of your weight in the airplane to your 
weight on the ground is

W2

W1
=

GMEm

r2
2

GMEm

r2
1

=
r2

1

r2
2

=
RE

2

(RE + h)2 =
1

(1 + h/RE)2

=
1

(1 + 0.001 0047)2 = 0.9980

Since 0.9980 = 1 − 0.0020 and 0.0020 = 0.20/100, your  wei ght 
decreases by 0.20%. (See Percentages in Appendix A.5.)

Discussion Although 6400 m may seem like a significant 
altitude to us, it’s a small fraction of Earth’s radius (0.10%), 
so the weight change is a small percentage. When judging 
whether a quantity is small or large, always ask: “Small (or 
large) compared to what?”

Practice Problem 4.6 A Creative Defense

After an automobile collision, one driver claims that the 
gravitational force between the two cars caused the collision. 
Estimate the magnitude of the gravitational force exerted by 
one car on another when they are driving side-by-side in 
parallel lanes and comment on the driver’s claim.

Example 4.6

Weight at High Altitude

When you are in a commercial airliner cruising at an altitude 
of 6.4 km, by what percentage has your weight (as well as 
the weight of the airplane) changed compared with your 
weight on the ground?

Strategy Your weight is the magnitude of Earth’s gravita-
tional force exerted on you. Newton’s law of universal gravi-
tation gives the magnitude of the gravitational force at a 
distance r from the center of Earth. For your weight on the 
ground W1, we can use the mean radius of Earth RE (listed in 
Appendix B.6) as the distance between Earth’s center and 
you: r1 = RE = 6.37 × 106 m (Fig. 4.18). At an altitude of 
h = 6.4 × 103 m above the surface, your weight is W2 and 
your distance from Earth’s center is r2 = RE + h. Your mass 
m, the mass of Earth ME (= 5.97 × 1024 kg), and G are the 

Earth

h

r

RE

Figure 4.18
The gravitational force depends 
on the distance r to the Earth’s 
center. At an altitude h,  
r = RE + h.

Gravitational Field Strength

For an object near Earth’s surface, the distance between the object and Earth’s cen-
ter is very nearly equal to Earth’s mean radius, RE = 6.37 × 106 m. The mass of 
Earth is ME = 5.97 × 1024 kg, so the weight of an object of mass m near Earth’s 
surface is

 W =
GMEm

R2
E

= m(
GME

R2
E

) (4-10)

Notice that for objects near Earth’s surface, the constants in the parentheses are always 
the same and the weight of the object is proportional to its mass. Rather than recalculate 
that combination of constants over and over, we call the combination the gravitational 
field strength g near Earth’s surface:

 g =
GME

R2
E

=
6.674 × 10−11 N · m2 · kg−2 × (5.97 × 1024 kg)

(6.37 × 106 m)2 ≈ 9.8 N/kg (4-11)

The units newtons per kilogram reinforce the conclusion that weight is proportional 
to mass: g tells us how many newtons of gravitational force are exerted on an object 
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for every kilogram of the object’s mass. The weight of a 1.0 kg object near Earth’s 
surface is 9.8 N (2.2 lb). Using g, the weight of an object of mass m near Earth’s 
surface is usually written

Relationship between mass and weight
 W = mg (4-12)

In vector form:
 W⟶ = mg→ (4-13)

In Eq. (4-13), W⟶  stands for the gravitational force and g→ is called the gravitational 
field; the direction of both is downward. The italic (scalar) symbol g is the magnitude 
of a vector, so its value is never negative.

Variations in Earth’s Gravitational Field Earth is not a perfect sphere; it is slightly 
flattened at the poles. Since the distance from the surface to the center of Earth is 
smaller there, the field strength at sea level is greatest at the poles (9.832 N/kg) and 
smallest at the equator (9.814 N/kg). Altitude also matters; as you climb above sea 
level, your distance from Earth’s center increases and the field strength decreases. Tiny 
local variations in the field strength are also caused by geologic formations. On top of 
dense bedrock, g is a little greater than above less dense rock. Geologists and geo-
physicists measure these variations to study Earth’s structure and also to locate deposits 
of various minerals, water, and oil. The device they use, a gravimeter, is essentially a 
mass hanging on a spring. As the gravimeter is carried from place to place, the exten-
sion of the spring increases where g is larger and decreases where g is smaller. The 
mass hanging from the spring does not change, but its weight does (W = mg).

Furthermore, due to Earth’s rotation, the effective value of g that we measure in a 
coordinate system attached to Earth’s surface is slightly less than the true value of the 
field strength. This effect is greatest at the equator, where the effective value of g is 
9.784 N/kg, about 0.3% smaller than the true value of g. The effect gradually decreases 
with latitude to zero at the poles. We learn more about this effect in Chapter 5.

The most important thing to remember from this discussion is that, unlike G, g 
is not a universal constant. The value of g is a function of position. Near Earth’s 
surface, the variations are small, so we can adopt an average value g = 9.80 N/kg as 
a default.

Gravitational Field and Free-Fall Acceleration

An object in free fall is assumed to have only one force acting on it: gravity. Other 
forces, such as air resistance, must be negligibly small for this approximation to be 
valid. We can write the gravitational force on the object as W⟶ = mg→, where the 
gravitational field vector g→ has magnitude g and is directed downward (in the direc-
tion of the gravitational force). Applying Newton’s second law, we have
 F

→
net = mg→ = ma→ (4-14)

Dividing by the mass yields
 a→ = g→ (4-15)
Therefore, the acceleration of an object in free fall is g→ regardless of the object’s 
mass. Since 1 N = 1 kg · m/s2, 9.80 N/kg = 9.80 m/s2—the magnitude of the free-fall 
acceleration near Earth’s surface has average value 9.80 m/s2.

More massive objects have the same free-fall acceleration as less massive objects. 
True, a more massive object is harder to accelerate: the acceleration of an object 
subjected to a given force is inversely proportional to its mass. However, the stronger 
gravitational force on a more massive object compensates for its greater inertia, giving 
it the same free-fall acceleration as a less massive object.
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Gravitational Field Strength on Other Planets

Equation (4-12) can be used to find the weight of an object at or above the surface 
of any planet or moon, but the value of g will be different due to the different mass 
M of the planet or moon and the different distance r from the planet’s center:

 g =
GM

r2  (4-16)

For instance, by substituting the mass and radius of Mars into Eq. (4-16), we find 
that g = 3.7 N/kg on the surface of Mars.

CHECKPOINT 4.5

If you climb Mt. McKinley, what happens to the weight of your gear? What hap-
pens to its mass?

4.6 CONTACT FORCES

We have already solved some problems involving forces exerted between two solid 
objects in contact. Now we look at contact forces in more detail.

Normal Force

A contact force perpendicular to the contact surface that prevents two solid objects from 
passing through one another is called the normal force. (In geometry, the word normal 
means perpendicular.) Consider a book resting on a horizontal table surface. The normal 
force due to the table must have just the right magnitude to keep the book from falling 
through the table. If no other vertical forces act, the normal force on the book is equal 
in magnitude to the book’s weight because the book is in equilibrium (Fig. 4.19a).

According to Newton’s third law, two objects in contact exert equal and oppo-
site normal forces on one another; each pushes the other away. In our example, a 

Converting to pounds, we find
W = 3.43 N × 0.2248 lb/N = 0.771 lb

The figs weigh 3.4 N or 0.77 lb.

Discussion This is the weight of the figs at a location 
where g has its average value of 9.80 N/kg. The figs would 
weigh a little more in the northern city of St. Petersburg, 
Russia, where g is larger, and a little less in Quito, Ecuador, 
where g is smaller.

Practice Problem 4.7 Figs on the Moon

What would those figs weigh on the surface of the Moon, 
where g = 1.62 N/kg?

Example 4.7

“Weighing” Figs in Kilograms

In most countries other than the United States, produce is 
sold in mass units (grams or kilograms) rather than in force 
units (pounds or newtons). The scale still measures a force, 
but the scale is calibrated to show the mass of the produce 
instead of its weight. What is the weight of 350 g of fresh 
figs, in newtons and in pounds?

Strategy Weight is mass times the gravitational field 
strength. We will assume g = 9.80 N/kg. The weight in 
newtons can be converted to pounds using the conversion 
factor 1 N = 0.2248 lb.

Solution The weight of the figs in newtons is

W = mg = 0.35 kg × 9.80 N/kg = 3.43 N

CONNECTION:

In Example 4.4, we resolved 
the contact force on a sliding 
chest into components per-
pendicular to and parallel to 
the contact surface. It is often 
convenient to think of these 
components as two separate 
but related contact forces: the 
normal force and the 
frictional force.
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downward normal force is exerted on the table by the book. In everyday language, 
we might say that the table “feels the book’s weight.” That is not an accurate state-
ment in the language of physics. The table cannot “feel” the gravitational force on 
the book; the table can only feel forces exerted on the table. What the table does 
“feel” is the normal force—a contact force—exerted on the table by the book.

If the table’s surface is horizontal, the normal force on the book will be 
vertical and equal in magnitude to the book’s weight. If the surface of the table 
is not horizontal, the normal force is not vertical and is not equal in magnitude 
to the weight of the book. Remember that the normal force is perpendicular to 
the contact surface (Fig. 4.19b). Even on a horizontal surface, if there are other 
vertical forces acting on the book, then the normal force is not equal in magnitude 
to the book’s weight (Fig. 4.19c). Never assume anything about the magnitude 
of the normal force. In general, we can figure out what the magnitude of the 
normal force must be in various situations if we have enough information about 
other forces.

What Causes Normal Forces How does the table “know” how hard to push on 
the book? First imagine putting the book on a bathroom scale instead of the table. A 
spring inside the scale provides the upward force. The spring “knows” how hard to 
push because, as it is compressed, the force it exerts increases. When the book reaches 
equilibrium, the spring is exerting just the right amount of force, so there is no ten-
dency to compress it further. The spring is compressed until it pushes up with a force 
equal to the book’s weight. If the spring were stiffer, it would exert the same upward 
force but with less compression.

The forces that bind atoms together in a rigid solid, like the table, act like 
extremely stiff springs that can provide large forces with little compression—so little 
that it’s usually not noticed. The book makes a tiny indentation in the surface of the 
table (Fig. 4.20); a heavier book would make a slightly larger indentation. If the book 
were to be placed on a soft foam surface, the indentation would be much more 
noticeable.

CHECKPOINT 4.6

Your laptop is resting on the surface of your desk, which stands on four legs 
on the floor. Identify the normal forces acting on the desk and give their 
directions.

Book

Normal force and weight
equal in magnitude

Normal force and weight not equal in magnitude

W

N

(a)

W

N

W

N

(b) (c)

F

Figure 4.19 (a) The normal force is equal in magnitude to the weight of the 
book; the two forces sum to zero. (b) On an incline, the normal force is smaller 
than the weight of the book and is not vertical. (c) If you push down on the book  
(F

→
) the normal force on the book due to the table is larger than the book’s weight.

Figure 4.20 The book com-
presses the “atomic springs” in 
the table until they push up on 
the book to hold it up. The 
slight decrease in the distance 
between atoms is greatly 
exaggerated here.
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Friction

A contact force parallel to the contact surface is called friction. We distinguish two 
types: static friction and kinetic (or sliding) friction. When the two objects are slip-
ping or sliding across one another, as when a loose shingle slides down a roof, the 
friction is kinetic. When no slipping or sliding occurs, such as between the tires of a 
car parked on a hill and the road surface, the friction is called static. Static friction 
acts to prevent objects from starting to slide; kinetic friction acts to try to make sliding 
objects stop sliding. Note that two objects in contact with one another that move with 
the same velocity exert static frictional forces on one another, because there is no 
relative motion between the two. For example, if a conveyor belt carries an air freight 
package up an incline and the package is not sliding, the two move with the same 
velocity and the friction is static.

Static Friction Frictional forces are complicated on the microscopic level and are 
an active field of current research. Despite the complexities, we can make some 
approximate statements about the frictional forces between dry, solid surfaces. In a 
simplified model, the maximum magnitude of the force of static friction fs,max that can 
occur in a particular situation is proportional to the magnitude of the normal force N 
acting between the two surfaces.

 fs,max ∝ N  (4-17)

If you want better traction between the tires of a rear-wheel-drive car and the road, 
it helps to put something heavy in the trunk to increase the normal force between the 
tires and the road.

The constant of proportionality is called the coefficient of static friction 
(symbol μs):

Maximum force of static friction
 fs,max = μsN  (4-18)

Since fs,max and N are both magnitudes of forces, μs is a dimensionless number. Its 
value depends on the condition and nature of the surfaces. Equation (4-18) provides 
only an upper limit on the force of static friction in a particular situation. The actual 
force of friction in a given situation is not necessarily the maximum possible. It tells 
us only that, if sliding does not occur, the magnitude of the static frictional force is 
less than or equal to this upper limit:

 fs ≤ μsN  (4-19)

Kinetic (Sliding) Friction For sliding or kinetic friction, the force of friction is 
only weakly dependent on the speed and is roughly proportional to the normal force. 
In the simplified model we will use, the force of kinetic friction is assumed to be 
proportional to the normal force and independent of speed:

Force of kinetic (sliding) friction
 fk = μkN  (4-20)

where fk is the magnitude of the force of kinetic friction and μk is called the coefficient 
of kinetic friction. The coefficient of static friction is always larger than the coeffi-
cient of kinetic friction for an object on a given surface. On a horizontal surface, a 
larger force is required to start the object moving than is required to keep it moving 
at a constant velocity.
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Direction of Frictional Forces Equations (4-17) through (4-20) relate only the 
magnitudes of the frictional and normal forces on an object. Remember that the 
frictional force is perpendicular to the normal force between the same two surfaces. 
Friction is always parallel to the contact surface, but there are many directions parallel 
to a given contact surface. Here are some rules of thumb for determining the direction 
of a frictional force.

∙ The static frictional force acts in whatever direction necessary to prevent the 
objects from beginning to slide or slip relative to each other.

∙ Kinetic friction acts in a direction that tends to make the sliding or slipping stop. 
If a book slides to the left along a table, the table exerts a kinetic frictional force 
on the book to the right, in the direction opposite to the motion of the book.

∙ From Newton’s third law, frictional forces come in interaction pairs. If the table 
exerts a frictional force on the sliding book to the right, the book exerts a fric-
tional force on the table to the left with the same magnitude.

Example 4.8

Coefficient of Kinetic Friction for the  
Sliding Chest

Example 4.4 involved sliding a 750 N chest to the right at con-
stant velocity by pushing it with a horizontal force of 450 N. We 
found that the contact force on the chest due to the floor had 
components Cx = −450 N and Cy = +750 N, where the x-axis 
points to the right and the y-axis points up (Fig. 4.21). What is 
the coefficient of kinetic friction for the chest-floor surface?

Strategy To find the coefficient of friction, we need to 
know what the normal and frictional forces are. They are the 

components of the contact force that are perpendicular and 
parallel to the contact surface. Since the surface is horizontal 
(in the x-direction), the x-component of the contact force is 
friction and the y-component is the normal force.

Solution The magnitude of the force due to sliding fric-
tion is fk = ∣Cx∣ = 450 N. The magnitude of the normal force 
is N = ∣Cy∣ = 750 N. Now we can calculate the coefficient of 
kinetic friction from fk = μkN:

μk =
fk

N
=

450 N
750 N

= 0.60

Discussion If we had written fk = Cx = −450 N, we would 
have ended up with a negative coefficient of friction. The 
coefficient of friction is a relationship between the magni-
tudes of two forces, so it cannot be negative.

Practice Problem 4.8 Chest at Rest

Suppose the same chest is at rest. You push to the right with 
a force of 110 N but the chest does not budge. What are the 
normal and frictional forces on the chest due to the floor 
while you are pushing? Explain why you do not need to know 
the coefficient of static friction to answer this question.

(a) (b) (c)

W

F

C

fk

W

N

F

fk

y

x

Nθ

θ

C

Figure 4.21
(a) FBD for the chest. C

→
 is the contact force due to the floor. 

(b) FBD in which the contact force is replaced by two perpendicu-
lar forces, the normal force N

→
 and the kinetic frictional force f

→
k. 

(c) Resolving C
→

 into normal and frictional components.

Conceptual Example 4.9

Horse, Sleigh, and Newton’s Third Law

A horse pulls a sleigh to the right at constant velocity on 
level ground (Fig. 4.22). The horse exerts a horizontal force 
F
→

sh on the sleigh. (The subscripts indicate the force on the 
sleigh due to the horse.) (a) Draw three FBDs, one for the continued on next page

horse, one for the sleigh, and one for the system comprising 
the horse and the sleigh. (b) Identify the interaction partner 
of each force acting on the sleigh.
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Strategy (a) In each FBD, we include all the external forces 
acting on that object or system. Here, the velocities of both the 
sleigh and the horse are constant, so the lengths of the vector 
arrows should be drawn to show that the net force is zero. (b) 
For a force exerted on the sleigh by X, its interaction partner 
must be the same kind of force exerted on X by the sleigh.

Solution and Discussion (a) If we treat the normal and 
frictional forces as distinct forces, then four forces act on the 
sleigh:

 ∙ F
→

sh, the force exerted by the horse;
 ∙ F

→
sE, the gravitational force due to Earth (i.e., the weight 

of the sleigh);
 ∙ N

→
sg, the normal force due to the ground; and

 ∙ f
→

sg, the kinetic (sliding) friction force due to the ground.

F
→

sh is to the right, the gravitational force is downward, the 
normal force is perpendicular to and away from the contact 
surface (in this case, upward), and the kinetic frictional force 
is parallel to the surface and opposes the sliding (and is 
therefore to the left). The net force is zero, so Fsh = fsg and 
Nsg = FsE. Figure 4.23 shows the FBD for the sleigh.
  Similarly, four forces are acting on the horse:

 ∙ F
→

hs, the force exerted by the sleigh;
 ∙ F

→
hE, the gravitational force (i.e., the weight of the 

horse);

 ∙ N
→

hg, the normal force; and
 ∙ f

→
hg, the frictional force.

F
→

hs and F
→

sh are interaction partners, so they are equal in mag-
nitude and opposite in direction. Again, the net force is zero, 
so the four forces must add to zero. Figure 4.24 is the FBD for 
the horse. Notice that since F

→
hs is to the left, the frictional 

force f
→

hg must be to the right. Here’s a case where thinking 
that “friction opposes the motion” can be misleading. f

→
hg is 

static friction because the horse’s hoof is not sliding along the 
ground. It is preventing the horse’s hooves from sliding back-
ward to the left, as they would if there were no friction—
imagine what would happen if the ground were too icy. 
Therefore, the direction of f

→
hg is to the right.

In an FBD for the horse + sleigh system, we want to 
draw the external forces acting on the system. The forces that 
the horse and sleigh exert on each other are internal to this 
system, so we omit them. (An internal force always has an 
interaction partner that is also internal to the system; these 
interaction partners always add to zero.) The other six forces 
acting either on the horse or on the sleigh are external, so we 
show them in the FBD (Fig. 4.25).

(b)
Force Exerted on Sleigh Interaction Partner

Force on the sleigh due to the 
horse F

→
sh

Force on the horse due to the 
sleigh F

→
hs

Gravitational force on the sleigh 
due to Earth F

→
sE

Gravitational force on Earth due to 
the sleigh F

→
Es

Normal force on the sleigh due to 
the ground N

→
sg

Normal force on the ground due to 
the sleigh F

→
gs

Kinetic friction on the sleigh due 
to the ground f

→
sg

Kinetic friction on the ground due 
to the sleigh f

→
gs

fsg

FsE

Nsg

Fsh

s = sleigh
g = ground
h = horse
E = Earth

Figure 4.23
Free-body diagram for the sleigh. The subscripts 
identify the objects involved in the interaction. For 
example, F

→
sh stands for the force on the sleigh due 

to the horse. Since the FBD is for the sleigh, we 
include only forces exerted on the sleigh, so the 
first subscript is always “s.”

FhE

Nhg

fhgfsg

FsE

Nsg

Figure 4.25
Free-body diagram for the horse + sleigh 
system. The internal forces F

→
sh and F

→
hs are 

omitted—they form an interaction pair, so 
they add to zero.

FhE

Fhs

Nhg

fhg
Figure 4.24
Free-body diagram for the horse. F

→
hs, the 

force exerted on the horse by the sleigh, is the 
interaction partner of F

→
sh in Fig. 4.23, the 

force exerted on the sleigh by the horse. 
Therefore, F

→
hs = −F

→
sh.

v (constant)

Figure 4.22
Horse pulling a sleigh at constant velocity.

continued on next page

Conceptual Example 4.9 continued
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Microscopic Origin of Friction What looks like the smooth surface of a solid to 
the unaided eye is generally quite rough on a microscopic scale (Fig. 4.26). Friction 
is caused by atomic or molecular bonds between the “high points” on the surfaces of 
the two objects. These bonds are formed by microscopic electromagnetic forces that 
hold the atoms or molecules together. If the two objects are pushed together harder, 
the surfaces deform a little more, enabling more “high points” to bond. That is why 
the force of kinetic friction and the maximum force of static friction are proportional 
to the normal force. A bit of lubricant drastically decreases the frictional forces, 
because the two surfaces can float past one another without many of the “high points” 
coming into contact.

In static friction, when these molecular bonds are stretched, they pull back harder. 
The bonds have to be broken before sliding can begin. Once sliding begins, molecu-
lar bonds are continually made and broken as “high points” come together in a hit-
or-miss fashion. These bonds are generally not as strong as those formed in the 
absence of sliding, which is why μs > μk.

For dry, solid surfaces, the amount of friction depends on how smooth the sur-
faces are and how many contaminants are present on the surface. Does polishing two 
steel surfaces decrease the frictional forces when they slide across each other? Not 
necessarily. In an extreme case, if the surfaces are extremely smooth and all surface 
contaminants are removed, the steel surfaces form a “cold weld”—essentially, they 
become one piece of steel. The atoms bond as strongly with their new neighbors as 
they do with the old.

Application: Equilibrium on an Inclined Plane

Suppose we wish to pull a large box up a frictionless incline to a loading dock plat-
form. Figure 4.27 shows the three forces acting on the box. F

→
a represents the applied 

force with which we pull. The force is parallel to the incline. If we choose the x- and 
y-axes to be horizontal and vertical, respectively, then two of the three forces have 

Figure 4.26 Friction is 
caused by bonds between atoms 
that form between the “high 
points” of the two surfaces that 
come into contact.

(a) (b) (c)

Fa
d

W

h

N

ϕ

W

N

Fa

W

N
Fa

Figure 4.27 (a) Forces acting on a box of mass m as it is pulled up an incline. (b) 
Free-body diagram for the box. (c) Graphical addition showing that, if the box moves 
with constant velocity, the net force is zero.

Practice Problem 4.9 Passing a Truck

A car is moving north and speeding up to pass a truck on a 
level road. The combined contact force exerted on the road by 
all four tires has vertical component 11.0 kN downward and 

horizontal component 3.3 kN southward. The drag force ex-
erted on the car by the air is 1.2 kN southward. (a) Draw the 
FBD for the car. (b) What is the weight of the car?  
(c) What is the net force acting on the car?

Conceptual Example 4.9 continued
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both x- and y-components. On the other hand, if we choose the x-axis parallel to the 
incline and the y-axis perpendicular to it, then only one of the three forces has both 
x- and y-components (the gravitational force).

With axes chosen, the weight of the box is then resolved into two perpendicular 
components (Fig. 4.28a). To find the x- and y-components of the gravitational force 
W⟶ , we must determine the angle that W⟶  makes with one of the axes. Appendix A.6 
is a review of geometry that may help with this situation; Figure A.8 is especially 
relevant. Let us label the angle between the ramp and the vertical and the angle 
between the gravitational force and the −y-axis α and β, respectively. These angles 
are labeled in Fig. 4.28a. Using a right triangle (Fig. 4.28b), we can conclude that 
α  + ϕ = 90° (the interior angles of a triangle always add up to 180°). Back in 
Fig.  4.28a, because the x- and y-axes are perpendicular, we see that α + β = 90°. 
Therefore, β = ϕ.

The y-component of W⟶  is perpendicular to the surface of the incline. From 
Fig. 4.28a, the side parallel to the y-axis is adjacent to angle β, so

 cos β =
adjacent

hypotenuse
=

∣Wy∣
∣W∣

 (4-21)

Since Wy is in the −y-direction and W = mg,
 Wy = −mg cos β = −mg cos ϕ (4-22)
The x-component of the weight tends to make the box slide down the incline (in the 
positive x-direction). Using the same triangle, we find
 Wx = +mg sin ϕ (4-23)

When the box is pulled with a force equal in magnitude to Wx up the incline (in 
the negative x-direction), it will slide up with constant velocity. The component of 
the box’s weight perpendicular to the incline is supported by the normal force N

→
 that 

pushes the box away from the incline. Figure 4.28c is an FBD in which the forces 
are represented by their x- and y-components, including their signs.

If the box is in equilibrium, whether at rest or moving along the incline at constant 
velocity, the force components along each axis sum to zero:
 ∑Fx = (−Fa) + mg sin ϕ = 0 (4-24)
and
 ∑Fy = N + (−mg cos ϕ) = 0 (4-25)
On an incline, the normal force is not equal in magnitude to the weight and it does 
not point straight up. If the applied force has magnitude mg sin ϕ, we can pull the 
box up the incline at constant velocity. If friction acts on the box, we must pull with 
a force greater than mg sin ϕ to slide the box up the incline at constant velocity.

Figure 4.28 (a) Resolving the weight into components parallel to and perpendic-
ular to the incline. (b) A right triangle shows that α + ϕ = 90°. (c) Free-body dia-
gram for the box in which all of the forces have been replaced by their x- and 
y-components.

Wy = –mg cos ϕ

Wx = mg sin ϕ
–Fa

N

+y

+x

(c)(b)

ϕ

α

y

x

(a)

W
Wx

Wy
β

α

ϕ
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is θ, the angle that the ramp makes with the horizontal. (See 
also Fig. A.8.) Now the gravitational force W→  can be resolved 
into its components: Wy = −mg sin θ and Wx = −mg cos θ 
(Fig. 4.30c). We then draw the FBD with W→ replaced by its 
components (Fig. 4.30d).

(a) Suppose that the safe is initially at rest. As the movers 
start to push, Fa gets larger and the force of static friction 
gets larger to “try” to keep the safe from sliding. Eventually, 
at some value of Fa, static friction reaches its maximum 
possible value μsN. If the movers continue to push harder, 
increasing Fa further, the force of static friction cannot 
increase past its maximum value μsN, so the safe starts to 
slide. The direction of the frictional force is along the incline 
and downward since friction is “trying” to keep the safe from 
sliding up the incline.

The normal force is not equal in magnitude to the weight 
of the safe. To find the normal force, sum the y-components 
of the forces:

∑Fy = N + (−mg cos θ) = 0

Then N = mg cos θ. The normal force is less than the weight 
since cos θ < 1.

Example 4.10

Pushing a Safe up an Incline

A new safe is being delivered to the First National Bank. It is 
to be placed in the wall at a height of 1.5 m above the floor. 
The delivery people have a portable ramp, which they plan 
to use to help them push the safe up and into position. The 
mass of the safe is 510 kg, the coefficient of static friction 
along the incline is μs = 0.42, and the coefficient of kinetic 
friction along the incline is μk = 0.33. The ramp forms an 
angle θ = 15° above the horizontal. (a) How hard do the 
movers have to push to start the safe moving up the incline? 
Assume that they push in a direction parallel to the incline. 
(b) To slide the safe up at a constant speed, with what 
magnitude force must the movers push?

Strategy (a) When the safe starts to move, its velocity is 
changing, so the safe is not in equilibrium. Nevertheless, to 
find the minimum applied force to start the safe moving, we 
can find the maximum applied force for which the safe 
remains at rest—an equilibrium situation. (b) The safe is in 
equilibrium as it slides with a constant velocity. Both parts 
of the problem can be solved by drawing the FBD, choosing 
axes, and setting the x- and y-components of the net force 
equal to zero.

Solution First we draw a diagram to show forces acting 
(Fig. 4.29). When the crate is in equilibrium, these forces 
must add to zero. Figure 4.30a is a free-body diagram for the 
crate. Figure 4.30b shows the graphical addition of the four 
forces giving a net force of zero.

Before resolving the forces into components, we must 
choose x- and y-axes. To use the coefficient of friction, we 
have to resolve the contact force on the safe due to the incline 
into components parallel and perpendicular to the incline—
friction and the normal force, respectively—rather than into 
horizontal and vertical components. Therefore, we choose x- 
and y-axes parallel and perpendicular to the incline so friction 
is along the x-axis and the normal force is along the y-axis.

We can follow the same process as in Figure 4.28 to find 
that the angle between the gravitational force and the −y-axis 

Fa

N

f
1.5 m

θ = 15° W

θ

Figure 4.29
Forces acting on the safe as it is moved up the incline.

continued on next page
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N

f

W

W
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f
N

(a) (b)

(d)(c)

+x 

+y
N

Fa–mg sin θ

Wx = –mg sin θ

Wy = –mg cos θ

–mg cos θ

–f+x 
θ

θ

W

Figure 4.30
(a) Free-body diagram for the safe. (b) If the safe is in equilibrium, 
the forces must add to give a zero net force. (c) Resolving the 
weight into x- and y-components. (d) An FBD in which the forces 
are represented by their x- and y-components, including signs.
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When the movers push with the largest force for which 
the safe does not slide,

∑Fx = Fax + fx + Wx = 0

The applied force is in the +x-direction, so Fax = +Fa. The 
frictional force has its maximum magnitude and is in  
the −x-direction, so fx = −fs,max = −μsN = −μsmg cos θ. From 
the FBD, Wx = −mg sin θ. Then,

∑Fx = Fa − μsmg cos θ − mg sin θ = 0

Solving for Fa gives
Fa = mg(μs cos θ + sin θ)

= 510 kg × 9.80 m/s2 × (0.42 × cos 15° + sin 15°)
= 3300 N

An applied force that exceeds 3300 N starts the box moving 
up the incline.

(b) Once the safe is sliding, the movers need only push hard 
enough to make the net force on the safe equal to zero if they 
want the safe to slide at constant velocity. We are now 
dealing with sliding friction, so the frictional force is now 
fx = −μkN = −μkmg cos θ.

∑Fx = Fax + fx + Wx

= Fa − μkmg cos θ − mg sin θ
= 0

Fa = mg(μk cos θ + sin θ)
= 510 kg × 9.80 m/s2 × (0.33 × cos 15° + sin 15°)
= 2900 N

The movers push with a force F
→

a of magnitude 2900 N 
directed up the incline. Despite the friction that opposes the 
safe’s motion, the force exerted by the movers is still less 
than what they would need to exert to lift the safe straight 
up (5000 N).

Discussion In (b), the expression Fa = mg (μk cos θ + sin θ) 
shows that the applied force up the incline has to balance the 
sum of two forces down the incline: the frictional force 
(μkmg cos θ) and the component of the gravitational force 
down the incline (mg sin θ). This balance of forces is shown 
graphically in the FBD (Fig. 4.30d).

Practice Problem 4.10 Smoothing the Infield Dirt

During the seventh-inning stretch of a baseball game, 
groundskeepers drag mats across the infield dirt to smooth 
it. A groundskeeper is pulling a mat at a constant velocity by 
applying a force of 120 N at an angle of 22° above the hori-
zontal. The coefficient of kinetic friction between the mat 
and the ground is 0.60. Find (a) the magnitude of the fric-
tional force between the dirt and the mat and (b) the weight 
of the mat.

Example 4.10 continued

EVERYDAY PHYSICS DEMO

To estimate the coefficient of static friction between a coin and the cover of 
a book, place the coin on the book and slowly lift the cover. Note the angle 
of the cover when the coin starts to slide. Explain how you can use this angle 
to find the coefficient of static friction. Can you devise an experiment to find 
the coefficient of kinetic friction?

Now try two different coins with different masses. Do they start to slide 
at about the same angle? If not, which one starts to slide first—the more 
massive coin or the less massive one?

4.7 TENSION

Consider a heavy chandelier hanging by a chain from the ceiling (Fig. 4.31a). The 
chandelier is in equilibrium, so the upward force on it due to the chain is equal in 
magnitude to the chandelier’s weight. With what force does the chain pull downward 
on the ceiling? The ceiling has to pull up with a force equal to the total weight of 
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(a) (b)

Force on ceiling
due to chain

Force on chandelier
due to chain Force pulling up

on top of link

Force pulling down
on bottom of link

Figure 4.31 (a) The chain pulls up on the chandelier at one end and pulls down 
on the ceiling at the other. If the weight of the chain itself is negligibly small, these 
forces are equal in magnitude, because the net force on the chain is zero. The mag-
nitude of these forces is the tension in the chain. (b) The chain is under tension. 
Each link is pulled in opposite directions by its neighbors.

the chain and the chandelier. The interaction partner of this force—the force the chain 
exerts on the ceiling—is equal in magnitude and opposite in direction. Therefore, if 
the weight of the chain is negligibly small compared with the weight of the chandelier, 
then the chain exerts forces of equal magnitude at its two ends. The forces at the ends 
would not be equal, however, if you grabbed the chain in the middle and pulled it up 
or down or if we could not neglect the weight of the chain. We can generalize this 
observation:

An ideal cord (or rope, string, tendon, cable, or chain) pulls in the direction of 
the cord with forces of equal magnitude on the objects attached to its ends as 
long as no external force is exerted on it anywhere between the ends. An ideal 
cord has zero mass and zero weight.

A single link of the chain (Fig. 4.31b) is pulled at both ends by the neighboring 
links. The magnitude of these forces is called the tension in the chain. Similarly, a 
little segment of a cord is pulled at both its ends by the tension in the neighboring 
pieces of the cord. If the segment is in equilibrium, then the net force acting on it is 
zero. As long as there are no other forces exerted on the segment, the forces exerted 
by its neighbors must be equal in magnitude and opposite in direction. Therefore, the 
tension has the same value everywhere and is equal to the force that the cord exerts 
on the objects attached to its ends.

What are the tensions in the upper and lower segments of the 
bowstring?

Example 4.11

Archery Practice

Figure 4.32 shows the bowstring of a bow and arrow just 
before it is released. The archer is pulling back on the mid-
point of the bowstring with a horizontal force of 162 N. 

continued on next page
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Strategy The tensions in the 
upper and lower segments might be 
unequal because the archer exerts an 
external force on the midpoint of the 
bowstring. Intuitively, if the force 
applied by the archer had a down-
ward component, we might expect 
the tension in the upper segment to 
be larger than the tension in the 
lower segment. Here, the applied 
force is horizontal and the archer 
pulls at the midpoint of the string, 
so perhaps the tensions are equal, 
but we don’t need to assume it.

We can apply the equilibrium 
condition to a short segment of 
bowstring that wraps around the ar-

cher’s fingers. We assume that the weight of that short seg-
ment is negligibly small compared to the other three external 
forces acting on it: one due to each of the upper and lower 
string segments and one due to the archer. We draw the FBD, 
choose coordinate axes, and apply the equilibrium condition: 
ΣFx = 0 and ΣFy = 0.

Solution Figure 4.33a is an FBD for the segment of bow-
string that wraps around the archer’s fingers. The two tension 
forces are labeled T

→
1 and T

→
2 and the applied force is F

→
a. 

Horizontal and vertical coordinate axes will be convenient 
because F

→
a is horizontal and because T

→
1 and T

→
2 make the 

same angle θ with the vertical.
To apply the equilibrium condition, we first find the x- 

and y-components of the forces. The applied force is hori-
zontal, so we need to draw triangles only for the two tension 
forces (Fig. 4.33b). The components are:

T1x = −T1 sin θ
T1y = +T1 cos θ
T2x = −T2 sin θ
T2y = −T2 cos θ

The conditions for equilibrium are

∑Fx = T1x + T2x + Fa = −T1 sin θ − T2 sin θ + Fa = 0 (1)
∑Fy = T1y + T2y = +T1 cos θ − T2 cos θ = 0 (2)

From Eq. (2), we can conclude that T1 = T2; the tensions in 
the upper and lower segments are equal. Using T for the 
tension, Eq. (1) becomes

−T sin θ − T sin θ + Fa = 0

Solving for T, we find:

T =
Fa

2 sin θ

We can find sin θ from the triangle in Fig. 4.33c:

sin θ =
opposite

hypotenuse
=

15 cm
72 cm

=
15
72

The tension is therefore

T =
162 N

2 × (15/72)
= 390 N

Discussion From Eq. (2), we see that if the angles that 
the upper and lower segments of the bowstring made with 
the vertical had been unequal, or if the force applied by the 
archer had not been horizontal, the tensions would not have 
necessarily been the same.

The expression T = Fa/(2 sin θ) can be evaluated for 
limiting values of θ to make sure that the expression is cor-
rect. As θ approaches 90°, the tension approaches

Fa

2 sin 90°
=

1
2

 Fa

That is correct because the archer would be pulling to the 
right with a force Fa, while each side of the bowstring would 
pull to the left with a force of magnitude T. For equilibrium, 
Fa = 2T or T = 1

2Fa.
As θ gets smaller, sin θ decreases and the tension 

increases (for a fixed value of Fa). That agrees with our 
intuition. The larger the tension, the smaller the angle the 
string needs to make in order to supply the necessary hori-
zontal force.

Example 4.11 continued

15 cm

162 N

72 cmθ

θ

Figure 4.32
The force applied to the 
bowstring by an archer. 
The upper and lower seg-
ments of the bowstring 
make the same angle θ 
with the vertical.

(a) (b) (c)

x

y

15 cm

72 cmθ

θ

θ

θ

θ

T1

T1x

T1y

T2y

T2x

Fa

T2

x

y

θ

θ

T1

T2

T1x

T1y

θ

T1

Figure 4.33
(a) FBD for a short segment of the bowstring drawn on horizontal 
and vertical coordinate axes. The angles labeled θ between the ten-
sion forces and the y-axis are the same as the angles labeled θ in 
Fig. 4.32 because alternate interior angles are equal (see Fig. A.8). 
(b) To find the x- and y- components of the tension forces, we draw 
a right triangle for each force with the force as hypotenuse and the 
sides parallel to the axes. (c) The angle θ can be found from the 
measurements in Fig. 4.32.

continued on next page
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Application: Tensile Forces in the Body Tensile forces are central in the study 
of animal motion, or biomechanics. Muscles are usually connected by tendons, one 
at each end of the muscle, to two different bones, which in turn are linked at a joint 
(Fig. 4.35). When the muscle contracts, the tension in the tendons increases, pulling 
on both of the bones.

tendon muscle

joint

tendon

Figure 4.35 A muscle contracts, increasing the tension in the attached tendons. 
The tendons exert forces on two different bones.

250 N
0.12 m

Eyebolt

6.00 m

Figure 4.34
Tightrope for balancing practice. What is the tension in the cable?

Example 4.11 continued

Practice Problem 4.11 Tightrope Practice

Jorge decides to rig up a tightrope in the backyard so his 
children can develop a good sense of balance (Fig. 4.34). For 
safety reasons, he positions a horizontal cable only 0.60 m 

above the ground. If the 6.00 m long cable sags by 0.12 m 
from its taut horizontal position when Denisha (weight 
250 N) is standing on the middle of it, what is the tension in 
the cable? Ignore the weight of the cable.
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EVERYDAY PHYSICS DEMO

Sit with your arm bent at the elbow with a heavy object on the palm of your 
hand. You can feel the contraction of the biceps muscle. With your other hand, 
feel the tendon that connects the biceps muscle to your forearm.

Now place your hand palm down on the desktop and push down. Now it 
is the triceps muscle that contracts, pulling up on the bone on the other side 
of the elbow joint. Muscles and tendons cannot push; they can only pull. The 
biceps muscle cannot push the forearm downward, but the triceps muscle can 
pull on the other side of the joint. In both cases, the arm acts as a lever.

Application: Ideal Pulleys A pulley can change the direction of the force exerted 
by a cord under tension. To lift something heavy, it is easier to stand on the ground 
and pull down on the rope than to get above the weight on a platform and pull up on 
the rope (Fig. 4.36).

An ideal pulley has no mass and turns with no friction. An ideal pulley exerts no 
forces on the cord that are tangent to the cord—it is not pulling in either direction along 
the cord. As a result, the tension of an ideal cord that runs through an ideal pulley is 
the same on both sides of the pulley. An ideal pulley changes the direction of the force 
exerted by a cord without changing its magnitude. As long as a real pulley has a small 
mass and negligible amount of friction, we can approximate it as an ideal pulley.

Look back at Example 4.1. The three cord segments are sections of a single cord 
wrapped around some pulleys. If these pulleys are ideal, the tension in the cord must 
be the same everywhere. At its lowest end, the cord holds up an object that weighs 
22.0 N. Since the object is in equlibrium, we know the tension must be 22.0 N.

F

(a) (b)

mg

T

Figure 4.36 (a) Using a 
pulley to lift a crate by pulling 
downward on a rope with force 
F
→

. (b) A free-body diagram for 
the crate. If the crate is in 
equilibrium, then the tension 
T must be equal to the weight 
of the crate mg.

draw the FBD for any or all of these objects and then apply 
the equilibrium condition. If the pulleys are ideal, the ten-
sion in the rope is the same on both sides of the pulley. 
Therefore, rope C—which is attached to the ceiling, passes 
around both pulleys, and is pulled downward at the other 
end—has the same tension throughout. Call the tensions in 
the three ropes TA, TB, and TC. To analyze the forces exerted 
on a pulley, we define our system so the part of the rope 
wrapped around the pulley is considered part of the pulley. 
Then there are two rope segments pulling on the pulley, each 
with the same tension.

Solution There are two forces acting on the engine: the 
gravitational force (1804 N, downward) and the upward pull 
of rope A. These must be equal and opposite (Fig. 4.38a), 
since the net force is zero. Therefore, TA = 1804 N.

The FBD for pulley L (Fig. 4.38b) shows rope A pulling 
down with a force of magnitude TA and rope C pulling up-
ward on each side. The rope has the same tension through-
out, so all forces labeled TC in Fig. 4.38b,c have the same 
magnitude. Since the net force is zero, we have

2TC = TA

TC = 1
2TA = 902.0 N

Example 4.12

A Two-Pulley System

A 1804 N engine is hauled upward at constant speed 
(Fig. 4.37). What are the tensions in the three ropes labeled 
A, B, and C? Assume the ropes and the pulleys labeled L and 
R are ideal.

Strategy The engine and pulley L move up at constant 
speed, so the net force on each of them is zero. Pulley R 
remains at rest, so the net force on it is also zero. We can 

1804 N

B

A

C

Pulley L

Pulley R

Figure 4.37
A system of pulleys used to raise a 
heavy engine.

continued on next page
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Figure 4.38c is the FBD for pulley R. Rope B pulls upward 
on it with a force of magnitude TB. On each side of the 
pulley, rope C pulls downward. The net force is zero if

TB = 2TC = 1804 N

Example 4.12 continued

4.8 APPLYING NEWTON’S LAWS

We can now apply Newton’s second law to a great variety of situations involving the 
forces we have encountered so far—gravity, contact forces, and tension. The following 
steps are helpful in most problems that involve Newton’s second law.

Problem-Solving Strategy for Newton’s Second Law

∙ Decide what objects (or systems of objects) will have Newton’s second law 
applied to them.

∙ Identify all the external forces acting on the object(s).
∙ Use Newton’s third law to relate the magnitudes and directions of interaction 

partners.
∙ Draw an FBD to show all the forces acting on the object(s).
∙ Choose a coordinate system. If the direction of the acceleration is known, 

choose axes so that the net force and the acceleration are along one of the 
axes.

∙ Find the net force by adding the forces as vectors.
∙ Use Newton’s second law to relate the net force to the acceleration.
∙ Relate the acceleration to the change in the velocity vector during a time 

interval of interest.

Example 4.13 illustrates how to use Newton’s second law to find unknown forces 
and the acceleration; it then uses the acceleration to find the change in velocity.

(b)(a) (c)

–TA–W

TA
y

TC TB

–TC

Pulley L Pulley R

TC

–TC

Figure 4.38
FBDs for the (a) engine, (b) pulley L, and (c) pulley R. The force 
arrows are labeled with their y-components, where the y-axis is up.

Discussion The engine is raised by pulling down on a 
rope—the pulleys change the direction of the applied force 
needed to lift the engine. In this case they also change the 
magnitude of the required force. They do that by making 
the  rope pull up on the engine twice, so the person pull-
ing  the rope only needs to exert a force equal to half the 
engine’s weight.

Practice Problem 4.12 System of Ropes, Pulleys, 
and Engine

Consider the entire collection of ropes, pulleys, and the 
engine to be a single system. Draw the FBD for this system 
and show that the net force on the system is zero. [Hint: 
Remember that only forces exerted by objects external to the 
system are included in the FBD.]

CONNECTION:

If the net force acting on an 
object is constant, then the 
object moves with constant 
acceleration. Then all of the 
techniques from Chapters 2 
and 3 for analyzing motion 
with constant acceleration 
can be applied.
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∑Fy = may = 0
N + F sin 40.0° − W = 0

We can solve this equation for the magnitude of the normal 
force. The magnitude of the gravitational force is W = mg, so

N = mg − F sin 40.0°
= (36.0 kg × 9.80 N/kg) − (65.0 N × sin 40.0°)
= 352.8 N − 41.8 N = 311 N

(b) The magnitude of the kinetic frictional force is
fk = μkN = 0.13 × 311 N = 40.43 N

Rounded to two significant figures, the frictional force is 40 N 
in the −x-direction (opposite the motion of the suitcase).

(c) The y-component of the acceleration is zero. To find the 
x-component, we apply Newton’s second law to the 
x-components of the forces acting on the suitcase:

∑Fx = +F cos 40.0° + (−fk)
= 49.79 N − 40.43 N = 9.36 N

ax =
∑Fx

m
=

9.36 N
36.0 kg

= 0.260 m/s2

Here we have replaced newtons per kilogram with the equiv-
alent meters per second squared, the usual way to write the 
SI units of acceleration. The acceleration is 0.3 m/s2 in the 
+x-direction.

(d) With constant ax,
Δvx = ax 

Δt

The suitcase starts from rest so vix = 0 and Δvx = vfx − vix = vfx. 
Then,

Δt =
vfx

ax
=

0.5 m/s
0.260 m/s2 = 2 s

Example 4.13

The Broken Suitcase

The wheels fall off Beatrice’s suitcase, so she ties a rope to it 
and drags it along the floor of the airport terminal (Fig. 4.39). 
The rope makes a 40.0° angle with the horizontal. The 
suitcase has a mass of 36.0 kg and Beatrice pulls on the rope 
with a force of 65.0 N. (a) What is the magnitude of the 
normal force acting on the suitcase due to the floor? (b) If 
the coefficient of kinetic friction between the suitcase and 
the marble floor is μk = 0.13, find the frictional force acting 
on the suitcase. (c) What is the acceleration of the suitcase 
while Beatrice pulls with a 65.0 N force at 40.0°? (d) Start-
ing from rest, for how long a time must she pull with this 
force until the suitcase reaches a comfortable walking speed 
of 0.5 m/s?

Strategy Since the suitcase is dragged horizontally along 
the floor, the vertical component of its velocity is always 
zero. The vertical acceleration component of the suitcase is 
zero because the vertical velocity component does not 
change. (If it did have a vertical acceleration component, the 
suitcase would begin to move either down through the floor 
or up into the air.) If we choose the +y-axis up and the +x-axis 
to be horizontal, then ay = 0. We resolve the forces acting on 
the suitcase into their components, draw a free-body diagram 
for the suitcase, and apply Newton’s second law.

Solution (a) Figure 4.40 shows the forces acting on the 
suitcase, where F

→
 is the force exerted by Beatrice. All the 

other forces are either parallel or perpendicular to the floor, 
so only F

→
 needs to be resolved into x- and y-components.

Fx = F cos 40.0° = 65.0 N × 0.766 = 49.8 N
Fy = F sin 40.0° = 65.0 N × 0.643 = 41.8 N

Figure 4.41 is an FBD in which F
→

 is replaced by its 
components. The vertical force components add to zero 
since ay = 0.

40.0°

Figure 4.39
Beatrice dragging her suitcase.

Figure 4.40
Forces acting on a suitcase 
dragged along the floor. The 
lengths of the vector arrows are 
not to scale.

F
40.0°

N

fk

W

y

x

y

x
-mg

F sin 40.0°

N

F cos 40.0°-fk

Figure 4.41
FBD for the suitcase, 
with the forces repre-
sented by their x- and 
y-components.

continued on next page
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Discussion What Beatrice probably wants to do is to drag 
the suitcase along at constant velocity. To do that, she must 
first accelerate the suitcase from rest. Once the suitcase is 
moving at the desired velocity, she pulls a little less hard, so 
the net force is zero and the suitcase slides at constant speed. 
She would do so without thinking much about it!

Practice Problem 4.13 The Continuing Story . . .

How hard does Beatrice pull at a 40.0° angle while the suit-
case slides along the floor at constant velocity? [Hint: Do 
not assume that the normal force is the same as in the previ-
ous discussion.]

Example 4.13 continued

Connected Objects Sometimes two or more objects are constrained to have the 
same acceleration by the way they are connected. In Example 4.14, we look at a train 
engine pulling five freight cars. The couplings maintain a fixed distance between the 
cars, so at any instant the cars move with the same velocity; if they didn’t, the distance 
between them would change. The velocities don’t have to be constant; they just have 
to change in precisely the same way, which implies that the accelerations must also 
be the same at any instant.

Example 4.14

Coupling Force on First and Last Freight Cars

A train engine pulls out of a station along a straight horizon-
tal track with five identical freight cars behind it, each of 
which weighs 90.0 kN. The train reaches a speed of 15.0 m/s 
within 5.00 min of starting out. If the engine pulls with a 
constant force during this interval, with what magnitude of 
force does the coupling between cars pull forward on the 
first and last of the freight cars? Ignore air resistance and 
friction on the freight cars.

Strategy A sketch of the situation is shown in Fig. 4.42. 
To find the force exerted by the first coupling, we consider 
all five cars to be one system so we do not have to worry 
about the forces exerted on one car by another: these internal 
forces add to zero by Newton’s third law. For example, car 1 
pulls on car 2 and car 2 pulls on car 1 with an equal but op-
posite force, so the two add to zero. The only external forces 
on the group of five cars are the normal force, gravity, and 
the pull of the first coupling. To find the force exerted by the 
fifth coupling, we consider car five by itself to be a system. 
In each case, once we identify a system, we draw a free-body 
diagram, choose a coordinate system, and then apply 
Newton’s second law.

As discussed previously, the engine and the cars must 
all have the same acceleration at any instant. We expect the 
acceleration to be constant because the engine pulls with a 

constant force. We can calculate the 
acceleration of the train from the initial 
and final velocities and the elapsed 
time.

Solution For the tension T1 in the 
first coupling, we consider the five cars 
as one system of mass M. Figure 4.43 
shows the FBD in which cars 1 to 5 are 
treated as a single object. We choose the 
x-axis in the direction of motion of the 
train and the y-axis up. Since the train 
moves along the x-axis, the acceleration 
vector is along the x-axis. Therefore, 
ay  = 0. Using the y-component of 
 Newton’s second law, the vertical forces 
add to zero:

∑Fy = May = N1−5 − W1−5 = 0

The only external horizontal force is the force T
→

1 due to 
the tension in the first coupling. This force is constant 
according to the problem statement, so we know that the 
acceleration ax is constant:

∑Fx = T1 = Max

a1
Engine

2345

T5 T4 T3 T2 T1

Figure 4.42
An engine pulling five identical freight cars. The entire train has a constant acceleration a→ to the right.

Figure 4.43
FBD for the sys-
tem consisting of 
cars 1–5 (but not 
the engine). Only 
external forces are 
shown.

T1

N1–5

W1–5

Cars 1–5

y

x

continued on next page
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The mass of the system M is five times the mass of one 
car m. We are given the weight of one car (W = 90.0 kN = 
9.00 × 104 N). From the relation between mass and weight, 
W = mg, the mass of one car is m = W/g and the mass of five 
cars is M = 5W/g.

The constant acceleration of the train is

ax =
Δvx

Δt
=

vfx − vix

tf − ti
=

15.0 m/s − 0
300 s − 0

= 0.0500 m/s2

Therefore,

T1 = Max =
5W

g
×

Δvx

Δt
=

5 × 9.00 × 104 N
9.80 m/s2 ×

15.0 m/s
300 s

= 2.30 kN
Now consider the last freight car (car 5). If we ignore 

friction and air resistance, the only external forces acting are 
the force T

→
5 due to the tension in the fifth coupling, the 

normal force N
→

5, and the gravitational force W⟶5; the FBD is 
shown in Fig. 4.44. Since N

→
5 + W⟶5 = 0, the net force is 

equal to T
→

5. From Newton’s second law,

∑Fx = T5 = max =
W

g
 ax

T5 =
W

g
×

Δvx

Δt
=

9.00 × 104 N
9.80 m/s2 ×

15.0 m/s
300 s

= 459 N

Discussion We considered two systems (cars 1 to 5 and 
car 5) that have the same acceleration and different masses. 

Example 4.14 continued

As expected, the net force is proportional to the mass: the net 
force on five cars is five times the net force on one car.

The solution to this problem is much simpler when 
Newton’s second law is applied to a system comprising all 
five cars, rather than to each car individually. Although the 
problem can be solved by looking at individual cars, to find 
the tension in the first coupling you would have to draw five 
FBDs (one for each car) and apply Newton’s second law five 
times. That’s because each car, except the fifth, is acted on 
by the unequal tensions in the couplings on either side. 
You’d have to first find the tension in the fifth coupling, then 
the fourth, then the third, and so on.

Practice Problem 4.14 Coupling Force Between 
First and Second Freight Cars

With what force does the coupling between the first and sec-
ond cars pull forward on the second car? [Hint: Try two 
methods. One of them is to draw the FBD for the first car and 
apply Newton’s third law as well as the second.]

Figure 4.44
FBD for car 5. (Vector lengths are not to 
the same scale as those in Fig. 4.43.)

T5

N5

W5

5

y

x

Tension in a Cord Attached to Moving Objects

Example 4.15 deals with two objects connected by an ideal cord. Although it may 
have a nonzero acceleration, the net force on an ideal cord is still zero because it has 
zero mass: if m = 0, then ΣF

→
= ma→ = 0. As a result, the tension is the same at the 

two ends as long as no external force acts on the cord between the ends (Fig. 4.45a). 
An ideal cord that passes over an ideal pulley (having negligible mass and turning 
with negligible friction) has the same tension at its ends. The pulley exerts an exter-
nal force on part of the cord, but this force is everywhere perpendicular to the cord. 
As Fig. 4.45b shows, an external force that has no component tangent to the cord 
does not affect the tension in the cord.

a

(a)

x

T1T2

(b)

x

N

T2

Cord

Tensions at the ends
of an ideal massless

cord are equal because
ΣF = ma = 0.

Pulley

θ θ

FBD for a short
segment of a cord
wrapped around
an ideal pulley.
The pulley pushes
outward on the cord,
but the tensions T1 and
T2 are still equal.

T1

Figure 4.45 (a) FBD for an 
ideal cord with acceleration a→. 
Applying Newton’s second law 
along the x-axis yields: 

  ΣFx = T1 − T2 = max 

The ideal cord has mass m = 0, 
so T1 = T2: the tensions at the 
ends are equal. (b) An ideal 
cord passing around an ideal 
pulley and the FBD for a short 
segment of the cord at the top 
of the pulley. If we choose the 
x-axis to be  horizontal, the nor-
mal force has no x-component.  
Newton’s second law along the 
x-axis yields: 

ΣFx = T1 cos θ − T2 cos θ = max 

With m = 0, T1 = T2. Similar 
reasoning can be applied to 
other cord segments to show 
that the tensions are the same 
on either side of an ideal pulley.
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Example 4.15

Two Blocks Hanging on a Pulley

In Fig. 4.46, two blocks are connected by an ideal cord that 
does not stretch; the cord passes over an ideal pulley. If the 
masses are m1 = 26.0 kg and m2 = 42.0 kg, what are the 
accelerations of each block and the tension in the cord?

Strategy Since m2 is greater than m1, the downward force 
of gravity is stronger on the right side than on the left. We 
expect block 2’s acceleration to be downward and block 1’s 
to be upward.

The cord does not stretch, so blocks 1 and 2 move at the 
same speed at any instant (in opposite directions). Therefore, 
the accelerations of the two blocks are equal in magnitude 
and opposite in direction. If the accelerations had different 
magnitudes, then soon the two blocks would be moving with 
different speeds. That could only happen if the cord either 
stretches or contracts.

The tension in the cord must be the same everywhere 
along the cord since the masses of the cord and pulley are 
negligible and the pulley turns without friction.

We treat each block as a separate system, draw FBDs for 
each, and then apply Newton’s second law to each. It is con-
venient to choose the positive y-direction differently for the 
two blocks since we know their accelerations are in opposite 
directions. For each block, we choose the +y-axis in the 
direction of the acceleration of that block: upward for block 
m1 and downward for m2. Doing so means that ay has the 
same magnitude and sign (both positive) for the two blocks. 
(As an alternative, we could choose the +y-axis upward for 
both. Then we would write a2y = −a1y. Either choice is valid.)

Solution Figure 4.47 shows FBDs for the two blocks. Two 
forces act on each: gravity and the pull of the cord. The 
acceleration vectors are drawn next to the FBDs. Thus, we 
know the direction of the net force: it is always the same as 
the direction of the acceleration. Then we know that the 
tension must be greater than m1g to give block 1 an upward 
acceleration and less than m2g to give block 2 a downward 
acceleration. The +y-axes are drawn for each block to be in 
the direction of the acceleration.

From the FBD of block 1, the pull of the cord is in the 
+y-direction and the gravitational force is in the −y-direction. 
Then Newton’s second law for block 1 is

∑F1y = T − m1g = m1a1y

For block 2, the pull of the cord is in the −y-direction and the 
gravitational force is in the +y-direction. Newton’s second 
law for block 2 is

∑F2y = m2g − T = m2a2y

The tension T in the cord is the same in the two equations. 
Also a1y and a2y are identical, so we write them simply as ay. 

We then have a system of two equations with two unknowns. 
We can add the equations to obtain

m2g − m1g = m2ay + m1ay

Solving for ay, we find

ay =
(m2 − m1)g

m2 + m1

Substituting numerical values, we obtain

ay =
(42.0 kg − 26.0 kg) × 9.80 N/kg

42.0 kg + 26.0 kg

 = 2.31 

N
kg

×
1 kg · m/s2

1 N
= 2.31 m/s2

The blocks have the same magnitude acceleration. For block 
1 the acceleration points upward and for block 2 it points 
downward.

To find T we can substitute the expression for ay into 
either of the two original equations. Using the first equation, 
we find

T − m1g = m1
(m2 − m1)g

m2 + m1

Solving for T yields

T =
2m1m2

m1 + m2
 g

Substituting numerical values, we find

T =
2 × 26.0 kg × 42.0 kg

68.0 kg
× 9.80 N/kg = 315 N

m2

m1

+y

–m1g

T

a
1

+y

m2g

–T

a

2

Figure 4.46
Two hanging blocks 
connected on either side 
of an ideal pulley by an 
ideal cord that does not 
stretch.

Figure 4.47
FBDs for the hanging blocks labeled 
with the y-components of the forces. 
We draw the acceleration vector next 
to each FBD as a guide—the net force 
has to be in the direction of the accel-
eration. However, the acceleration 
vector is not part of the FBD (it is not 
a force to be added to the others).

continued on next page
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Discussion A few quick checks:

 ∙ ay is positive, which means that the accelerations are in 
the directions we expect.

 ∙ The tension (315 N) is between m1g (255 N) and m2g 
(412 N), as it must be for the accelerations to be in op-
posite directions.

 ∙ The units and dimensions are correct for all equations.
 ∙ We can check algebraic expressions in special cases for 

which we have some intuition. For example, if the masses 
had been equal, we expect the blocks to hang in equilib-
rium (either at rest or moving at constant velocity) due to 
the equal pull of gravity on the two blocks. Substituting 
m1 = m2 into the expressions for ay and T gives ay = 0 and 
T = m1g = m2g, which is just what we expect.

Example 4.15 continued

Note that we did not find out which way the blocks 
move. We found the directions of their accelerations. If the 
blocks start out at rest, then the block of mass m2 moves 
downward and the block of mass m1 moves upward. However, 
if initially m2 is moving up and m1 down, they continue to 
move in those directions, slowing down since their accelera-
tions are opposite to their velocities. Eventually they come to 
rest and then reverse directions.

Practice Problem 4.15 Another Check

Using the numerical values of the tension and the accelera-
tion calculated in Example 4.15, verify Newton’s second law 
directly for each of the two blocks.

Examples 4.16, 4.17, and 4.18 illustrate how different concepts and problem-
solving techniques from Chapters 2–4 can be brought together to find the solution to 
a physics problem.

Strategy The tension in the rope is T and is the same at 
both ends or anywhere along the rope, assuming the rope and 
pulleys are ideal. Two pieces of rope support the lower pulley, 
each pulling upward with a force of magnitude T. The gravi-
tational force acts downward. We draw an FBD for the system 
consisting of the crate and the lower pulley and set the tension 
equal to the breaking force of the rope to find the maximum 
possible acceleration of the crate. Then we use the maximum 
acceleration to find the minimum time to move the required 
distance to the third-floor window. We choose the y-axis to 
be upward. Known: m = 91 kg; Δy = 30.0 m; Tmax = 550 N; 
viy = 0. To find: Δt, the time to raise the crate 30.0 m with the 
maximum tension in the rope.

Solution From the FBD (Fig. 4.49), if the forces acting up 
are greater than the force acting down, the net force is upward 

Example 4.16

Hauling a Crate up to a Third-Floor Window

A student is moving into a dorm room on the third floor and 
he decides to use a block and tackle arrangement (Fig. 4.48) 
to move a crate of mass 105 kg from the ground up to his 
window. If the breaking strength of the available rope is 
550 N, what is the minimum time required to haul the crate 
to the level of the window, 30.0 m above the ground, without 
breaking the rope? Assume the rope is ideal and does not 
stretch.

4th-floor
window

3rd-floor
window

2nd-floor
window

T1 T2

T3

W Figure 4.48
Block and tackle 
setup.

continued on next page

T T

–mg

y

Figure 4.49
FBD for the crate and lower pulley. The forces are 
labeled by their y-components. (This system is 
outlined by dashed lines in Fig. 4.48.)
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and the crate’s acceleration is upward. In terms of compo-
nents, with the +y-direction chosen to be upward,

∑Fy = T + T − mg = may

Solving for the acceleration, we find

ay =
T + T − mg

m
Setting T = 550 N, the maximum possible value before the 
rope breaks, and substituting the other known values, we obtain

ay =
550 N + 550 N − 105 kg × 9.80 m/s2

105 kg
= 0.676 m/s2

The time to move the crate up a distance Δy starting 
from rest can be found from
 Δy = viy  

Δt + 1
2ay(Δt)2 (3-25)

Setting viy = 0 and solving for Δt, we find

Δt = ±√
2 Δy

ay

Our equation applies only for Δt ≥ 0 (the crate reaches 
the window after it leaves the ground). Taking the positive 
root and substituting numerical values yields

Δt = √
2 × 30.0 m
0.676 m/s2 = 9.4 s

Example 4.16 continued

continued on next page

This is the minimum possible time to haul the crate up with-
out breaking the rope.

Discussion In reality, the student is not likely to achieve 
this minimum possible time. To do so would mean pulling 
the rope at an unrealistic speed. At the end of the 9.4 s 
interval, vfy = 0.676 m/s2 × 9.4 s = 6.4 m/s! More likely, the 
student would hoist the crate at a roughly constant velocity 
(except at the beginning, to get it moving, and at the end, to 
let it come to rest). For motion with a constant velocity, the 
tension in the rope would be equal to half the weight of the 
crate (515 N).

Practice Problem 4.16 Hauling the Crate with a 
Single Pulley

If only a single pulley, attached to the beam above the fourth 
floor, were available and if the student had a few friends to 
help him pull on the rope, could they haul the crate up to the 
third-floor window using the same rope? If so, what is the 
minimum time required to do so?

Example 4.17

Towing a Glider

A small plane of mass 760 kg requires 120 m of runway to 
take off by itself. (120 m is the horizontal displacement of 
the plane just before it lifts off the runway, not the entire 
length of the runway.) As a simplified model, ignore friction 
and drag forces and assume the plane’s engine makes the air 
exert a constant forward force on the plane. (a) When the 
plane is towing a 330 kg glider, how much runway does it 
need? (b) If the final speed of the plane just before it lifts off 
the runway is 28 m/s, what is the tension in the tow cable 
while the plane and glider are moving along the runway?

Strategy We draw FBDs for the two cases: plane alone, 
then plane + glider. The motion in both cases is horizontal 
(along the runway), because we are told the displacement 
before it lifts off the runway. Until the plane begins to lift off 
the runway, its vertical acceleration component is zero. We 
need not be concerned with the vertical forces (gravity, the 
normal force, and lift—the upward force on the plane’s 
wings due to the air) since they cancel one another to pro-
duce zero vertical acceleration. We use Newton’s second law 
to compare the accelerations in the two cases and then use 
the accelerations to compare the displacements.

Solution (a) When the plane takes off by itself, four forces 
act on it (Fig. 4.50). Three are vertical and the third—the 
thrust due to the engine—is horizontal. Choosing the x-axis 
to be horizontal, Newton’s second law says

∑F1x = F = m1a1x

where F is the thrust, m1 is the plane’s mass, and a1x is its 
horizontal acceleration component.

When the glider is towed, we can consider the plane, 
glider, and cable to be a single system (Fig. 4.51). There is 

Normal force

Thrust

Weight

Lift

Normal force

Weight

Lift

Thrust

Figure 4.51
FBD for the system plane + glider.

Figure 4.50
FBD for the plane.
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still only one horizontal external force and it is the same 
thrust as before. The tension in the cable is an internal force. 
Therefore,

∑F2x = F = (m1 + m2)ax

where m1 + m2 is the total mass of the system (plane mass m1 
plus glider mass m2) and ax is the horizontal acceleration 
component of plane and glider. We ignore the mass of the 
cable.

The problem statement gives neither the thrust nor ei-
ther of the accelerations. We can continue by setting the 
thrusts equal and finding the ratio of the accelerations:

m1a1x = (m1 + m2)ax  ⇒  
ax

a1x
=

m1

m1 + m2

The magnitude of the acceleration is inversely proportional 
to the mass of the system for the same net force.

How is the acceleration related to the runway distance? 
The plane must get to the same final speed in order to lift off 
the runway. From our two basic constant acceleration 
equations

 Δvx = vfx − vix = ax Δt (2-10)

 Δx =
1
2

(vfx + vix)Δt (2-12)

we can substitute vix = 0 and eliminate Δt to find

Δx =
1
2

(vfx + 0)(
vfx

ax ) =
v2

fx

2ax

In both cases, the displacement is inversely proportional 
to the acceleration and the acceleration is inversely propor-
tional to the mass of the system. Therefore, the displacement 
is directly proportional to the mass. Letting Δx1 = 120 m be 
the displacement of the plane without the glider, we can set 
up a proportion:

Example 4.17 continued

Δx

Δx1
=

a1x

ax
=

m1 + m2

m1
=

1090 kg
760 kg

= 1.434

Δx = 1.434 × 120 m = 172.08 m

To two significant figures, the plane needs 170 m of runway.

(b) We can find the acceleration from the given final speed:

Δx =
v2

fx

2ax

 or ax =
v2

fx

2 Δx

With vfx = 28 m/s, vix = 0, and Δx = 172.08 m,

ax =
(28 m/s)2

2 × 172.08 m
= 2.278 m/s2

The tension in the cable is the only horizontal force acting on 
the glider. Therefore,
∑Fx = T = m2ax = 330 kg × 2.278 m/s2 = 750 N

The tension is 750 N.

Discussion This solution is based on a simplified model, 
so we can only regard the answers as approximate. Neverthe-
less, it illustrates Newton’s second law. The same net force 
produces an acceleration inversely proportional to the mass 
of the object upon which it acts. Here we have the same net 
force acting on two different objects: first the plane alone, 
then the plane and glider together.

Alternatively, we can look at forces acting only on the 
plane. When towing the glider, the cable pulls backward on 
the plane. The net force on the plane is smaller, so its accel-
eration is smaller. The smaller acceleration means that it 
takes more time to reach takeoff speed and travels a longer 
distance before lifting off the runway.

Practice Problem 4.17 Engine Thrust

What is the thrust provided by the airplane’s engines in 
Example 4.17?

2.00 m above the ground. The coefficient of kinetic friction 
between the incline and block 1 is 0.180. The blocks are 
initially at rest. (a) How long does it take for block 2 to reach 
the ground? (b) Sketch a motion diagram for block 2 with a 
time interval of 0.5 s.

Strategy The problem says that the blocks start from rest 
and that block 2 hits the floor, so block 2’s acceleration is 
downward and block 1’s is up the incline. For block 1, we 
choose axes parallel and perpendicular to the incline so that 
its acceleration has only one nonzero component. The 
magnitudes of the accelerations of the two blocks are equal 

Example 4.18

A Pulley, an Incline, and Two Blocks

A block of mass m1 = 2.60 kg rests on an incline that is 
angled at 30.0° above the horizontal (Fig. 4.52). An ideal 
cord of fixed length is connected from block 1 over an ideal 
pulley to another block of mass m2 = 2.20 kg that is hanging 

30.0°

m1

m2

Figure 4.52
Block on an incline 
connected to a hanging 
block by a cord passing 
over a pulley.

continued on next page
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since they are connected by an ideal cord that does not 
stretch. Since the cord and pulley are ideal, the tension is the 
same at the two ends.

Solution (a) We start by drawing separate FBDs for each 
block (Figs. 4.53 and 4.54). Since block 1 slides up the 
incline, the frictional force f

→
k acts down the incline to 

oppose the sliding. The gravitational force on block 1 is 
resolved into two components, one along the incline and one 
perpendicular to the incline.

Using the FBDs, we write Newton’s second law in com-
ponent form for each block. Block 1 has no acceleration 
component perpendicular to the incline. It does not sink into 
the incline or rise above it; it can only slide along the incline. 
Thus, the net force on block 1 in the direction perpendicular 
to the incline—the direction we have chosen as the y-axis for 
block 1—is zero.

∑Fy = N − m1g cos θ = 0

or

N = m1g cos θ

Here θ = 30.0°. Along the incline, in the x-direction for 
block 1, the acceleration is nonzero:

∑Fx = T − m1g sin θ − fk = m1ax

The kinetic frictional force is related to the normal force:

fk = μkN = μkm1g cos θ

By substitution,

 T − m1g sin θ − μkm1g cos θ = m1ax (1)

For block 2, we choose an x-axis pointing downward. 
Doing so simplifies the solution, since then the two blocks 
have the same ax. Applying Newton’s second law, we have

 ∑Fx = m2g − T = m2ax (2)

The tension in the cord T and the x-component of 
acceleration ax are both unknown in Eqs. (1) and (2). We 
solve for T in Eq. (2) and substitute into Eq. (1):

T = m2g − m2ax = m2(g − ax)
m2(g − ax) − m1g sin θ − μkm1g cos θ = m1ax

Rearranging and solving for ax yields

 ax =
m2 − m1(sin θ + μk cos θ)

m1 + m2
 g (3)

Substituting the known and given values, we obtain

ax =
2.20 kg − 2.60 kg × (0.50 + 0.180 × 0.866)

2.60 kg + 2.20 kg
× 9.80 m/s2

= 1.01 m/s2

Block 2 has a distance of 2.00 m to travel starting from 
rest with a constant downward acceleration of 1.01 m/s2. 
From Eq. (2-14) with vix = 0,

Δx =
1
2

 ax(Δt)2

continued on next page

Example 4.18 continued

+x 

30.0°

30.0°60.0°

+y

1a1

(a)
W

→
fk

T
N

+x 

+y

Wy = –m1g cos 30.0°

N

–fk

T

Wx = –m1g sin 30.0° 1

a1

(b)

Figure 4.53
Forces acting on block 1. (a) The choice of axes parallel and per-
pendicular to the incline simplifies the math because the accelera-
tion and three of the four forces are parallel to one of the axes. 
The x- and y-components of the gravitational force can be found 
using the right triangle shown. (b) FBD for block 1, with the 
gravitational force represented by its components.

Figure 4.54
FBD for block 2 with 
the downward direction 
chosen as +x. The forces 
are labeled with their  
x-components.

+x 

+y

–T

m2g

2

a2

x
(m)

0.5 s

1.0 s

1.5 s

2.0 s

0

0.5

1.0

1.5

2.0

0 2
2

2

2

2

Figure 4.55
Motion diagram 
for block 2.
t (s) x (m)
0 0
0.5 0.125
1.0 0.50
1.5 1.125
2.0 2.0
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The time to travel that distance is

Δt = √
2 Δx

ax
= √

2 × 2.00 m
1.01 m/s2 = 2.0 s

(b) Figure 4.55 shows the motion diagram for block 2. 
Choosing xi = 0 and ti = 0, the position as a function of time 
is x = 1

2axt
2.

Discussion One advantage to solving for ax algebraically 
in Eq. (3) before substituting numerical values is that dimen-
sional analysis can easily be used to check for errors. In 
Eq.  (3), the quantity in parentheses is dimensionless—the 
values of trigonometric functions are pure numbers as are 
coefficients of friction. Therefore, the numerator is the sum 
of two quantities with dimensions of force, the denominator 
is the sum of two masses, and force divided by mass gives an 
acceleration.

What if the problem did not tell us the directions of the 
blocks’ accelerations? We could figure it out by comparing 

the force with which gravity pulls down on block 2 (m2g) 
with the component of the gravitational force pulling block 1 
down the incline (m1g sin θ). Whichever is greater “wins the 
tug-of-war,” assuming that static friction doesn’t prevent the 
blocks from starting to slide. Once we know the direction of 
block 1’s acceleration, we can determine the direction of the 
kinetic frictional force. If block 1 is not initially at rest, the 
kinetic frictional force opposes the direction of sliding, 
even  though that may be opposite to the direction of the 
acceleration.

Practice Problem 4.18 More Fun with a Pulley and 
an Incline

Suppose that m1 = 3.8 kg and m2 = 1.2 kg and the coefficient 
of kinetic friction is 0.18. The blocks are released from rest 
and block 1 starts to slide. (a) Does block 1 slide up or down 
the incline? (b) In which direction does the kinetic frictional 
force act? (c) Find the acceleration of block 1.

Example 4.18 continued

CHECKPOINT 4.8

Is it ever useful to choose the x- and y-axes so the x-axis is not horizontal? If 
yes, give an example.

4.9 REFERENCE FRAMES

Imagine a train moving at constant velocity with respect to the ground (Fig. 4.56). 
Suppose Tim does some experiments using the train’s reference frame for his measure-
ments. Greg does similar experiments using the reference frame of the ground. Tim 
and Greg disagree about the numerical value of an object’s velocity, but since their 
velocity measurements differ by a constant, they will always agree about changes in 
velocity and about accelerations. Both observers can use Newton’s second law to relate 
the net force to the acceleration. The basic laws of physics, such as Newton’s laws of 
motion, work equally well in any two reference frames if they move with a constant 
relative velocity.

Newton’s First Law Defines an Inertial Reference Frame You might wonder 
why we need Newton’s first law—isn’t it just a special case of the second law when 
ΣF

→
= 0? No, the first law defines what kind of reference frame we can use when 

CONNECTION:

The principle that the laws  
of physics are the same in 
different inertial reference 
frames is important in 
 Newtonian mechanics, but is 
more general than that; it is 
one of the two postulates of 
Einstein’s theory of relativity 
(see Chapter 26).

Greg
Tim vTG

Figure 4.56 Greg’s frame of 
reference is that of the ground; 
Tim’s is that of the train, which 
moves at constant velocity v→TG 
with respect to the ground.



134 CHAPTER 4 Force and Newton’s Laws of Motion

applying the second law. For the second law to be valid, we must use an inertial 
reference frame—a reference frame in which the law of inertia holds—to observe the 
motion of objects.

Is a reference frame attached to Earth’s surface truly inertial? No, but it is close 
enough in many circumstances. When analyzing the motion of a soccer ball, the fact 
that Earth rotates about its axis does not have much effect. But if we want to analyze 
the motion of a meteor falling from a great distance toward Earth, Earth’s rotation 
must be considered. We will take a closer look at the effect of Earth’s rotation in 
Chapter 5.

4.10 APPARENT WEIGHT

Imagine being in an elevator when the cable snaps. Assume that some safety mecha-
nism brings you to rest after you have been in free fall for a while. While you are in 
free fall, you seem to be “weightless,” but your weight has not changed; Earth still 
pulls downward with the same gravitational force. In free fall, gravity gives the eleva-
tor and everything in it a downward acceleration equal to g→. If you jump up from the 
elevator floor, you seem to “float” up to the ceiling of the elevator. Your weight hasn’t 
changed, but your apparent weight is zero while you are in free fall.

Similarly, astronauts in a space station in orbit around Earth are in free fall (their 
acceleration is equal to the local value of g→). Earth exerts a gravitational force on 
them so they are not weightless; their apparent weight is zero.

Imagine an object that appears to be resting on a bathroom scale. The scale 
measures the object’s apparent weight, which is equal to the true weight only if the 
object and the scale have zero acceleration. Newton’s second law requires that

 ∑F
→

= N
→

+ mg→ = ma→ (4-26)

where N
→

 is the normal force of the scale pushing up. The apparent weight is the 
reading of the scale—that is, the magnitude of N

→
.

In Fig. 4.57a, the acceleration of the elevator is upward. The normal force must 
be larger than the weight for the net force to be upward (Fig. 4.57b). Writing the 
forces in component form where the +y-direction is upward, we have

 ∑Fy = N − mg = may (4-27)
or
 N = mg + may (4-28)

Since the elevator’s acceleration is upward, ay > 0; the apparent weight is greater than 
the true weight (Fig. 4.57c).

(a)

a

(b)

N

mg

Free-body
diagram

y

(c)

ΣF

Vector sum of forces

ΣF = N + mg = ma

ΣF is upward so
N > mg

mgN

Figure 4.57 (a) Apparent 
weight in an elevator with 
acceleration upward. (b) FBD 
for the passenger. (c) The 
normal force must be greater 
than the weight to have an 
upward net force.
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In Fig. 4.58a, the acceleration is downward. Then the net force must also point 
downward. The normal force is still upward, but it must be smaller than the weight 
in order to produce a downward net force (Fig. 4.58b). It is still true that N = m(g + ay), 
but now the acceleration is downward (ay < 0), so the apparent weight is less than 
the true weight (Fig. 4.58c). If the elevator is in free fall, then ay = −g and the 
apparent weight of the unfortunate passenger is zero.

Problem-Solving Strategy: Apparent Weight

1. Imagine the object to be resting on a bathroom scale (or hanging from a 
cord that is attached to a spring scale).

2. Draw an FBD for the object. The normal force due to the bathroom scale 
(or the tension in the cord) will appear on the FBD.

3. Apply Newton’s second law and solve for the magnitude of the normal force 
N (or the tension T).

4. The apparent weight is the scale reading, which is N (or T).

Figure 4.58 (a) Apparent 
weight in an elevator with 
acceleration downward. 
(b) FBD for the passenger. 
(c) The normal force must be 
less than the weight to have a 
downward net force.

(a)

a

(b)

N

mg

Free-body
diagram

y

(c)

ΣF

Vector sum of forces

ΣF = N + mg = ma

ΣF is downward so
N < mg

mg

N

Solution (a) Let the +y-axis be upward. When the elevator 
starts up from the first floor it has acceleration in the upward 
direction as its speed increases. Since the elevator’s accelera-
tion is upward, ay > 0 (as in Fig. 4.57). We expect the apparent 
weight to be greater than the true weight—the floor must push 
up with a force greater than W to cause an upward accelera-
tion. Figure 4.59a is the FBD. Newton’s  second law says

∑Fy = N − W = may

Since W = mg, we can substitute m = W/g.

N = W + may = W +
W

g
 ay = W(1 +

ay

g )

= 598 N × (1 +
0.500 m/s2

9.80 m/s2 ) = 629 N

Example 4.19

Apparent Weight in an Elevator

A passenger weighing 598 N rides in an elevator. What is the 
apparent weight of the passenger in each of the following 
situations? In each case, the magnitude of the elevator’s ac-
celeration is 0.500 m/s2. (a) The passenger is on the first 
floor and has pushed the button for the fifteenth floor; the 
elevator is beginning to move upward. (b) The elevator is 
slowing down as it nears the fifteenth floor.

Strategy In each case, we sketch the FBD for the passen-
ger. The apparent weight is equal to the magnitude of the 
normal force exerted by the floor on the passenger. The only 
other force acting is gravity. Newton’s second law lets us 
find the normal force from the weight and the acceleration. 
Known: W = 598 N; magnitude of the acceleration is a = 
0.500 m/s2. To find: the normal force.

continued on next page
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(b) When the elevator approaches the fifteenth floor, it is 
slowing down while still moving upward; its acceleration  
is downward (ay < 0) as in Fig. 4.58. The apparent weight is 
less than the true weight. Figure 4.59b is the FBD. Again, 
ΣFy = N − W = may, but this time ay = −0.500 m/s2.

N = W(1 +
ay

g )

= 598 N × (1 +
−0.500 m/s2

9.80 m/s2 ) = 567 N

Discussion The apparent weight is greater when the 
direction of the elevator’s acceleration is upward. That can 
happen in two cases: either the elevator is moving up with 
increasing speed, or it is moving down with decreasing speed.

Example 4.19 continued

Practice Problem 4.19 Elevator Descending
What is the apparent weight of a passenger of mass 42.0 kg 
traveling in an elevator in each of the following situations? 
In each case, the magnitude of the elevator’s acceleration  
is 0.460 m/s2. (a) The passenger is on the fifteenth floor and 
has pushed the button for the first floor; the elevator is 
beginning to move downward. (b) The elevator is slowing 
down as it nears the first floor.

a

W

N

(a)

a

W

N

(b)

Figure 4.59
Free-body diagrams and 
 acceleration vectors for the 
passenger in an elevator with 
(a) upward acceleration and 
with (b) downward acceleration.

EVERYDAY PHYSICS DEMO

Take a bathroom scale to an elevator. Stand on the scale inside the elevator 
and push a button for a higher floor. When the elevator’s acceleration is 
upward, you can feel the increase in your apparent weight and can see the 
increase by the reading on the scale. When the elevator slows down to stop, 
the elevator’s acceleration is downward and your apparent weight is less than 
your true weight.

What is happening in your body while the elevator accelerates? The inertia 
principle means that your blood and internal organs cannot have the same 
acceleration as the elevator until the correct net force acts on them. Blood 
tends to collect in the lower extremities during acceleration upward and in the 
upper body during acceleration downward until the forces exerted on the blood 
by the body readjust to give the blood the same acceleration as the elevator. 
Likewise, the internal organs shift position within the body cavity, resulting in 
a funny feeling in the gut as the elevator starts and stops. To avoid this 
problem, high-speed express elevators in skyscrapers keep the acceleration 
relatively small, but maintain that acceleration long enough to reach high 
speeds. That way, the elevator can travel quickly to the upper floors without 
making the passengers feel too uncomfortable.

CHECKPOINT 4.10

You are standing on a bathroom scale in an elevator that is moving downward. 
Nearing your stop, the elevator’s speed is decreasing. Is the scale reading 
greater or less than your weight?

4.11 AIR RESISTANCE

So far we have ignored the effect of air resistance on falling objects and projectiles. 
A skydiver relies on a parachute to provide a large force of air resistance (also called 
drag). Even with the parachute closed, drag is not negligible when the skydiver is 
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falling rapidly. The drag force is similar to friction between two solid surfaces in that 
the direction of the force opposes the motion of the object through the air. However, 
in contrast to the force of friction, the magnitude of the drag force is strongly depen-
dent on the speed of the object. In many cases, air drag is proportional to the square 
of the speed. Drag also depends on the size and shape of the object.

Since the drag force increases as the speed increases, a falling object approaches 
an equilibrium situation in which the drag force is equal in magnitude to the weight 
but opposite in direction. The velocity at which this equilibrium occurs is called the 
object’s terminal velocity.

EVERYDAY PHYSICS DEMO

Drop a basket-style paper coffee filter (or a cupcake paper) and a coin simul-
taneously from as high above the floor as you can safely do so. Air resistance 
on the coin is negligible unless it is dropped from a great height. At the other 
extreme, the effect of air resistance on the coffee filter is very noticeable; it 
reaches its terminal speed almost immediately. Stack several (two to four) 
coffee filters together and drop them simultaneously with a single coffee filter. 
Why is the terminal speed higher for the stack? Crumple a coffee filter into a 
ball and drop it simultaneously with the coin. Air resistance on the coffee filter 
is now reduced, but still noticeable.

4.12 FUNDAMENTAL FORCES

One of the main goals of physics has been to understand the immense variety of forces 
in the universe in terms of the fewest number of fundamental laws. Physics has made 
great progress in this quest for unification; today all forces are understood in terms 
of just four fundamental interactions (Fig. 4.60). At the high temperatures present in 
the early universe, two of these interactions—the electromagnetic and weak forces—
are now understood as the effects of a single electroweak interaction. The ultimate 
goal is to describe all forces in terms of a single interaction.

Electricity Magnetism

Electromagnetism

Strong force

Weak
force

Gravitation

Earth’s gravity

Gravity of the Sun
and stars

Figure 4.60 All forces result from just four fundamental forces: gravity, electromagnetism, and the weak 
and strong forces.
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Gravity You may be surprised to learn that gravity is by far the weakest of the fun-
damental forces. Any two objects exert gravitational forces on one another, but the force 
is tiny unless at least one of the masses is large. We tend to notice the relatively large 
gravitational forces exerted by planets and stars, but not the feeble gravitational forces 
exerted by smaller objects, such as the gravitational force this book exerts on your body.

Gravity has an unlimited range. The force gets weaker as the distance between 
two objects increases, but it never drops to zero, no matter how far apart the objects get.

Newton’s law of gravity is an early example of unification. Before Newton, people 
did not understand that the same kind of force that makes an apple fall from a tree 
also keeps the planets in their orbits around the Sun. A single law—Newton’s law of 
universal gravitation—describes both.

Electromagnetism The electromagnetic force is unlimited in range, like gravity. It 
acts on particles with electric charge. The electric and magnetic forces were unified 
into a single theoretical framework in the nineteenth century. We study electromag-
netic forces in detail in Part 3 of this book.

Electromagnetism is the fundamental interaction that binds electrons to nuclei to 
form atoms and binds atoms together in molecules and solids. It is responsible for the 
properties of solids, liquids, and gases and forms the basis of the sciences of chem-
istry and biology. It is the fundamental interaction behind all macroscopic contact 
forces such as the frictional and normal forces between surfaces and forces exerted 
by cords, springs, muscles, and the wind.

The electromagnetic force is much stronger than gravity. For example, the electri-
cal repulsion of two electrons at rest is about 1043 times as strong as the gravitational 
attraction between them. Macroscopic objects have a nearly perfect balance of positive 
and negative electric charge, resulting in a nearly perfect balance of attractive and 
repulsive electromagnetic forces between the objects. Therefore, despite the funda-
mental strength of the electromagnetic forces, the sum of the electromagnetic forces 
exerted by one macroscopic object on another is often negligibly small except when 
atoms on the surfaces of the objects come very close to each other—what we think 
of as in contact. On a microscopic level, there is no fundamental difference between 
contact forces and other electromagnetic forces.

The Strong Force The strong force holds protons and neutrons together in the 
atomic nucleus. The same force binds quarks (a family of elementary particles) in 
combinations so they can form protons and neutrons and many more exotic subatomic 
particles. The strong force is the strongest of the four fundamental forces—hence its 
name—but its range is short: its effect is negligible at distances much larger than the 
size of an atomic nucleus (about 10−15 m).

The Weak Force The range of the weak force is even shorter than that of the strong 
force (about 10−17 m). It is manifest in many radioactive decay processes.

Master the Concepts

 ∙ An interaction between two objects consists of two 
forces, one on each of the objects. Loosely speaking, a 
force is a push or a pull. Gravity and electromagnetic 
forces have unlimited range. All other forces exerted on 
macroscopic objects involve contact. Contact forces 
exist only as long as the objects are touching one another 
Force is a vector quantity.

 ∙ The SI unit of force is the newton: 1 N = 1 kg · m/s2.
 ∙ The net force on a system is the vector sum of all the 

forces acting on it:

 F
→

net = ∑F
→

= F
→

1 + F
→

2 + … + F
→

n (4-2)
Since all the internal forces form interaction pairs, we 
sum only the external forces. Do not include any forces 
that are exerted on other objects.

 ∙ Newton’s first law of motion: If zero net force acts on  
an object, then the object’s velocity does not change. 
Velocity is a vector whose magnitude is the speed at 
which the object moves and whose direction is the 
direction of motion. If an object’s velocity is constant, it 
is said to be in translational equilibrium.

continued on next page
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 ∙ Newton’s second law of motion relates the net force act-
ing on an object to the object’s acceleration and its 
mass:

 a→ =
ΣF

→

m
   or ∑F

→
= ma→ (4-5)

The acceleration is always in the same direction as the 
net force. Many problems involving Newton’s second 
law—whether equilibrium or nonequilibrium—can be 
solved by treating the x- and y-components of the forces 
and the acceleration separately:

 ∑Fx = max  and ∑Fy = may (4-6)

a

ΣF
a

ΣF

 ∙ Newton’s third law of motion: In an interaction between 
two objects, each object exerts a force on the other. 
These two forces are equal in magnitude and opposite in 
direction:

 F
→

BA = −F
→

AB (4-8)

 ∙ A free-body diagram (FBD) includes vector arrows 
representing every external force acting on the chosen 
object, but no forces acting on other objects.

L

T

W

D

 ∙ The magnitude of the gravitational force exerted by one 
object on another is

 F =
Gm1m2

r2  (4-9)

where r is the distance between their centers. Each 
object is pulled toward the other’s center.

 ∙ Mass and weight are different physical properties and 
have different units. The mass of an object is a measure 
of its inertia, but its weight is the magnitude of the grav-
itational force acting on it. An object’s weight is propor-
tional to its mass: W = mg [Eq. (4-12)], where g is the 
gravitational field strength. Near Earth’s surface, 
g ≈ 9.80 N/kg. The italic (scalar) symbol g is the mag-
nitude of a vector, so its value is never negative.

 ∙ The normal force is a contact force perpendicular to the 
contact surfaces that pushes each object away from the 
other. The normal force is not necessarily vertical and  
is not necessarily equal to the weight of the object on 
which it is acting.

W

N

 ∙ Friction is a contact force parallel to the contact sur-
faces. In a simplified model, the kinetic frictional force 
and the maximum static frictional force are proportional 
to the normal force acting between the same contact 
surfaces.
 fs ≤ μsN  (4-19)
 fk = μkN  (4-20)
The static frictional force acts in the direction that tends 
to keep the surfaces from beginning to slide. The kinetic 
frictional force is in the direction that would tend to 
make the sliding stop. Two objects in contact with one 
another that move together with the same velocity exert 
static frictional forces on one another, because there is 
no relative motion between the two.

 ∙ An ideal cord pulls in the direction of the cord with 
forces of equal magnitude on the objects attached to its 
ends as long as no external force tangent to the cord is 
exerted on it anywhere between the ends. The tension of 
an ideal cord that runs through an ideal pulley is the 
same on both sides of the pulley.

 ∙ An object with nonzero acceleration has an apparent 
weight that differs from its true weight. The apparent 
weight is equal to the normal force exerted by a support-
ing surface with the same acceleration. A helpful trick is 
to think of the apparent weight as the reading of a bath-
room scale that supports the object or the tension in a 
cord from which the object hangs.

 ∙ The drag force exerted on an object moving through air 
opposes the motion of the object but, unlike kinetic 
friction, is strongly dependent on the object’s speed. 
When an object falls at its terminal velocity, the drag 
force is equal and opposite to the gravitational force, so 
the acceleration is zero.

 ∙ At the fundamental level, there are four interactions: 
gravity, the strong and weak interactions, and the elec-
tromagnetic interaction. Contact forces are large-scale 
manifestations of many microscopic electromagnetic 
interactions.

Master the Concepts continued
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(a) If the train is moving at constant speed, the engine 
must be pulling with a force greater than the train’s 
weight. (b) If the train is moving at constant speed, the 
engine’s pull on the first car must exceed that car’s back-
ward pull on the engine. (c) If the train is coasting, its 
inertia makes it slow down and eventually stop.

 11. (a) Does a man weigh more at the North Pole or at  
the equator? (b) Does he weigh more at the top of 
Mt. Everest or at the base of the mountain?

 12. What is the acceleration of an object thrown straight up 
into the air at the highest point of its motion? Does the 
answer depend on whether air resistance is negligible or 
not? Explain.

 13. If a wagon starts at rest and pulls back on you with a 
force equal to the force you pull on it, as required by 
Newton’s third law, how is it possible for you to make 
the wagon start to move? Explain.

 14. You are standing on a bathroom scale in an elevator. In 
which of these situations must the scale read the same as 
when the elevator is at rest? Explain. (a) Moving up at 
constant speed. (b) Moving up with increasing speed. 
(c) In free fall (after the elevator cable has snapped and 
before the safety brakes have engaged).

 15. A heavy ball hangs from a string attached to a sturdy 
wooden frame. A second string is attached to a hook on 
the bottom of the lead ball. You pull slowly and steadily 
on the lower string. Which string do you think will 
break first? Explain.

 16. An SUV collides with a Mini Cooper convertible. Is the 
force exerted on the Mini by the SUV greater than, 
equal to, or less than the force exerted on the SUV by 
the Mini? Explain.

 17. You are standing on one end of a light wooden raft that 
has floated 3 m away from the pier. If the raft is 6 m long 
by 2.5 m wide and you are standing on the raft end 
nearest to the pier, can you propel the raft back toward 
the pier where a friend is standing with a pole and hook 
trying to reach you? You have no oars. Make sugges-
tions of what to do without getting yourself wet.

3 m

6 m

 18. What does it mean when we refer to a cord as an “ideal 
cord” and a pulley as an “ideal pulley”?

 19. If a feather and a lead brick are dropped simultaneously 
from the top of a ladder, the lead brick hits the ground 
first. What would happen if the experiment is repeated 
on the surface of the Moon?

Conceptual Questions

 1. Explain the need for automobile seat belts in terms of 
Newton’s first law.

 2. An American visitor to Finland is surprised to see heavy 
metal frames outside of all the apartment buildings. On 
Saturday morning the purpose of the frames becomes 
evident when several apartment dwellers appear, carry-
ing rugs and carpet beaters to each frame. What role 
does the principle of inertia play in the rug beating 
process? Do you see a similarity to the role the principle 
of inertia plays when you throw a baseball?

 3. The readings of the two spring scales shown in the draw-
ing are the same. (a) Explain why they are the same. 
[Hint: Draw free-body diagrams.] (b) What is the reading?

550 N

Scale Scale

550 N 550 N

 4.  A dog goes swimming at the beach and then shakes 
himself all over to get dry. What principle of physics 
aids in the drying process? Explain.

 5. In an attempt to tighten the loos-
ened steel head of a hammer, a 
carpenter holds the hammer ver-
tically, raises it up, and then 
brings it down rapidly, hitting 
the bottom end of the wood 
handle on a two-by-four board. 
Explain how this tightens the 
head back onto the handle.

 6. When a car begins to move 
forward, what force makes it do 
so? Remember that it has to be an external force; the in-
ternal forces all add to zero. How does the engine, which 
is part of the car, cause an external force to act on the car?

 7. Two cars are headed toward each other in opposite 
directions along a narrow country road. The cars collide 
head-on, crumpling up the hoods of both. Describe what 
happens to the car bodies in terms of the principle of 
inertia. Does the rear end of the car stop at the same 
time as the front end?

 8. Can an object in free fall be in equilibrium? Explain.
 9. (a) What assumptions do you make when you call the 

reading of a bathroom scale your “weight”? What does 
the scale really tell you? (b) Under what circumstances 
might the reading of the scale not be equal to your weight?

 10. A freight train consists of an engine and several iden-
tical cars on level ground. Determine whether each of 
these statements is correct or incorrect and explain why. 



 MULTIPLE-CHOICE QUESTIONS 141

 32. Which of the fundamental forces has the shortest range?
 33. Which of the fundamental forces governs the motion of 

planets in the solar system? Is this the strongest or the 
weakest of the fundamental forces? Explain.

 34. Which of the following forces have an unlimited range: 
strong force, contact force, electromagnetic force, gravi-
tational force?

 35. Which of the following forces bind electrons to nuclei to 
form atoms: strong force, contact force, electromagnetic 
force, gravitational force?

 36. Which of the fundamental forces binds quarks together 
to form protons, neutrons, and many exotic subatomic 
particles?

Multiple-Choice Questions

 1. Interaction partners
 (a) are equal in magnitude and opposite in direction and 

act on the same object.
 (b) are equal in magnitude and opposite in direction and 

act on different objects.
 (c) appear in an FBD for a given object.
 (d) always involve gravitational force as one partner.
 (e) act in the same direction on the same object.
 2. Within a given system, the internal forces
 (a) are always balanced by the external forces.
 (b) all add to zero.
 (c) are determined only by subtracting the external 

forces from the net force on the system.
 (d) determine the motion of the system.
 (e) can never add to zero.
 3. A friction force is
 (a) a contact force that acts parallel to the contact 

surfaces.
 (b) a contact force that acts perpendicular to the contact 

surfaces.
 (c) a scalar quantity since it can act in any direction 

along a surface.
 (d) always proportional to the weight of an object.
 (e) always equal to the normal force between the objects.
 4. When a force is called a “normal” force, it is
 (a) the usual force expected given the arrangement of a 

system.
 (b) a force that is perpendicular to the surface of Earth 

at any given location.
 (c) a force that is always vertical.
 (d) a contact force perpendicular to the contact surfaces 

between two solid objects.
 (e) the net force acting on a system.
 5. Your car won’t start, so you are pushing it. You apply a 

horizontal force of 300 N to the car, but it doesn’t budge. 
What force is the interaction partner of the 300 N force 
you exert?

 20. Two boys are trying to break a cord. Gerardo says they 
should each pull in opposite directions on the two ends; 
Stefan says they should tie the cord to a pole and both 
pull together on the opposite end. Which plan is more 
likely to work?

 21. Why might an elevator cable break during acceleration 
when lifting a lighter load than it normally supports at 
rest or at constant velocity?

 22. If air resistance is ignored, what force(s) act on an object 
in free fall?

 23. The net force acting on an object is constant. Under 
what circumstances does the object move along a 
straight line? Under what circumstances does the object 
move along a curved path?

 24. Pulleys and inclined planes are examples of simple 
machines. Explain what these machines do in Examples 
4.10, 4.12, and 4.16 to make a task easier to perform.

 25. For a problem about a crate sliding along an inclined 
plane, is it possible to choose the x-axis so that it is par-
allel to the incline?

 26. In Conceptual Example 4.9, a horse pulls a sleigh at 
constant velocity. Suppose the horse wants to speed up. 
If it pulls forward on the sleigh with a larger force to try 
to make the net force on the sleigh nonzero, the sleigh 
will simultaneously pull back on the horse with an 
equally larger force (Newton’s third law). Then how is it 
possible for the horse and sleigh to ever speed up? Com-
pare the magnitudes of the horizontal forces acting on 
the horse and on the sleigh if they both have a nonzero 
net force in the forward directions.

 27. You decide to test your physics knowledge while going 
over a waterfall in a barrel. You take a baseball into the 
barrel with you and as you are falling vertically down-
ward, you let go of the ball. What do you expect to see for 
the motion of the ball relative to the barrel? Will the ball 
fall faster than you and move toward the bottom of the 
barrel? Will it move slower than you and approach the top 
of the barrel, or will it hover apparently motionless within 
the falling barrel? Explain. [Warning: Do not try this.]

 28. A person is standing on a bathroom scale. Which of the 
following is not a force exerted on the scale: a contact 
force due to the floor, a contact force due to the person’s 
feet, the weight of the person, the weight of the scale?

 29. Does the concept of a contact force apply to both a mac-
roscopic scale and an atomic scale? Explain.

 30. If an object is acted on by a single constant force, is it 
possible for the object to remain at rest? Is it possible for 
the object to move with constant velocity? Is it possible 
for the object’s speed to be decreasing? Is it possible for 
it to change direction? In each case that is possible, 
describe the direction of the force.

 31. If an object is acted on by two constant forces is it pos-
sible for the object to move at constant velocity? If so, 
what must be true about the two forces? Give an example.
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 (a) the frictional force exerted on the car by the road
 (b) the force exerted on you by the car
 (c) the frictional force exerted on you by the road
 (d) the normal force on you by the road
 (e) the normal force on the car by the road

 6. Which of these is not a long-range force?
 (a) the force that makes raindrops fall to the ground
 (b) the force that makes a compass point north
 (c) the force that a person exerts on a chair while sitting
 (d) the force that keeps the Moon in its orbital path 

around Earth

 7. When an object is in translational equilibrium, which of 
these statements is not true?

 (a) The vector sum of the forces acting on the object is 
zero.

 (b) The object must be stationary.
 (c) The object has a constant velocity.
 (d) The speed of the object is constant.

 8. To make an object start moving on a surface with 
friction requires

 (a) less force than to keep it moving on the surface.
 (b) the same force as to keep it moving on the surface.
 (c) more force than to keep it moving on the surface.
 (d) a force equal to the weight of the object.

 9. A thin string that can withstand a tension of 35.0 N, but 
breaks under any larger tension, is attached to the ceiling 
of an elevator. How large a mass can be hung from the 
string without breaking it if the initial acceleration as 
the elevator starts to ascend is 3.20 m/s2?

 (a) 3.57 kg (b) 2.69 kg (c) 4.26 kg
 (d) 2.96 kg (e) 5.30 kg

 10. A woman stands on a bathroom scale in an elevator that 
is not moving. The scale reads 500 N. The elevator then 
moves downward at a constant velocity of 4.5 m/s. What 
does the scale read while the elevator descends with 
constant velocity?

 (a) 100 N (b) 250 N (c) 450 N
 (d) 500 N (e) 750 N

 11. A 70.0 kg man stands on a bathroom scale in an eleva-
tor. What does the scale read if the elevator is slowing 
down at a rate of 3.00 m/s2 while descending?

 (a) 210 N (b) 476 N (c) 686 N
 (d) 700 N (e) 896 N

 12. A space probe leaves the solar system to explore inter-
stellar space. Once it is far from any stars, when must it 
fire its rocket engines?

 (a) all the time, in order to keep moving
 (b) only when it wants to speed up
 (c) when it wants to speed up or slow down
 (d) only when it wants to turn
 (e) when it wants to speed up, slow down, or turn

 13. A small plane climbs with a constant velocity of 250 m/s 
at an angle of 28° with respect to the horizontal. Which 
statement is true concerning the magnitude of the net 
force on the plane?

 (a) It is equal to zero.
 (b) It is equal to the weight of the plane.
 (c) It is equal to the magnitude of the force of air resistance.
 (d) It is less than the weight of the plane but greater than 

zero.
 (e) It is equal to the component of the weight of the 

plane in the direction of motion.

 14. Two blocks are connected by an ideal string passing 
over an ideal pulley. The block with mass m1 slides on a 
frictionless horizontal surface, and the block with mass 
m2 hangs vertically. If m1 > m2 and the string does not 
stretch, the tension in the string is

 (a) zero.
 (b) less than m2g.
 (c) equal to m2g.
 (d) greater than m2g, but less than m1g.
 (e) equal to m1g.
 (f) greater than m1g.

m1

m2

 15. You place two different coins on the cover of a book and 
then slowly lift the cover. Assuming the coefficients of 
static friction are the same, which is true?

 (a) The more massive coin starts to slide first.
 (b) The less massive coin starts to slide first.
 (c) The two coins start to slide at the same time.
 16. A crate containing a new water heater weighs 800 N. 

The crate rests on the basement floor. Tim pushes hori-
zontally on it with a force of 400 N, but it doesn’t budge. 
What can you conclude about the coefficient of static 
friction between the crate and the floor?

 (a) μs = 0.5 (b) μs ≥ 0.5 (c) μs ≤ 0.5
 (d) Not enough information is given to draw any of 

these conclusions.

 17. A crate containing a new water heater weighs 800 N. Tim 
and a friend push horizontally on the water heater with a 
force of 600 N as it slides across the floor with constant 
velocity. What can you conclude about the coefficient 
of kinetic friction between the crate and the floor?

 (a) μk = 0.75 (b) μk ≥ 0.75 (c) μk ≤ 0.75
 (d) Not enough information is given to draw any of 

these conclusions.
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 18. A woman stands on an airport’s moving sidewalk and 
moves due west at constant velocity. The frictional force 
on the woman is _____. (Ignore air resistance.)

 (a) zero
 (b) kinetic and to the west
 (c) kinetic and to the east
 (d) static and to the west
 (e) static and to the east

Questions 19–22. For each situation, how does the magni-
tude of the normal force N compare with the object’s weight 
W? Answer choices:
 (a) equal to W
 (b) greater than W
 (c) less than W
 (d) The given information is insufficient to determine 

the relative magnitude of the normal force.
 19. A child (weight W) sits on a level floor. The normal 

force on the child is _____.
 20. A car (weight W) is parked on an incline. The magni-

tude of the normal force on the car is _____.
 21. A weightlifter (weight W) holds a 400 N barbell above 

his head. The magnitude of the normal force on the 
weightlifter due to the floor is _____.

 22. A passenger (weight W) rides in an elevator. The magni-
tude of the normal force on the passenger due to the 
floor is _____.

 23. Two blocks of unequal masses are connected by an ideal 
cord of fixed length that passes over an ideal pulley. 
Which is true concerning the accelerations of the blocks 
and the net forces acting on the blocks?

 (a) accelerations equal in magnitude, net forces unequal 
in magnitude

 (b) accelerations unequal in magnitude, net forces equal 
in magnitude

 (c) accelerations equal in magnitude, net forces equal in 
magnitude

 (d) accelerations unequal in magnitude, net forces 
unequal in magnitude

Questions 24–26. A ball is tossed straight up. Air resistance 
is not negligible; the force of air resistance is opposite in 
direction to the ball’s velocity. Assume its magnitude is less 
than the ball’s weight. Answer choices:
 (a) less than g
 (b) equal to g
 (c) greater than g
 24. On the way up, the magnitude of the ball’s acceleration 

is _____.
 25. At the top the magnitude of the ball’s acceleration is 

_____.
 26. On the way down, the magnitude of the ball’s accelera-

tion is _____.

Problems

  Combination conceptual/quantitative problem
  Biological or medical application
  Challenging problem
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

4.1 Force
 1. A sack of flour has a weight of 19.8 N. What is its 

weight in pounds?
 2. An astronaut weighs 175 lb. What is his weight in 

newtons?
 3. A force of 20 N is directed at an angle of 60° above the 

x-axis. A second force of 20 N is directed at an angle of 
60° below the x-axis. What is the vector sum of these 
two forces?

 4. Two draft horses, Sam and Bob, are dragging a sled 
loaded with jugs of maple syrup. They pull with hori-
zontal forces of equal magnitude 1.50 kN on the front of 
the sled. The force due to Sam is in the direction 15° 
north of east, and the force due to Bob is 15° south of 
east. Use the graphical method of vector addition to find 
the magnitude and direction of the sum of the forces 
exerted on the sled by the two horses.

FS

FB

15°
15°

(overhead view)

N

S

W E

Problems 4 and 5
 5. In Problem 4, if Sam pulls at 10° north of east while 

Bob pulls at 15° south of east, is it still possible for the 
sum of the two forces to be due east if their magnitudes 
are not the same? Which force must have the larger 
magnitude? Illustrate with a sketch.

 6.  Suppose you are standing on the floor doing your 
daily exercises. For one exercise, you lift your arms up 
and out until they are horizontal. In this position, assume 
that the deltoid muscle exerts a force of 270 N at an 
angle of 15° above the horizontal on the humerus, as 
shown in the figure. What are the x- and y-components 
of this force?

y

x

15°

Humerus

Deltoid
muscleF
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 7. While tilling your garden, you exert a force on the han-
dles of the tiller that has components Fx = +85 N and Fy = 
−132 N. The x-axis is horizontal and the y-axis points 
up. What are the magnitude and direction of this force?

 8. Juan is helping his mother rearrange the living room 
furniture. Juan pushes on the armchair with a force of 
30 N directed at an angle of 25° above a horizontal line 
while his mother pushes with a force of 60 N directed at 
an angle of 35° below the same horizontal. What is the 
vector sum of these two forces?

 9. In the drawing, what is the vector sum of forces 
A
→

+ B
→

+ C
→

 if each grid square is 2 N on a side?

C

A

B
EW

S

N

 10. In the drawing, what is the vector sum of forces 
D
→

+ E
→

+ F
→

 if each grid square is 2 N on a side?

D

E

F

EW

S

N

 11. Two of Robin Hood’s men are pulling a sledge loaded 
with some gold along a path that runs due north to their 
hideout. One man pulls his rope with a force of 62 N at 
an angle of 12° east of north and the other pulls with the 
same force at an angle of 12° west of north. Assume the 
ropes are parallel to the ground. What is the sum of 
these two forces on the sledge?

 12. A barge is hauled along a straight-line section of canal 
by two horses harnessed to tow ropes and walking along 
the tow paths on either side of the canal. Each horse 
pulls with a force of 560 N at an angle of 15° with the 
centerline of the canal. Find the sum of the two forces 
exerted by the horses on the barge.

 13. On her way to visit Grandmother, Red Riding Hood sat 
down to rest and placed her basket of goodies beside 
her. A wolf came along, spotted the basket, and began to 
pull on the handle with a force of 6.4 N at an angle of 
25° with respect to vertical. Red was not going to let go 
easily, so she pulled on the handle with a force of 12 N. 
If the sum of these two forces on the basket is straight 
up, at what angle was Red Riding Hood pulling?

 14. Two objects, A and B, are acted on by the forces shown 
in the FBDs. Is the magnitude of the net force acting on 
object B greater than, less than, or equal to the magni-
tude of the net force acting on object A? Explain.

2 N2 N
2 N2 N

4 N 4 N
B

A

45° 45°

45° 45°

 15. Find the magnitude and direction of the net force on the 
object in each of the FBDs for this problem. In the FBDs, 
the forces are labeled with their magnitudes.

(b)

(a)

10 N 10 N

18 N 18 N

18 N

(c)

10 N 10 N

10 N 40 N

 16. A truck driving on a level highway is acted on by the fol-
lowing forces: a downward gravitational force of 52 kN 
(kilonewtons); an upward contact force due to the road 
of 52 kN; another contact force due to the road of 7 kN, 
directed east; and a drag force due to air resistance of 5 kN, 
directed west. What is the net force acting on the truck?

4.2 Inertia and Equilibrium: Newton’s First Law of 
Motion; 4.3 Net Force, Mass, and Acceleration: 
Newton’s Second Law of Motion
 17. A tennis ball (mass 57.0 g) moves toward the player’s 

racquet at 47.5 m/s. It is in contact with the racquet for 
3.60 ms, after which it moves in the opposite direction 
at 50.2 m/s. What is the average force on the ball during 
this time interval?

 18. A red-tailed hawk that weighs 8 N is gliding due north at 
constant speed. What is the total force acting on the hawk 
due to the air? Draw a free-body diagram for the hawk.

 19. An 80 N crate of apples sits at rest on the horizontal bed 
of a parked pickup truck. What is the total contact force 
exerted on the crate by the bed of the pickup? Draw a 
free-body diagram for the crate.

 20. Forces of magnitudes 2000 N and 3000 N act on five ob-
jects. The directions of the forces are shown in the sketches. 
Rank the objects according to the magnitude of the net 
force, from smallest to largest. Explain your reasoning.

A B C D E
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 21. Five objects all start from rest at t = 0. Each is pushed to 
the right by a constant net force. Rank the objects according 
to their speeds at the instants of time indicated, from largest 
to smallest. (a) mass m, net force F; speed at time t1;  
(b) mass 2m, net force 2F; speed at time t1; (c) mass m, net 
force F; speed at time 2t1; (d) mass m, net force 2F; speed 
at time t1; (e) mass 2m, net force F; speed at time 2t1.

 22. A sailboat, tied to a mooring with a line, weighs 820 N. 
The mooring line pulls horizontally toward the west on the 
sailboat with a force of 110 N. The sails are stowed away 
and the wind blows from the west. The boat is moored on 
a still lake—no water currents push on it. Draw an FBD 
for the sailboat and indicate the magnitude of each force.

 23.  A hummingbird is hovering motionless beside a 
flower. The blur of its wings shows that they are rapidly 
beating up and down. If the air pushes upward on the 
bird with a force of 0.30 N, what is the weight of the 
hummingbird?

 24. You are pulling a suitcase through the airport at a con-
stant speed. The handle of the suitcase makes an angle 
of 60° with respect to the horizontal direction. If you 
pull with a force of 5.0 N parallel to the handle, what is 
the horizontal component of the contact force due to the 
floor acting on the suitcase?

 25. What is the acceleration of an automobile of mass 
1.40 × 103 kg when it is subjected to a net forward force 
of 3.36 × 103 N?

 26. A man is lazily floating on an air mattress in a swim-
ming pool. If the weight of the man and air mattress 
together is 806 N, what is the upward force of the water 
acting on the mattress?

 27. A large wooden crate is pushed along a horizontal, fric-
tionless surface by a force of 100 N. The acceleration of 
the crate is measured to be 2.5 m/s2. What is the mass of 
the crate?

 28. A bag of potatoes with weight 39.2 N is suspended from a 
string that exerts a force of 46.8 N. If the bag’s acceleration 
is upward at 1.90 m/s2, what is the mass of the potatoes?

 29.  A person stands on the ball of one foot. The force due 
to the ground pushing up on the ball of the foot has mag-
nitude 750 N. Ignore the weight of the foot itself. The 
other significant forces acting on the foot are the Achilles 
tendon pulling up and the tibia pushing down on the ankle 
joint. If the force due to the Achilles tendon is 2230 N, 
what is the force exerted on the foot by the tibia?

Achilles tendon

Gastrocnemius-
soleus muscles

Calcaneus
(heel bone)

Tibia

FGround

FAchilles FTibia

 30.  A model sailboat is slowly sailing west across a pond 
at 0.33 m/s. A gust of wind gives the sailboat a constant 
acceleration of 0.30 m/s2 directed 28° south of west 
during a time interval of 2.0 s. (a) If the net force on the 
sailboat during the 2.0 s interval has magnitude 0.375 N, 
what is the sailboat’s mass? (b) What is the new velocity 
of the boat after the 2.0 s gust of wind?

4.4 Interaction Pairs: Newton’s Third Law of Motion
 31. A bike is hanging from a hook in a garage. Consider the 

following forces: (1) the force of Earth pulling down on 
the bike, (2) the force of the bike pulling up on Earth, 
and (3) the force of the hook pulling up on the bike. 
(a) Which two forces are equal and opposite because of 
Newton’s third law? (b) Which two forces are equal and 
opposite because of Newton’s first law? Explain.

 32. A hanging plant is suspended by a cord from a hook in the 
ceiling. Draw an FBD for each of these: (a) the system 
consisting of plant, soil, and pot; (b) the cord; (c) the hook; 
(d) the system consisting of plant, soil, pot, cord, and hook. 
Label each force arrow using subscripts (e.g., F

→
ch would 

represent the force exerted on the cord by the hook).
 33. Margie, who weighs 543 N, is standing on a bathroom 

scale that weighs 45 N. (a) With what magnitude force 
does the scale push up on Margie? (b) What is the inter-
action partner of that force? (c) With what magnitude 
force does the floor push up on the scale? (d) Identify 
the interaction partner of that force.

 34. A fisherman is holding a fishing rod with a large fish 
hanging from the line. Identify the forces acting on the 
fish and describe the interaction partner of each.

 35. In Problem 34, identify the forces acting on the rod and 
describe the interaction partner of each.

Problems 34 and 35

Problems 36–38. A skydiver, who weighs 650 N, is falling at 
a constant speed with his parachute open. Consider the 
apparatus that connects the parachute to the skydiver to be 
part of the parachute. The parachute pulls upward on the 
skydiver with a force of 620 N.
 36. (a) Identify the forces acting on the skydiver. Describe 

each force as: (type of force) exerted on (object 1) by 
(object 2). (b) Draw an FBD for the skydiver. (c) Find 
the magnitude of the force on the skydiver due to the air. 
(d) Identify the interaction partner for each force acting 
on the skydiver. For each interaction partner, describe it 
as (type of force) exerted on (object 1) by (object 2) and 
determine its magnitude and direction.
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 37. Consider the skydiver and parachute to be a single 
system. Identify the external forces acting on this system 
and draw an FBD.

 38. (a) Identify the forces acting on the parachute. Describe 
each force as: (type of force) exerted on (object 1) by 
(object 2). (b) Draw an FBD for the parachute. (c) What 
are the magnitude and direction of the force on the para-
chute due to the skydiver? (d) Identify the interaction 
partner for each force acting on the parachute. For each 
interaction partner, describe it as (type of force) exerted 
on (object 1) by (object 2).

 39. A woman who weighs 600 N sits on a chair with her feet 
on the floor and her arms resting on the chair’s armrests. 
The chair weighs 100 N. Each armrest exerts an upward 
force of 25 N on her arms. The seat of the chair exerts an 
upward force of 500 N. (a) What force does the floor 
exert on her feet? (b) What force does the floor exert on 
the chair? (c) Consider the woman and the chair to be a 
single system. Draw an FBD for this system that includes 
only the external forces acting on it.

4.5 Gravitational Forces
 40. (a) Calculate your weight in newtons. (b) What is the 

weight in newtons of 250 g of cheese? (c) Name a 
common object whose weight is about 1 N.

 41. A man weighs 0.80 kN on Earth. What is his mass in 
kilograms?

 42. A young South African girl has a mass of 40.0 kg. 
(a) What is her weight in newtons? (b) If she came to the 
United States, what would her weight be in pounds as 
measured on an American scale? Assume g = 9.80 N/kg 
in both locations.

 43. In a binary star system, two stars orbit their common 
center of mass. In one such system, star A has 4.0 times 
the mass of star B. (a) Draw and label vector arrows for 
the gravitational forces that each star exerts on the other, 
showing how their directions and magnitudes are 
related. (b) Draw and label vector arrows to illustrate the 
accelerations of the stars, showing how their directions 
and magnitudes are related.

 44.  The peak force on a runner’s foot during a race is 
found to be vertical and three times his weight. What is the 
peak force on the foot of a runner whose mass is 85 kg?

 45. Find the ratio of Earth’s gravitational force on a satellite 
when it is on the ground to the gravitational force exerted 
when the satellite is orbiting at an altitude of 320 km.

 46. An astronaut stands at a position on the Moon such that 
Earth is directly overhead and releases a Moon rock that 
was in her hand. (a) Which way will it fall? (b) What is 
the gravitational force exerted by the Moon on a 1.0 kg 
rock resting on the Moon’s surface? (c) What is the 
gravitational force exerted by Earth on the same 1.0 kg 
rock resting on the surface of the Moon?

 47. Find and compare the weight of a 65 kg man on Earth 
with the weight of the same man on (a) Mars, where 
g  =  3.7 N/kg; (b) Venus, where g = 8.9 N/kg; and 
(c) Earth’s Moon, where g = 1.6 N/kg.

 48. How far above the surface of Earth does an object have 
to be in order for it to have the same weight as it would 
have on the surface of the Moon? (Ignore any effects from 
Earth’s gravity for the object on the Moon’s surface or from 
the Moon’s gravity for the object above Earth’s surface.)

 49. During a balloon ascension, wearing an oxygen mask, 
you measure the weight of a 5.00 kg object and find  
that the value of the gravitational field strength at your 
location is 9.792 N/kg. How high above sea level, where 
the gravitational field strength was measured to be 
9.803 N/kg, are you located?

 50. Find the altitudes above Earth’s surface where Earth’s 
gravitational field strength would be (a) two thirds and 
(b) one third of its value at the surface. [Hint: First find 
the radius for each situation; then recall that the altitude 
is the distance from the surface to a point above the 
surface. Use proportional reasoning.]

 51. In free fall, we assume the acceleration to be constant. 
Not only is air resistance ignored, but the gravitational 
field strength is assumed to be constant. From what 
height can an object fall to Earth’s surface such that the 
gravitational field strength changes less than 1.000% 
during the fall?

 52. At what altitude above Earth’s surface would your 
weight be half of what it is at Earth’s surface?

 53. (a) What is the magnitude of the gravitational force that 
Earth exerts on the Moon? (b) What is the magnitude of 
the gravitational force that the Moon exerts on Earth? 
See Appendix B.6 for necessary information.

 54. What is the approximate magnitude of the gravitational 
force exerted by the Sun on the Voyager 1 spacecraft 
when they are separated by 17 billion km? The space-
craft has a mass of 722 kg.

 55. A solar sailplane is going from Earth to Mars. Its sail is 
oriented to give a solar radiation force of 8.00 × 102 N. 
The gravitational force due to the Sun is 173 N and the 
gravitational force due to Earth is 1.00 × 102 N. All 
forces are in the plane formed by Earth, Sun, and sail-
plane. The mass of the sailplane is 14500 kg. (a) What 
is the net force (magnitude and direction) acting on the 
sailplane? (b) What is the acceleration of the sailplane?

30.0°

90°
Sun

Earth

1.00 × 102 N

(vectors not to scale) 8.00 × 102 N

173 N

Solar
sailplane
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 56. The vertical component of the acceleration of a sail-
plane is zero when the air pushes up against its wings 
with a lift force of 3.0 kN. (a) Assuming that the only 
vertical forces on the sailplane are that due to gravity 
and that due to the air pushing up against its wings, find 
the gravitational force on Earth due to the sailplane. 
(b) If the wing stalls and the upward force decreases to 
2.0 kN, what is the vertical acceleration of the sailplane?

Problems 57–60. Assume the elevator is supported by a sin-
gle ideal cable of fixed length. Forces exerted by the guide 
rails and air resistance are negligible.
57. A 2010 kg elevator moves with an upward acceleration 

of 1.50 m/s2. What is the tension in the cable that 
supports the elevator?

58. A 2010 kg elevator moves with a downward acceleration 
of 1.50 m/s2. What is the tension in the cable that sup-
ports the elevator?

 59. While an elevator of mass 832 kg moves downward, the 
upward force due to the supporting cable is a constant 
7730 N. Between t = 0 and t = 4.00 s, the elevator’s 
displacement is 5.00 m downward. What is the elevator’s 
speed at t = 4.00 s?

 60. While an elevator of mass 2530 kg moves upward, the 
force exerted by the cable is 27.6 kN. (a) What is 
the  acceleration of the elevator? (b) If at some point in 
the motion the velocity of the elevator is 1.20 m/s 
 upward, what is the elevator’s velocity 4.00 s later?

 61. A man lifts a 2.0 kg stone vertically with his hand at a 
constant upward velocity of 1.5 m/s. What is the magni-
tude of the force of the man’s hand on the stone?

 62. A man lifts a 2.0 kg stone vertically with his hand at a 
constant upward acceleration of 1.5 m/s2. What is the 
magnitude of the force of the man’s hand on the stone?

 63. Using the masses and mean distances found in 
Appendix B.6, calculate the net gravitational force on 
the Moon (a) during a lunar eclipse (Earth between 
Moon and Sun) and (b) during a solar eclipse (Moon 
between Earth and Sun).

 64.  A binary star system consists of two stars of masses 
M1 and 4.0M1 a distance d apart. Is there any point 
where the net gravitational field due to the two stars is 
zero? If so, where is that point?

4.6 Contact Forces
 65. Mechanical advantage is the ratio of the force required 

without the use of a simple machine to that needed when 
using the simple machine. Compare the force to lift an 
object with that needed to slide the same object up a 
frictionless incline and show that the mechanical advan-
tage of the inclined plane is the length of the incline 
divided by the height of the incline (d/h in Fig. 4.27).

 66. A hammer (mass 0.94 kg) rests on the surface of a table. 
Consider the following four forces that arise in this 

situation: (1) the force of Earth pulling on the hammer, 
(2) the force of the table pushing on the hammer, (3) the 
force of the hammer pushing on the table, and (4) the 
force of the hammer pulling on Earth. (a) Find the mag-
nitude and direction of each of these four forces. 
(b).  Which forces must be equal in magnitude and 
opposite in direction even though they are not interac-
tion partners? Explain.

 67. A crate of artichokes is on a ramp that is inclined 10.0° 
above the horizontal. Give the direction of the normal 
force and the friction force acting on the crate in each of 
these situations. (a) The crate is at rest. (b) The crate is 
sliding up the ramp. (c) The crate is sliding down 
the ramp.

 68. An 80.0 N crate of apples sits at rest on a ramp that runs 
from the ground to the bed of a truck. The ramp is 
inclined at 20.0° to the ground. (a) What is the normal 
force exerted on the crate by the ramp? (b) The interac-
tion partner of this normal force has what magnitude 
and direction? It is exerted by what object on what 
object? Is it a contact or a long-range force? (c) What is 
the frictional force exerted on the crate by the ramp? Is 
this static friction or kinetic friction? (d) What (if any-
thing) can you conclude about the static and kinetic 
coefficients of friction? (e) The normal and frictional 
forces are perpendicular components of the contact 
force exerted on the crate by the ramp. Find the magni-
tude and direction of the contact force.

 69. An 85 kg skier is sliding down a ski slope at a constant 
velocity. The slope makes an angle of 11° above the 
horizontal direction. Ignore air resistance. (a) What is 
the force of kinetic friction acting on the skier? (b) What 
is the coefficient of kinetic friction between the skis and 
the snow?

 70. A book that weighs 10 N is at rest in six different situa-
tions. Blue arrows indicate forces exerted on the book 
by an object that is not shown. Rank the situations 
according to the magnitude of the normal force on the 
10 N book due to the table, from smallest to greatest. 
Explain your reasoning.

(a)

5 N

(e) (f)

5 N

(b)

15 N

(d)

5 N

(c)
5°

Problems 71–74. A crate of potatoes of mass 18.0 kg is on a 
ramp with angle of incline 30° to the horizontal. The coef-
ficients of friction are μs = 0.75 and μk = 0.40. Find the 
frictional force (magnitude and direction) on the crate if
 71. the crate is at rest.
 72. the crate is sliding down the ramp.
 73. the crate is sliding up the ramp.
 74. the crate is being carried up the ramp at constant veloc-

ity by a conveyor belt (without sliding).
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 75. (a) In Example 4.10, if the movers stop pushing on 
the safe, can static friction hold the safe in place 
without having it slide back down? (b) If not, what 
minimum force needs to be applied to hold the safe 
in place?

 76.  A 3.0 kg block is at rest on a horizontal floor. If you 
push horizontally on the 3.0 kg block with a force of 
12.0 N, it just starts to move. (a) What is the coeffi-
cient of static friction? (b) A 7.0 kg block is stacked on 
top of the 3.0 kg block. What is the magnitude F of the 
force, acting horizontally on the 3.0 kg block as before, 
that is required to make the two blocks start to move 
together?

 77. A horse is trotting along pulling a sleigh through the 
snow. To move the sleigh, of mass m, straight ahead at a 
constant speed, the horse must pull with a force of mag-
nitude T. (a) What is the net force acting on the sleigh? 
(b) What is the coefficient of kinetic friction between 
the sleigh and the snow?

 78.  Before hanging new William Morris wallpaper in her 
bedroom, Brenda sanded the walls lightly to smooth out 
some irregularities on the surface. The sanding block 
weighs 2.0 N and Brenda pushes on it with a force of 
3.0 N at an angle of 30.0° with respect to the vertical, 
and angled toward the wall. Draw an FBD for the 
sanding block as it moves straight up the wall at a con-
stant speed. What is the coefficient of kinetic friction 
between the wall and the block?

 79. A box sits on a horizontal wooden ramp. The coefficient 
of static friction between the box and the ramp is 0.30. 
You grab one end of the ramp and slowly lift it up, keep-
ing the other end of the ramp on the ground. What is the 
angle between the ramp and the horizontal direction 
when the box begins to slide down the ramp?

 80.  In a playground, two slides have different angles of 
incline θ1 and θ2 (θ2 > θ1). A child slides down the first 
at constant speed; on the second, his acceleration down 
the slide is a. Assume the coefficient of kinetic friction 
is the same for both slides. (a) Find a in terms of θ1, θ2, 
and g. (b) Find the numerical value of a for θ1 = 45° 
and θ2 = 61°.

4.7 Tension
 81. A towline is attached between a car and a glider. As 

the  car speeds due east along the runway, the towline 
exerts a horizontal force of 850 N on the glider. What is 
the magnitude and direction of the force exerted by the 
glider on the towline?

 82. In Example 4.14, find the tension in the coupling 
between cars 2 and 3.

 83. A 200.0 N sign is suspended from a horizontal strut of 
negligible weight. The force exerted on the strut by the 
wall is horizontal. Draw an FBD to show the forces 

acting on the strut. Find the tension T in the diagonal 
cable supporting the strut.

T

30.0°

 84. Two boxes with different masses are 
tied together on a frictionless ramp 
surface. What is the tension in each 
of the cords?

 85. An ideal pulley is attached to the ceiling. Spring scale A 
is attached to the wall and a rope runs horizontally from 
it and over the pulley. The same rope is then attached to 
spring scale B. On the other side of scale B hangs an 
object that weighs 120 N. What are the readings of the 
two scales A and B? Ignore the weights of the ropes, 
pulley, and scales.

120 N

A

B

Pulley

 86. Spring scale A is attached to the floor and a rope runs 
vertically upward, loops over an ideal pulley, and runs 
down on the other side to a 120 N object. Scale B is 
attached to the ceiling and the pulley is hung below it. 
What are the readings of the two spring scales, A and B? 
Neglect the weights of the rope, pulley, and scales.

120 N
A

B

Pulley

 87. Two springs are connected in series so that spring scale 
A hangs from a hook on the ceiling and a second spring 
scale, B, hangs from the hook at the bottom of scale A. 

2.0 kg

25°

1.0 kg
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Apples weighing 120 N hang from the hook at the 
bottom of scale B. What are the readings on the upper 
scale A and the lower scale B? Ignore the weights of the 
ropes and scales.

B

A

 88. An ideal pulley is hung from the ceiling by a rope. A 
block of mass M is suspended by another rope that 
passes over the pulley and is attached to the wall. The 
rope fastened to the wall makes a right angle with the 
wall. Ignore the masses of the rope and the pulley. Find 
(a) the tension in the rope from which the pulley hangs 
and (b) the angle θ that the rope makes with the ceiling.

90°

zz

θ

 89. A 2.0 kg ball tied to a string fixed to the ceiling is pulled 
to one side by a force F

→
. Just before the ball is released 

and allowed to swing back and forth, (a) how large is the 
force F

→
 that is holding the ball in position and (b) what 

is the tension in the string?

30.0°

2.0 kg
F

 90.  Two wooden crates with masses as shown are tied 
together by a horizontal cord. Another cord is tied to the 
first crate, and it is 
pulled with a force of 
195 N at an angle of 20°, 
as shown. Each crate has 
a coefficient of kinetic friction of 0.55. (a) Find the 
acceleration of the crates. (b) Find the tension in the 
rope connecting the two crates. (c) If the crates are 
initially at rest, how far do they move in the first 3.0 s?

14.0 kg 25.0 kg
20°

 91. A 45 N lithograph is supported by two wires. One wire 
makes a 25° angle with the vertical and the other makes a 
15° angle with the vertical. Find the tension in each wire.

 92.  A crow perches on a clothesline midway between 
two poles. Each end of the rope makes an angle of θ 
below the horizontal where it connects to the pole. If the 
weight of the crow is W, what is the tension in the rope? 
Ignore the weight of the rope.

θθ

 93.   The drawing shows a wire attached to two back 
teeth and stretched across a front tooth. The purpose of 
this arrangement is to apply a force F

→
 to the front tooth. 

(The figure has been simplified by running the wire 
straight from the front tooth to the back teeth.) If the 
tension in the wire is 12 N, what are the magnitude and 
direction of the resultant force F

→
 applied to the front tooth?

37.5° 37.5°

 94. A spring scale hangs from a cord that is attached to a 
hook in the ceiling. A 10 kg object hangs from a second 
cord connected to the bottom of the scale. The weights 
of the cords and the scale are negligible. (a) What is the 
reading of the scale? (b) The 10 kg object is removed 
and the upper cord detached from the hook. Two people 
grasp the free ends of the cords and pull until the scale 
reading is the same as in (a). With what force is each 
person pulling?

 95.  Two blocks, masses m1 and m2, are connected by a 
massless cord. If the two blocks are pulled with a con-
stant tension on a frictionless surface by applying a 
force of magnitude T2 to a second cord connected to m2, 
what is the ratio of the tensions in the two cords T1/T2 in 
terms of the masses?

m1 m2

T2T1

4.8 Applying Newton’s Second Law
 96. The coefficient of static friction between a block and a 

horizontal floor is 0.40, while the coefficient of kinetic 
friction is 0.15. The mass of the block is 5.0 kg.
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  A  horizontal force is applied to the block and slowly 
increased. (a) What is the value of the applied horizontal 
force at the instant that the block starts to slide? (b) What 
is the net force on the block after it starts to slide?

 97. A 2.0 kg toy locomotive is pulling a 1.0 kg caboose. 
The frictional force of the track on the caboose is 0.50 N 
backward along the track. If the train’s acceleration 
forward is 3.0 m/s2, what is the magnitude of the force 
exerted by the locomotive on the caboose?

 98. An engine pulls a train of 20 freight cars, each having 
a mass of 5.0 × 104 kg, with a constant force. The cars 
move from rest to a speed of 4.0 m/s in 20.0 s on a 
straight track. Ignoring friction, find the force with 
which the tenth car pulls the eleventh one (at the mid-
dle of the train).

 99. In Fig. 4.46, two blocks are connected by an ideal cord 
that passes over an ideal pulley. (a) If m1 = 3.0 kg and 
m2 = 5.0 kg, what are the accelerations of each block? 
(b) What is the tension in the cord?

 100. A horizontal rope is attached from a truck to a 1400 kg 
car. As the truck tows the car on a horizontal straight 
road, the rope will break if the tension is greater than 
2500 N. Ignoring friction, find the maximum possible 
acceleration of the truck if the rope does not break.

 101.  An accelerometer—a device to measure 
 acceleration—can be as simple as a small pendulum 
hanging in an airplane cockpit. An essentially similar 
accelerometer is found in the inner ear of vertebrates. 
Suppose you are flying a small plane in a straight, hor-
izontal line and your accelerometer hangs at a constant 
angle of 12° behind the vertical, as shown in the figure. 
What is your acceleration?

12°

Direction of
motion of the
airplane

 102. A box full of books rests on a wooden floor. The normal 
force the floor exerts on the box is 250 N. (a) You push 
horizontally on the box with a force of 120 N, but it 
refuses to budge. What can you say about the coefficient 
of static friction between the box and the floor? (b) If you 
must push horizontally on the box with a force of at least 
150 N to start it sliding, what is the coefficient of static 
friction? (c) Once the box is sliding, you only have to 
push with a force of 120 N to keep it sliding at constant 
speed. What is the coefficient of kinetic friction?

 103.  A helicopter is lifting two crates simultaneously. 
One crate with a mass of 200 kg is attached to the he-
licopter by a cable. The second crate with a mass of 

100 kg is hanging below the first crate and attached to 
the first crate by a cable. As the helicopter accelerates 
upward at a rate of 1.0 m/s2, what is the tension in each 
of the two cables?

4.10 Apparent Weight
 104. A person stands on a bathroom scale in an elevator. Rank 

the scale readings from highest to lowest based on the 
given information about the speed v or the magnitude of 
the acceleration a: (a) ascending with increasing speed 
(a = 1.0 m/s2); (b) descending at constant speed (v = 
2.0 m/s); (c) descending at constant speed (v = 4.0 m/s) 
(d) descending with increasing speed (a = 2.0 m/s2); 
(e) ascending with decreasing speed (a = 2.0 m/s2).

 105. Oliver has a mass of 76.2 kg. He is riding in an elevator 
that has a downward acceleration of 1.37 m/s2. With 
what magnitude force does the elevator floor push 
upward on Oliver?

 106. While on an elevator, Jaden’s apparent weight is 550 N. 
When he was on the ground, the scale reading was 
600 N. What is Jaden’s acceleration?

 107. When on the ground, Ian’s weight is measured to be 
640 N. When Ian is on an elevator, his apparent weight 
is 700 N. What is the net force on the system (Ian and 
the elevator) if their combined mass is 1050 kg?

 108. Refer to Example 4.19. What is the apparent weight of 
the same passenger (weighing 598 N) in the following 
situations? In each case, the magnitude of the eleva-
tor’s acceleration is 0.50 m/s2. (a) After having stopped 
at the 15th floor, the passenger pushes the 8th floor 
button; the elevator is beginning to move downward. 
(b) The elevator is moving downward and is slowing 
down as it nears the 8th floor.

 109.   You are standing on a bathroom scale inside an 
elevator. Your weight is 140 lb, but the reading of the 
scale is 120 lb. (a) What is the magnitude and direction 
of the acceleration of the elevator? (b) Can you tell 
whether the elevator is speeding up or slowing down?

 110. Yolanda, whose mass is 64.2 kg, is riding in an eleva-
tor that has an upward acceleration of 2.13 m/s2. What 
force does she exert on the floor of the elevator?

 111. Felipe is going for a physical before joining the swim 
team. He is concerned about his weight, so he carries 
his scale into the elevator to check his weight while 
heading to the doctor’s office on the 21st floor of the 
building. If his scale reads 750 N while the elevator 
has an upward acceleration of 2.0 m/s2, what does the 
nurse measure his weight to be?

 112.  Luke stands on a scale in an elevator that has a constant 
acceleration upward. The scale reads 0.960 kN. When 
Luke then holds a box of mass 20.0 kg, the scale reads 
1.200 kN. (The acceleration remains the same.) (a) Find 
the acceleration of the elevator. (b) Find Luke’s weight.
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 117. A 3000 kg truck is about to tow a 1250 kg car up a hill 
that makes an angle of α = 10° with respect to the 
horizontal. The rope attached from the truck to the car 
makes an angle of β = 25° with respect to the horizon-
tal. The coefficient of static friction between the truck 
tires and the road is 0.60. Ignore friction on the car’s 
tires due to the road. Starting from rest, they move with 
constant acceleration until, 400 m up the hill, their 
speed is 11 m/s. What is the total frictional force on the 
truck’s tires? [Hint: You’ll need to apply Newton’s sec-
ond law to at least one of three systems—the car, the 
truck, or the car + rope + truck. Consider the options 
and choose the easiest method. You may not need all of 
the given information.]

 = 25°

 = 10°

β

α

 118.  You want to hang a 15 N picture as in part (a) using 
some very fine twine that will break with more than 
12 N of tension. Can you do this? What if you have it 
as illustrated in part (b) of the figure?

50°30°

(a) (b)

 119.  The coefficient of static friction between block A 
and a horizontal floor is 0.45, and the coefficient of 
static friction between block B and the floor is 0.30. 
The mass of each block is 2.0 kg and they are con-
nected together by a horizontal cord. (a) A horizontal 
force F

→
 pulling on block B is slowly increased until 

the blocks start to slide. What is the magnitude of F
→

 
just before they start to slide? (b) What is the tension 
in the cord connecting blocks A and B just before 
they start to slide?

 120.   While trying to decide where to 
hang a framed picture, you press it 
against the wall to keep it from falling. 
The picture weighs 5.0 N, and you press 
against the flat frame with a force of 
6.0 N at an angle of 40° from the verti-
cal. (a) What is the normal force exerted 
on the picture by the wall? (b) What is 
the minimum coefficient of static fric-
tion between the wall and the picture? 
(c) Depending on the magnitude of the force you exert, 
the frictional force exerted on the picture by the wall 
could have either of two possible directions. Explain why.

40°F

Collaborative Problems

 113.   When you hold up a 50 N object in your hand, 
with your forearm horizontal and your palm up, the 
upward force exerted by your biceps on your forearm is 
much larger than 50 N—perhaps as much as 5000 N. 
How can that be? What other forces are acting on your 
forearm? Draw an FBD for the forearm, showing all of 
the forces. Assume that all the forces exerted on the 
forearm are purely vertical—either up or down.

50 N
Biceps

 114.  A box containing a new TV weighs 350 N. Phineas 
is pushing horizontally on it with a force of 150 N, but 
it doesn’t budge. (a) Identify all the forces acting on the 
crate. Describe each as: (type of force) exerted on the 
crate by (object). (b) Identify the interaction partner of 
each force acting on the crate. Describe each partner 
as: (type of force) exerted on (object) by (object). (c) 
Draw an FBD for the crate. Are any of the interaction 
partners identified in (b) shown on the FBD? (d) What 
is the net force acting on the crate? Use your answer to 
determine the magnitude of all the forces acting on the 
crate. (e) If there are pairs of forces on the FBD that are 
equal in magnitude and opposite in direction, are these 
interaction pairs? Explain.

 115. The coefficient of static friction between a block and a 
horizontal floor is 0.35, while the coefficient of kinetic 
friction is 0.22. The mass of the block is 4.6 kg and it 
is initially at rest. (a) What is the minimum horizontal 
applied force required to make the block start to slide? 
(b) Once the block is sliding, if you keep pushing on it 
with the same minimum starting force as in part (a), 
does the block move with constant velocity or does it 
accelerate? (c) If it moves with constant velocity, what 
is its velocity? If its velocity is changing, what is its 
acceleration?

 116.  You grab a book and give it a quick push across the 
top of a horizontal table. After a short push, the book 
slides across the table, and because of friction, comes 
to a stop. (a) Draw an FBD of the book while you are 
pushing it. (b) Draw an FBD of the book after you have 
stopped pushing it, while it is sliding across the table. 
(c) Draw an FBD of the book after it has stopped 
sliding. (d) In which of the preceding cases is the net 
force on the book not equal to zero? (e) If the book has 
a mass of 0.50 kg and the coefficient of friction be-
tween the book and the table is 0.40, what is the net 
force acting on the book in part (b)? (f) If there were no 
friction between the table and the book, what would the 
free-body diagram for part (b) look like? Would the 
book slow down in this case? Why or why not?
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 121.  A block of mass m1 = 3.0 kg rests on a frictionless 
horizontal surface. A second block of mass m2 = 2.0 kg 
hangs from an ideal cord that runs over an ideal pulley 
and then is connected to the first block. The blocks are 
released from rest. (a) Find the acceleration of the two 
blocks after they are released. (b) What is the speed of 
the first block 1.2 s after the release of the blocks, 
assuming the first block does not run out of room on 
the table and the second block does not land on the 
floor? (c) How far has block 1 moved during the 1.2 s 
interval? (d) How far have the blocks moved from their 
initial positions 0.40 s after they are released?

m1

m2

Problems 121 and 122

 122.  A block of mass m1 slides to the right with coeffi-
cient of kinetic friction μk on a horizontal surface. The 
block is connected to a hanging block of mass m2 by a 
light cord that passes over an ideal pulley. (a) Find the 
acceleration of each of the blocks and the tension in 
the cord. (b) Check your answers in the special cases 
m1 ≪ m2, m1 ≫ m2, and m1 = m2. (c) For what value of 
m2 (if any) do the two blocks slide at constant velocity? 
What is the tension in the cord in that case?

Comprehensive Problems

 123. A car is driving on a straight, level road at constant 
speed. Draw an FBD for the car, showing the signifi-
cant forces that act upon it.

 124. You want to push a 65 kg box up a 25° ramp. The coef-
ficient of kinetic friction between the ramp and the box 
is 0.30. With what magnitude force parallel to the ramp 
should you push on the box so that it moves up the 
ramp at a constant speed?

 125. An airplane is cruising along in a horizontal level 
flight at a constant velocity, heading due west. (a) If 
the weight of the plane is 2.6 × 104 N, what is the net 
force on the plane? (b) With what force does the air 
push upward on the plane?

 126.  A young boy with a broken leg is undergoing 
traction. (a) Find the magnitude of the total force of the 
traction apparatus applied to the leg, assuming the 
weight of the leg is 22 N and the weight hanging from 
the traction apparatus is also 22 N. (b) What is the 
horizontal component of the traction force acting on 

the leg? (c) What is the magnitude of the force exerted 
on the femur by the lower leg?

22 N

30.0°
Femur

30.0°

 127. In the sport of curling, a player slides a 20.0 kg granite 
stone down a 38 m long ice rink. Draw FBDs for the 
stone (a) while it sits at rest on the ice; (b) while it 
slides down the rink; (c) during a head-on collision 
with an opponent’s stone that was at rest on the ice.

©Mike Hewitt/Getty Images

 128. The tallest spot on Earth is Mt. Everest, which is 
8850 m above sea level. If the radius of Earth to sea 
level is 6370  km, how much does the gravitational 
field strength change between the sea level value at 
that location (9.826 N/kg) and the top of Mt. Everest?

 129. By what percentage does the weight of an object 
change when it is moved from the equator at sea level, 
where the effective value of g is 9.784 N/kg, to the 
North Pole where g = 9.832 N/kg?

 130. Two canal workers pull a barge along the narrow wa-
terway at a constant speed. One worker pulls with a 
force of 105 N at an angle of 28° with respect to the 
forward motion of the barge and the other worker, on 
the opposite tow path, pulls at an angle of 38° relative 
to the barge motion. Both ropes are parallel to the 
ground. (a) With what magnitude force should the sec-
ond worker pull to make the sum of the two forces be 
in the forward direction? (b) What is the magnitude of 
the force on the barge from the two tow ropes?

 131. A large wrecking ball of mass m is resting against a 
wall. It hangs from the end of a cable that is attached at 
its upper end to a crane that is just touching the wall. 
The cable makes an angle of θ with the wall. Ignoring 
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friction between the ball and the wall, find the tension 
in the cable.

θ

 132.  The figure shows the quadriceps and the patellar 
tendons attached to the patella (the kneecap). If the 
tension T in each tendon is 1.30 kN, what are the mag-
nitude and direction of the contact force F

→
 exerted on 

the patella by the femur? The weight of the patella is 
negligible in this situation.

Patella

Tibia

Quadriceps
tendon

Patellar
tendon

Femur

T

T

F

80.0°

37.0°

θ

 133. Two blocks lie side by side on a frictionless table. The 
block on the left is of mass m; the one on the right is of 
mass 2m. The block on the right is pushed to the left 
with a force of magnitude F, pushing the other block in 
turn. What force does the block on the left exert on the 
block to its right?

 134. A locomotive pulls a train of 10 identical cars, on a 
track that runs east-west, with a force of 2.0 × 106 N 
directed east. What is the force with which the last car 
to the west pulls on the rest of the train?

 135. The coefficient of static friction between a brick and 
a wooden board is 0.40, and the coefficient of kinetic 
friction between the brick and board is 0.30. You 
place the brick on the board and slowly lift one end of 
the board off the ground until the brick starts to slide 
down the board. (a) What angle does the board 
make with the ground when the brick starts to slide? 
(b) What is the acceleration of the brick as it slides 
down the board?

 136. In Fig. 4.15 an astronaut is playing shuffleboard on 
Earth. The puck has a mass of 2.0 kg. Between the 

board and puck the coefficient of static friction is 
0.35 and that of kinetic friction is 0.25. (a) If she 
pushes the puck with a force of 5.0 N in the forward 
direction, does the puck move? (b) As she is pushing, 
she trips and the force in the forward direction sud-
denly becomes 7.5 N. Does the puck move? (c) If so, 
what is the acceleration of the puck along the board 
if she maintains contact between puck and stick as 
she regains her footing while pushing steadily with a 
force of 6.0 N on the puck? (d) She carries her game 
to the Moon and again pushes a moving puck with a 
force of  6.0 N forward. Is the acceleration of the 
puck during contact more, the same, or less than on 
Earth? Explain.

 137.  A roller coaster car is towed up an incline at a steady 
speed of 0.50 m/s by a chain parallel to the surface of 
the incline. The slope is 3.0%, which means that the 
elevation increases by 3.0 m for every 100.0 m of hori-
zontal distance. The mass of the car is 400.0 kg. 
Ignoring friction, find the magnitude of the force ex-
erted on the car by the chain.

 138. A 320 kg satellite is in orbit around Earth 16 000 km 
above Earth’s surface. (a) What is the weight of the 
satellite when in orbit? (b) What was its weight when 
it was on Earth’s surface, before being launched? 
(c) While it orbits Earth, what force does the satellite 
exert on Earth?

 139.  The mass of the Moon is 0.0123 times that of Earth. 
A spaceship is traveling along a line connecting the 
centers of Earth and the Moon. At what distance from 
Earth’s center does the spaceship find the gravitational 
pull of Earth equal in magnitude to that of the Moon? 
Express your answer as a percentage of the distance 
between the centers of the two bodies.

 140.   A toy freight train consists of an engine and 
three identical cars. The train is moving to the right at 
constant speed along a straight, level track. Three 
spring scales are used to connect the cars as follows: 
spring scale A is located between the engine and the 
first car; scale B is between the first and second cars; 
scale C is between the second and third cars. Ignore the 
weights of the scales. (a) If air resistance and friction 
are negligible, what are the relative readings on the 
three spring scales A, B, and C? (b) Repeat part (a), 
taking air resistance and friction into consideration 
this time. [Hint: Draw an FBD for the car in the mid-
dle.] (c) If air resistance and friction together cause a 
force of magnitude 5.5 N on each car, directed toward 
the left, find the readings of scales A, B, and C.

 141.  Four identical spring scales, A, B, C, and D are 
used to hang a 220.0 N sack of potatoes. (a) Assume 
the scales have negligible weights and all four scales 
show the same reading. What is the reading of each 
scale? (b) Suppose that each scale has a weight of 5.0 N. 
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If scales B and D show the same reading, what is the 
reading of each scale?

A

B

C

D

 142. A computer weighing 87 N rests on the horizontal 
surface of your desk. The coefficient of static friction 
between the computer and the desk is 0.60. (a) Draw 
an FBD for the computer. (b) What is the magnitude of 
the frictional force acting on the computer? (c) How 
hard would you have to push on it to get it to start to 
slide across the desk?

 143.  A refrigerator magnet weighing 0.14 N is used to 
hold up a photograph weighing 0.030 N. The magnet 
attracts the refrigerator door with a magnetic force of 
2.10 N. (a) Identify the interactions between the mag-
net and other objects. (b) Draw an FBD for the magnet, 
showing all the forces that act on it. (c) Which of these 
forces are long-range and which are contact forces? 
(d) Find the magnitudes of all the forces acting on the 
magnet.

 144.  A 50.0 kg crate is suspended between the floor and 
the ceiling using two spring scales, one attached to the 
ceiling and one to the floor. If the lower scale reads 
120 N, what is the reading of the upper scale? Ignore 
the weights of the scales.

 145.  Spring scale A is attached to the ceiling. A 10.0 kg 
object is suspended from the scale. A second spring 
scale, B, is hanging from a hook at the bottom of the 
10.0 kg object and a 4.0 kg object hangs from the second 
spring scale. (a) What are the readings of the two scales 
if the masses of the scales are negligible? (b) What are 
the readings if each scale has a mass of 1.0 kg?

 146. A tire swing hangs at a constant 12° angle to the verti-
cal when a stiff breeze is blowing. In terms of the tire’s 
weight W, (a) what is the magnitude of the horizontal 
force exerted on the tire by the wind? (b) What is the 
tension in the rope supporting the tire? Ignore the 
weight of the rope.

 147.  A boy has stacked two blocks on the floor so that a 
5.00 kg block is on top of a 2.00 kg block. (a) If the 
coefficient of static friction between the two blocks is 

0.400 and the coefficient of static friction between the 
bottom block and the floor is 0.220, with what mini-
mum force should the boy push horizontally on the 
upper block to make both blocks start to slide together 
along the floor? (b) If he pushes too hard, the top block 
starts to slide off the lower block. What is the maxi-
mum force with which he can push without that hap-
pening if the coefficient of kinetic friction between the 
bottom block and the floor is 0.200?

 148. Anthony is going to drive a flatbed truck up a hill that 
makes an angle of 10° with respect to the horizontal 
direction. A 36.0 kg package sits in the back of the 
truck. The coefficient of static friction between the 
package and the truck bed is 0.380. What is the maxi-
mum acceleration the truck can have without the pack-
age falling off the back?

 149. You want to lift a heavy box with a mass of 98.0 kg 
using two ideal pulleys, as shown. With what mini-
mum force do you have to pull down on the rope in 
order to lift the box at a constant velocity? One pulley 
is attached to the ceiling and one to the box.

98.0 kg

 150.  A crate of oranges weighing 180 N rests on a flatbed 
truck 2.0 m from the back of the truck. The coefficients 
of friction between the crate and the bed are μs = 0.30 
and μk = 0.20. The truck drives on a straight, level 
highway at a constant 8.0 m/s. (a) What is the force of 
friction acting on the crate? (b) If the truck speeds up 
with an acceleration of 1.0 m/s2, what is the force of the 
friction on the crate? (c) What is the maximum accelera-
tion the truck can have without the crate starting to slide?

 151. A crate of books is to be put on a truck by rolling it up 
an incline of angle θ using a dolly. The total mass of the 
crate and the dolly is m. Assume that rolling the dolly up 
the incline is the same as sliding it up a frictionless 
surface. (a) What is the magnitude of the horizontal 
force that must be applied just to hold the crate in place 
on the incline? (b) What horizontal force must be 
applied to roll the crate up at constant speed? (c) In 
order to start the dolly moving, it must be accelerated 
from rest. What horizontal force must be applied to give 
the crate an acceleration up the incline of magnitude a?

 152.  A toy cart of mass m1 moves on frictionless wheels 
as it is pulled by a string under tension T. A block of 
mass m2 rests on top of the cart. The coefficient of 
static friction between the cart and the block is μs. Find 
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the maximum tension T that will not cause the block to 
slide on the cart if the cart rolls on (a) a horizontal 
surface or (b) up a ramp of angle θ above the horizon-
tal. In both cases, the string is parallel to the surface on 
which the cart rolls.

 153.  A helicopter of mass M is lowering a truck of mass 
m onto the deck of a ship. (a) At first, the helicopter 
and the truck move downward together (the length of 
the cable doesn’t change). If their downward speed is 
decreasing at a rate of 0.10g, what is the tension in the 
cable? (b) As the truck gets close to the deck, the heli-
copter stops moving downward. While it hovers, it lets 
out the cable so that the truck is still moving down-
ward. If the truck’s downward speed is decreasing at a 
rate of 0.10g, while the helicopter is at rest, what is the 
tension in the cable?

 154.   A student’s head is bent over her physics book. 
The head weighs 50.0 N and is supported by the mus-
cle force F

→
m exerted by the neck extensor muscles and 

by the contact force F
→

c exerted at the atlantooccipital 
joint. Given that the magnitude of F

→
m is 60.0 N and is 

directed 35° below the horizontal, find (a) the magni-
tude and (b) the direction of F

→
c.

35°

50.0 N

Fc

Fm

ϕ

 155.  (a) If a spacecraft moves in a straight line between 
Earth and the Sun, at what point would the force of 
gravity on the spacecraft due to the Sun be as large as 
that due to Earth? (b) If the spacecraft is close to, but 
not at, this equilibrium point, does the net force on the 
spacecraft tend to push it toward or away from the 
equilibrium point? [Hint: Imagine the spacecraft a 
small distance d closer to Earth and find out which 
gravitational force is stronger.]

 156.  In a movie, a stuntman places himself on the vertical 
front of a truck as the truck accelerates. The coefficient 
of friction between the stuntman and the truck is 0.65. 
The stuntman is not standing on anything but can 
“stick” to the front of the truck as long as the truck con-
tinues to accelerate. What minimum forward accelera-
tion will keep the stuntman on the front of the truck?

 157.  An airplane of mass 2800 kg has just lifted off the 
runway. It is gaining altitude at a constant 2.3 m/s 
while the horizontal component of its velocity is 

 increasing at a rate of 0.86 m/s2. Assume g = 9.81 m/s2. 
(a) Find the direction of the force exerted on the air-
plane by the air. (b) Find the horizontal and vertical 
components of the plane’s acceleration if the force due 
to the air has the same magnitude but has a direction 
2.0° closer to the vertical than its direction in part (a).

 158.  A person is doing leg lifts with 3.00 kg ankle 
weights. The lower leg itself has a mass of 5.00 kg. 
When the leg is held still at an angle of 30.0° with 
respect to the horizontal, the patellar tendon pulls on 
the tibia with a force of 337 N at an angle of 20.0° with 
respect to the lower leg. Find the magnitude and direc-
tion of the force exerted on the tibia by the femur, 
assuming it is the only other significant force acting on 
the lower leg.

Tibia

Patellar
tendon

Quadriceps
muscle

Femur

20.0°

30.0°

Patella

Review and Synthesis

 159. An airplane starts from rest on the runway. The engines 
exert a constant force of 78 kN on the body of the plane 
(mass 9.2 × 104 kg) during takeoff. How far down the 
runway does the plane reach its takeoff speed of 68 m/s?

 160. A clay roof tile of mass 2.7 kg slides down a roof inclined 
at 48° with respect to the horizontal. If the tile starts from 
rest 3.2 m from the edge of the roof and friction is negli-
gible, how fast is it moving when it reaches the edge?

 161. The forces on a small airplane (mass 1160 kg) in hori-
zontal flight heading eastward are as follows: weight = 
11.37 kN downward, lift = 11.37 kN upward, thrust = 
1.800 kN eastward, and drag = 1.400 kN westward. At 
t = 0, the plane’s speed is 60.0 m/s. If the forces remain 
constant, how far does the plane travel in the next 60.0 s?

 162. In Fig. 4.46, blocks are connected by an ideal cord that 
passes over an ideal pulley. If m1 = 3.6 kg and m2 = 
9.2 kg, and block 2 is initially at rest 140 cm above the 
floor, how long does it take block 2 to reach the floor?

 163. A 10.0 kg block is released from rest on a frictionless 
track inclined at an angle of 55°. (a) What is the net 
force on the block after it is released? (b) What is the 
acceleration of the block? (c) If the block is released 
from rest, how long will it take for the block to attain a 
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speed of 10.0 m/s? (d) Draw a motion diagram for the 
block. (e) Draw a graph of vx(t) for values of velocity 
between 0 and 10 m/s. Let the positive x-axis point 
down the track.

 164. In the physics laboratory, a glider is released from rest 
on a frictionless air track inclined at an angle. If the 
glider has gained a speed of 25.0 cm/s in traveling 
50.0 cm from the starting point, what was the angle of 
inclination of the track? Draw a graph of vx(t) when the 
positive x-axis points down the track.

 165. A woman of mass 51 kg is standing in an elevator. (a) 
If the elevator floor pushes up on her feet with a force 
of 408 N, what is the acceleration of the elevator? (b) 
If the elevator maintains constant acceleration and is 
moving at 1.5 m/s as it passes the fourth floor on its 
way down, what is its speed 4.0 s later?

 166. A model rocket is fired vertically from rest. It has a 
constant acceleration of 17.5 m/s2 for the first 1.5 s. 
Then its fuel is exhausted, and it is in free fall. The 
rocket has a mass of 87 g; the mass of the fuel is much 
less than 87 g. Ignore air resistance. (a) What was the 
net force on the rocket during the first 1.5 s after liftoff? 
(b) What force was exerted on the rocket by the burning 
fuel? (c) How high does the rocket travel? (d) How long 
after liftoff does the rocket return to the ground? (e) 
Sketch a graph of the rocket’s vertical velocity vs. time 
from launch until it returns to the ground. (f) What was 
the net force on the rocket after its fuel was spent?

 167. Julia is delivering newspapers. Suppose she is driving at 
15 m/s along a straight road and wants to drop a paper 
out the window from a height of 1.00 m so it slides 
along the shoulder and comes to rest in the customer’s 
driveway. At what horizontal distance before the drive-
way should she drop the paper? The coefficient of kinetic 
friction between the newspaper and the ground is 0.40. 
Ignore air resistance and assume no bouncing or rolling.

 168. A crate is sliding down a frictionless ramp that is inclined 
at 35.0°. (a) If the crate is released from rest, how far 
does it travel down the incline in 2.50 s if it does not get 
to the bottom of the ramp before the time has elapsed? 
(b) How fast is the crate moving after 2.50 s of travel?

 169. You are watching a television show about Navy pilots. 
The narrator says that when a Navy jet takes off, it 
accelerates because the engines are at full throttle and 
because there is a catapult that propels the jet forward. 
You begin to wonder how much force is supplied by 
the catapult. You look on the Web and find that the 
flight deck of an aircraft carrier is about 90 m long, 
that an F-14 has a mass of 33 000 kg, that each of the 
two engines supplies 27 000 lb of thrust and that the 
takeoff speed of such a plane is about 160 mi/h. Esti-
mate the average force on the jet due to the catapult.

 170. A skier with a mass of 63 kg starts from rest and skis 
down an icy (frictionless) slope that has a length of 

50 m at an angle of 32° with respect to the horizontal. 
At the bottom of the slope, the path levels out and be-
comes horizontal, the snow becomes less icy, and the 
skier begins to slow down, coming to rest in a distance 
of 140 m along the horizontal path. (a) What is the 
speed of the skier at the bottom of the slope? (b) What 
is the coefficient of kinetic friction between the skier 
and the horizontal surface?

 171.  An astronaut of mass 60.0 kg and a small asteroid of 
mass 40.0 kg are initially at rest with respect to the space 
station. The astronaut pushes the asteroid with a con-
stant force of magnitude 250 N for 0.35 s. Gravitational 
forces are negligible. (a) How far apart are the astronaut 
and the asteroid 5.00 s after the astronaut stops pushing? 
(b) What is their relative speed at this time?

 172.  Carlos and Shannon are sledding down a snow-
covered slope that is angled at 12° below the horizon-
tal. When sliding on snow, Carlos’s sled has a 
coefficient of friction μk = 0.10; Shannon has a “su-
persled” with μk = 0.010. Carlos takes off down the 
slope starting from rest. When Carlos is 5.0 m from the 
starting point, Shannon starts down the slope from 
rest. (a) How far have they traveled when Shannon 
catches up to Carlos? (b) How fast is Shannon moving 
with respect to Carlos as she passes by?

 173.  At time t = 0, block A of mass 0.225 kg and block B 
of mass 0.600 kg rest on a horizontal frictionless surface 
a distance 3.40 m apart, with block A located to the left 
of block B. A horizontal force of 2.00 N directed to the 
right is applied to block A for a time interval Δt = 0.100 s. 
During the same time interval, a 5.00 N horizontal force 
directed to the left is applied to block B. How far from 
B’s initial position do the two blocks meet? How much 
time has elapsed from t = 0 until the blocks meet?

A 3.40 m B

 174.  You are designing a high-speed elevator for a new 
skyscraper. The elevator will have a mass limit of 
2400  kg (including passengers). For passenger com-
fort, you choose the maximum ascent speed to be 18 m/s, 
the maximum descent speed to be 10 m/s, and the 
maximum acceleration magnitude to be 1.2 m/s2. Ig-
nore friction. (a) What are the maximum and mini-
mum upward forces that the supporting cables exert on 
the elevator car? (b) What is the minimum time it will 
take the elevator to ascend from the lobby to the obser-
vation deck, a vertical displacement of 640 m? (c) What 
are the maximum and minimum values of a 60 kg pas-
senger’s apparent weight during the ascent? (d) What 
is the minimum time it will take the elevator to de-
scend to the lobby from the observation deck?

 175.  A 15 kg crate starts at rest at the top of a 60.0° 
incline. The coefficients of friction are μs = 0.40 and 
μk = 0.30. The crate is connected to a hanging 8.0 kg 
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box by an ideal rope and pulley. (a) As the crate slides 
down the incline, what is the tension in the rope? (b) 
How long does it take the crate to slide 2.00 m down 
the incline? (c) To push the crate back up the incline at 
constant speed, with what force should you push on the 
crate (parallel to the incline)? (d) What is the smallest 
mass that you could substitute for the 8.0 kg box to 
keep the crate from sliding down the incline?

 176.    Locusts can jump to heights of 0.30 m. 
(a) Assuming the locust jumps straight up, and ignor-
ing air resistance, what is the takeoff speed of the lo-
cust? (b) The locust actually jumps at an angle of about 
55° to the horizontal, and air resistance is not negligi-
ble. The result is that the takeoff speed is about 40% 
higher than the value you calculated in part (a). If the 
mass of the locust is 2.0 g and its body moves 4.0 cm 
in a straight line while accelerating from rest to the 
takeoff speed, calculate the acceleration of the locust 
(assumed constant). (c) Ignore the locust’s weight and 
estimate the force exerted on the hind legs by the 
ground. Compare this force with the locust’s weight. 
Was it reasonable to ignore the locust’s weight?

Answers to Practice Problems

4.1 (a) Fx = 49.1 N, Fy = 2.9 N; (b) F = 49.2 N; (c) 3.4° 
above the horizontal
4.2 0.5 kN downward
4.3 In the first case, the principle of inertia says that Emma 
tends to stay at rest with respect to the ground as the subway 
car begins to move forward, until forces acting on her (exerted 
by the strap and the floor) make her move forward. In the 
second case, Emma keeps moving forward with respect to the 
ground with constant speed as the subway car slows down, 
until forces acting on her make her slow down as well. The 
strap pulls backward on her and she pulls forward on the 
strap, which she interprets as being thrust forward.
4.4 760 N, 8.3° to the left of the +y-axis or 81.7° above the 
−x-axis
4.5 The contact force exerted on the floor by the chest; 
870 N, 59° below the rightward horizontal (+x-axis)
4.6 For m1 = m2 = 1000 kg and r = 4 m, F ≈ 4 μN, which is 
about the same magnitude as the weight of a mosquito. The 
claim that this tiny force caused the collision is ridiculous.
4.7 0.57 N or 0.13 lb
4.8 The chest is in equilibrium, so the net force on it is zero. 
Setting the net force equal to zero separately for the horizon-
tal and vertical components gives the answer: the normal 
force is 750 N, up, and the frictional force is 110 N, to the 
left. The quantity μsN is the maximum possible magnitude of 
the force of static friction for a surface. In this problem, the 
frictional force does not necessarily have the maximum 
possible magnitude.

4.9 (a) Normal

Weight

Static
frictionDrag

NorthSouth

     (b) Weight of the car = 11.0 kN; (c) 2.1 kN northward
4.10 (a) 110 N; (b) 230 N
4.11 3100 N
4.12  

TC

y

–TC

TB

–W

TC = 902.0 N
TB = 1804 N
W = 1804 N

  ∑Fy = 902  N + 1804  N − 1804  N − 902  N = 0
4.13 54 N
4.14 1.84 kN
4.15 Block 1: ΣF1y = T − m1g = 315  N − 255  N = 60  N; 
m1a1y = 60 N  
Block 2: ΣF2y = m2g − T = 412  N − 315  N = 97  N;  
m2a2y = 97 N
4.16 Impossible to pull the crate up with a single pulley. The 
entire weight of the crate would be supported by a single 
strand of cable and that weight exceeds the breaking strength 
of the cable.
4.17 2500 N
4.18 (a) down the incline; (b) up the incline; (c) 0.2 m/s2 
down the incline
4.19 (a) 392 N; (b) 431 N

Answers to Checkpoints

4.1A Contact force exerted on the player by the ball; contact 
force exerted on the player by the ground; contact force 
exerted on the player by the air; gravitational force exerted 
on the player by Earth.
4.1B No, the net force is the sum of all the forces acting on 
the pulley. The patient’s foot exerts a force on the pulley, and 
Earth exerts a gravitational force on the it.
4.2 The Voyager space probes are so far from the Sun that 
the gravitational forces exerted on them due to the Sun are 
negligibly small. To a very good approximation, we can say 
that the net force acting on them is zero. Therefore, the 
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probes continue moving at constant speed along a straight 
line. No applied force has to be maintained by an engine to 
keep them moving because there are no forces that oppose 
their motion.
4.4 The two forces exerted by the two children on a toy 
cannot be interaction partners because they act on the same 
object (the toy), not on two different objects. Interaction 
partners act on different objects, one on each of the two 
objects that are interacting. The interaction partner of the 
force exerted by one child on the toy is the force that the toy 
exerts on that child.
4.5 The weight of the gear decreases as the value of g 
decreases. The mass of the gear does not change.

4.6 One upward normal force on each leg due to the floor 
and one downward normal force on the desktop due to the 
laptop.
4.8 Yes. For motion along an incline, it simplifies the prob-
lem to choose one axis parallel to the incline and the other 
perpendicular to the incline.
4.10 Your velocity is downward and decreasing in magni-
tude, so your acceleration is upward. Then the upward nor-
mal force exerted on you by the scale must be greater than 
your weight.
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Circular Motion

C H A P T E R
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In	 the	 track	and	 field	 event	 called	 the	hammer throw,	 the	 “hammer”	
is	actually	a	metal	ball	(mass	4.00	kg	for	women	or	7.26	kg	for	men)	
attached	by	a	cable	to	a	grip.	The	athlete	whirls	 the	hammer	several	
times	 around	 while	 not	 leaving	 a	 circle	 of	 radius	 2.1	 m	 and	 then	
releases	it.	The	winner	is	the	athlete	whose	hammer	lands	the	farthest	
distance	 away.	 How	 large	 a	 force	 does	 an	 athlete	 have	 to	 exert	 on	
the	 grip	 to	 whirl	 the	massive	 hammer	 around	 in	 a	 circle?	What	 kind	
of	path	does	 the	hammer	 follow	once	 it	 is	 released?
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5.1 DESCRIPTION OF UNIFORM CIRCULAR MOTION

Rotation of a Rigid Object To describe circular motion, we could use the famil-
iar definitions of displacement, velocity, and acceleration. But much of the circular 
motion around us occurs in the rotation of a rigid object. (Ask someone to name the 
most important machine ever invented by humans and you are likely to get the wheel 
as a response.) A rigid object is one for which the distance between any two points 
of the object remains the same when the object is translated or rotated. When such 
an object rotates, every point on the object moves in a circular path. The radius of 
the path for any point is the distance between that point and the axis of rotation. 
When a DVD spins, different points on the DVD have different velocities and accel-
erations. The velocity and acceleration of a given point keep changing direction as 
the DVD spins. It would be clumsy to describe the rotation of the DVD by talking 
about the motion of arbitrary points on it. However, some quantities are the same 
for every point on the DVD. It is much simpler, for instance, to say “the DVD spins 
at 210 rev/min” instead of saying “a point 6.0 cm from the rotation axis of the DVD 
is moving at 1.3 m/s.”

Angular Displacement and Angular Velocity To simplify the description of 
circular motion, we concentrate on angles instead of distances. If a DVD spins 
through 1

4 of a turn, every point moves through the same angle (90°), but points at 
different radii move different linear distances. On the DVD shown in Fig. 5.1, point 
1 near the axis of rotation moves through a smaller distance than point 4 on the 
circumference. For this reason we define a set of variables that are analogous to 
displacement, velocity, and acceleration, but use angular measure instead of linear 
distance. Instead of displacement, we speak of angular displacement Δθ, the angle 
through which the DVD turns. A point on the DVD moves along the circumference 
of a circle. As the point moves from the angular position θi to the angular position 
θf, a radial line drawn between the center of the circle and that point sweeps out an 
angle Δθ = θf − θi, which is the angular displacement of the DVD during that time 
interval (Fig. 5.2).

CONNECTION:

Equations (5-1) through (5-3) 
have a familiar form because 
ω is the rate of change of θ, 
just as velocity is the rate of 
change of position.

Definition of angular displacement

 Δθ = θf − θi (5-1)

The sign of the angular displacement indicates the sense of the rotation. The usual 
convention is that a positive angular displacement represents counterclockwise rota-
tion and a negative angular displacement represents clockwise rotation.

+ means Counterclockwise 
− means Clockwise

Counterclockwise and clockwise are well defined only for a particular viewing direc-
tion; counterclockwise rotation viewed from above is clockwise when viewed from 
below.

The average angular velocity ωav is the average rate of change of the angular 
displacement. (ω is the lowercase Greek letter omega.)

1

1′
2′
3′
4′

432

Figure 5.1 Motion diagrams 
for four points on a DVD as it 
rotates through 1

4 turn. Points 
1, 2, 3, and 4 travel through  
the same angle but different 
distances to reach their new 
positions, marked 1′, 2′, 3′,  
and 4′, respectively.

Δθ

θf
θi

θf – θi = Δθ

rf
ri

x

Figure 5.2 Angular positions 
such as θi and θf are measured 
counterclockwise from a refer-
ence axis (usually the x-axis).

Definition of average angular velocity

 ωav =
Δθ

Δt
 (5-2)
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If we let the time interval Δt become shorter and shorter, we are averaging over 
smaller and smaller time intervals. In the limit Δt → 0, ωav becomes the instantaneous 
angular velocity ω.

Definition of instantaneous angular velocity

 ω = lim
Δt→0

 
Δθ

Δt
 (5-3)

Definition of the radian

 θ (in radians) =
s

r
 (5-4)

Remember that the notation lim
Δt→0

 indicates that Δθ is the angular displacement 
during a very short time interval Δt (short enough that the ratio Δθ/Δt doesn’t change  
significantly if we make the time interval even shorter).

The angular velocity indicates—through its algebraic sign—in what direction the 
DVD is spinning. Since angular displacements can be measured in degrees or radians, 
angular velocities have units such as degrees/second, radians/second, degrees/day, and 
the like.

Radian Measure You may be most familiar with measuring angles in degrees, but 
in many situations the most convenient measure is the radian (see Appendix A.6). One 
such situation is when we relate the angular displacement or angular velocity of a 
rotating object with the distance traveled by, or the speed of, some point on the object.

In Fig. 5.3, an angle θ between two radii of a circle define an arc of length s. 
We say that θ is the angle subtended by the arc. The arc length is proportional to both 
the radius of the circle and to the angle subtended. The angle θ in radians is defined 
as the ratio of the arc length to the radius.

Since an angle in radians is defined by the ratio of two lengths, it is dimensionless 
(a pure number). We use the term radians, abbreviated “rad,” to keep track of the 
angular measure used. The radian is not a physical unit like meters or kilograms, so 
it does not have to balance in Eq. (5-4). For the same reason, we can drop “rad” 
whenever there is no chance of being misunderstood. We can write ω = 23 s−1 as 
long as context makes it clear that we mean 23 radians per second.

In equations that relate linear variables to angular variables, think of r as the 
number of meters of arc length per radian of angle subtended. In other words, think 
of r as having units of meters per radian. Doing so, the radians cancel out in these 
equations. For example, if θ = 2.0 rad and r = 1.2 m, then the arc length is

s = θr = 2.0 rad × 1.2 
m

 rad
= 2.4 m

Since the arc length for an angle of 360° is the circumference of the circle, the 
radian measure of an angle of 360° is

 θ =
s

r
=

2πr

r
= 2π  rad (5-5)

Therefore, the conversion between degrees and radians is

 360° = 2π  rad (5-6)

r

r

θ

s = θr

Figure 5.3 Definition of the 
radian: angle θ in radians is  
the arc length s divided by the 
radius r. The angle shown is  
1 rad ≈ 57.3°.
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Example 5.1

Angular Speed of Earth

Earth is rotating about its axis. What is its angular speed in 
rad/s? (The question asks for angular speed, so we do not 
have to worry about the direction of rotation.)

Strategy Earth’s angular velocity is constant, or nearly so. 
Therefore, we can calculate the average angular velocity for 
any convenient time interval and, in turn, Earth’s instanta-
neous angular speed ∣ω∣.

Solution It takes Earth 1 day to complete one rotation, 
during which the angular displacement is 2π rad. More 
 formally, during a time interval Δt = 1 day, the angular 
 displacement of Earth is Δθ = 2π rad. So the angular speed 
of Earth is 2π rad/day, and then convert days to seconds.

1 day = 24 h = 24 h × 3600 s/h = 86 400 s

∣ω∣ =
2π rad

86 400 s
= 7.3 × 10−5 rad/s

Discussion Notice that this problem is analogous to a 
problem in linear motion such as: “A car travels in a straight 
line at constant speed. In 3 h, it has traveled 192 mi. What is 
its velocity in m/s?” Just about everything in circular motion 
and rotation has this kind of analog—which means we can 
draw heavily on what we have already learned.

Relative to the stars, Earth actually completes one rota-
tion in 23.9345 h, rather than in 24.0 h. This distinction 
would be important only if we needed a more precise value 
of ∣ω∣ (more than two significant figures).

Practice Problem 5.1 Angular Speed of Venus

Venus completes one rotation about its axis every 5816 h. 
What is the angular speed of the rotation of Venus in rad/s?

Relation Between Linear and Angular Speed

For a point moving in a circular path of radius r, the linear distance traveled along 
the circular path during an angular displacement of Δθ (in radians) is the arc length 
s where

 s = r ∣Δθ∣ = r ∣θf − θi∣ (angles in radians) (5-7)

The point in question could be a point particle moving in a circular path, or it could 
be any point on a rotating rigid object. Since Eq. (5-7) comes directly from the defi-
nition of the radian, any equation derived from it is valid only when the angles are 
measured in radians.

What is the linear speed at which the point moves? The average linear speed is 
the distance traveled divided by the time interval:

 vav =
s

Δt
=

r ∣Δθ∣
Δt
 (Δθ in radians)  (5-8)

We recognize Δθ/Δt as the average angular velocity ωav. If we take the limit as Δt 
approaches zero, both average quantities (vav and ωav) become instantaneous quantities 
(v and ω) and we obtain this the relationship between v and ω:

Relationship between linear speed and angular speed

 v = r∣ω∣ (ω in radians per unit time)  (5-9)

Equation (5-9) relates only the magnitudes of the linear and angular speeds. The 
direction of the velocity vector v→ is tangent to the circular path. For a rotating 
object, points farther from the axis move at higher linear speeds; they have a 
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circle of bigger radius to travel and, therefore, cover more distance in the same 
time interval. For example, a person standing at the equator has a much higher 
linear speed due to Earth’s rotation than does a person standing at the Arctic 
Circle (Fig. 5.4).

Period and Frequency

When the speed of a point moving in a circle is constant, its motion is called uniform 
circular motion. Even though the speed of the point is constant, the velocity is not: 
the direction of the velocity vector is changing. This distinction is important when we 
find the acceleration of an object in uniform circular motion (see Section 5.2). The 
time for the point to travel completely around the circle is called the period of the 
motion, T. The frequency of the motion, which is the number of revolutions per unit 
time, is defined as the reciprocal of the period.

Definition of frequency

 f =
1
T

 (5-10)

Angular speed, linear speed, period, and frequency

 ∣ω∣ =
v

r
=

2π

T
= 2πf  (5-12)

The SI unit for frequency is the hertz (Hz), defined as 1 Hz = 1 rev/s. For 
example, suppose that a wind turbine turns steadily and completes 24 revolutions 
in 120 seconds. Its period we compute as T = (120 s)/(24 rev) = 5.0 s (meaning 
5.0 seconds per revolution). Its frequency, defined as the number of revolutions 
per unit time, we can compute from the same data as (24 rev)/(120 s) = 0.20 rev/s = 
0.20 Hz.

The dimensions of Eq. (5-12) are correct since both revolutions and radians are pure 
numbers. If we think of the radius r as having units of meters per radian and the 
factors of 2π as having units of radians per revolution, we see that each of the four 
expressions is in radians per unit time.

Axis of rotation

Equator

Arctic Circle

Δθ  = 2π  rad

v

v

Figure 5.4 A person standing 
at the equator is moving much 
faster than another person 
standing at the Arctic Circle, 
but their angular speeds are  
the same.

CHECKPOINT 5.1

If	a	computer	hard	drive	spins	at	7200	rev/min,	what	 is	 its	period	of	rotation?

The speed is the total distance traveled divided by the elapsed time:

 v =
2πr

T
= 2πrf  (5-11)

Then, for uniform circular motion,
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Rolling Without Slipping: Rotation and Translation Combined

When an object is rolling, it is both rotating and translating. The wheel rotates about 
an axle, but the axle is not at rest; it moves forward or backward. What is the rela-
tionship between the angular speed of the wheel and the linear speed of the axle? You 
might guess that v = ∣ω∣r is the answer. You would be right, as long as the object 
rolls without slipping or skidding.

There is no fixed relationship between the linear and angular speeds of a wheel 
if it is allowed to skid or slip. When an impatient driver guns the engine the instant 
a traffic light turns green, the automobile wheels are likely to slip. The rubber sliding 
against the road surface makes the squealing sound and leaves tracks on the road. The 
driver could actually make the acceleration of the car greater by giving the engine 
less gas. When the wheels are skidding or slipping, kinetic friction propels the car 
forward instead of the potentially larger force of static friction.

For a wheel that rolls without slipping, as the wheel turns through one complete 
rotation, the axle moves a distance equal to the circumference of the wheel (Fig. 5.5). 
Think of a paint roller leaving a line of paint as it rolls along a wall. After one com-
plete rotation, the same point on the roller wheel is touching the wall as was initially 
touching it. The length of the line of paint is 2πr. The elapsed time is T, so the axle’s 
speed is

 vaxle =
2πr

T
 (5-13)

Example 5.2

Speed in a Centrifuge

A centrifuge is spinning at 5400 rev/min. (a) Find the period 
(in seconds) and frequency (in hertz) of the motion. (b) If the 
radius of the centrifuge is 14 cm, how fast (in meters per 
second) is an object at the outer edge moving?

©Russell Illig/Getty Images

Strategy 5400 rev/min is the frequency, but in a unit other 
than hertz. After a unit conversion, the other quantities can 
be found using the relations already discussed.

Solution (a) First convert the frequency to hertz:

f = 5400 
rev
min

×
1 min
60 s

= 90 rev/s

The frequency is f = 90 Hz = 90 s−1. The period is

T = 1/f = 0.011 s

(b) To find the linear speed, we first find the angular speed 
in radians per second:

∣ω∣ = 2πf = 2π 
rad
rev × 90 

rev
s = 180π rad/s

The linear speed is

v = ∣ω∣r = 180π s−1 × 0.14 m = 79 m/s

Discussion Notice that much of this problem was done 
with unit conversions. Instead of memorizing a formula such 
as ∣ω∣ = 2πf , an understanding of where the formula came 
from (in this case, that 2π radians correspond to one revolu-
tion) is more useful and less prone to error.

Practice Problem 5.2 Clothing in the Dryer

The drum of a clothes dryer spins at 51.6 rev/min. If the 
 radius of the drum is 30.5 cm, how fast is the outer edge of 
the drum moving?
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and the angular speed of the roller is

 ∣ω∣ =
2π

T
 (5-12)

Thus for an object rolling without slipping,

 vaxle = ∣ω∣r (ω in radians per unit time)  (5-14)

Distance moved by the axle during one
revolution is equal to the circumference, 2πr

vaxle

Figure 5.5  A wheel of radius r is rolling at constant speed vaxle without slipping. 
When the axle has moved a distance d equal to the circumference of the wheel 
(2πr), the wheel has turned through one complete revolution (Δθ = 2π rad), as 
shown by the red dot on the tire. The elapsed time is the period T. Then vaxle = 
d/T = 2πr/T and ∣ω∣ = Δθ/T = 2π/T. We conclude that vaxle = ∣ω∣r for an object 
that rolls without slipping.

Example 5.3

Angular Speed of a Rolling Wheel

Kevin is riding his motorcycle at a speed of 13.0 m/s. If the 
diameter of the rear tire is 65.0 cm, what is the angular speed 
of the rear wheel? Assume that it rolls without slipping.

Strategy The given diameter of the tire enables us to find 
the circumference and, thus, the distance traveled in one revo-
lution of the wheel. From the speed of the motorcycle we can 
find how many revolutions the tire must make per second.

Solution During one revolution of the wheel, the motor-
cycle travels a distance equal to the tire’s circumference 2πr 

(see Fig. 5.5). Then the time to make one revolution is T, and 
the speed v is

v =
distance

time
=

2πr

T

Therefore, T = 2πr/v. For each revolution there is an angu-
lar displacement of Δθ = 2π radians, so

∣ω∣ =
∣Δθ∣
Δt

=
2π

T

continued on next page
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Example 5.3 continued

no need to memorize a formula if you understand the con-
cepts behind the formula. You are then less apt to make a 
mistake by forgetting a factor or constant in the equation, or 
by using an inappropriate formula. For another example, if 
an object moves along a straight line at a constant velocity, 
you know that the displacement is the velocity times the time 
interval—not because you have memorized an equation 
(Δr→ = v→Δt) , but because you understand the concepts of 
displacement and velocity. This is the sort of internalization 
of scientific thinking that you will develop with more and 
more practice in problem solving.

Practice Problem 5.3 Rolling Drum

A cylindrical steel drum is tipped over and rolled along the 
floor of a warehouse. If the drum has a radius of 0.40 m and 
makes one complete turn every 8.0 s, how long does it take 
to roll the drum 36 m?

Substituting T = 2πr/υ and remembering that the radius is 
half the diameter, we obtain

∣ω∣ =
2π

2πr/υ
=

v

r
=

13.0 m/s
(0.650 m)/2

= 40.0 
rad
s

Discussion Check: the time for one revolution is

2π rad
40.0 rad/s

= 0.157 s

The time to travel a distance 2πr = 2.04 m is

2.04 m
13.0 m/s

= 0.157 s

Looks good.
You could have obtained this answer immediately by 

looking back through the text for the equation ∣ω∣ = v/r and 
plugging in numbers, but the solution here shows that you 
can re-create that equation. Here, and in many cases, there is 

5.2 RADIAL ACCELERATION

In uniform circular motion, the magnitude of the velocity vector is constant, but its 
direction is continuously changing. At any instant of time, the direction of the instan-
taneous velocity is tangent to the path, as discussed in Section 3.3. Since the direction 
of the velocity continually changes, the acceleration is nonzero.

In Fig. 5.6a, two velocity vectors of equal magnitude are drawn tangent to a 
circular path of radius r, representing the velocity at two different times of an object 
moving around a circular path with constant speed. At any instant, the velocity vector 
is perpendicular to a radius drawn from the center of the circle to the position of the 
object. As the time between velocity measurements approaches zero, the radii become 
closer together (Fig. 5.6b). For circular motion, just as for any other kind of motion, 
the acceleration is defined as

 a→ = lim
Δt→0

 
Δv→

Δt
 (3-21)

To find the acceleration, we must first find the change in the velocity vector for a 
very short time interval. (See Sections 3.1–3.2 and Appendix A.10 to review vector 
subtraction.) Figure 5.6c shows that as the time interval Δt approaches zero, the 
angle between the two velocities also approaches zero and Δv→ becomes perpen-
dicular to the velocity.

Since Δv→ is perpendicular to the velocity, it is directed along a radius of the 
circle. Inspection of Figs. 5.6b and 5.6c shows that Δv→ is radially inward (toward 
the center of the circle). Since the acceleration a→ has the same direction as Δv→ (in 
the limit Δt → 0), the acceleration is also directed radially inward (Fig. 5.7)—that 
is, along a radius of the circular path toward the center of the circle. The accelera-
tion of an object undergoing uniform circular motion is often called the radial accel-
eration a→r. The word radial here just reminds us of the direction of the acceleration. 
(A synonym for radial acceleration is centripetal acceleration. Centripetal means 
“toward the center.”)

CONNECTION:

Radial acceleration is not a 
new kind of acceleration. The 
acceleration vector for an 
 object moving in uniform 
 circular motion is directed 
 radially inward toward the 
center of the circle.



 5.2 RADIAL	ACCELERATION 167

CHECKPOINT 5.2

Does	a	 radial	acceleration	mean	 that	 the	speed	of	 the	object	 is	changing?

Magnitude of the Radial Acceleration

To find the magnitude of the radial acceleration for uniform circular motion, we must 
find the change in velocity Δv→ for a time interval Δt in the limit Δt → 0. The veloc-
ity keeps the same magnitude but changes direction at a steady rate, equal to the 
angular velocity ω. In a time interval Δt, the velocity v→ rotates through an angle equal 
to the angular displacement Δθ = ω Δt. During this time interval, the velocity vector 
sweeps out an arc of a circle of “radius” v (Fig. 5.8). In the limit Δt → 0, the mag-
nitude of Δv→ becomes equal to the arc length, since a very short arc approaches a 
straight line. Then

∣Δv→∣ = arc length = radius of circle × angle subtended

 = v ∣Δθ∣ = v∣ω∣ Δt (5-15)

Acceleration is the rate of change of velocity, so the magnitude of the radial 
acceleration is

 ar = ∣a→∣ =
∣Δv→∣
Δt

= v∣ω∣ (ω in radians per unit time)  (5-16)

where absolute value symbols are used with the vector quantities to indicate their 
magnitudes. Velocity and angular velocity are not independent; v = ∣ω∣r. It is usually 
most convenient to write the magnitude of the radial acceleration in terms of one or 
the other of these two quantities. So we write the radial acceleration in two other 
equivalent ways using v = ∣ω∣r:

v1

v1

v2

v2

v1

Δv

v2

v1 + Δv  = v2 

Δt → 0

Δθ

Δθ

(a) (b) (c)

r2

r1 r1

r2

∣v2∣ = ∣v1∣

∣r1∣ = ∣r2∣

Figure 5.6 Uniform circular motion at constant speed. (a) The velocity vector is 
always tangent to the circular path and perpendicular to the radius at that point.  
(b) As the time interval between two velocity measurements decreases, the angle 
between the velocity vectors decreases. (c) The change in velocity (Δv→) is found by 
placing the tails of the two velocity vectors together. Then Δv→ is drawn from the tip 
of the initial velocity (v→1) to the tip of the final velocity (v→2) so that v→1 + Δv→ = v→2. 
In the limit Δt → 0, the change in velocity and the acceleration are perpendicular to 
the velocity.

a1
a2

a3

a4

a5

a6

v1

v2

v3
v4

v5

v6

Figure 5.7 Motion diagram 
for an object in uniform circu-
lar motion, with acceleration 
and velocity vectors drawn at 
each of the six points. The 
acceleration is always directed 
toward the center of the circle, 
perpendicular to the velocity.

Δv

Δθ
v1

v2

Figure 5.8 The velocity 
 vector sweeps out an arc of a 
circle whose “length” is nearly 
equal to that of the chord Δv→.

Radial acceleration

 ar =
v2

r
= ω2r (ω in radians per unit time)  (5-17)
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When finding the radial acceleration, use whichever form of Eq. (5-17) is more 
convenient. For rotating objects such as a spinning centrifuge, it’s usually easiest to 
think in terms of the angular velocity. For an object moving around a circle, such as 
a satellite in orbit whose speed is known, it might be easier to use v2/r. Since the two 
equations are equivalent, either can be used in any situation.

Example 5.4

 Testing the Acceleration That a Pilot Can 
Withstand

Centrifuges are used to establish the maximum acceleration 
a pilot can withstand without “blacking out” (Fig. 5.9). If the 
pilot undergoes a radial acceleration of 4.00g (as measured 
at her head) and the radial distance from her head to the axis 
of rotation is 12.5 m, what is the period of rotation of the 
centrifuge?

Strategy The radial acceleration can be found from the 
radius of the circular path and either the linear or the angular 
speed. The period is the time for one complete revolution; in 
one revolution the distance traveled is the circumference of 
the circle.

Solution The radial acceleration is

 ar =
v2

r
 (5-17)

Therefore, the linear speed is v = √arr. The linear speed is 
the distance traveled in one revolution (2πr) divided by the 
period T:

 v =
2πr

T
 (5-11)

Solving for the period, we obtain

T =
2πr

v
=

2πr

√arr
= 2π√

r

ar
= 2π√

12.5 m
4.00 × 9.80 m/s2 = 3.55 s

Discussion For a quick check, let’s calculate how fast the 
pilot is moving.

v = √arr = √4.00 × 9.80 m/s2 × 12.5 m = 22.1 m/s (≈ 50 mi/h)

This seems like a reasonable order of magnitude for the con-
ditions; 22 m/s would be too fast to take a curve of radius 
12.5 m on a motorcycle or in a car, but you wouldn’t want an 
acceleration as large as 4g then! Now let’s verify the period 
using the speed: T = 2πr/v = (78.5 m) / (22.1 m/s) = 3.55 s.

The problem can be solved using angular speed ω in-
stead of linear speed v. The radial acceleration is ar = ω2r 
and the period is

T =
2π

ω
=

2π

√ar/r
= 2π√

r

ar

the same result as before.

Practice Problem 5.4 A Spinning Blu-ray Disc

If a Blu-ray disc spins at 7200 rev/min, what is the radial ac-
celeration of a point on the outer rim of the disc? The disc is 
12 cm in diameter.

Figure 5.9
The 20 G Centrifuge at NASA’s Ames Research Center, Moffett 
Field, California, can spin a pilot with an acceleration of up to 20g.
Source: NASA

Applying Newton’s Second Law to Uniform Circular Motion

Now that we know the magnitude and direction of the acceleration of any object in uniform 
circular motion, we can use Newton’s second law to relate the net force acting on the 
object to the speed and radius of its motion. The net force is found in the usual way: each 
of the individual forces acting on the object is identified and then the forces are added as 
vectors. Every force acting must be exerted by some other object. Resist the temptation 
to add in a new, separate force just because something moves in a circle. For an object to 
move in a circle at constant speed, real, physical forces such as gravity, tension, normal 
forces, and friction must act on it; these forces combine to produce a net force that has 
the correct magnitude and is always perpendicular to the velocity of the object.
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Problem-Solving Strategy for an Object in Uniform Circular Motion

 1. Begin as for any Newton’s second law problem: identify all the forces act-
ing on the object and draw a free-body diagram (FBD). Include only real 
forces exerted by other objects; don’t include the radial acceleration or a 
separate “centrifugal” or “centripetal” force in the FBD.

 2. Choose perpendicular axes at the point of interest so that one is radial and 
the other is tangent to the circular path.

 3. Find the radial component of each force.
 4. Apply Newton’s second law in the radial direction:

∑Fr = mar

  Here ∑Fr is the radial component of the net force and the radial component 
of the acceleration is

 ar =
v2

r
= ω2r (5-17)

 5. If necessary, apply Newton’s second law in the tangential direction. For 
uniform circular motion, the tangential acceleration component is zero 
because the speed is constant:

∑Ft = 0

Example 5.5

The Hammer Throw

An athlete whirls a 4.00 kg hammer six or seven times 
around and then releases it. Although the purpose of whirl-
ing it around several times is to increase the hammer’s speed, 
assume that just before the hammer is released, it moves at 
constant speed along a circular arc of radius 1.7 m. At the 
instant she releases the hammer, it is 1.0 m above the ground 
and its velocity is directed 40° above the horizontal. The 
hammer lands a horizontal distance of 74.0 m away. What 
force does the athlete apply to the grip just before she re-
leases it? Ignore air resistance.

Strategy After release, the only force acting on the ham-
mer is gravity. The hammer moves in a parabolic trajectory 
like any other projectile. By analyzing the projectile motion 
of the hammer, we can find the speed of the hammer just after 
its release. Just before release, the forces acting on the 

 hammer are the tension in the cable and gravity. We can relate 
the net force on the hammer to its radial acceleration, calcu-
lated from the speed and radius of its path. The problem be-
comes two subproblems, one dealing with circular motion and 
the other with projectile motion. The final velocity for the 
circular motion is the initial velocity for the projectile motion.

Solution During its projectile motion, the initial velocity 
has magnitude vi (to be determined) and direction θ = 40° 
above the horizontal. Choosing the +y-axis pointing up, the 
displacement of the hammer (in component form) is Δx = 
74.0 m and Δy = −1.0 m (Fig. 5.10), the acceleration of the 
hammer is ax = 0 and ay = −g, and the initial velocity is vix = 
vi cos θ and viy = vi sin θ. Then, from Eqs. (3-24) and (3-25),

Δx = (vi cos θ)Δt and Δy = (vi sin θ)Δt −
1
2

 g(Δt)2

continued on next page

y

x

Δx = 74.0 m

Δy = –1.0 m

40°

Release
point

Uniform
circular
motion

Projectile motion
(parabolic trajectory)

Figure 5.10
Path of the hammer from just before 
its release until it hits the ground. 
(Distances are not to scale.)
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Example 5.5 continued

acceleration of magnitude v2/r. Newton’s second law in the 
radial direction is

∑Fr = T = mar =
mv2

r

Now we substitute the numerical values:

T =
4.00 kg × (26.9 m/s)2

1.7 m
= 1700 N

The tension is much larger than the weight of the hammer 
(≈ 40 N), so the assumption that we could ignore the weight 
is justified. The athlete must apply a force of magnitude 
1700 N—almost 400 lb—to the grip.

Discussion This example demonstrates the cumulative na-
ture of physics concepts. The basic concepts keep reappearing, 
to be used over and over and to be extended for use in new 
contexts. Part of the problem involves new concepts (radial 
 acceleration); the rest of the problem involves old material 
(Newton’s second law, projectile motion, and tension in a cord).

Practice Problem 5.5 Rotating Carousel

A wooden horse located 8.0 m from the central axis of a rotating 
carousel moves at a speed of 6.0 m/s. The horse is at a fixed 
height (it does not move up and down). What is the net force act-
ing on a child seated on this horse? The child’s weight is 130 N.

Solving the left equation for Δt and substituting into the 
right equation gives

Δy = vi sin θ 
Δx

vi cos θ
−

1
2

g(
Δx

vi cos θ)
2

We can solve this equation algebraically for vi. Here is an 
outline of the steps. (See Appendix A for a review of alge-
braic techniques for solving equations.) First rearrange to put 
only terms involving vi on one side of the equation.

g(Δx)2

2v2
i  cos2 θ

= Δx 
sin θ
cos θ

− Δy

Next, multiply both sides by constants to isolate vi.

1
v2

i
=

2 cos2 θ

g(Δx)2 (Δx 
sin θ
cos θ

− Δy)

Finally, take the square root and reciprocal of both sides.

vi = √
g(Δx)2

2 cos θ (Δx sin θ − Δy cos θ)

Now we are ready to substitute numerical values.

vi = √
(9.80 m/s2)(74.0 m)2

2 cos 40° [74.0 m sin 40° − (−1.0 m) cos 40°]
  = 26.9 m/s

The net force on the hammer can be found from 
 Newton’s second law. The two forces acting on the hammer 
are due to the tension in the cable and to gravity (Fig. 5.11). 
We ignore the gravitational force, assuming that the ham-
mer’s weight is small compared with the tension in the ca-
ble. Then the tension in the cable is the only significant 
force acting on the hammer. Assuming uniform circular 
motion, the cable pulls radially inward and causes a radial 

mg

T
Figure 5.11
FBD for the hammer just before its  
release. (Not to scale.)

Example 5.6

Conical Pendulum

Suppose you whirl a stone in a horizontal circle at a slow 
speed so that the weight of the stone is not negligible com-
pared with the tension in the cord. Then the cord cannot be 
horizontal—the tension must have a vertical component to 
cancel the weight and leave a horizontal net force (Fig. 5.12). 
If the cord has length L, the stone has mass m, and the cord 
makes an angle ϕ with the vertical direction, what is the 
constant angular speed of the stone?

Strategy The net force must point toward the center of 
the circle, since the stone is in uniform circular motion. 

With the stone in the position depicted in Fig. 5.12a, the 
direction of the net force is along the +x-axis. This time 
the tension in the cord does not pull toward the center, but 
the net force does.

Solution Start by drawing an FBD (Fig. 5.12b). Now 
apply Newton’s second law in component form. The 
 acceleration has components ax = ω2r and ay = 0. For the 
x-components,

∑Fx = T sin ϕ = max = mω2r

continued on next page
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5.3 UNBANKED AND BANKED CURVES

Application of Radial Acceleration: Unbanked and Banked Curves

Unbanked Curves When you drive an automobile in a circular path along an 
unbanked roadway, friction acting on the tires due to the pavement keeps the auto-
mobile moving in a curved path. This frictional force acts sideways, toward the cen-
ter of the car’s circular path (Fig. 5.13). The frictional force might also have a 
tangential component; for example, if the car is braking, a component of the frictional 
force makes the car slow down by acting backward (opposite to the car’s velocity). 
For now we assume that the car’s speed is constant and that the forward or backward 
component of the frictional force is negligibly small.

As long as the tires roll without slipping, there is no relative motion between the 
bottom of the tires and the road, so it is the force of static friction that acts (see Sec-
tion 4.6). If the car is in a skid, then it is the smaller force of kinetic friction that acts 
as the bottom portion of the tire slides along the pavement. As the speed of the car 
increases, or for slippery surfaces with low coefficients of friction, the static frictional 
force may not be enough to hold the car in its curved path.

Banked Curves To help prevent cars from going into a skid or losing control, the 
roadway is often banked (tilted at a slight angle) around curves so that the outer portion 
of the road—the part farthest from the center of curvature—is higher than the inner 

Example 5.6 continued

Now we eliminate the tension:

(mω2L) cos ϕ = mg

Solving for ∣ω∣, we find

∣ω∣ = √
g

L cos ϕ

Discussion We should check the dimensions of the final 
expression. Since cos ϕ is dimensionless,

√
[L/T2]

[L]
=

1
[T]

which is correct for ω (SI unit rad/s).
Another check is to ask how ω and ϕ are related for a 

given length cord. As ϕ increases toward 90°, the cord gets 
closer to horizontal and the radius increases. In our expres-
sion, as ϕ increases, cos ϕ decreases and, therefore, ω in-
creases, in accordance with experience: the stone would 
have to be whirled faster and faster to make the cord more 
nearly horizontal.

Conceptual Practice Problem 5.6 Conical  
Pendulum on the Moon

Examine the result of Example 5.6 to see how ω depends on 
g, all other things being equal. Where the gravitational field 
is weaker, do you have to whirl the stone faster or more 
slowly to keep the cord at the same angle ϕ? Is that in accord 
with your intuition?

Since the problem does not specify r, we must express r in 
terms of L and ϕ. In Fig. 5.12a, the radius forms a right tri-
angle with the cord and the y-axis. Then

r = L sin ϕ

and

∑Fx = T sin ϕ = mω2L sin ϕ

Therefore, T = mω 2L. For the y-components,

∑Fy = T cos ϕ − mg = may = 0 ⇒ T cos ϕ = mg

y

x

y

x

L
ϕ ϕ

T

mg

(a) (b)
r = L sin ϕ

Figure 5.12
(a) A stone is whirled in a horizontal circle of radius r = L sin ϕ. 
(b) An FBD for the stone.
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portion. Banking changes the angle of the normal force, N→, so that it has a horizontal 
component Nx directed toward the center of the circular path of the car. Then we need 
no longer rely solely on friction to keep the car moving in a circular path as it negoti-
ates the curve; the horizontal component of the normal force acts to help the car remain 
on the curved path. At one value of the car’s speed, Nx by itself provides just the right 
radial acceleration, so the frictional force is zero. Figure 5.14(a) shows a head-on view 
of a car going around a banked road at the speed for which the frictional force is zero. 
The road is banked at an angle θ with respect to the horizontal. In parts (b) and (c), 
the normal force is resolved into its x- and y-components, and then the force compo-
nents are shown on an FBD. We choose the axes so that the x-axis is in the direction 
of the acceleration, which is to the left; the axes are not parallel and perpendicular to 
the incline.

N

W

(a) (b)

mg

(c)

v

a

a

fs

x

y

N

fs

Figure 5.13 (a) A car negotiating a curve at constant speed on an unbanked roadway. The car’s acceleration is toward 
the center of the circular path. (b) A head-on view of the same car. The center of the circular path is to the left as 
viewed here. The force vectors N→ and f→s are shown acting on one tire, but they represent the total normal and fric-
tional forces acting on all four tires. The frictional force is static rather than kinetic because the tires roll without slip-
ping or skidding. Assuming that air resistance is negligibly small, the tangential acceleration is zero, so Newton’s 
second law implies that the static frictional force must be radial in direction. (The frictional force would also have a 
tangential component if the speed were not constant or if air resistance were not small enough to ignore.) (c) FBD for 
the car. The net force is to the left, which is radially inward (toward the center of the circular path).

x

y

a

(a)

N

W

θ

θ

Nx

(c)

Ny

Wy = –mg

y

x

NyN
Nx

(b)

θ

Figure 5.14 (a) Head-on 
view of a car negotiating a 
curve at constant speed on a 
banked roadway. The car’s 
acceleration is toward the cen-
ter of the circular path (to the 
left as viewed here). N→, repre-
sents the total normal force 
 acting on all four tires. The car 
moves at just the right speed so 
that the frictional force is zero. 
(b) Resolving the normal force 
into x- and y-components.  
(c) FBD for the car with the 
normal force represented by its 
components.
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Example 5.7

Safe Speeds on Unbanked and Banked Curves

A car is going around an unbanked curve at the recommended 
speed of 11 m/s. (a) If the radius of curvature of the path is 25 m 
and the coefficient of static friction between the rubber and the 
road is μs = 0.70, does the car skid as it goes around the curve? 
(b) What happens if the driver ignores the highway speed limit 
sign and travels at 18 m/s? (c) What maximum speed is safe for 
traveling around the curve if the road surface is wet from a re-
cent rainstorm and the coefficient of static friction between the 
wet road and the rubber tires is μs = 0.50? (d) For a car to safely 
negotiate the curve in icy conditions at a speed of 13 m/s, what 
banking angle would be required (see Fig. 5.14)?

Strategy The force of static friction is the only horizontal 
force acting on the car when the curve is not banked. The 
maximum force of static friction, which depends on road 
conditions, determines the maximum possible radial accel-
eration of the car. Therefore, we can compare the radial ac-
celeration necessary to go around the curve at the specified 
speeds with the maximum possible radial acceleration deter-
mined by the coefficient of static friction. For part (d), in icy 
conditions we cannot rely much on friction, but the normal 
force has a horizontal component when the road is banked.

Solution (a) We find the radial acceleration required for a 
speed of 11 m/s:

ar =
v2

r
=

(11 m/s)2

25 m
= 4.8 m/s2

In order to have that acceleration, the component of the net 
force acting toward the center of curvature must be

∑Fr = mar = m 
v2

r

The only force with a horizontal component is the static fric-
tional force acting on the tires due to the road (see the FBD 
in Fig. 5.13c). Therefore,

∑Fr = fs = m 
v2

r

We must check to make sure that the maximum frictional 
force is not exceeded:

fs ≤ μsN

Since N = mg, the car can go around the curve without skid-
ding as long as

m 
v2

r
≤ μsmg

Thus, the radial acceleration cannot exceed μsg. That limits 
the car to speeds satisfying

v ≤ √μsgr

Substituting numerical values, we find that

v ≤ √0.70 × 9.80 m/s2 × 25 m = 13 m/s

Since 11 m/s is less than the maximum safe speed of 13 m/s, 
the car safely negotiates the curve without skidding.
(b) At 18 m/s, the car moves at a speed higher than the max-
imum safe speed of 13 m/s. The frictional force cannot sup-
ply the radial acceleration needed for the car to go around the 
curve—the car goes into a skid.
(c) In part (a), we found that the car is limited to speeds 
 satisfying

v ≤ √μsgr

With μs = 0.50, the maximum safe speed is

vmax = √μsgr = √0.50 × 9.80 m/s2 × 25 m = 11 m/s

which is the same maximum speed recommended by the 
road sign. The highway engineer knew what she was doing 
when she had the sign placed along the road.
(d) Finally, we find the banking angle that would enable cars 
to travel around the curve at 13 m/s in icy conditions. As-
suming that friction is negligible, the horizontal component 
of the normal force is the only horizontal force. With the x-
axis pointing toward the center of curvature and the y-axis 
vertical (Fig. 5.14),

 ∑Fx = N sin θ = mv2/r (1)
and
 ∑Fy = N cos θ − mg = 0 (2)

We can eliminate the unknown N by dividing Eq. (1) by 
Eq. (2).

N sin θ
N cos θ

= tan θ =
mv2/r
mg

=
v2

rg

 θ = tan−1 
v2

rg
= tan−1 

(13 m/s)2

25 m × 9.80 m/s2 = 35° (3)

Discussion Notice that the mass of the car does not ap-
pear in Eq. (3); the same banking angle holds for a scooter, 
motorcycle, car, or tractor-trailer. Notice also that the bank-
ing angle depends on the square of the speed. Automobile 
racetracks and bicycle racetracks have highly banked road 
surfaces at hairpin curves to minimize skidding of the high-
speed vehicles. However, a banking angle of 35° is far 
greater than those used in practice along public roadways.

Practice Problem 5.7 Actual Banking Angle

The curve in Example 5.7 is actually banked at 4.0°. What is 
the safest speed to go around the curve in icy conditions?
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If there is no friction between the road and the tires, then there is only one speed 
at which it is safe to drive around a given curve. With friction, there is a range of 
safe speeds. The static frictional force can have any magnitude from 0 to μsN, and it 
can be directed either up or down the bank of the road (Fig. 5.15).

Application: Banking Angle of an Airplane When an airplane pilot makes a turn 
in the air, the pilot makes use of a banking angle. The airplane itself is tilted as if it 
were traveling over an inclined surface. Because of the shape of the wings, an aerody-
namic force called lift acts upward when the plane is in level flight. To go around a 
turn, the wings are tilted; the lift force stays perpendicular to the wings and, therefore, 
now has a horizontal component (Fig. 5.16), just as the normal force has a horizontal 
component for a car on a banked curve. This component supplies the necessary radial 
acceleration, while the vertical component of the lift holds the plane up. Therefore,

 Lx = mar =
mv2

r
 and Ly = mg (5-18)

where the x-axis is horizontal and the y-axis is vertical. The lift force is different in 
its physical origin from the normal force, but its components split up the same way, 
so a plane in a turn banks its wings at the same angle that a road would be banked 
for the same speed and radius of curvature. Of course, planes usually move much 
faster than cars and use large radii of curvature when they turn.

CHECKPOINT 5.3

A	 plane	 can’t	 make	 a	 turn	 without	 tilting	 its	 wings.	 Why	 can	 a	 car	 turn	 on	 a	
flat	 road?

5.4 CIRCULAR ORBITS OF SATELLITES AND PLANETS

Application of Radial Acceleration: Circular Orbits A satellite can orbit Earth 
in a circular path because of the long-range gravitational force on the satellite due to 
Earth. The magnitude of the gravitational force on the satellite is

 F =
Gm1m2

r2  (4-9)

where the universal gravitational constant is G = 6.67 × 10−11 N·m2/kg2. We can use 
Newton’s second law to find the speed of a satellite in circular orbit at constant speed. 
Let m be the mass of the satellite, and M be the mass of Earth. The direction of the 
gravitational force on the satellite is always toward the center of Earth, which is the 
center of the orbit (Fig. 5.17). Since gravity is the only force acting on the satellite,

 ∑Fr = G 
mM

r2  (5-19)

where r is the distance from the center of Earth to the satellite. Then, from  Newton’s 
second law,

 ∑Fr = mar =
mv2

r
 (5-20)

Setting these equal, we have

 G 
mM

r2 =
mv2

r
 (5-21)

Solving for the speed yields

 v = √
GM

r
 (5-22)

θfs

Figure 5.15 The frictional 
force f

→
s on a car (mass m) 

going around a banked curve 
(angle θ, radius r) at a speed 
v > √gr tan θ. The sum of the 
radial components of the fric-
tional and normal forces is 
equal to mv2/r. The frictional 
force on a car with speed 
v < √gr tan θ  would be in the 
opposite direction, up the 
banked curve. At v = √gr tan θ, 
the frictional force is zero.

y

xLx

Ly L

Figure 5.16 The lift force L→ 
is perpendicular to the wings of 
the plane. To turn, the pilot 
tilts the wings so a component 
of the lift force is directed 
toward the center of the circu-
lar path of the plane.
©Chris Sattlberger/Getty Images
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Figure 5.17 Satellite in orbit 
around Earth.
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Notice that the mass of the satellite does not appear in the equation for speed; it 
has been algebraically canceled. The greater inertia of a more massive satellite is 
overcome by a proportionally greater gravitational force acting on it. Thus, the speed 
of a satellite in a circular orbit does not depend on the mass of the satellite. Equation (5-22) 
also shows that satellites in lower orbits (smaller radii) have greater speeds.

We have been discussing satellites orbiting Earth, but the same principles apply 
to the circular orbits of satellites around other planets and to the orbits of the planets 
around the Sun. For planetary orbits, M in Eq. (5-22) would be the Sun’s mass instead 
of Earth’s mass, because the Sun’s gravitational pull keeps the planets in their orbits. 
The planetary orbits are actually ellipses (Fig. 5.18) instead of circles, although for 
most of the planets in the solar system the ellipses are nearly circular. Mercury is the 
exception; its orbit is markedly different from a circle.

Sun

Earth
(e = 0.017)

Comet
Tempel 1

(e = 0.519)

The other
focus for
the orbit
of comet
Tempel 1

Figure 5.18 The shapes of two elliptical orbits around the Sun. 
(The size of the orbits are not to scale.) An ellipse looks like an 
elongated circle. The degree of elongation is measured by a quan-
tity called the eccentricity e. A circle is a special case of an ellipse 
with e = 0. Most of the planetary orbits are nearly circular, with 
the exception of Mercury. The sum of the distances from any point 
on an ellipse to each of two fixed points (called the foci) is con-
stant. The Sun is at one focus of each orbit. Since Earth’s orbit is 
nearly circular, the second focus is very near the Sun.

Example 5.8

Speed of a Satellite

The Hubble Space Telescope (mass 12 000 kg) is in a circu-
lar orbit 613 km above Earth’s surface. The average radius of 
Earth is 6.37 × 103 km and the mass of Earth is 5.97 × 1024 kg. 
What is the speed of the telescope in its orbit?

Strategy We first need to find the orbital radius of the tele-
scope. It is not 613 km; that is the distance from the surface of 
Earth to the telescope. We must add the radius of Earth to 
613 km to find the orbital radius, which is measured from the 
center of Earth to the telescope. Then we use Newton’s second 
law, along with what we know about radial acceleration.

Solution The radius of the telescope’s orbit is

r = 6.13 × 102 km + 6.37 × 103 km = (0.613 + 6.37) × 103 km

  = 6.98 × 103 km

The net force on the telescope is equal to the gravitational force, 
given by Newton’s law of gravity. Newton’s second law relates 
the net force to the acceleration. Both are directed radially inward.

∑Fr =
GmM

r2 = mar =
mv2

r

Here M is the mass of Earth and m is the mass of the tele-
scope. Solving for the speed, we find

v = √
GM

r

v = √
6.67 × 10−11 N · m2/kg2 × 5.97 × 1024 kg

6.98 × 106 m
 v = 7550 m/s = 27 200 km/h

Discussion  Note that the mass of the telescope canceled 
out, implying that any satellite orbiting Earth at an altitude 
of 613 km has this same speed, regardless of its mass.

Practice Problem 5.8 Speed of Earth in Its Orbit

What is the speed of Earth in its approximately circular orbit 
about the Sun? The average Earth-Sun distance is 1.50 × 
1011 m and the mass of the Sun is 1.987 × 1030 kg. Once you 
find the speed, use it along with the distance traveled by 
Earth during one revolution about the Sun to calculate the 
time in seconds for one orbit.

Kepler’s Laws of Planetary Motion

At the beginning of the seventeenth century, Johannes Kepler (1571–1630) proposed 
three laws to describe the motion of the planets. These laws predated Newton’s laws 
of motion and his law of gravity. They offered a far simpler description of planetary 
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motion than anything that had been proposed previously. We turn history on its head 
and look at one of Kepler’s laws as a consequence of Newton’s laws. The fact that 
Newton could derive Kepler’s laws from his own work on gravity was seen as a con-
firmation of Newtonian mechanics.

Kepler’s laws of planetary motion are

∙ The planets travel in elliptical orbits (see Fig. 5.18) with the Sun at one focus of 
the ellipse.

∙ A line drawn from a planet to the Sun sweeps out equal areas in equal time intervals.
∙ The square of the orbital period is proportional to the cube of the average distance 

from the planet to the Sun.

Kepler’s first law can be derived from the inverse square law of gravitational attrac-
tion. The derivation is a bit complicated, but for any two objects that have such an 
attraction, the orbit of one about the other is an ellipse, with the stationary object located 
at one focus. (Planetary orbits are also affected by gravitational interactions with other 
planets; Kepler’s laws ignore these small effects.) The circle is a special case of an 
ellipse where the two foci coincide. We discuss Kepler’s second law in Chapter 8.

Application of Radial Acceleration: Kepler’s Third Law for a Circular Orbit We 
can derive Kepler’s third law from Newton’s law of universal gravitation for the spe-
cial case of a circular orbit. The gravitational force gives rise to the radial acceleration:

 ∑Fr =
GmM

r2 =
mv2

r
 (5-23)

Here, M is the mass of the Sun, m is the mass of the planet, r is the orbital radius, 
and v is the orbital speed. Solving for v yields

 v = √
GM

r
 (5-24)

The distance traveled during one revolution is the circumference of the circle, which is 
equal to 2πr. The speed is the distance traveled during one orbit divided by the period:

 v = √
GM

r
=

2πr

T
 (5-25)

Now we solve for T:

 T = 2π√
r3

GM
 (5-26)

Squaring both sides yields

 T2 =
4π2

GM
 r3   ⇒   T2 ∝ r3 (5-27)

Equation (5-27) is Kepler’s third law: the square of the period of a planet is propor-
tional to the cube of the average orbital radius.

Application of Radial Acceleration: Geostationary Orbits Although Kepler’s 
laws were derived for the motion of planets around the Sun, they apply to satellites 
orbiting Earth as well. In Eq. (5-27), M would then stand for the mass of Earth. Many 
satellites, such as those used for communications, are placed in a geostationary orbit 
(or geosynchronous equatorial orbit)—a circular orbit in Earth’s equatorial plane 
whose period is equal to Earth’s rotational period (Fig. 5.19). A satellite in geostation-
ary orbit remains directly above a particular point on the equator; to observers on the 
ground, it seems to hover above that point without moving. Due to their fixed positions 
with respect to Earth’s surface, geostationary satellites are used as relay stations for 
communication signals. In Example 5.9, we find the speed of a geostationary satellite.
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CHECKPOINT 5.4

Do	all	geostationary	satellites,	no	matter	their	masses,	have	to	be	at	the	same	
height	above	Earth?	Explain.

Earth

Communications
satellite

rP

Figure 5.19 Geostationary 
satellite orbiting Earth. The 
 satellite has the same angular 
velocity as Earth, so it is 
always directly above point P. 
(Not to scale.)

Example 5.9

Geostationary Satellite

A 300.0 kg communications satellite is placed in a geosta-
tionary orbit 35 800 km above a relay station located in 
 Kenya. What is the speed of the satellite in orbit?

Strategy The period of the satellite is 1 d or approxi-
mately 24 h. To find the speed of the satellite in orbit we use 
Newton’s law of gravity and his second law of motion along 
with what we know about radial acceleration.

Solution Let m be the mass of the satellite and let M be the 
mass of Earth. Gravity is the only force acting on the satellite in 
its orbit. From Newton’s law of universal gravitation, Newton’s 
second law, and the expression for radial acceleration, we have

∑Fr =
GmM

r2 =
mv2

r

Solving for the speed yields

v = √
GM

r

We must add the mean radius of Earth, RE = 6.37 × 106 m, to 
the height of the satellite above Earth’s surface to find the 
orbital radius.

r = h + RE = 3.58 × 107m + 0.637 × 107 m
 = 4.217 × 107 m

Now we substitute numerical values into the speed equation.

v = √
6.67 × 10−11 N · m2/kg2 × 5.97 × 1024  kg

4.217 × 107 m
 = √9.443 × 106 m2/s2

 = 3.07 × 103 m/s

Discussion This result, an orbital speed of 3.07 km/s and 
a distance above Earth’s surface of 35 800 km, applies to all 
geostationary satellites. The mass of the satellite does not 
matter; it cancels out of the equations for orbital radius and 
for speed.

If we were actually putting a satellite into orbit, we 
would use a more accurate value for the period. We should 
use a time of 23 h and 56 min, which is the length of a 
 sidereal day—the time for Earth to complete one rotation 
about its axis relative to the fixed stars. The solar day, 
24 h, is the period of time between the daily appearances 
of the Sun at its highest point in the sky. The fact that 
Earth moves around the Sun is what causes the difference 
between these two ways of measuring the length of a day. 
The error introduced by using the longer time is negligible 
in this problem.

We can use Kepler’s third law [Eq. (5-27)] to check the 
result. Examples 5.8 and 5.9 both concern circular orbits around 
Earth. Is the square of the period proportional to the cube of the 
orbital radius? From Example 5.8, r1 = 6.98 × 103 km and

T1 =
2πr1

v
=

2π × 6.98 × 103 km
7.55 km/s

= 5810 s

From the present example, r2 = 4.22 × 107 m and

T2 = 24 h ×
3600 s

1 h
= 86 400 s

We want to check that T2 ∝ r3. The ratio of the squares of 
the periods is

(
T2

T1)
2

= (
86 400 s
5810 s )

2

= 221

continued on next page
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5.5 NONUNIFORM CIRCULAR MOTION

So far we have focused on uniform circular motion. Now we can extend the discussion 
to nonuniform circular motion, where the angular velocity changes with time.

Figure 5.20a shows the velocity vectors v→1 and v→2 at two different times for an object 
moving in a circle with changing speed. In this case, the speed is increasing (v2 > v1). In 
Fig. 5.20b, we subtract v→1 from v→2 to find the change in velocity. In the limit Δt → 0, 
Δv→ does not become perpendicular to the velocity, as it did for uniform  circular motion. 

Example 5.9 continued

Practice Problem 5.9 Orbital Radius of Venus

The period of the orbit of Venus around the Sun is 0.615 
Earth years. Using this information, find the radius of its orbit 
in terms of R, the radius of Earth’s orbit around the Sun.

The ratio of the cubes of the radii should be the same.

(
r2

r1)
3

= (
4.22 × 107 m
6.98 × 106 m)

3

= 221

Example 5.10

Orbiting Satellites

A satellite revolves about Earth with an orbital radius of r1 
and speed v1. If an identical satellite were set into circular 
orbit with the same speed about a planet of mass three times 
that of Earth, what would its orbital radius be?

Strategy We can apply Newton’s law of universal gravita-
tion and set up a ratio to solve for the new orbital radius.

Solution From Newton’s second law, the magnitude of the 
gravitational force on the satellite is equal to the satellite’s 
mass times the magnitude of its radial acceleration:

∑Fr =
GmM

r2 = m 
v2

r

Here, M and m are the masses of the planet and of the satel-
lite, respectively. Solving for r yields

r =
GM

v2

Let us find the ratio of r2, the radius of the orbit around the 
more massive planet, to r1, the radius of the orbit around Earth.

r2

r1
=

GM2/v2
2

GM1/v2
1

=
M2

M1
·
v2

1

v2
2

= 3 · 1

In the last step, we used the given information that M2 = 3M1 
and v2 = v1. The orbital radius around the more massive 
planet is therefore r2 = 3r1.

Discussion Notice that we did not need to substitute nu-
merical values for G and the mass of Earth into the equa-
tions. We took the ratio r2/r1 so that these constants canceled.

Practice Problem 5.10 Period of Lunar Lander

A lunar lander is orbiting about the Moon. If the radius of 
its orbit is one third the radius of Earth, what is the period 
of its orbit?

v1

v1

at

v2

v2

v2 = v1 + Δv

(a) (b) (c)

ar

a = Δv
Δt

Δv

r1

r2
a

Figure 5.20 Motion along a 
circular path with a changing 
speed: (a) the magnitude of 
velocity v→2 is greater than the 
magnitude of velocity v→1,  
(b) the direction of Δv→ is not 
radial when the speed is chang-
ing, and (c) components of a→ 
can be taken along a tangent to 
the curved path (at) and along 
a radius (ar).
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Thus, the direction of the acceleration is not radial if the speed is changing. However, 
we can resolve the acceleration into tangential and radial components (Fig. 5.20c). The 
radial component ar changes the direction of the velocity, and the tangential component 
at changes the magnitude of the velocity (the speed). Since these are perpendicular 
components of the acceleration, the magnitude of the acceleration is

 a = √a2
r + a2

t  (5-28)

Using the same method as in Section 5.2 to find the radial acceleration, but work-
ing here with only the radial component of the acceleration, we find that

 ar =
v2

r
= ω2r (ω in radians per unit time)  (5-17)

For circular motion, whether uniform or nonuniform, the radial component of the 
acceleration is given by Eq. (5-17). In uniform circular motion the radial component 
of the acceleration ar is constant in magnitude, but for nonuniform circular motion ar 
changes as the speed changes.

Also still true for nonuniform circular motion is the relationship between speed 
and angular speed:

 v = r∣ω∣ (5-9)

CONNECTION:

Resolving a vector into per-
pendicular components is 
nothing new. Until now we’ve 
always found components 
along fixed x- and y-axes. 
Here we resolve the accelera-
tion into radial and tangential 
components, which is useful 
because:

∙ the radial acceleration  
is always given by  
Eq. (5-17); and

∙ the tangential acceleration 
is zero if the speed is  
constant.

Problem-Solving Strategy for an Object in Nonuniform Circular Motion

For nonuniform circular motion, use the same strategy as for uniform circular 
motion (Section 5.2). The only difference is that now the tangential acceleration 
component at is nonzero:

 ∑Ft = mat (5-29)

CHECKPOINT 5.5

For	 an	 object	 in	 circular	 motion,	 what	 is	 it	 about	 the	 radial	 acceleration	 that	
distinguishes	between	uniform	and	nonuniform	circular	motion?

Example 5.11

Vertical Loop-the-Loop

Suppose that a roller coaster includes a vertical circular loop 
of radius 20.0 m (Fig. 5.21a). What is the minimum speed at 
which the car must move at the top of the loop so that it 
doesn’t lose contact with the track?

Strategy A roller coaster car moving around a vertical 
loop is in nonuniform circular motion; its speed decreases on 
the way up and increases on the way back down. Neverthe-
less, it is moving in a circle and has a radial acceleration 
component as given in Eq. (5-17) as long as it moves in a 
circle. The only forces acting on the car are gravity and the 
normal force of the track pushing the car. Even if frictional 

or drag forces are present, at the top of the loop they act in 
the tangential direction and, thus, do not contribute to the 
radial component of the net force. At the top of the loop, the 
track exerts a normal force on the car as long as the car 
moves with a speed great enough to stay on the track. If the 
car moves too slowly, it loses contact with the track and the 
normal force is then zero.

Solution The normal force exerted by the track on the car at 
the top pushes the car away from the track (downward); the 
normal force cannot pull up on the car. Then, at the top of the 
loop, the gravitational force and the normal force both point 

continued on next page
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Example 5.11 continued

approaches √gr, the normal force at the top gets smaller and 
smaller. When vtop = √gr, the normal force just becomes zero 
at the top of the loop. Any slower and the car loses contact with 
the track before getting to the highest point and would fall off 
the track unless prevented from falling by a backup safety 
mechanism. Therefore, the minimum speed at the top is

vtop = √gr = √9.80 m/s2 × 20.0 m = 14.0 m/s

Discussion If the car is going faster than 14 m/s at the top, its 
radial acceleration is larger. The track pushing on the car pro-
vides the additional net force component that results in a larger 
radial acceleration. The minimum speed occurs when gravity 
alone provides the radial acceleration at the top of the loop. In 
other words, ar = g at the top of the loop for minimum speed.

Practice Problem 5.11 Normal Force at the  
Bottom of the Track

If the speed of the roller coaster at the bottom of the loop is 
25 m/s, what is the normal force exerted on the car by the 
track in terms of the car’s weight mg? (See Fig. 5.21c.)

straight down toward the center of the loop. Figure 5.21b is an 
FBD for the car. We apply Newton’s second law to the car at 
the top of the track. The normal force, the gravitational force, 
and the radial acceleration are all downward. Let us use vtop to 
stand for the speed at the top. Then Newton’s second law is:

∑Fr = N + mg = mar =
mv2

top

r

We can solve for the normal force:

N =
mv2

top

r
− mg

Since N ≥ 0,

m(
v2

top

r
− g) ≥ 0

which simplifies to

vtop ≥ √gr

Imagine sending a roller coaster car around the loop many 
times with a slightly smaller speed at the top each time. As vtop 

N

N

(a)

(b)

(c)

mg

mg

vtop

vbottom

abottom

atop

Figure 5.21
(a) A roller coaster car on a vertical circular loop. At the bottom of the loop, the car’s acceleration a→bottom points upward toward the center 
of the circle. At the top of the loop, the car’s acceleration a→top points downward. The magnitude of a→top is smaller than that of a→bottom 
 because the speed is smaller at the top than at the bottom. (b) FBD for the car at the top of the loop. The track is above the car, so the 
 normal force on the car due to the track is downward. (c) FBD for the car at the bottom of the loop.
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EVERYDAY PHYSICS DEMO

Go	 outside	 on	 a	 warm	 day	 and	 fill	 a	 bucket	 with	 water.	 Swing	 the	 bucket	
around	 in	a	 vertical	 circle	over	 your	head.	What,	 if	 anything,	 keeps	 the	water	
in	 the	bucket	when	 the	bucket	 is	 upside	down	over	 your	 head?	Why	doesn’t	
the	 water	 spill	 out?	 Do	 any	 upward	 forces	 act	 on	 the	 water	 at	 that	 point?	
[Hint:	The	FBD	for	the	water	when	it	 is	directly	overhead	is	similar	to	the	FBD	
for	a	 roller	coaster	car	at	 the	 top	of	a	 loop.]

rises on the other side (from B to D), its speed is decreasing. A 
motion diagram from B to D is shown in Fig. 5.23.

The spacing between points decreases because the speed 
is decreasing.

(b) At point B, the tension in 
the cord pulls straight up and 
gravity pulls down, so the tan-
gential component of the net 
force is zero and the tangential 
acceleration is zero. Therefore, 
the acceleration points in the 
radial direction: straight up. 
The tension must be larger than 
the weight of the bob to give an 
upward net force. Figure 5.24 
shows the acceleration and the 
FBD.

The acceleration at point C 
has both tangential and radial 
components. The tangential ac-
celeration is opposite to the ve-
locity because the bob is slowing 

Conceptual Example 5.12

Acceleration of a Pendulum Bob

A pendulum is released from rest at point A and reaches point 
D before swinging back. (Fig. 5.22). (a) Sketch a qualitative 
motion diagram from B to D. (b) Sketch an FBD and the ac-
celeration vector for the pendulum bob at points B and C.

Strategy (a) The pendulum bob moves along the arc of a 
circle, but not at constant speed. The spacing between points 
on the motion diagram is larger where the bob is moving faster.
(b) Two forces appear on each FBD: gravity and the force 
due to the cord. The gravitational force is the same at both 
points (magnitude mg, direction down), but the force due to 
the cord varies in magnitude and in direction. Its direction is 
always along the cord. The net force on the bob is the sum of 
these two forces, and its direction is the same as the direction 
of the acceleration. We can use what we know about the ac-
celeration to guide us in drawing the forces. At any point, the 
radial component of the acceleration is related to the speed 
at that point by ar = v2/r. The tangential acceleration is in the 
same direction as the velocity if the speed is increasing and 
in the opposite direction if the speed is decreasing.

Solution and Discussion (a) As the pendulum bob swings 
toward the bottom (from A to B), its speed is increasing; as it 

A

B

C

D

Figure 5.22
A pendulum swings to the right, starting from rest at point A. The 
lowest point in the path is B. At point D, the bob is back to its ini-
tial height and the velocity is again zero. 

D

B

Figure 5.23
Motion diagram for the pendulum bob from point B to point D. 
The bob follows the arc of a circle. Its speed decreases as it rises, 
so the spacing between points decreases.

(a)

B

a

(b)

B

T

mg

Figure 5.24
(a) Acceleration of the bob 
at point B. (b) FBD for the 
bob at B.

continued on next page
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5.6 ANGULAR ACCELERATION

An object in nonuniform circular motion has a changing speed and a changing angu-
lar velocity. To describe how the angular velocity changes, we define an angular 
acceleration. If the angular velocity is ω1 at time t1 and is ω2 at time t2, the change 
in angular velocity is

 Δω = ω2 − ω1 (5-30)

The time interval during which the angular velocity changes is Δt = t2 − t1. The 
average rate at which the angular velocity changes is called the average angular 
acceleration, αav.

 αav =
ω2 − ω1

t2 − t1
=

Δω

Δt
 (5-31)

As we let the time interval become shorter and shorter, αav approaches the instanta-
neous angular acceleration, α.

 α = lim
Δt→0

 
Δω

Δt
 (5-32)

If ω is in units of rad/s, α is in units of rad/s2.
The angular acceleration is closely related to the tangential component of the 

acceleration. The tangential component of velocity is

 vt = r∣ω∣ (5-9)

Equation (5-9) gives us a way to relate tangential acceleration to the angular accel-
eration. The tangential acceleration is the rate of change of the tangential velocity, so

 at =
Δvt

Δt
= r  ⎸

Δω

Δt⎹ (in the limit Δt → 0)  (5-33)

Therefore,

Conceptual Example 5.12 continued

down. Figure 5.25 shows the tangential and radial acceleration 
components added to form the acceleration vector a→ and the 
FBD for the bob. When the two forces are added, they give a 
net force in the same direction as the acceleration vector.

Conceptual Practice Problem 5.12 Analysis of 
the Bob at Point D

Sketch the FBD and the acceleration vector for the pendulum 
bob at point D, the highest point in its swing.

C

(b)

C

a
ar

at

(a)
mg

T

Figure 5.25
(a) At point C, the bob 
has both tangential and 
radial acceleration com-
ponents. (b) FBD for the 
bob at C.

Relationship between tangential acceleration and angular acceleration

 at = r∣α∣ (5-34)
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Constant Angular Acceleration

The mathematical relationships between θ, ω, and α are the same as the mathematical 
relationships between x, vx, and ax that we developed in Chapters 2 and 3. Each quan-
tity is the instantaneous rate of change of the preceding quantity. For example, ax is 
the rate of change of vx and α is the rate of change of ω. Because the mathematical 
relationships are the same, we can draw upon the skills and equations we developed 
to solve problems with constant acceleration ax. All we have to do is take the equations 
for constant acceleration and replace x with θ, vx with ω, and ax with α (Table 5.1).

Equation (5-35) is the definition of average angular acceleration, with αav replaced 
by α since the angular acceleration is constant. Constant α means that ω changes 
linearly with time; therefore, the average angular velocity is halfway between the 
initial and final angular velocities for any time interval ωav = 1

2(ωi + ωf) . Using this 
form for ωav along with the definition of ωav (ωav = Δθ/Δt) yields Eq. (5-36). Equa-
tions (5-37) and (5-38) can be derived from the preceding two relations in a manner 
analogous to the derivations of Eqs. (2-14) and (2-18).

CHECKPOINT 5.6

A	centrifuge	is	“spinning	up”	with	a	constant	angular	acceleration.	Can	the	radial	
acceleration	of	a	sample	 in	 the	centrifuge	be	constant?	Explain.

CONNECTION:

Because α is the rate of 
change of ω, and ω is the rate 
of change of θ, the equations 
for constant α have the same 
form as those for constant 
 acceleration along the x-axis; 
we just replace x with θ, vx 
with ω, and ax with α.

Table 5.1  Relationships Between θ, ω, and α for Constant Angular 
Acceleration

Constant Acceleration Along x-Axis Constant Angular Acceleration

Δvx = vfx − vix = ax Δt (2-10) Δω = ωf − ωi = α Δt (5-35)
Δx = 1

2(vfx + vix)Δt  (2-12) Δθ = 1
2(ωf + ωi)Δt  (5-36)

Δx = vix Δt + 1
2ax(Δt)2 (2-14) Δθ = ωi 

Δt + 1
2α(Δt)2 (5-37)

v2
fx − v2

ix = 2ax Δx (2-18) ω2
f − ω2

i = 2α Δθ (5-38)

Example 5.13

A Rotating Potter’s Wheel

A potter’s wheel rotates from rest to 210 rev/min in a time of 
0.75 s. (a) What is the angular acceleration of the wheel dur-
ing this time, assuming constant angular acceleration? 
(b) How many revolutions does the wheel make during this 
time interval? (c) Find the tangential and radial components 
of the acceleration of a point 12 cm from the rotation axis 
when the wheel is spinning at 180 rev/min.

Strategy We know the initial and final frequencies, so we 
can find the initial and final angular velocities. We also know 
the time it takes for the wheel to get to the final angular veloc-
ity. That is all we need to find the average angular  acceleration 

that, for constant angular accel-
eration, is equal to the instanta-
neous angular acceleration. To 
find the number of revolutions, 
we can find the angular dis-
placement Δθ in radians and 
then divide by 2π rad/rev. From 
the angular velocity at one par-
ticular moment we can find the 
radial acceleration component. 
The tangential acceleration is 
calculated from α.

continued on next page
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Example 5.13 continued

Discussion A quick check of the answers to (a) and (b) in-
volves another of the equations for constant angular acceleration:

ω2
f − ω2

i = 2α Δθ

Since ωi = 0,

ωf = √2α Δθ

Now we substitute the answers to (a) and (b):

ωf = √2 × 29 rad/s2 × 8.25 rad = 22 rad/s

This matches the given value of ωf converted to radians per 
second, so check is successful.

Practice Problem 5.13 The London Eye

The London Eye, a Ferris wheel on the banks of the Thames, 
has radius 67.5 m. At its cruising angular speed, it takes 
30.0 min to make one complete revolution. Suppose that it 
takes 20.0 s to bring the wheel from rest to its cruising speed 
and that the angular acceleration is constant during startup. 
(a) What is the angular acceleration during startup? (b) What 
is the angular displacement of the wheel during startup?

Solution (a) Initially the wheel is at rest, so the initial an-
gular velocity is zero.

ωi = 0 rad/s

Converting 210 rev/min to rad/s gives the final angular 
 velocity:

ωf = 210 
rev
min

×
1
60

 
min

s × 2π 
rad
rev = 22.0 rad/s

The angular acceleration is the rate of change of the 
 angular velocity. Since α is constant, we can calculate it 
by finding the average angular acceleration for the time 
interval:

α =
ωf − ωi

tf − ti
=

22.0 rad/s − 0
0.75 s − 0

=
22.0 rad/s

0.75 s
= 29 rad/s2

(b) The angular displacement is

Δθ = 1
2(ωf + ωi)Δt = 1

2(22.0 rad/s + 0)(0.75 s) = 8.25 rad

Since 2π rad = one revolution, the number of revolutions is

8.25 rad
2π rad/rev

= 1.3 rev

(c) At 180 rev/min, the angular velocity is

ω = 180 
rev
min

×
1
60

 
min

s × 2π 
rad
rev = 18.85 rad/s

The radial acceleration component is

ar = ω2r = (18.85 rad/s)2 × 0.12 m = 43 m/s2

and the tangential acceleration component is

at = αr = 29 rad/s2 × 0.12 m = 3.5 m/s2 The London Eye
©Tom Bonaventure/Getty Images

5.7 APPARENT WEIGHT AND ARTIFICIAL GRAVITY

Application: Apparent Weightlessness of Orbiting Astronauts You are no 
doubt familiar with pictures of astronauts “floating” while in orbit around Earth. It 
seems as if the astronauts are weightless. To be truly weightless, the force of gravity 
acting on the astronauts due to Earth would have to be zero, or at least close to zero. 
Is it? We can calculate the weight of an astronaut in orbit. The orbital altitude for the 
International Space Station is about 420 km above Earth. Then the orbital radius is 
420 km + 6370 km = 6790 km. Comparing the astronaut’s weight in orbit with his 
or her weight on Earth’s surface,

 
Worbit

Wsurface
=

GMm

(RE + h)2

GMm

R2
E

=
R2

E

(RE + h)2 =
(6370 km)2

(6790 km)2 = 0.88 (5-39)
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The weight in orbit is 0.88 times the weight on the surface. The astronaut weighs 
less but certainly isn’t weightless! Then why does the astronaut seem to be weightless?

Recall Section 4.10 on the apparent weightlessness of someone unfortunate enough 
to be in an elevator when the single supporting cable snaps and the safety brakes fail. 
In that situation, the elevator and the passenger both have the same acceleration  
(a→ = g→). Similarly, the astronaut has the same acceleration as the space station, which 
is equal to the local gravitational field g→. Apparent weightlessness occurs when a→ = g→, 
where g→ is the local gravitational field.

Application: Artificial Gravity In order for astronauts to spend long periods of time 
living in a space station without the deleterious effects of apparent weightlessness, 
artificial gravity would have to be created on the station. Many science fiction novels 
and movies feature ring-shaped space stations that rotate in order to create artificial 
gravity for the occupants. In a rotating space station, the acceleration of an astronaut 
is inward (toward the rotation axis), but the apparent gravitational field is outward. 
Therefore, the ceiling of rooms on the station are closest to the rotation axis and the 
floor is farthest away (Fig. 5.26).

The centrifuge is a device that creates artificial gravity on a smaller scale. Cen-
trifuges are common not only in scientific and medical laboratories but also in every-
day life. The first successful centrifuge was used to separate cream from milk in the 
1880s. Water drips out of sopping wet clothes due to the pull of gravity when the 
clothes are hung on a clothesline, but the water is removed much faster by the artifi-
cial gravity created in the spin cycle of a washing machine. If the radial acceleration 
(ar = ω2r) of objects in a centrifuge is much larger than g, the centrifuge creates 
artificial gravity with a magnitude approximately equal to ω2r.

The human body can be adversely affected not only by too little artificial gravity, but 
also by too much. Stunt pilots have to be careful about the accelerations to which they 
subject their bodies. An acceleration of about 3g can cause temporary blindness due to an 
inadequate supply of oxygen to the retina; the heart has difficulty pumping blood up to the 
head due to the blood’s increased apparent weight. Larger accelerations can cause uncon-
sciousness. Pressurized flight suits enable pilots to sustain accelerations up to about 5g.

CONNECTION:

In Section 4.10 we discussed 
apparent weight for motion 
along a line. The principle 
here is the same. Imagine the 
astronaut is standing on a 
scale; the apparent weight is 
the scale reading.

Figure 5.26 A rotating space 
station from the movie 2001: A 
Space Odyssey. The apparent 
gravitational field is outward 
(away from the axis of rotation 
of the space station).
©Photo 12/Alamy

Example 5.14

Stunt Pilot

Dave wants to practice vertical circles for a flying show ex-
hibition. (a) What must the minimum radius of the circle be 
to ensure that his acceleration at the bottom does not exceed 
3.0g? The speed of the 
plane is 78 m/s at the 
bottom of the circle. 
(b)  What is Dave’s ap-
parent weight at the bot-
tom of the circular path? 
Express your answer in 
terms of his true weight.

Strategy For the minimum radius, we use the maximum 
possible radial acceleration since ar = v2/r. For the maxi-
mum radial acceleration, the tangential acceleration must be 
zero (Fig. 5.27)—the magnitude of the acceleration is
a = √a2

r + a2
t . Therefore, the radial acceleration component 

has magnitude 3.0g at the bottom. To find Dave’s apparent 
weight, we do not need to use the numerical value of the 
 radius found in part (a); we already know that his accelera-
tion is upward and has magnitude 3.0g.

Solution (a) The magnitude of the radial acceleration is
ar = v2/r

Now we solve for the radius.

 r =
v2

ar
=

v2

3.0g

 =
(78 m/s)2

3.0 × 9.80 m/s2 = 210 m

continued on next page

v

a

Figure 5.27
Velocity and acceleration 
vectors for the plane at the 
bottom of the circle.
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Application: Apparent Weight of Objects at Rest with Respect to Earth’s 
Surface Due to Earth’s rotation, the apparent value of g measured in a noninertial 
coordinate system attached to Earth’s surface is slightly less than the true value of the 
gravitational field strength. The net force on an object sitting on a scale is not zero 
because the object has a radial acceleration ar = ω2r directed toward Earth’s axis of 
rotation (Fig. 5.29). This relatively small effect is greatest where r is greatest—at the 
equator, where the apparent value of g is about 0.3% smaller than the true value of g.

Example 5.14 continued

Discussion It might have been tempting to jump to the 
conclusion that an acceleration of 3.0g means that his appar-
ent weight is 3.0mg. But is his apparent weight zero when his 
acceleration is zero? No.

Practice Problem 5.14 Astronaut’s Apparent 
Weight

What is the apparent weight of a 730 N astronaut when 
her spaceship has an acceleration of magnitude 2.0g in 
the following two situations: (a) just above the surface of 
Earth, acceleration straight up; (b) far from any stars or 
planets?

(b) Dave’s apparent weight is the magnitude of the normal 
force of the plane pushing up on him. Let the y-axis point 
upward. The normal force is up, and the gravitational force 
is down (Fig. 5.28). Then

∑Fy = N − mg = may

where ay = +3.0g. Therefore,

W′ = N = m(g + ay) = 4.0mg

His apparent weight is 4.0 times his true 
weight.

mg

N
y

x

Figure 5.28
FBD for Dave.

Axis of rotation

Equator
Earth’s
center

Arctic Circle

a

gapp = g – a

a

a

a

(a) (b)

g

Figure 5.29 (a) An object at rest with respect to Earth’s surface has a radial 
acceleration due to Earth’s rotation. The angular frequency ω is the same every-
where, so the radial acceleration ar = ω2r is proportional to the distance from the 
axis of rotation.
(b) For an object on a horizontal surface, the apparent weight is the magnitude of 
the  normal force. From Newton’s second law, ΣF

→
= N

→
+ mg→ = ma→, where a→ is the 

radial acceleration. Because we rotate with the object and don’t notice the radial 
acceleration, it seems to us that there is an apparent gravitational field g→app such 
that N

→
+ mg→app = 0. We can solve for g→app to find g→app = g→ − a→. As shown in the 

vector diagram, g→app differs both in magnitude and direction from g→. (Note however 
that the magnitude of a→ is exaggerated in the diagram.)
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Master the Concepts

 ∙ The angular displacement 
Δθ is the angle through 
which an object has 
turned. Positive and nega-
tive angular displace-
ments indicate rotation in 
different directions. Usu-
ally we choose positive to 
represent counterclock-
wise motion. When solving a problem involving rota-
tion, make a conscious choice of viewing direction and 
stick with it so the meanings of positive and negative θ 
(and other angular quantities) are consistent.

 ∙ Average angular velocity is defined as:

 ωav =
θ2 − θ1

t2 − t1
=

Δθ

Δt
 (5-2)

 ∙ Average angular acceleration is defined as:

 αav =
ω2 − ω1

t2 − t1
=

Δω

Δt
 (5-31)

 ∙ The instantaneous angular velocity and acceleration are 
the limits of the average quantities for a very short time 
interval (Δt → 0).

 ∙ A useful measure of angle is the radian:

 2π rad = 360°
  The arc length s of a circle of radius r subtended by an 

angle θ in radians is

 s = θr (5-4)
 ∙ Whenever any angular quantity (such as θ, ω, or α) ap-

pears in an equation that also involves the radius, the unit 
of angle must be the radian. It may help to remember that 
the radius is the distance (arc length) per radian.

 ∙ The speed of an object in circular motion (including a 
point on a rotating object) is

 v = r∣ω∣ (5-9)
 ∙ The tangential acceleration component is related to the 

angular acceleration by

 at = r∣α∣ (5-34)

 ∙ An object moving in a circle has a radial acceleration 
component given by

 ar =
v2

r
= ω2r (5-17)

  Even if the speed is constant, the radial acceleration is 
nonzero because the velocity vector is changing direction.

 ∙ The tangential and radial acceleration components are 
two perpendicular components of the acceleration  vector. 

The radial acceleration component 
changes the direction of the veloc-
ity, and the tangential acceleration 
component changes the speed.

 ∙ When applying Newton’s second 
law to circular motion, it is usu-
ally easiest to choose one of the 
coordinate axes in the radial direction (toward or away 
from the center of the circular path). As always, be sure 
that every force on the FBD is a real contact or long-
range force exerted by some other object; don’t include 
an extra “force” just because something moves in a 
 circle.

 ∙ Uniform circular motion means that v and ω are constant. 
In uniform circular motion, the time to complete one revo-
lution is constant and is called the period T. The frequency 
f is the number of revolutions completed per second.

 f = 1/T  (5-10)

 ∣ω∣ =
v

r
=

2π

T
= 2πf  (5-12)

  The SI unit of angular velocity is radians per second and 
that of frequency is the hertz: 1 Hz = 1 rev/s.

 ∙ A rolling object is both rotating and translating. An 
object rolls without skidding or slipping when there is 
no relative motion between the rolling object and the 
surface. In this case, the frictional force is static, and 
the axle speed and angular speed must be related by

 vaxle = r∣ω∣ (5-14)

Distance moved by the axle during one
revolution is equal to the circumference, 2πr

vaxle

 ∙ Kepler’s third law says that the square of the period of a plan-
etary orbit is proportional to the cube of the orbital radius:

 T2 ∝ r3 (5-27)
 ∙ For constant angular acceleration, we can use equations anal-

ogous to those we developed for constant acceleration ax:

 Δω = ωf − ωi = α Δt  (5-35)
 Δθ = 1

2(ωf + ωi)Δt  (5-36)
 Δθ = ωi Δt + 1

2α(Δt)2 (5-37)
 ω2

f − ω2
i = 2α Δθ (5-38)

Δθ

θf
θi

θf – θi = Δθ

rf
ri

x

at

ar

a = Δv
Δt

a
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Conceptual Questions

 1. Is depressing the “accelerator” (gas pedal) of a car the 
only way that the driver can make the car accelerate (in 
the physics sense of the word)? If not, what else can the 
driver do to give the car an acceleration?

 2. Two children ride on a merry-go-round. One is 2 m 
from the axis of rotation and the other is 4 m from it. 
Which child has the larger (a) linear speed, (b) accelera-
tion, (c) angular speed, and (d) angular displacement?

 3. Explain why the orbital radius and the speed of a satel-
lite in circular orbit are not independent.

 4. In uniform circular motion, is the velocity constant? Is 
the acceleration constant? Explain.

 5. In uniform circular motion, the net force is perpendicular 
to the velocity and changes the direction of the velocity 
but not the speed. If a projectile is launched horizontally, 
the net force (ignoring air resistance) is perpendicular to 
the initial velocity, and yet the projectile gains speed as it 
falls. What is the difference between the two situations?

 6. The speed of a satellite in circular orbit around a planet 
does not depend on the mass of the satellite. Does it 
depend on the mass of the planet? Explain.

 7. A flywheel (a massive disk) rotates with constant angu-
lar acceleration. For a point on the rim of the flywheel, 
is the tangential acceleration component constant? Is 
the radial acceleration component constant?

 8. Explain why the force of gravity due to Earth does not 
pull the Moon in closer and closer on an inward spiral 
until it hits Earth’s surface.

 9. When a roller coaster takes a sharp turn to the right, it 
feels as if you are pushed toward the left. Does a force 
push you to the left? If so, what is it? If not, why does 
there seem to be such a force?

 10. Is there anywhere on Earth where a bathroom scale 
reads your true weight? If so, where? Where does your 
apparent weight due to Earth’s rotation differ most from 
your true weight?

 11. A physics teacher draws a 
cutaway view of a car round-
ing a banked curve as a rect-
angle atop a right triangle. A 
student draws a coordinate 
system on the drawing. Is 
there another choice of axes 
that would make the problem 
easier to solve?

 12. A bridal party is at a re-
hearsal dinner. The best 
man challenges the bride-
groom to pick up an olive 
using only a brandy snif-
ter. How does the groom 
accomplish this task?

Multiple-Choice Questions

Questions 1–4: A satellite in orbit travels around Earth in 
uniform circular motion. In the figure, the satellite moves 
counterclockwise (ABCDA). Answer choices:
 (a) +x (b) +y (c) −x (d) −y
 (e) 45° above +x (toward +y)
 (f) 45° below +x (toward −y)
 (g) 45° above −x (toward +y)
 (h) 45° below −x (toward −y)
 1. What is the direction of the satellite’s average velocity 

for one quarter of an orbit, starting at C and ending at D?
 2. What is the direction of the satellite’s instantaneous ve-

locity at point D?
 3. What is the direction of the satellite’s average accelera-

tion for one half of an orbit, starting at C and ending 
at A?

 4. What is the direction of the satellite’s instantaneous ac-
celeration at point C?

  

y

x

A

Earth

B

C

D

Multiple-Choice	Questions	1–4	and	Problem	90

 5. An object moving in a circle at a constant speed has an 
acceleration that is

 (a) in the direction of motion.
 (b) toward the center of the circle.
 (c) away from the center of the circle.
 (d) zero.
 6. A spider sits on a DVD that is rotating at a constant an-

gular speed. The acceleration a→ of the spider is
 (a) greater the closer the spider is to the central axis.
 (b)  greater the farther the spider is from the central 

axis.
 (c)  nonzero and independent of the location of the spi-

der on the DVD.
 (d) zero.
 7. Two satellites are in orbit around Mars with the same or-

bital radius. Satellite 2 has twice the mass of satellite 1. 
The radial acceleration of satellite 1 has magnitude a1. 
The radial acceleration of satellite 2 has magnitude

 (a)  2a1
 (b)  a1
 (c)  a1/2
 (d)  4a1

Brandy snifter

Olive
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Questions 8–9: A boy swings in a tire swing. Answer choices:
 (a) At the highest point of the motion
 (b) At the lowest point of the motion
 (c) At a point neither highest nor lowest
 (d) It is constant.
 8. When is the tangential acceleration the greatest?
 9. When is the tension in the rope the greatest?

Questions 10–11 concern these three statements:
 (1) Its acceleration is constant.
 (2)  Its radial acceleration component is constant in 

 magnitude.
 (3)  Its tangential acceleration component is constant in 

magnitude.
 10. An object is in uniform circular motion. Identify the 

correct statement(s).
 (a) 1 only (b) 2 only (c) 3 only
 (d) 1, 2, and 3 (e) 2 and 3 (f) 1 and 2
 (g) 1 and 3 (h) None of them
 11. An object is in nonuniform circular motion with constant 

angular acceleration. Identify the correct statement(s). 
(Use the same answer choices as in Question 10.)

 12. An astronaut is out in space far from any large bodies. 
He uses his jets to start spinning, then releases a base-
ball he has been holding in his hand. Ignoring the gravi-
tational force between the astronaut and the baseball, 
how would you describe the path of the baseball after it 
leaves the astronaut’s hand?

 (a)  It continues to circle the astronaut in a circle with the 
same radius it had before leaving the astronaut’s hand.

 (b) It moves off in a straight line.
 (c) It moves off in an ever-widening arc.

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

5.1 Description of Uniform Circular Motion
 1. The seat on a carnival ride is fixed on the end of an 8.0 m 

long beam, pivoted at the other end. If the beam sweeps 
through an angle of 120°, what is the distance through 
which the rider moves?

 2. Convert these to radian measure: (a) 30.0°, (b) 33.3 
 revolutions.

 3. Find the average angular speed of the second hand of an 
analog clock. What is its angular displacement during 
5.0 s?

 4. An elevator cable winds on a drum of radius 90.0 cm 
that is connected to a motor. (a) If the elevator moves 

down at 0.50 m/s, what is the angular speed of the 
drum? (b) If the elevator moves down 6.0 m, how many 
revolutions has the drum made? (c) What is the drum’s 
frequency of rotation?

 5. A wheel of radius 30 cm is rotating at a rate of 2.0 revo-
lutions every 0.080 s. (a) Through what angle, in radi-
ans, does the wheel rotate in 1.0 s? (b) What is the linear 
speed of a point on the wheel’s rim? (c) What is the 
wheel’s frequency of rotation?

 6. A soccer ball of diameter 31 cm rolls without slipping at 
a linear speed of 2.8 m/s. (a) Through how many revolu-
tions has the soccer ball turned as it moves a linear dis-
tance of 18 m? (b) What is the ball’s angular speed?

 7. A bicycle is moving at 9.0 m/s. What is the angular 
speed of its tires if their radius is 35 cm?

 8.  Dung beetles are renowned for building large (rela-
tive to their body size) balls of dung and rolling them 
on the ground. (a) If a dung beetle can roll (without 
slipping) a ball of dung whose radius is 2.5 cm at a 
linear speed of 3.5 cm/s, through what angle does the 
ball roll as the ball moves a distance of 15 cm? (b) What 
is the angular speed (assumed constant) of the ball’s 
rotation?

 9. In aviation, a standard rate turn proceeds at an angular 
speed of 180° per minute. What is the radius of a stan-
dard rate turn for a plane moving at 240 m/s?

 10.  In the construction of railroads, curvature of the 
track is measured in the following way. First a 100.0 ft 
long chord is measured. Then the curvature is reported 
as the angle subtended by two radii at the endpoints of 
the chord. (The angle is measured by determining the 
angle between two tangents 100 ft apart; since each tan-
gent is perpendicular to a radius, the angles are the 
same.) In modern railroad construction, track curvature 
is kept below 1.5°. What is the radius of curvature of a 
“1.5° curve”? [Hint: Since the angle is small, the length 
of the chord is approximately equal to the arc length 
along the curve.]

  

θ

100 ft

Problems 11–13.  Five flywheels are spinning as follows: 
(a) radius 8.0 cm, period 4.0 ms; (b) radius 2.0 cm, period 
4.0 ms; (c) radius 8.0 cm, period 1.0 ms; (d) radius 2.0 cm, 
period 1.0 ms; (e) radius 1.0 cm, period 4.0 ms.
 11. Rank the flywheels in order of angular speed, largest to 

smallest. Explain.
 12. Rank the flywheels in order of the linear speed at the 

rim, largest to smallest. Explain.
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5.2 Radial Acceleration
 13. Rank the flywheels of Problems 11 and 12 in order of 

the radial acceleration of a point on the rim, largest to 
smallest. 

 14.  An apparatus is designed to study insects at an ac-
celeration of magnitude 980 m/s2 (= 100g). The appa -
ratus consists of a 2.0 m rod with insect containers at 
either end. The rod rotates about an axis perpendicular 
to the rod and at its center. (a) How fast does an insect 
move when it experiences a radial acceleration of 
980 m/s2? (b) What is the angular speed of the insect?

2.0 m

 15. Objects that are at rest relative to Earth’s surface are in cir-
cular motion due to Earth’s rotation. What is the radial ac-
celeration of an African baobab tree located at the equator?

 16. The rotor is an amusement park ride where people stand 
against the inside of a cylinder. Once the cylinder is 
spinning fast enough, the floor drops out. (a) What force 
keeps the people from falling out the bottom of the cyl-
inder? (b) If the coefficient of static friction between a 
person and the wall of the cylinder is 0.40 and the cylin-
der has a radius of 2.5 m, what is the minimum angular 
speed of the cylinder so that the people don’t fall out? 
(Normally the operator runs it considerably faster as a 
safety measure.)

  ©Joern Sackermann/Alamy

 17.  Medical testing has established that the maximum 
acceleration a pilot can be subjected to without losing 
consciousness is approximately 5.0g if the axis of accel-
eration is aligned with the spine. (See Example 5.4.) A 
pilot can avoid “blackout” at accelerations up to approxi-
mately 9.0g by wearing special “g-suits” that help keep 
blood pressure in the brain at a sufficient level. (a) As-
suming this to be the case, what is the minimum safe 
radius of curvature for an unprotected pilot flying 
an  F-15 in a horizontal circular loop at 750 km/h? 

(b) What does this radius become if the pilot is wear-
ing a g-suit?

 18. A 0.700 kg ball is on the 
end of a rope that is 1.30 m 
in length. The ball and rope 
are attached to a pole and 
the entire apparatus, includ-
ing the pole, rotates about 
the pole’s symmetry axis. 
The rope makes a constant 
angle of 70.0° with respect 
to the vertical. What is the 
tangential speed of the ball?

 19.  A child’s toy has a 0.100 kg 
ball attached to two strings, A 
and B. The strings are also at-
tached to a stick and the ball 
swings around the stick along a 
circular path in a horizontal 
plane. Both strings are 15.0 cm 
long and make an angle of 30.0° 
with respect to the horizontal. 
(a) Draw an FBD for the ball 
showing the tension forces and the gravitational force. 
(b) Find the magnitude of the tension in each string 
when the ball’s angular speed is 6.00π rad/s.

 20. A child swings a rock of mass m in a horizontal circle 
using a rope of length L. The rope makes a constant 
angle θ with the horizontal. The rock moves at constant 
speed v. What is the tension in the rope? Express the 
tension in terms of m, g, v, L, and θ.

 21. A conical pendulum (see Example 5.6) has a bob of 
mass m and a string of length L. It is swinging in a hori-
zontal circle. The angle that the string makes with the 
vertical is ϕ. Find (a) the tension in the string and (b) the 
period of the pendulum in terms of m, L, ϕ, and g, 
as needed. 

5.3 Unbanked and Banked Curves
 22.  A curve in a stretch of highway has radius 512 m. 

The road is unbanked. The coefficient of static friction 
between the tires and road is 0.70. (a) What is the maxi-
mum speed that a car can travel around the curve with-
out skidding? (b) Explain what happens when a car 
enters the curve at a speed greater than this maximum 
safe speed. Illustrate with an FBD.

 23. A roller coaster car of mass 320 kg (including passen-
gers) travels around a horizontal curve of radius 35 m. 
Its speed is 16 m/s. (a) What are the magnitude and di-
rection of the total force exerted on the car by the track? 
(b) What is the banking angle of the track if the fric-
tional force is zero, so that the track exerts only a normal 
force on the car? 

Axis of rotation

70.0°

A

B
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24. A velodrome is built for use in the Olympics. The radius 
of curvature of the surface is 20.0 m. At what angle 
should the surface be banked for cyclists moving at 
18 m/s? (Choose an angle so that no frictional force is 
needed to keep the cyclists in their circular path. Large 
banking angles are used in velodromes.)

©Matthew Stockman/Getty Images

 25. A highway curve has a radius of 825 m. At what angle 
should the road be banked so that a car traveling at 
26.8 m/s (60 mi/h) has no tendency to skid sideways on 
the road? [Hint: No tendency to skid means the  frictional 
force is zero.]

 26. A curve in a highway has radius of curvature 320 m and 
is banked at 3.0°. On a day when the road is icy, what is 
the safest speed to go around the curve?

 27.  A car drives around a curve with radius 410 m at a 
speed of 32 m/s. The road is not banked. The mass of 
the car is 1400 kg. (a) What is the frictional force on the 
car? (b) Does the frictional force necessarily have mag-
nitude μsN? Explain.

28. An airplane is flying at constant speed 740 km/h in a hori-
zontal circle of radius 4.1 km. The lift force on the wings 
due to the air is perpendicular to the wings. At what angle 
to the vertical must the wings be banked to fly in this circle?

 29.  A road with a radius of 75.0 m is banked so that a car 
can navigate the curve at a speed of 15.0 m/s without 
any friction. On a cold day when the street is icy, the 
coefficient of static friction between the tires and the 
road is 0.120. What is the slowest speed the car can go 
around this curve without sliding down the bank?

 30.  A curve in a stretch of highway has radius 610 m. 
The road is banked at angle 5.8° to the horizontal. The 
coefficient of static friction between the tires and road is 
0.50. What is the fastest speed that a car can travel 
through the curve without skidding?

 31.  A car drives around a curve with radius 410 m at a 
speed of 32 m/s. The road is banked at 5.0°. The mass of 
the car is 1400 kg. (a) What is the frictional force on the 
car? (b) At what speed could you drive around this curve 
so that the force of friction is zero?

 32.  A road with a radius of 75.0 m is banked so that a 
car can navigate the curve at a speed of 15.0 m/s with-
out any friction. When a car is going 20.0 m/s on this 
curve, what minimum coefficient of static friction 
is  needed if the car is to navigate the curve without 
slipping?

5.4 Circular Orbits of Satellites and Planets
 33. What is the average linear speed of Earth about the Sun?
 34. The orbital speed of Earth about the Sun is 3.0 × 104 m/s 

and its distance from the Sun is 1.5 × 1011 m. The mass 
of Earth is approximately 6.0 × 1024 kg and that of the 
Sun is 2.0 × 1030 kg. What is the magnitude of the force 
exerted by the Sun on Earth? [Hint: Two different meth-
ods are possible. Try both.]

 35. Io, one of Jupiter’s satellites, has an orbital period of 
1.77 d. Europa, another of Jupiter’s satellites, has an 
orbital period of about 3.54 d. Both moons have nearly 
circular orbits. Use Kepler’s third law to find the dis-
tance of each satellite from Jupiter’s center. Jupiter’s 
mass is 1.9 × 1027 kg.

 36. A spy satellite is in circular orbit around Earth. It 
makes  one revolution in 6.00 h. (a) How high above 
Earth’s surface is the satellite? (b) What is the satellite’s 
acceleration?

37. Two satellites are in circular orbits around Jupiter. One, 
with orbital radius r, makes one revolution every 16 h. 
The other satellite has orbital radius 4.0r. How long 
does the second satellite take to make one revolution 
around Jupiter?

38. The Hubble Space Telescope orbits 613 km above 
Earth’s surface. What is the period of the telescope’s 
orbit?

5.5 Nonuniform Circular Motion
 39. A roller coaster has a vertical loop with radius 29.5 m. 

With what minimum speed should the roller coaster car 
be moving at the top of the loop so that the passengers 
do not lose contact with the seats?

 40.  A pendulum is 0.80 m long, and the bob has a mass 
of 1.0 kg. At the bottom of its swing, the bob’s speed is 
1.6 m/s. (a) What is the tension in the string at the bot-
tom of the swing? (b) Explain why the tension is greater 
than the weight of the bob.

 41. A 35.0 kg child swings on a rope with a length of 6.50 m 
that is hanging from a tree. At the bottom of the swing, 
the child is moving at a speed of 4.20 m/s. What is the 
tension in the rope?

 42. A car approaches the top of a hill that is shaped like a 
vertical circle with a radius of 55.0 m. What is the fast-
est speed that the car can go over the hill without losing 
contact with the ground?
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5.6 Angular Acceleration
 43. A child pushes a merry-go-round from rest to a final 

angular speed of 0.50 rev/s with constant angular 
 acceleration. In doing so, the child pushes the merry- 
go-round 2.0 revolutions. What is the angular accelera-
tion of the merry-go-round?

 44. A cyclist starts from rest and pedals so that the wheels 
make 8.0 revolutions in the first 5.0 s. What is the angu-
lar acceleration of the wheels (assumed constant)?

 45. During normal operation, a computer’s hard disk spins 
at 7200 rev/min. If it takes the hard disk 4.0 s to reach 
this angular velocity starting from rest, what is the aver-
age angular acceleration of the hard disk in rad/s2?

 46. A hamster of mass 0.100 kg gets into its exercise 
wheel and starts to run at t = 0. After t = 0.800 s, the 
wheel turns with a constant rotational frequency of 
1.00 Hz. What is the tangential acceleration of the 
 inner surface of the wheel between t = 0 and t = 0.800 s, 
assuming it is constant?  The wheel’s inner diameter 
is 20.0 cm.

 47. A clothes washer reaches an angular speed of 1400 rev/min 
in 2.0 s, starting from rest, during the spin cycle. (a) As-
suming the angular acceleration is constant, what is its 
magnitude? (b) How many revolutions does the washer 
make during this time interval?

 48. A wheel’s angular acceleration is constant. Initially its 
angular velocity is zero. During the first 1.0 s time inter-
val, it rotates through an angle of 90.0°. (a) Through 
what angle does it rotate during the next 1.0 s time inter-
val? (b) Through what angle during the third 1.0 s time 
interval?

 49. A car that is initially at rest moves along a circular path 
with a constant tangential acceleration component of 
2.00 m/s2. The circular path has a radius of 50.0 m. The 
initial position of the car is at the far west location on 
the circle and the initial velocity is to the north. (a) After 
the car has traveled one fourth of the circumference, 
what is the speed of the car? (b) At this point, what is the 
radial acceleration component of the car? (c) At this 
same point, what is the total acceleration of the car?

 50. A disk rotates with constant angular acceleration. The 
initial angular speed of the disk is 2.0π rad/s. After the 
disk rotates through 10.0π radians, the angular speed is 
7.0π rad/s. (a) What is the magnitude of the angular ac-
celeration? (b) How much time did it take for the disk to 
rotate through 10.0π radians? (c) What is the tangential 
acceleration of a point located at a distance of 5.0 cm 
from the center of the disk?

 51.  A “blink of an eye” is a time interval of about 150 ms 
for an average adult. The “closure” portion of the blink 
takes only about 55 ms. Let us model the closure of the 
upper eyelid as uniform angular acceleration through an 
angular displacement of 15°. (a) What is the value of 
the  angular acceleration the eyelid undergoes while 

closing? (b) What is the tangential acceleration of the 
edge of the eyelid while closing if the radius of the eye-
ball is 1.25 cm?

 52.  A study was done observing the ability of the eye to 
rapidly rotate in order to follow a moving object by 
placing contact lenses that contain accelerometers on a 
subject’s eye. The eyeball has radius 1.25 cm. Suppose 
that, while the subject watches a moving object, the eye-
ball rotates through 20.0° in a time interval of 75 ms. 
(a) What is the magnitude of the average angular veloc-
ity of the eye? (b) Assume that the eye starts at rest, 
 rotates with a constant angular acceleration during the 
first half of the interval, and then the rotation slows with 
a constant angular acceleration during the second half 
until it comes to rest. What is the magnitude of the 
 angular acceleration of the eye? (c) What tangential 
 acceleration would the contact-lens accelerometers 
 record in this case?

 53.  In a Beams ultracentrifuge, the rotor is suspended 
magnetically in a vacuum. Since there is no mechanical 
connection to the rotor, the only friction is the air resis-
tance due to the few air molecules in the vacuum. If the 
rotor is spinning with an angular speed of 5.0 × 105 rad/s 
and the driving force is turned off, its spinning slows 
down at an angular rate of magnitude 0.40 rad/s2. 
(a) How long does the rotor spin before coming to rest? 
(b) During this time, through what angular displace-
ment does the rotor turn?

 54.  The rotor of the Beams ultracentrifuge (see 
 Problem 53) is a rod 20.0 cm long, turning about a 
perpendicular axis through its center. For a point at the 
end of the rotor, find the (a) initial speed, (b) tangential 
acceleration component, and (c) maximum radial 
 acceleration component.

 55.  A pendulum is 0.800 m 
long, and the bob has a mass of 
1.00 kg. When the string makes 
an angle of θ = 15.0° with the 
vertical, the bob is moving at 
1.40 m/s. Find the tangential 
and radial acceleration compo-
nents and the tension in the 
string. [Hint: Draw an FBD for the bob. Choose the 
 x-axis to be tangential to the motion of the bob and the 
y-axis to be radial. Apply Newton’s second law.]

 56.  Find the tangential acceleration of a freely swinging 
pendulum when it makes an angle θ with the vertical.

5.7 Apparent Weight and Artificial Gravity
 57. If a clothes washer’s drum has a radius of 25 cm and 

spins at 4.0 rev/s, what is the strength of the apparent 
gravitational field to which the clothes are subjected? 
Ignore Earth’s gravity and express your answer as a 
multiple of g.

θ

Problems	55	and	56
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 58. A space station is shaped like a ring and rotates to simu-
late gravity. If the radius of the space station is 120 m, at 
what frequency must it rotate so that it simulates Earth’s 
gravity? [Hint: The apparent weight of the astronauts 
must be the same as their weight on Earth.]

59.  A biologist is studying growth in space. He wants to 
simulate Earth’s gravitational field, so he positions the 
plants on a rotating platform in the spaceship. The dis-
tance of each plant from the central axis of rotation is 
r = 0.20 m. What angular speed is required?

60. A person rides a Ferris wheel that turns with constant 
angular velocity. Her weight is 520.0 N. At the top of 
the ride her apparent weight is 1.5 N different from her 
true weight. (a) Is her apparent weight at the top 521.5 N 
or 518.5 N? Why? (b) What is her apparent weight at the 
bottom of the ride? (c) If the angular speed of the Ferris 
wheel is 0.025 rad/s, what is its radius?

 61. A person of mass M stands on a bathroom scale inside a 
Ferris wheel compartment. The Ferris wheel has radius 
R and angular velocity ω. What is the apparent weight 
of the person (a) at the top and (b) at the bottom?

 62.   A biologist is studying plant growth and wants to 
simulate a gravitational field twice as strong as Earth’s. 
She places the plants on a horizontal rotating table in 
her laboratory on Earth at a distance of 12.5 cm from 
the axis of rotation. What angular speed will give the 
plants an apparent gravitational field g→app whose magni-
tude is 2.0g?

  

ar

g

–ar

Axis of rotation
gapp = g – ar

Collaborative Problems

 63. Mars has a mass of about 6.42 × 1023 kg. The length of 
a day on Mars is 24 h and 37 min, a little longer than the 
length of a day on Earth. Your task is to put a satellite 
into a circular orbit around Mars so that it stays above 
one spot on the surface, orbiting Mars once each Mars 
day. At what distance from the center of the planet 
should you place the satellite?

 64.  A spacecraft is in orbit around Jupiter. The radius of 
the orbit is 3.0 times the radius of Jupiter (which is RJ = 
71 500 km). The gravitational field at the surface of 
 Jupiter is 23 N/kg. What is the period of the spacecraft’s 
orbit? [Hint: You don’t need to look up any more data 
about Jupiter to solve the problem.]

 65.  The time to sunset can be estimated by holding out 
your arm with your fingers perpendicular to the path the 
Sun will follow to the horizon. The number of fingers that 
fit between the Sun and the sunset point is proportional to 
the time remaining. (a) What is the angular speed, in radi-
ans per second, of the Sun’s apparent circular motion 
around Earth? (b) Estimate the angle subtended by one 
finger held at arm’s length. (c) How long in minutes does 
it take the Sun to “move” through this same angle?

 66.  What’s the quickest way to make a U-turn at constant 
speed? Suppose that you need to make a 180° turn on a 
circular path. The minimum radius (due to the car’s 
steering system) is 5.0 m, while the maximum (due to 
the width of the road) is 20.0 m. Your acceleration must 
never exceed 3.0 m/s2 or else you will skid. Should you 
use the smallest possible radius, so the distance is small, 
or the largest, so you can go faster without skidding, or 
something in between? What is the minimum possible 
time for this U-turn?

 67.  You take a homemade “accelerometer” to an amuse-
ment park. This accelerometer consists of a metal nut at-
tached to a string and connected to a protractor, as shown 
in the figure. While riding a roller coaster that is moving 
at uniform speed around a horizontal circular path, you 
hold up the accelerometer and notice that the string is 
making a constant angle of 55° with respect to the vertical 
with the nut pointing away from the center of the circle, as 
shown. (a) What is the radial acceleration of the roller 
coaster? (b) What is your radial acceleration expressed 
as  a multiple of g? 
(c)  If the roller 
coaster track is turn-
ing in a radius of 
80.0 m, how fast are 
you moving?

Comprehensive Problems

 68. Your car’s wheels are 65 cm in diameter, and the wheels 
are spinning at an angular velocity of 101 rad/s. How 
fast is your car moving in kilometers per hour (assume 
no slippage)?

 69. Earth rotates on its own axis once per day (24.0 h). What 
is the tangential speed of the summit of Mt. Kilimanjaro 
(elevation 5895 m above sea level), which is located ap-
proximately on the equator, due to the rotation of Earth? 
The equatorial radius of Earth is 6378 km.

 70. A trimmer for cutting weeds and grass near trees and 
borders has a nylon cord of 0.23 m length that whirls 
about an axle at 660 rad/s. What is the linear speed of 
the tip of the nylon cord?

 71. A high-speed dental drill is rotating at 3.14 × 104 rad/s. 
Through how many degrees does the drill rotate in 
1.00 s?

55°Center of
roller coaster’s
circular path
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 72. A jogger runs counterclockwise around a path of radius 
90.0 m at constant speed. He makes 1.00 revolution in 
188.4 s. At t = 0, he is heading due east. (a) What is the 
jogger’s instantaneous velocity at t = 376.8 s? (b) What 
is his instantaneous velocity at t = 94.2 s?

 73. Two gears A and B are turning in mesh. Gear A’s radius to 
the point of contact between the gears is 8.0 cm and that 
of gear B is 4.0 cm. (a) What is the linear speed of the 
contact point when gear A’s angular velocity is 6.0 rad/s 
counterclockwise? (b) What is B’s angular velocity?

BA

Problems	73	and	74

 74. If gear A in Problem 73 has an initial frequency of 
0.955 Hz and an angular acceleration of 3.0 rad/s2, how 
many rotations does each gear go through in 2.0 s?

 75. The Milky Way galaxy rotates about its center with a 
period of about 200 million yr. The Sun is 2 × 1020 m 
from the center of the galaxy. How fast is the Sun mov-
ing with respect to the center of the galaxy?

 76. A small object of mass 0.50 kg is attached by a 0.50 m 
long cord to a pin set into the surface of a frictionless 
table top. The object moves in a circle on the horizontal 
surface with a speed of 2.0π m/s. (a) What is the magni-
tude of the radial acceleration of the object? (b) What is 
the tension in the cord?

 77. Two blocks, one with mass m1 = 0.050 kg and one with 
mass m2 = 0.030 kg, are connected to each other by a 
string. The inner block is connected to a central pole by 
another string as shown in the figure with r1 = 0.40 m 
and r2 = 0.75 m. When the blocks are spun around on a 
horizontal frictionless surface at an angular speed of 
1.5 rev/s, what is the tension in each of the two strings?

m1

m2

r2

r1

 78. The Milky Way galaxy rotates about its center with a 
period of about 200 million yr. The Sun is 2 × 1020 m 
from the center of the galaxy. (a) What is the Sun’s ra-
dial acceleration? (b) What is the net gravitational force 
on the Sun due to the other stars in the Milky Way?

 79.  Bacteria swim using a corkscrew-like helical flagel-
lum that rotates. For a bacterium with a flagellum that 

has a pitch of 1.0 μm that rotates at 110 rev/s, how fast 
could it swim if there were no “slippage” in the medium 
in which it is swimming? The pitch of a helix is the dis-
tance between “threads.”

 80. You place a penny on an old turntable at a distance of 
10.0 cm from the center. The coefficient of static fric-
tion between the penny and the turntable is 0.350. The 
turntable’s angular acceleration is 2.00 rad/s2. How long 
after you turn on the turntable will the penny begin to 
slide?

 81. A coin is placed on an old turntable. If the coefficient of 
static friction between the coin and the turntable is 0.10, 
how far from the center of the turntable can the coin be 
placed without having it slip off when the turntable ro-
tates at 33.3 rev/min?

 82.  Objects that are at rest relative to Earth’s surface are 
in circular motion due to Earth’s rotation. What is the 
radial acceleration of a painting hanging in the Prado 
Museum in Madrid, Spain, at a latitude of 40.2° North? 
(Note that the object’s radial acceleration is not directed 
toward the center of Earth.)

40.2° N

40.2°
0°

Equator
Equator

Madrid

Three-dimensional view

Cross-sectional view
Rotation axis

Madrid,
Spain

 83. In an amusement park rocket ride, cars are suspended 
from 4.25 m cables attached to rotating arms at a dis-
tance of 6.00 m from the axis of rotation. The cables 
swing out at a constant angle of 45.0° when the ride is 
operating. What is the angular speed of rotation?

6.00 m 6.00 m
45.0° 45.0°

4.25 m4.25 m

 84.  Centrifuges are commonly used in biological labo-
ratories for the isolation and maintenance of cell prepa-
rations. For cell separation, the centrifugation conditions 
are typically 1.0 × 103 rev/min using an 8.0 cm radius 
rotor. (a) What is the radial acceleration of material in 
the centrifuge under these conditions? Express your an-
swer as a multiple of g. (b) At 1.0 × 103 rev/min (and 
with an 8.0 cm rotor), what is the net force on a red 
blood cell whose mass is 9.0 × 10−14 kg? (c) What is the 
net force on a virus particle of mass 5.0 × 10−21 kg  under 
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the same conditions? (d) To pellet out virus particles 
and even to separate large molecules such as proteins, 
super-high-speed centrifuges called ultracentrifuges are 
used in which the rotor spins in a vacuum to reduce 
heating due to friction. What is the radial acceleration 
inside an ultracentrifuge at 75 000 rev/min with an 
8.0 cm rotor? Express your answer as a multiple of g.

 85. A proposed “space elevator” consists of a cable going 
all the way from the ground to a space station in geosta-
tionary orbit (always above the same point on Earth’s 
surface). Elevator “cars” would climb the cable to trans-
port cargo to outer space. Consider a cable connected 
between the equator and a space station at height H 
above the surface. Ignore the mass of the cable*. (a) 
Find the height H. (b) Suppose there is an elevator car of 
mass 100 kg sitting halfway up at height H/2. What ten-
sion T would be required in the cable to hold the car in 
place? Which part of the cable would be under tension 
(above the car or below it)?

 86. A star near the visible edge of a galaxy travels in a uni-
form circular orbit. It is 40  000 ly (light-years) from the 
galactic center and has a speed of 275 km/s. (a) Estimate 
the total mass of the galaxy based on the motion of the 
star. [Hint: For this estimate, assume the total mass to be 
concentrated at the galactic center and relate it to the 
gravitational force on the star.] (b) The total visible mass 
(i.e., matter we can detect via electromagnetic radiation) 
of the galaxy is 1011 solar masses. What fraction of the 
total mass of the galaxy is visible†, according to this 
estimate?

 87. Massimo, a machinist, is cutting threads for a bolt on a 
lathe. He wants the bolt to have 18 threads per inch. If 
the cutting tool moves parallel to the axis of the would-
be bolt at a linear velocity of 0.080 in./s, what must the 
rotational speed of the lathe chuck be to ensure the cor-
rect thread density? [Hint: One thread is formed for each 
complete revolution of the chuck.]

 88. In Chapter 19 we will see that a charged particle can 
undergo uniform circular motion when acted on by a 
magnetic force and no other forces. (a) For that to be 

true, what must be the angle between the magnetic force 
and the particle’s velocity? (b) The magnitude of the 
magnetic force on a charged particle is proportional to 
the particle’s speed, F = kv. Show that two identical 
charged particles moving in circles at different speeds in 
the same magnetic field must have the same period. (c) 
Show that the radius of the particle’s circular path is 
proportional to the speed.

 89. A rotating flywheel slows down with constant angular 
acceleration due to friction in its bearings. At t = 0, its 
angular velocity is 420 rad/s. At t = 60 s, its angular 
velocity is 340 rad/s. (a) What is the angular velocity at 
t = 180 s? (b) Through how many revolutions has it 
turned at t = 180 s?

Review and Synthesis

 90.  A satellite travels around Earth in uniform circular 
motion at an altitude of 35800 km above Earth’s sur-
face. The satellite is in geosynchronous orbit. In the fig-
ure with Multiple-Choice Questions 1–4, the satellite 
moves counterclockwise (ABCDA). State directions in 
terms of the x- and y-axes. (a) What is the satellite’s in-
stantaneous velocity at point C? (b) What is the satel-
lite’s average velocity for one quarter of an orbit, starting 
at A and ending at B? (c) What is the satellite’s average 
acceleration for one quarter of an orbit, starting at A and 
ending at B? (d) What is the satellite’s instantaneous ac-
celeration at point D?

 91.   Objects that are at rest relative to Earth’s sur-
face are in circular motion due to Earth’s rotation. 
(a)  What is the radial acceleration of an object at the 
equator? (b) Is the object’s apparent weight greater or 
less than its weight? Explain. (c) By what percentage 
does the apparent weight differ from the weight at the 
equator? (d) Is there any place on Earth where a bath-
room scale reading is equal to your true weight? Explain.

 92.   Earth’s orbit around the Sun is nearly circular. 
The period is 1 yr = 365.25 d. (a) In an elapsed time of 
1 d, what is Earth’s angular displacement in radians? 
(b) What is the change in Earth’s velocity, Δv→? (c) What 
is Earth’s average acceleration during 1 d? (d) Compare 
your answer for (c) to the magnitude of Earth’s instanta-
neous radial acceleration. Explain.

 93.  Find the orbital radius of a geostationary satellite 
without using the speed found in Example 5.9. Start by 
writing an equation that relates the period, radius, and 
speed of the orbiting satellite. Then apply Newton’s sec-
ond law to the satellite. You will have two equations 
with two unknowns (the speed and radius). Eliminate 
the speed algebraically and solve for the radius.

 94. Two blocks are connected by a light string passing over 
an ideal pulley. The block with mass m1 = 20.0 kg slides 
on a frictionless horizontal surface, while the block with 

*More realistically, the mass of the cable is one of the primary 
engineering challenges of a space elevator. The cable is so long 
that it would have a very large mass and would have to withstand 
an enormous tension to support its own weight. The cable would 
need to be supported by a counterweight positioned beyond the 
geostationary orbit. Some believe carbon nanotubes hold the key 
to producing a cable with the required properties.
†In many galaxies the stars appear to have roughly the same 
orbital speed over a large range of distances from the center. A 
popular hypothesis to explain such galaxy rotation velocities is the 
existence of dark matter—matter that we cannot detect via elec-
tromagnetic radiation. Dark matter is thought to account for the 
majority of the mass of some galaxies and nearly a fourth of the 
total mass of the universe.
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mass m2 = 1.0 kg hangs 
vertically. The radius of 
the  pulley is 6.0 cm.  
(a) Assuming that the pul-
ley rotates such that the 
string doesn’t slip, find 
the angular acceleration of the pulley. (b) If the block on 
the table is released from rest, calculate how many revo-
lutions the pulley has made 2.0 s later, assuming the 
other block hasn’t reached the floor.

 95. A ball weighing 20.0 N is tied to a string fixed to the 
ceiling. The string makes a 30.0° angle with the ceiling. 
Initially, the ball is held in place by a force F→ that is 
perpendicular to the string. (a) What is the magnitude of 
the force F→? (b) What is the tension in the string? 
(c) Just after the ball is released and allowed to start swing-
ing back and forth, 
what are the tension 
in the string, the 
 radial acceleration 
of the ball, and the 
tangential accelera-
tion of the ball?

 96.  A wheel of radius r rolls to the right without slipping 
on a horizontal road. Its axle moves at a constant speed 
vaxle. (a) Find the velocities of points A, B, and C with 
respect to the axle. Express your answers in terms of 
vaxle and r, as needed. [Hint: In 
the reference frame of the axle, 
the wheel is rotating in place at 
a constant angular speed ω.] 
(b) Find the velocities of points 
A, B, and C with respect to the 
road. (c) Comment on the ve-
locity of point C with respect to 
the road.

Answers to Practice Problems

5.1 3.001 × 10−7 rad/s
5.2 1.65 m/s
5.3 1.9 min
5.4 7200 rev/min × 2π rad/rev × (1/60) min/s = 240π rad/s; 
ar = ω2r = (240π rad/s)2 × 0.060 m = 34 000 m/s2.
5.5 60 N toward the center of the circular path

5.6 More slowly
5.7 4.1 m/s
5.8 29.7 km/s; 3.17 × 107 s
5.9 0.723R

5.10 2.44 h
5.11 4.2mg

5.12 Acceleration is purely tangential:

a

D

T

mg

D

5.13 (a) 1.75 × 10−4 rad/s2; (b) 0.0349 rad (2.00°)
5.14 (a) 2200 N; (b) 1500 N

Answers to Checkpoints

5.1 8.3 ms
5.2 No, for uniform circular motion the direction of the ve-
locity vector is continuously changing but the magnitude of 
the velocity (the speed) is unchanged.
5.3 The car has friction between the road and the tires to 
exert a horizontal force that causes the radial acceleration.
5.4 To be geostationary the satellites must have an orbital pe-
riod of 1 d. The only quantities that affect the period are the 
mass of Earth and the radial distance from Earth’s center. These 
quantities are the same for all satellites no matter the mass.
5.5 For nonuniform circular motion, the direction and the 
magnitude of the velocity are both changing. There are tan-
gential and radial components to the acceleration. The mag-
nitude of the radial component changes as the speed changes. 
For uniform circular motion, the magnitude of the velocity is 
constant but the direction changes. The radial acceleration is 
constant in magnitude (and the tangential acceleration 
is zero).
5.6 The radial acceleration cannot be constant. The dis-
tance r between the sample and the rotation axis is constant, 
but the angular velocity ω is increasing. Therefore,  
ar = ω2r is increasing.

m1

m2

30.0°

F

A

B

C

vaxle
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∙ Stored elastic energy in 
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tual Question 11)

∙ Metabolism (Problems 8, 
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∙ Elastic properties of virus 
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(Section	4.5)
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(Section	4.3)

•	 components	of	vectors	
(Section	3.2)
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(Sections	2.2	and	2.3)
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As	 a	 kangaroo	 hops	 along,	 the	 maximum	 height	 of	 each	 hop	 might	
be	around	2.8	m.	This	height	is	only	slightly	higher	than	that	achieved	
by	 an	Olympic	 high	 jumper,	 but	 the	 kangaroo	 is	 able	 to	 achieve	 this	
height	hop	after	hop	as	it	travels	with	a	horizontal	velocity	of	15	m/s	
or	more.	What	features	of	kangaroo	anatomy	make	this	feat	possible?	
It	 cannot	simply	be	a	matter	of	having	more	powerful	 leg	muscles.	 If	
it	were,	the	kangaroo	would	have	to	consume	large	amounts	of	energy-
rich	food	to	supply	the	muscles	with	enough	chemical	energy	for	each	
jump,	but	 in	 reality	 a	 kangaroo’s	diet	 consists	 largely	of	 grasses	 that	
are	poor	 in	energy	content.
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6.1 THE LAW OF CONSERVATION OF ENERGY

Until now, we have relied on Newton’s laws of motion to be the fundamental physical 
laws used to analyze the forces that act on objects and to predict the motion of objects. 
Now we introduce another physical principle: the conservation of energy. A 
 conservation law is a physical principle that identifies some quantity that does not 
change with time. Conservation of energy means that every physical process leaves 
the total energy in the universe unchanged. Energy can be converted from one form 
to another, or transferred from one place to another. If we are careful to account for 
all the energy transformations, we find that the total energy remains the same.

“Turn down the thermostat—we’re trying to conserve energy!” In ordinary lan-
guage, conserving energy means trying not to waste useful energy resources. In the 
scientific meaning of conservation, energy is always conserved no matter what hap-
pens. When we “produce” or “generate” electric energy, for instance, we aren’t creat-
ing any new energy; we’re just converting energy from one form into another that’s 
more useful to us.

Conservation of energy is one of the few universal principles of physics. Newton’s 
laws do not describe light, because it has no mass. They do not correctly describe the 
motion of particles with subatomic size. But no exceptions to the law of conservation 
of energy have been found. Conservation of energy is a powerful tool in the search 
to understand nature. It applies equally well to radioactive decay, the gravitational 
collapse of a star, a chemical reaction, a biological process such as respiration, and 
to the generation of electricity by a wind turbine (Fig. 6.1). Think about the energy 
conversions that make life possible. Green plants use photosynthesis to convert the 
energy they receive from the Sun into stored chemical energy. When animals eat the 
plants, that stored energy enables motion, growth, and maintenance of body tempera-
ture. Energy conservation governs every one of these processes.

Problem-Solving Strategy: Choosing Between Alternative  
Solution Methods

Some problems can be solved using either energy conservation or Newton’s sec-
ond law, so it always pays to consider both methods. If both methods can be used 
to answer the question, think about which is easier to apply. Sometimes that won’t 
be clear until you’ve gotten started—if the solution starts to get complicated, con-
sider trying the other method. When time permits, solve the problem both ways. 
Doing so is a way to check your answer and can lead to insights you might not gain 
by using only one method.

Figure 6.1 At a California 
wind farm, these wind turbines 
convert the energy of motion of 
the air into electric energy.
©Image Source Trading Ltd/ 
Shutterstock

Historical Development of the Principle of Energy Conservation Although 
many scientists contributed to the development of the law of conservation of energy, 
the law’s first clear statement was made in 1842 by the German surgeon Julius  Robert 
von Mayer (1814–1878). As a ship’s physician on a voyage to what is now Indonesia, 
Mayer had noticed that the sailors’ venous blood was a much deeper red in the  tropics 

The Law of Conservation of Energy

The	 total	energy	 in	 the	universe	 is	unchanged	by	any	physical	process:

total	energy	before	=	 total	energy	after
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than it was in Europe. He concluded that less oxygen was being used because they 
didn’t need to “burn” as much fuel to keep the body warm in the warmer climate.

In 1843, the English physicist James Prescott Joule (1818–1889), whose “day job” 
was running the family brewery, performed precise experiments to show that gravita-
tional potential energy could be converted into a previously unrecognized form of energy 
(internal energy). It had previously been thought that forces such as friction “use up” 
energy. Thanks to Mayer, Joule, and others, we now know that friction converts mechan-
ical forms of energy into internal energy and that total energy is always conserved.

Forms of Energy

Energy comes in many different forms (Fig. 6.2). Table 6.1 summarizes the main 
forms of energy discussed in this text and indicates the principal chapters that discuss 
each one. At the most fundamental level, there are only three types of energy: energy 
due to motion (kinetic energy), stored energy due to interaction (potential energy), 
and rest energy. Every form of energy listed in Table 6.1 can be understood as one 
or more of these three types.

To apply the energy conservation principle, we need to learn how to calculate the 
amount of each form of energy. There isn’t one formula that applies to all. Fortunately, 
we don’t have to learn about all of them at once. This chapter focuses on three forms 
of macroscopic mechanical energy (kinetic energy, gravitational potential energy, and 
elastic potential energy). For now, we use energy conservation as a tool to understand 
the translational motion of objects, but we do not consider rotational motion or 
changes in the internal energy of an object. We assume that these moving objects are 
perfectly rigid, so every point on the object moves through the same displacement.

6.2 WORK DONE BY A CONSTANT FORCE

To apply the principle of energy conservation, we need to learn how energy can be 
converted from one form to another. We begin with an example. Suppose the trunk 
in Fig. 6.3a weighs 220 N and must be lifted a height h = 4.0 m. To lift it at constant 
speed, Rosie must exert a force of 220 N on the rope, assuming an ideal pulley and 

Table 6.1 Some Common Forms of Energy

Form of Energy Brief Description

Translational kinetic Energy of translational motion (Chapter 6)
Elastic Energy stored in a “springy” object or material when it is  
 deformed (Chapter 6)
Gravitational Energy of gravitational interactions (Chapter 6)
Rotational kinetic Energy of rotational motion (Chapter 8)
Vibrational, acoustic,  Energy of the oscillatory motions of atoms and molecules in a 
 seismic   substance caused by a mechanical wave passing through it 

 (Chapters 11 and 12)
Internal  Energies of motion and interaction of atoms and molecules in 

solids, liquids, and gases, related to our sensation of temperature 
(Chapters 13–15)

Electromagnetic  Energy of interaction of electric charges and currents; energy of 
 electromagnetic fields, including electromagnetic waves such as 
light (Chapters 14, 17–22)

Rest  The total energy of a particle of mass m when it is at rest, given 
by  Einstein’s famous equation E = mc2 (Chapters 26, 29, and 30)

Chemical  Energies of motion and interaction of electrons in atoms and 
 molecules (Chapter 28)

Nuclear  Energies of motion and interaction of protons and neutrons in 
atomic nuclei (Chapters 29 and 30)

Figure 6.2 The stored chemi-
cal energy in food enables a 
weightlifter to lift the barbell 
over her head.
©holbox/Shutterstock
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rope. (We ignore for now the brief initial time when she pulls with more than 220 N 
to accelerate the trunk from rest to its constant speed and the brief time she pulls with 
less than 220 N to let it come to rest.)

Rosie would only have to exert half the force (110 N) if she were to use the two-pulley 
system of Fig. 6.3b (see Example 4.12). She doesn’t get something for nothing, though.  
To lift the trunk 4.0 m, the sections of rope on both sides of pulley 2 must be shortened by 
4.0 m, so Rosie must pull an 8.0 m length of rope. The two-pulley system enables her to 
pull with half the force, but now she must pull the rope through twice the distance.

Notice that the product of the magnitude of the force and the distance is the same 
in both cases:

220 N × 4.0 m = 110 N × 8.0 m = 880 N·m = W

This product is called the work (W) done by Rosie on the rope. Work is a scalar 
quantity; it does not have a direction, but it can be positive, negative, or zero. The 
same symbol W is often used for the weight of an object. To avoid confusion, we can 
write mg for weight and let W stand for work.

Don’t be misled by the many different meanings the word work has in ordinary 
conversation. We talk about doing homework, or going to work, or having too much 
work to do. Not everything we call “work” in conversation is work as defined in physics.

The SI unit of work and energy is the newton-meter (N·m), which is given the 
name joule (symbol: J) in honor of James Prescott Joule.

 1 J = 1 N·m (6-1)

Using either method, Rosie must do 880 J of work on the rope to lift the trunk. When 
we say that Rosie does 880 J of work, we mean that Rosie supplies 880 J of energy—
the amount of energy required to lift the trunk 4.0 m. Work is an energy transfer that 
occurs when a force acts on an object that is moving.

Rosie does no work on the rope while she holds it in one place because the displace-
ment is zero. She can just as well fasten it and walk away (Fig. 6.4). If there is no displace-
ment, no work is done and no energy is transferred. Why then does she get tired if she 
holds the rope in place for a long time? Although Rosie does no work on the rope when 
holding it in place, work is done inside her body by muscle fibers, which have to do work 
internally to maintain tension in the muscle. This internal work converts chemical energy 
into internal energy—the muscle warms up—but no energy is transferred to the trunk.

Work Done by a Force Not Parallel to the Displacement The force that Rosie 
exerts on the rope is in the same direction as the displacement of that end of the rope. 
More generally, how much work is done by a constant force that is at some angle to the 
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Figure 6.3 (a) Rosie moves a 
trunk into her dorm room 
through the window. (b) The 
two-pulley system makes it  
easier for Rosie to lift the 
trunk: the force she must  
exert is halved. Is she getting 
something for nothing, or does 
she still have to do the same 
amount of work to lift the 
trunk?

Figure 6.4 While the trunk is 
held in place by tying the rope, 
no work is done and no energy 
transfers occur.
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displacement? It turns out that only the component of the force in the direction of the 
displacement does work. So, in general, the work done by a constant force is defined as 
the product of the magnitude of the displacement and the component of the force in the 
direction of the displacement. If θ represents the angle between the force and displace-
ment vectors when they are drawn starting at the same point, then the force component 
in the direction of the displacement is F cos θ (Fig. 6.5). Therefore, work done by a 
constant force on an object can be written W = F Δr cos θ, where F is the magnitude of 
the force and Δr is the magnitude of the displacement of the object.

F cos θ

θ

rΔ

F

x

Figure 6.5 The work done by 
the force of the towrope on the 
water-skier during a displace-
ment Δr→ is (F cos θ) Δr, where 
(F cos θ) is the component of 
F
→

 in the direction of Δr→.

Work done by a constant force F
→

 acting on an object during a  
displacement Δr→

 W = F Δr cos θ (6-2)

(θ is the angle between F
→

 and Δr→)

Work done by a constant force F
→

 acting on an object during a  
displacement Δr→

 W = Fx Δx (6-3)

(F
→

 and/or Δr→ parallel to the x-axis)

Work can also be expressed as the scalar product of the force and the displace-
ment: W = F

→
·Δr→. The scalar product (also called the dot product) of two vectors 

is defined by the equation A
→

· B
→

= AB cos θ, where θ is the angle between A
→

 and B
→

 
when they are drawn starting at the same point. The special name and notation are 
used because this pattern occurs often in physics and mathematics. See Appendix A.10 
for more information on the scalar product.

If we choose the x-axis parallel to the displacement, then the component of the force 
in the direction of the displacement is Fx = F cos θ, so W = Fx Δx. Alternatively, we can 
identify Δr cos θ in Eq. (6-2) as the component of the displacement in the direction of 
the force (Fig. 6.6). Therefore, if we choose the x-axis parallel to the force, then the com-
ponent of the displacement in the direction of the force is Δx and W = Fx Δx, as before.

Work Can Be Positive, Negative, or Zero When the angle between F
→

 and Δr→ is 
less than 90°, cos θ in Eq. (6-2) is positive, so the work done by the force is positive  
(W > 0). If the angle between F

→
 and Δr→ is greater than 90°, cos θ is negative and the work 

done by the force is negative (W < 0). Pay careful attention to the algebraic sign when 
calculating work. For example, the rope pulls Rosie’s trunk in the direction of its displace-
ment, so θ = 0 and cos θ = 1; the rope does positive work on the trunk. At the same time, 
gravity pulls downward in the direction opposite to the displacement, so θ = 180° and 
cos θ = −1; gravity does negative work on the trunk.

If the force is perpendicular to the displacement, θ = 90° and cos 90° = 0, so 
the work done is zero. For example, the normal force exerted by a stationary surface 
on a sliding object does no work because it is perpendicular to the displacement of 
the object (Fig. 6.7a). Even if the surface is curved, at any instant the normal force 
is perpendicular to the velocity of the object. During a short time interval, then, the 
normal force is perpendicular to the displacement Δr→ = v→ Δt (Fig. 6.7b), so the 
normal force still does zero work.

On the other hand, if the surface exerting the normal force is moving, then the 
normal force can do work. In Fig. 6.7c, the normal force exerted by the forklift on 
the pallet does positive work as it lifts the pallet.

Figure 6.6 The work done by 
the force of gravity on the hang 
glider during a displacement Δr→ 
is F(Δr cos θ). F is the magni-
tude of the force and Δr cos θ 
is the component of Δr→ in the 
direction of F

→
.

F

r cos θ

θ

r
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No work is done by the tension in the string on a swinging pendulum bob 
because the tension is always perpendicular to the velocity of the bob (Fig. 6.8a). 
Similarly, no work is done by Earth’s gravitational force on a satellite in circular 
orbit (Fig. 6.8b). In a circular orbit, the gravitational force is always directed along 
a radius from the satellite to the center of Earth. At every point in the orbit, the 
gravitational force is perpendicular to the velocity of the satellite (which is tangent 
to the circular orbit).

Application of Work: Elliptical Orbits By contrast, gravity does work on a satellite 
in a noncircular orbit (Fig. 6.8c). Only at points A and P are the gravitational force and 
the satellite’s velocity perpendicular. Wherever the angle between the gravitational 
force and the velocity is less than 90°, gravity is doing positive work, increasing the 
satellite’s kinetic energy by making it move faster. Wherever the angle between the 
gravitational force and the velocity is greater than 90°, gravity is doing negative work, 
decreasing the satellite’s kinetic energy by slowing it down.

CHECKPOINT 6.2

A	force	is	applied	to	a	moving	object,	but	no	work	is	done.	How	is	that	possible?

Figure 6.7 (a) The normal force does no work because it is perpendicular to the 
displacement. (b) Even while sliding on a curved surface, the direction of the  
normal force is always perpendicular to the displacement during a short Δt, so it 
does no work. (c) The normal force that the forklift exerts on the pallet does work; 
it is not  perpendicular to the displacement.

N

(c)(b)(a)

r

N
N

rΔ

rΔ

r = vΔ tΔ

Figure 6.8 (a) The tension in the string of a pendulum is always perpendicular to the 
velocity of the pendulum bob, so the string does no work on the bob. (b) A satellite in 
a circular orbit around Earth. No matter where the satellite is in its circular orbit, it 
experiences a gravitational force directed toward the center of Earth. This force is 
always perpendicular to the satellite’s velocity; thus, gravity does no work on the  
satellite. (c) A satellite in an elliptical orbit around Earth. In an elliptical orbit, the  
gravitational force is not always perpendicular to the velocity. As the satellite moves 
counterclockwise in its orbit from point P to point A, gravity does negative work;  
from A to P, gravity does positive work.
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Problem-Solving Strategy: Finding the Work Done  
by a Constant Force

 1. Work is done on an object (or system) by a force acting on that object dur-
ing a displacement of that object. Start by clearly identifying the object or 
system, the force, and the displacement. For example, the work done on the 
rope by the force Rosie exerts on the rope during the rope’s downward 
displacement of 4.0 m.

 2. Choose which of the equivalent expressions [Eqs. (6-2) and (6-3)] is easier 
to apply, depending on the given information.

 3. Check that the work has the correct sign, based on the angle between the 
force and displacement—or, equivalently, whether the force has a compo-
nent in the direction of the displacement (W > 0), a component opposite to 
that direction (W < 0), or neither (W = 0).

continued on next page

Example 6.1

Antique Chest Delivery

A valuable antique chest is to be moved into a truck. The 
weight of the chest is 1400 N. To get the chest from  
the ground onto the truck bed, which is 1.0 m higher, the 
movers must decide what to do. Should they lift it straight 
up, or should they push it up their 4.0 m long ramp? 
Assume they push the chest on a light wheeled dolly, 
which in a simplified model is equivalent to sliding it up a 
frictionless ramp.

(a)  Find the work done by the movers on the chest if they lift 
it straight up 1.0 m at constant speed.

(b)  Find the work done by the movers on the chest if they 
slide the chest up the 4.0 m long frictionless ramp at 
 constant speed by pushing parallel to the ramp.

(c)  Find the work done by gravity on the chest in each case.
(d)  Find the work done by the normal force of the ramp on 

the chest. Assume that all the forces are constant.

Strategy To calculate work, we use either Eq. (6-2) or 
Eq.  (6-3), whichever is easier. For (a) and (b), we must 
 calculate the force exerted by the movers. Drawing the FBD 
helps us calculate the forces. The ramp is a simple ma-
chine—just as for Rosie’s pulleys, the ramp cannot reduce 
the amount of work that must be done, so we expect the work 
done by the movers to be the same in both cases (ignoring 
friction). We expect the work done by gravity to be negative 
in both cases, since the chest is moving up while gravity 
pulls down. The normal force due to the ramp is perpendicu-
lar to the displacement, so it does zero work on the chest. 
Since more than one force does work on the chest, we use 
subscripts to clarify which work is being calculated.

Given:  Weight of chest mg = 1400 N; length of ramp  
d = 4.0 m; height of ramp h = 1.0 m

To find:  Work done on the chest by the movers Wcm and work 
done on the chest by gravity Wcg in the two cases; 
work done on the chest by the normal force WcN.

Solution (a) The displacement is 1.0 m straight up. The 
movers must exert an upward force F

→
cm equal in magnitude 

to the weight of the chest to move it at constant speed  
(Fig. 6.9). The work done to lift it 1.0 m is

Wcm = Fcm Δr cos θ = 1400 N × 1.0 m × cos 0 = +1400 J

where θ = 0 and the work is posi-
tive because F

→
cm and Δ r→ are in 

the same direction (upward).

(b) Figure 6.10 shows the three 
forces acting on the chest drawn 
on a picture of the situation. The 
chest is sliding in a straight line at 
constant speed, so we know the 
net force is zero. If we choose  
the x-axis parallel to the ramp and 
the y-axis perpendicular to it, then 
two of the three forces are aligned with the axes, leaving only 
one (the gravitational force) with two nonzero components.

To find the components, we need the angle between the 
force vector and one of the axes. See Figure A.8 for an ex-
ample of how to do this. By successively labeling the com-
plementary angles ϕ and 90° − ϕ, we find that the angle 

Figure 6.9 
FBD for the chest as the 
movers lift it straight up 
at constant speed.

mg

Fcm
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Example 6.1 continued

between W⟶  and the −y-axis is ϕ (Fig. 6.11). Then the com-
ponents of W⟶  are Wx = −mg sin ϕ and Wy = −mg cos ϕ. 
Figure 6.12 shows an FBD for the chest with W⟶  represented 
by its components.

The force exerted by the movers F
→

′cm acts in the  
+x-direction. [The prime symbol indicates that the force ex-
erted by the movers is different from what it was in part (a).] 
Then Newton’s second law requires

∑Fx = F′cm − mg sin ϕ = 0

From the right triangle formed by the ramp, the ground, and 
the truck bed in Fig. 6.13:

sin ϕ =
height of truck bed 
distance along ramp

=
h

d

We can now solve for F′cm

F′cm = mg sin ϕ =
mgh

d

The force and displacement are in the same direction, so θ = 0:

Wcm = F′cm d cos 0 =
mgh

d
× d × 1 = mgh = +1400 J

The work done by the movers is the same as in (a).

(c) In both cases, the force of gravity has magnitude mg and 
acts downward. Choosing the y-axis so it now points upward, 
Fgy = −mg. In both cases, the component of the displacement 
along the y-axis is Δy = h = 1.0 m. The work done by gravity 
is the same for the two cases. Using Eq. (6-3),

 Wcg = Fgy Δy = −mg Δy

 = −1400 N × 1.0 m = −1400 J

Figure 6.10 
An antique chest is pushed up a ramp into a truck.

N

mg

4.0 m

1.0 m

Fcm′

ϕ

Figure 6.11 
Resolving the weight into 
x- and y-components.

x

y

ϕ

ϕ

ϕ

W = mg

90° – ϕ
90° – ϕ

Figure 6.12 
FBD for the chest.

N

+x

+y

Wx = –mg sin ϕ

Wy = –mg cos ϕ

Fcm    ′

Figure 6.13 
Finding the angle of the 
incline.

4.0 m
1.0 m

ϕ
continued on next page
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Total Work

When several forces act on an object, the total work is the sum of the work done by 
each force individually:

 Wtotal = W1 + W2 + … + WN  (6-4)

Work is a scalar, not a vector. It can be positive, negative, or zero, but does not have 
a direction. Because we assume a rigid object with no rotational or internal motion, 
another way to calculate the total work is to find the work done by the net force as 
if there were a single force acting:

 Wtotal = Fnet Δr cos θ (6-5)

To show that these two methods give the same result, let’s choose the x-axis in the 
direction of the displacement. Then the work done by each individual force is the 
x-component of the force times Δx. From Eq. (6-4),

 Wtotal = F1x Δx + F2x Δx + … + FNx Δx (6-6)

Factoring out the Δx from each term,

 Wtotal = (F1x + F2x + … + FNx) Δx = (∑Fx) Δx (6-7)

∑Fx is the x-component of the net force. In Eq. (6-5), Fnet cos θ is the component 
of the net force in the direction of the displacement, which is the x-component of the 
net force. The two methods give the same total work.

Example 6.1 continued

The force is in the −y-direction and the displacement has a 
positive y-component, so the work done is negative. Another 
way to check the sign is to note that the angle between the 
force and displacement is between 90° and 180°; the cosine 
of this angle is negative.

(d) The normal force of the ramp on the chest does zero work 
because it acts in a direction perpendicular to the displace-
ment of the chest.

WcN = N Δr cos 90° = 0

Discussion Since d, the length of the ramp, cancels when 
multiplying the force times the distance, the work done by 
the movers is the same for any length ramp (as long as the 

height is the same). Using the ramp, the movers apply one 
quarter the force over a displacement that is four times larger. 
With a real ramp, friction acts to oppose the motion of the 
chest, so the movers would have to do more than 1400 J of 
work to slide the chest up the ramp. There’s no getting 
around it; if the movers want to get that chest into the truck, 
they’re going to have to do at least 1400 J of work.

Practice Problem 6.1 Bicycling Uphill

A bicyclist climbs a 2.0 km long hill that makes an angle of 
2.6° with the horizontal. The total weight of the bike and the 
rider is 750 N. How much work is done on the bike and rider 
by gravity?

continued on next page

Example 6.2

Fun on a Sled

Diane pulls a sled along a snowy path on level ground with 
her little brother Jasper riding on the sled (Fig. 6.14). The 
total mass of Jasper and the sled is 26 kg. The cord makes a 
20.0° angle with the ground. As a simplified model, assume 

that the force of friction on the sled is determined by μk = 
0.16, even though the surfaces are not dry (some snow melts 
as the runners slide along it). Find (a) the work done by 
 Diane and (b) the work done by the ground on the sled while 
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Example 6.2 continued

the sled moves 120 m along the path at a constant 3 km/h.  
(c) What is the total work done on the sled?

Strategy (a,b) To find the work done by a force on an object, 
we need to know the magnitudes and directions of the force 
and of the displacement of the object. The sled’s acceleration is 
zero, so the vector sum of all the external forces (gravity, fric-
tion, rope tension, and the normal force) is zero. We draw the 
FBD and use Newton’s second law to find the tension in the 
rope and the force of kinetic friction on the sled. Then we apply 
Eq. (6-2) or Eq. (6-3) to find the work done by each. (c) We 
have two methods to find the total work. We’ll use Eq. (6-4) to 
calculate the total work and Eq. (6-5) as a check.

Solution (a) The FBD is shown in Fig. 6.15a. The x- and y-
axes are parallel and perpendicular to the ground, respectively. 
After the tension is resolved into its components (Fig. 6.15b), 
Newton’s second law with zero acceleration yields

 ∑Fx = +T cos θ − fk = 0 (1)
 ∑Fy = +T sin θ − mg + N = 0 (2)

where T is the tension and θ = 20.0°. The force of kinetic 
friction is

fk = μkN

Substituting this into Eq. (1) yields

 T cos θ − μkN = 0 (3)

To find the tension, we need to eliminate the unknown 
normal force N. Equation (2) also involves the normal force 
N. We multiply Eq. (2) by μk,

 μk T sin θ − μk 
mg + μk N = 0 (4)

Adding Eqs. (3) and (4) eliminates N. Then we solve for T.

T cos θ + μkT sin θ − μkmg = 0

 T =
μkmg

μk sin θ + cos θ

 =
0.16 × 26 kg × 9.80 m/s2

0.16 × sin 20.0° + cos 20.0°
= 41 N

Figure 6.14 
Jasper being pulled on a sled.

Displacement = 120 m

20.0°

T
v = 3 km/h

Now that we know the tension, we find the work done 
by Diane. The component of T

→ acting parallel to the dis-
placement is Tx = T cos θ and the displacement is  
Δx = 120 m. The work done by Diane is

 WT = (T cos θ)Δx

 = 41 N × cos 20.0° × 120  m = +4600 J
(b) The force on the sled due to the ground has two components: 
the normal and frictional forces. The normal force does no work 
since it is perpendicular to the displacement of the sled. Friction 
acts in a direction opposite to the displacement, so the angle 
between the force and displacement is 180°. The work done by 
friction is

Wf = fk Δx  cos 180° = −fk  Δx

From Eq. (1),
fk = T cos θ

Therefore, the work done by the ground—the work done by 
the frictional force—is

Wf = −fk Δx = −(T cos θ)Δx

Except for the negative sign, Wf is the same as WT: Wf = −4600 J.

(c) The tension and friction are the only forces that do work 
on the sled. The normal force and gravity are both perpen-
dicular to the displacement, so they do zero work.

Wtotal = WT + Wf = 4600 J + (−4600 J) = 0

Discussion To check (c), note that the sled travels with 
constant velocity, so the net force acting on it is zero. 
Wtotal = Fnet Δr  cos θ = 0.

The speed (3 km/h) was not used in the solution. As-
suming that the frictional force on the sled is independent of 
speed, Diane exerts the same force to pull the sled at any 
constant speed. Then the work she does is the same for a  
120 m displacement. At a higher speed, though, she has to do 
that amount of work in a shorter time interval.

Practice Problem 6.2 A Different Angle

Find the tension if Diane pulls at an angle θ = 30.0° instead 
of 20.0°, assuming the same coefficient of friction. What is 
the work done by Diane on the sled in this case for a 120 m 
displacement? Explain how the tension can be greater but 
the work done by Diane smaller.

Figure 6.15
(a) FBD for Jasper and the sled. (b) Resolving 
T
→

 into x- and y-components.

T

mg

fk

N

20.0°
T cos θ

θ = 20.0°

T sin θ
T

θ

(b)(a)
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Work Done by Dissipative Forces

The work done by kinetic friction was calculated in Example 6.2 according to a sim-
plified model of friction. In this model, when friction does −4600 J of work on the 
sled, it transfers 4600 J of energy from the sled to the ground’s internal energy—the 
ground warms up a bit. In reality, 4600 J of energy is converted into internal energy 
shared between the ground and the sled—both the ground and the sled warm up a 
little. So the 4600 J is not all transferred to the ground; some stays in the sled but is 
converted to a different form of energy.

Rather than saying friction does −4600 J of work, a more accurate statement is 
that friction dissipates 4600 J of energy. Dissipation is the conversion of energy from 
an organized form to a disorganized form such as the kinetic energy associated with 
the random motions of the atoms and molecules within an object, which is part of the 
object’s internal energy. As a practical matter, we may not be concerned with where 
the internal energy appears. When we can calculate the work done by friction using 
Eq. (6-2), we get the correct amount of energy dissipated; we just don’t know how 
much of it is transferred to the stationary surface and how much remains in the sliding 
object. This is how we apply the term work to kinetic friction or to other dissipative 
forces such as air resistance. (In Chapters 13–15, we study internal energy in detail.)

6.3 KINETIC ENERGY

Suppose a constant net force F
→

net acts on a rigid object of mass m during a displacement 
Δr→. Choosing the x-axis in the direction of the net force, the total work done on the 
object is
 Wtotal = Fnet Δx (6-8)
where Δx is the x-component of the displacement. Newton’s second law tells us that
F
→

net = ma→, so
 Wtotal = max Δx (6-9)

Since the acceleration is constant, we can use any of the equations for constant accel-
eration from Section 2.5. From Eq. (2-18), v2

fx − v2
ix = 2ax Δx or

 ax Δx = 1
2 (v2

fx − v2
ix)  (6-10)

Substituting this into Eq. (6-9) yields
 Wtotal = 1

2 m(v2
fx − v2

ix)  (6-11)

Since the net force is in the x-direction, ay and az are both zero. Only the x-component 
of the velocity changes; vy and vz are constant. As a result,

 v2
f − v2

i = (v2
fx + v2

fy + v2
fz) − (v2

ix + v2
iy + v2

iz) = v2
fx − v2

ix (6-12)

Therefore, the total work done is
 Wtotal = 1

2 m(v2
f − v2

i ) = 1
2 mv2

f − 1
2 mv2

i  (6-13)

The total work done is equal to the change in the quantity 1
2mv2, which is called 

the object’s translational kinetic energy (symbol K). (Often we just say kinetic 
energy if it is understood that we mean translational kinetic energy.) Translational 
kinetic energy is the energy associated with motion of the object as a whole; it does 
not include the energy of rotational or internal motion.

Translational kinetic energy

 K = 1
2mv2 (6-14)

Work-kinetic energy theorem

 Wtotal = ΔK  (6-15)
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In the examples we’ve considered so far, the object moves at constant speed so 
ΔK = 0; that’s why the total work was zero.

Kinetic energy is a scalar quantity and is always positive if the object is moving 
or zero if it is at rest. Kinetic energy is never negative, although a change in kinetic 
energy can be negative. The kinetic energy of an object moving with speed v is equal 
to the work that must be done on the object to accelerate it to that speed starting from 
rest. When the total work done is positive, the object’s speed increases, increasing the 
kinetic energy. When the total work done is negative, the object’s speed decreases, 
decreasing the kinetic energy.

Conceptual Example 6.3

Collision Damage

Why is the damage caused by an automobile collision so 
much worse when the vehicles involved are moving at high 
speeds?

Strategy When a collision occurs, the kinetic energy of 
the automobiles gets converted into other forms of energy. 
We can use the kinetic energy as a rough measure of how 
much damage can be done in a collision.

Solution and Discussion Suppose we compare the ki-
netic energy of a car at two different speeds: 60.0 mi/h 
and 72.0 mi/h (which is 20.0% greater than 60.0 mi/h). If 
kinetic energy were proportional to speed, then a 20.0% 
increase in speed would mean a 20.0% increase in kinetic 
energy. However, since kinetic energy is proportional to 
the square of the speed, a 20.0% speed increase causes an 
increase in kinetic energy greater than 20.0%. Working by 

proportions, we can find the percent increase in kinetic 
energy:

K2

K1
=

1
2

mv2
2

1
2

mv2
1

= (
72.0 mi/h
60.0 mi/h)

2

= 1.44

Therefore, a 20.0% increase in speed causes a 44% increase in 
kinetic energy. What seems like a relatively modest difference 
in speed makes a lot of difference when a collision occurs.

Practice Problem 6.3 Two Different Cars Collide 
with a Stone Wall

Suppose a sports utility vehicle and a small electric car both 
collide with a stone wall and come to a dead stop. If the SUV 
mass is 2.5 times that of the small car and the speed of the 
SUV is 60.0 mi/h while that of the other car is 40.0 mi/h, 
what is the ratio of the kinetic energy changes for the two 
cars (SUV to small car)?

Example 6.4

Bungee Jumping

A bungee jumper makes a jump in the Gorge du Verdon in 
southern France. The jumping platform is 182 m above the 
bottom of the gorge. The jumper weighs 780 N. If the jumper 
falls to within 68 m of the bottom of the gorge, how much 
work is done by the bungee cord on the jumper during his 
descent? Ignore air resistance.

Strategy Ignoring air resistance, only two forces act on 
the jumper during the descent: gravity and the tension in the 
cord. Since the jumper has zero kinetic energy at both the 
highest and lowest points of the jump, the change in kinetic 
energy for the descent is zero. Therefore, the total work done 
by the two forces on the jumper must equal zero.

Solution Let Wg and Wc represent the work done on the 
jumper by gravity and by the cord. Then

Wtotal = Wg + Wc = ΔK = 0

The work done by gravity is

Wg = Fy Δy = −mg Δy

where the weight of the jumper is mg = 780 N. With y = 0 at 
the bottom of the gorge, the vertical component of the dis-
placement is

Δy = yf − yi = 68 m − 182 m = −114 m
continued on next page
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CHECKPOINT 6.3A

Kinetic	energy	and	work	are	 related.	Can	kinetic	energy	ever	be	negative?	Can	
work	ever	be	negative?

CHECKPOINT 6.3B

Rank	 these	objects	 in	order	of	 increasing	kinetic	energy:	 (a)	a	5000	kg	elephant	
walking	at	3	m/s;	(b)	a	100	kg	man	skateboarding	at	15	m/s;	(c)	a	100	000	kg	
whale	drifting	along	at	0.5	m/s;	 (d)	a	30	kg	eagle	diving	at	50	m/s;	and	(e)	a	
50	kg	cheetah	 running	at	30	m/s.

6.4 GRAVITATIONAL POTENTIAL ENERGY 
AND MECHANICAL ENERGY

Gravitational Potential Energy When Gravitational Force Is Constant

Toss a stone up with initial speed vi. Ignoring air resistance, how high does the stone 
go? We can solve this problem with Newton’s second law, but let’s use work and 
energy instead. The stone’s initial kinetic energy is Ki = 1

2mv2
i . For an upward displace-

ment Δy, gravity does negative work Wgrav = −mg Δy. No other forces act, so this is 
the total work done on the stone.

 Wgrav = −mg Δy = Kf − Ki (6-16)

From the standpoint of energy conservation, where did the stone’s initial kinetic 
energy go? If total energy cannot change, it must be “stored” somewhere. Further-
more, the stone gets its kinetic energy back as it falls from its highest point to its 
initial position, so the energy is stored in a way that is easily recovered as kinetic 
energy. Stored energy due to the interaction of an object with something else (here, 
Earth’s gravitational field) that can easily be recovered as kinetic energy is called 
potential energy (symbol U).

Example 6.4 continued

Then the work done by gravity is

Wg = −(780 N) × (−114 m) = +89 kJ

The work done by the cord is Wc = Wtotal − Wg = −89 kJ.

Discussion The work done by gravity is positive, since 
the force and the displacement are in the same direction 
(downward). If not for the negative work done by the cord, 
the jumper would have a kinetic energy of 89 kJ after falling 
114 m.

The length of the bungee cord is not given, but it does 
not affect the answer. At first the jumper is in free fall as 
the cord plays out to its full length; only then does the cord 

begin to stretch and exert a force on the jumper, ultimately 
bringing him to rest again. Regardless of the length of the 
cord, the total work done by gravity and by the cord must 
be zero since the change in the jumper’s kinetic energy is 
zero.

Practice Problem 6.4 The Bungee Jumper’s Speed

Suppose that during the jumper’s descent, at a height of 
111  m above the bottom of the gorge, the cord has done 
−21.7 kJ of work on the jumper. What is the jumper’s speed 
at that point?



210 CHAPTER	6 Conservation of Energy

If the gravitational field is uniform, the work done by gravity is

 Wgrav = Fy Δy = −mg Δy (6-18)

where the y-axis points up. Therefore,

Change in gravitational potential energy

 ΔUgrav = mg Δy (6-19)

(uniform g→, y-axis up)

Equation (6-19) holds even if the object does not move in a straight-line path.

Significance of the Negative Sign in Eq. (6-17) The work done by gravity is 
the amount of stored (potential) energy gravity gives to the stone. On the way up  
(Fig. 6.16a), gravity takes energy away from the stone (Wgrav < 0), so the amount of 
potential energy increases (ΔU > 0). On the way down (Fig. 6.16b), gravity gives the 
stone energy (Wgrav > 0) and the amount of stored energy decreases (ΔU < 0). Wgrav 
and ΔU have opposite signs because energy is being transformed from one form to 
another without changing the total amount.

CHECKPOINT 6.4A

A	stone	is	tossed	straight	up	 in	the	air	and	is	moving	upward	starting	at	y	=	0.	
The	y-axis	is	up.	Ignore	air	resistance.	(a)	Does	the	gravitational	potential	energy	
increase,	 decrease,	 or	 stay	 the	 same?	 (b)	 What	 about	 the	 kinetic	 energy?		
(c)	 Sketch	 graphs	 of	 the	 kinetic	 and	 potential	 energies	 as	 functions	 of	 y,	 the	
height,	on	 the	same	axes.
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Figure 6.16 (a) As the stone 
moves up, the gravitational 
force and the stone’s displace-
ment are in opposite directions, 
so the work done by gravity is 
negative: Wgrav < 0. Gravity 
takes kinetic energy away from 
the stone and stores it as gravi-
tational potential energy, so the 
potential energy increases:  
ΔU = −Wgrav > 0. (b) As the 
stone moves down, the force 
and the displacement are in the 
same direction, so the work 
done by gravity is positive: 
Wgrav > 0. Gravity gives kinetic 
energy to the stone, decreasing 
the stored potential energy, so 
the potential energy decreases: 
ΔU = −Wgrav < 0.

The stone’s loss of kinetic energy (ΔK = −mg Δy) is accompanied by an increase 
in gravitational potential energy (ΔU = +mg Δy). In general, the change in gravita-
tional potential energy when an object moves up or down is the negative of the work 
done by gravity:

Change in gravitational potential energy

 ΔUgrav = −Wgrav (6-17)
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Other Forms of Potential Energy In addition to gravitational potential energy, 
other kinds of potential energy include elastic potential energy (Section 6.7) and elec-
tric potential energy (Chapter 17). Forces that have potential energies associated with 
them are called conservative forces, for reasons we explain shortly. Not every force 
has an associated potential energy. For instance, there is no such thing as “frictional 
potential energy.” When kinetic friction does work, it converts energy into a disorga-
nized form that is not easily recoverable as kinetic energy.

Mechanical Energy

The total work done on an object can always be written as the sum of the work done 
by conservative forces (Wcons) plus the work done by nonconservative forces (Wnc). 
Since the total work is equal to the change in the object’s kinetic energy [Eq. (6-15)],

 Wtotal = Wcons + Wnc = ΔK ⇒ Wnc = ΔK − Wcons (6-20)

Following the same reasoning we used for gravity [see Eq. (6-17)], the change in the 
total potential energy is equal to the negative of the work done by the conservative forces:

 ΔU = −Wcons (6-21)

Combining Eqs. (6-20) and (6-21) yields

Work-Mechanical Energy theorem

 Wnc = ΔK + ΔU = ΔEmech (6-22)

The sum of the kinetic and potential energies (K + U) is called the mechanical 
energy Emech. Wnc is equal to the change in mechanical energy. Conservative forces 
such as gravity do not change the mechanical energy; they just change one form of 
mechanical energy into another. Work done by conservative forces is already accounted 
for by the change in potential energy.

The term conservative force comes from a time before the general law of con-
servation of energy was understood and when no forms of energy other than mechan-
ical energy were recognized. Back then, it was thought that certain forces conserved 
energy and others did not. Now we believe that total energy is always conserved. 
Nonconservative forces do not conserve mechanical energy, but they do conserve 
total energy.

Conservation of Mechanical Energy

When nonconservative forces do no work, mechanical energy is conserved:

 Ki + Ui = Kf + Uf  (6-23)

More generally, the work done by nonconservative forces is the change in 
mechanical energy:

 Wnc = (Kf + Uf) − (Ki + Ui)  (6-24)

or

 Wnc + (Ki + Ui) = (Kf + Uf)  (6-25)
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Choosing Where the Potential Energy Is Zero Notice that when we apply 
Eq.  (6-22), only the change in potential energy enters the calculation. Therefore, we 
can always assign the value of the potential energy for any one position. Most often, 
we choose some convenient position and assign it to have zero potential energy. Once 
that choice is made, the potential energy of every other configuration is determined 
by Eq. (6-21).

For gravitational potential energy in a uniform gravitational field, we usually 
choose the potential energy to be zero at some convenient place: on the floor, on a 
table, or at the top of a ladder. After assigning y = 0 to that place, the potential energy 
at any other place is U = mgy.

Gravitational potential energy

 Ugrav = mgy (6-26)

(uniform g→, y-axis up, assign U = 0 to y = 0)

Potential energy is then positive above y = 0 and negative below it. There is no spe-
cial significance to the sign of the potential energy. What matters is the sign of the 
potential energy change.

Problem-Solving Strategy: Mechanical Energy

 1. Identify an object (or system) to analyze and choose the initial and final 
positions of the object.

 2. Identify all the external forces acting on that object or system.
 3. For each force, determine whether it is conservative. Conservative forces 

have potential energies associated with them. The work done by a conserva-
tive force depends only on the initial and final positions of the object, not 
on the path taken.

 4. If the nonconservative forces do zero total work, then apply conservation 
of mechanical energy:

 Ki + Ui = Kf + Uf  (6-23)

  If more than one form of potential energy is changing, Ui and Uf each stand 
for the sum of the potential energies at that position.

 5. If the nonconservative forces do nonzero total work, then find the work 
done by each nonconservative force and sum them to find the total noncon-
servative work Wnc. Then apply the Work-Mechanical Energy theorem:

 Wnc + (Ki + Ui) = (Kf + Uf)  (6-25)

CHECKPOINT 6.4B

You	 toss	a	basketball	straight	up	and	 then	catch	 it	at	 the	same	height.	Due	
to	 air	 resistance,	 its	 speed	 is	 a	 bit	 smaller	 just	 before	 you	 catch	 it	 than	 it	
was	just	after	you	tossed	it.	Compare	the	initial	and	final	values	of	the	ball’s	
kinetic	 energy.	 What	 about	 the	 ball’s	 gravitational	 potential	 energy?	 Its	
mechanical	 energy?	 If	 the	 mechanical	 energy	 has	 changed,	 what	 caused	 it	
to	 change?
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Figure 6.17
Mei-Ling rappelling downward from a position 12.0 m above a 
shelf.

12.0 m

v

Figure 6.18
FBD for Mei-Ling.

mg

fk

Example 6.5

Rock Climbing in Yosemite

A team of climbers is rappelling down steep terrain in the 
Yosemite valley (Fig. 6.17). Mei-Ling (mass 60.0 kg) slides 
down a line starting from rest 12.0 m above a horizontal 
shelf. If she lands on the shelf below with a speed of 2.0 m/s, 
calculate the energy dissipated by the kinetic frictional 
forces acting between her and the line. The local value of g 
is 9.78 N/kg. Ignore air resistance.

Strategy The forces acting on Mei-Ling are gravity and 
kinetic friction (Fig. 6.18). The only force whose work is not 
included in the change in potential energy is the work done 
by kinetic friction. Therefore, the change in the mechanical 
energy, ΔK + ΔU, is equal to the work done by friction. 
Since we know Mei-Ling’s initial and final speeds as well as 
her mass, we can calculate the change in her kinetic energy. 
From the change in height, we can calculate the change in 
potential energy.

Given: m = 60.0 kg;
  Δy = −12.0 m;
  vi = 0;
  vf = 2.0 m/s;
  g = 9.78 N/kg.
To find: change in mechanical energy 

ΔK + ΔU.

Solution Wnc = ΔK + ΔU, so we need to calculate the 
changes in kinetic and potential energy. Mei-Ling’s kinetic 
energy is initially zero since she starts at rest. The change in 
her kinetic energy is

 ΔK = 1
2mv2

f − 1
2mv2

i = 1
2mv2

f − 0 = 1
2(60.0 kg) × (2.0 m/s)2

 = +120 J

The change in her potential energy is

ΔU = mg Δy = 60.0 kg × 9.78 m/s2 × (0 − 12.0 m) = −7040 J

The work done by friction is equal to the change in mechan-
ical energy:

ΔK + ΔU = 120 J + (−7040 J) = −6920 J

The amount of energy dissipated by friction (converted from 
mechanical energy into internal energy) is 6920 J. Fortu-
nately, Mei-Ling is wearing gloves, so her hands don’t get 
burned.

Discussion If the line had broken when Mei-Ling was 
at the top, her final kinetic energy would have been 
+7040 J—disastrously large since it corresponds to a fi-
nal speed of

v = √
K

1
2m

= √
7040 J
30.0 kg

= 15.3 m/s

Instead, kinetic friction reduces her final kinetic energy to a 
manageable +120 J (which corresponds to a final speed of 
2.0 m/s). Mei-Ling can absorb this much kinetic energy 
safely by landing on the shelf while bending her knees.

Practice Problem 6.5 Energy Dissipated  
by Air Resistance

A ball thrown straight up at an initial speed of 14.0 m/s 
reaches a maximum height of 7.6 m. What fraction of the 
ball’s initial kinetic energy is dissipated by air resistance as 
the ball moves upward?
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Example 6.6

A Quick Descent

A ski trail makes a vertical descent of 78 m. A novice skier, 
unable to control his speed, skis down this trail and is lucky 
enough not to hit any trees. What is his speed at the bottom 
of the trail, ignoring friction and air resistance?

Strategy When nonconservative forces do no work, me-
chanical energy does not change. A skilled skier can control 
his speed by, in effect, controlling how much work the fric-
tional force does on the skis. Here we assume no friction or 
air resistance. Then the only forces acting on the skier are the 
normal force and gravity (Fig. 6.19). The normal force does 
no work, since it is always perpendicular to the skier’s veloc-
ity, so Wnc = 0.

Solution Because Wnc = 0, the mechanical energy does 
not change:

Ki + Ui = Kf + Uf

If we choose the y-axis up and y = 0 at the bottom of the hill, 
yi = 78 m and yf = 0. Then

Ui = mgyi and Uf = 0

If the skier starts with zero kinetic energy, then Ki = 0 and 
Kf = 1

2mv2
f . Setting the mechanical energies equal,

0 + mgyi = 1
2mv2

f + 0

Solving for the final speed vf, we find

vf = √2 gyi = √2 × 9.80 m/s2 × 78 m = 39 m/s

Discussion Notice that the solution did not depend on the 
detailed shape of the path. If the slope were constant  
(Fig. 6.20), we could use Newton’s second law to find the 
skier’s acceleration. The acceleration would be constant, so 
we could then use the constant-acceleration kinematics 
equations to solve for the final speed.

Figure 6.19
The final speed of the skier depends only on the initial and final altitudes if no friction acts.
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continued on next page
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Recognizing a Conservative Force

In Example 6.6, the final speed doesn’t depend on the shape of the trail: it could have 
been a steep descent, or a long gradual one, or have a complicated profile with vary-
ing slope. It could even be a vertical descent—the final speed is the same for free fall 
off a 78 m high building. The change in gravitational potential energy depends on the 
initial and final positions but not on the path taken. That’s why we can write ΔU = 
mg Δy [Eq. (6-19)].

Any time the work done by a force is independent of path—that is, the work 
depends only on the initial and final positions—the force is conservative. Energy 
stored as potential energy by a conservative force during a displacement from point 
A to point B can be recovered as kinetic energy. We can simply reverse displacement 
to get all of the energy back: ΔUB→A = −ΔUA→B.

The work done by friction, air resistance, and other contact forces does depend on 
path, so these forces cannot have potential energies associated with them. We cannot 
use friction to store energy in a form that is completely recoverable as kinetic energy.

6.5 GRAVITATIONAL POTENTIAL ENERGY FOR AN ORBIT

The expressions for gravitational potential energy developed in Section 6.4 apply when 
the gravitational force is constant (or nearly constant). If the gravitational force is not 
constant, such as when a satellite is placed into orbit around Earth, Eqs. (6-19) and 
(6-26) cannot be used. Instead, we need to use an expression for gravitational poten-
tial energy that corresponds to Newton’s law of universal gravitation. Recall that the 
magnitude of the gravitational force that one object exerts on another is

 F =
Gm1m2

r2  (4-9)

where r is the distance between the centers of the objects. The corresponding expres-
sion for gravitational potential energy in terms of the distance between two objects is

Example 6.6 continued

Applying Newton’s 
second law would show 
that the final speed does 
not depend on the angle 
of the slope, but the en-
ergy method shows that 
the final speed is the 
same for any shape path, 
not just for constant 
slopes. On the other hand, 
the time that it takes the 
skier to reach the bottom 
does depend on the length 
and contour of the trail.

A final speed of 39 m/s (87 mi/h) is dangerously fast. In 
reality, friction and air resistance do negative work on the 
skier, so the final speed would be smaller.

Practice Problem 6.6 Speeding Roller Coaster

A roller coaster is hauled to the top of the first hill of the ride 
by a motorized chain drive. After that, the train of cars is 
released and no more energy is supplied by an external mo-
tor. The cars are moving at 4.0 m/s at the top of the first hill, 
35.0 m above the ground. How fast are they moving at the 
top of the second hill, 22.0 m above the ground? Ignore fric-
tion and air resistance.

Figure 6.20
FBD for the skier on a constant 
slope superimposed on a sketch  
of the skier and slope.

x

y

Wy = –mg cos θ

Wx = mg sin θ

N

θ

Gravitational potential energy

 U = − 

Gm1m2

r
 (6-27)

(assign U = 0 when r = ∞)
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A graph showing the gravitational potential energy as a function of r is shown 
in Fig. 6.21. Note that we have assigned the potential energy to be zero at infinite 
separation (U = 0 when r = ∞). Why this choice? Simply put, any other choice would 
mean adding a constant term to the expression for U. This constant term would always 
subtract out of our equations, which involve only changes in potential energy. This 
choice (U = 0 when r = ∞) means that the gravitational potential energy is negative 
for any finite value of r, because potential energy decreases as the objects get closer 
together and increases as they get farther apart.

Does Eq. (6-27) Contradict Eq. (6-19)? Calculus is used to derive Eq. (6-27) 
but we can verify that it is consistent with Eq. (6-19) without using calculus. For a 
very small displacement from ri to rf = ri + Δy (Fig. 6.22), the potential energy change 
given by Eq. (6-27) is:

 ΔU = Uf − Ui = (− 

GMEm

ri + Δy) − (− 

GMEm

ri ) (6-28)

Rearranging and factoring out the common factors GMEm and then rewriting with a 
common denominator [see Eq. (A-4)], we find,

 ΔU = GMEm(
1
ri

−
1

ri + Δy) = GMEm 

ri + Δy − ri

ri(ri + Δy)
 (6-29)

For values of Δy that are small compared with ri, ri + Δy ≈ ri. Making that approx-
imation in the denominator (Appendix A.9), we obtain

 ΔU = m(
GME

r 
2
i

)Δy  (Δy ≪ ri)  (6-30)

The quantity in the parentheses in Eq. (6-30) is the gravitational field strength g, the 
gravitational force on the object divided by its mass m. Then, ΔU = mg Δy, in agree-
ment with Eq. (6-19).

CHECKPOINT 6.5

As	Mercury	travels	in	its	elliptical	orbit	about	the	Sun,	how	does	its	mechanical	
energy	 at	 its	 nearest	 point	 (perihelion)	 to	 the	 Sun	 compare	 with	 that	 at	 its	
farthest	point (aphelion)	 from	the	Sun?	How	does	 its	potential	energy	compare	
at	 the	same	 two	points?

Example 6.7

Orbital Speed of Mercury

The orbit of the planet Mercury around the Sun is an 
 ellipse. At its perihelion (rp = 4.60 × 107 km), its orbital 
speed is 59 km/s. What is its orbital speed at aphelion  
(ra = 6.98 × 107 km)?

Strategy Ignoring the small gravitational forces exerted 
by other planets, the only force acting on Mercury is the 
gravitational force due to the Sun. Gravity is a conservative 
force, so the mechanical energy is constant. Figure 6.23 is a 
sketch of the orbit. At aphelion, Mercury is farther from the 
Sun than at perihelion, so the potential energy is greater. 
Then the kinetic energy must be smaller, so the answer must 
be less than 59 km/s.

continued on next page

Figure 6.23
Sketch of Mercury’s orbit.
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Aphelion Perihelionra rp

Figure 6.21 Gravitational 
potential energy as a function 
of r, the distance between the 
centers of two objects. The 
potential energy increases as 
the distance increases.
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0

Figure 6.22 An object at a 
distance r from Earth’s center 
moves up a small distance Δy 
(greatly exaggerated in the  
figure).
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Example 6.7 continued

Given: vp = 5.9 × 104 m/s, rp = 4.60 × 1010 m,  
ra = 6.98 × 1010 m.

To find: va.

Solution Mechanical energy is constant:

Kp + Up = Ka + Ua

The kinetic energy of Mercury at perihelion is Kp = 1
2mv2

p, 
where m is the mass of Mercury; the kinetic energy at aph-
elion is Ka = 1

2mv2
a. The potential energies at perihelion and 

at aphelion are

Up = − 

GMSm

rp
 and Ua = − 

GMSm

ra

respectively, where MS = 1.99 × 1030 kg is the mass of the 
Sun. From conservation of energy:

1
2

mv2
p + (− 

GMSm

rp ) =
1
2

mv2
a + (− 

GMSm

ra )

The mass of Mercury cancels out. Now we solve for va:

1
2

 v2
a =

1
2

 v2
p + (− 

GMS

rp ) − (− 

GMS

ra )

 va = √v2
p + 2GMs(

1
ra

−
1
rp)

Substituting numerical values yields va = 39 km/s.

Discussion The speed at aphelion is less than the speed at 
perihelion, as expected.

Practice Problem 6.7 Speed at a Different  
Distance

What is Mercury’s orbital speed when its distance from the 
Sun is 5.80 × 107 km?

Example 6.8

Escape Speed

(a) Ignoring air resistance, find the minimum initial speed a 
projectile must have at Earth’s surface if the projectile is to 
escape Earth’s gravitational pull. (b) Sketch a graph of the 
kinetic and potential energies as functions of r, the distance 
from Earth’s center.

Strategy What does “escape Earth’s gravitational pull” 
mean? The gravitational force on the projectile due to Earth ap-
proaches zero at large distances, but never reaches zero. We are 
looking for the initial speed so that, even though Earth’s gravity 
keeps pulling the projectile back, the projectile can keep mov-
ing away from Earth. The gravitational force is not constant, and 
the trajectory of the projectile may be complicated, so using 
ΣF

→
= ma→ is impractical. We try an energy approach.
The only force acting on the projectile is gravity, so the 

mechanical energy is constant. To escape, the projectile 
must have enough initial kinetic energy so that it can reach 
an unlimited distance from Earth.

Solution (a) The mechanical energy is constant:

Ki + Ui = Kf + Uf

Initially the projectile is at a distance R, Earth’s radius, from 
Earth’s center and is moving at initial speed vi. At some later 
time, the projectile has speed vf at distance rf from Earth. Then

1
2

 mv2
i + (− 

GMm

R ) = Kf + Uf

continued on next page

where m is the projectile’s mass and M is Earth’s mass. To 
escape, the projectile must be able to reach any value of rf, 
no matter how large. As rf gets larger and larger, the potential 
energy approaches its maximum value, which is zero. (Math-
ematically, as rf →∞, Uf → 0.) The minimum value of vi 
gives the projectile just enough energy. So we assume that 
the projectile can reach its maximum potential energy with-
out any kinetic energy left over (Kf = 0):

1
2

 mv2
i + (− 

GMm

R ) = 0 + 0

Solving for vi, we obtain

1
2

 mv2
i =

GMm

R
 ⇒ vi = √

2GM

R
= 11.2 km/s

(b) As the projectile moves away from Earth, the potential 
energy increases and the kinetic energy decreases. Their sum 
K + U (the mechanical energy) remains constant because no 
nonconservative forces are acting. The potential energy ap-
proaches zero as the distance increases, and because the pro-
jectile is launched at escape speed, so does the kinetic energy. 
The graph of U(r) (Fig. 6.24) is the same as Fig. 6.21. The 
graph of K(r) looks like a “mirror image” because K + U = 0.

Discussion The speed found in part (a) is called the escape 
speed of Earth. Note that the escape speed is independent of 
the mass of the projectile because both the kinetic energy and 
the potential energy are proportional to the projectile’s mass.
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6.6 WORK DONE BY VARIABLE FORCES

So far we have considered only constant forces when calculating work. The advantage 
of using energy methods really shines in problems dealing with variable forces, where 
it’s difficult to use Newton’s second law. How can we calculate the work done by a vari-
able force? Consider an archer drawing back a compound bow (Fig. 6.25). The compound 
bow is designed to make it easier to draw the string back and hold it back because, at a 
certain point, the force required to draw the string farther stops increasing. A convenient 
way to describe how the force varies with string position is to plot a graph. Figure 6.26 
shows the force that must be applied to hold the string back as a function of distance. 
How can we calculate the work done by the archer as he draws the string back 40 cm?

We’ve asked analogous questions in previous chapters. Recall how we find the 
displacement Δx when the velocity vx is not constant (Section 2.2). We divide the 
time interval into a series of short time intervals and sum up the displacements that 
occur during each one.

To approximate the work done by a variable force Fx, we divide the overall dis-
placement into a series of small displacements Δx. During each small displacement, 
the work done is
 ΔW = Fx Δx (6-31)

On a graph of Fx(x), each ΔW is the area of a rectangle of height Fx and width Δx 
(Fig. 6.27). The total work done is the sum of the areas of these rectangles. This 
approximation gets better as we make the rectangles thinner and thinner, so the total 
work done is the area under the graph of Fx(x) from xi to xf. Remember that “area 
under the graph” means the area between the curve and the horizontal axis. In this 
particular case, the force and displacement are always in the same direction, so the 
work done is positive. If the force and displacement were in opposite directions, the 
work done would be negative.

In Fig. 6.26, the “area” of each rectangle represents (0.050 m × 20.0 N) = 1.0 J 
of work. There are approximately 36 rectangles under the graph between x = 0 and 
x = 40 cm, so the work done by the archer is +36 J.

Example 6.8 continued

The concept of escape speed helps explain why there is 
little hydrogen gas (H2) or helium gas (He) in Earth’s atmo-
sphere. We will see in Chapter 13 that the molecules in a gas 

have an average kinetic energy determined by the temperature 
of the gas. In a mixture of gases, the molecules with  
the smallest mass have the highest average speeds. A signifi-
cant fraction of the hydrogen molecules and helium atoms in 
the atmosphere are moving fast enough to escape, so these 
gases leak away into space. On the other hand, a negligibly 
small fraction of the more massive nitrogen, oxygen, carbon 
dioxide, and water molecules have speeds great enough to es-
cape the atmosphere.

Practice Problem 6.8 Protons Streaming Away 
from the Sun

Particles such as protons and electrons are continually stream-
ing away from the Sun in all directions. They carry off some of 
the energy released in the thermonuclear reactions occurring in 
the Sun. How fast must a proton be moving at a distance of 
7.00 × 109 m from the center of the Sun for it to escape the 
Sun’s gravitational pull and leave the solar system?

r

Potential energy

0

Kinetic energy

Kinetic and potential energies versus r

Figure 6.24
The kinetic and potential energies of a projectile launched from 
Earth’s surface at escape speed, ignoring air resistance, as func-
tions of r, the distance from Earth’s center. The graphs start at  
r = R, where R is Earth’s radius. As the projectile moves away 
from Earth, the potential energy increases and the kinetic energy 
decreases but their sum (the mechanical energy) remains constant.

Figure 6.25 Application of 
work done by a variable force: 
drawing a compound bow.
©Marcel Jancovic/Shutterstock

CONNECTION:

See Sections 2.2 and 2.3 to 
review how we found that the 
area under a graph of vx(t) is 
Δx and that the area under a 
graph of ax(t) is Δvx.
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Hooke’s Law and Ideal Springs

In Example 6.9, the displacement of the bowstring is proportional to the force exerted 
by the archer. Robert Hooke (1635–1703) observed that, for many objects, the 
deformation— change in size or shape—of the object is proportional to the magnitude 
of the force that causes the deformation. This observation, called Hooke’s law, is an 
approximation and is valid only within limits. For example, the compound bow of 
Fig. 6.26 is described by Hooke’s law for an applied force less than 80 N.

Many springs are described by Hooke’s law as long as they are not stretched or 
compressed too far. That is, the extension or compression—the increase or decrease 
in length from the relaxed length—is proportional to the force applied to the ends of 
the spring. When we refer to an ideal spring, we mean a spring that is described by 
Hooke’s law and is also massless.

 F = k ΔL (6-32)

0 5 10 15 20 25 30 35 40 45 50
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Fx (N)
Hooke’s law

Figure 6.26 The force to draw back the compound bow 
depends on how far it is drawn. In this graph, the “area” 
represented by each rectangle is 0.050 m × 20.0 N = 1.0 J.

x

Fx

Figure 6.27 Each rectangle’s area approximates the 
work done during a small displacement. The total area 
of the rectangles approximates the total work done.

Example 6.9

Archery Practice

To draw back a simple bow, the force the archer exerts on the 
string continues to increase as the displacement of the string in-
creases and the bow bends slightly. The force-versus- position 
graph of Fig. 6.28 describes such a bow. Calculate the work done 
by the archer on the string as he draws the string back 40.0 cm.

Strategy The work done by the archer is the area under 
the force-versus-position graph. This time, instead of count-
ing rectangles, we can calculate the triangular area formed 
by the force-versus-position graph.

Solution We want to find the work done by the archer to 
draw the string back 40.0 cm, so the base of the triangle is 
40.0 cm. The altitude of the triangle is the force at 40.0 cm: 
160 N. The area of a triangle is 1

2(base × altitude), so

W =
1
2

(0.400 m × 160 N) = +32 J

Discussion To check, we can count the number of rect-
angles (including the half rectangles) that lie under the 
graph. There are 32 rectangles and each represents 20 N × 
0.05 m = 1 J of work, so the answer is correct.

By doing 32 J of work on the bowstring, the archer 
stores this much energy in the bow. When the arrow is re-
leased, the bowstring does 32 J of work on the arrow, giving 
the arrow a kinetic energy of 32 J.

Practice Problem 6.9 A Gentle Pull

How much work would you do to draw the string of the 
 compound bow (see Fig. 6.26) back 10.0 cm?

0 5 10 15 20 25 30 35 40 45 50

200
160
120
80
40
0

x (cm)

Fx (N)

Figure 6.28
A simple bow requires a force proportional to the displacement of 
the string.
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In Eq. (6-32), F is the magnitude of the force exerted on each end of the spring and 
ΔL is the distance that the spring is stretched or compressed from its relaxed length.

The constant k is called the spring constant for a particular spring. The SI unit 
of force is the newton and the SI unit of length is the meter, so the SI units of a 
spring constant are N/m. The spring constant is a measure of how hard it is to stretch 
or compress a spring. A stiffer spring has a larger spring constant because larger forces 
must be exerted on the ends of the spring to stretch or compress it. Example 1.11 
describes an experiment to measure the spring constant of a real spring.

In many situations, we are more interested in the forces exerted by the spring 
than in the forces exerted on it. From Newton’s third law, the forces exerted by the 
spring on whatever is attached to its ends are equal in magnitude and opposite in 
direction to the forces exerted by those objects on the ends of the spring. Suppose 
that an ideal spring is aligned with the x-axis. One end is fixed in place and the other 
end can move along the x-axis (Fig. 6.29). For convenience, choose the origin so the 
moveable end is at x = 0 when the spring is relaxed. Then the force exerted by the 
moveable end of the spring on whatever is attached to it is

Fx

Relaxed spring

Stretched spring

x

Figure 6.29 An ideal spring 
is stretched a distance x beyond 
its relaxed length.

Force exerted by an ideal spring (Hooke’s law)

 Fx = −kx (6-33)

(Fx is the force exerted by the moveable end when its position is x; the spring 
is relaxed at x = 0.)

The negative sign in Eq. (6-33) indicates the direction of the force. The moveable end 
of the spring always pushes or pulls toward its relaxed position. If it is displaced in the 
+x-direction, the force it exerts is in the −x-direction (back toward x = 0). If it is displaced 
in the −x-direction, the force it exerts is in the +x-direction (again, back toward x = 0).

Example 6.10

Getting Down to Nuts and Bolts

In many hardware stores, bulk nuts and bolts are sold by 
weight. A spring scale in the store stretches 4.8 cm when 
24.0 N of bolts are weighed (Fig. 6.30). On the scale, what is 
the distance in centimeters between calibration marks that 
are marked in increments of 1 N? Assume an ideal spring.

Strategy The bolts are in equilibrium, so the spring scale 
is pulling upward on them with a force of 24.0 N. Using 
Hooke’s law and the data given, we can find the spring con-
stant k. Then we can use Hooke’s law again to find out how 
much the spring stretches when the applied force is increased 
by 1 N.

Solution Let the x-axis point up. When the pan of the scale 
is at x = −4.8 cm, it exerts a force Fx = +24.0 N on the bolts. 
From Hooke’s law, Fx = −kx and the spring constant is

k = − 

Fx

x
= − 

24.0 N
−4.8 cm

= 5.0 N/cm

Now let Fx = 1.00 N and solve for x:

x = − 

Fx

k
= − 

1.00 N
5.0 N/cm

= −0.20 cm

Since the relation between F and x is 
linear, the spring stretches an addi-
tional 0.20 cm for each additional 
newton of force. Therefore, the 1 N 
marks should be 0.20 cm apart.

Discussion A variation on the so-
lution is to look back at the question 
and notice that we are asked how 
many centimeters the spring stretches 
for each newton of force, which is the 
reciprocal of the spring constant. The 
reciprocal of the spring constant is

1
k

= − 

x

F
= − 

−4.8 cm
24.0 N

= 0.20 cm/N

The answer is reasonable: since it takes 5 N to make the 
spring stretch 1 cm, 1 N makes the spring stretch 1

5 cm.

Practice Problem 6.10 Stretching a Spring

A handful of nuts that weighs 16.0 N is placed in the pan of 
the scale of Example 6.10. How far does the spring stretch?

Scale pulling up

Weight of bolts

Figure 6.30
Forces acting on the 
bolts. The weight of 
the pan is assumed to 
be negligibly small.
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Work Done by an Ideal Spring

To find the work done by an ideal spring, first we draw the Fx(x) graph (Fig. 6.31). 
The unstretched position of the moveable end is x = 0. The work done by the spring 
as its moveable end moves from equilibrium (xi = 0) to the final position xf is the 
area of the shaded right triangle whose base is x and altitude is −kx:

 W =
1
2

(base × altitude) = − 

1
2

 kx2 (6-34)

The area is negative because the graph is underneath the x-axis. Think of −1
2 
kx2 as 

the average force (−1
2 
kx)  times the displacement (x).

More generally, if the moveable end starts at position xi, not necessarily at the 
equilibrium point, the work done by the spring is

 Wspring = (− 

1
2

 kx2
f ) − (− 

1
2

 kx2
i ) = − 

1
2

 kx2
f +

1
2

 kx2
i  (6-35)

Imagine the spring starting at equilibrium and ultimately ending up at a displacement 
xf after passing through xi. The total work done by the spring is −1

2 
kx2

f ; then we sub-
tract the work that was done to get the spring to position xi from equilibrium (−1

2 
kx2

i )  
to get the work done from xi to xf. Equation (6-35) is valid regardless of whether the 
spring is stretched (x > 0) or compressed (x < 0).

6.7 ELASTIC POTENTIAL ENERGY

The work done by an ideal spring [Eq. (6-35)] depends on the initial and final positions 
of the moveable end, but not on the path that was taken. Therefore, the force exerted 
by an ideal spring is conservative, and we can associate a potential energy with it. The 
kind of potential energy stored in a spring is called elastic potential energy.

Just as for gravity [see Eqs. (6-17) and (6-21)], the change in elastic potential 
energy is the negative of the work done by the spring:

 ΔUelastic = −Wspring (6-36)

For example, if you increase the elastic energy stored in a spring by compressing it, 
the spring does negative work because the force its end exerts on your hand is in the 
direction opposite to its displacement. This stored elastic energy can be recovered as 
kinetic energy by, say, using the spring to shoot a stone. As the spring expands back 
to its original length, it does positive work on the stone to increase the stone’s kinetic 
energy and the stored elastic energy decreases.

From Eqs. (6-35) and (6-36),

 ΔUelastic =
1
2

kx2
f −

1
2

kx2
i  (6-37)

Remember that only changes in potential energy enter our calculations, so we can assign 
U = 0 to any convenient position. The most convenient choice is to assign U = 0 when 
the spring is relaxed (x = 0):

Fx

x

xf

–kxf

Figure 6.31 A spring is 
stretched to a final position xf. 
The work done by the spring is 
the (negative) area between the 
Fx(x) graph and the x-axis. We 
know that the work is negative 
because the displacement is in 
the +x direction (from xi = 0 to 
xf > 0) and the force exerted by 
the spring is in the –x direction.

CONNECTION:

The change in potential 
 energy is always equal to the 
negative of the work done 
by the associated force. See 
Eq. (6-21).

Elastic potential energy stored in an ideal spring

 Uelastic =
1
2

kx2 (6-38)

U = 0 when x = 0 (relaxed spring)

Conservation of Energy with More than One Form of Potential Energy When 
using Wnc = ΔK + ΔU [Eq. (6-22)], ΔU must include the change in all forms of 
potential energy. For now, with two forms of potential energy,

 ΔU = ΔUgrav + ΔUelastic (6-39)
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Wnc is the work done by all forces other than those included in the potential energy. 
When Wnc = 0, the mechanical energy K + U is constant.

CHECKPOINT 6.7

If	a	spring	is	compressed	horizontally	on	a	table	and	then	released	so	it	expands	
to	 its	original	 relaxed	position,	where	does	 the	spring	have	 the	greatest	elastic	
potential	energy?

Example 6.11

The Dart Gun

In a dart gun (Fig. 6.32), a spring with k = 400.0 N/m is 
compressed 8.0 cm when the dart (mass m = 20.0 g) is 
loaded (Fig. 6.32a). What is the muzzle speed of the dart 
when the spring is released (Fig. 6.32b)? Ignore friction.

Strategy The elastic energy initially stored in the spring is 
converted into the kinetic energy of the dart as the spring 
expands. There is no change in gravitational potential energy 
since the motion of the dart is horizontal. The vertical normal 
forces do no work because they are perpendicular to the dis-
placement of the dart. The spring pushes the dart to the right 
until it reaches its relaxed length. Assuming the spring can’t 
pull the dart to the left (as it would if they stick together), the 
dart loses contact with the spring when the spring is at its 
relaxed length. We choose the origin at the relaxed position 
of the spring; therefore, xf = 0. Using the x-axis in Fig. 6.32, 
xi = −8.0 cm. The dart starts from rest, so vi = 0. To find: vf.

Solution Since we ignore friction, no work is done by 
nonconservative forces. Therefore, the mechanical energy is 
constant:

Ki + Ui = Kf + Uf

We can ignore the gravitational potential energy because it 
does not change. Using Eq. (6-38) for the elastic potential 
energy in the spring,

1
2

 mv2
i +

1
2

 kx2
i =

1
2

 mv2
f +

1
2

 kx2
f

After setting xf = 0 and vi = 0,

0 +
1
2

 kx2
i =

1
2

 mv2
f + 0

Solving for vf, we find

vf = √
k

m
  xi = √

400.0 N/m
0.0200 kg

× 0.080 m = 11 m/s

Discussion Checking the units,

√
N/m
kg

× m = √
(kg · m/s2)/m

kg
× m =

m
s

Notice that the muzzle speed is proportional to the dis-
tance the spring is compressed when the gun is cocked. If the 
spring is compressed halfway, it stores only one quarter as 
much elastic energy. The dart then acquires one quarter the 
kinetic energy, which means its speed is half as much. A 
more massive dart fired from the same gun would have a 
smaller muzzle speed, but the same kinetic energy.

Practice Problem 6.11 A Misfire

The same dart gun is cocked by compressing the spring the 
same distance (8.0 cm). This time the spring gets caught in-
side the gun, stopping at the point where it is still compressed 
by 4.0 cm. The dart is not caught inside the gun, but is  
released. Find the muzzle speed of the dart. [Hint: What is  
xf in this case?]

x

vf

(a) (b)

x
xf = 0 cmxi = –8.0 cm

vi = 0

Before (compressed spring) After (relaxed spring)

Figure 6.32
Dart gun (a) before and (b) after firing. The 
spring was compressed by 8.0 cm when the 
gun was cocked.

Application of Energy Conversion: Jumping When a human jumps, the muscles sup-
ply the energy to propel the body upward. Try jumping as high as you can from a standing 
start. You no doubt start by crouching down. Then you accelerate upward, straightening 
your legs and your body; your muscles convert chemical energy into the mechanical energy 
of your jump. If you are very athletic, you might be able to jump about 1 m above the floor.
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The kangaroo uses a different mechanism. It has long, elastic tendons and small 
muscles in its hind legs, in contrast to the relatively large muscles and short, stiffer 
tendons found in humans. The kangaroo folds its legs before a jump, using its muscles 
to stretch the tendons and converting chemical energy into elastic potential energy. 
The kangaroo then quickly extends its legs, relaxing the tendons like a released spring. 
The elastic energy stored in the tendons supplies much of the energy needed for the 
jump; the rest is supplied by the kangaroo’s leg muscles, which convert some more 
chemical energy into mechanical energy.

When the kangaroo lands on the ground, the tendons are stretched again as its 
legs bend. Thus, rather than dissipating all of the energy from the previous jump, a 
large fraction of it is recaptured as elastic energy in the tendons and then released to 
assist the next jump. This process reduces the amount of energy the muscles must 
supply for subsequent jumps and makes the kangaroo one of the most energy-efficient 
travelers among animals. The human body also stores some elastic energy in stretched 
tendons and in flexed foot bones when we run or jump, but not to the extent that its 
specialized anatomy enables the kangaroo to do.

Some insects jump using a catapult technique. The knee joint of a flea contains 
an elastic material called resilin (a rubber-like protein). The flea slowly bends its knee, 
stretching out the resilin and storing elastic energy, and then locks its knee in place 
(Fig. 6.33a). When the flea is ready to jump, the knee is unlocked and the resilin 
quickly contracts with a sudden conversion of the stored elastic energy into kinetic 
energy (Fig. 6.33b). Some of this kinetic energy is then converted into gravitational 
potential energy as the flea moves higher and higher (Fig. 6.33c). Ignoring air resis-
tance and other dissipative forces, the total mechanical energy (kinetic energy + grav-
itational potential energy + elastic potential energy) does not change during the jump.

Figure 6.33 Energy transformations in the jump of a flea.

A jumping cat flea  
(Ctenocephalides felis).
©Paulo Oliveira/Alamy.

Example 6.12

 The Hopping Kangaroo

Suppose the height h of a kangaroo’s hop (Fig. 6.34) after it 
stretches its tendons a distance x1 (beyond their unstretched 
length) is 2.0 m. How high would the hop be after it stretched 
the tendons 10% more than before (i.e., a distance 1.10x1 
beyond their unstretched length)? In a simplified model, we 
assume that all the energy for a kangaroo’s hop comes from 
the elastic energy stored in the tendons, which behave 
as  ideal springs. Ignore air resistance and other energy 
 dissipation.

continued on next page

Strategy Ignoring dissipation, the mechanical energy 
does not change. We have to include both gravitational and 
elastic potential energies in the mechanical energy. At first 
we consider a kangaroo jumping straight up. Then we try to 
generalize to more typical hopping with forward motion as 
well as upward motion.

Solution The mechanical energy does not change:

Ki + Ui,grav + Ui,elastic = Kf + Uf,grav + Uf,elastic

En
er

gy

(a) (b) (c)

Kinetic energy

Gravitational
potential energy

Elastic potential
energy
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6.8 POWER

Sometimes the rate of energy conversion is important. When shopping for a sports car, 
you wouldn’t ask the salesman how much work the engine can do. A tiny economy car 
like the Toyota Prius does more work than a Ferrari if the Prius is used for daily com-
muting while the Ferrari sits in the garage most of the time. But the Ferrari can do 
work at a much faster rate than the Prius can. In other words, it can change chemical 
energy in the gasoline into mechanical energy of the car at a much faster rate—it has 
a larger maximum power output. The higher power output enables the Ferrari to accel-
erate to high speeds much faster than the Prius. We give the name power (symbol P) 
to the rate of energy transfer or of energy conversion. The average power is the amount 
of energy transferred (ΔE) divided by the time the transfer takes (Δt):

Example 6.12 continued

Initially, when the kangaroo is crouched before the jump, it 
has zero kinetic energy. For convenience, we choose the ini-
tial gravitational potential energy to be zero. Thinking of the 
elastic potential energy as being stored in a single ideal spring 
with spring constant k, the initial mechanical energy is

Ki + Ui,grav + Ui,elastic = 0 + 0 +
1
2

 kx2
i

where xi represents the initial stretch of the tendons. With the 
kangaroo at the high point of the jump, the kinetic energy is 
again zero if it jumped straight up. The tendons are no longer 
stretched, so the elastic potential energy is zero. But now 
there is gravitational potential energy. At a height h above 
the initial point, the final mechanical energy is

Kf + Uf,grav + Uf,elastic = 0 + mgh + 0
where m is the kangaroo’s mass. Setting the mechanical en-
ergies equal,

1
2

 kx2
i = mgh ⇒ h =

kx 

2
i

2mg

We don’t know all of the constants (mass, spring constant, 
initial amount of stretch), so we set up a ratio:

h2

h1
=

kx2
2/(2mg)

kx2
1/(2mg)

=
x2

2

x2
1

For a 10% increase in stretch, x2 = 1.10x1 and

h2 = (
x2

x1)
2

h1 = (1.10)2h1 = 1.21 × 2.0 m = 2.4 m

Using a 10% increase in the stretch of the tendon, the kanga-
roo jumps about 21% higher.

When the kangaroo is hopping along, it does not jump 
straight up. Will the kangaroo’s jump still be 21% higher 
when jumping at another angle? Imagine the kangaroo hop-
ping along so that it leaves the ground at a 45° angle, which 
gives the maximum horizontal range per hop in the absence 
of air resistance. The elastic energy in the tendon is first 
converted to kinetic energy. This time, not all of the kinetic 
energy is converted to gravitational potential energy. The 
kinetic energy at the highest point of the jump is not zero 
because the kangaroo is still moving forward. The initial 
velocity can be resolved into components:

v2 = v2
x + v2

y = 2v2
x (since vx = vy for a 45° angle)

At the highest point of the jump, the kinetic energy is 1
2mv2

x, 
which is half of the initial kinetic energy. Overall, half of the 
elastic energy of the tendon is converted to gravitational po-
tential energy:

1
2

× (
1
2

 kx2
i ) = mgh

Since h is still proportional to x2
i , the height of the jump still in-

creases by 21% if the stretch of the tendon is increased by 10%.

Discussion The storage of elastic energy in the tendon is a 
clever way for the kangaroo to get more “miles per gallon.” 
Without such an energy storage system, most of the kangaroo’s 
mechanical energy would be converted to an unrecoverable 
form of energy at the end of each hop. The tendons store some 
of the energy that would otherwise be dissipated and then re-
lease it to help the next jump. Since less mechanical energy is 
“lost” on each landing, the energy supplied by the kangaroo’s 
muscles is less than it would otherwise be. Humans use a simi-
lar energy-saving mechanism when running (see Problem 117).

Practice Problem 6.12  Jumping with Joey

Suppose the kangaroo has a baby kangaroo (a joey) riding in 
her pouch. If the joey has grown to be one sixth the mass of its 
mother, how high can the kangaroo jump with the additional 
load? Assume that, without the joey, she can jump 2.8 m.

(a) (b)

h

Figure 6.34
(a) Kangaroo crouched and ready to hop. (b) Kangaroo at the 
highest point in its hop.



 6.8 POWER 225

Average power

 Pav =
ΔE

Δt
 (6-40)

The SI unit of power, the joule per second, is given the name watt (1 W = 1 J/s), 
after James Watt (1736–1819), a Scottish inventor who greatly improved the efficiency 
of steam engines. Remember that the unit symbol W stands for watt, not work. In the 
United States, the maximum power output of an electric motor or automobile engine is 
often specified in horsepower, which is a non-SI unit of power (1 hp = 746 W).

The kilowatt-hour (kW·h) is a unit of energy, not a unit of power. One kilowatt-
hour is the amount of energy transferred at a constant rate of 1 kW during a time 
interval of 1 h. The kilowatt-hour is commonly used by utility companies to measure 
the amount of electric energy delivered to consumers.

The work done by a force during a small time interval Δt is

 W = F Δr cos θ (6-2)

The magnitude of the displacement is

Δr = v Δt

Hence, the power—the rate at which the force does work—can be found from the 
force and the velocity.

 P =
W

Δt
=

F Δr cos θ
Δt

= F 
Δr

Δt
 cos θ = Fv cos θ (6-41)

Instantaneous power (rate at which work is done)

 P = Fv cos θ (6-42)

(θ is the angle between F→ and v→)

Equation 6-42 can be written using the scalar product: P = F→ · v→.

Example 6.13

 Germ Power

A bacterium spins its helical flagellum like a rotary motor to 
overcome the drag force that opposes its motion in order to 
propel itself through water. If the bacterium is moving at a 
constant velocity of 80 μm/s and the drag force is 0.125 μN, 
what is this motor’s power output?

Strategy Moving at constant velocity, the bacterium’s ki-
netic energy is constant. Therefore the motor must do work 
at the same rate that the drag force dissipates energy.

Solution The drag force dissipates energy at a rate:

Pdrag = Fdragv cos θ

The drag force is opposite to the velocity, so θ = 180° and 
Pdrag = −Fdragv. The kinetic energy is not changing, so

Ptotal = Pdrag + Pmotor = 0
Pmotor = +Fdragv = 0.125 μN × 80 μm/s = 1.0 × 10−11 W

Discussion Another strategy would be to find the force on 
the bacterium due to the motor. The net force is zero, so 
F
→

drag + F
→

motor = 0. Thus the force due to the motor is 0.125 μN 
in the direction of the velocity. The power is

Pmotor = Fmotor v cos 0 = 1.0 × 10−11 W
The result may seem like a tiny power output, but the 

energy released by the decomposition of one molecule of 
adenosine triphosphate (ATP) is approximately 5 × 10−20 J, 
so the motor would requires decomposition of more than  
2 × 108 ATP molecules per second.

Practice Problem 6.13  Muscle Power

To generate tension in a muscle, a myosin molecule pulls on 
an actin filament with a force of about 1 pN. If the actin fila-
ment moves at 2 μm/s, what is the power output of this mo-
lecular motor?



226 CHAPTER	6 Conservation of Energy

Example 6.14

Air Resistance on a Hill-Climbing Car

A 1000 kg car climbs a hill with a 4.0° incline at a constant 
12.0 m/s (Fig. 6.35). (a) At what rate is the gravitational po-
tential energy increasing? (b) If the mechanical power output 
of the engine is 20.0 kW, find the force of air resistance on 
the car. (Assume that air resistance is responsible for all of 
the energy dissipation.)

Strategy (a) We can find the rate of gravitational potential 
energy increase in two ways. One is to find the potential en-
ergy change during a time interval Δt and divide it by the 
time interval, which is equivalent to using the definition of 
average power [Eq. (6-40)]. The other possibility is to use 
Eq. (6-42) to find the rate at which the gravitational force 
does work.

(b) The car moves at constant speed, so its kinetic energy is 
not changing. Therefore, during any time interval, the work 
done by the engine (We) plus the (negative) work done by air 
resistance (Wa) is equal to the increase in the gravitational 
potential energy.

Given: car mass = 1000 kg; v = 12.0 m/s; 4.0° incline.
To find: (a) rate of potential energy change, ΔU/Δt; (b) force 
due to air resistance, F

→
a.

Solution (a) For a small change in elevation Δy, the 
change in potential energy is

ΔU = mg Δy

The rate of potential energy change is

ΔU

Δt
=

mg Δy

Δt
= mg 

Δy

Δt
= mgvy

where vy = Δy/Δt is the y-component of the velocity. From 
Fig. 6.36, vy = v sin ϕ, where ϕ = 4.0°. Then,

ΔU

Δt
= mgv sin ϕ = 1000 kg × 9.80 m/s2 × 12.0 m/s × sin 4.0°

      = 8200 W

continued on next page

(b) During any time interval Δt, the (positive) work done by 
the engine plus the (negative) work done by air resistance 
must equal the increase in the gravitational potential energy:

Wtotal = We + Wa = ΔU

Dividing each term by Δt, we find

We

Δt
+

Wa

Δt
=

ΔU

Δt
 ⇒ Pe + Pa =

ΔU

Δt

where Pe and Pa represent the power output of the engine and 
the rate at which air resistance does (negative) work on the 
car, respectively. Then,

Pa =
ΔU

Δt
− Pe = 8.2 kW − 20.0 kW = −11.8 kW

So, of the 20.0 kJ of mechanical work that the engine does 
each second, 8.2 kJ goes into gravitational potential energy 
and 11.8 kJ goes into pushing air out of the way and stirring 
it up in the process.

The direction of the force of air resistance F
→

a on the car 
is opposite to the car’s velocity, so

Pa = Fav cos 180° = −Fav

Solving for Fa yields

Fa = − 

Pa

v
= − 

−11 800 W
12.0 m/s

= 983 N

Discussion We can check (a) by using Eq. (6-42) to find the 
rate at which the gravitational force does work: P = Fv cos θ, 
where F = mg. The angle θ is not the same as ϕ. In Eq. (6-42), 
θ is the angle between the force and velocity vectors, which is 
94.0° (Fig. 6.37). Then,

 P = mgv cos 94.0°
 = 1000 kg × 9.80 m/s2 × 12.0 m/s × cos 94.0°
 = −8200 W

Gravity does work on the car at a rate of 
−8200 W, which means the potential en-
ergy is increasing at a rate of +8200 W.

We can also figure out what me-
chanical power the engine must supply 
to go 12.0 m/s on level ground. With no 
change in potential energy, all of the me-
chanical power output of the engine goes 
into stirring up the air, so Pe + Pa = 0. 
The magnitude of the force of air resis-
tance is the same (983 N) since the speed 
is the same. Then air resistance dissi-
pates energy at the same rate as before:

Pa = −Fav = −983 N × 12.0 m/s = −11.8 kW

4.0°

Δy
12.0 m/s

y

x

Figure 6.35
Car climbing a hill at constant speed.

ϕ = 4.0° vy

vx

v Figure 6.36
Resolving the velocity into x- and  
y-components.

Figure 6.37
The angle between 
the force and the 
 velocity is θ = 94.0°. 
(The angle is exag-
gerated for clarity.)

ϕ = 4.0°

mg

v

θ
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Example 6.14 continued

Therefore, Pe = 11.8 kW. On level ground, the gravitational 
potential energy isn’t increasing, so the engine only needs to 
do enough work to counteract the tendency of air resistance 
to slow down the car.

In this example, we have assumed that all of the me-
chanical power output of the engine is delivered to the 
wheels to propel the car forward. In reality, some of the en-
gine’s power output is used to run auxiliary devices such as 
headlights, radios, and windshield wipers. Friction (in the 
moving parts of the engine, transmission, and drivetrain) 

also reduces the amount of power that is actually delivered to 
the wheels.

Practice Problem 6.14 Mechanical Power Output 
on Flat Ground or Going Downhill

What mechanical power must the engine supply to go down 
a 4.0° incline at 12.0 m/s? (Since this is the same speed as in 
 Example 6.14, the force of air resistance is the same.)

Master the Concepts

 ∙ Conservation law: a physical law phrased in terms of a 
quantity that does not change with time.

 ∙ The law of conservation of energy: the total energy of 
the universe is unchanged by any physical process.

 ∙ Work is an energy transfer due to the application of a 
force. The work done by a force on an object can be 
positive, negative, or zero. Positive work increases the 
object’s energy; negative work decreases it. The work 
done by a constant force F→ acting on an object during a 
displacement Δr→ is

 W = FΔr cos θ (6-2)

  F cos θ

θ

rΔ

F

x

  where θ is the angle between F
→

 and Δr→. If F
→

 or Δr→ is 
parallel to the x-axis,

 W = Fx Δx (6-3)

 ∙ When several forces act on an object, the total work is 
the sum of the work done by each force individually.

 ∙ Translational kinetic energy is the energy associated with 
motion of the object as a whole. The translational kinetic 
energy of an object of mass m moving with speed v is

 K =
1
2

 mv2 (6-14)

 ∙ Mechanical energy is the sum of the kinetic and poten-
tial energies. If a situation involves more than one form 
of potential energy, the potential energies are added to-
gether. The change in potential energy accounts for the 
work done by all of the conservative forces. Conserva-
tive forces such as gravity do not change the mechanical 

energy; they just change one form of mechanical energy 
into another. The work done by nonconservative forces 
is equal to the change in mechanical energy:

 Wnc + (Ki + Ui) = (Kf + Uf)  (6-25)

  When the work done by nonconservative forces is zero, 
the mechanical energy does not change.

 If Wnc = 0, Ki + Ui = Kf + Uf  (6-23)

 ∙ The gravitational potential energy for an object of mass 
m in a uniform gravitational field is

 Ugrav = mgy (6-26)

  where the +y-axis points up and we assign U = 0 at the 
point y = 0.

 ∙ The gravitational potential energy for two objects of 
masses m1 and m2 whose centers are separated by a dis-
tance r is

 U = − 

Gm1m2

r
 (6-27)

  where we assign U = 0 to infinite separation (r = ∞).

  

r

U(r)

0

 ∙ There is no special significance to the sign of the poten-
tial energy. What matters is the sign of the potential en-
ergy change. Only changes in potential energy enter our 
calculations. Therefore, we can always assign the value 
of the potential energy for any one position.

continued on next page
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Master the Concepts continued   where the origin is chosen so the spring is relaxed at  
x = 0 and k is called the spring constant.

 ∙ If we assign U = 0 to the relaxed spring (x = 0), the 
elastic potential energy stored in an ideal spring of 
spring constant k is

 Uelastic =
1
2

kx2 (6-38)

 ∙ Average power is the average rate of energy conversion 
or transfer.

 Pav =
ΔE

Δt
 (6-40)

 ∙ The instantaneous rate at which a force F→ does work 
when the object it acts on moves with velocity v→ is

 P = Fv cos θ (6-42)

  where θ is the angle between F→ and v→.
 ∙ The SI unit of work and energy is the joule. 1 J = 1 N·m. 

The SI unit of power is the watt. 1 W = 1 J/s.

 ∙ The work done by a variable force directed along the x-
axis during a displacement Δx is the area under the 
Fx(x) graph from xi to xf.
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 ∙ Hooke’s law: for many objects, the deformation is pro-
portional to the magnitude of the force that causes the 
deformation. An ideal spring is massless and follows 
Hooke’s law. The force exerted by the moveable end of 
an ideal spring when it is at position x is

 Fx = −kx (6-33)

Conceptual Questions

 1. An object moves in a circle. Is the total work done on 
the object by external forces necessarily zero? Explain.

 2. You are walking to class with a backpack full of books. 
As you walk at constant speed on flat ground, does the 
force exerted on the backpack by your back and shoulders 
do any work? If so, is it positive or negative? Answer the 
same questions in two other situations: (1) you are walk-
ing down some steps at constant speed; (2) you start to 
run faster and faster on a level sidewalk to catch a bus.

 3. Why do roads leading to the top of a mountain have 
switchbacks that wind back and forth? [Hint: Think of the 
road as an inclined plane.]

 4. A mango falls to the ground. During the fall, does 
Earth’s gravitational field do positive or negative work 
Wm on the mango? Does the mango’s gravitational field 
do positive or negative work WE on Earth? Compare the 
signs and the magnitudes of Wm and WE.

 5. Can static friction do work? If so, give an example. 
[Hint: Static friction acts to prevent relative motion 
along the contact surface.]

 6. In the design of a roller coaster, is it possible for any hill 
of the ride to be higher than the first one? If so, how?

 7. When a ball is dropped to the floor from a height h, it 
strikes the ground and briefly undergoes a change of 
shape before rebounding to a maximum height less than 
h. Explain why it does not return to the same height h.

 8. A gymnast is swinging in a vertical circle about a cross-
bar. In terms of energy conservation, explain why the 
speed of the gymnast’s body is slowest at the top of the 
circle and fastest at the bottom.

 9. A bicycle rider notices that he is approaching a steep 
hill. Explain, in terms of energy, why the bicyclist ped-
als hard to gain as much speed as possible on level road 
before reaching the hill.

 10. You need to move a heavy crate by sliding it across a 
smooth floor. The coefficient of sliding friction is 0.2. You 
can either push the crate horizontally or pull the crate using 
an attached rope. When you pull on the rope, it makes a 30° 
angle with the floor. Which way should you choose to 
move the crate so that you do the least amount of work? 
How can you answer this question without knowing the 
weight of the crate or the displacement of the crate?

 11.  The main energy expenditure involved in running is 
the work done by the muscles to accelerate the legs. 
When a foot strikes the ground, it is momentarily brought 
to rest while the remainder of the animal’s body contin-
ues to move forward. When the foot is picked up, it is 
accelerated forward by one set of muscles in order to 
move ahead of the rest of the body. Then the foot is 
slowed down by a second set of muscles until it is 
brought to rest on the ground again. The muscles expend 
energy both when speeding up the leg and when slowing 
it down. How are thoroughbred horses, deer, and grey-
hounds adapted so that they can run at great speed?

©Tom Reichner/Shutterstock
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 12. Explain why an ideal spring must exert forces of equal 
magnitude on the objects attached to each end, even if the 
spring itself has a nonzero acceleration. [Hint: Use one of 
Newton’s laws of motion and remember that an ideal 
spring has zero mass.] Is the amount of work done by the 
spring on the two objects necessarily the same? Explain. 
If the answer is no, give an example to illustrate.

 13. Zorba and Boris are at a water park. There are two water 
slides with straight slopes that start at the same height 
and end at the same height. Slide A has a more gradual 
slope than slide B. Boris says he likes slide B better be-
cause you reach a faster speed, and he notes that he got 
to the bottom level in less time on slide B as measured 
with his stop watch. His brother Zorba says you reach 
the same speed with either slide. Who is correct and 
why? Both slides have negligible friction.

Multiple-Choice Questions

 1. After getting on the Santa Monica Freeway, a sports car 
accelerates from 30 mi/h to 90 mi/h. Its kinetic energy

 (a) increases by a factor of √3.
 (b) increases by a factor of 3.
 (c) increases by a factor of 9.
 (d) increases by a factor that depends on the car’s mass.
 2. If a kangaroo on Earth can jump from a standing start so 

that its feet reach a height h above the surface, approxi-
mately how high can the same kangaroo jump from a 
standing start on the Moon’s surface? gMoon ≈ 1

6 
gEarth. 

(Assume the kangaroo has an oxygen tank and pressure 
suit with negligible mass.)

 (a) h (b) 6h (c) 1
6h

 (d) 36h (e) 1
36h (f) √6h

Questions 3–6. The orbit of Mercury is much more eccentric 
than the orbits of the other planets. That is, instead of being 
nearly circular, the orbit is noticeably elliptical.
Answer choices for Questions 3–5:
 (a) its maximum value. (b) its minimum value.
 (c) the same value as at every other point in the orbit.

 3. At perihelion, the gravitational potential energy of 
 Mercury’s orbit has

 4. At perihelion, the kinetic energy of Mercury has
 5. At perihelion, the mechanical energy of Mercury’s orbit 

has
 6. As Mercury moves from the perihelion to the aphelion, 

the work done by gravity on Mercury is
 (a) zero.    
 (b) positive.    
 (c) negative.
 7. A hiker descends from the South Rim of the Grand Can-

yon to the Colorado River. During this hike, the work 
done by gravity on the hiker is

 (a) positive and depends on the path taken.
 (b) negative and depends on the path taken.
 (c) positive and independent of the path taken.
 (d) negative and independent of the path taken.
 (e) zero.
 8. Two balls are thrown from the roof of a building with 

the same initial speed. One is thrown horizontally while 
the other is thrown at an angle of 20° above the horizon-
tal. Which hits the ground with the greatest speed? Ig-
nore air resistance.

 (a) The one thrown horizontally
 (b) The one thrown at 20°
 (c) They hit the ground with the same speed.
 (d) The answer cannot be determined with the given 

information.

Questions 9 and 10.  A simple catapult, consisting of a 
leather pouch attached to rubber bands tied to two prongs of 
a wooden Y, has a spring constant k and is used to shoot a 
pebble horizontally. When the catapult is stretched by a dis-
tance d, it gives a pebble of mass m a launch speed v. Answer 
choices for Questions 9 and 10:
 (a) √3v (b) 3v
 (c) 3√3v (d) 9v
 (e) 27v 
 9. What speed does the catapult give a pebble of mass m 

when stretched to a distance 3d?
 10. What speed does the catapult give a pebble of mass m/3 

when stretched to a distance d?
 11. A projectile is launched at an angle θ above the horizon-

tal. Ignoring air resistance, what fraction of its initial 
kinetic energy does the projectile have at the top of its 
trajectory?

 (a) cos θ (b) sin θ 

 (c) tan θ (d) 
1

tan θ

 (e) 
1
2

 (f) cos2 θ 

 (g) sin2 θ (h) 0
 (i) 1

Sun
Aphelion Perihelionra rp

Multiple-Choice	Questions	3–6
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Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

Section 6.2 Work Done by a Constant Force
 1. How much work must Denise do to drag her basket of 

laundry of mass 5.0 kg a distance of 5.0 m along a floor, 
if the force she exerts is a constant 30.0 N at an angle of 
60.0° with the horizontal?

 2. A sled is dragged along a horizontal path at a constant speed 
of 1.5 m/s by a rope that is inclined at an angle of 30.0° with 
respect to the horizontal. The total weight of the sled is 
470 N. The tension in the rope is 240 N. How much work 
is done by the rope on the sled in a time interval of 10.0 s?

  
30.0°

1.5 m/s

 3. Hilda holds a gardening book of weight 10 N at a height 
of 1.0 m above her patio for 50 s. How much work does 
she do on the book during that 50 s?

 4. A horizontal towrope exerts a force of 240 N due west 
on a water-skier while the skier moves due west a dis-
tance of 54 m. How much work does the towrope do on 
the water-skier?

 5. A barge of mass 5.0 × 104 kg is pulled along the Erie 
Canal by two mules, walking along towpaths parallel 
to the canal on either side of it. The ropes harnessed to 
the mules make angles of 45° to the canal. Each mule 
is pulling on its rope with a force of 1.0 kN. How much 
work is done on the barge by both of these mules 
 together as they pull the barge 150 m along the canal?

 6. A 402 kg pile driver is raised 12 m above ground.  
(a) How much work must be done to raise the pile 
driver? (b) How much work does gravity do on the 
driver as it is raised? (c) The driver is now dropped. 
How much work does gravity do on the driver as it falls?

 7. Jennifer lifts a 2.5 kg carton of cat litter from the floor 
to a height of 0.75 m, starting and ending with the car-
ton held at rest. (a) How much total work is done on the 
carton during this operation? Jennifer then pours 1.2 kg 
of the litter into the cat’s litter box on the floor. (b) How 
much work is done by gravity on the 1.2 kg of litter as it 
falls to the litter box?

 8.  Starting from rest, a horse pulls a 250 kg cart for a 
distance of 1.5 km. It reaches a speed of 0.38 m/s by the 
time it has walked 50.0 m and then walks at constant 
speed. The frictional force on the rolling cart is a 
 constant 260 N. Each gram of oats the horse eats re-
leases 9.0 kJ of energy; 10.0% of this energy can go into 
the work the horse must do to pull the cart. How many 
grams of oats must the horse eat to pull the cart?

 9. Dirk pushes on a packing box with a horizontal force of 
66.0 N as he slides it along the floor. The average friction 
force acting on the box is 4.80 N. How much total work is 
done on the box in moving it 2.50 m along the floor?

 10. Juana slides a crate along the garage floor. The coeffi-
cient of kinetic friction between the crate and the floor 
is 0.120. The crate has a mass of 56.8 kg and Juana 
pushes with a horizontal force of 124 N. If 74.4 J of 
total work are done on the crate, how far along the floor 
does it move?

Problems 11–14. A crate of mass m1 = 12.4 kg is pulled by a 
massless rope up a 36.9° ramp. The rope passes over an ideal 
pulley and is attached to a hanging crate of mass m2 = 16.3 kg. 
The crates move 1.40 m, 
starting from rest.
 11. Find the work done by 

gravity on the hanging 
crate.

 12. Find the work done by 
gravity on the sliding 
crate.

 13. If the incline is frictionless, find the total work done on 
the sliding crate. The tension in the rope is 110.5 N.

 14. If the frictional force on the sliding crate has magnitude 
19.4 N and the tension in the rope is 121.5 N, find the 
total work done on the sliding crate.

 15. A 75.0 kg skier starts from rest and slides down a 32.0 m 
frictionless slope that is inclined at an angle of 15.0° 
with the horizontal. Ignore air resistance. Calculate the 
work done by gravity on the skier and the work done by 
the normal force on the skier.

 16. In Problem 15, if the slope is not frictionless so that the 
skier has a final velocity of 10.0 m/s, calculate the work 
done by gravity, the work done by the normal force, the 
work done by friction, and the force of friction (assum-
ing it is constant).

Section 6.3 Kinetic Energy
 17. An automobile with a mass of 1600 kg has a speed of 

30.0 m/s. What is its kinetic energy?
 18. A lawyer is on his way to court carrying his briefcase. The 

mass of the briefcase is 5.00 kg. The lawyer realizes that he 
is going to be late. Starting from rest, he starts to run, reach-
ing a speed of 2.50 m/s. What is the work done by the law-
yer on the briefcase during this time? Ignore air resistance.

m1
m2

θ

Problems	11–14,	46,	and	47
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 19. In 1899, Charles M. “Mile a Minute” Murphy set a re-
cord for speed on a bicycle by pedaling for a mile at an 
average of 62.3 mi/h (27.8 m/s) on a track of planks set 
over railroad ties in the draft of a Long Island Railroad 
train. In 1985, a record was set for this type of “motor 
pacing” by Olympic cyclist John Howard who pedaled 
at 152.2 mi/h (68.04 m/s) in the wake of a race car at 
Bonneville Salt Flats. The race car had a modified tail 
assembly designed to reduce the air drag on the cyclist. 
What was the kinetic energy of the bicycle plus rider in 
each of these feats? Assume that the mass of bicycle 
plus rider is 70.5 kg in each case.

 20. A ball of mass 0.10 kg moving with speed 2.0 m/s 
hits a wall and bounces back with speed 1.0 m/s in the 
opposite direction. What is the change in the ball’s 
 kinetic energy?

 21. In Problem 6, what is the pile driver’s speed just before 
it strikes the pile?

 22. A ball of mass 0.10 kg moving with speed of 2.0 m/s 
hits a wall and bounces back with the same speed in the 
opposite direction. What is the change in the ball’s 
 kinetic energy?

 23. Jim rides his skateboard down a ramp that is in the shape 
of a quarter circle with a radius of 5.00 m. At the bottom 
of the ramp, Jim is moving at 9.00 m/s. Jim and his 
skateboard have a mass of 65.0 kg. How much work is 
done by friction as the skateboard goes down the ramp?

 24. A 69.0 kg short-track ice skater is racing at a speed of 
11.0 m/s when he falls down and slides across the ice 
into a padded wall that brings him to rest. Assuming that 
he doesn’t lose any speed during the fall or while sliding 
across the ice, how much work is done by the wall while 
stopping the ice skater?

 25. A plane weighing 220 kN (25 tons) lands on an aircraft car-
rier. The plane is moving horizontally at 67 m/s (150 mi/h) 
when its tailhook grabs hold of the arresting cables. The ca-
bles bring the plane to a stop in a distance of 84 m. (a) How 
much work is done on 
the plane by the arrest-
ing cables? (b) What is 
the force (assumed 
constant) exerted on 
the plane by the ca-
bles? (Both answers 
will be underestimates, 
since the plane lands 
with the engines full 
throttle forward; in case the tailhook fails to grab hold of the 
cables, the pilot must be ready for immediate takeoff.)

 26. A shooting star is a meteoroid that burns up when it 
reaches Earth’s atmosphere. Many of these meteoroids 
are quite small. Calculate the kinetic energy of a mete-
oroid of mass 5.0 g moving at a speed of 48 km/s and 
compare it to the kinetic energy of a 1100 kg car moving 
at 29 m/s (65 mi/h).

Section 6.4 Gravitational Potential Energy and 
Mechanical Energy
 27. Sean climbs a tower that is 82.3 m high to make a 

jump with a parachute. The mass of Sean plus the 
parachute is 68.0 kg. If U = 0 at ground level, what is 
the potential energy of Sean and the parachute at the 
top of the tower?

 28.  Justin moves a desk 5.0 m across a level floor by 
pushing on it with a constant horizontal force of 340 N. 
(It slides for a negligibly small distance before coming 
to a stop when the force is removed.) Then, changing his 
mind, he moves it back to its starting point, again by 
pushing with a constant force of 340 N. (a) What is the 
change in the desk’s gravitational potential energy dur-
ing the round-trip? (b) How much work has Justin done 
on the desk? (c) If the work done by Justin is not equal 
to the change in gravitational potential energy of the 
desk, then where has the energy gone?

Problems 29–32.  A skier passes through points A–E as 
shown. Points B and D are at the same height.

A

B

C

D

E

Problems	29–32

 29. Rank the points in order of kinetic energy, from greatest 
to least, assuming no friction or air resistance.

 30. Rank the points in order of gravitational potential en-
ergy, from greatest to least.

 31. Rank the points in order of mechanical energy, from 
greatest to least, assuming no friction or air resistance.

 32. Rank the points in order of mechanical energy, from 
greatest to least, taking friction and air resistance into 
consideration.

 33.  Brad tries out a weight-loss plan that involves re-
peatedly lifting a 50.0 kg barbell from the floor over his 
head to a height of 2.0 m. If he is able to complete three 
such lifts per minute, how long will it take for him to 
lose 0.50 kg of fat? “Burning” 1 g of fat supplies 39 kJ 
to the body; of this, 10% can be used by the muscles to 
lift the barbell. (Ignore the fat “burned” while he lowers 
the barbell to the floor.)

 34. An airline executive decides to economize by reducing 
the amount of fuel required for long-distance flights. He 
orders the ground crew to remove the paint from the 
outer surface of each plane. The paint removed from a 
single plane has a mass of approximately 100 kg. (a) If 
the airplane cruises at an altitude of 12 000 m, how 
much energy is saved in not having to lift the paint to 
that altitude? (b) How much energy is saved by not 

Source: US Navy
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 having to move that amount of paint from rest to a cruis-
ing speed of 250 m/s?

 35. Emil is tossing an orange of mass 0.30 kg into the air. 
(a) Emil throws the orange straight up and then catches 
it, throwing and catching it at the same point in space. 
What is the change in the potential energy of the orange 
during its trajectory? Ignore air resistance. (b) Emil 
throws the orange straight up, starting 1.0 m above the 
ground. He fails to catch it. What is the change in the 
potential energy of the orange during this flight?

 36. A brick of mass 1.0 kg slides down an icy roof inclined 
at 30.0° with respect to the horizontal. (a) If the brick 
starts from rest, how fast is it moving when it reaches 
the edge of the roof 2.00 m away? Ignore friction.  
(b) Redo part (a) if the coefficient of kinetic friction 
is 0.10. 

 37. An arrangement of two pulleys, as 
shown in the figure, is used to lift a 
48.0 kg crate a distance of 4.00 m 
above the starting point. Assume the 
pulleys and rope are ideal and that all 
rope sections are essentially vertical. 
(a) What is the change in the potential 
energy of the crate when it is lifted a 
distance of 4.00 m? (b) How much 
work must be done to lift the crate a 
distance of 4.00 m? (c) What length of rope must be 
pulled to lift the crate 4.00 m?

 38. In Example 6.1, find the work done by the movers as 
they slide the chest up the ramp if the coefficient of fric-
tion between the chest and the ramp is 0.20.

 39. A cart moving to the right passes point 1 at a speed of 
20.0 m/s. Let g = 9.81 m/s2. (a) What is the speed of the 
cart as it passes point 3? (b) Will the cart reach position 
4? Ignore friction.

15.0 m 10.0 m
20.0 m

1

2
3

4

Problems	39	and	40

 40. A cart starts from position 4 with a velocity of 15 m/s to 
the left. Find the speed with which the cart reaches posi-
tions 3, 2, and 1. Ignore friction.

 41. Bruce stands on a bank beside a pond, grasps the end of 
a 20.0 m long rope attached to a nearby tree and swings 
out to drop into the water. If the rope starts at an angle 
of 35.0° with the vertical, what is Bruce’s speed at the 
bottom of the swing?

 42. The maximum speed of a child on a swing is 4.9 m/s. 
The child’s height above the ground is 0.70 m at the 
lowest point in his motion. How high above the ground 
is he at his highest point?

 43. If the skier of Example 6.6 is moving at 12 m/s at the 
bottom of the trail, calculate the total work done by fric-
tion and air resistance during the run. The skier’s mass 
is 75 kg.

 44. A 750 kg automobile is moving at 20.0 m/s at a height 
of 5.0 m above the bottom of a hill when it runs out of 
gasoline. The car coasts down the hill and then contin-
ues coasting up the other side until it comes to rest. Ig-
noring frictional forces and air resistance, what is the 
value of h, the highest position the car reaches above the 
bottom of the hill?

750 kg
20.0 m/s

5.0 m
h = ?

 45.    Rachel is on the roof of a building, h meters 
above ground. She throws a heavy ball into the air with 
a speed v, at an angle θ with respect to the horizontal. 
Ignore air resistance. (a) Find the speed of the ball when 
it hits the ground in terms of h, v, θ, and g. (b) For what 
value(s) of θ is the speed of the ball greatest when it hits 
the ground?

 46. Refer to Problems 11–14. Find the final speed of the 
sliding crate if the incline is frictionless.

 47. Refer to Problems 11–14. Find the final speed of the 
sliding crate if the frictional force on the sliding crate 
has magnitude 19.4 N.

Section 6.5 Gravitational Potential Energy for 
an Orbit
 48. You are on the Moon and would like to send a probe into 

space so that it does not fall back to the surface of the 
Moon. What launch speed do you need?

 49. A planet with a radius of 6.00 × 107 m has a gravita-
tional field of magnitude 30.0 m/s2 at the surface. What 
is the escape speed from the planet?

 50. The escape speed from the surface of Planet Zoroaster is 
12.0 km/s. The planet has no atmosphere. A meteor far 
away from the planet moves at speed 5.0 km/s on a col-
lision course with Zoroaster. How fast is the meteor go-
ing when it hits the surface of the planet?

 51. The escape speed from the surface of Earth is 11.2 km/s. 
What would be the escape speed from another planet of 
the same density (mass per unit volume) as Earth but 
with a radius twice that of Earth?

 52. A satellite is placed in a noncircular orbit about Earth. 
The farthest point of its orbit (apogee) is 4.0 Earth 
radii from the center of Earth, while its nearest point 
(perigee) is 2.0 Earth radii from Earth’s center. If we 
define the gravitational potential energy U to be zero for 
an infinite separation of Earth and satellite, find the 
 ratio Uperigee/Uapogee.

F

48.0 kg



 PROBLEMS 233

 53. What is the minimum speed with which a meteor strikes 
the top of Earth’s stratosphere (about 40 km above the sur-
face), assuming that the meteor begins as a bit of interplan-
etary debris far from Earth and stationary relative to Earth? 
Assume the drag force is negligible until the meteor reaches 
the stratosphere.

 54. A projectile with mass of 500 kg is launched straight up 
from Earth’s surface with an initial speed vi. What mag-
nitude of vi enables the projectile to just reach a maxi-
mum height of 5RE, measured from the center of Earth? 
Ignore air friction as the projectile goes through Earth’s 
atmosphere.

 55.  The orbit of comet Halley around the Sun is a long 
thin ellipse. At its aphelion (point farthest from the 
Sun), the comet is 5.3 × 1012 m from the Sun and moves 
with a speed of 10.0 km/s. What is the comet’s speed at 
its perihelion (closest approach to the Sun) where its 
distance from the Sun is 8.9 × 1010 m?

 56.  Suppose a satellite is in a circular orbit 3.0 Earth radii 
above the surface of Earth (4.0 Earth radii from the center 
of Earth). By how much does it have to increase its speed 
in order to be able to escape Earth? [Hint: You need to 
calculate the orbital speed and the escape speed.]

 57.  An asteroid hits the Moon and ejects a large rock from 
its surface. The rock has enough speed to travel to a point 
between Earth and the Moon where the gravitational forces 
on it from Earth and the Moon are equal in magnitude and 
opposite in direction. At that point the rock has a very 
small velocity toward Earth. What is the speed of the rock 
when it is at an altitude of 720 km above Earth’s surface?

Section 6.6 Work Done by Variable Forces
 58. How much work is done on the bowstring of Example 

6.9 to draw it back by 20.0 cm? [Hint: Rather than recal-
culate from scratch, use proportional reasoning.]

 59. An ideal spring has a spring constant k = 20.0 N/m. 
What is the amount of work that must be done to stretch 
the spring 0.40 m from its relaxed length?

 60. The forces required to extend a spring to various lengths 
are measured. The results are shown in the following table. 
Using the data in the table, plot a graph that helps you to 
answer the following two questions: (a) What is the spring 
constant? (b) What is the relaxed length of the spring?

Force (N) 1.00 2.00 3.00 4.00 5.00
Spring length (cm) 14.5 18.0 21.5 25.0 28.5

 61. The force that must be 
exerted to drive a nail 
into a wall is roughly 
as shown in the graph. 
The first 1.2 cm are 
through soft drywall; 
then the nail enters the 

solid wooden stud. How much work must be done 
to hammer the nail a horizontal distance of 5.0 cm into 
the wall?

 62.  (a) If the length of the Achilles tendon increases 
0.50 cm when the force exerted on it by the muscle in-
creases from 3200 N to 4800 N, what is the “spring 
constant” of the tendon? (b) How much work is done by 
the muscle in stretching the tendon 0.50 cm as the force 
increases from 3200 N to 4800 N?

 63. (a) If forces of magnitude 5.0 N applied to each end of a 
spring cause the spring to stretch 3.5 cm from its relaxed 
length, how far do forces of magnitude 7.0 N cause the 
same spring to stretch? (b) What is the spring constant 
of this spring? (c) How much work is done by the ap-
plied forces in stretching the spring 3.5 cm from its re-
laxed length?

 64. A block of wood is compressed 2.0 nm when inward 
forces of magnitude 120 N are applied to it on two op-
posite sides. (a) Assuming Hooke’s law holds, what is 
the effective spring constant of the block? (b) Assuming 
Hooke’s law still holds, how much is the same block 
compressed by inward forces of magnitude 480 N?  
(c) How much work is done by the applied forces during 
the compression of part (b)?

 65. The length of a spring increases by 7.2 cm from its re-
laxed length when a mass of 1.4 kg is hanging in equi-
librium from the spring. (a) What is the spring constant? 
(b) How much elastic potential energy is stored in the 
spring? (c) A different mass is suspended, and the 
spring length increases by 12.2 cm from its relaxed 
length to its new equilibrium position. What is the  
second mass?

 66. A spring fixed at one end is compressed from its relaxed 
position by a distance of 0.20 m. See the graph of the 
applied external force Fx versus the compression x of 
the spring. (a) Find the work done by the external force 
in compressing the spring 0.20 m starting from its re-
laxed position. (b) Find the work done by the external 
force to compress the spring from 0.10 m to 0.20 m.
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 67. Rhonda keeps a 2.0 kg model airplane moving at con-
stant speed in a horizontal circle at the end of a string of 
length 1.0 m. The tension in the string is 18 N. How 
much work does the string do on the plane during each 
revolution?

 68. The graph shows the force exerted on an object versus 
the position of that object along the x-axis. The force 
has no components other than along the x-axis. What is 1.20 5.0 x (cm)

50

120
Fx (N)
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the work done by the force on the object as the object is 
displaced from 0 to 3.0 m?

  10 2 3

x (m)

Fx (N)
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–1

–2

Section 6.7 Elastic Potential Energy
 69.  The tension in a ligament in the human knee is ap-

proximately proportional to the extension of the liga-
ment, if the extension is not too large. If a particular 
ligament has an effective spring constant of 150 N/mm 
as it is stretched, (a) what is the tension in this ligament 
when it is stretched by 0.75 cm? (b) What is the elastic 
energy stored in the ligament when stretched by this 
amount?

 70.  An instrument known as an atomic force microscope 
(AFM) can be used to measure forces between atoms or 
molecules at the nanometer scale. Suppose you find the 
elasticity of biological membranes by measuring the in-
dentation of the force probe into the membrane as a func-
tion of the applied force. You could then use an AFM to 
study the elastic properties of the capsid (outer shell) of 
a virus. The graph shows your data of the force applied 
to the capsid by the AFM (in nanonewtons) versus the 
indentation of the capsid (in nanometers). (a) What is the 
effective spring constant of the capsid for indentations of 
0 to 14 nm? (b) How much elastic energy is stored in the 
membrane when it is indented 14 nm?
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 71. When the spring on a toy gun is compressed by a dis-
tance x, it will shoot a rubber ball straight up to a height 
of h. Ignoring air resistance, how high will the gun shoot 

the same rubber ball if the spring is compressed by an 
amount 2x? Assume x ≪ h.

 72. You shoot a 51 g pebble straight up with a catapult 
whose spring constant is 320 N/m. The catapult is ini-
tially stretched by 0.20 m. How high above the starting 
point does the pebble fly? Ignore air resistance.

 73. A gymnast of mass 52 kg is jumping on a trampoline. 
She jumps so that her feet reach a maximum height of 
2.5 m above the trampoline and, when she lands, her 
feet stretch the trampoline down 75 cm. How far does 
the trampoline stretch when she stands on it at rest? 
[Hint: Assume the trampoline is described by Hooke’s 
law when it is stretched.]

 74. Jorge is going to bungee jump from a bridge that is 55.0 m 
over the river below. The bungee cord has an unstretched 
length of 27.0 m. To be safe, the bungee cord should 
stop Jorge’s fall when he is at least 2.00 m above the 
river. If Jorge has a mass of 75.0 kg, what is the mini-
mum spring constant of the bungee cord?

 75. A 2.0 kg block is released from rest and allowed to slide 
down a frictionless surface and into a spring. The far 
end of the spring is attached to a wall, as shown. The 
initial height of the block is 0.50 m above the lowest 
part of the slide and the spring constant is 450 N/m. 
(a) What is the maximum compression of the spring? 
(b) The spring sends the block back to the left. How 
high does the block rise?

  Problems	75	and	118

 76.  A block (mass m) hangs from a spring (spring con-
stant k). The block is released from rest a distance d 
above its equilibrium position. (a) What is the speed of 
the block as it passes through the equilibrium point?  
(b) What is the maximum distance below the equilib-
rium point that the block will reach?

Section 6.8 Power
 77.  Lars, of mass 82.4 kg, can do work for about  

2.0 min at the rate of 1.0 hp (746 W). How long will it 
take him to climb three flights of stairs, a vertical height 
of 12.0 m?

 78. Show that 1 kilowatt-hour (kW·h) is equal to 3.6 MJ.
 79.  If a man has an average useful power output of  

40.0 W, what minimum time would it take him to lift 
fifty 10.0 kg boxes to a height of 2.00 m?

 80. In Section 6.2, Rosie lifts a trunk weighing 220 N up  
4.0 m. If it takes her 40 s to lift the trunk, at what aver-
age rate does she do work?
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 81.  A bicycle and its rider together have a mass of  
75 kg. What power output of the rider is required to 
maintain a constant speed of 4.0 m/s (about 9 mi/h) up a 
5.0% grade (a road that rises 5.0 m for every 100 m 
along the pavement)? Assume that frictional losses of 
energy are negligible.

 82.  The mechanical power output of a cyclist moving at 
a constant speed of 6.0 m/s on a level road is 120 W.  
(a) What is the force exerted on the cyclist and the bicy-
cle by the air? (b) By bending low over the handlebars, 
the cyclist reduces the air resistance to 18 N. If she main-
tains a power output of 120 W, what will her speed be?

 83.  A patient’s heart pumps 5.0 L of blood per minute 
into the aorta, which has a diameter of 1.8 cm. The aver-
age force exerted by the heart on the blood is 16 N. 
What is the average mechanical power output of 
the heart?

 84. A motorist driving a 1200 kg car on level ground accel-
erates from 20.0 m/s to 30.0 m/s in a time of 5.0 s. Ig-
noring friction and air resistance, determine the average 
mechanical power in watts the engine must supply dur-
ing this time interval.

 85.   A 62 kg woman takes 6.0 s to run up a flight of 
stairs. The landing at the top of the stairs is 5.0 m above 
her starting place. (a) What is the woman’s average 
power output while she is running? (b) Would that be 
equal to her average power input—the rate at which 
chemical energy in food or stored fat is used? Why or 
why not?

 86.   How many grams of carbohydrate does a person 
of mass 74 kg need to metabolize to climb five flights of 
stairs (15 m height increase)? Each gram of carbohy-
drate provides 17.6 kJ of energy. Assume 10.0% effi-
ciency—that is, 10.0% of the available chemical energy 
in the carbohydrate is converted to mechanical energy. 
What happens to the other 90% of the energy?

 87. An object moves  
in the positive x-
direction under the 
influence of a force 
Fx. A graph of Fx 
versus vx is shown. 
(a) What is the in-
stantaneous power 
(i.e., the rate at which the force does work on the object) 
when its speed is 10 m/s? (b) What is the instantaneous 
power when its speed is 16 m/s?

 88. A top fuel drag racer with a mass of 500.0 kg completes 
a quarter-mile (402 m) drag race in a time of 4.2 s start-
ing from rest. The car’s final speed is 125 m/s. What is 
the engine’s average power output? Ignore friction and 
air resistance.

 89. (a) Calculate the change in potential energy of 1 kg of 
water as it passes over Niagara Falls (a vertical descent 

of 50 m). (b) At what rate 
is gravitational potential 
energy lost by the water 
of the Niagara River? 
The rate of flow is 5.5 × 
106 kg/s. (c) If 10% of this 
energy can be converted 
into electric energy, how 
many households would 
the electricity supply? (An average household uses an 
average electrical power of about 1 kW.)

 90.  A car with mass of 1000.0 kg accelerates from 0 m/s 
to 40.0 m/s in 10.0 s. Ignore air resistance. The engine 
has a 22% efficiency, which means that 22% of the en-
ergy released by the burning gasoline is converted into 
mechanical energy. (a) What is the average mechanical 
power output of the engine? (b) What volume of gaso-
line is consumed? Assume that the burning of 1.0 L of 
gasoline releases 46 MJ of energy.

Collaborative Problems

 91. You are driving a car through campus when a fellow 
student steps out in front of you. You slam on the brakes, 
creating a 9.0 m long skid mark as measured by the po-
lice officer standing on the corner. She also has a device 
that measures the coefficient of friction between rubber 
and asphalt as 0.60. Can she write you a ticket for speed-
ing in this 25 mi/h zone?

 92. A roller coaster car 
(mass = 988 kg includ-
ing passengers) is about 
to roll down a track. The 
diameter of the circular 
loop is 20.0 m and the 
car starts out from rest 
40.0 m above the lowest point of the track. Ignore fric-
tion and air resistance. (a) At what speed does the car 
reach the top of the loop? (b) What is the force exerted 
on the car by the track at the top of the loop? (c) From 
what minimum height above the bottom of the loop can 
the car be released so that it does not lose contact with 
the track at the top of the loop?

 93.   A 4.0 kg block is released from rest at the top 
of a frictionless plane of length 8.0 m that is inclined 
at an angle of 15° to the horizontal. A cord is attached 
to the block and trails along behind it. When the block 
reaches a point 5.0 m along the incline from the top, 
someone grasps the cord and pulls it parallel to the 
incline so that the tension is constant until the block 
comes to rest at the bottom of the incline. What is the 
tension? Solve the problem twice, once using work 
and energy and again using Newton’s laws and the 
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equations for constant acceleration. Which method do 
you prefer?

  

8.0 m

5.0 m Cord
15°

 94.  The bungee jumper of Example 6.4 made a jump into 
the Gorge du Verdon in southern France from a plat-
form 182 m above the bottom of the gorge. The jumper 
weighed 780 N and came within 68 m of the bottom of 
the gorge. The cord’s unstretched length is 30.0 m.  
(a) Assuming that the bungee cord follows Hooke’s law 
when it stretches, find its spring constant. [Hint: The 
cord does not begin to stretch until the jumper has fallen 
30.0 m.] (b) At what speed is the jumper falling when he 
reaches a height of 92 m above the bottom of the gorge?

 95.  A 1500 kg car coasts in neutral down a 2.0° hill. The 
car attains a terminal speed of 20.0 m/s. (a) How much 
power must the engine deliver to drive the car on a level 
road at 20.0 m/s? (b) If the maximum useful power that 
can be delivered by the engine is 40.0 kW, what is the 
steepest hill the car can climb at 20.0 m/s?

 96.   A wind turbine converts some of the kinetic en-
ergy of the wind into electric energy. Suppose that the 
blades of a small wind turbine have length L = 4.0 m. 
(a) When a 10 m/s (22 mi/h) wind blows head-on, what 
volume of air (in m3) passes through the circular area 
swept out by the blades in 1.0 s? (b) What is the mass of 
this much air? Each cubic meter of air has a mass  
of 1.2 kg. (c) What is the translational kinetic energy of 
this mass of air? (d) If the turbine can convert 40%  
of this kinetic energy into electric energy, what is its 
electric power output? (e) What happens to the power 
output if the wind speed decreases to 1

2 of its initial 
value? What can you conclude about electric power pro-
duction by wind turbines?

 97.  The escape speed from Earth is 11.2 km/s, but that is 
only the minimum speed needed to escape Earth’s gravi-
tational pull; it does not give the object enough energy to 
leave the solar system. What is the minimum speed for 
an object near Earth’s surface so that the object escapes 
both Earth’s and the Sun’s gravitational pulls? Ignore 
drag due to the atmosphere and the gravitational forces 
due to the Moon and the other planets. Also ignore the 
rotation and the orbital motion of Earth.

Comprehensive Problems

 98. A spring scale in a French market is calibrated to show 
the mass of vegetables in grams and kilograms. (a) If the 
marks on the scale are 1.0 mm apart for every 25 g, what 
maximum extension of the spring is required to measure 
up to 5.0 kg? (b) What is the spring constant of the 

spring? [Hint: Remember that the scale really measures 
force.]

 99. Plot a graph of this data for a spring resting horizon-
tally on a table. Use your graph to find (a) the spring 
constant and (b) the relaxed length of the spring.

Force (N) 0.200 0.450 0.800 1.500
Spring length (cm) 13.3 15.0 17.3 22.0

 100. Ugonna stands at the top of an incline and pushes a  
100 kg crate to get it started sliding down the incline. 
The crate slows to a halt after traveling 1.50 m along 
the incline. (a) If the initial speed of the crate was 
2.00  m/s and the angle of inclination is 30.0°, how 
much energy was dissipated by friction? (b) What is the 
coefficient of sliding friction?

 101. How much energy is converted by the muscles of an 
80.0 kg person in climbing a vertical distance of 15 m? 
Assume that muscles have an efficiency of 22%; that is, 
the increase in gravitational potential energy is 22% of 
the total energy converted.

 102. Starting from rest, a package slides down a 2.8 m long 
ramp inclined 53° below the horizontal. If μk = 0.30, 
find the speed of the package at the bottom of the ramp.

 103. A child’s playground swing is supported by chains that 
are 4.0 m long. If a child in the swing is 0.50 m above 
the ground and moving at 6.0 m/s when the chains are 
vertical, what is the maximum height of the swing? 
 Assume the masses of the chains are negligible.

 104. If a high jumper needs to make his center of gravity rise 
1.2 m, how fast must he be able to sprint? Assume all 
of his kinetic energy can be transformed into potential 
energy. For an extended object, the gravitational poten-
tial energy is U = mgh, where h is the height of the 
center of gravity.

 105. A pole-vaulter converts the kinetic energy of running 
to elastic potential energy in the pole, which is then 
converted to gravitational potential energy. If a pole-
vaulter’s center of gravity is 1.0 m above the ground 
while he sprints at 10.0 m/s, what is the maximum 
height of his center of gravity during the vault? For an 
extended object, the gravitational potential energy is 
U = mgh, where h is the height of the center of  gravity. 
(In 1988, Sergei Bubka was the first pole-vaulter ever 
to clear 6 m.)

 106.  Yosemite Falls in California is about 740 m high. 
(a) What average power would it take for a 70 kg person 
to hike up to the top of Yosemite Falls in 1.5 h? (b) The 
human body is about 25% efficient at converting chem-
ical energy to mechanical energy. How much chemical 
energy is used in this hike? (c) How many kilocalories 
(kcal) of food energy would a person use in this hike? 
(See Appendix B for the necessary conversion factor.)

 107. A hang glider moving at speed 9.5 m/s dives to an altitude 
8.2 m lower. Ignoring drag, how fast is it then moving?
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 108. A car moving at 30 mi/h is stopped by jamming on the 
brakes and locking the wheels. The car skids 50 ft before 
coming to rest. How far would the car skid if it were initially 
moving at 60 mi/h? [Hint: You will not have to do any unit 
conversions if you set up the problem as a proportion.]

 109. A spring gun (k = 28 N/m) is used to shoot a 56 g ball 
horizontally. Initially the spring is compressed by  
18 cm. The ball loses contact with the spring and leaves 
the gun when the spring is still compressed by 12 cm. 
What is the speed of the ball when it hits the ground, 
1.4 m below the spring gun?

 110. In an adventure movie, a 62.5 kg stunt woman falls 8.10 m 
and lands in a huge air bag. Her speed just before she hits 
the air bag is 10.5 m/s. (a) What is the total work done on 
the stunt woman during the fall? (b) How much work is 
done by gravity on the stunt woman? (c) How much work 
is done by air resistance on the stunt woman?  
(d) Estimate the magnitude of the average force of air re-
sistance by assuming it is constant throughout the fall.

Problems 111 and 112. A spring with k = 40.0 N/m is at the 
base of a frictionless 30.0° inclined plane. A 0.50 kg object 
is pressed against the spring, compressing it 0.20 m from its 
equilibrium position. The object is then released.

0.50 kg

Compressed
spring

30.0°

 111. What is the speed of the object when it has moved  
0.10 m along the incline?

 112. How far along the incline does the object travel before 
coming to rest and then sliding back down?

 113.  (a) How much work does a Major League pitcher do 
on the baseball when he throws a 90.0 mi/h (40.2 m/s) 
fastball? The mass of a baseball is 153 g. (b) How many 
fastballs would a pitcher have to throw to “burn off” a 
1520 kcal meal? Assume that 80.0% of the chemical 
energy in the food is converted to thermal energy and 
only 20.0% becomes the kinetic energy of the fastballs. 
(See Appendix B for the necessary conversion factor.)

 114.  The amount of food energy per day required by a 
person resting under standard conditions is called the 
basal metabolic rate (BMR). (a) To generate 1 kcal, 
 Jermaine’s body needs approximately 0.010 mol of oxy-
gen. If Jermaine’s net intake of oxygen through breathing 
is 0.015 mol/min while he is resting, what is his BMR in 
kcal/day? (b) If Jermaine fasts for 24 h, how many 
pounds of fat does he lose? Assume that only fat is con-
sumed. Each gram of fat consumed generates 9.3 kcal. 
(See Appendix B for the necessary conversion factor.)

 115. Tarzan is running toward a deep gully. A tree branch 
with a vine hangs over the gully. Tarzan must grab the 
vine and swing across the gully to the other side, where 
the ground surface is 1.7 m higher. How fast does 
 Tarzan have to be running to accomplish this feat?

 116. Jane is running from the ivory hunters in the jungle. 
Cheetah throws a 7.0 m long vine toward her. Jane 
leaps onto the vine with a speed of 4.0 m/s. When she 
catches the vine, it makes an angle of 20° with respect 
to the vertical. (a) When Jane is at her lowest point, she 
has moved downward a distance h from the height 
where she originally caught the vine. Show that h is 
given by h = L − L cos 20°, where L is the length of the 
vine. (b) How fast is Jane moving when she is at the 
lowest point in her swing? (c) How high can Jane swing 
above the lowest point in her swing?

 117.  Human feet and legs store elastic energy when walk-
ing or running. They are not nearly as efficient at doing 
so as kangaroo legs, but the effect is significant nonethe-
less. If not for the storage of elastic energy, a 70 kg man 
running at 4 m/s would lose about 100 J of mechanical 
energy each time he sets down a foot. Some of this en-
ergy is stored as elastic energy in the Achilles tendon and 
in the arch of the foot; the elastic energy is then con-
verted back into the kinetic and gravitational potential 
energy of the leg, reducing the expenditure of metabolic 
energy. If the maximum tension in the Achilles tendon 
when the foot is set down is 4.7 kN and the tendon’s 
spring constant is 350 kN/m, calculate how far the ten-
don stretches and how much elastic energy is stored in it.

 118. A 0.50 kg block, starting at rest, slides down a 30.0° 
incline with static and kinetic friction coefficients of 
0.35 and 0.25, respectively (see the figure with Prob-
lem 75). After sliding 85 cm along the incline, the 
block slides across a frictionless horizontal surface and 
encounters a spring (k = 35 N/m). (a) What is the max-
imum compression of the spring? (b) After the com-
pression of part (a), the spring rebounds and sends the 
block back up the incline. How far along the incline 
does the block travel before coming to rest?

 119. The potential energy of a particle constrained to move 
along the x-axis is shown in the graph. At x = 0, the 
particle is moving in the +x-direction with a kinetic 
energy of 200 J. Can this particle get into the region  
3 cm < x < 8 cm? Explain. If it can, what is its kinetic 
energy in that region? If it can’t, what happens to it?
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Problems	119	and	120

 120. The potential energy of a particle constrained to move 
along the x-axis is shown in the graph. At x = 0, the 
particle is moving in the +x-direction with a kinetic 
energy of 400 J. Can this particle get into the region  
3 cm < x < 8 cm? Explain. If it can, what is its kinetic 
energy in that region? If it can’t, what happens to it?
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Problems 121 and 122. A particle is constrained to move 
along the x-axis. The graph describes the potential energy as 
a function of position.
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Problems	121	and	122

 121.  The particle has a total mechanical energy of −100 J. 
At time t = 0, the particle is located at x = 8.0 cm and is 
moving to the left. (a) What is the particle’s potential  
energy at t = 0? What is its kinetic energy at this time?  
(b) What are the particle’s total, potential, and kinetic en-
ergies when it is at x = 2.0 cm? (c) Describe the motion of 
this particle. Does the particle ever turn around and start 
moving to the right? If so, where does this happen? At 
what value or range of values of x is its speed the greatest?

122.  Answer the questions in Problem 121 for a particle 
with total mechanical energy +100 J initially moving to 
the left at x = 15.0 cm.

123.  When a block is suspended from a vertically hanging 
spring, it stretches the spring from its original length of 
4.5 cm to a total length of 6.0 cm. The spring with the 
same block attached is then placed on a horizontal fric-
tionless surface. The block is pulled so that the spring 
stretches to a total length of 8.0 cm; then the block is 
released, and it oscillates back and forth. What is the 
maximum speed of the block as it oscillates?

 

8.0 cm
Start

0.20 kg
0.20 kg

6.0 cm
4.5 cm

 124.  A spring used in an introductory physics laboratory 
stores 10.0 J of elastic potential energy when it is com-
pressed 0.20 m. Suppose the spring is cut in half. When 
one of the halves is compressed by 0.20 m, how much 
potential energy is stored in it? [Hint: Does the half 
spring have the same k as the original uncut spring?]

 125.   Two springs with equal spring constants k are con-
nected first in series (one after the other) and then in 
parallel (side by side) with an object hanging from the 
bottom of the combination. What is the effective spring 
constant of the two different arrangements? In other 
words, what would be the spring constant of a single 
spring that would behave exactly as (a) the series com-
bination and (b) the parallel combination? Ignore the 

weight of the springs. [Hint for (a): each spring 
stretches an amount x = F/k, but only one spring exerts 
a force on the hanging object. Hint for (b): each spring 
exerts a force F = kx on the object when each spring 
stretches a distance x.]

  

(a) (b)

Problems	125–127

 126.  Two springs with spring constants k1 and k2 are con-
nected in series. (a) What is the effective spring constant 
of the combination? (b) If a hanging object attached to the 
combination is displaced by 4.0 cm from the relaxed posi-
tion, what is the potential energy stored in the springs for  
k1 = 5.0 N/cm and k2 = 3.0 N/cm? [See Problem 125(a).]

 127.  Two springs with spring constants k1 and k2 are con-
nected in parallel. (a) What is the effective spring constant 
of the combination? (b) If a hanging object attached to the 
combination is displaced by 2.0 cm from the relaxed posi-
tion, what is the potential energy stored in the springs for 
k1 = 5.0 N/cm and k2 = 3.0 N/cm? [See Problem 125(b).]

 128.   The graph shows the tension in a rubber band as it 
is first stretched and then allowed to contract. As you 
stretch a rubber band, the tension at a particular length (on 
the way to a maximum stretch) is larger than the tension at 
that same length as you let the rubber band contract. That 
is why the graph shows two separate lines, one for stretch-
ing and one for contracting; the lines are not superimposed 
as you might have thought they would be. (a) Make a 
rough estimate of the total work done by the external force 
applied to the rubber band for the entire process. (b) For a 
rubber band described by Hooke’s law, what would the 
answer to (a) have to be? (c) While the rubber band is 
stretched, is all of the work done on it accounted for by the 
increase in elastic potential energy? If not, what happens 
to the rest of it? [Hint: Take a rubber band and stretch it 
rapidly several times. Then hold it against your wrist or 
your lip.]
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 129.  (a) Use dimensional analysis to show that the elec-
tric power output of a wind turbine is proportional to 
the cube of the wind speed. The relevant quantities on 
which the power can depend are the length L of the ro-
tor blades, the density ρ of air (SI units kg/m3), and the 
wind speed v. (b) One day, the wind blows at a steady 
8.0 m/s for 2.0 h, then at 6.0 m/s for 4.0 h. During 
which time interval is the energy output of the turbine 
larger? By what factor is it larger?

 130.  Show that U = −2K for any gravitational circular 
orbit. [Hint: Use Newton’s second law to relate the 
gravitational force to the acceleration required to main-
tain uniform circular motion.]

 131.   Use this method to find how the speed with 
which animals of similar shape can run up a hill de-
pends on the size of the animal. Let L represent some 
characteristic length, such as the height or diameter of 
the animal. Assume that the maximum rate at which the 
animal can do work is proportional to the animal’s sur-
face area: Pmax ∝ L2. Set the maximum power output 
equal to the rate of increase of gravitational potential 
energy and determine how the speed v depends on L.

 132.   An elevator can carry a 
maximum load of 1202 kg (in-
cluding the mass of the eleva-
tor car). The elevator has an 
801 kg counterweight that al-
ways moves with the same 
speed but in the opposite di-
rection to the car. (a) What is 
the average power that must 
be delivered by the motor to 
carry the maximum load up 
40.0 m in 60.0 s? (b) What 
would the average power be if 
there were no counterweight?

Review and Synthesis

 133. Two blocks of masses 
m1 and m2, resting on 
frictionless inclined 
planes, are connected 
by a massless rope 
passing over an ideal 
pulley. Angle ϕ = 45.0° and angle θ = 36.9°; mass m1 
is 6.00 kg and mass m2 is 4.00 kg. (a) Using energy 
conservation, find how fast the blocks are moving after 
they travel 2.00 m along the inclines. (b) Now solve the 
same problem using Newton’s second law. [Hint: First 
find the acceleration of each of the blocks. Then find 
how fast either block is moving after it travels 2.00 m 
along the incline with constant acceleration.]

 134.  Tarzan wants to swing on a vine across a river. He is 
standing on a ledge above the water’s edge, and the 
river is 5.00 m wide. The vine is attached to a tree 
branch that is 8.00 m directly above the opposite edge 
of the river. Initially the vine makes a 60.0° angle with 
the vertical as he is holding it. He swings across start-
ing from rest, but unfortunately the vine breaks when 
the vine is 20.0° from the vertical. (a) Assuming Tarzan 
weighs 900.0 N, what was the tension in the vine just 
before it broke? (b) Does he land safely on the other 
side of the river?

  

8.00 m

5.00 m

60.0°

 135. A packing carton slides down an inclined plane of angle 
30.0° and of incline length 2.0 m. (a) If the initial speed 
of the carton is 4.0 m/s directed down the incline, what 
is the speed at the bottom? Ignore friction. (b) How long 
does it take the carton to slide down the incline?

Problems 136–138. Three rocks are thrown from a cliff with 
the same initial speeds but in different directions: rock A is 
thrown straight down, rock B is tossed straight up, and rock 
C is thrown horizontally. Ignore air resistance. We are inter-
ested in comparing the speeds of the three rocks just before 
they hit the flat ground at the bottom of the cliff.
 136. Rank the final speeds of the three rocks.
 137. If the initial speed is 6.0 m/s and the vertical drop is 

18.0 m, find the final speeds of the three rocks.
 138. Compare two methods of comparing or calculating the 

final speeds: using constant-acceleration kinematics 
versus using energy. Which is easier? Why?

 139.  A skier starts from rest at the top of a frictionless 
slope of ice in the shape of a hemispherical dome with 
radius R and slides down the slope. At a certain height 
h, the normal force becomes zero and the skier leaves 
the surface of the ice. What is h in terms of R?

 140. A pendulum consists of a bob of mass m attached to the 
end of a cord of length L. The pendulum is released 
from a point at a height of L/2 above the lowest point of 
the swing. What is the tension in the cord as the bob 
passes the lowest point?

Motor

801 kg

1202 kg

m1
m2

ϕ θ
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 141.  A pendulum bob hung from 
a string of length L is released 
from height h above the bottom 
of its swing. The pendulum’s 
swing is interrupted by a hori-
zontal peg at height r above the 
bottom of the pendulum’s swing (point B). After the 
string hits the peg, the bob swings around in a circular 
arc of radius r. Express your answers in terms of L, r, 
and g, as needed. (a) If the bob is to travel in a full cir-
cle of radius r around the peg without the string going 
slack, what is the minimum possible speed it can have 
at the top of that circle (point A)? (b) If the string breaks 
when the bob is at point A, moving at the minimum 
speed found in part (a), how far to the right of point B 
is the bob when it’s at the same height as point B? 
(c) What is the minimum value of h for which the bob 
will make it to point A without going slack?

 142. A block is released from rest and slides down an in-
cline. The coefficient of sliding friction is 0.38, and the 
angle of inclination is 60.0°. (a) Use energy consider-
ations to find how fast the block is sliding after it has 
traveled a distance of 30.0 cm along the incline. 
(b) Solve the same problem using Newton’s second law 
instead of energy. Which method is easier?

Answers to Practice Problems

6.1 −68 kJ
6.2 43 N; 4500 J; she pulls with a greater force but its com-
ponent in the direction of the displacement is smaller.
6.3 (2.5 m)(1.50v)2/(mv2) = 5.6
6.4 29 m/s
6.5 0.24
6.6 16.5 m/s
6.7 48 km/s
6.8 195 km/s
6.9 4.0 J
6.10 3.2 cm
6.11 9.8 m/s

6.12 2.4 m
6.13 2 × 10−18 W
6.14 3.6 kW

Answers to Checkpoints

6.2 The force is perpendicular to the displacement.
6.3A Kinetic energy is never negative. Work can be posi-
tive, negative, or zero, because kinetic energy can increase, 
decrease, or stay the same.
6.3B (b), (c), (a) = (e), (d)
6.4A (a) The gravitational potential energy increases until it 
reaches its maximum value when the stone reaches its high-
est point above the ground. (b) The kinetic energy decreases 
as the potential energy increases. It is zero at the highest 
point.
(c) 

y
Potential

Kinetic

Kinetic and potential energies for a stone thrown
upward as a function of height

6.4B The final kinetic energy is smaller because the final 
speed is smaller. The initial and final potential energies are 
equal because the ball is at the same height. The final me-
chanical energy is less than the initial. The decrease in me-
chanical energy is caused by the nonconservative work done 
by the force of air resistance; some of the ball’s mechanical 
energy has been converted into other forms as the ball stirs 
up the air.
6.5 The mechanical energy is the same throughout 
 Mercury’s orbit. The kinetic energy is greatest at the perihe-
lion because the potential energy is smallest there.
6.7 The greatest elastic potential energy is at the maximum 
compression.

v

h

r

B

A



SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Protecting the body from 
injury (Examples 7.2, 7.3; 
Practice Problem 7.2)

∙ Jet propulsion in squid 
(Example 7.5)

∙ Ballistocardiography 
(Section 7.4)

∙ Center of mass of a 
 pregnant woman  
(Problem 33)

∙ Molecular motors  
(Problem 97)

Concepts & Skills to Review

•	 conservation	laws		
(Section	6.1)

•	 Newton’s	third	law	of	
	motion	(Section	4.4)

•	 area	under	a	graph	(Sec-
tions	2.2,	2.3,	and	6.6)

•	 Newton’s	second	law	of	
motion	(Section	4.3)

•	 velocity	(Section	3.3)
•	 components	of	vectors	

(Section	3.2)
•	 vector	subtraction		

(Sections	3.1	and	3.2)
•	 kinetic	energy		

(Section	6.3)

Linear Momentum

C H A P T E R

7

©Shay Levy/Alamy

After	a	collision,	an	accident	 investigator	measures	 the	 lengths	of	skid	
marks	 on	 the	 road.	 How	 can	 the	 investigator	 use	 this	 information	 to	
figure	out	the	velocities	of	the	vehicles	immediately	before	the	collision?
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7.1 A CONSERVATION LAW FOR A VECTOR QUANTITY

Previously, we learned how to determine the acceleration of an object by finding the 
net force acting on it and applying Newton’s second law of motion. If the forces hap-
pen to be constant, then the resulting constant acceleration enables us to calculate 
changes in velocity and position. Calculating velocity and position changes when the 
forces are not constant is much more difficult. In many cases, the forces cannot even 
be easily determined. Conservation of energy is one tool that enables us to draw 
conclusions about motion without knowing all the details of the forces acting. Recall, 
for example, how easily we can calculate the escape speed of a projectile using con-
servation of energy, without even knowing the path the object takes. Now imagine 
how difficult the same calculation would be using Newton’s second law, with a grav-
itational force that changes magnitude and direction depending on the path taken.

In this chapter we develop another conservation law. Conservation laws are power-
ful tools. If a quantity is conserved, then no matter how complicated the situation, we 
can set the value of the conserved quantity at one time equal to its value at a later time. 
The “before-and-after” aspect of a conservation law enables us to draw conclusions 
about the results of a complicated set of interactions without knowing all of the details.

The new conserved quantity, momentum, is a vector quantity, in contrast to energy, 
which is a scalar. When momentum is conserved, both the magnitude and the direction 
of the momentum must be constant. Equivalently, the x- and y-components of momentum 
are constant. When we find the total momentum of more than one object, we must add 
the momentum vectors according to the procedure by which vectors are always added.

7.2 MOMENTUM

The word momentum is often heard in broadcasts of sporting events. A sports broad-
caster might say, “The home team has won five consecutive games; they have the 
momentum in their favor.” The team with “momentum” is hard to stop; they are 
moving forward on a winning streak. A football player, running for the goal line with 
a football tucked under his arm, has momentum; he is hard to stop. This use of the 
word momentum is closer to the physics usage. In physics we would agree that the 
runner has momentum, but we have a precise definition in mind.

In everyday use, momentum has something to do with mass as well as with 
velocity. Would you rather have a running child bump into you, or a football player 
running with the same velocity? The child has much less momentum than the football 
player, even though their velocities are the same.

Could a quantity combining mass and velocity be useful in physics? Imagine a 
collision between two spaceships (Fig. 7.1). Let the spaceships be so far from planets 

v1i

m1 m2 m1 m2m1 m2

v2i v1f v2f

F12

F21

(a) Before (b) During (c) After

Figure 7.1 (a) Two spaceships about to collide. (b) During the collision, the spaceships exert forces on one another 
that are equal in magnitude and opposite in direction. (c) The velocities of the spaceships after the collision. During the 
collision, there is a momentum transfer between the ships, but the total momentum does not change.

CONNECTION:

Conservation laws can involve 
scalars, such as energy, or 
vectors, such as momentum.
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and stars that we can ignore gravitational interactions with celestial bodies. The space-
ships exert forces on one another while they are in contact. According to Newton’s 
third law, these forces are equal and opposite. The force on ship 2 exerted by ship 1 
is equal and opposite to the force exerted on ship 1 by ship 2:

F
→

21 = −F
→

12

The changes in velocities of the two spaceships are not equal and opposite if the 
masses are different. Suppose a large spaceship (mass m1) collides with a much 
smaller ship (mass m2 ≪ m1). Assume for now that the forces are constant during the 
time interval Δt that the spaceships are in contact. Although the forces have the same 
magnitude, the magnitudes of the accelerations of the two ships are different because 
their masses are different. The ship with the larger mass has the smaller acceleration.

The acceleration of either spaceship causes its velocity to change by

 Δv→ = a→ Δt =
F
→

m
 Δt (7-1)

The time interval Δt is the duration of the interaction between the two ships, so it 
must be the same for both ships.

Since the changes in velocity are inversely proportional to the masses, the changes 
in the products of mass and velocity are equal and opposite for the two objects 
involved in the interaction:

 m1 
Δv→1 = F

→
12 

Δt (7-2)

 m2 
Δv→2 = F

→
21 

Δt = (−F
→

12)Δt = −(m1 
Δv→1)  (7-3)

This is a useful insight, so we give the product of mass and velocity a name and 
symbol: linear momentum (symbol p→, SI unit kg·m/s). Linear momentum (or just 
momentum) is a vector quantity having the same direction as the velocity.

Definition of linear momentum

 p→ = mv→ (7-4)

The collision of the two spaceships causes changes in their momenta that are 
equal in magnitude and opposite in direction:

 Δp→2 = −Δp→1 (7-5)

In any interaction between two objects, momentum can be transferred from one object 
to the other. The momentum changes of the two objects are always equal and opposite, 
so the total momentum of the two objects is unchanged by the interaction. (By total 
momentum we mean the vector sum of the individual momenta of the objects.)

Example 7.1 gives some practice in finding the change in momentum of an object 
whose velocity changes. Remember that momentum is a vector quantity, so changes 
in momentum must be found by subtracting momentum vectors, not by subtracting 
the magnitudes of the momenta.

Example 7.1

Change of Momentum of a Moving Car

A car weighing 12 kN is driving due north at 30.0 m/s. 
After driving around a sharp curve, the car is moving 
east at 13.6 m/s. What is the change in momentum of 
the car?

Strategy The definition of momentum is p→ = mv→. We can 
start by finding the car’s mass. There are two potential pitfalls:

 1. momentum depends not on weight but on mass, and
continued on next page

CONNECTION:

Newton’s third law implies 
that during an interaction 
 momentum is transferred 
from one object to another.
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Example 7.1 continued

 2. momentum is a vector, so we must take its direction into 
consideration as well as its magnitude. To find the change 
in momentum, we need to do a vector subtraction.

Solution The car’s mass is

m =
W

g
=

1.2 × 104 N
9.8 m/s2 = 1220 kg

The car’s initial velocity is

v→i = 30.0 m/s, north

The car’s initial momentum is then

 p→i = mv→i = 1220 kg × 30.0 m/s north

 = 3.66 × 104 kg · m/s north

After the curve, the final velocity is

vf
→ = 13.6 m/s, east

The final momentum is

 p→f = mv→f = 1220 kg × 13.6 m/s east

 = 1.66 × 104 kg · m/s east

Momentum vectors are added and subtracted according 
to the same methods used for other vectors. To find the 
change in the momentum, we draw vector arrows represent-
ing the addition of p→f and −p→i (Fig. 7.2). Since in this case 
the three vectors in Fig. 7.2 form a right triangle, the magni-
tude of Δp→ can be found from the Pythagorean theorem

 ∣Δp→∣ = √p2
i + p2

f

 = √(3.66 × 104 kg · m/s)2 + (1.66 × 104 kg · m/s)2

 = 4.02 × 104 kg · m/s

From the vector diagram, Δp→ is directed at an angle θ east of 
south. Using trigonometry,

tan θ =
opposite
adjacent

=
pf

pi
=

1.66 × 104 kg · m/s
3.66 × 104 kg · m/s

= 0.454

θ = tan−1 0.454 = 24.4°

Since the weight is given with two significant figures,  
we report the change in momentum of the car as 4.0 ×  
104 kg·m/s directed 24° east of south.

Discussion As with displace-
ments, velocities, accelerations, 
and forces, it is crucial to re-
member that momentum is a 
vector. When finding changes in 
momentum, we must find the 
difference between final and ini-
tial momentum vectors. If the 
initial and final momenta had 
not been perpendicular, we 
would have had to resolve the 
vectors into x- and y-components 
in order to subtract them.

Practice Problem 7.1 Falling Apple

(a) What is the momentum of an apple weighing 1.0 N just 
before it hits the ground if it falls out of a tree from a height 
of 3.0 m? (b) The apple falls because of the gravitational 
interaction between the apple and Earth. How much does 
this interaction change Earth’s momentum? How much does 
it change Earth’s velocity?

East

θ

West

North

South

pf

–pi
Δp = pf – pi

Figure 7.2
Vector subtraction to find 
the change in momentum.

CHECKPOINT 7.2

In	Example	7.1,	if	the	speed	of	the	car	had	remained	constant,	would	Δp→	have	
been	zero?

7.3 THE IMPULSE-MOMENTUM THEOREM

We found that the change in momentum of an object when a single force acts on it 
is equal to the product of the force acting on the object and the time interval during 
which the force acts:

 Δp→ = F
→ 

Δt (7-6)

The product F
→ 

Δt is given the name impulse and the symbol J
→

. Since the impulse 
is  the product of a vector (the force) and a positive scalar (the time), impulse is a 
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vector quantity having the same direction as that of the force. In words, Δp→ = F
→  

Δt 
can be read as “the change in momentum equals the impulse.” The SI units of impulse 
are newton-seconds (N·s) and those of momentum are kilogram-meters per second 
(kg·m/s). These are equivalent units, as can be demonstrated using the definition of 
the newton (Problem 3).

If an object is involved in more than one interaction, then its change in momen-
tum during any time interval is equal to the total impulse during that time interval. 
The total impulse is the vector sum of the impulses due to each force. The total 
impulse is also equal to the net force times the time interval:

  J
→

total = F
→

1 
Δt + F

→
2 
Δt + · · ·

  = (F
→

1 + F
→

2 + · · ·)Δt =∑  F
→ 

Δt (7-7)

The total impulse on an object is equal to the change in the object’s momentum dur-
ing the same time interval. This relationship between total impulse and momentum 
change is called the impulse-momentum theorem and is especially useful in solving 
problems that involve collisions and impacts.

CONNECTION:

Impulse is a momentum 
transfer due to a force; work 
is an energy transfer due to  
a force.

 Impulse Work

Definition F
→ 

Δt  F
→

·Δr→
Vector or Vector Scalar*
 Scalar?
Physical Momentum Energy
 meaning  transfer  transfer
*The scalar or dot product of two 
vectors is introduced in Section 6.2.

Impulse-momentum theorem

 Δp→ = J
→

total =∑  F
→  

Δt (7-8)

Impulse When Forces Are Not Constant Our discussion so far has assumed that 
the forces acting are constant or that Δt is very small so the change in F

→
 is negligible. 

That is a rather unusual situation; the concept of momentum would be of limited use 
if it were applicable only when forces are constant. However, everything we have said 
still applies to situations where the forces are not constant, as long as we use the 
average force to calculate the impulse.

 Δp→ = J
→

total = ∑  F
→

av 
 Δt (7-9)

Conceptual Example 7.2

 Protecting the Body from Injury

Which causes the larger change in momentum of an object, 
an average force of 5 N acting for 4 s or an average force of 
2 N acting for 10 s? How might this principle be used when 
designing products to protect the human body from injury? 
Give an example.

Solution and Discussion The change in momentum is 
equal to the impulse. The product of the force and the time 
interval gives the momentum change of the object. Over a 
period of 4 s, the 5 N force causes a momentum change of 

magnitude (5 N × 4 s) = 20 N·s, and the 2 N force acting for 
10 s also causes a momentum change of magnitude (2 N × 
10 s) = 20 N·s. The smaller force causes the same change in 
momentum because it acts for a longer time interval.

When designing products to protect the human body, 
one goal is to lengthen the time period during which a veloc-
ity change occurs. For example, when a movie stuntman falls 
from a great height, he lands on a large air bag (Fig. 7.3), 
which changes his momentum much more gradually than if 
he were to fall onto concrete. The average force exerted by 

continued on next page

Figure 7.3
A stuntman lands safely on an air bag to break his fall. The air bag  reduces the risk of injury in 
two ways. It changes the stuntman’s momentum more gradually, so that forces of smaller magni-
tude act on his body. It also spreads these forces over a larger area so they are less likely to cause 
serious injury. 
©Amanda Edwards/Getty Images
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Conceptual Example 7.2 continued

the air bag on the stuntman is much smaller than the average 
force exerted by concrete would be. Nets used under circus 
acrobats serve the same purpose. The net gives and dips 
downward when the acrobat falls into it, gradually reducing 
the speed of the fall over a longer time interval than if she fell 
directly onto the ground.

Many features of the modern automobile are designed 
to lengthen the time interval during which a momentum 
change occurs in a crash, thereby lessening the forces acting 
on the passengers (Fig. 7.4).

Practice Problem 7.2  Pole-Vaulter Landing on 
a Padded Surface

A pole-vaulter vaults over the bar and falls onto thick pad-
ding. He lands with a speed of 9.8 m/s; the padding then 
brings him to a stop in a time of 0.40 s. What is the average 
force on his body due to the padding during that time inter-
val? Express your answer as a fraction or multiple of his 
weight W. [Hint: The force due to the padding is not the only 
force acting on the vaulter during the 0.40 s interval.]

Rear passenger
seat belts

Flexible
bumpersUnibody

construction

Front passenger
air bag

Front side
impact
air bags

Extra-thick
padded dash

Rear side
impact
air bags

Front driver
& passenger

seat belts

Reinforced steel
side beams

Dual head protection
air bags 

Front driver
air bag

Rear
crumple

zone

Front
crumple

zone

Rigid steel 
safety cage

Safety
glass

Figure 7.4 
Some safety features of the modern automobile that lengthen the time interval during which a momentum change occurs in a crash, thereby 
lessening the forces acting on the passengers. The car body often incorporates front and rear crumple zones, which slowly absorb the change 
in momentum during a crash while the driver and passengers are protected inside a rigid steel safety cage. Padded dashboards, seat belts, and 
air bags offer additional protection inside the safety cage. Even the safety glass is designed to distort a little when struck. An adult should 
wear a seat belt and sit at least 12 in. (30 cm) from an air bag container to avoid injury from the rapidly-inflating air bag itself. Young chil-
dren need additional protection. The American Academy of Pediatrics recommends that children younger than age 13 should sit in the back 
seat, and they should sit in a car seat or booster seat appropriate for their size until they are at least 4 feet 9 inches (1.45 m) tall.

Example 7.3

 Collision Between an Automobile and a Tree

A car moving at 20.0 m/s (44.7 mi/h) crashes into a tree. 
Find the magnitude of the average force acting on a passen-
ger of mass 65 kg in each of the following cases. (a) The 
passenger is not wearing a seat belt. He is brought to rest by 

a collision with the windshield and dashboard that lasts 
3.0 ms. (b) The car is equipped with a passenger-side air bag. 
The force due to the air bag acts for 30 ms, bringing the pas-
senger to rest.

continued on next page
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Example 7.3 continued

Strategy From the impulse-momentum theorem, Δp→ =
F
→

av Δt, where F
→

av is the average force acting on the passenger 
and Δt is the time interval during which the force acts. The 
change in the passenger’s momentum is the same in the two 
cases. What differs is the time interval during which the 
change occurs. It takes a larger force to change the momen-
tum in a shorter time interval.

Solution The magnitude of the passenger’s initial 
 momentum is

∣p→i∣ = ∣mv→i∣ = 65 kg × 20.0 m/s = 1300 kg·m/s

His final momentum is zero, so the magnitude of the momen-
tum change is

∣Δp→∣ = 1300 kg·m/s

This momentum change divided by the time interval gives 
the magnitude of the average force in each case.

(a) No seat belt: ∣F
→

av∣ =
∣Δp→∣
Δt

=
1300 kg·m/s

0.0030 s
= 4.3 × 105 N

(b) Air bag: ∣F
→

av∣ =
∣Δp→∣
Δt

=
1300 kg·m/s

0.030 s
= 4.3 × 104 N

Discussion The average forces required to bring the pas-
senger to rest are inversely proportional to the time interval 
over which those forces act. It is a far happier situation to 
have the momentum change over as long a period as possible 
to make the forces smaller. Automotive safety engineers de-
sign cars to minimize the average forces on the passengers 
during sudden stops and collisions.

The air bag also spreads the force over a much larger 
area than impact with a hard surface like the windshield, 
further reducing the risk of injury.

Practice Problem 7.3 Catching a Fastball

A baseball catcher is catching a fastball that is thrown at 
43 m/s (96 mi/h) by the pitcher. If the mass of the ball is 
0.15 kg and if the catcher moves his mitt backward toward 
his body by 8.0 cm as the ball lands in the glove, what is the 
magnitude of the average force acting on the catcher’s mitt? 
Estimate the time interval required for the catcher to move 
his hands.

EVERYDAY PHYSICS DEMO

Try	playing	catch	with	a	 friend	 [outdoors]	using	a	 raw	egg	or	a	water	balloon.	
How	do	you	move	your	hands	to	minimize	the	chance	of	breaking	the	egg	or	
balloon	when	you	catch	it?	What	 is	 likely	to	happen	if	you	forget	and	catch	it	
as	 you	would	a	ball?

Graphical Calculation of Impulse

When a force is changing, how can we find the impulse? We’ve asked similar ques-
tions in previous chapters. For simplicity we consider components along the x-axis. 
Recall:

∙ displacement = Δx = vav,x Δt = area under vx(t) graph
∙ change in velocity = Δvx = aav,x Δt = area under ax(t) graph

In both cases, the mathematical relationship is that of a rate of change. Velocity is 
the rate of change of position with time, and acceleration is the rate of change of 
velocity with time. Now we have force as the rate of change of momentum with time. 
By analogy:

∙ impulse = J
→

= Fav,x 
Δt = area under Fx(t) graph

So to find the impulse for a variable force, we find the area under the Fx(t) graph. 
Then, if we wish to know the average force, we can divide the impulse by the time 
interval during which the force is applied. If the graph line is below the horizontal 
axis (Fx < 0), the area “under” the graph is negative.

CONNECTION:

See Sections 2.2, 2.3, and 6.6 
to review how we used the 
area under a graph to find dis-
placement, change in velocity, 
and work done by a force.
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The variable force of Fig. 7.5a increases linearly from 0 to 4 N in a time of 2 s; 
then it decreases from 4 N to 0 N in 2 s. The area under the Fx(t) graph is found 
from the triangular area

J =
1
2

 base × height = 2 s × 4 N = 8 N·s

The average force during the 4 s time interval is

Fav =
J

Δt
=

8 N·s
4 s

= 2 N

Figure 7.5b shows the average force over the 4 s time interval; the area under the 
curve (the impulse) is the same as in Fig. 7.5a.
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Figure 7.5 (a) The area 
under the Fx(t) graph for a 
 variable force is the impulse. 
(b) The average force for a 
given time interval is the 
 constant force that would 
 produce the same impulse.

Example 7.4

Hitting the Wall

An experimental robotic car of mass 10.2 kg moving at 
1.2  m/s in the +x-direction crashes into a brick wall and 
 rebounds. A force sensor on the car’s bumper records the 
force that the wall exerts on the car as a function of time. 
These data are shown in graphical form in Fig. 7.6. (a) What 
is the maximum magnitude of the force exerted on the car? 
(b) What is the average force on the car during the collision? 
(c) At what speed does the car rebound from the wall?

Strategy The maximum force can be read directly from 
the graph. To solve parts (b) and (c) of this problem, we must 
find the impulse exerted on the car. Since impulse is the area 
under the Fx(t) curve, we’ll make an estimate of the area. The 
impulse is then equal to the average force times the time 
 interval and also to the car’s change in momentum. Once we 
find the change in momentum, we use it to find the car’s 
 final speed.

Given: m = 10.2 kg; vix = 1.2 m/s; graph of Fx(t)
To find: (a) Fmax; (b) Fav; (c) vfx

Solution (a) From Fig. 7.6, the maximum force is approx-
imately 750 N in magnitude.

(b) Each division on the horizontal axis represents 0.01 s, 
and each vertical division represents 200 N. Then the area of 
each grid box represents (200 N × 0.01 s) = 2 N·s. Counting 
the number of grid boxes between the Fx(t) curve and the 
time axis, estimating fractions of boxes, yields about  
10 boxes. Then the magnitude of the impulse is approximately

J = 10 boxes × 2 N·s/box = 20 N·s
continued on next page
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Figure 7.6
Force versus time for a car colliding with a wall.
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A Restatement of Newton’s Second Law

We can use the relationship between impulse and momentum to find a new way 
to understand Newton’s second law. Let’s rewrite the impulse-momentum theorem 
this way:

 ∑F
→

av =
Δp→

Δt
 (7-10)

What happens if we let the time interval Δt get smaller and smaller, approaching zero? 
Then the average force is taken over a smaller and smaller time interval, approaching 
the instantaneous force:

Example 7.4 continued

The collision is underway when the force is nonzero. So the 
collision begins at about t = 0.025 s and ends at about t = 
0.095 s. The duration of the collision is

Δt = 0.07 s

The magnitude of the average force is approximately

Fav =
J

Δt
=

20 N·s
0.07 s

= 300 N

(c) The impulse gives us the momentum change. The 
force exerted by the wall is in the −x-direction. Thus, the 
x-component of the impulse is negative. In the graph of Fx 
versus t, the area lies under the time axis and so is counted 
as negative. So, working with x-components,

Δpx = mvfx − mvix = Fav 
Δt = −20 N·s

Solving for vfx, we obtain

vfx =
Δpx + mvix

m
=

Δpx

m
+ vix

Substituting numerical values in this expression yields

vfx =
−20 N·s
10.2 kg

+ 1.2 m/s = −0.8 m/s

The car rebounds at a speed of 0.8 m/s.

Discussion As a check, we compare the average force with 
the maximum force. The average force is a bit less than half 

of the maximum force. If the force were a linear function of 
time, the average would be exactly half the maximum. Here, 
the average force is less than that because more time is spent 
at smaller values of force than at the larger values.

Practice Problem 7.4 Car-Van Collision

A car weighing 13.6 kN is moving at 10.0 m/s in the  
+x-direction when it collides head-on with a van weighing 
33.0 kN. The horizontal force exerted on the car before, dur-
ing, and after the collision is shown in Fig. 7.7. What is the 
car’s velocity just after the collision?
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Figure 7.7
Varying force on a car during a car-van collision.

Newton’s Second Law

 ∑F
→

= lim
Δt→0

 
Δp→

Δt
 (7-11)

CONNECTION:

Equation (7-11) is closer to 
Newton’s original statement 
of his second law and is more 
general than ΣF

→
= ma→.

In words, the net force is the rate of change of momentum.
Equation (7-11) is a more general statement of Newton’s second law than 

ΣF
→

= ma→; it does not assume that the mass is constant. One situation in which mass 
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is not constant is in a rocket engine, where fuel combustion produces hot gases that 
are then expelled at high speeds (Fig. 7.8). The rocket’s mass decreases as the exhaust 
gases are expelled.

When mass is constant, then it can be factored out:

 ∑F
→

= lim
Δt→0

 
Δp→

Δt
= lim

Δt→0
 
Δ(mv→)

Δt
= m lim

Δt→0
 
Δv→

Δt
= ma→ (7-12)

Thus, Eq. (7-11) reduces to the familiar form of Newton’s second law when mass is 
constant.

7.4 CONSERVATION OF MOMENTUM

Consider two pucks that bump into each other after sliding along a frictionless 
table. Figure 7.9 shows what happens to the two pucks before, during, and after 
their interaction. If we think of the two pucks as constituting a single system, then 
the gravitational interactions with Earth and the contact interactions with the table 
are external interactions—interactions with objects external to the system. The 
force of gravity on each object is balanced by the normal force on the same object, 
and, thus, there is no net impulse up or down. Together, these forces produce a net 
external force of zero, so they leave the system’s momentum unchanged. Since 
these two always cancel, we can ignore these external interactions and just focus 
on the interaction between the pucks. Therefore, we omit the normal and gravita-
tional forces in Fig. 7.9.

Until contact is made, there is no interaction between the pucks (ignoring the 
small gravitational interaction between the two). During the collision, the pucks exert 
forces on each other. Force F

→
12 is the contact force acting on mass m1, and force F

→
21 

is the contact force acting on mass m2. If we continue to regard the two pucks as parts 
of a single interacting system, then those forces are internal forces of this system. 
When they collide, some momentum is transferred from one puck to the other. The 
changes in momentum of the two are equal and opposite:

Δp→1 = −Δp→2

Since the change in momentum is the final momentum minus the initial momentum, 
we write:

 p→1f − p→1i = −(p→2f − p→2i)  (7-13)

Moving the initial momenta to the left side and the final momenta to the right:

 p→1i + p→2i = p→1f + p→2f (7-14)

Equation (7-14) says the sum of the momenta of the pucks before the interaction is 
equal to the sum of the momenta after the interaction; or, more simply, the total 

Figure 7.8 The Space Shuttle 
is propelled upward as hot 
gases are exhausted downward 
at high speeds from two solid-
rocket boosters. The Shuttle 
program flew 135 missions 
during its 30 year existence 
(1981–2011). The five Shuttle 
orbiters were the first reusable 
spacecraft.
Source: NASA
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F12 F21
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Figure 7.9 Two pucks with 
different masses sliding on a 
frictionless table. When they 
collide, they exert forces on 
one another that are equal in 
magnitude and opposite in 
direction (Newton’s third law). 
A momentum transfer between 
the pucks occurs, but the net 
external force on the system of 
two pucks is zero, so the total 
momentum of the system is 
conserved.
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momentum of the objects is unchanged by the collision. This isn’t surprising since, 
if some momentum is just transferred from one to the other, the total hasn’t changed. 
We say that momentum is conserved for this collision. The interaction between the 
pucks changes the momentum of each puck, but the total momentum of the system 
is unchanged.

In a system composed of more than two objects, interactions between objects 
inside the system do not change the total momentum of the system—they just trans-
fer some momentum from one part of the system to another. Only external interactions 
can change the total momentum of the system. To summarize:

∙ The total momentum of a system is the vector sum of the momenta of each object 
in the system.

∙ External interactions can change the total momentum of a system.
∙ Internal interactions do not change the total momentum of a system.

In the absence of external interactions, momentum is conserved:

Conservation of Linear Momentum

If the net external force acting on a system is zero, then the momentum of the 
system is conserved.

 If ∑F
→

ext = 0, p→i = p→f (7-15)

By definition, an isolated, or closed, system is subject to no external interactions; 
thus, linear momentum is always conserved for an isolated system. Note that the clas-
sification of forces in Chapter 6 as conservative or nonconservative has to do spe-
cifically with whether mechanical energy is conserved; it has nothing to do with 
momentum conservation. Unlike energy, momentum is a vector quantity, so both the 
magnitude and the direction of the momentum at the beginning and end of the inter-
action must be the same. In component form, both px and py are unchanged by the 
interaction.

CHECKPOINT 7.4

When	 is	 the	momentum	of	a	system	not	conserved?

Application of Momentum Conservation: Recoil of a Rifle During the short 
time interval when a bullet is fired from a rifle, the system of rifle plus bullet must 
conserve momentum. Suppose the rifle is at rest before the bullet is fired. The momen-
tum of the system is zero. When the bullet is fired, part of the system’s mass breaks 
away and travels in one direction with a certain momentum. The rifle, which is the 
remaining mass of the system, moves in the opposite direction such that the total 
momentum of the system is still zero. The rifle has a much larger mass than the bul-
let, so it has a much smaller speed. The backward motion of the rifle is the recoil felt 
by anyone who has held a rifle against her shoulder and squeezed the trigger.

Application: Ballistocardiography Ballistocardiography is a diagnostic technique 
that measures the recoil of the human body due to the pumping of the heart. If the 
net external force is zero, a momentum change in one part of the body is accompanied 
by an equal and opposite momentum change in the rest of the body. A ballistocardio-
gram records the tiny recoil movements of the body that occur as the heart contracts, 
ejects blood into the aorta, and then is refilled with blood.
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Application: Jets, Rockets, and Airplane Wings Jet engines and rockets operate 
by conservation of momentum. Hot combustion gases are forced out of nozzles at 
high speed by the engines. The increased backward momentum of the hot gases as 
they are expelled is accompanied by an increased forward momentum of the engines. 
Airplane wings generate lift by conservation of momentum. The main purpose of the 
wing is to deflect air downward, giving it a downward momentum component. (Exactly 
how the wing does this is the complicated part.) Since the wing pushes air downward, 
air pushes the wing upward.

Example 7.5

   Jet Propulsion in Squid

Squid (Fig. 7.10) are the fastest swimmers among marine 
invertebrates. During a fast swim to evade a predator, some 
species can reach speeds of more than 10 m/s. A squid pro-
pels itself much as a jet or rocket does. It starts by filling an 
internal cavity with water. Then the mantle, a powerful mus-
cle, squeezes the cavity and expels water through a narrow 
opening (the siphon) at high speed.

Suppose a squid of mass 182 g (including the water that 
will be expelled) is initially at rest. It then expels 54 g of 
water at an average speed of 62 cm/s (relative to the sur-
rounding water). Ignoring drag forces, how fast is the squid 
moving immediately after expelling the water?

Strategy Consider the squid and the water inside its cav-
ity to be a single system. Because we assume drag forces on 
the system are negligible, the net external force on the sys-
tem is zero and the momentum of the system is conserved.

Solution Initially the squid is at rest and the momentum of 
the system is zero. After expelling the water, the squid moves 
with velocity v→s and the expelled water moves with average 
velocity v→w. The total momentum of the system is con-
served:

p→i = p→f    ⇒     0 = msv
→

s + mwv→w

Here ms = 182 g − 54 g = 128 g is the mass of the squid after 
expelling the water. Solving for v→s yields

v→s = −
mwv→w

ms

The minus sign means the squid moves in the opposite direc-
tion from the jet of water. The squid’s speed is

vs =
mwvw

ms
=

(54 g) × (62 cm/s)
128 g

= 26 cm/s

Discussion Quick check: The mass of the squid is a bit 
more than twice the mass of the expelled water, so the speed 
of the water is a bit more than twice the speed of the squid.

A variation on the problem: Suppose the squid is not 
initially at rest. We can still apply conservation of momen-
tum; the only difference is that the initial momentum is not 
zero. If the squid is initially moving at velocity v→i, then

(ms + mw)v→i = msv
→

s + mwv→w

In this equation, all three velocities are measured with re-
spect to the surrounding water. For the initial momentum, 
we write (ms + mw)v→i because the water inside the squid is 
also moving at velocity v→i before it is expelled.

Practice Problem 7.5 Skaters Pushing Apart

Two skaters on in-line skates, Lisa and Bart, are initially at 
rest. They push apart and start moving in opposite direc-
tions. If Lisa’s speed just after they push apart is 2.0 m/s and 
her mass is 85% of Bart’s mass, how fast is Bart moving at 
that time?

Siphon

Figure 7.10
The Bigfin Reef Squid (Sepioteuthis lessoniana) is commonly 
found on coral reefs and in seagrass beds from Hawaii to the  
Red Sea.
©Junko Takahashi/a.collectionRF/Getty Images
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Conceptual Example 7.6

Escape on Slippery Ice

A pilot parachutes from his disabled aircraft and lands on the 
frozen surface of a lake. There is no breeze blowing and the 
lake surface is too slippery to walk or crawl on. What can the 
pilot do to reach the shore?

Strategy and Solution Since the person in jeopardy is a 
pilot, he begins to think about how hot gases forced backward 
from a jet engine cause the plane to move forward. That gives 
him an idea: he bundles the parachute into a package and 
pushes it as hard as possible in a direction away from the near-
est point of the shore. If friction is negligible, the net external 
force on the system of pilot plus parachute is zero and the total 
momentum of the system cannot change. The momentum of 
the parachute plus the momentum of the pilot must still equal 
zero. By conservation of momentum, the pilot begins sliding 
in the opposite direction and glides toward the shore.

Discussion If friction brings the pilot to rest before he 
reaches the shore, he can search his pockets and belt loops 
for other items to throw away. Once he reaches shore, he can 
tie one end of a rope to a tree and, holding onto the other end, 
venture back out onto the ice to retrieve any essential items. 
The rope provides him with an external force so he can get 
back to shore.

Practice Problem 7.6 Recoil of a Rifle

During an afternoon of target practice, you fire a Winchester 
.308 rifle of mass 3.8 kg. The bullets have a mass of 9.72 g 
and leave the rifle at a muzzle velocity of 860 m/s. If you are 
sloppy and fire a round when the butt of the rifle is not 
firmly up against your shoulder, at what speed does the rifle 
butt smash into your shoulder? (Ouch!)

7.5 CENTER OF MASS

We have seen that the momentum of an isolated system is conserved even though 
parts of the system may interact with other parts; internal interactions transfer 
momentum between parts of the system but do not change the total momentum 
of the system. We can define a point called the center of mass (cm) that serves 
as an average location of the system. Later, in Section 7.6, we prove that the 
center of mass of an isolated system must move with constant velocity, regardless 
of how complicated the motions of parts of the system may be. Then we can treat 
the mass of the system as if it were all concentrated at the cm, like a point par-
ticle. The cm of an object is not necessarily located within the object; for some 
objects, such as a boomerang, the center of mass is located outside of the object 
itself (Fig. 7.11a).

What if a system is not isolated, but has external interactions? Again imagine all 
of the mass of the system concentrated into a single point particle located at the cm. 
The motion of this fictitious point particle is determined by Newton’s second law, 
where the net force is the sum of all of the external forces acting on any part of the 
system. In the case of a complex system composed of many parts interacting with 
one another, the motion of the cm is considerably simpler than the motion of an 
arbitrary particle of the system (Fig. 7.11b,c).

Location of Center of Mass For a system composed of two particles, the center 
of mass lies somewhere on a line between the two particles. In Fig. 7.12, particles of 
masses m1 and m2 are located at positions x1 and x2, respectively. We define the loca-
tion of the cm for these two particles as

 xCM =
m1x1 + m2x2

m1 + m2
 (7-16)

The cm is a weighted average of the positions of the two particles. Here we use the 
word weighted in its statistical sense. The position of a particle with more mass counts 
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more—carries more statistical weight—than does the position of a particle with a 
smaller mass. We can rewrite Eq. (7-16) as a weighted average:

 xCM =
m1

M
 x1 +

m2

M
 x2 (7-17)

Here M = m1 + m2 represents the total mass of the system. The statistical weight used 
for the location of each particle is the mass of that particle as a fraction of the total 
mass of the system.

Suppose masses m1 and m2 are equal. Then we expect the cm to be located mid-
way between the two particles (Fig. 7.12a). If m1 = 2m2, as in Fig. 7.12b, then the 
cm is closer to the particle of mass m1. Figure 7.12b shows that, in this case, the cm 
is twice as far from m2 as from m1.

For a system of N particles, at arbitrary locations in three-dimensional space, the 
definition of the cm is a generalization of Eq. (7-16).

(b)

(a)

(c)

Center of mass

Center of mass

CM
CM

CM
Center of mass

Figure 7.11 (a) The center of mass of a boomerang is a point outside of the boomerang. (b) The path followed by 
the center of mass when a hammer is tossed through the air is a parabola, but the motion of any other point on the 
hammer (such as the red spot on the hammer head) is much more complex. (c) British high jumper Ben Challenger’s 
center of mass actually passes beneath the bar as his body passes over the bar.
©Michael Steele/Allsport/Getty Images

CM
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m1

x1

x2

m2

CM

(b)

m1

x1

x2
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x

x

Figure 7.12 (a) Two particles 
of equal mass located at posi-
tions x1 and x2 from the origin. 
The cm is midway between the 
two. (b) Two particles of 
unequal mass. The cm is closer 
to the more massive particle. For 
two children balanced on a see-
saw, the cm is at the fulcrum.

Definition of center of mass

Vector form: r→CM =
m1r→1 + m2r→2 + · · · +mNr→N

M
=
∑mnr→n

M
 (7-18)

Component form: xCM =
m1x1 + m2x2 + · · · + mNxN

M
=
∑mnxn

M
 (7-19)

yCM =
∑mnyn

M
   zCM =

∑mnzn

M

where M = m1 + m2 + · · · + mN = ∑mn

Remember that the symbol Σ stands for sum.
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Using Symmetry to Locate the Center of Mass Most objects we deal with in 
real life are not composed of a small set of point particles or spherically symmetri-
cal objects. In Example 7.7, we use the location of the center of each star to find 
the cm. Due to spherical symmetry, the cm of either star (by itself) is at its geomet-
ric center. The same technique can be applied to other shapes with symmetry. A 
standard 2 by 4, which is an 8 ft long uniform piece of lumber, has its center of 
mass at its geometric center. By contrast, a “loaded” die does not have its cm at its 
geometric center, since a small metal plug has been inserted near one face to make 
the distribution of mass in the die asymmetrical. The definition of the cm [Eq. (7-18)] 
still holds as long as (xn, yn, zn) are the coordinates of the cm of a part of the system 
with mass mn.

Example 7.7

Center of Mass of a Binary Star System

Due to the gravitational interaction between the two stars in 
a binary star system, each moves in a circular orbit around 
their cm. One star has a mass of 15.0 × 1030 kg; its center 
is located at x = 1.0 AU and y = 5.0 AU. The other has a 
mass of 3.0 × 1030 kg; its center is at x = 4.0 AU and y = 
2.0 AU. Find the cm of the system composed of the two 
stars. (AU stands for astronomical unit. 1 AU = the average 
distance between Earth and the Sun = 1.5 × 108 km.)

Strategy We treat the stars as point particles located at 
their centers. Since we are given x- and y-coordinates, the 
easiest way to proceed is to find the x- and y-coordinates of 
the cm. There is no particular advantage here in finding the 
position vector of the cm in terms of its length and direction.

Given: m1 = 15.0 × 1030 kg x1 = 1.0 AU y1 = 5.0 AU
 m2 = 3.0 × 1030 kg       x2 = 4.0 AU  y2 = 2.0 AU

To find: xCM; yCM

Solution The total mass of the system is the sum of the 
individual masses:

M = m1 + m2 =15.0 × 1030 kg + 3.0 ×1030 kg =18.0 ×1030 kg

For the x-position, we find

 xCM =
m1

M
x1 +

m2

M
x2

 =
15.0 × 1030 kg
18.0 × 1030 kg

× 1.0 AU +
3.0 × 1030 kg
18.0 × 1030 kg

× 4.0 AU

 = 1.5 AU

and for the y-position, we find

 yCM =
m1

M
y1 +

m2

M
y2

 =
15.0
18.0

× 5.0 AU +
3.0
18.0

× 2.0 AU = 4.5 AU

Discussion In Fig. 7.13, we mark the position of the cm. 
As we expect for the case of two particles, it is located 
closer to the larger mass and on a line connecting the two. 
Once the cm position is found in a problem, check to be 
sure its location is reasonable. Suppose we had made an 
error in this example and found the cm to be at x = 1.5 AU 
and y = 1.7 AU. This is not a reasonable location for the cm 
since it is not along the line connecting the two and is 
closer to the less massive star; we then would go back to 
look for the error.

Practice Problem 7.7 Three Balls with Unequal 
Masses

Three spherical objects are shown in Fig. 7.14. Their masses 
are m1 = m3 = 1.0 kg and m2 = 4.0 kg. Find the location of 
the cm for the three objects.

4
3
2
1
0

y (cm)

0 1 2 3 4 5 x (cm)

m2

m1 m3

Figure 7.14 
Three spheres located at x, y 
 positions (1.0 cm, 1.0 cm),  
(2.0 cm, 3.0 cm), and (3.0 cm, 
1.0 cm).

6

4

2

0

y (AU)

0 2 4 6 x (AU)

Figure 7.13 
Finding the cm for the system of two stars.
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7.6 MOTION OF THE CENTER OF MASS

Now that we know how to find the position of the cm of a system, we turn our atten-
tion to the motion of the cm. How is the velocity of the cm related to the velocities 
of the various parts of the system?

During a short time interval Δt, the displacement of the nth particle is Δr→n = v→n 
Δt 

and the displacement of the center of mass is Δr→CM = v→CM 
Δt. From the definition of 

the cm [Eq. (7-18)], the displacements must be related as follows:

 Δr→CM =
∑mn 

Δr→n

M
= v→CM  

Δt =
∑mnv→n 

Δt

M
 (7-20)

Dividing both sides by Δt and multiplying by M yields

 Mv→CM = ∑mnv→n (7-21)

The right side of Eq. (7-21) is the sum of the momenta of the particles that constitute 
the system—the total momentum of the system p→. Therefore,

 p→ = Mv→CM (7-22)

For two-dimensional motion, Eq. (7-22) is equivalent to two component equations

 px = MvCM,x and py = MvCM,y (7-23)

In Section 7.4, we showed that, for an isolated system, the total linear momentum 
is conserved. In such a system, Eq. (7-22) implies that the cm must move with constant 
velocity regardless of the motions of the individual particles. On the other hand, what 
if the system is not isolated? If a net external force acts on a system, the cm does not 
move with constant velocity. Instead, it moves as if all the mass were concentrated 
there into a fictitious point particle with all the external forces acting on that point. 
The motion of the cm obeys the following statement of Newton’s second law:

 ∑F
→

ext = Ma→CM (7-24)

where M is the total mass of the system, ΣF
→

ext is the net external force, and a→CM is 
the acceleration of the cm. [Eq. (7-24) is proved in Problem 43.]

CHECKPOINT 7.6

Turn	back	to	Fig.	7.11b.	Why	does	the	CM	of	the	hammer	move	along	a	para-
bolic	path?

Example 7.8

An Exploding Rocket

A model rocket is shot up from the ground to move as a pro-
jectile in a parabolic trajectory. At the top of the trajectory, 
a horizontal distance of 260 m from the launch point, an 
explosion occurs within the rocket, breaking it into two frag-
ments. One fragment, having one third of the mass of the 
rocket, falls straight down to Earth as if it had been dropped 
from rest at that point. At what horizontal distance from the 
launch point does the other fragment land? Ignore air resis-
tance. [Hint: The two fragments land simultaneously.]

Strategy At least two different strategies can be used to 
solve this problem.

Strategy 1: We apply conservation of momentum to the 
explosion. The momentum of the rocket just before the ex-
plosion is equal to the total momentum of the two fragments 
just after the explosion. Why can momentum conservation 
be assumed here? There is an external force—gravity— 
acting on the system. External forces change momentum. 
However, the explosion takes place in a very short time 

continued on next page
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260 m x0

Figure 7.15
Rocket motion after  
explosion.

Example 7.8 continued

 interval. From the impulse-momentum theorem [Eq. (7-8)], 
the momentum change of the system is the force of gravity 
multiplied by the time interval. As long as the time interval 
considered is sufficiently short, the momentum change of 
the system can be ignored.

Strategy 2: The explosion is caused by an internal inter-
action between two parts of the rocket. The motion of the cm 
of the system is unaffected by internal interactions, so it con-
tinues in the same parabolic path. Just before the explosion, 
the rocket is at the top of its trajectory, so it has py = 0 (with 
the y-axis pointing up). Just after the explosion, one frag-
ment is at rest. Then the other fragment must have py = 0; 
otherwise, conservation of momentum would be violated. 
Then both fragments have vy = 0 just after the explosion. 
Ignoring air resistance, they land simultaneously. At that 
same instant, the cm also reaches the ground.

Solution 1 First we make a sketch of the situation  
(Fig. 7.15). At the top of the trajectory, where the explosion 
occurs, vy = 0; the rocket is moving in the x-direction. The 
initial momentum just before the explosion is entirely in the 
x-direction. If M is the mass of the rocket, then

pix = Mvix

Just after the explosion, one third of the mass of the rocket is 
at rest; it then drops straight down under the influence of the 
gravitational force. This piece has zero momentum just after 
the explosion. To conserve momentum, the other two thirds 
of the rocket must have a momentum equal to the momentum 
just before the explosion.

pix = p1x + p2x

Mvix = 0 + (
2
3

M)v2x

Solving for v2x, we find

v2x =
3
2

vix

The y-component of momentum must also be con-
served:

piy = p1y + p2y

We know that both piy and p1y are zero; therefore, p2y is zero 
as well. Just after the explosion, both parts of the rocket have 
zero vertical components of velocity. Then both parts take 
the same time to fall to the ground as if the rocket had not 
exploded. With a horizontal velocity larger by a factor of 3

2, 
the second piece of the rocket travels a horizontal distance 
from the explosion a factor of 3

2 larger than 260 m (see 
Fig.  7.15). The distance from the launch point where this 
piece lands is

Δx = 260 m +
3
2

× 260 m = 650 m

Solution 2 The piece with mass 1
3M falls straight down 

and lands 260 m from the launch point. After the explosion, 
the cm continues to travel just as the rocket itself would have 
done if it had not broken apart. From the symmetry of the 
parabola, the cm touches the ground at a distance of 2 ×  
260 m = 520 m from the launch point. Since we know the 
location of the cm and that of one of the pieces, we can find 
where the second piece lands:

MxCM =
1
3

Mx1 +
2
3

Mx2

After canceling the common factor of M,

xCM =
1
3

x1 +
2
3

x2

Solving for x2 yields

x2 =
3xCM − x1

2
=

3 × 520 m − 260 m
2

= 650 m

which is the same answer that we found in Solution 1.

Discussion The insight that the motion of the cm is unaf-
fected by internal interactions can be of enormous help. 
Note, however, that solution 2 would not be so simple if the 
two fragments did not land simultaneously. As soon as one 
fragment (fragment 1) hits the ground, the external force on 
the system is no longer due exclusively to gravity, so the cm 
doesn’t continue to follow the same parabolic path. The 
 normal and frictional forces acting on fragment 1 affect its 

continued on next page
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Example 7.8 continued

subsequent motion and the subsequent motion of the cm 
even though the motion of fragment 2 is unaffected.

Practice Problem 7.8 Diana and the Raft

Diana (mass 55 kg) walks at 0.91 m/s (relative to the water) 
on a raft of mass 100.0 kg. The raft moves in the opposite 

direction at 0.50 m/s. Suppose it takes her 3.0 s to walk from 
one end of the raft to the other. (a) How far does Diana walk 
(relative to the water)? (b) How far does the raft move while 
Diana is walking? (c) How far does the cm of Diana and the 
raft move during the 3.0 s?

Example 7.9

Collision in the Air

A krypton atom (mass 83.9 u) moving with a velocity of 
0.80 km/s to the right and a water molecule (mass 18.0 u) 
moving with a velocity of 0.40 km/s to the left collide head-
on. The water molecule has a velocity of 0.60 km/s to the 
right after the collision. What is the velocity of the krypton 
atom after the collision? (The symbol “u” stands for the 
atomic mass unit.)

Strategy Since we know both initial velocities and one 
of the final velocities, we can find the second final veloc-

ity by applying momentum conservation. Let the subscript 
“1” refer to the krypton atom and let the subscript “2” 
 refer to the water molecule. Let the x-axis point to the 
right. Figure 7.16 shows before and after pictures of the 
collision.

Solution Momentum conservation requires that the final 
momentum be equal to the initial momentum:

p→1i + p→2i = p→1f + p→2f

continued on next page

7.7 COLLISIONS IN ONE DIMENSION

What Is a Collision? In the macroscopic world, a moving object bumps into 
another object that may be at rest or in motion. The two objects exert forces on each 
other while they are in contact; as a result, their velocities change. In the microscopic 
and submicroscopic world, our picture of a collision is different. When atoms collide, 
they don’t “touch” each other: the atom doesn’t have a definite spatial boundary, so 
there are no surfaces to make “contact.” However, the collision model is still useful 
for atoms and subatomic particles whenever there is an interaction in which the forces 
are strong over a short time interval, so that there is a clear “before collision” and a 
clear “after collision.” The time interval should be short enough that external forces 
do not significantly change the total momentum of the system.

Analyzing Collisions Using Momentum Conservation We can often use conser-
vation of momentum to analyze collisions even when external forces act on the col-
liding objects. If the net external force is small compared with the internal forces the 
colliding objects exert on each other during the collision, then the change in the total 
momentum of the two objects is small compared with the transfer of momentum from 
one object to the other. Then the total momentum after the collision is approximately 
the same as it was before the collision.

The same techniques that are used for collisions in the macroscopic world (car 
crashes, billiard ball collisions, baseball bats hitting balls) are also used in collisions 
in the microscopic world (gas molecules colliding with each other and with surfaces, 
radioactive decays of nuclei). First, we study collisions limited to motion along a line; 
later, we consider collisions limited to motion in a plane (in two dimensions).
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Elastic and Inelastic Collisions

Collisions are often classified based on what happens to the kinetic energy of the 
colliding objects. If balls of several different types are dropped from the same height 
h above a gym floor, they rebound to different heights, all less than h. In each case, 
the kinetic energy of the ball just after the collision with the floor is less than it was 
just before the collision; the amount of the kinetic energy decrease depends on the 
makeup of the ball and the floor. A deflated ball or a lump of clay would rebound 
very little or not at all. Why do some objects rebound much better than others?

Imagine a tennis ball colliding with a tennis racquet (Fig. 7.17). When the two 
make contact, the racquet strings start to stretch back and the ball starts to deform, 
becoming flattened and compressed. As this happens, the kinetic energy of the ball 
decreases while elastic potential energy is stored in the stretched strings and in the 
compressed rubber of the ball. Then, as the ball springs away from the racquet, much 
of this elastic potential energy is converted back into the kinetic energy of the ball. 
However, some of the energy is dissipated (changed into thermal energy). The amount 
of energy dissipated depends on the properties of the materials (string, felt, rubber).

Example 7.9 continued

Now we substitute p→ = mv→ for each momentum. It is easi-
est to work in terms of components. For simplicity we drop 
the “x” subscripts, remembering that all quantities refer to 
x-components:

m1v1i + m2v2i = m1v1f + m2v2f

Since m1/m2 = 83.9/18.0 = 4.661, we can substitute m1 = 
4.661m2:

4.661m2v1i + m2v2i = 4.661m2v1f + m2v2f

The common factor m2 divides out. Solving for v1f gives

 v1f =
4.661v1i + v2i − v2f

4.661

 =
4.661 × 0.80 km/s + (−0.40 km/s) − 0.60 km/s

4.661
 = 0.59 km/s

After the collision, the krypton atom moves to the right with 
a speed of 0.59 km/s.

Discussion To check this result, we calculate the total 
momentum (x-component) before and after the collision:

 m1v1i + m2v2i = (83.9 u)(0.80 km/s) + (18.0 u)(−0.40 km/s)
 = 60 u·km/s

 m1v1f + m2v2f = (83.9 u)(0.59 km/s) + (18.0 u)(0.60 km/s)
 = 60 u·km/s

Momentum is conserved. There is no need to convert u to kg 
since we only need to compare these two values.

If we made the mistake of thinking of momentum as 
a scalar, we would get the wrong answer. The sum of the 
magnitudes of the momenta before the collision is not 
equal to the sum of the magnitudes of the momenta after 
the collision. Conservation of energy is perhaps easier to 
understand intuitively since energy is a scalar quantity. 
Converting kinetic energy to potential energy is analo-
gous to moving money from a checking account to a sav-
ings account; the total amount of money is the same 
before and after. This sort of analogy does not work with 
momentum!

Practice Problem 7.9 Head-On Collision

A 5.0 kg ball is at rest when it is struck head-on by a 2.0 kg 
ball moving along a track at 10.0 m/s. If the 2.0 kg ball is at 
rest after the collision, what is the speed of the 5.0 kg ball 
after the collision?

Before

0.40 km/s0.80 km/s

0.60 km/s

H2OKr

H2OKr

After
v1f

p1i p2i

p1f p2f

Figure 7.16
Before and after snapshots of a collision.
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A collision in which the total kinetic energy is the same before and after is called 
elastic. There is no conservation law for kinetic energy by itself. Total energy is 
always conserved, but that does not preclude some kinetic energy being transformed 
into another type of energy. The elastic collision is just a special kind of collision in 
which no kinetic energy is changed into other forms of energy.

It can be shown (see Problem 60) that for any elastic collision between two 
objects, the relative speed is the same before and after the collision. (This fact is most 
useful in one-dimensional collisions; in two-dimensional collisions the direction of 
the relative velocity changes due to the collision.) Since the relative velocity is in the 
opposite direction after a one-dimensional collision—first the objects move together, 
then they move apart—we can write:

 v2ix − v1ix = −(v2fx − v1fx)  (7-25)

assuming the objects move along the x-axis. For a one-dimensional elastic collision, 
Eq. (7-25) is a useful alternative to setting the final kinetic energy equal to the initial 
kinetic energy.

When the final kinetic energy is less than the initial kinetic energy, the collision 
is said to be inelastic. Collisions between macroscopic objects are generally inelastic 
to some degree, but sometimes the change in kinetic energy is so small that we treat 
them as elastic. When a collision results in two objects sticking together, the collision 
is perfectly inelastic. The decrease of kinetic energy in a perfectly inelastic collision 
is as large as possible (consistent with the conservation of momentum). In a super-
elastic collision, the total kinetic energy of the system is larger after the collision. 
The explosion of the rocket in Example 7.8 is a superelastic collision; the explosion 
converts some stored chemical energy into translational kinetic energy.

Now that we have defined the different types of collisions, we can put together 
a problem-solving strategy for collision problems.

Figure 7.17 Collision 
between a tennis ball and a 
 racquet. During the first part of 
the collision, the racquet strings 
are stretched back and the ball 
is flattened and compressed. 
Elastic potential energy is 
stored in the stretched strings 
and in the compressed rubber 
interior of the ball. Then, as 
the racquet and ball return to 
their original shapes, much of 
this elastic potential energy is 
converted back into the kinetic 
energy of the ball.
©nikolay100/Getty Images

Problem-Solving Strategy for Collisions Involving Two Objects

 1. Draw before and after diagrams of the collision.
 2. Collect and organize information on the masses and velocities of the two 

objects before and after the collision. Express the velocities in component 
form (with correct algebraic signs).

 3. Set the sum of the momenta of the two before the collision equal to the sum 
of the momenta after the collision. Write one equation for each component:

 m1v1ix + m2v2ix = m1v1fx + m2v2fx (7-26)

 m1v1iy + m2v2iy = m1v1fy + m2v2fy (7-27)

 4. If the collision is known to be perfectly inelastic, set the final velocities equal:

 v1fx = v2fx and v1fy = v2fy (7-28)

 5. If the collision is known to be elastic, then either set the final kinetic energy 
equal to the initial kinetic energy:

 
1
2

 m1v
2
1i +

1
2

 m2v
2
2i =

1
2

 m1v
2
1f +

1
2

 m2v
2
2f (7-29)

  or set the relative speeds equal. For a one-dimensional collision along the 
x-axis, we would write

 v2ix − v1ix = −(v2fx − v1fx)  (7-30)

 6. Solve for the unknown quantities.
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CHECKPOINT 7.7A

Is	momentum	conserved	 in	a	perfectly	 inelastic	collision?

CHECKPOINT 7.7B

A	 bumper	 car	 traveling	 at	 speed	 vi	 is	 moving	 toward	 a	 second	 car	 of	 equal	
mass	that	is	at	rest.	Figure	7.18	shows	two	possible	outcomes	of	the	collision.	
(a,	 b)	 For	 each	 outcome,	 show	 that	 momentum	 is	 conserved	 and	 determine	
whether	 the	 collision	 is	 elastic,	 inelastic,	 or	 perfectly	 inelastic.	 (c)	 Think	 of	
another	possible	outcome	 that	 is	consistent	with	momentum	conservation.

Before

After

v = 0v = vi

v = 0 v = vi

Before

After

v = 0v = vi

v =   vi

(a) (b)

1–2

v =   vi
1–2

Figure 7.18 Two of the many possible outcomes of a collision between bumper cars of equal mass with one of them 
initially at rest.

Example 7.10

Collision at the Highway Entry Ramp

At a Route 3 highway on-ramp, a car of mass 1.50 × 103 kg 
is stopped at a stop sign, waiting for a break in traffic  before 
merging with the cars on the highway. A pickup of mass 
2.00 × 103 kg comes up from behind and hits the stopped 
car. Assuming the collision is elastic, how fast was the 
pickup going just before the collision if the car is pushed 
straight ahead onto the highway at 20.0 m/s just after the 
collision?

Strategy Conservation of momentum provides one equa-
tion relating the initial and final velocities. That the collision 

is elastic provides another equation. With two unknown ve-
locities, these two equations enable us to solve for both. Let 
“1” refer to the car stopped at the stop sign and “2” refer to 
the pickup. All motions are in one direction, which we call 
the x-axis. To simplify the notation, we drop the x subscripts 
and let all p’s and v’s refer to x-components. Figure 7.19 
shows a before and after diagram for the collision.
Given: m1 = 1.50 × 103 kg; m2 = 2.00 × 103 kg; before the 

collision, v1i = 0; after the collision, v1f = 20.0 m/s

To find: v2i (speed of the pickup just before the collision)

continued on next page

Before

After

v2i

m1m2

v1i = 0

m1m2

v1f = 20.0 m/sv2f

x

Figure 7.19 
Before and after diagrams of the collision  
(side view).
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Example 7.10 continued

Solution From conservation of momentum,

 m1v1i + m2v2i = m1v1f + m2v2f (1)

where we cross out the first term because v1i = 0. The colli-
sion is elastic, so the relative velocity after the collision is 
equal and opposite to the relative velocity before the colli-
sion [Eq. (7-25)]:

 v2i − v1i = −(v2f − v1f)  (2)

We want to solve these two equations for v2i, so we can elim-
inate v2f. Multiplying Eq. (2) through by m2 and rearranging 
yields
 m2v2i = m2v1f − m2v2f (3)

Adding Eqs. (1) and (3) gives

 2m2v2i = (m1 + m2)v1f (4)

Finally, we solve Eq. (4) for v2i:

v2i =
m1 + m2

2m2
 v1f =

1500 kg + 2000 kg
4000 kg

× 20.0 m/s = 17.5 m/s

Discussion To check this answer, first solve for v2f. Then 
you can verify that momentum is conserved [Eq. (1)] and 
that the relative velocity changes sign [Eq. (2)]. You can also 
calculate the total kinetic energy before and after the colli-
sion and show they are equal, as they must be for an elastic 
collision. We leave these checks to you for practice.

The road exerts frictional forces on the vehicles, so 
the net external force on the vehicles was not zero during 
the collision. We still use conservation of momentum 
 because during the short time interval of the collision, 
friction doesn’t have time to change the system’s momen-
tum significantly.

Practice Problem 7.10 Perfectly Inelastic  Collision 
Between the Cars

Instead of colliding elastically, suppose the two vehicles lock 
bumpers when they collide. With the same initial conditions 
(v1i = 0 and v2i = 17.5 m/s), find the speed at which the car 
would be pushed out onto the highway.

Suppose in Example 7.10 that the entry ramp speed limit is 20 mi/h (8.94 m/s). 
By measuring the length of the skid marks from the stop sign and estimating the 
coefficient of friction, the accident investigator can determine that the car was pushed 
onto the highway at a speed of 20.0 m/s. Witnesses confirm that the car was stopped 
before the collision. Then the investigator calculates the speed of the pickup just 
before the collision using conservation of momentum. The duration Δt of the collision 
is so short that we can ignore momentum changes due to external forces and treat the 
two vehicles as an isolated system. Finding that the pickup exceeded the speed limit, 
the investigator adds speeding to the charges against the driver of the pickup.

7.8 COLLISIONS IN TWO DIMENSIONS

Most collisions are not limited to motion in one dimension unless a track or other 
device constrains motion to a single line. In a two-dimensional collision, we use the 
same techniques we used for one-dimensional collisions, as long as we remember that 
momentum is a vector. To apply conservation of momentum, it is usually easiest to 
work with x- and y-components. If the collision is elastic, it’s usually easiest to set 
the total kinetic energies equal [Eq.  (7-29)], but an alternative is to set the relative 
speeds equal:

 │v→2i − v→1i│ = │v→2f − v→1f│ (7-31)

CONNECTION:

See the Problem-Solving 
Strategy in Section 7.7. The 
same strategy applies to 
 collisions in two or three 
 dimensions.

Example 7.11

Colliding Pucks on an Air Table

A small puck (mass m1 = 0.10 kg) is sliding to the right with an 
initial speed of 8.0 m/s on an air table (Fig. 7.20a). An air table 
has many tiny holes through which air is blown; the resulting 

air cushion allows objects to slide with very little friction. The 
puck collides with a larger puck (mass m2 = 0.40 kg), which is 
initially at rest. Figure 7.20b shows the outcome of the 

continued on next page
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continued on next page

Example 7.11 continued

 collision: the pucks move off at angles ϕ1 = 60.0° above and  
ϕ2 = 30.0° below the initial direction of motion of the small 
puck. (a) What are the final speeds of the pucks? (b) Is this 
an elastic collision or an inelastic collision? (c) If inelastic, 
what fraction of the initial  kinetic energy is converted to 
other forms of energy in the collision?

Strategy The system of two pucks is an isolated system 
because the net external force is zero. Therefore, we can ap-
ply conservation of momentum. Since motions in two di-
mensions are involved, we treat the horizontal and vertical 
components of momentum separately.

Figure 7.20 shows the pucks before and after the colli-
sion. Now we collect information on the known quantities, 
writing velocities in component form.

Masses: m1 = 0.10 kg; m2 = 0.40 kg

Before collision: v1ix = 8.0 m/s; v1iy = v2ix = v2iy = 0

After collision: v1fx = v1f cos ϕ1; v1fy = v1f sin ϕ1;
 v2fx = v2f cos ϕ2; v2fy = −v2f sin ϕ2
 (ϕ1 = 60.0° and ϕ2 = 30.0°)

To find:   v1f and v2f; total kinetic energy before and 
after the collision

Solution (a) Working with components means that we set 
the total x-component of momentum before the collision 
equal to the total x-component of momentum after the colli-
sion. We treat the y-components in the same way. The initial 
momentum is in the x-direction only. Thus, the total momen-
tum y-component after the collision must be zero.

First we set the x-component of the total momentum 
before the collision equal to the x-component of the total 
momentum after the collision:

p1ix + p2ix = p1fx + p2fx

Each momentum component is now rewritten using px = mvx:

m1v1ix + 0 = m1v1f 
 
cos ϕ1 + m2v2f 

 
cos ϕ2

Since m2 = 4.0m1,

m1v1ix = m1v1f cos 60.0° + 4.0m1v2f cos 30.0°

After canceling the common factor m1 and substituting nu-
merical values for cos 60.0° and cos 30.0°, this reduces to

 v1ix = 0.500v1f + 3.46v2f (1)

For conservation of the y-component of the momentum:

p1iy + p2iy = p1fy + p2fy

The y-component of p→2f is negative because the y-component 
of v→2f is negative.

 0 = m1v1f  sin  ϕ1 + (−4.0m1v2f  sin  ϕ2)

 0 = v1f sin  60.0° − 4.0v2f sin  30.0°

We solve for v2f in terms of v1f:

 v2f =
sin 60.0°

4.0 sin 30.0°
 v1f = 0.433v1f (2)

Equations (1) and (2) contain two unknowns. To elimi-
nate one unknown, we substitute 0.433v1f for v2f in Eq. (1):

v1ix = 0.500v1f + 3.46(0.433v1f) = 2.00v1f

Solving this equation gives the value of v1f:

v1f = 4.0 m/s

Then by substitution into Eq. (2), we find the value of v2f:

v2f = 0.433v1f = 1.73 m/s, which rounds to 1.7 m/s

(b) Now that we have the final speeds, we can compare the 
initial and final kinetic energies.

Ki =
1
2

m1v
2
1i

Ki =
1
2

(0.10 kg) × (8.0 m/s)2 = 3.2 J

and

 Kf =
1
2

 m1v
2
1f +

1
2

 m2v
2
2f

 =
1
2

(0.10 kg) × (4.0 m/s)2 +
1
2

(0.40 kg) × (1.73 m/s)2

 = 0.80 J + 0.60 J = 1.40 J

The final kinetic energy is less than the initial kinetic energy, 
so the collision is inelastic.

(c) The amount of kinetic energy converted to other forms of 
energy (primarily internal energy of the pucks) is

Ki − Kf = 3.2 J − 1.40 J = 1.8 J

y

x

Before After

m1

v1i v1f

v2f

m2

m1

m2

ϕ2

ϕ1

(b)(a)

v2i = 0

y

x

Figure 7.20
Snapshots in time, (a) before and (b) after a collision.
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Example 7.11 continued

We divide by the initial kinetic energy to find the fraction of 
the initial kinetic energy converted to other forms:

Ki − Kf

Ki
=

1.8 J
3.2 J

= 0.56

Less than half of the kinetic energy of the incident puck 
therefore survives the collision as the kinetic energies of the 
two pucks.

Discussion Although a two-dimensional collision prob-
lem tends to require more complicated algebra than a one-
dimensional problem, the physical principles are the same. 

As long as the net external force on the system is zero (or 
negligibly small), the total vector momentum must be 
 conserved.

Practice Problem 7.11 Colliding Balls

A ball of mass m1 moves at speed vi along the +x-axis toward 
a second ball of mass m2 = 5.0m1, which is initially at rest. 
After they collide, ball 1 moves along the +y-axis with speed 
v1, and ball 2 moves with speed v2 at an angle of 37° below 
the +x-axis. Find v1 in terms of vi.

Master the Concepts

 ∙ Definition of linear momentum:

 p→ = mv→ (7-4)

 ∙ During an interaction, momentum is transferred from 
one object or system to another, but the total momentum 
of the two is unchanged.

 Δp→2 = −Δp→1

 ∙ Impulse is the average force times the time interval.
 ∙ The total impulse equals the change in momentum:

 Δp→ = ∑  F
→ 

Δt (7-8)

 ∙ Impulse is the area under a graph of force versus time.

4

3

2

1

5

1 20 3 4 5 t (s)
0
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 ∙ The net force is the rate of change of momentum.

 ∑F
→

= lim
Δt→0

 

Δp→

Δt
 (7-11)

 ∙ The total momentum of a system is the (vector) sum of 
the momenta of each part of the system, and is equal to 
the total mass times the velocity of the center of mass:

 p→ = p→1 + p→2 + · · · + p→ N = Mv→CM (7-22)

 ∙ External interactions may change the total momentum 
of a system.

 ∙ Internal interactions do not change the total momentum 
of a system.

 ∙ Conservation of linear momentum: if the net external 
force acting on a system is zero, then the momentum of 
the system is conserved. A conserved quantity is one 
that remains unchanged as time passes.

 ∙ The x-coordinate of the cm of a system of N particles is

 xCM =
m1x1 + m2x2 + · · · + mNxN

M
 (7-19)

  where M is the total mass of the particles:

 M = m1 + m2 + · · · + mN

 ∙ No matter how complicated a system is, the cm moves 
as if all the mass of the system were concentrated to a 
point particle with all the external forces acting on it:

 ∑F
→

ext = Ma→CM (7-24)

  

Center of mass

CM

 ∙ The cm of an isolated system moves at constant velocity.
 ∙ Conservation of momentum is used to solve problems 

involving collisions, explosions, and the like. We may 
apply conservation of momentum in an approximate 

continued on next page
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Master the Concepts continued

way when the change in the system’s total momentum is 
small compared with the momentum transfers within 
the system due to the collision. The change in the sys-
tem’s total momentum is the external force times the 
time  interval (i.e., the impulse); in many cases a colli-

sion  occurs so quickly that the total momentum of the 
system just before the collision is very nearly equal to 
the total momentum just after the collision.

 ∙ Collisions are classified as inelastic, superelastic, or 
elastic if the total kinetic energy decreases, increases, or 
is unchanged, respectively. In a perfectly inelastic colli-
sion, the objects stick together.

Conceptual Questions

 1. You are trapped on the second floor of a burning build-
ing. The stairway is impassable, but there is a balcony 
outside your window. Describe what might happen in 
the following situations. (a) You jump from the second-
story balcony to the pavement below, landing stiff-
legged on your feet. (b) You jump into a privet hedge, 
landing on your back and rolling to your feet. (c) You 
jump into a firefighters’ net, landing on your back. What 
happens to the net as you land in it? What do the fire-
fighters do to cushion your fall even more?

 2. A force of 30 N is applied for 5 s to each of two objects 
of different masses. (a) Which one has the greater mo-
mentum change? (b) The greater velocity change? 
(c) The greater acceleration?

 3. If you take a rifle and saw off part of the barrel, the 
muzzle speed (the speed at which bullets emerge from 
the barrel) will be smaller. Why?

 4. A firecracker at rest explodes, sending fragments off in 
all directions. Initially the firecracker has zero momen-
tum, but after the explosion the fragments flying off 
each have quite a lot of momentum. Hasn’t momentum 
been created? If not, explain why not.

 5. An astronaut in deep space is taking a space walk when the  
tether connecting him to his spaceship breaks. How can he 
get back to the ship? He doesn’t have a rocket propulsion 
backpack, unfortunately, but he is carrying a big wrench.

 6. An astronaut hits a golf ball on the surface of the Moon. 
Is the momentum of the ball conserved while it is in 
flight? Is there a component of its momentum that is 
conserved?

 7. Which would be more effective: a hammer that collides 
elastically with a nail, or one that collides perfectly in-
elastically? Assume that the mass of the hammer is 
much larger than that of the nail.

 8. Mary and Daryl are new to the sport of rock climbing. 
Mary says she wants a stiff rope because a stiff rope is a 
strong rope. Daryl insists that a good climbing rope 
must have some stretch. Who is correct, and why?

 9. In your own words, phrase each of Newton’s three laws 
of motion as a statement about momentum.

 10. Two objects with different masses have the same kinetic 
energy. Which has the larger magnitude of momentum?

 11. A woman is 1.60 m tall. When standing straight, is her 
cm necessarily 0.80 m above the floor? Explain.

 12. The momentum of a system can only be changed by an 
external force. What is the external force that changes 
the momentum of a bicycle (with its rider) as it speeds 
up, slows down, or changes direction? Is it true that 
changes in the bicycle’s kinetic energy must come from 
an external force? Explain.

 13. In an egg toss, two people try to toss a raw egg back and 
forth without breaking it as they move farther and far-
ther apart. Discuss a strategy in terms of impulse and 
momentum for catching the egg without breaking it.

 14. In the “executive toy,” two balls are pulled back and 
then released. After the collision, two balls move away 
on the opposite side. Why do we never see three balls 
move away following this action, although with a lower 
velocity so that linear momentum is still conserved?

  ©Rubberball/SuperStock

 15. A baseball batting coach emphasizes the importance of 
“follow-through” when a batter is trying for a home run. 
The coach explains that the follow-through keeps the 
bat in contact with the ball for a longer time so the ball 
will travel a greater distance. Explain the reasoning be-
hind this statement in terms of the impulse-momentum 
theorem.

 16. Micah is standing on his frictionless skateboard facing a 
concrete wall. He wants to project himself backward by 
throwing small balls at the wall. His friend Jeremy says 
that Micah need not throw the balls against the wall, he 
just needs to throw the balls away from himself, but 
Micah says the balls need something to push against if 
they are to propel him backward. Who is right and why?
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Multiple-Choice Questions

 1. Two particles A and B of equal mass are located at some 
distance from each other. Particle A is at rest while B 
moves away from A at speed v. What happens to the 
center of mass of the system of two particles?

 (a) It does not move.
 (b) It moves with a speed v away from A.
 (c) It moves with a speed v toward A.
 (d) It moves with a speed 1

2v away from A.
 (e) It moves with a speed 1

2v toward A.
 2. A ball of mass m with initial speed v collides with an-

other ball of mass M, initially at rest. After the collision 
the two balls stick together, moving with speed V. The 
ratio of the final speed V to the initial speed v is V/v =

 (a)  
M

M + m
 (b) 

M + m

M

 (c)  
m

M + m
 (d)  

M + m

m

 (e)  √
M

M + m
 (f)  √

m

M + m

 3. Two uniform spheres with equal mass per unit volume are 
in contact with one another. The mass of sphere A is five 
times that of sphere B. The center of mass of the system is

 (a) at the point where A and B touch.
 (b)  inside sphere B somewhere on the line joining the 

centers of A and B.
 (c)  inside sphere A somewhere on the line joining the 

centers.
 (d) at the center of sphere A.
 (e) outside of both spheres.
 4. A 3.0 kg object is initially at rest. It then receives an impulse 

of magnitude 15 N·s. After the impulse, the object has
 (a) a speed of 45 m/s.
 (b) a momentum of magnitude 5.0 kg·m/s.
 (c) a speed of 7.5 m/s.
 (d) a momentum of magnitude 15 kg·m/s.
 5. An object of mass m drops from rest a little above 

Earth’s surface for a time t. Ignore air resistance. After 
time t the magnitude of its momentum is

 (a) mgt2

 (b) mgt
 (c) mg√t

 (d) √mgt

 (e) 
mgt2

2
 6. An object at rest suddenly explodes into three parts of 

equal mass. Two of the parts move away at right angles 
to each other and with equal speeds v. What is the veloc-
ity of the third part just after the explosion?

 (a) Direction of vector 1 and magnitude 2v
 (b) Direction of vector 2 and magnitude √2v

 (c)  Direction of vector 3 and magnitude 
1

√2
 v

 (d)  Direction of vector 2 

and magnitude 
1

√2
 v

 (e)  Direction of vector 1 

and magnitude 
1

√2
 v

Multiple-Choice Questions 7–12  refer to a situation in 
which a golf ball is projected straight upward in the +y- 
direction. Ignore air resistance. The answer choices are 
found in the figures.

(a)

t

(b)

t

(c)

t

(d)

t

(e)

t

(f)

t

 7. Which graph shows the acceleration ay of the ball as a 
function of time?

 8. Which graph shows the momentum py of the ball as a 
function of time?

 9. Which graph shows the vertical position y of the ball as 
a function of time?

 10. Which graph shows the total energy of the ball as a 
function of time?

 11. Which graph shows the potential energy of the ball as a 
function of time?

 12. Which graph shows the kinetic energy of the ball as a 
function of time?

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

7.2 Momentum; 7.3 The Impulse-Momentum 
Theorem
 1. Two cars, each of mass 1300 kg, are approaching each 

other on a head-on collision course. Each speedometer 
reads 19 m/s. What is the magnitude of the total mo-
mentum of the system?

 2. What is the momentum of an automobile (weight = 
9800 N) when it is moving at 35 m/s to the south?

45°

45°15°
30°

m

m

m

1

2
3

v

v
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 3. Verify that the SI unit of impulse is the same as the SI 
unit of momentum.

 4. A cue stick hits a cue ball with an average force of 24 N 
for a duration of 0.028 s. If the mass of the ball is 0.16 kg, 
how fast is it moving after being struck?

 5. A system consists of three particles with these masses 
and velocities: mass 3.0 kg, moving north at 3.0 m/s; 
mass 4.0 kg, moving south at 5.0 m/s; and mass 7.0 kg, 
moving north at 2.0 m/s. What is the total momentum of 
the system?

 6. A sports car traveling along a straight line increases its 
speed from 20.0 mi/h to 60.0 mi/h. (a) What is the ratio 
of the final to the initial magnitude of its momentum? 
(b) What is the ratio of the final to the initial kinetic energy?

 7. At t = 0, six birds are flying south at 10 m/s. Their 
masses and their velocities at a later time are:

 (a) 200 g, 10 m/s north at t = 30 s
 (b) 200 g, 10 m/s east at t = 30 s
 (c) 200 g, 20 m/s north at t = 60 s
 (d) 400 g, 20 m/s north at t = 60 s
 (e) 400 g, 20 m/s south at t = 10 s
 (f) 400 g, 30 m/s west at t = 90 s
  Rank them in order of the magnitude of the momentum 

change, smallest to largest.
 8. An object of mass 3.0 kg is projected into the air at a 55° 

angle. It hits the ground 3.4 s later. What is its change in 
momentum while it is in the air? Ignore air resistance.

 9. A ball of mass 5.0 kg moving with a speed of 2.0 m/s in 
the +x-direction hits a wall and bounces back with the 
same speed in the −x-direction. What is the change of 
momentum of the ball?

 10. Dynamite is being used to blast through rock to build a 
road. After one explosion, the masses and kinetic energies 
of several fragments of rock thrown up into the air are:

 (a) 8 kg, 400 J
 (b) 2 kg, 1600 J
 (c) 4 kg, 1600 J
 (d) 16 kg, 100 J
 (e) 1 kg, 1600 J
  Rank the fragments in order of the magnitude of their 

momentum, smallest to largest.
 11. An object of mass 3.0 kg is allowed to fall from rest 

under the force of gravity for 3.4 s. What is the change 
in its momentum? Ignore air resistance.

 12. What average force is necessary to bring a 50.0 kg sled 
from rest to a speed of 3.0 m/s in a period of 20.0 s? As-
sume frictionless ice.

 13. Five cars are traveling on a highway. Their masses and 
initial speeds are:

 (a) 1500 kg, 30 m/s
 (b) 1500 kg, 20 m/s
 (c) 1000 kg, 30 m/s
 (d) 1000 kg, 20 m/s
 (e) 2000 kg, 40 m/s

  The cars use the same braking force to slow down and 
stop. Rank the cars in order of the time it takes them to 
stop, from smallest to greatest.

 14. A bird (mass 31 g) is flying at 11.1 m/s when it flies 
into a glass window and bounces off at a speed of 
4.1  m/s. The bird is in contact with the glass for  
0.071 s. What is the average force on the bird during 
the  collision?

 15. For a safe reentry into Earth’s atmosphere, the pilots of a 
space capsule must reduce their speed from 2.6 × 104 m/s 
to 1.1 × 104 m/s. The rocket engine produces a back-
ward force on the capsule of 1.8 × 105 N. The mass of 
the capsule is 3800 kg. For how long must they fire their 
engine? [Hint: Ignore the change in mass of the capsule 
due to the expulsion of exhaust gases.]

 16. A 0.15 kg baseball traveling in a horizontal direction 
with a speed of 20 m/s hits a bat and is popped straight 
up with a speed of 15 m/s. (a) What is the change in 
momentum (magnitude and direction) of the baseball? 
(b) If the bat was in contact with the ball for 50 ms, what 
was the average force of the bat on the ball?

 17. An automobile traveling at a speed of 30.0 m/s applies 
its brakes and comes to a stop in 5.0 s. If the automobile 
has a mass of 1.0 × 103 kg, what is the average horizon-
tal force exerted on it during braking? Assume the road 
is level.

 18. A 3.0 kg object is initially moving northward at 15 m/s. 
Then a force of 15 N, toward the east, acts on it for 4.0 s. 
(a) At the end of the 4.0 s, what is the object’s final 
 velocity? (b) What is the change in momentum during 
the 4.0 s?

 19.  A boy of mass 60.0 kg is rescued from a hotel fire 
by leaping into a firefighters’ net. The window from 
which he leapt was 8.0 m above the net. The firefight-
ers lower their arms as he lands in the net so that he is 
brought to a complete stop in a time of 0.40 s. (a) What 
is his change in momentum during the 0.40 s interval? 
(b) What is the impulse on the net due to the boy dur-
ing the interval? [Hint: Do not ignore gravity.] (c) What 
is the average force on the net due to the boy during the 
interval?

 20.  A pole-vaulter of mass 60.0 kg vaults to a height of 
6.0 m before dropping to thick padding placed below to 
cushion her fall. (a) Find the speed with which she 
lands. (b) If the padding brings her to a stop in a time of 
0.50 s, what is the average force on her body due to the 
padding during that time interval?

7.4 Conservation of Momentum
 21.  A frog is sitting on a lily pad when it sees a deli-

cious fly. He darts out his tongue at a speed of 3.7 m/s 
to catch the fly. The tongue has a mass of 0.41 g, and the 
rest of the frog plus the lily pad have a mass of 12.5 g. 
What is the recoil speed of the frog and lily pad? Ignore 
drag forces on the pad due to the water.



268 CHAPTER	7 Linear Momentum

 22. Diana is standing on a raft of mass 100.0 kg that is float-
ing on a still lake. She decides to walk the length of the 
raft. If Diana’s mass is 55 kg and she walks with a veloc-
ity of 0.91 m/s with respect to the shore, how fast and in 
what direction does the raft move while Diana is walk-
ing? Assume the raft is stationary with respect to the 
shore before Diana starts walking.

vD

x

vr

 23. A rifle has a mass of 4.5 kg and it fires a bullet of mass 
10.0 g at a muzzle speed of 820 m/s. What is the recoil 
speed of the rifle as the bullet leaves the gun barrel?

 24. A 0.030 kg bullet is fired vertically at 200 m/s into a 
0.15 kg baseball that is initially at rest. The bullet lodges 
in the baseball and, after the collision, the baseball/ 
bullet rise to a height of 37 m. (a) What was the speed of 
the baseball/bullet right after the collision? (b) What was 
the average force of air resistance while the baseball/ 
bullet was rising?

 25. A submarine of mass 2.5 × 106 kg and initially at rest 
fires a torpedo of mass 250 kg. The torpedo has an ini-
tial speed of 100.0 m/s. What is the initial recoil speed 
of the submarine? Ignore the drag force of the water.

 26. A uranium nucleus (mass 238 u), initially at rest, under-
goes radioactive decay. After an alpha particle (mass 
4.0  u) is emitted, the remaining nucleus is thorium 
(mass 234 u). If the alpha particle is moving at 
0.050 times the speed of light, what is the recoil speed 
of the thorium nucleus? (Note: “u” is a unit of mass; it 
is not necessary to convert it to kg.)

 27. Dash is standing on his frictionless skateboard with 
three balls, each with a mass of 100 g, in his hands. The 
combined mass of Dash and his skateboard is 60 kg. 
How fast should Dash throw the balls forward if he 
wants to move backward with a speed of 0.50 m/s? Do 
you think Dash can succeed? Explain.

 28. A 58 kg astronaut is in space, far from any objects that 
would exert a significant gravitational force on him. He 
would like to move toward his spaceship, but his jet 
pack is not functioning. He throws a 720 g socket wrench 
with a velocity of 5.0 m/s in a direction away from the 
ship. After 0.50 s, he throws a 800 g spanner in the same 
direction with a speed of 8.0 m/s. After another 9.90 s, 
he throws a mallet with a speed of 6.0 m/s in the same 
direction. The mallet has a mass of 1200 g. How fast is 
the astronaut moving after he throws the mallet?

 29.  A cannon on a railroad car is facing in a direction 
parallel to the tracks. It fires a 98 kg shell at a speed of 
105 m/s (relative to the ground) at an angle of 60.0° 
above the horizontal. If the cannon plus car have a mass 
of 5.0 × 104 kg, what is the recoil speed of the car if it 
was at rest before the cannon was fired? [Hint: A com-
ponent of a system’s momentum along an axis is con-
served if the net external force acting on the system has 
no component along that axis.]

105 m/s

60.0

y

x

 30.  A marksman standing on a motionless railroad car 
fires a gun into the air at an angle of 30.0° from the 
horizontal. The bullet has a speed of 173 m/s (relative to 
the ground) and a mass of 0.010 kg. The man and car 
move to the left at a speed of 1.0 × 10−3 m/s after he 
shoots. What is the mass of the man and car? (See the 
hint in Problem 29.)

30.0°

7.5 Center of Mass; 7.6 Motion of the  
Center of Mass
 31. Particle A is at the origin and has a mass of 30.0 g. Particle 

B has a mass of 10.0 g. Where must particle B be located 
if the coordinates of the cm are (x, y) = (2.0 cm, 5.0 cm)?

 32. Particle A has a mass of 5.0 g and particle B has a mass 
of 1.0 g. Particle A is located at the origin and particle 
B is at the point (x, y) = (25 cm, 0). What is the location 
of the cm?
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 33.  Women often experience back pain when they are 
pregnant. Suppose a woman’s mass before pregnancy is 
68 kg and her center of mass when standing is located 
directly above the hips. By the thirty-fourth week of 
pregnancy, she has gained 8.0 kg (the combined mass of 
the fetus, the placenta, and the amniotic fluid). The cen-
ter of mass of this 8.0 kg is 18 cm in front of the hips. If 
she hasn’t changed her posture, how far in front of the 
hips is her center of mass? [Women have three wedge-
shaped lumbar vertebrae, whereas men have only two. 
This evolutionary adaptation permits a greater curva-
ture of the lumbar spine to keep a pregnant woman’s cm 
above the hips. See Nature 450 (Dec 13, 2007) 
pp. 1075–1078.]

©Stephen Mallon/Getty Images

 34. In an action movie, the hero dangles his archenemy over 
the edge of a cliff. The archenemy’s mass is 68 kg and 
his center of mass is 44 cm horizontally past the edge of 
the cliff. The hero’s center of mass is 15 cm horizontally 
from the edge of the cliff. What is the smallest value of 
the hero’s mass so that the cm of the two is not out past 
the edge of the cliff (which would make them both fall 
into the ravine below)? Is this scenario reasonable?

 35. The positions of three objects, written as (x, y) coordi-
nates, are: (1.0 m, 1.0 m), (2.0 m, 3.0 m), and (3.0 m, 
1.0  m). The objects have equal masses. If one of the 
objects is moved 12 cm in the positive x-direction, by 
how much does the cm move?

 36. The positions of three particles, written as (x, y) coordi-
nates, are: particle 1 (mass 4.0 kg) at (4.0 m, 0 m); 
particle 2 (mass 6.0 kg) at (2.0 m, 4.0 m); particle 3 
(mass 3.0 kg) at (−1.0 m, −2.0 m). What is the location 
of the cm?

 37.  Belinda needs to find the cm of a sculpture she has 
made so that it will hang in a gallery correctly. The 
sculpture is all in one plane and consists of various 
shaped uniform objects with masses and sizes as shown. 
Where is the cm of this sculpture? Assume the thin rods 
connecting the larger pieces have no mass and place the 
reference frame origin at the top left corner of the 
sculpture.

y

x
0.5 m

0.6 m

2.0 m

1.0 m

1.0 m

1.0 m

1.5 m

0.8 m

0.8 m

2.0 m

2.0 kg

2.0 kg

3.0 kg

5.0 kg

Origin

 38. Find the x-coordinate of the cm of the composite object 
shown in the figure. The sphere, cylinder, and rectangu-
lar solid all have a uniform composition. Their masses 
and dimensions are: sphere: 200 g, diameter = 10 cm; 
cylinder: 450 g, length = 17 cm, radius = 5.0 cm; rect-
angular solid: 325 g, length in x-direction = 16 cm, 
height = 10 cm, depth = 12 cm.

x

200 g 450 g 325 g

0

 39. Consider two falling objects. Their masses are 3.0 kg 
and 4.0 kg. At time t = 0, the two are released from rest. 
What is the velocity of their cm at t = 10.0 s? Ignore air 
resistance.

 40. Object A of mass 3 kg is moving in the +x-direction 
with a speed of 14 m/s. Object B of mass 4 kg is moving 
in the −y-direction with a speed of 7 m/s. What are the 
x- and y-components of the velocity of the cm of the two 
objects?

 41.  If a particle of mass 5.0 kg is moving east at 10 m/s 
and a particle of mass 15 kg is moving west at 10 m/s, 
what is the velocity of the cm of the pair?

 42. An object located at the origin and having mass M ex-
plodes into three pieces having masses M/4, M/3, and 
5M/12. The pieces scatter on a horizontal frictionless 
xy-plane. The piece with mass M/4 flies away with ve-
locity 5.0 m/s at 37° above the x-axis. The piece with 
mass M/3 has velocity 4.0 m/s directed at an angle of 
45° above the −x-axis. (a) What are the velocity compo-
nents of the third piece? (b) Describe the motion of the 
cm of the system after the explosion.

 43. Prove Eq. (7-24) ΣF
→

ext = Ma→CM. [Hint: Start with
  ΣF

→
ext = lim

Δt→0
 (Δp→/Δt) , whereΣF

→
ext is the net external 

  force acting on a system and p→ is the total momentum of 
the system.]
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7.7 Collisions in One Dimension
 44. A helium atom (mass 4.00 u) moving at 618 m/s to the 

right collides with an oxygen molecule (mass 32.0 u) 
moving in the same direction at 412 m/s. After the colli-
sion, the oxygen molecule moves at 456 m/s to the right. 
What is the velocity of the helium atom after the collision?

 45. A toy car with a mass of 120 g moves to the right with a 
speed of 0.75 m/s. A small child drops a 30.0 g piece of 
clay onto the car. The clay sticks to the car and the car 
continues to the right. What is the change in speed of the 
car? Consider the frictional force between the car and 
the ground to be negligible.

 46. In the railroad freight yard, an empty freight car of mass m 
rolls along a straight level track at 1.0 m/s and collides 
with an initially stationary, fully loaded boxcar of mass 
4.0m. The two cars couple together on collision. (a) What 
is the speed of the two cars after the collision? (b) Suppose 
instead that the two cars are at rest after the collision. With 
what speed was the loaded boxcar moving before the col-
lision if the empty one was moving at 1.0 m/s?

 47. A 0.020 kg bullet traveling at 200.0 m/s east hits a mo-
tionless 2.0 kg block and bounces off it, retracing its 
original path with a velocity of 100.0 m/s west. What is 
the final velocity of the block? Assume the block rests 
on a frictionless horizontal surface.

 48. A block of wood of mass 0.95 kg is initially at rest. A 
bullet of mass 0.050 kg traveling at 100.0 m/s strikes 
the block and becomes embedded in it. With what 
speed do the block of wood and the bullet move just 
after the collision?

 49. A 0.020 kg bullet is shot horizontally and collides with 
a 2.00 kg block of wood. The bullet embeds in the block, 
and the block slides along a horizontal surface for 
1.50 m. If the coefficient of kinetic friction between the 
block and surface is 0.400, what was the original speed 
of the bullet?

 50. A 2.0 kg block is moving to the right at 1.0 m/s just before 
it strikes and sticks to a 1.0 kg block initially at rest. What 
is the total momentum of the two blocks after the collision?

 51. A 75 kg man is at rest on ice skates. A 0.20 kg ball is 
thrown to him. The ball is moving horizontally at 25 m/s 
just before the man catches it. How fast is the man mov-
ing just after he catches the ball?

 52.  A BMW of mass 2.0 × 103 kg is traveling at 42 m/s. 
It approaches a 1.0 × 103 kg Volkswagen going 25 m/s in 
the same direction and strikes it in the rear. Neither driver 
applies the brakes. Ignore the relatively small frictional 
forces on the cars due to the road and due to air resistance. 
(a) If the collision slows the BMW down to 33 m/s, what 
is the speed of the VW after the collision? (b) During the 
collision, which car exerts a larger force on the other, or 
are the forces equal in magnitude? Explain.

 53. A 100 g ball collides elastically with a 300 g ball that 
is at rest. If the 100 g ball was traveling in the positive 

x-direction at 5.00 m/s before the collision, what are 
the velocities of the two balls after the collision?

 54. An object of 1.0 kg mass approaches a stationary object 
of 5.0 kg at 10.0 m/s and, after colliding, rebounds in 
the reverse direction along the same line with a speed of 
5.0 m/s. What is the speed of the 5.0 kg object after the 
collision?

 55. A 2.0 kg object is at rest on a frictionless surface when 
it is hit by a 3.0 kg object moving at 8.0 m/s. If the two 
objects are stuck together after the collision, what is the 
speed of the combination?

 56. A spring of negligible mass is compressed between two 
blocks, A and B, which are at rest on a frictionless hor-
izontal surface at a distance of 1.0 m from a wall on the 
left and 3.0 m from a wall on the right. The sizes of the 
blocks and spring are small. When the spring is re-
leased, block A moves toward the left wall and strikes 
it at the same instant that block B strikes the right wall. 
The mass of A is 0.60 kg. What is the mass of B?

 57.  A 0.010 kg bullet traveling horizontally at 400.0 m/s 
strikes a 4.0 kg block of wood sitting at the edge of a 
table. The bullet is lodged into the wood. If the table 
height is 1.2 m, how far from the table does the block hit 
the floor?

 58.  Two objects with masses m1 and m2 approach each 
other head-on with equal and opposite momenta so that 
the total momentum is zero. Show that, if the collision 
is elastic, the final speed of each object must be the 
same as its initial speed. (The final velocity of each ob-
ject is not the same as its initial velocity, however.)

 59.  A 6.0 kg object is at rest on a frictionless surface 
when it is struck head-on by a 2.0 kg object moving at 
10 m/s. If the collision is elastic, what is the speed of the 
6.0 kg object after the collision? [Hint: You will need 
two equations.]

 60.  Use the result of Problem 58 to show that in any elas-
tic head-on collision between two objects, the relative 
speed of the two is the same before and after the colli-
sion. [Hints: Look at the collision in its cm frame—the 
reference frame in which the cm is at rest. The relative 
speed of two objects is the same in any inertial reference 
frame.]

7.8 Collisions in Two Dimensions
 61. A firecracker is tossed straight up into the air. It explodes 

into three pieces of equal mass just as it reaches the high-
est point. Two pieces move off at 120 m/s at right angles 
to each other. How fast is the third piece moving?

 62. Object A of mass M has an original velocity of 6.0 m/s 
in the +x-direction toward a stationary object (B) of the 
same mass. After the collision, A has velocity compo-
nents of 1.0 m/s in the +x-direction and 2.0 m/s in the 
+y-direction. What is the magnitude of B’s velocity af-
ter the collision?
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 63.  (a) In Practice Problem 7.11, find the momentum 
change of the ball of mass m1 during the collision. Give 
your answer in x- and y-component form; express the 
components in terms of m1 and vi. (b) Repeat for the ball 
of mass m2. How are the momentum changes related?

 64. A hockey puck moving at 0.45 m/s collides with another 
puck that was at rest. The pucks have equal mass. The 
first puck is deflected 37° to the right and moves off at 
0.36 m/s. Find the speed and direction of the second 
puck after the collision.

 65.  Puck 1 sliding along the x-axis strikes stationary 
puck 2 of the same mass. After the elastic collision, 
puck 1 moves off at speed v1f in the direction 60.0° 
above the x-axis; puck 2 moves off at speed v2f in the 
direction 30.0° below the x-axis. Find v2f in terms of v1f.

 66. Block A, with a mass of 220 g, is traveling north on a 
frictionless surface with a speed of 5.0 m/s. Block B, 
with a mass of 300 g, travels west on the same surface 
until it collides with A. After the collision, the blocks 
move off together with a velocity of 3.13 m/s at an angle 
of 42.5° to the north of west. What was B’s speed just 
before the collision?

 67. A 2.0 kg object (the “projectile”) approaches a station-
ary object (the “target”) at 5.0 m/s. The projectile is 
deflected through an angle of 60.0° and its speed after 
the collision is 3.0 m/s. What is the magnitude of the 
momentum of the target after the collision?

 68. A 1500 kg car moving east at 17 m/s collides with a 
1800 kg car moving south at 15 m/s, and the two cars 
stick together. (a) What is the velocity of the cars right 
after the collision? (b) How much kinetic energy was 
converted to another form during the collision?

 69. A car with a mass of 1700 kg is traveling directly north-
east (45° between north and east) at a speed of 14 m/s 
(31 mi/h), and collides with a smaller car with a mass 
of 1300 kg that is traveling directly south at a speed of 
18 m/s (40 mi/h). The two cars stick together during the 
collision. With what speed and direction does the tan-
gled mess of metal move right after the collision?

 70.  In a nuclear reactor, a neutron moving at speed vi in 
the positive x-direction strikes a deuteron, which is at 
rest. The neutron is deflected by 90.0° and moves off 
with speed 0.577vi in the positive y-direction. Find the 
x- and y-components of the deuteron’s velocity after the 
collision. (The mass of the deuteron is twice the mass of 
the neutron.)

 71. Two identical pucks are on an air table. Puck A has an 
initial velocity of 2.0 m/s in the +x-direction. Puck B is at 
rest. Puck A collides with puck B, and A moves off at  
1.0 m/s at an angle of 60° above the x-axis. (a) What are 
the speed and direction of puck B after the collision? (b) 
Was the collision elastic?

 72. A block of mass 2.00 kg slides eastward along a friction-
less surface with a speed of 2.70 m/s. A chunk of clay with 

a mass of 1.50 kg slides southward on the same surface 
with a speed of 3.20 m/s. The two objects collide and move 
off together. What is their velocity after the collision?

 73. In a circus trapeze act, two acrobats fly through the air 
and grab on to each other, then together grab a swinging 
bar. One acrobat, with a mass of 60 kg, is moving at 
3.0 m/s at an angle of 10° above the horizontal, and the 
other, with a mass of 80 kg, is approaching her with a 
speed of 2.0 m/s at an angle of 20° above the horizontal. 
What is the direction and speed of the acrobats right 
after they grab on to each other?

 74. In a game of pool, suppose that the cue ball initially moves 
in the −x-direction. After a collision with the 4-ball of 
equal mass,  the cue ball moves at 52.0° above the −x-axis 
and the 4-ball moves at 38.0° below the −x-axis. Find the 
ratio of the balls’ speeds vc/v4 after the collision.

 75.  Two African swallows fly toward each other, carry-
ing coconuts. The first swallow is flying north horizon-
tally with a speed of 20 m/s. The second swallow is 
flying at the same height as the first and in the opposite 
direction with a speed of 15 m/s. The mass of the first 
swallow is 0.270 kg and the mass of his coconut is 
0.80 kg. The second swallow’s mass is 0.220 kg and her 
coconut’s mass is 0.70 kg. The swallows collide and 
lose their coconuts. Immediately after the collision, the 
0.80 kg coconut travels 10° west of south with a speed 
of 13 m/s, and the 0.70 kg coconut moves 30° east of 
north with a speed of 14 m/s. The two birds are tangled 
up with each other and stop flapping their wings as they 
travel off together. What is the velocity of the birds 
 immediately after the collision?

Collaborative Problems

 76.  Jane is sitting on a chair with her lower leg at a 
30.0° angle with respect to the vertical, as shown. You 
need to develop a computer model of her leg to assist in 
some medical research. If you assume that her leg can 
be modeled as two uniform cylinders, one with mass 
M = 20 kg and length L = 35 cm and one with mass m = 
10 kg and length l = 40 cm, where is the cm of her leg?

y

x

35 cm

30.0°

40 cm

Origin

 77. A 115 g ball is traveling to the left with a speed of 
30 m/s when it is struck by a racket. The force on the 
ball, directed to the right and applied over 21 ms of 
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 contact time, is shown in the graph. What is the speed of 
the ball immediately after it leaves the racket?

t (ms)0 7 13 210

600

400

200

F (N)

 78. A man with a mass of 65 kg skis down a frictionless hill 
that is 5.0 m high. At the bottom of the hill the terrain 
levels out. As the man reaches the horizontal section, he 
grabs a 20 kg backpack and skis off a 2.0 m high ledge. 
At what horizontal distance from the edge of the ledge 
does the man land?

5.0 m

2.0 m

Backpack

 79. A police officer is investigating the scene of an accident 
where two cars collided at an intersection. One car with 
a mass of 1100 kg moving west had collided with a 
1300 kg car moving north. The two cars, stuck together, 
skid at an angle of 30° north of west for a distance of 
17  m. The coefficient of kinetic friction between the 
tires and the road is 0.80. The speed limit for each car 
was 70 km/h. Was either car speeding?

 80.   In a lab experiment, two identical gliders on an 
air track are held together by a piece of string, com-
pressing a spring between the gliders. While they are 
moving to the right at a common speed of 0.50 m/s, one 
student holds a match under the string and burns it, let-
ting the spring force the gliders apart. One glider is then 
observed to be moving to the right at 1.30 m/s. (a) What 
velocity does the other glider have? (b) Is the total ki-
netic energy of the two gliders after the collision greater 
than, less than, or equal to the total kinetic energy before 
the collision? If greater, where did the extra energy 
come from? If less, where did the “lost” energy go?

Comprehensive Problems

 81. A sled of mass 5.0 kg is coasting along on a frictionless 
ice-covered lake at a constant speed of 1.0 m/s. A 1.0 kg 

book is dropped vertically onto the sled. At what speed 
does the sled move once the book is on it?

 82. An automobile weighing 13.6 kN is moving at 17.0 m/s 
when it collides with a stopped car weighing 9.0 kN. If 
they lock bumpers and move off together, what is their 
speed just after the collision?

 83. For a system of three particles moving along a line, an 
observer in a laboratory measures the following masses 
and velocities. What is the velocity of the cm of the 
 system?

Mass (kg) vx (m/s)
3.0 +290
5.0 −120
2.0 +52

 84. An intergalactic spaceship is traveling through space far 
from any planets or stars, where no human has gone 
before. The ship carries a crew of 30 people (of total 
mass 2.0 × 103 kg). If the speed of the spaceship is 1.0 × 
105 m/s and its mass (excluding the crew) is 4.8 × 104 kg, 
what is the magnitude of the total momentum of the ship 
and the crew?

 85. A baseball player pitches a fastball toward home plate at 
a speed of 41 m/s. The batter swings, connects with the 
ball of mass 145 g, and hits it so that the ball leaves the 
bat with a speed of 37 m/s. Assume that the ball is mov-
ing horizontally just before and just after the collision 
with the bat. (a) What is the magnitude of the change in 
momentum of the ball? (b) What is the impulse deliv-
ered to the ball by the bat? (c) If the bat and ball are in 
contact for 3.0 ms, what is the magnitude of the average 
force exerted on the ball by the bat?

 86.  A tennis ball of mass 0.060 kg is served. It strikes the 
ground with a velocity of 54 m/s (120 mi/h) at an angle 
of 22° below the horizontal. Just after the bounce it is 
moving at 53 m/s at an angle of 18° above the horizon-
tal. If the interaction with the ground lasts 0.065 s, what 
average force did the ground exert on the ball?

 87. A uniform rod of length 30.0 cm is bent into the shape 
of an inverted U. Each of the three sides is of length 
10.0 cm. Find the location, in x- and y-coordinates, of 
the cm as measured from the origin.

(10.0, 0)(0, 0)

(10.0, 10.0)(0, 10.0)

y (cm)

x (cm)
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 88. A child places 12 wooden blocks together, as shown in 
the figure. If each block has the same mass and den-
sity, where is the cm of these blocks? Each block is a 
cube with sides of 1.0 inch length. The origin of the 
coordinate system is at the center of the farthest block 
to the left.

y

z x

Origin

 89. To contain a violent mob, the riot squad approaches 
with fire hoses. Suppose that the rate of flow of water 
through a fire hose is 24 kg/s, and the stream of water 
from the hose moves at 17 m/s. What force is exerted by 
such a stream on a person in the crowd? Assume that the 
water comes to a dead stop against the person’s chest.

 90. An inexperienced catcher catches a 130 km/h fastball 
of mass 140 g within 1 ms, whereas an experienced 
catcher slightly retracts his hand during the catch, ex-
tending the stopping time to 10 ms. What are the aver-
age forces imparted to the two gloved hands during 
the catches?

 91.  A stationary 0.1 g fly encounters the windshield of a 
1000 kg automobile traveling at 100 km/h. (a) What is 
the change in momentum of the car due to the fly? 
(b) What is the change of momentum of the fly due to 
the car? (c) Approximately how many flies does it take 
to reduce the car’s speed by 1 km/h?

 92. A 0.15 kg baseball is pitched with a speed of 35 m/s 
(78  mi/h). When the ball hits the catcher’s glove, the 
glove moves back by 5.0 cm (2 in.) as it stops the ball. 
(a) What was the change in momentum of the baseball? 
(b) What impulse was applied to the baseball? (c) Assum-
ing a constant acceleration of the ball, what was the 
 average force applied by the catcher’s glove?

 93.  An object of mass 2.0 kg (the “projectile”) approaches 
a stationary object (the “target”) at 8.0 m/s. The projectile 
is deflected through an angle of 90.0° and its speed after 
the collision is 6.0 m/s. What is the speed of the target 
after the collision if the collision is elastic?

 94. A radioactive nucleus is at rest when it spontaneously 
decays by emitting an electron and neutrino. The 
 momentum of the electron is 8.20 × 10−19 kg·m/s, and it 
is directed at right angles to that of the neutrino, as shown 
in the diagram. The neutrino’s momentum has magnitude 
5.00 × 10−19 kg·m/s. (a) In what direction does the newly 
formed (“daughter”) nucleus recoil? (b) What is its 
 momentum?

Electron

Neutrino
Daughter nucleus

x

y

 95.  A 60.0 kg woman stands at one end of a 120 kg raft 
that is 6.0 m long. The other end of the raft is 0.50 m 
from a pier. (a) The woman walks toward the pier until 
she gets to the other end of the raft and stops there. 
Now what is the distance between the raft and the 
pier? (b) In (a), how far did the woman walk (relative 
to the pier)?

 96.  A jet plane is flying at 130 m/s relative to the 
ground. There is no wind. The engines take in 81 kg of 
air per second. Hot gas (burned fuel and air) is expelled 
from the engines at high speed. The engines provide a 
forward force on the plane of magnitude 6.0 × 104 N. 
At what speed relative to the ground is the gas being 
expelled? [Hint: Look at the momentum change of the 
air taken in by the engines during a time interval Δt.] 
This calculation is approximate since we are ignoring 
the 3.0 kg of fuel consumed and expelled with the air 
each second.

 97.   Within cells, small organelles containing newly 
synthesized proteins are transported along microtubules 
by tiny molecular motors called kinesins. What force 
does a kinesin molecule need to deliver in order to ac-
celerate an organelle with mass 0.01 pg (10−17 kg) from 
0 to 1 μm/s within a time of 10 μs?

 98.  The pendulum bobs in the figure are made of soft 
clay so that they stick together after impact. The mass of 
bob A is half that of bob B. Bob B is initially at rest. 
What is the ratio of the kinetic energy of the combined 
bobs, just after impact, to the kinetic energy of bob A 
just before impact?

 99.  The pendulum bobs in the figure are made of soft 
clay so that they stick together after impact. The mass of 
bob A is half that of bob B. Bob B is initially at rest. If 
bob A is released from a height h above its lowest point, 
what is the maximum height attained by bobs A and B 
after the collision?

B

A
h

Problems	98	and	99
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 100.  A flat, circular metal disk of uniform thickness has 
a radius of 3.0 cm. A hole is drilled in the disk that is 
1.5 cm in radius. The hole is tangent to one side of the 
disk. Where is the cm of the disk now that the hole has 
been drilled? [Hint: The original disk (before the hole 
is drilled) can be thought of as having two pieces—the 
disk with the hole plus the smaller disk of metal drilled 
out. Write an equation that expresses xCM of the origi-
nal disk in terms of the centers of mass of the two 
pieces. Since the thickness is uniform, the mass of any 
piece is proportional to its area.]

x (cm)3–3

–3

3.0 cm

y (cm)
3

0

 101. Two identical gliders, each with elastic bumpers and 
mass 0.10 kg, are on a horizontal air track. Friction is 
negligible. Glider 2 is stationary. Glider 1 moves to-
ward glider 2 from the left with a speed of 0.20 m/s. 
They collide. After the collision, what are the veloci-
ties of glider 1 and glider 2?

 102. In Example 7.8, suppose instead that the fragment of 
mass 2M/3 has zero velocity immediately after the ex-
plosion. Where does the other fragment land?

 103.  A radium nucleus (mass 226 u) at rest decays into a 
radon nucleus (symbol Rn, mass 222 u) and an alpha 
particle (symbol α, mass 4 u). (a) Find the ratio of the 
speeds vα/vRn after the decay. (b) Find the ratio of the 
magnitudes of the momenta pα/pRn. (c) Find the ratio 
of the kinetic energies Kα/KRn. (Note: “u” is a unit of 
mass; it is not necessary to convert it to kg.)

Review and Synthesis

 104. Gerald wants to know how fast he can throw a ball, so 
he hangs a 2.30 kg target on a rope from a tree. He 
picks up a 0.50 kg ball of putty and throws it horizon-
tally against the target. The putty sticks to the target 
and the putty and target swing up a vertical distance of 
1.50 m from its original position. How fast did Gerald 
throw the ball of putty?

 105. It is the bottom of the ninth inning at a baseball game. 
The score is tied and there is a runner on second base 
when the batter gets a hit. The 85 kg base runner rounds 
third base and is heading for home with a speed of 
8.0 m/s. Just before he reaches home plate, he crashes 

into the opposing team’s catcher, and the two players 
slide together along the base path toward home plate. 
The catcher has a mass of 95 kg and the coefficient of 
friction between the players and the dirt on the base path 
is 0.70. How far do the catcher and base runner slide?

 106.  Pendulum bob A has half the mass of pendulum 
bob B. Each bob is tied to a string that is 5.1 m long. 
When bob A is held with its string horizontal and then 
released, it swings down and, once bob A’s string is 
vertical, it collides elastically with bob B. How high 
does each bob rise after the collision?

 107. At the beginning of a scene in an action movie, the 
78.0 kg star, Indianapolis Jones, stands on a ledge 3.70 m 
above the ground and the 55.0 kg heroine, Georgia 
Smith, stands on the ground. Jones swings down on a 
rope, grabs Smith around the waist, and continues 
swinging until they come to rest on another ledge on 
the other side of the set. At what height above the 
ground should the second ledge be placed? Assume 
that Jones and Smith remain nearly upright during 
the swing so that their cms are always the same dis-
tance above their feet.

 108. A Vulcan spaceship has a mass of 65 000 kg and a 
Romulan spaceship is twice as massive. Both have en-
gines that generate the same total force of 9.5 × 106 N. 
(a) If each spaceship fires its engine for the same 
amount of time, starting from rest, which will have the 
greater kinetic energy? Which will have the greater 
momentum? (b) If each spaceship fires its engine for 
the same distance, which will have the greater kinetic 
energy? Which will have the greater momentum? 
(c) Calculate the energy and momentum of each space-
ship in parts (a) and (b), ignoring any change in mass 
due to whatever is expelled by the engines. In part (a), 
assume that the engines are fired for 100 s. In part (b), 
assume that the engines are fired for 100 m.

 109. A boy of mass 60 kg is sledding down a 70 m slope 
starting from rest. The slope is angled at 15° below the 
horizontal. After going 20 m along the slope, he passes 
his friend, who hops onto the sled. The friend has a 
mass of 50 kg, and the coefficient of kinetic friction 
between the sled and the snow is 0.12. Ignoring the 
mass of the sled, find their speed at the bottom.

 110.  Two pendulum bobs have equal masses and lengths 
(5.1 m). Bob A is initially held horizontally while bob 
B hangs vertically at rest. Bob A is released and col-
lides elastically with bob B. How fast is bob B moving 
immediately after the collision?

5.1 m

5.1 m

B

A
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 111.  A 0.122 kg dart is fired from a gun with a speed of 
132 m/s horizontally into a 5.00 kg wooden block. The 
block is attached to a spring with a spring constant of 
8.56 N/m. The coefficient of kinetic friction between the 
block and the horizontal surface it is resting on is 0.630. 
After the dart embeds itself into the block, the block 
slides along the surface and compresses the spring. What 
is the maximum compression of the spring?

Answers to Practice Problems

7.1 (a) 0.78 kg·m/s downward; (b) 0.78 kg·m/s toward the 
apple; 1.3 × 10−25 m/s
7.2 3.5W upward 
7.3 1700 N; 0.0037 s
7.4 0.8 m/s in the −x-direction
7.5 1.7 m/s
7.6 2.2 m/s
7.7 (2.0 cm, 2.3 cm)
7.8 (a) 2.7 m; (b) 1.5 m in the other direction; (c) the cm 
does not move
7.9 4.0 m/s
7.10 10.0 m/s
7.11 v1 = 0.75vi

Answers to Checkpoints

7.2 No, because the direction of the car’s momentum would 
have changed.
7.4 When external forces act on a system, the momentum of 
the system is not conserved.
7.6 Despite the fact that the hammer is rotating, it is in free 
fall and its cm follows the same trajectory as a point particle 
in free fall.
7.7A Yes. Momentum is conserved in both elastic and in-
elastic collisions. In an inelastic collision, the initial and 
 final kinetic energies are not equal.
7.7B (a) The total momentum is conserved: 

mvi + 0 = 0 + mvi

The total kinetic energies before and after are: Ki = 1
2mv2

i + 0 
and Kf = 0 + 1

2mv2
i . They are equal so the collision is elastic. 

(b) The total momentum is conserved: 

mvi + 0 = m(1
2vi) + m(1

2vi)

The final velocities are the same so the collision is perfectly 
inelastic. (c) Suppose that the blue car’s velocity x-component 
after the collision is 1

4vi and the red car’s is 3
4vi. This conserves 

momentum:

mvi + 0 = m(1
4vi) + m(3

4vi)

The total kinetic energies before and after are: Ki = 1
2mv2

i + 0 
and 

Kf = 1
2m(1

4vi)2 + 1
2m(3

4vi)2 = 5
16mv2

i

Kf < Ki so the collision is inelastic.



SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Torque exerted by athletes, 
 animals (Practice Problem 8.4; 
Problems 42, 53, 94, 113)

∙ Posture and center of gravity of 
animals, athletes (Section 8.4; 
Practice Problem 8.9; Con-
ceptual Questions  15, 16; 
Problems 90, 91) 

∙ Torque and equilibrium in 
the human body (Section 8.5; 
Example 8.10; Practice Prob-
lem 8.10; Conceptual Ques-
tions 10–11; Problems 18, 
43–48, 87, 119, 125)

∙ Conservation of angular 
 momentum in figure skaters, 
divers (Section 8.8; Multiple- 
Choice Question 10; Prob-
lems 77–79, 82, 83)

•	 translational	equilibrium		
(Section	4.2)

•	 uniform	circular	motion	and	
	circular	orbits	(Sections	5.1,	5.4)

•	 angular	velocity	and	angular		
acceleration	(Sections	5.1,	5.6)

•	 conservation	of	energy	
	(Section	6.1)

•	 center	of	mass	and	its	motion	
(Sections	7.5,	7.6)

•	 rolling	without	slipping	
	(Section	5.1)

•	 math skill:	radian		measure	
(Section	5.1;	Appendix	A.6)

Concepts & Skills to Review

Torque and Angular Momentum

C H A P T E R

8
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In	 gymnastics,	 the	 iron	 cross	 is	 a	 notoriously	 difficult	 feat,	 requiring	
incredible	strength.	Why	does	 it	 require	such	great	strength?
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8.1 ROTATIONAL KINETIC ENERGY  
AND ROTATIONAL INERTIA

When a rigid object is rotating about a fixed axis, it has kinetic energy because each 
particle other than those on the axis of rotation is moving in a circle around the axis. 
In principle, we can calculate the kinetic energy of rotation by summing the kinetic 
energy of each particle. To say the least, that sounds like a laborious task. We need 
a simpler way to express the rotational kinetic energy of such an object so that we 
don’t have to calculate this sum over and over. Our simpler expression exploits the 
fact that the speed of each particle is proportional to the angular speed of rotation ω.

If a rigid object consists of N particles, the sum of the kinetic energies of the 
particles can be written mathematically using a subscript to label the mass and speed 
of each particle:

 Krot =
1
2

 m1v
2
1 +

1
2

 m2v
2
2 + · · · +

1
2

 mNv2
N = ∑

N

n=1

1
2

 mnv
2
n (8-1)

where the notation ∑
N

n=1
Qn stands for the sum Q1 + Q2 + . . . + QN.

The speed of each particle is related to its distance from the axis of rotation. 
Particles that are farther from the axis move faster. In Section 5.1, we found that the 
speed of a particle moving in a circle is

 v = rω (5-9)

where ω is the angular speed in radians per unit time and r is the distance between 
the rotation axis and the particle (Fig. 8.1). By substitution, the rotational kinetic 
energy can be written

 Krot = ∑
N

n=1

1
2 

 mnr
2
nω

2 (8-2)

The entire object rotates at the same angular velocity ω, so the constants 1
2 and ω2 

can be factored out of each term of the sum:

 Krot = 1
2(∑

N

n=1
mnr

2
n)ω2 (8-3)

The quantity in the parentheses cannot change since the distance between each 
 particle and the rotation axis stays the same if the object is rigid and doesn’t change 
shape. However difficult it may be to compute the sum in the parentheses, we only 
need to do it once for any given mass distribution and axis of rotation.

Let’s give the quantity in the parentheses the symbol I. In Chapter 5, we found 
it useful to draw analogies between translational variables and their rotational 
 equivalents. By using the symbol I, we can see that translational and rotational kinetic 
energy have similar forms: translational kinetic energy is

 Ktr =
1
2

 mv2 (6-14)

and rotational kinetic energy is

Figure 8.1 Four points on a 
spinning DVD. Points at greater 
distances from the  center are 
moving faster than points closer 
to the center.

1 432

v1

v2

v3

v4

Rotational kinetic energy

 Krot =
1
2

 Iω2 (8-4)

Since v = rω was used to derive Eq. (8-4), ω must be expressed in radians per unit 
time (normally rad/s).
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The quantity I is called the rotational inertia:

Rotational inertia

 I = ∑
N

n=1
mnr

2
n (8-5)

(SI unit: kg·m2)

Comparing the expressions for translational and rotational kinetic energies, we 
see that angular speed ω takes the place of speed v and rotational inertia I takes the 
place of mass m. Mass is a measure of the inertia of an object, or, in other words, 
how difficult it is to change the object’s velocity. Similarly, for a rigid rotating object, 
I is a measure of its rotational inertia—how hard it is to change its angular velocity. 
That is why the quantity I is called the rotational inertia; it is also called the moment 
of inertia.

When a problem requires you to find a rotational inertia, there are three principles 
to follow.

CONNECTION:

Rotational and translational 
kinetic energies have the same 
form: 1

2 inertia × speed2.

Keep in mind that the rotational inertia of an object depends on the location of 
the rotation axis. For instance, imagine taking the hinges off the side of a door and 
putting them on the top so that the door swings about a horizontal axis like a cat flap 
door (Fig. 8.2b). The door now has a considerably larger rotational inertia than before 
the hinges were moved because the door’s height is greater than its width. The door 

Axis of rotation

(a) (b)

A
xi

s o
f r

ot
at
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n

h

w

Figure 8.2 The rotational 
inertia of a door depends on the 
rotation axis. (a) The door with 
hinges at the side has a smaller 
rotational inertia, I = 1

3Mw2, 
than (b) the rotational inertia, 
I = 1

3Mh2, of the same door with 
hinges at the top, because the 
door is taller than it is wide.

Finding the Rotational Inertia

 1. If the object consists of a small number of particles, calculate the sum 

I = ∑
N

n=1
mnr

2
n directly.

 2. For symmetrical objects with simple geometric shapes, calculus can be used 
to perform the sum in Eq. (8-5). Table 8.1 lists the results of these calcula-
tions for the shapes most commonly encountered.

 3. Since the rotational inertia is a sum, you can always mentally deconstruct 
the object into several parts, find the rotational inertia of each part, and 
then add them. This is an example of the divide-and-conquer problem-
solving technique.
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has the same mass as before, but its mass now lies on average much farther from the 
axis of rotation than that of the door in Fig. 8.2a. In applying Eq. (8-5) to find the 
rotational inertia of the door, the values of rn range from 0 to the height of the door (h), 
whereas with the hinges in the  normal position the values of rn range from 0 only to the 
width of the door (w).

Table 8.1 Rotational Inertia for Uniform Objects with Various Geometrical Shapes

 Axis of Rotational  Axis of Rotational 
Shape Rotation Inertia Shape Rotation Inertia

Thin hollow 
cylindrical 
shell (or 
hoop)

R

R

Central axis of 
cylinder

MR2 Solid sphere

R

Through  
center

2
5MR2

Solid  
cylinder  
(or disk)

R

R

Central axis of 
cylinder

1
2MR2 Thin hollow  

spherical  
shell

R

Through  
center

2
3MR2

Hollow 
cylindrical 
shell or 
disk

a b a
b

Top view
Central axis of 

cylinder
1
2M(a2 + b2) Thin rod (or 

rectangu-
lar plate) L

L Perpendicular 
to rod 
through end 
(or along 
edge of 
plate)

1
3ML2

Rectangular 
plate

a

b

Perpendicular 
to plate 
through  
center

1
12M(a2 + b2) Thin rod (or  

rectangular  
plate)

L

L

Perpendicular to 
rod through 
center (or 
parallel to 
edge of plate 
through 
 center)

1
12ML2

EVERYDAY PHYSICS DEMO

The	change	 in	 rotational	 inertia	of	 a	 rod	as	 the	 rotation	axis	 changes	can	be	
easily	 felt.	Hold	a	baseball	 bat	 in	 the	usual	way,	with	 your	hands	gripping	 the	
bottom	of	 the	bat.	 Swing	 the	bat	 a	 few	 times.	Now	 “choke	up”	 on	 the	bat—
move	your	hands	up	the	bat—and	swing	a	few	times.	The	bat	is	easier	to	swing	
because	 it	now	has	a	smaller	 rotational	 inertia.	Children	often	choke	up	on	a	
bat	that	is	too	massive	for	them.	Even	Major	League	Baseball	players		occasionally	
choke	up	on	the	bat	when	they	want	more	control	over	their	swing	to	place	a	
hit	in	a	certain	spot	(Fig.	8.3).	On	the	other	hand,	choking	up	on	the	bat	makes	
it	 impossible	 to	 hit	 a	 home	 run.	 To	 hit	 a	 long	 fly	 ball,	 you	 want	 the	 pitched	
	baseball	 to	encounter	a	bat	 that	 is	swinging	with	a	 lot	of	 rotational	 inertia.

CHECKPOINT 8.1

According	to	Table	8.1,	the	rotational	inertia	of	a	uniform	cylinder	or	disk	about	
its	central	axis	depends	only	on	the	mass	and	radius.	Why	does	 it	not	depend	
on	 the	height	of	 the	cylinder	or	 thickness	of	 the	disk?

Figure 8.3 Hank Aaron 
 choking up on the bat.
©AP Images
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Example 8.1

Rotational Inertia of a Barbell

A barbell consists of two plates, each a uniform disk of mass 
20 kg and radius 15 cm, attached 20 cm from each end of a 
uniform rod of mass 10 kg, radius 1.25 cm, and length 2.20 m 
(Fig. 8.4). Find the rotational inertia of the barbell about two 
different axes of rotation: (a) axis a, the central axis of the 
bar, and (b) axis b, perpendicular to the bar and through its 
midpoint. Ignore the thickness of the disks and the holes in 
the disks.

Strategy The rotational inertia of this composite object is 
the sum of the rotational inertias of the three parts (two 
disks and rod). Table 8.1 gives formulas for the rotational 
inertias of disks and rods, but only for certain axes of rota-
tion. In particular, for axis b we have two disks rotating 
about an axis external to the disks, so none of the formulas 
in Table 8.1 apply; instead we’ll return to the basic defini-
tion of rotational inertia [Eq. (8-5)] and make an approxi-
mation. Based on the distances between parts of the barbell 
and the two axes, we expect a smaller rotational inertia 
about axis a than about axis b. Let M and R be the mass and 
radius of each disk, and m, r, and L the mass, radius, and 
length of the rod, respectively.

Solution (a) Each of the three component parts, the two 
disks and the rod, are solid cylinders rotating about their 
central axes. (The two formulas in Table 8.1 for thin rods are 
for axes perpendicular to the rod, so they are not useful 
here.) From Table 8.1,

 I =
1
2

MR2 +
1
2

MR2 +
1
2

mr2

 = 2 × [
1
2

× 20 kg × (0.15 m)2
]+

1
2

× 10 kg × (0.0125 m)2

 = 2 × 0.225 kg·m2 + 0.00078 kg·m2 = 0.45 kg·m2

(b) Table 8.1 gives the rotational inertia of the rod about axis 
b as 1

12mL2. The center of each disk (assumed to have negli-
gible thickness) is a distance d = 1

2 (2.20 m − 0.40 m) = 0.90 m 
from the midpoint of the rod. If we think of breaking a disk 

into tiny pieces and applying Eq. (8-5), each of the distances 
rn is at least d = 0.90 m (to the center) but no more than 
√d2 + R2 ≈ 0.91 m (to the edge). Therefore, to a good ap-
proximation, we can assume each disk to be a point mass at 
a distance d from the axis. Then

 I = Md2 + Md2 +
1
12

 mL2

 = 2 × [20 kg × (0.90 m)2] +
1
12

× 10 kg × (2.20 m)2

 = 2 × 16.2 kg·m2 + 4.03 kg·m2 = 36 kg·m2

As expected, the rotational inertia is much smaller about axis 
a than about axis b.

Discussion The rod makes only a slight contribution 
to the rotational inertia about axis a because the radius of 
the rod is so much smaller than the radii of the disks, so 
its mass is on average much closer to the axis of rotation. 
The rod makes a more significant contribution to the ro-
tational inertia about axis b because now the length, not 
radius, of the rod is relevant—its mass is distributed at 
distances from 0 to 1.10 m from the axis of rotation. 
Even if we account for the thickness of the disks, as long 
as their thicknesses are small relative to d, our estimate 
Md2 of the contribution to I from each disk about axis b 
is still valid.

Practice Problem 8.1 Playground Merry-Go-Round

A playground merry-go-round is essentially a uniform disk 
that rotates about a vertical axis through its center (Fig. 8.5). 
Suppose the disk has a radius of 2.0 m and a mass of 160 kg; 
a child of mass 18.4 kg sits at the edge of the merry-go-
round. What is the merry-go-round’s rotational inertia, in-
cluding the contribution due to the child? [Hint: Treat the 
child as a point mass at the edge of the disk.]

2.0 m

Axis of rotation

180 N

Figure 8.5
Child on a  
merry-go-round.

90 cm 20 cm90 cm20 cm

Axis b

Axis a30
cm

2.5
cm

Figure 8.4
A barbell with two different rotation axes.
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When applying conservation of energy to objects that rotate, the rotational kinetic 
energy is included in the mechanical energy. In Eq. (6-22),

 Wnc = ΔK + ΔU  (6-22)

just as U stands for the sum of the elastic and gravitational potential energies, K stands 
for the sum of the translational and rotational kinetic energies:

 K = Ktr + Krot (8-6)

CONNECTION:

We are applying the same 
principle of energy conserva-
tion to objects that can rotate.

Example 8.2

Atwood’s Machine

Atwood’s machine consists of an ideal cord around a pulley 
of rotational inertia I, radius R, and mass M, with two blocks 
(masses m1 and m2) hanging from the ends of the cord as in 
Fig. 8.6. (Note that in Example 4.15 we analyzed Atwood’s 
machine for the special case of a massless pulley; for a mass-
less pulley I = 0.) Assume that the pulley is free to turn 
without friction and that the cord does not slip. Ignore air 
resistance. If the masses are released from rest, find how fast 
they are moving after they have moved a distance h (one up, 
the other down).

Strategy Ignoring both air resistance and friction means 
that no nonconservative forces act on the system; therefore, 
its mechanical energy is conserved:

ΔU + ΔK = 0

Gravitational potential energy is converted into the transla-
tional kinetic energies of the two blocks and the rotational 
kinetic energy of the pulley.

Solution For our convenience, we assume that m1 > m2. 
Mass m1, therefore, moves down and m2 moves up. After the 
masses have each moved a distance h, the changes in gravi-
tational potential energy are

ΔU1 = −m1gh

ΔU2 = +m2gh

The mechanical energy of the system includes the kinetic 
energies of three objects: the two masses and the pulley. All 
start with zero kinetic energy, so

ΔK =
1
2

 (m1 + m2)v2 +
1
2

 Iω2

The speed v of the masses is the same since the cord’s length is 
fixed. The speed v and the angular speed of the pulley ω are 
related if the cord does not slip: the tangential speed of the pul-
ley must equal the speed at which the cord moves. The tangen-
tial speed of the pulley is its angular speed times its radius:

v = ωR

After v/R is substituted for ω, the energy conservation equa-
tion becomes

ΔU+ΔK =[−m1gh + m2gh] + [
1
2

(m1+m2)v2 +
1
2

 I(
v

R)
2

]= 0

or

1
2[(m1 + m2) +

I

R2]v2 = (m1 − m2)gh

Solving this equation for v yields

v = √
2(m1 − m2)gh

m1 + m2 + I/R2

Discussion This answer is rich in information, in the 
sense that we can ask many “What if?” questions. Not only 
do these questions provide checks as to whether the answer 
is reasonable, they also enable us to perform thought experi-
ments, which could then be checked by constructing an 
 Atwood’s machine and comparing the results.

For instance: What if m1 is only slightly greater than m2? 
Then the final speed v is small—as m2 approaches m1, v ap-
proaches 0. This makes intuitive sense: a small imbalance in 
weights produces a small acceleration. You should practice 
this kind of reasoning by making other such checks.

It is also enlightening to look at terms in an algebraic 
solution and connect them with physical interpretations. 

m2

m1

Pulley
mass M

Initial
position

h

h

R M

v1

v2

Figure 8.6
Atwood’s machine.

continued on next page
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8.2 TORQUE

Suppose you place a bicycle upside down to repair it. First, you give one of the wheels a 
spin. If everything is working as it should, the wheel spins for quite a while; its angular 
acceleration is small. If the wheel doesn’t spin for very long, then its angular velocity changes 
rapidly and the angular acceleration is large in magnitude; there must be excessive friction 
somewhere. Perhaps the brakes are rubbing on the rim or the bearings need to be repacked.

If we could eliminate all the frictional forces acting on the wheel, including air 
resistance, then we would expect the wheel to keep spinning without diminishing 
angular speed. In that case, its angular acceleration would be zero. The situation is 
reminiscent of Newton’s first law: an object with no external interactions, or no net 
force acting on it, moves with constant velocity. We can state a “Newton’s first law 
for rotation”: a rotating object with no external interactions, and whose rotational 
inertia doesn’t change, keeps rotating at constant angular velocity.

The hypothetical frictionless bicycle wheel does have external interactions, 
though. Earth’s gravitational field exerts a downward force and the axle exerts an 
upward force to keep the wheel from falling. Then is it true that, as long as there is 
no net external force, the angular acceleration is zero? No; it is easy to give the wheel 
an angular acceleration while keeping the net force zero. Imagine bringing the wheel 
to rest by pressing two hands against the tire on opposite sides. On one side, the 
motion of the rim of the tire is downward and the kinetic frictional force is upward 
(Fig. 8.8). On the other side, the tire moves upward and the frictional force is down-
ward. In a similar way, we could apply equal and opposite forces to the opposite sides 
of a wheel at rest to make it start spinning. In either case, we exert equal magnitude 
forces, so that the net force is zero, and still give the wheel an angular acceleration.

Torque A quantity related to force, called torque, plays the role in rotation that 
force itself plays in translation. A torque is not separate from a force; it is impossible 
to exert a torque without exerting a force. Torque is a measure of how effective a 
given force is at twisting or turning something. For something rotating about a fixed 
axis such as the bicycle wheel, a torque can change the rotational motion either by 
making it rotate faster or by slowing it down.

When stopping the bicycle wheel with two equal and opposite forces, as in  
Fig. 8.8, the net applied force is zero and, thus, the wheel is in translational equilibrium; 
but the net torque is not zero, so it is not in rotational equilibrium. Both forces tend 
to give the wheel the same sign of angular acceleration; they are both making the 
wheel slow down. The two torques are in fact equal, with the same sign.

The quantity (m1 − m2)g is the imbalance in the gravita-
tional forces pulling on the two sides. The denominator  
(m1 + m2 + I/R2) is a measure of the total inertia of the 
 system—the sum of the two masses plus an inertial contribu-
tion due to the pulley. The pulley’s contribution is not simply 
equal to its mass. If, for example, the pulley is a uniform disk 
with I = 1

2MR2, the term I/R2 would be equal to half the mass 
of the pulley.

The same principles used to analyze Atwood’s machine 
have many applications in the real world. One such applica-
tion is in elevators, where one of the hanging masses is the 
elevator and the other is the counterweight. However, the 
elevator and counterweight are not allowed to hang freely 
from a pulley—we must also consider the energy supplied 
by the motor.

Practice Problem 8.2 Modified Atwood’s Machine

Figure 8.7 shows a modified form of Atwood’s machine 
where one of the blocks slides on a table instead of hanging 
from the pulley. The blocks are released from rest. Find the 
speed of the blocks after they have moved a distance h in 
terms of m1, m2, I, R, and h. Ignore friction.

Example 8.2 continued

m1

m2

Pulley

R I

v2

v1

Figure 8.7
Modified Atwood’s  
machine.

f1

f2

N2N1

Figure 8.8 A spinning  
bicycle wheel slowed to a stop 
by  friction. Each hand exerts  
a  normal force and a frictional 
force on the tire. The two normal 
forces add to zero and the two 
frictional forces add to zero.
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Relationship Between Force and Torque What determines the torque produced by 
a particular force? Imagine trying to push open a massive bank vault door. Certainly you 
would push as hard as you can; the torque is proportional to the magnitude of the force. 
It also matters where and in what direction the force is applied. For maximum effective-
ness, you push tangentially (Fig. 8.9a). If you pushed radially, straight in toward the axis 
of rotation that passes through the hinges, the door wouldn’t rotate, no matter how hard 
you push (Fig. 8.9b). A force acting in any other direction could be decomposed into 
radial and tangential components, with the radial component contributing nothing to the 
torque (Fig. 8.9c). Only the tangential component of the force (F⊥) produces a torque. 
Recall that the radial direction is directly toward or away from the axis of rotation. The 
tangential direction is perpendicular to both the radial direction and the axis of rotation; 
it is tangent to the circular path followed by a point on the object as the object rotates.

Furthermore, where you apply the force is critical (Fig. 8.10). Instinctively, you 
would push at the outer edge, as far from the rotation axis as possible. If you pushed 
close to the axis, it would be difficult to open the door. Torque is proportional to the 
distance between the rotation axis and the point of application of the force (the point 
at which the force is applied).

To satisfy the requirements of the previous paragraphs, we define a vector r→ in 
a plane perpendicular to the rotation axis that points from the axis of rotation to the 
point where the force is applied. The distance between the axis and the point of 
application is r = ∣r→∣. The magnitude of the torque is then the product of the distance 
(r) and the component of the force perpendicular to r→ (F⊥):

F

Top view

Axis Axis

(a) Maximum torque (b) Zero torque

rr

Axis

(c) Less torque

r

F

F
F⊥

F∥
r

Figure 8.9 The torque on a bank vault door depends on the direction of the applied force, as suggested in these top-
view diagrams. (a) Pushing in a direction perpendicular to r→ results in the maximum torque. ( r→ is a vector in a plane 
perpendicular to the rotation axis that points from the axis to the point where the force is applied.) (b) Pushing radially 
inward (toward the axis) with the same magnitude force gives zero torque. (c) In general, the torque is proportional to 
F⊥, the component of the force perpendicular to r→.

Definition of torque
 τ = ±rF⊥ (8-7)

The symbol for torque is τ, the Greek letter tau. The SI unit of torque is the N·m. 
The SI unit of energy, the joule, is equivalent to N·m, but we do not write torque in 
joules. Even though both energy and torque can be written using the same SI base 
units, the two quantities have different meanings; torque is not a form of energy. To 
help maintain the distinction, the joule is used for energy but not for torque.

CHECKPOINT 8.2

You	are	trying	to	 loosen	a	nut,	without	success.	Why	might	 it	help	to	switch	to	
a	wrench	with	a	 longer	handle?

Sign Convention for Torque The sign of the torque indicates the direction of the 
angular acceleration that torque would cause by itself. Recall from Section 5.1 that by 
convention a positive angular velocity ω means counterclockwise (CCW) rotation and 
a negative angular velocity ω means clockwise (CW) rotation. (CCW as viewed from 
one direction is CW when viewed from the other direction, so always make a conscious 
choice of one viewing direction and stick with it.) A positive angular acceleration α 

FAxis

(b) Smaller torque

r

F

(a) Larger torque

Axis

r

Figure 8.10 The same force 
applied at different distances 
from the rotation axis produces 
different magnitude torques. 
The torque is proportional to 
the distance.
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either increases the rate of CCW rotation (increases the magnitude of a positive ω) or 
decreases the rate of CW rotation (decreases the magnitude of a negative ω).

We use the same sign convention for torque. A force whose perpendicular com-
ponent tends to cause rotation in the CCW direction creates a positive torque; if it is 
the only torque acting, it would cause a positive angular acceleration α (Fig. 8.11). A 
force whose perpendicular component tends to cause rotation in the CW direction 
produces a negative torque. The symbol ± in Eq. (8-7) reminds us to assign the appro-
priate algebraic sign each time we calculate a torque.

The sign of the torque is not determined by the sign of the angular velocity (in 
other words, whether the wheel is spinning CCW or CW); rather, it is determined by 
the sign of the angular acceleration the torque would cause if acting alone. To deter-
mine the sign of a torque, imagine which way the torque would make the object begin 
to spin if it is initially not rotating.

In a more general treatment of torque, torque is a vector quantity defined as the 
cross product τ→ = r→ × F

→
. See Appendix A.10 for the definition of the cross product. 

For an object rotating about a fixed axis, Eq. (8-7) gives the component of τ→ along 
the axis of rotation.

Brake pad

F

(a) (b)

f

Chain

Sprocket/hub

Figure 8.11 (a) When the cyclist climbs a hill, the top half of the chain exerts a large force F
→

 on the sprocket attached 
to the rear wheel. As viewed here, the torque about the axis of rotation (the axle) due to this force is clockwise. By con-
vention, we call this a negative torque. (b) When the brakes are applied, the brake pads are pressed onto the rim, giving 
rise to frictional forces on the rim. As viewed here, the frictional force f

→
 causes a counterclockwise (positive) torque on 

the wheel about the axle.

is spinning in the CW sense. What is the net torque on the 
wheel?

Strategy The 10.0 N forces are directed radially toward 
the rotation axis, so they produce no torques themselves; 

Example 8.3

A Spinning Bicycle Wheel

To stop a spinning bicycle wheel, suppose you push radi-
ally inward on opposite sides of the wheel, as shown in 
Fig. 8.8, with equal forces of magnitude 10.0 N. The ra-
dius of the wheel is 32 cm and the coefficient of kinetic 
friction between the tire and your hand is 0.75. The wheel 

continued on next page
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only perpendicular components of forces give rise to torques. 
The forces of kinetic friction between the hands and the tire 
are tangent to the tire, so they do produce torques. The nor-
mal force applied to the tire is 10.0 N on each side; using the 
coefficient of friction, we can find the frictional forces.

Solution The frictional force exerted by each hand on the 
tire has magnitude

f = μkN = 0.75 × 10.0 N = 7.5 N
The frictional force is tangent to the wheel, so f⊥ = f. Then 
the magnitude of each torque is

∣τ∣ = rf⊥ = 0.32 m × 7.5 N = 2.4 N·m
The two torques have the same sign, since they are both tend-
ing to slow down the rotation of the wheel. Is the torque 
positive or negative? The angular velocity of the wheel is 
negative since it rotates CW. The angular acceleration has 
the opposite sign because the angular speed is decreasing. 
Since α > 0, the net torque is also positive. Therefore,

∑τ = +4.8 N·m

Discussion The trickiest part of calculating torques is 
determining the sign. To check, look at the frictional 
forces in Fig. 8.8. Imagine which way the forces would 
make the wheel begin to rotate if the wheel were not orig-
inally rotating. The frictional forces point in a direction 
that would tend to cause a CCW rotation, so the torques 
are positive.

Practice Problem 8.3 Disc Brakes

In the disc brakes that slow down a car, a pair of brake 
pads squeeze a spinning rotor; friction between the pads 
and the rotor provides the torque that slows down the 
car. If the normal force that each pad exerts on a rotor is 
85 N and the coefficient of friction is 0.62, what is the 
frictional force on the rotor due to each of the pads? 
If  this force acts 8.0 cm from the rotation axis, what is 
the magnitude of the torque on the rotor due to the pair of 
brake pads?

Example 8.3 continued

Lever Arms

There is another, completely equivalent, way to calculate torque that is often more 
convenient than finding the perpendicular component of the force. In the two cases 
of Figure 8.12, the angle between the vectors r→ and F

→
 is labeled θ. The perpendicu-

lar component of the force is

 F⊥ = F sin θ (8-8)

and the torque is

 τ = ±rF⊥ = ±rF sin θ (8-9)

The factor sin θ could be grouped with r instead of with F. Then we have

r r

F
F

r⊥

r⊥

Axis

Lever arm Line of
action

Lever arm

Line of
action

Axis

90°

90°

θ

θ
θ

F⊥
F⊥

Figure 8.12 Finding torque 
using the lever arm. To find the 
lever arm, first draw the line  
of action of the force through 
the point of application and  
in the direction of the force. 
The lever arm r⊥ is the perpen-
dicular distance from the axis 
to the line of action. The torque 
is then τ = ±r⊥F.

Torque (using the lever arm)

 τ = ±(r sin θ)F = ±r⊥F (8-10)

Figure 8.12 shows that if we draw a line parallel to the force through the point of appli-
cation, called the line of action of the force, then r⊥ is the perpendicular distance from 
the axis to the line of action. This distance is called the lever arm (or moment arm).
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Finding Torques Using the Lever Arm

 1. Draw a line parallel to the force through the force’s point of application; 
this line (dashed in Fig. 8.12) is called the force’s line of action.

 2. Draw a line from the rotation axis to the line of action. This line must be 
perpendicular to both the axis and the line of action. The distance from the 
axis to the line of action along this perpendicular line is the lever arm (r⊥). 
If the line of action of the force goes through the rotation axis, the lever 
arm and the torque are both zero (see Fig. 8.9b).

 3. The magnitude of the torque is the magnitude of the force times the lever arm:
 τ = ±r⊥F (8-11)

 4. Determine the algebraic sign of the torque as before.

Solution (a) As shown in Fig. 8.14a, the radial component 
of the force (F‖) passes through the rotation axis. The 
 perpendicular component is

F⊥ = F sin 15°
The magnitude of the torque is

∣τ∣ = rF⊥ = 0.47 m × 25 N ×  sin  15° = 3.0 N·m
(b) Figure 8.14b shows the line of action of the force, drawn 
parallel to the force and passing through the point of applica-
tion. The lever arm is the perpendicular distance between the 
rotation axis and the line of action. The distance r is 47 cm. 
Then the lever arm is

r⊥ = r sin 15°
and the magnitude of the torque is

∣τ∣ = r⊥F = 0.47 m × sin 15° × 25 N = 3.0 N·m

Example 8.4

Screen Door Closer

An automatic screen door closer attaches to a door 47 cm 
away from the hinges and pulls on the door with a force of 
25 N, making an angle of 15° with the door (Fig. 8.13). Find 
the magnitude of the torque exerted on the door due to this 
force about the rotation axis through the hinges using (a) the 
perpendicular component of the force and (b) the lever arm.  
(c) What is the sign of this torque as viewed from above?

Strategy For method (a), we must find the component of 
the 25 N force perpendicular to the radial direction. Then 
this component is multiplied by the length of the radial line. 
For method (b), we draw in the line of action of the force. 
Then the lever arm is the perpendicular distance from the 
line of action to the rotation axis. The torque is the magni-
tude of the force times the lever arm. We must be careful not 
to combine the two methods: the torque is not equal to the 
perpendicular force component times the lever arm. For (c), 
we determine whether this torque would tend to make the 
door rotate CCW or CW.

47 cm

Hinge

Screen doorAxis of rotation

Door frame

Top view

25 N

15°

15°

90°Point of
application

Point of
application

Hinge

(a)

F∥

F⊥

F

15°

Hinge

Lever arm

Line of
action

Radial
line r

(b)

r⊥

Figure 8.14
(a) Finding the perpendicular component of the force. (b) Finding 
the lever arm.

Figure 8.13
Screen door with automatic closing mechanism.

continued on next page
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(c) Using the top view of Fig. 8.13, the torque tends to close 
the door by making it rotate counterclockwise (assuming the 
door is initially at rest and no other torques act). The torque 
is therefore positive as viewed from above.

Discussion The most common mistake to make in either 
solution method would be to use cosine instead of sine (or, 
equivalently, to use the complementary angle 75° instead of 
15°). A check is a good idea. If the automatic closer were 
more nearly parallel to the door, the angle would be less 
than 15°. The torque would be smaller because the force is 
more nearly pulling straight in toward the axis. Since the 
sine function gets smaller for angles closer to zero, the ex-
pression checks out correctly.

It might seem silly for a door closer to pull at such an 
angle that the perpendicular component is relatively small. 
The reason it’s done that way is so the door closer does not 
get in the way. A closer that pulled in a perpendicular direc-
tion would stick straight out from the door. As discussed in 
Section 8.5, the situation is much the same in our bodies. In 
order to not inhibit the motion of our limbs, our tendons and 

muscles are nearly parallel to the bones. As a result, the 
forces they exert must be much larger than we might expect.

Practice Problem 8.4  Leg Lifts

A person is lying on an exercise mat and lifts one leg at an 
angle of 30.0° from the horizontal with an 89 N (20 lb) 
weight attached to the ankle (Fig. 8.15). The distance  
between the ankle weight and the hip joint (which is the rotation 
axis for the leg) is 84 cm. What is the torque due to the ankle 
weight on the leg?

Example 8.4 continued

Axis

Ankle
weight

30.0° mg

Figure 8.15
Exercise leg lifts.

Center of Gravity

We have seen that the torque produced by a force depends on the point of application 
of the force. What about gravity? The gravitational force on an object is not exerted 
at a single point, but is distributed throughout the volume of the object. When we 
talk of “the” force of gravity on something, we really mean the total force of gravity 
acting on each particle making up the system.

Fortunately, when we need to find the total torque due to the forces of gravity 
acting on an object, the total force of gravity can be considered to act at a single 
point. This point is called the center of gravity. The torque found this way is the 
same as finding all the torques due to the forces of gravity acting at every point in 
the object, and then adding them together. As you can verify in Problem 109, if the 
gravitational field is uniform in magnitude and direction, then the center of gravity 
of an object is located at the object’s center of mass.

8.3 CALCULATING WORK DONE FROM THE TORQUE

Torques can do work, as anyone who has started a lawnmower with a pull cord can 
verify. Actually, it is the force that does the work, but in rotational problems it is often 
simpler to calculate the work done from the torque. Just as the work done by a con-
stant force is the product of force and the parallel component of displacement, work 
done by a constant torque can also be calculated as the torque times the angular 
displacement.

Imagine a torque acting on a wheel that spins through an angular displacement 
Δθ while the torque is applied. The work done by the force that gives rise to the 
torque is the product of the perpendicular component of the force (F⊥) with the arc 
length s through which the point of application of the force moves (Fig. 8.16). We 
use the perpendicular force component because that is the component parallel to the 
displacement, which is instantaneously tangent to the arc of the circle. Thus,

 W = F⊥s (8-12)

CONNECTION:

We’re not introducing a dif-
ferent kind of work, just a 
 different way to calculate work.
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To write the work in terms of torque, note that τ = rF⊥ and s = r Δθ; then

 W = F⊥s =
τ

r
× r Δθ = τ Δθ

  W = τ Δθ (Δθ in radians)  (8-13)

Work is indeed the product of torque and the angular displacement. If τ and Δθ have 
the same sign, the work done is positive; if they have opposite signs, the work done 
is negative. The power due to a constant torque—the rate at which work is done—is

 P = τω (8-14)

r

s
r F⊥

F⊥

s = r F⊥
ΔΔθ

Δθ

Figure 8.16 The work done 
by a torque is the product of 
the perpendicular force compo-
nent F⊥ and the arc length s.

Initially the wheel is at rest, so the initial angular velocity ωi is 
zero. From Table 8.1, the rotational inertia of a uniform disk is

I =
1
2

 MR2

Substituting this for I, we find

ΔK =
1
4

 MR2ω2
f

Before substituting numerical values, we need to convert 
80.0 rev/min to rad/s:

ωf = 80.0  

rev
min

× 2π 
rad
rev ×

1
60

 
min

s = 8.38 rad/s

Now we can substitute the known values for mass and radius:

ΔK =
1
4

× 40.0 kg × (
0.50

2
 m)

2

× (8.38 rad/s)2 = 43.9 J

Therefore, the work done by the motor, rounded to two sig-
nificant figures, is 44 J.

(b) The work done by a constant torque is

W = τ Δθ

Example 8.5

Work Done on a Potter’s Wheel

A potter’s wheel is a heavy stone disk on which the pottery 
is shaped. Potter’s wheels were once driven by the potter 
pushing on a foot treadle; today most potter’s wheels are 
driven by electric motors. (a) If the potter’s wheel is a uni-
form disk of mass 40.0 kg and diameter 0.50 m, how much 
work must be done by the motor to bring the wheel from rest 
to 80.0 rev/min? (b) If the motor delivers a constant torque of 
8.2 N·m during this time, through how many revolutions 
does the wheel turn in coming up to speed?

Strategy Work is an energy transfer. In this case, the mo-
tor is increasing the rotational kinetic energy of the potter’s 
wheel. Thus, the work done by the motor is equal to the 
change in rotational kinetic energy of the wheel, ignoring 
frictional losses. In the expression for rotational kinetic 
 energy, we must express ω in rad/s; we cannot substitute 
80.0 rev/min for ω. Once we know the work done, we use the 
torque to find the angular displacement.

Solution (a) The change in rotational kinetic energy of the 
wheel is

ΔK =
1
2

 I(ω2
f − ω2

i ) =
1
2

 Iω2
f

continued on next page
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8.4 ROTATIONAL EQUILIBRIUM

An object is in translational equilibrium when the net force acting on it is zero. It is 
quite possible for the net force acting to be zero, while the net torque is nonzero; the 
object would then have a nonzero angular acceleration. When designing a bridge or a 
new house, it would be unacceptable for any of the parts to have nonzero angular 
acceleration! Zero net force is sufficient to ensure translational equilibrium; if an object 
is also in rotational equilibrium, then the net torque acting on it must also be zero.

Solving for the angular displacement Δθ gives

Δθ =
W

τ
=

43.9 J
8.2 N · m

= 5.35 rad

Since 2π rad = 1 revolution,

Δθ = 5.35 rad ×
1 rev

2π rad
= 0.85 rev

Discussion As always, work is an energy transfer. In this 
problem, the work done by the motor is the means by which the 
potter’s wheel acquires its rotational kinetic energy. But work 
done by a torque does not always appear as a change in rota-
tional kinetic energy. For instance, when you wind up a me-
chanical clock or a windup toy, the work done by the torque you 
apply is stored as elastic potential energy in some sort of spring.

Practice Problem 8.5 Work Done on an Air  
Conditioner

A belt wraps around a pulley of radius 7.3 cm that drives the 
compressor of an automobile air conditioner. The tension in 
the belt on one side of the pulley is 45 N, and on the other side 
of the pulley it is 27 N (Fig. 8.17). How much work is done by 
the belt on the compressor during one revolution of the pulley?

Example 8.5 continued

Figure 8.17
Air conditioner belt and pulley.

27 N

45 N

r

Conditions for equilibrium (both translational and rotational)

 ∑ F→ = 0 and ∑τ = 0 (8-15)

Choosing an Axis of Rotation in Equilibrium Problems Before tackling equi-
librium problems, we must resolve a conundrum: if something is not rotating, then 
where is the axis of rotation? How can we calculate torques without knowing where 
the axis of rotation is? In some cases, perhaps involving axles or hinges, there may 
be a clear axis about which the object would rotate if the balance of forces and torques 
is disturbed. In many cases, though, it is not clear what the rotation axis would be, 
and in general it depends on how the equilibrium is upset. Fortunately, the axis can 
be chosen arbitrarily when calculating torques in equilibrium problems.

In equilibrium, the net torque about any rotation axis must be zero. Does that mean 
that we have to write down an infinite number of torque equations, one for each possible 
axis of rotation? Fortunately, no. Although the proof is complicated, it can be shown that 
if the net force acting on an object is zero and the net torque about one rotation axis is 
zero, then the net torque about every other axis parallel to that axis must also be zero. 
In this text, we restrict our consideration of equilibrium to situations where all the forces 
lie in a plane. Then we can choose any rotation axis perpendicular to that plane to 
calculate the torques. (If the forces do not all lie in a plane, we would need to use the 
more general definition of torque as a vector quantity mentioned in Section 8.2.) To 
simplify the algebra, it is often helpful to choose an axis that passes through the point 
of application of an unknown force, or through any other point on the line of action of 
an unknown force. Then the lever arm for that force is zero, making the torque zero.
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CHECKPOINT 8.4

Is	 it	 possible	 for	 the	 net	 torque	 on	 an	 object	 to	 be	 zero	 and	 the	 net	 force	
nonzero?	Is	it	possible	for	the	net	force	to	be	zero	and	the	net	torque	nonzero?

Problem-Solving Steps for Equilibrium Problems

∙ Identify an object or system in equilibrium. Identify all the forces acting 
on that object. Draw a diagram with a vector arrow to represent each force. 
Each arrow should be drawn starting at the point of application of the force. 
Use the center of gravity as the point of application for any gravitational 
forces. Label all known distances on the diagram.

∙ Not all equilibrium problems will require two force component equations 
and one torque equation. Some problems can be solved with fewer equa-
tions. Sometimes it is easier to use two torque equations for two different 
rotation axes. Before diving in and writing down all the equations, think 
about which equations will allow the most direct path to the solution.

∙ To apply the force condition ΣF
→

= 0, choose convenient coordinate axis 
directions and resolve each force into its components.

∙ To apply the torque condition Στ = 0, choose a rotation axis that is per-
pendicular to all the forces. Try to choose an axis that simplifies the torque 
equation. If the axis passes through the point of application of an unknown 
force, or passes through any point on the line of action of a force, the torque 
due to that force will be zero. Then the unknown force will not appear in 
the torque equation.

∙ Once an axis is chosen, find the torque due to each force. Start by drawing 
the r→ vector from the axis to the point of application. Then decide, based 
on the diagram, whether it will be easier to find the lever arm or the per-
pendicular component of the force. Calculate the torque using whichever 
method is easier (τ = ±r⊥F or τ = ±rF⊥) . Decide whether the torque is 
positive or negative based on which way the torque, acting by itself, would 
make the object rotate. Set the sum of the torques equal to zero.

Example 8.6

Carrying a 6 × 6 Beam

Two carpenters are carrying a uniform 6 × 6 beam. The 
beam is 8.00 ft (2.44 m) long and weighs 425 N (95.5 lb). 
One of the carpenters, being a bit stronger than the other, 
agrees to carry the beam 1.00 m in from the end; the other 
carries the beam at its opposite end. What is the upward 
force exerted on the beam by each carpenter?

Strategy The conditions for equilibrium are that the net 
 external force equal zero and the net external torque equal zero:

∑F
→

= 0 and ∑τ = 0

Should we start with forces or with torques? In this problem, 
it is easiest to start with torques. If we choose the axis of 
rotation where one of the unknown forces acts, then that 
force has a lever arm of zero and its torque is zero. The 
torque equation can be solved for the other unknown force. 
Then with only one force still unknown, we set the sum of 
the y-components of the forces equal to zero.

Solution The first step is to draw a force diagram 
(Fig. 8.18). Each force is drawn at the point where it acts. 
Known distances are labeled.

continued on next page
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Solving for F2 yields

F2 = 425 N − 360 N = 65 N

Discussion A good way to check this result is to make sure 
that the net torque about a different axis is zero—for an object 
in equilibrium, the net torque about any axis must be zero. 
Suppose we choose an axis through the point of application of 
F
→

1. Then the lever arm for mg→ is 1.22 m − 1.00 m = 0.22 m 
and the lever arm for F

→
2 is 2.44 m − 1.00 m = 1.44 m.  Setting 

the net torque equal to zero:

∑τ = −425 N × 0.22 m + F2 × 1.44 m = 0

Solving for F2 gives

F2 =
425 N × 0.22 m

1.44 m
= 65 N

which agrees with the value calculated before. We could 
have used this second torque equation to find F2 instead of 
setting ΣFy equal to zero.

Practice Problem 8.6 A Diving Board

A uniform diving board of length 5.0 m is supported at two 
points; one support is located 3.4 m from the end of the 
board and the second is at 4.6 m from the end (Fig. 8.19). 
The supports exert vertical forces on the diving board. A 
diver stands at the end of the board over the water. Deter-
mine the directions of the support forces. [Hint: In this prob-
lem, consider torques about different rotation axes.]

Example 8.6 continued

CW

CCW

Axis2.44 m

1.00 m

y

x

F1

mg

F2

Figure 8.18
Diagram of the beam with rotation axis, forces, and distances shown.

We choose a rotation axis perpendicular to the xy-plane 
and passing through the point of application of F

→
2. The 

 simplest way to find the torques for this example is to multi-
ply each force by its lever arm. The lever arm for F

→
1 is

2.44 m − 1.00 m = 1.44 m

and the magnitude of the torque due to this force is

∣τ∣ = Fr⊥ = F1 × 1.44 m

Since the beam is uniform, its center of gravity is at its mid-
point. We imagine the entire gravitational force to act at this 
point. Then the lever arm for the gravitational force is

1
2

× 2.44 m = 1.22 m

and the torque due to gravity has magnitude

∣τ∣ = Fr⊥ = 425 N × 1.22 m = 518.5 N·m

The torque due to F
→

1 is negative since, if it were the only 
torque, it would make the beam start to rotate  clockwise 
about our chosen axis of rotation. The torque due to gravity 
is positive since, if it were the only torque, it would make the 
beam start to rotate counterclockwise. Therefore,

∑τ = −F1 × 1.44 m + 518.5 N·m = 0

We can solve for the value of F1:

F1 =
518.5 N·m

1.44 m
= 360 N

Since another condition for equilibrium is that the net 
force be zero,

∑Fy = F1 + F2 − mg = 0

1.2 m 3.4 m

Figure 8.19
Diving board.

Application of Rotational Equilibrium: The Cantilever A diving board is an 
example of a cantilever—a beam or pole that extends beyond its support. The forces 
exerted by the supports on a diving board are considerably larger than if the same 
board were supported at both ends (see Problem 35). The advantage is that the far 
end of the board is left free to vibrate; as it does, the support forces adjust themselves 
to keep the board from tipping over. Dramatic effects can be achieved by architects 
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using cantilevers (Fig. 8.20). Some practical reasons for cantilever construction include 
reaching out over a stream, rock outcropping, or steep hillside; creating usable outdoor 
space under the cantilever; and giving buildings a lighter and more spacious feel. Most 
airplane wings and some bridges are cantilevers.

Figure 8.20 Villa Méditerranée in Marseilles, France, designed by architect 
 Stefano Boeri. A cantilevered exhibition space extends 40 m out over a 2000 m2 
pool and offers panoramic views of the sea.
©Provence/Alamy

Example 8.7

The Slipping Ladder

A 15.0 kg uniform ladder leans against a wall in the atrium 
of a large hotel (Fig. 8.21a). The ladder is 8.00 m long; it 
makes an angle θ = 60.0° with the floor. The coefficient of 
static friction between the floor and the ladder is μs = 0.45. 
How far along the ladder can a 60.0 kg person climb before 
the ladder starts to slip? Assume that the wall is frictionless. 

Strategy Consider the ladder and the climber as a single 
system. Until the ladder starts to slip, this system is in equi-
librium. Therefore, the net external force and the net external 
torque acting on the system are both equal to zero:

∑Fx = 0, ∑Fy = 0, and ∑τ = 0

To apply the conditions for equilibrium, we must identify 
all the forces acting on the system. Normal forces act on the 
ladder due to the wall (N

→
w) and the floor (N

→
f). A frictional 

force acts on the base of the ladder due to the floor ( f
→

), but no 
frictional force acts on the top of the ladder since the wall is 
frictionless. Gravitational forces act on the ladder and on the 
person climbing it. As the person ascends the ladder, the fric-
tional force f

→
 has to increase to keep the ladder in equilib-

rium. The ladder begins to slip when the frictional force 
required to maintain equilibrium is larger than its maximum 
possible value μsNf. The ladder is about to slip when f = μsNf.

Solution The first step is to make a careful drawing of the 
ladder and label all distances and forces (Fig. 8.21b). Instead  
of cluttering the diagram with numerical values, we use L  
(= 8.00 m) for the length of the ladder, d for the unknown dis-
tance from the bottom of the ladder to the point where the 
person stands, and M (= 60.0 kg) and m (= 15.0 kg) for the 
masses of the person and ladder,  respectively. The weight of 
the ladder acts at the ladder’s center of gravity, which is the 
ladder’s midpoint since it is uniform.

Now we apply the conditions for equilibrium. Starting 
with ΣFx = 0, we find

Nw − f = 0
continued on next page
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Figure 8.21
(a) A ladder and (b) forces acting on the ladder.
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Setting the net torque equal to zero yields

−Nw(L sin θ) + mg(
1
2

L cos θ) + Mg(d cos θ) = 0

Now we substitute values for the forces and lever arms 
and solve for d.

−(330.75 N)(6.928 m) + (147.0 N)(2.000 m)
+(588.0 N)(0.500d) = 0

−2291 N·m + 294.0 N·m + (294.0 N)d = 0

d =
2291 N · m − 294.0 N·m

294.0 N
= 6.8 m

The person can climb 6.8 m up the ladder without hav-
ing it slip. (This is the distance along the ladder, not the 
height above the ground.)

Discussion If the person goes any higher, then his weight 
produces a larger CCW torque about our chosen rotation axis. 
To stay in equilibrium, the total CW torque would have to get 
larger. The only force providing a CW torque is the normal 
force due to the wall, which pushes to the right. However, if 
this force were to get larger, the frictional force would have to 
get larger to keep the net horizontal force equal to zero. Since 
friction  already has its maximum magnitude, there is no way for 
the ladder to be in equilibrium if the person climbs any higher.

Practice Problem 8.7 Another Ladder Leaning on 
a Wall

A uniform ladder of mass 10.0 kg and length 3.2 m leans 
against a frictionless wall with its base located 1.5 m from 
the wall. If the ladder is not to slip, what must be the mini-
mum coefficient of static friction between the bottom of the 
ladder and the ground? Assume the wall is frictionless.

Example 8.7 continued

where, if the climber is at the highest point possible, 
the  frictional force must have its maximum possible 
 magnitude:

f = μsNf

Combining these two equations, we obtain a relationship be-
tween the magnitudes of the two normal forces:

Nw = μsNf

Next we use the condition ΣFy = 0, which gives

Nf − Mg − mg = 0

The only unknown quantity in this equation is Nf, so we can 
solve for it:

Nf = Mg + mg = (M + m)g

Now we can find the other normal force, Nw:

Nw = μsNf = μs(M + m)g

At this point, we know the magnitudes of all the forces:

 Mg = 588.0 N
 mg = 147.0 N
 Nf = Mg + mg = 735.0 N

 f = Nw = μs(Mg + mg) = 0.45 × 735.0 N = 330.75 N

We do not know the distance d, which is the goal of the 
problem. To find d we must set the net torque equal to zero.

First we choose a rotation axis. The most convenient 
choice is an axis perpendicular to the plane of Fig. 8.21 and 
passing through the bottom of the ladder. Since two of the 
five forces (N

→
f and f

→
) act at the bottom of the ladder, these 

two forces have zero lever arms and, thus, produce zero 
torque. Another reason why this is a convenient choice of 
axis is that the distance d is measured from the bottom of the 
ladder.

In this situation, with the forces either vertical or hori-
zontal, it is probably easiest to use lever arms to find the 
torques. In three diagrams (Fig. 8.22), we first draw the line 
of action for each force; then the lever arm is the perpendicu-
lar distance between the axis and the line of action.

The lever arms are:

For mg→, r⊥ = 1
2 L cos θ = 1

2(8.00 m) cos 60.0° = 2.00 m

For N
→

w, r⊥ = L sin θ = 8.00 m sin 60.0° = 6.928 m

For Mg→, r⊥ = d cos θ = 0.500d

Using the usual convention that CCW torques are posi-
tive, the torque due to N

→
w is negative and the torques due to 

gravity are positive. The magnitude of each torque is the 
magnitude of the force times its lever arm:

τ = Fr⊥

Figure 8.22
Finding the lever arm for each force.
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EVERYDAY PHYSICS DEMO

Is	 it	 possible	 to	wind up	 a	 spool	 by	pulling	 on	 the	 thread?	 Take	a	 dumbbell,	
spool	of	 thread,	or	 yo-yo	and	wrap	some	string	around	 the	center	of	 its	axle.	
Place	the	dumbbell	on	a	table	(or	on	the	floor).	Unwind	a	short	length	of	string	
and	try	pulling	perpendicularly	to	the	axle	at	different	angles	to	the	horizontal	
(Fig.	 8.23).	 Depending	 on	 the	 direction	 of	 your	 pull,	 the	 dumbbell	 can	 roll	 in	
either	direction.	Try	to	find	the	angle	at	which	the	rolling	changes	direction;	at	
this	angle	the	dumbbell	does	not	roll	at	all.	(Pulling	at	this	angle,	it	is	possible	
to	make	 the	spool	slide	along	 the	 table	without	 rotating.)

What	 is	 special	 about	 this	 angle?	 Since	 the	 dumbbell	 is	 in	 equilibrium	
when	pulling	at	this	angle,	we	can	analyze	the	torques	using	any	rotation	axis	
we	choose.	A	 convenient	 choice	 is	 the	axis	 that	passes	 through	point	P,	 the	
point	of	contact	with	the	table.	Then	the	contact	force	between	the	table	and	
the	dumbbell	acts	at	the	rotation	axis,	and	 its	torque	 is	zero.	The	torque	due	
to	 gravity	 is	 also	 zero,	 since	 the	 line	 of	 action	 passes	 through	 point	 P.	 The	
dumbbell	 can	only	be	 in	equilibrium	 if	 the	 torque	due	 to	 the	 remaining	 force	
(the	 tension	 in	 the	string)	 is	zero.	This	 torque	 is	zero	 if	 the	 lever	arm	 is	zero,	
which	means	 the	 line	of	action	passes	 through	point	P.

F3

F2

F1

P

F4

Figure 8.23 Forces F
→

1 and 
F
→

2 make the dumbbell roll to 
the left; F

→
4 makes it roll to the 

right; F
→

3 does not make it roll.

continued on next page

Example 8.8

The Sign and the Breaking Cord

A uniform beam of weight 196 N and of length 1.00 m is 
attached to a hinge on the outside wall of a restaurant. A cord 
is attached at the center of the beam and is attached to the 
wall, making an angle of 30.0° with the beam (Fig. 8.24a). 
The cord keeps the beam perpendicular to the wall. If the 
breaking tension of the cord is 620 N, how large can the 
mass of the sign be without breaking the cord?

Strategy The beam is in equilibrium; both the net force and 
the net torque acting on it must be zero. To find the maximum 
weight of the sign, we let the tension in the cord have its max-
imum value of 620 N. We do not know the force exerted by the 
hinge on the beam, so we choose an axis of rotation through 

the hinge. Then the force exerted by the hinge on the beam has 
a zero lever arm and does not enter the torque equation.

Before doing anything else, we draw a diagram showing 
each force acting on the beam and the chosen rotation axis. 
The FBD in previous chapters often placed all the force vec-
tors starting from a single point. Now we draw each force 
vector starting at its point of application so that we can find 
the torque—either by finding the lever arm or by finding the 
perpendicular force component and the distance from the 
axis to the point of application.

Solution Figure 8.24b shows the forces acting on the beam; 
three of these contribute to the torque. The gravitational force 

0.50 m
1.00 m

(a)

30.0° 30.0°

(c)

620 N

30.0
F∥

F⊥

(b)

0.50 m

620 N

196 N

Axis

1.00 m

 MgFw

Figure 8.24
(a) A sign outside a restaurant. (b) Forces acting on the beam. (c) Finding the components of the tension in the cord.
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Distributed Forces

Gravity is not the only force that is distributed rather than acting at a point. Contact 
forces, including both the normal component and friction, are spread over the contact 
surface. Just as for gravity, we can consider the contact force to act at a single point, 
but the location of that point is often not at all obvious. For a book sitting on a 
horizontal table, it seems reasonable that the normal force effectively acts at the geo-
metric center of the book cover that touches the table. It is less clear where that 
effective point is if the book is on an incline or is sliding. As Example 8.9 shows, 
when something is about to topple over, contact is about to be lost everywhere except 
at the corner around which the toppling object is about to rotate. That corner then 
must be the location of the contact forces.

on the beam can be taken to act at the midpoint of the beam 
since it is uniform. The force due to the cord has a perpendicu-
lar component (Fig. 8.24c) of

F⊥ = 620 N × sin 30.0° = 310 N

The two gravitational forces tend to rotate the beam CW, 
while the tension in the cord tends to rotate it CCW. The net 
torque must be equal to zero:

−0.50 m × 196 N − 1.00 m × Mg + 0.50 m × 310 N = 0

or
1.00 m × Mg = 0.50 m × (310 N − 196 N)

Now we solve for the unknown mass M:

M =
0.50 m × (310 N − 196 N)

1.00 m × 9.80 N/kg
= 5.8 kg

Discussion In this problem, we did not have to set 
the net force equal to zero. By placing the axis of rotation 
at the hinge, we eliminated two of the three unknowns 
from the torque equation: the horizontal and vertical 
 components of the hinge force (or, equivalently, its mag-
nitude and direction). If we wanted to find the hinge force 
as  well, setting the net force equal to zero would be 
 necessary.

Practice Problem 8.8 Hinge Forces

Find the vertical component of the force exerted by the hinge 
in two different ways: (a) setting the net force equal to zero 
and (b) using a torque equation about a different axis.

Example 8.8 continued

Example 8.9

The Toppling File Cabinet

A file cabinet of height a and width b is on a ramp at angle θ 
(Fig. 8.25a). The file cabinet is filled with papers in such a 
way that its center of gravity is at its geometric center. Find 
the largest θ for which the file cabinet does not tip over. As-
sume the coefficient of static friction is large enough to pre-
vent sliding.

Strategy Until the file cabinet begins to tip over, it is in 
equilibrium; the net force acting on it must be zero and the 
total torque about any axis must also be zero. We first draw 
a force diagram showing the three forces (gravity, normal, 
friction) acting on the file cabinet. The point of application 
of the two contact forces (normal, friction) must be at the 
lower edge of the file cabinet if it is on the steepest possible 
incline, just about to tip over. In that case, contact has been 

lost over the rest of the bottom surface of the file cabinet so 
that only the lower edge makes good contact with the ramp.

As in all equilibrium problems, a good choice of rota-
tion axis makes the problem easier to solve. We know that, at 
the maximum angle, the contact forces act at the bottom 
edge of the file cabinet. A good choice of rotation axis is 
along the bottom edge of the file cabinet, because then the 
normal and frictional forces have zero lever arm.

Solution Figure 8.25b shows the forces acting on the file 
cabinet at the maximum angle θ. The gravitational force is 
drawn at the center of gravity. Instead of drawing a single 
vector arrow for the gravitational force, we represent the 
gravitational force by its components parallel and perpen-
dicular to the ramp. Then we find the lever arm for each of 

continued on next page
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Figure 8.25
(a) File cabinet on an incline. (b) Forces acting on the file cabinet.

b b

a

N

Axis 
f

a

(a) (b)

θ θ

mg cos θ 

mg sin θ 

Figure 8.26
Contact force for various incline angles.

CG

Point of application of contact force

CG
CG

b
a

θ θ

θ

θ

the components. The lever arm for the parallel component of 
the weight (mg sin θ) is 1

2a and the lever arm for the perpen-
dicular component (mg cos θ) is 1

2b. Setting the net torque 
equal to zero:

∑τ = −mg cos θ ×
1
2

b + mg sin θ ×
1
2

a = 0

After dividing out the common factors of 1
2mg,

b cos θ = a sin θ

Solving for θ, yields

θ = tan−1
 

b

a

Discussion As a check, we can regard the normal and 
friction forces as two components of a single contact force. 
We can think of that contact force as acting at a single 
point—a “center of contact” analogous to the center of grav-
ity. As the file cabinet is put on steeper and steeper surfaces, 
the effective point of application of the contact force moves 
toward the lower edge of the file cabinet (Fig. 8.26). If we 
take the rotation axis through the center of gravity so there is 
no gravitational torque, then the torque due to the contact 
force must be zero. The only way that can happen is if its 
lever arm is zero, which means that the contact force must 
point directly toward the center of gravity. If the angle θ has 
its maximum value, the contact force acts at the lower edge 

and tan θ = b/a. The file cabinet is about to tip when its cen-
ter of gravity is directly above the lower edge. Any object 
supported only by contact forces can be in equilibrium only 
if the point of application of the total contact force is directly 
below the object’s center of gravity.

Conceptual Practice Problem 8.9  Gymnast 
Holding a Pike Position

Figure 8.27 shows a gymnast holding a pike position. What 
can you say about the location of the gymnast’s center of 
gravity?

Example 8.9 continued

Figure 8.27
Jury Chechi of Italy holds the pike position on the rings at the World 
Gymnastic Championships in Sabae, Japan.
©Mike Powell/Getty Images

EVERYDAY PHYSICS DEMO

When	 a	 person	 stands	 up	 straight,	 the	 body’s	 center	 of	 gravity	 lies	 directly	
above	 a	 point	 between	 the	 feet,	 about	 3	 cm	 in	 front	 of	 the	 ankle	 joint	
(Fig. 8.28a).	When	a	person	bends	over	to	touch	her	toes,	the	center	of		gravity	
lies	outside	 the	body	 (Fig.	8.28b).	Note	 that	 the	 lower	half	of	 the	body	must	
move	backward	 to	keep	 the	center	of	gravity	 from	moving	out	 in	 front	of	 the	
toes,	which	would	cause	 the	person	 to	 fall	over.
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Mechanical Advantage

In its simplest form, a lever is a rigid bar that rotates about a fixed point (the  fulcrum). 
The lever is an example of a simple machine that can be used to amplify a force 
(Fig.  8.29). The mechanical advantage (MA) is defined as the ratio of the output 
force (load) to the applied force:

 MA =
load

applied force
 (8-16)

For an ideal lever, by using the fulcrum as the axis of rotation and setting the net 
torque on the lever equal to zero, we find that the mechanical advantage is equal to 
the ratio of the lever arms:

 MA =
lever arm of applied force

lever arm of load
 (8-17)

The force amplification comes with a trade-off: the applied force must move through 
a larger distance than the load.

 MA =
displacement of applied force

displacement of load
 (8-18)

An	 interesting	 experiment	 can	 be	 done	 that	 illustrates	 what	 happens	 to	
your	 balance	when	 you	 shift	 your	 center	 of	 gravity.	 Stand	against	 a	wall	with	
the	 heels	 of	 your	 feet	 touching	 the	 wall	 and	 your	 back	 pressed	 against	 the	
wall.	Then	carefully	 try	 to	bend	over	as	 if	 to	touch	your	toes,	without	bending	
your	knees.	Can	you	do	 this	without	 falling	over?	Explain.

CG
CG

(a) (b)

Figure 8.28 Location of  
the center of gravity when  
(a) standing and (b) reaching 
for the floor.

Fd1

W
Fulcrum

d2

Figure 8.29 A wheelbarrow 
uses a lever to make it easier to 
lift heavy loads. The mechanical 
advantage is the ratio of the out-
put force (load) to the applied 
force. For the wheelbarrow, the 
load is the weight of the wheel-
barrow contents (W) and the 
applied force (F) is exerted by 
the gardener on the handles. If 
the rotational inertia of the 
lever itself is negligible, the net 
torque on the lever has to be 
zero. Using the fulcrum as the 
axis of rotation, we have 

Στ = Fd2 − Wd1 = 0 

where d1 and d2 are the lever 
arms of the applied force an 
load, respectively. The mechan-
ical  advantage is:

 MA = (load)/(applied force)
 = W/F = d2/d1
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8.5 APPLICATION: EQUILIBRIUM IN THE HUMAN BODY

We can use the concepts of torque and equilibrium to understand some of how the 
musculoskeletal system of the human body works. A muscle has tendons at each end 
that connect it to two different bones across a joint (the flexible connection between 
the bones). When the muscle contracts, it pulls the tendons, which in turn pull on the 
bones. Thus, the muscle produces a pair of forces of equal magnitude, one acting on 
each of the two bones. The biceps muscle (Fig. 8.30) in the upper arm attaches the 
scapula to the forearm (radius) across the inside of the elbow joint. When the biceps 
contracts, the forearm is pulled toward the upper arm. The biceps is a flexor muscle; 
it moves one bone closer to another.

A muscle can pull but not push, so a flexor muscle such as the biceps cannot 
reverse its action to push the forearm away from the upper arm. The extensor muscles 
make bones move apart from each other. In the upper arm (Fig. 8.30), an extensor 
muscle—the  triceps—connects the scapula and humerus to the ulna (a bone in the 
forearm parallel to the radius) across the outside of the elbow. Since the biceps and 
triceps connect to the forearm on opposite sides of the elbow joint, they tend to cause 
rotation about the joint in opposite directions. When the triceps contracts it pulls the 
forearm away from the upper arm. Using flexor and extensor muscles on opposite 
sides of the joint, the body can produce both positive and negative torques, although 
both muscles pull in the same direction.

Suppose the arm is held in a horizontal position. The deltoid muscle (the muscle 
shown in Fig. 8.31) exerts a force F

→
m on the humerus at an angle of about 15° above 

the horizontal. This force has to do two things. The vertical component (magnitude 
Fm sin 15° ≈ 0.26Fm) supports the weight of the arm, while the horizontal component 
(magnitude Fm cos 15° ≈ 0.97Fm) stabilizes the joint by pulling the humerus in against 
the shoulder (scapula). In Example 8.10, we estimate the magnitude of F

→
m.

Biceps muscle (flexor)

Scapula

Tendons

Triceps muscle (extensor)

Tendons

Ulna

Radius

Humerus

Figure 8.30 The biceps is a 
flexor muscle; the triceps is an 
extensor muscle.

Deltoid muscle

Humerus

Scapula

15°
Axis

27.5 cm

CG

12 cm

Fm

Fs

θ
Fg

Figure 8.31 Forces exerted 
on an outstretched arm by the 
deltoid muscle (F

→
m), the scap-

ula (F
→

s) , and gravity (F
→

g) .

Example 8.10

 Force to Hold Arm Horizontal

A person is standing with his arm outstretched in a horizon-
tal position. The weight of the arm is 30.0 N, and its center 
of gravity is at the elbow joint, 27.5 cm from the shoulder 
joint (see Fig. 8.31). The deltoid pulls on the upper arm at an 
angle of 15° above the horizontal and at a distance of 12 cm 
from the joint. What is the magnitude of the force exerted by 
the deltoid muscle on the arm?

Strategy The arm is in equilibrium, so we can apply the 
conditions for equilibrium: ΣF

→
= 0 and Στ = 0. When cal-

culating torques, we choose the rotation axis at the shoulder 
joint because then the unknown force F

→
s, which acts on the 

arm at the joint, has a zero lever arm and produces zero 
torque. With only one unknown in the torque equation, we 
can solve immediately for Fm. We do not need to apply the 
condition ΣF

→
= 0 unless we want to find F

→
s.

Solution The gravitational force is perpendicular to the 
line between its point of application and the rotation axis. 
Gravity produces a CW torque of magnitude

∣τ∣ = Fr = 30.0 N × 0.275 m = 8.25 N·m

For the torque due to F
→

m, we find the component of F
→

m that 
is perpendicular to the line between its point of application 

continued on next page
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The Iron Cross When a gymnast does the iron cross (Fig. 8.32a), the primary 
muscles involved are the latissimus dorsi (“lats”) and pectoralis major (“pecs”). Since 
the rings are supporting the gymnast’s weight, they exert an upward force on the 
gymnast’s arms. Thus, the task for the muscles is not to hold the arm up, but to pull 
it down. The lats pull on the humerus about 3.5 cm from the shoulder joint (Fig. 8.32b). 
The pecs pull on the humerus about 5.5 cm from the joint (Fig. 8.32c). The other 
ends of these two muscles connect to bone in many places, widely distributed over 
the back (lats) and chest (pecs). As a reasonable simplification, we can assume that 
these muscles pull at a 45° angle below the horizontal in the iron cross maneuver. 
We also assume that the two muscles exert equal forces, so we can replace the two 
with a single force acting at 4.5 cm from the joint.

To determine the force exerted, we look at the entire arm as a system in  equilibrium. 
This time we can ignore the weight of the arm itself since the force exerted on the 
arm by the ring is much larger—half the gymnast’s weight is supported by each ring. 
The ring exerts an upward force that acts on the hand about 60 cm from the shoulder 
joint (see Fig. 8.32d). Taking torques about the shoulder, in equilibrium we have

 ∣CW torque∣ = ∣CCW torque∣

 Fm × 0.045 m × sin 45° = 1
2W × 0.60 m

 Fm =
1
2W × 0.60 m

0.045 m × sin 45°
= 9.4W

Thus, the force exerted by the lats and pecs on one side of the gymnast’s body is 
more than nine times his weight.

Structure of Muscles and Bones in the Human Body The structure of the 
human body makes large muscular forces necessary. Are there advantages to the 
structure? Due to the small lever arms, the muscle forces are much larger than they 
would otherwise be, but the human body has traded this for a wide range of movement 
of the bones. The biceps and triceps muscles can move the lower arms through almost 
180° while they change their lengths by only a few centimeters. The muscles also 
remain nearly parallel to the bones. If the biceps and triceps muscles were attached 
to the lower arm much farther from the elbow, there would have to be a large flap of 
skin to allow them to move so far away from the bones. The arrangement of our bones 
and muscles favors a wide range of movement.

and the rotation axis. Since this line is horizontal, we need 
the vertical component of F

→
m which is Fm sin 15°. Then the 

magnitude of the CCW torque due to F
→

m is

∣τ∣ = F⊥r = Fm sin 15° × 0.12 m

The sum of these torques is zero. With the usual sign con-
vention (CCW is +),

Fm sin 15° × 0.12 m − 8.25 N·m = 0

Solving for Fm, yields

Fm =
8.25 N·m

sin 15° × 0.12 m
= 270 N

Discussion The force exerted by the muscle is much 
larger than the 30.0 N weight of the arm. The muscle must 

exert a larger force because the lever arm is small; the point 
of application is less than half as far from the joint as the 
center of gravity [0.12 m/(0.275 m) ≈ 4/9]. Also, the muscle 
cannot pull straight up on the arm; the vertical component 
of the muscle force is only about 1

4 of the magnitude of the 
force. These two factors together make the weight supported 
(30.0 N) only 4

9 × 1
4 = 1

9 as large as the force exerted by the 
muscle.

Practice Problem 8.10  Holding a Juice Carton

Find the force exerted by the same person’s deltoid muscle 
when holding a 1.0 L juice carton (weight 9.9 N) with the 
arm outstretched and parallel to the floor (as in Fig. 8.31). 
Assume that the juice carton is 60.0 cm from the shoulder.

Example 8.10 continued
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Another advantage of the body structure is that it tends to minimize the rotational 
inertia of our limbs. For example, the muscles that control the motion of the lower 
arm are contained mostly within the upper arm. This keeps the rotational inertia of 
the lower arms about the elbow smaller. It also keeps the rotational inertia of the 
entire arm about the shoulder smaller. Smaller rotational inertia means that the energy 
we have to expend to move our limbs around is smaller.

The biceps muscle with its tendons is almost parallel to the humerus. One inter-
esting observation is that the tendon connects to the radius at different points in dif-
ferent people. In one person this point may be 5.0 cm from the elbow joint, but in 
another person whose arm is the same length it may be 5.5 cm from the elbow. Thus, 
some people are naturally stronger than others because of their internal structure. 

Front view
(pecs)

Back view
(lats)

(c)

(b)

(a)

(d)

1–2W

W

1–2W

Shoulder joint 1–2W

Fm

Fs

60 cm

4.5 cm
45°

Axis

Figure 8.32 (a) Gymnast doing the iron cross. The principal muscles involved are (b) the “lats” and (c) the “pecs.” 
(d) Simplified model of the forces acting on the arm of the gymnast.
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Chimpanzees have an advantage over humans because their biceps muscle has a  longer 
lever arm. Do not make the mistake of arm wrestling with an adult chimp; challenge 
the chimp to a game of chess instead.

Application of Equilibrium Conditions: Heavy Lifting

When lifting an object from the floor, our first instinct is to bend over at the waist 
and pick it up. This is not a good way to lift something heavy. The spine is an inef-
fective lever and is susceptible to damage when a heavy object is lifted with bent 
waist. It is much better to squat down and use the powerful leg muscles to do the 
lifting instead of using our back muscles. Analyzing torques in a simplified model of 
the back can illustrate why.

The spine can be modeled as a rod with an axis at the tailbone (the sacrum). The 
sacrum exerts a force, marked F

→
s in Fig. 8.33, when a person bends at the waist with 

the back horizontal. The forces due to the complicated set of back muscles can be 
replaced with a single equivalent force F

→
b as shown. This equivalent force makes an 

angle of 12° with the spine and acts about 44 cm from the sacrum. The weight of the 
upper body, mg→ in Fig. 8.33, is about 65% of total body weight; its center of gravity is 
about 38 cm from the sacrum. By placing an axis at the sacrum, we can ignore the force 
F
→

s in our torque equation. Since the vertical component of F
→

b is Fb  sin 12° ≈ 0.21Fb, 
only about 1

5 the magnitude of the forces exerted by the back muscles is supporting the 
body weight. The much larger horizontal component is pressing the rod representing the 
spine into the sacrum.

If we put some numbers into this example, we can get an idea of the forces 
required for just supporting the upper body in this position. If the person’s total weight 
is 710 N (160 lb), then the upper body weight is

mg = 0.65 × 710 N

Now we set the magnitude of the CCW torques about the axis equal to the magnitude 
of the CW torques:

Fb × 0.44 m × sin 12° = mg × 0.38 m

Substituting and solving, we find

Fb =
0.65 × 710 N × 0.38 m

0.44 m × sin 12°
= 1920 N

Axis
(sacrum)

Force due to 
back muscles Force due to 

sacrum

Spine

38 cm

44 cm

12°

(Fb)

          Weight of 
upper body(mg)

(Fs)

Figure 8.33 A simplified model of the human back when bent over.
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The muscular force that compresses the spine is the horizontal component of F
→

b:

Fb cos 12° = 1900 N

or about 430 lb. This is over four times the weight of the upper body.
Now if the person tries to lift something with his arms in this position 

(Fig.  8.34a), the lever arm for the weight of the load is even longer than for the 
weight of the upper body. The back muscles must supply a much larger force. The 
spine is now compressed with a dangerously large force. A cushioning disk called 
the lumbosacral disk, at the bottom of the spine, separates the last vertebra from 
the sacrum. This disk can be ruptured or deformed, causing great pain when the 
back is misused in such a fashion.

If, instead of bending over, we bend our knees and lower our body, keeping the 
spine vertically aligned as much as possible (Fig. 8.34b), the centers of gravity of the 
body and load are positioned more closely in a line above the sacrum. Then the lever 
arms of these forces with respect to an axis through the sacrum are relatively small, 
and the force on the lumbosacral disk is roughly equal to the upper body weight plus 
the weight being lifted.

8.6 ROTATIONAL FORM OF NEWTON’S SECOND LAW

The concepts of torque and rotational inertia can be used to formulate a “Newton’s 
second law for rotation”—a law that fills the role of ΣF

→
= ma→ for rotation about a 

fixed axis:

(a) (b)

Figure 8.34 (a) A dangerous 
way to lift a heavy box. 
(b) The safer way to lift.
©Science Photo Library/Alamy

CONNECTION:

In Newton’s second law for 
rotation, net torque takes the 
place of net force, rotational 
inertia takes the place of mass, 
and α takes the place of a→.

Rotational form of Newton’s second law

 ∑τ = Iα (8-19)

In Eq. (8-19), torque, rotational inertia, and angular acceleration must all be measured 
about the same axis. When calculating the net torque Στ, remember to assign the 
correct algebraic sign to each torque before adding them. The sum of the torques due 
to internal forces acting on a rigid object is always zero. Therefore, only external 
torques need be included in the net torque.

The angular acceleration of a rigid object is proportional to the net torque (more 
torque causes a larger α) and is inversely proportional to the rotational inertia (more 
inertia causes a smaller α). In rotational equilibrium, the angular acceleration must 
be zero; Eq. (8-19) then requires that the net torque be zero. We used Στ = 0 as the 
condition for rotational equilibrium in Sections 8.4 and 8.5.

Equation (8-19) is proved in Problem 60. It is subject to an important restriction. 
Just as ΣF

→
= ma→ is valid only if the mass of the object is constant, Στ = Iα is valid ©Kevin Fleming/Corbis/VCG/Getty Images
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only if the rotational inertia of the object is constant. For a rigid object rotating about 
a fixed axis, I cannot change, so Eq. (8-19) is always applicable.

Newton’s second law for rotation explains why a tightrope walker carries a long 
pole to help maintain balance. Suppose the acrobat is about to topple over sideways. 
The pole has a large rotational inertia due to its length, so the angular acceleration of 
the system (acrobat plus pole) due to a small gravitational torque is much smaller than 
it would be without the pole. The smaller angular acceleration gives the acrobat more 
time to adjust his position and keep from falling.

Example 8.11

The Grinding Wheel

A grinding wheel is a solid, uniform disk of mass 2.50 kg 
and radius 9.00 cm. Starting from rest, what constant torque 
must a motor supply so that the wheel attains a rotational 
speed of 126 rev/s in a time of 6.00 s?

Strategy Since the grinding wheel is a uniform disk, we 
can find its rotational inertia using Table 8.1. After converting 
the revolutions per second to radians per second, we can find 
the angular acceleration from the change in angular velocity 
over the given time interval. Once we have I and α, we can 
find the net torque from Newton’s second law for rotation.

Solution The grinding wheel is a uniform disk, so its rota-
tional inertia is

I =
1
2

mr2

1
2

× 2.50 kg × (0.0900 m)2 = 0.010125 kg·m2

A single rotation of the wheel is equivalent to 2π radians, so

ω = 126 
rev
s × 2π 

rad
rev

The angular acceleration is

α =
Δω

Δt

Then the torque required is

 ∑τ = Iα = I 

Δω

Δt

 = 0.010125 kg·m2 ×
126 rev/s × 2π rad/rev

6.00 s
 = 1.34 N·m

If there are no other torques on the wheel, the motor must 
supply a constant torque of 1.34 N·m.

Discussion We assumed that no other torques are exerted 
on the wheel. There is certain to be at least a small frictional 
torque on the wheel with a sign opposite to the sign of the 
motor’s torque. Then the motor would have to supply a 
torque larger than 1.34 N·m. The net torque would still be 
1.34 N·m.

Practice Problem 8.11 Another Approach

Verify the answer to Example 8.11 by: (a) finding the angu-
lar displacement of the wheel using equations for  constant α; 
(b) finding the change in rotational kinetic energy of the 
wheel; and (c) finding the torque from W = τ Δθ.

8.7 THE MOTION OF ROLLING OBJECTS

A rolling object combines translational motion of the center of mass with rotation 
about an axis that passes through the center of mass (see Section 5.1). For an object 
that is rolling without slipping, vCM = ωR. As a result, there is a specific relation-
ship between the rolling object’s translational and rotational kinetic energies. The 
total kinetic energy of a rolling object is the sum of its translational and rotational 
kinetic energies.

A wheel with mass M and radius R has a rotational inertia that is some pure 
number times MR2; it couldn’t be anything else and still have the right units. We can 
write the rotational inertia about an axis through the cm as ICM = βMR2, where β is 
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a pure number that measures how far from the axis of rotation the mass is distributed. 
Larger β means the mass is, on average, farther from the axis. From Table 8.1, a hoop 
has β = 1; a disk, β = 1

2; and a solid sphere, β = 2
5.

Using ICM = βMR2 and vCM = ωR, the rotational kinetic energy for a rolling object 
can be written

 Krot =
1
2

 ICMω2 =
1
2

 (βMR2)(
vCM

R )
2

= β(
1
2

 Mv2
CM) (8-20)

Since 1
2Mv2

CM is the translational kinetic energy,

 Krot = βKtr (8-21)

This is convenient since β depends only on the shape, not on the mass or radius 
of the object. For a given shape rolling without slipping, the ratio of its rotational to 
translational kinetic energy is always the same (β).

The total kinetic energy can be written

 K = Ktr + Krot =
1
2

 Mv2
CM +

1
2

 ICMω2 (8-22)

or in terms of β,

 K = (1 + β)Ktr = (1 + β)
1
2

 Mv2
CM (8-23)

Thus, two objects of the same mass rolling at the same translational speed do not 
necessarily have the same kinetic energy. The object with the larger value of β has 
more rotational kinetic energy.

Conceptual Example 8.12

Hollow and Solid Rolling Balls

Starting from rest, two balls roll down a hill as in Fig. 8.35. 
One is solid, the other hollow. Which one is moving faster 
when it reaches the bottom of the hill?

Strategy and Solution Energy conservation is the best 
way to approach this problem. As a ball rolls down the hill, 
its gravitational potential energy decreases as its kinetic en-
ergy increases by the same amount. The total kinetic energy 
is the sum of the translational and rotational contributions.

We do not know the mass or the radius of either ball, 
and we cannot assume they are the same. Since both kinetic 

and potential energies are proportional to mass, mass does 
not affect the final speed. Also, the total kinetic energy does 
not depend on the radius of the ball [see Eq. (8-23)]. The 
 final speeds of the two balls differ because different  fractions 
of their total kinetic energies are translational.

One ball is a solid sphere and the other is approximately 
a spherical shell. The mass of a spherical shell is all concen-
trated on the surface of a sphere, while a solid sphere has its 
mass distributed throughout the sphere’s volume. Therefore, 
the shell has a larger β than the solid sphere. When the shell 
rolls, it converts a bigger fraction of the lost potential energy 
into rotational kinetic energy; therefore, a smaller fraction 
becomes translational kinetic energy. The final speed of the 
solid sphere is larger since it puts a larger fraction of its ki-
netic energy into translational motion.

Discussion We can make this conceptual question into a 
quantitative one: what is the ratio of the speeds of the two 
balls at the bottom of the hill?

Let the height of the hill be h. Then for a ball of mass M, 
the loss of gravitational potential energy is Mgh. This amount 

continued on next page

h

vsolid

vhollow

Figure 8.35
Rolling balls.
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of gravitational potential energy is converted into transla-
tional and rotational kinetic energy:

Mgh = Ktr + Krot = (1 + β)Ktr = (1 + β)
Mv2

CM

2

Mass cancels out, as expected. We can solve for the final 
speed in terms of g, h, and β. The final speed is independent 
of the ball’s mass and radius.

vCM = √
2gh

1 + β

The ratio of the final speeds for two balls rolling down the 
same hill is, therefore,

v1

v2
= √

1 + β2

1 + β1

To evaluate the ratio, we look up the rotational inertias in 
Table 8.1. The solid sphere has β = 2

5 and the spherical shell 
has β = 2

3. Then

vsolid

vhollow
= √

1 + 2
3

1 + 2
5

≈ 1.091

The solid ball’s final speed is, therefore, 9.1% faster than that 
of the hollow ball. This ratio depends neither on the masses 
of the balls, the radii of the balls, the height of the hill, nor 
the slope of the hill.

Practice Problem 8.12 Fraction of Kinetic Energy 
That Is Rotational Energy

What fraction of a rolling ball’s kinetic energy is rotational 
kinetic energy? Answer both for a solid ball and a hollow one.

Conceptual Example 8.12 continued

CHECKPOINT 8.7

Give	an	example	of	how	a	marble	can	move	so	 that	 (a)	Ktr	>	0	and	Krot	=	0;	
(b)	Ktr	=	0	and	Krot	>	0;	 (c)	Krot	=	 2

5Ktr

Acceleration of Rolling Objects What is the acceleration of a ball rolling down 
an incline? Figure 8.36 shows the forces acting on the ball. Static friction is the force 
that makes the ball rotate; if there were no friction, instead of rolling, the ball would 
just slide down the incline. This is true because friction is the only force acting that 
yields a nonzero torque about the rotation axis through the ball’s center of mass. 
Gravity gives zero torque because it acts at the axis, so the lever arm is zero. The 
normal force points directly at the axis, so its lever arm is also zero.

The frictional force f
→

 provides a torque

 τ = rf  (8-24)

where r is the ball’s radius. An analysis of the forces and torques combined with 
Newton’s second law in both forms enables us to calculate the acceleration of the ball 
in Example 8.13.

Example 8.13

Acceleration of a Rolling Ball

Calculate the acceleration of a solid ball rolling down a slope 
inclined at an angle θ to the horizontal (Fig. 8.37a).

Strategy The net torque is related to the angular accelera-
tion by Στ = Iα, Newton’s second law for rotation. Similarly, 
the net force acting on the ball gives the acceleration of the 
center of mass: ΣF

→
= ma→CM. The axis of rotation is through 

the ball’s cm. As already discussed, neither gravity nor the 
normal force produce a torque about this axis; the net torque 
is Στ = rf   , where f is the magnitude of the frictional force. 
One problem is that the force of friction is unknown. We must 
resist the temptation to assume that f = μsN; there is no reason 
to assume that static friction has its maximum possible mag-
nitude. We do know that the two accelerations, translational 

continued on next page

N

θ

fs

mg

Figure 8.36 Forces acting on 
a ball rolling downhill.
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and rotational, are related. We know that vCM and ω are pro-
portional since r is constant. To stay proportional, they must 
change in lock step; their rates of change, aCM and α, are 
proportional to each other by the same factor of r. Thus,  
aCM = αr. This connection should enable us to eliminate f  
and solve for the acceleration. Since the speed of a ball after 
rolling a certain distance was found to be independent of  
the mass and radius of the ball in Conceptual Example 8.12, 
we expect the same to be true of the acceleration.

Solution Since the net torque is

∑τ = rf

the angular acceleration is

 α =
∑τ

I
=

rf

I
 (1)

where I is the ball’s rotational inertia about its cm.
Figure 8.37b shows the forces along the incline acting 

on the ball. The acceleration of the cm is found from Newton’s 
second law. The component of the net force acting along the 
incline (in the direction of the acceleration) is

 ∑Fx = mg sin θ − f = maCM (2)

Because the ball is rolling without slipping, the acceleration 
of the cm and the angular acceleration are related by

aCM = αr

Now we try to eliminate the unknown frictional force f from 
the previous equations. Solving Eq. (1) for f gives

f =
Iα

r

Substituting this into Eq. (2), we get

mg sin θ −
Iα

r
= maCM

Now to eliminate α, we can substitute α = aCM/r  :

mg sin θ −
IaCM

r2 = maCM

Solving for aCM, we have

aCM =
g sin θ

1 + I/(mr2)

For a solid sphere, I = 2
5mr2, so

aCM =
g sin θ
1 + 2

5
=

5
7

g sin θ

Discussion The acceleration of an object sliding down an 
incline without friction is a = g sin θ. The acceleration of the 
rolling ball is smaller than g sin θ due to the frictional force 
directed up the incline.

We can check the answer by comparing to a result of 
Conceptual Example 8.12. The ball’s acceleration is con-
stant. If the ball starts from rest as in Fig. 8.37a, after it has 
rolled a distance d, its speed v is

v = √2ad = √2(
g sin θ
1 + β )d

where β = 2
5. The vertical drop during this time is h =  

d sin θ, so

v = √
2gh

1 + β

Practice Problem 8.13 Acceleration of a Hollow 
Cylinder

Calculate the acceleration of a thin hollow cylindrical shell 
rolling down a slope inclined at an angle θ to the horizontal.

Example 8.13 continued

N

mg

h
d

v
mg sin θ

–mg cos θ

(a) (b)

θ

θ

θ

r

f
x

Figure 8.37
(a) A ball rolling downhill. (b) FBD for the ball, with the gravita-
tional force resolved into components perpendicular and parallel 
to the incline.

8.8 ANGULAR MOMENTUM

Newton’s second law for translational motion can be written in two ways:

 ∑F
→

= lim
Δt→0

Δp→

Δt
 (general form) or ∑F

→
= ma→ (constant mass)  (8-25)

In Eq. (8-19) we wrote Newton’s second law for rotation as Στ = Iα, which applies 
only when I is constant—that is, for a rigid object rotating about a fixed axis. A more 
general form of Newton’s second law for rotation uses the concept of angular momentum 
(symbol L).
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The angular momentum of a rigid object rotating about a fixed axis is the rotational 
inertia times the angular velocity, which is analogous to the definition of linear 
momentum (mass times velocity):

CONNECTION:

Note the analogy with

∑F
→

= lim
Δt→0

Δp→

Δt

CONNECTION:

Note the analogy with 
p→ = mv→. See the Master the 
Concepts section at the end 
of the chapter for a complete 
table of these analogies.

The net external torque acting on a system is equal to the rate of change of 
the angular momentum of the system.

 ∑τ = lim
Δt→0

 

ΔL

Δt
 (8-26)

Angular momentum

 L = Iω (8-27)

(rigid object, fixed axis)

Conservation of angular momentum

 If ∑τ = 0,  Li = Lf  (8-29)

Either Eq. (8-26) or Eq. (8-27) can be used to show that the SI units of angular 
momentum are kg·m2/s.

For a rigid object rotating around a fixed axis, angular momentum doesn’t tell us 
anything new. The rotational inertia is constant for such an object since the distance 
rn between every point on the object and the axis stays the same. Then any change 
in angular momentum must be due to a change in angular velocity ω:

 ∑τ = lim
Δt→0

ΔL

Δt
= lim

Δt→0

I Δω

Δt
= I( lim

Δt→0
 

Δω

Δt ) = Iα (8-28)

Conservation of Angular Momentum Equation (8-26) is not restricted to rigid 
objects or to fixed rotation axes. In particular, if the net external torque acting on a 
system is zero or is negligibly small, then the angular momentum of the system does 
not change. This is the law of conservation of angular momentum:

Here Li and Lf represent the angular momentum of the system at two different times. 
Conservation of angular momentum is one of the most basic and fundamental laws 
of physics, along with the two other conservation laws we have studied so far (energy 
and linear momentum). For an isolated system, the total energy, total linear momen-
tum, and total angular momentum of the system are each conserved. None of these 
quantities can change unless some external agent causes the change.

With conservation of energy, we add up the amounts of the different forms of 
energy (such as kinetic energy and gravitational potential energy) to find the total 
energy. The conservation law refers to the total energy. By contrast, linear momentum 
and angular momentum cannot be added to find the “total momentum.” They are 
entirely different quantities, not two forms of the same quantity. They even have dif-
ferent dimensions, so it would be impossible to add them. Conservation of linear 
momentum and conservation of angular momentum are separate laws of physics.

Application of Angular Momentum: Figure Skaters In this section, we restrict 
our consideration to cases where the axis of rotation is fixed but where the rotational 
inertia is not necessarily constant. One familiar example of a changing rotational 
inertia occurs when a figure skater spins (Fig. 8.38). To start the spin, the skater glides 
along with her arms outstretched and then begins to rotate her body about a vertical 
axis by pushing against the ice with a skate. The push of the ice against the skate 
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provides the external torque that gives the skater her initial angular momentum. Ini-
tially the skater’s arms and the leg not in contact with the ice are extended away from 
her body. The mass of the arms and leg when extended contribute more to her rota-
tional inertia than they do when held close to the body. As the skater spins, she pulls 
her arms and leg close and straightens her body to decrease her rotational inertia. As 
she does, her angular velocity increases dramatically in such a way that her angular 
momentum stays the same.

Applications of Angular Momentum: Hurricanes and Pulsars Many natural phe-
nomena can be understood in terms of angular momentum. In a hurricane, circulating 
air is pushed inward toward a low-pressure region at the center of the storm (the eye). 
As the air moves closer and closer to the axis of rotation, it circulates faster and faster. 
An even more dramatic example is the formation of a pulsar. Under certain conditions, 
a star can implode under its own gravity, forming a neutron star (a collection of tightly 
packed neutrons). If the Sun were to collapse into a neutron star, its radius would be only 
about 13 km. If a star is rotating before its collapse, then as its rotational inertia decreases 
dramatically, its angular velocity must increase to keep its angular momentum constant. 
Such rapidly rotating neutron stars are called pulsars because they emit regular pulses of 
x-rays, at the same frequency as their rotation, that can be detected when they reach 
Earth. Some pulsars rotate in only a few thousandths of a second per revolution.

(a) (b)

Figure 8.38 Figure skater 
Lucinda Ruh at the (a) begin-
ning and (b) end of a spin. Her 
angular velocity is much higher 
in (b) than in (a).
©Leah Adams

CHECKPOINT 8.8

If	 the	 skater	 then	 extends	 her	 arms	 and	 leg	 back	 to	 their	 initial	 configuration,	
does	her	angular	 velocity	decrease	back	 to	 its	 initial	 value,	 ignoring	 friction?

Example 8.14

Mouse on a Wheel

A 0.10 kg mouse is perched at point B on the rim of a 2.00 kg 
wagon wheel that rotates freely in a horizontal plane at 
1.00  rev/s (Fig. 8.39). The mouse crawls to point A at the 

center. Assume the mass of the wheel is concentrated at the 
rim. What is the frequency of rotation in rev/s when 
the mouse arrives at point A?

continued on next page
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Strategy Assuming that frictional torques are negligibly 
small, there is no external torque acting on the mouse/
wheel system. Then the angular momentum of the mouse/
wheel system must be conserved; it takes an external torque 
to change angular momentum. The mouse and wheel exert 
torques on one another, but these internal torques only 
transfer some angular momentum between the wheel and 
the mouse without changing the total angular momentum. 
We can think of the system as initially being a rigid object 
with rotational inertia Ii. When the mouse reaches the cen-
ter, we think of the system as a rigid object with a different 
rotational inertia If. The mouse changes the rotational iner-
tia of the mouse/wheel system by moving from the outer 
rim, where its mass makes the maximum possible contribu-
tion to the rotational inertia, to the rotation axis, where its 
mass makes no contribution to the rotational inertia.

Solution Initially, all of the mass of the system is at a 
distance R from the rotation axis, where R is the radius of 
the wheel. Therefore,

Ii = (M + m)R2

where M is the mass of the wheel and m is the mass of the 
mouse. After the mouse moves to the center of the wheel, 

its mass contributes nothing to the rotational inertia of  
the system:

If = MR2

From conservation of angular momentum,

Ii ωi = If ωf

Substituting the rotational inertias and ω = 2π f, we obtain

(M + m)R2 × 2π  fi = MR2 × 2π ff

Factors of 2πR2 cancel from each side, leaving

(M + m)fi = Mff

Solving for ff gives

ff =
M + m

M
 fi =

2.10  kg
2.00  kg

(1.00  rev/s) = 1.05  rev/s

Discussion Conservation laws are powerful tools. We do 
not need to know the details of what happens as the mouse 
crawls along the spoke from the outer edge of the wheel; 
we need only look at the initial and final conditions.

A common mistake in this sort of problem is to assume 
that the initial rotational kinetic energy is equal to the final 
rotational kinetic energy. This is not true because the mouse 
crawling in toward the center expends energy to do so. In 
other words, the mouse converts some internal energy into 
rotational kinetic energy.

Practice Problem 8.14 Change in Rotational  
Kinetic Energy

What is the percentage change in the rotational kinetic  
energy of the mouse/wheel system?

Example 8.14 continued

B

A

R

Figure 8.39
Mouse on a rotating wheel.
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Planet
θ

Figure 8.40 The planet’s 
speed varies such that it sweeps 
out equal areas in equal time 
intervals. Two such areas are 
indicated here by light blue 
shading. The eccentricity of the 
planetary orbit is exaggerated 
for clarity.

Angular Momentum in Planetary Orbits

Conservation of angular momentum applies to planets orbiting the Sun in elliptical 
orbits. Kepler’s second law says that the orbital speed varies in such a way that the 
line from the Sun to the planet sweeps out area at a constant rate (Fig. 8.40a). In 
Problem 117, you can show that Kepler’s second law is a direct result of conservation 
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of angular momentum, where the angular momentum of the planet is calculated using 
an axis of rotation perpendicular to the plane of the orbit and passing through the 
Sun. When the planet is closer to the Sun, it moves faster; when it is farther away, it 
moves more slowly. Conservation of angular momentum can be used to relate the 
orbital speeds and radii at two different points in the orbit. The same applies to satel-
lites and moons orbiting planets.

Example 8.15

Earth’s Orbital Speed

At perihelion (closest approach to the Sun), Earth is  
1.47 × 108 km from the Sun and its orbital speed is 
30.3 km/s. What is Earth’s orbital speed at aphelion (greatest 
distance from the Sun), when it is 1.52 × 108 km from  
the Sun? Note that at these two points Earth’s velocity  
is perpendicular to a radial line from the Sun (see  
Fig. 8.40a).

Strategy We take the axis of rotation through the Sun. 
Then the gravitational force on Earth points directly toward 
the axis; with zero lever arm, the torque is zero. With no 
other external forces acting on Earth, the net external 
torque is zero. Earth’s angular momentum about the rota-
tion axis through the Sun must therefore be conserved. To 
find Earth’s rotational inertia, we treat it as a point particle 
since its radius is much less than its distance from the axis 
of rotation.

Solution The rotational inertia of Earth is

I = mr2

where m is Earth’s mass and r is its distance from the Sun. 
The angular velocity is

ω =
v⊥

r

where v⊥ is the component of the velocity perpendicular to 
a radial line from the Sun. At the two points under consid-
eration, v⊥ = v. As the distance from the Sun r varies, its 
speed v must vary to conserve angular momentum:

Iiωi = Ifωf

By substitution,

mr2
i ×

vi

ri
= mr2

f ×
vf

rf

or

 rivi = rfvf  (1)

Solving for vf yields

vf =
ri

rf
 vi =

1.47 × 108 km
1.52 × 108 km

× 30.3 km/s = 29.3 km/s

Discussion Earth moves slower at a point farther from the 
Sun. This is what we expect from energy conservation. The 
potential energy is greater at aphelion than at perihelion. 
Since the mechanical energy of the orbit is constant, the ki-
netic energy must be smaller at aphelion.

Equation (1) implies that the orbital speed and orbital 
radius are inversely proportional, but strictly speaking this 
equation only applies to the perihelion and aphelion. At a 
general point in the orbit, the perpendicular component v⊥ is 
inversely proportional to r (see Fig. 8.40b). The orbits of 
Earth and most of the other planets are nearly circular so that 
θ ≈ 0° and v⊥ ≈ v.

Practice Problem 8.15 Puck on a String

A puck on a frictionless, horizontal air table is attached to a 
string that passes down through a hole in the table. Initially the 
puck moves at 12 cm/s in a circle of radius 24 cm. If the string 
is pulled through the hole, reducing the radius of the puck’s 
circular motion to 18 cm, what is the new speed of the puck?

8.9 THE VECTOR NATURE OF ANGULAR MOMENTUM

Until now we have treated torque and angular momentum as scalar quantities. Such 
a treatment is adequate in the cases we have considered so far. However, the law of 
conservation of angular momentum applies to all systems, including rotating objects 
whose axis of rotation changes direction. Torque and angular momentum are actually 
vector quantities. Angular momentum is conserved in both magnitude and direction 
in the absence of external torques.
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An important special case is that of a symmetrical object rotating about an axis 
of symmetry, such as the spinning disk in Fig. 8.41. The magnitude of the angular 
momentum of such an object is L = Iω. The direction of the angular momentum vec-
tor points along the axis of rotation. To choose between the two directions along the 
axis, a right-hand rule is used. Align your right hand so that, as you curl your fingers 
in toward your palm, your fingertips follow the object’s rotation; then your extended 
thumb points in the direction of L

→
.

For rotation about a fixed axis, the net torque is also along the axis of rotation, 
in the direction of the change in angular momentum it causes. The sign convention 
we have used up to now for angular momentum and torque gives the sign of the 
z-component of the vector quantity, where the z-axis points toward the viewer. For 
example, imagine viewing the disk of Figure 8.41 from above. If we choose the z-axis 
toward the viewer (up), then Lz > 0 for counterclockwise rotation and Lz < 0 for 
clockwise rotation.

Application of Angular Momentum: The Gyroscope A disk with a large rota-
tional inertia can be used as a gyroscope. When the gyroscope spins at a large angu-
lar velocity, it has a large angular momentum. It is then difficult to change the 
orientation of the gyroscope’s rotation axis because to do so requires changing its 
angular momentum. To change the direction of a large angular momentum requires a 
correspondingly large torque. Thus, a gyroscope can be used to maintain stability. 
Gyroscopes are used in guidance systems in airplanes, submarines, and space vehicles 
to maintain a constant direction in space.

Application of Angular Momentum: Rifle Bullets, Spinning Tops, and Earth’s 
Rotation The same principle explains the great stability of rifle bullets and spinning 
tops. A rifle bullet is made to spin as it passes through the rifle’s barrel. The spinning 
bullet then keeps its correct orientation—nose first—as it travels through the air. 
Otherwise, a small torque due to air resistance could make the bullet tumble about 
randomly, greatly increasing air resistance and undermining accuracy. A properly 
thrown football is made to spin for the same reasons. A spinning top can stay balanced 
for a long time, while the same top soon falls over if it is not spinning.

Earth’s rotation gives it a large angular momentum. As Earth orbits the Sun, the 
axis of rotation stays in a fixed direction in space. The axis points nearly at Polaris 
(the North Star), so even as Earth rotates around its axis, Polaris maintains its position 
in the northern sky. The fixed direction of the rotation axis gives us the regular 
 progression of the seasons (Fig. 8.42).

L

L
Figure 8.41 Right-hand  
rule for finding the direction  
of the angular momentum of  
a spinning disk.
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A Classic Demonstration of Angular Momentum

A demonstration often done in physics classes is for a student to hold a spinning 
bicycle wheel while standing on a platform or sitting in a chair is free to rotate. The 
wheel’s rotation axis is initially horizontal (Fig. 8.43a). Then the student repositions 
the wheel so that its axis of rotation is vertical (Fig. 8.43b). As he repositions the 
wheel, the platform begins to rotate opposite to the wheel’s rotation. If we assume no 
friction acts to resist rotation of the platform, then the platform continues to rotate as 
long as the wheel is held with its axis vertical. If the student returns the wheel to its 
original orientation, the rotation of the platform stops.

The platform is free to rotate about a vertical axis. As a result, once the student 
steps onto the platform, the vertical component Lz of the angular momentum of the 
system (student + platform + wheel) is conserved. The horizontal components of L

→
 

Sun

L

Autumnal equinox
in northern
hemisphere

Vernal equinox
in northern
hemisphere

Summer solstice
in northern
hemisphere

Winter solstice
in northern
hemisphere

N

S

L
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L

Figure 8.43 A demonstration of 
angular momentum conservation.
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x

Figure 8.42 Spinning like a 
top, Earth maintains the direc-
tion of its angular momentum 
due to rotation as it revolves 
around the Sun (not to scale).
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are not conserved. The platform is not free to rotate about any horizontal axis since 
the floor can exert external torques to keep it from doing so. In vector language, we 
would say that only the vertical component of the external torque is zero, so only the 
vertical component of angular momentum is conserved.

Initially Lz = 0 since the student and the platform have zero angular momentum 
and the wheel’s angular momentum is horizontal. When the wheel is repositioned so 
that it spins with an upward angular momentum (Lz > 0), the rest of the system (the 
student and the platform) must acquire an equal magnitude of downward angular 
momentum (Lz < 0) so that the vertical component of the total angular momentum is 
still zero. Thus, the platform and student rotate in the opposite sense from the rotation 
of the wheel. Since the platform and student have more rotational inertia than the 
wheel, they do not spin as fast as the wheel, but their vertical angular momentum is 
just as large.

The student and the wheel apply torques to each other to transfer angular momen-
tum from one part of the system to the other. These torques are equal and opposite 
and they have both vertical and horizontal components. As the student lifts the wheel, 
he feels a strange twisting force that tends to rotate him about a horizontal axis. The 
platform prevents the horizontal rotation by exerting unequal normal forces on the 
student’s feet. The horizontal component of the torque is so counterintuitive that, if 
the student is not expecting it, he can easily be thrown from the platform!

Master the Concepts

 ∙ The rotational kinetic energy of a rigid object with rota-
tional inertia I and angular velocity ω is

 Krot = 1
2Iω

2 (8-4)

In this expression, ω must be measured in radians per 
unit time.

 ∙ Rotational inertia is a measure of how difficult it is to 
change an object’s angular velocity. It is defined as:

 I = ∑
N

n=1
mnr

2
n (8-5)

where rn is the perpendicular distance between a parti-
cle of mass mn and the rotation axis. The rotational iner-
tia depends on the location of the rotation axis.

 ∙ Torque measures the effectiveness of a force for twisting 
or turning an object. It can be calculated in two equiva-
lent ways: either as the product of the perpendicular 
component of the force with the shortest distance be-
tween the rotation axis and the point of application of 
the force

 τ = ±rF⊥ (8-7)

or as the product of the magnitude of the force with its 
lever arm (the perpendicular distance between the line 
of action of the force and the axis of rotation)

 τ = ±r⊥F (8-11)

 ∙ We can consider the entire gravitational force on an ob-
ject to act at a single point called the center of gravity. If 
the gravitational field is uniform, the center of gravity of 
an object coincides with its center of mass.

 ∙ A force whose perpendicular component tends to cause 
rotation in the CCW direction creates a positive torque; 
a force whose perpendicular component tends to cause 
rotation in the CW direction produces a negative 
torque.

r

F

r⊥

r⊥ = r sin θ
τ  = rF sin θ

F⊥ = F sin θ

Axis

90°

θ

θ
F⊥

r

Fr⊥

Axis

90°

θ
F⊥

continued on next page
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Master the Concepts continued

 ∙ The work done by a constant torque is the product of the 
torque and the angular displacement:

 W = τ Δθ (Δθ in radians)  (8-13)
 ∙ The conditions for translational and rotational equilib-

rium are

 ∑F
→

= 0 and ∑τ = 0 (8-15)

The rotation axis should be perpendicular to all the 
forces but its location is arbitrary. Generally, the best 
place to choose the axis is through the point of applica-
tion of an unknown force or through a point on the line 
of action, so the unknown force does not appear in the 
torque equation.

 ∙ Newton’s second law for rotation is

 ∑τ = Iα (8-19)

where radian measure must be used for α. A more gen-
eral form is

 ∑τ = lim
Δt→0

 
ΔL

Δt
 (8-26)

where L is the angular momentum of the system.
 ∙ The total kinetic energy of an object that is rolling with-

out slipping is the sum of the rotational kinetic energy 
about an axis through the cm and the translational ki-
netic energy:

 K =
1
2

 Mv2
CM +

1
2

 ICMω2 (8-22)

 ∙ The angular momentum of a rigid object rotating about 
a fixed axis is the rotational inertia times the angular 
velocity:

 L = Iω (8-27)

 ∙ The law of conservation of angular momentum: if the 
net external torque acting on a system is zero, then the 
angular momentum of the system cannot change.

 If ∑τ = 0, Li = Lf  (8-29)

 ∙ This table summarizes the analogous quantities and 
equations in translational and rotational motion.

Translation Rotation
m I

F
→

 τ

a→ α

∑F
→

= ma→ ∑τ = Iα

Δx Δθ

W = Fx Δx W = τ Δθ

v→ ω

K = 1
2mv2 K = 1

2Iω2

p→ = mv→ L = Iω

∑F
→

= lim
Δt→0

 
Δp→

Δt
 ∑τ = lim

Δt→0
 
ΔL

Δt

If∑F
→

= 0, p→ is conserved If ∑τ = 0, L is conserved

Conceptual Questions

 1. In Fig. 8.2b, where should the doorknob be located to 
make the door easier to open?

 2. Explain why it is easier to drive a wood screw using a 
screwdriver with a large-diameter handle rather than 
one with a thin handle.

 3. Why is it easier to push open a swinging door from near 
the edge away from the hinges rather than in the middle 
of the door?

 4. A book measures 3 cm 
by 16 cm by 24 cm. 
About which of the 
axes shown in the fig-
ure is its rotational in-
ertia smallest?

 5. An object in equilib-
rium has only two 
forces acting on it. The 
forces must be equal in 

magnitude and opposite in direction in order to give a 
translational net force of zero. What else must be true of 
the two forces for the object to be in equilibrium? [Hint: 
Consider the lines of action of the forces.]

 6. Why do many helicopters have a small propeller attached 
to the tail that rotates in a vertical plane? Why is this at-
tached at the tail rather than somewhere else? [Hint: 
Most of the helicopter’s mass is forward, in the cab.]

 7. In the “Pinewood Derby,” Cub Scouts construct cars and 
then race them down an incline. Some say that, every-
thing else being equal (friction, drag coefficient, same 
wheels, etc.), a heavier car will win; others maintain that 
the weight of the car does not matter. Who is right? 
 Explain. [Hint: Think about the fraction of the car’s kinetic 
energy that is rotational.]

 8. A large barrel lies on its 
side. In order to roll it 
across the floor, you apply 
a horizontal force, as 
shown in the figure. If the 

3 cm

24 cm

16 cm

Axis 1

Axis 2

Axis 3

©Mike Kemp/Getty Images
Conceptual	Question	4

Axis
F
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applied force points toward the axis of rotation, which 
runs down the center of the barrel through the center of 
mass, it produces zero torque about that axis. How then 
can this applied force make the barrel start to roll?

 9.  Animals that can run fast always have thin legs. 
Their leg muscles are concentrated close to the hip joint; 
only tendons extend into the lower leg. Using the con-
cept of rotational inertia, explain how this helps them 
run fast.

 10.  Part (a) of the figure shows a simplified model of 
how the triceps muscle connects to the forearm. As the 
angle θ is changed, the tendon wraps around a nearly 
circular arc. Explain how this is much more effective 
than if the tendon is connected as in part (b) of the fig-
ure. [Hint: Look at the lever arm as θ changes.]

Triceps muscle

Tendon connects
here

(a) (b)

θ θ

Question	10

 11.  Part (a) of the figure shows a simplified model of 
how the biceps muscle enables the forearm to support a 
load. What are the advantages of this arrangement as 
opposed to the alternative shown in part (b), where the 
flexor muscle is in the forearm instead of in the upper 
arm? Are the two equally effective when the forearm is 
horizontal? What about for other angles between the up-
per arm and the forearm? Consider also the rotational 
inertia of the forearm about the elbow and of the entire 
arm about the shoulder.

(a) (b)

Flexor
Flexor
(biceps)

Question	11

 12. In Section 8.6, it 
was asserted that 
the sum of all the 
internal torques 
(i.e., the torques due 
to internal forces) 
acting on a rigid ob-
ject is zero. The fig-
ure shows two 
particles in a rigid 

object. The particles exert forces F
→

12 and F
→

21 on each 
other. These forces are directed along a line that joins 
the two particles. Explain why the torques due to these 
two forces must be equal and opposite even though the 
forces are applied at different points (and, therefore, 
possibly at different distances from the axis).

 13. A playground merry-go-round (see Fig. 8.5) spins with 
negligible friction. A child moves from the center out to 
the rim of the merry-go-round platform. Let the system 
be the merry-go-round plus the child. Which of these 
quantities change: angular velocity of the system, rota-
tional kinetic energy of the system, angular momentum 
of the system? Explain your answer.

 14. The figure shows a balancing toy with weights extend-
ing on either side. The toy is extremely stable. It can be 
pushed quite far off center one way or the other but it 
does not fall over. Explain why it is so stable.

Question	14

 15.  Explain why 
the posture taken 
by defensive foot-
ball linemen makes 
them more difficult 
to push out of the 
way. Consider both 
the height of the 
center of gravity 
and the size of the 
support base (the 
area on the ground 
bounded by the 
hands and feet touching the ground). In order to knock 
a person over, what has to happen to the center of grav-
ity? Which do you think needs a more complex neuro-
logical system for maintaining balance: four legged 
animals or humans?

 16.  The center of gravity of the upper body of a bird is 
located below the hips; in a human, the center of grav-
ity of the upper body is located well above the hips. 
Since the upper body is supported by the hips, are 
birds or humans more stable? Consider what happens 
if the upper body is displaced a little so that its center 
of gravity is not directly above or below the hips. In 

Axis

F21

F12

m2

m1

©Doug Pensinger/Getty Images
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what direction does the 
torque due to gravity tend 
to make the upper body ro-
tate about an axis through 
the hips?

 17. An astronaut wants to re-
move a bolt from a satellite 
in orbit. He positions him-
self so that he is at rest with 
respect to the satellite, then 
pulls out a wrench and at-
tempts to remove the bolt. 
What is wrong with his 
method? How can he re-
move the bolt?

 18. Your door is hinged to close automatically after being 
opened. Where is the best place to put a wedge-shaped 
door stopper on a slippery floor in order to hold the 
door open? Should it be placed close to the hinge or far 
from it?

 19. You are riding your bicycle and approaching a rather 
steep hill. Which gear should you use to go uphill, a 
low gear or a high gear? With a low gear the wheel 
rotates less than with a high gear for one rotation of the 
pedals.

 20. One way to find 
the center of grav-
ity of an irregu-
lar flat object is 
to suspend it 
from various 
points so that it 
is free to rotate. 
When the object hangs in equilibrium, a vertical line is 
drawn downward from the support point. After drawing 
lines from several different support points, the center of 
gravity is the point where the lines all intersect. Explain 
how this works.

 21. One of the effects of significant global warming is the 
melting of part or all of the polar ice caps. This, in turn, 
would change the length of the day (the period of Earth’s 
rotation). Explain why. Would the day get longer or 
shorter?

Multiple-Choice Questions

 1. When both are expressed in terms of SI base units, 
torque has the same units as

 (a) angular acceleration (b) angular momentum
 (c) force  (d) energy
 (e) rotational inertia (f) angular velocity
 2. A heavy box is resting on the floor. You would like to 

push the box to tip it over on its side, using the mini-
mum force possible. Which of the arrows in the diagram 

shows the correct loca-
tion and direction of 
the force? Assume 
enough friction so that 
the box does not slide; 
instead it rotates about point P.

Questions 3–4. A uniform solid cylinder rolls without slip-
ping down an incline. At the bottom of the incline, the speed 
v of the cylinder is measured and the translational and rota-
tional kinetic energies (Ktr, Krot) are calculated. A hole is 
drilled through the cylinder along its axis and the experiment 
is repeated; at the bottom of the incline the cylinder now has 
speed v′ and translational and rotational kinetic energies K′tr 
and K′rot.
 3. How does the speed of the cylinder compare with its 

original value?
 (a) v′ < v (b) v′ = v (c) v′ > v
 (d) Answer depends on the radius of the hole drilled.
 4. How does the ratio of rotational to translational kinetic 

energy of the cylinder compare with its original value?

 (a) 
K′rot

K′tr
<

Krot

Ktr
 (b) 

K′rot

K′tr
=

Krot

Ktr
 (c) 

K′rot

K′tr
>

Krot

Ktr

 (d) Answer depends on the radius of the hole drilled.
 5. The SI units of angular momentum are

 (a) 
rad
s  (b) 

rad
s2  (c) 

kg·m
s2

 (d) 
kg·m2

s2  (e) 
kg·m2

s  (f) 
kg·m

s
 6. Which of the forces in the figure produces the largest 

magnitude torque about the rotation axis indicated?
 (a) 1 (b) 2 (c) 3 (d) 4

Axis

1

2

3

4

Multiple-Choice	Questions	6–8

 7. Which of the forces in the figure produces a cW torque 
about the rotation axis indicated?

 (a) 3 only (b) 4 only (c) 1 and 2
 (d) 1, 2, and 3 (e) 1, 2, and 4
 8. Which pair of forces in the figure might produce equal 

magnitude torques with opposite signs?
 (a) 2 and 3 (b) 2 and 4 (c) 1 and 2
 (d) 1 and 3 (e) 1 and 4 (f) 3 and 4

CG

CG

CG

a

b

c P
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 9. A uniform bar of mass m is sup-
ported by a pivot at its top, about 
which the bar can swing like a 
pendulum. If a force F is applied 
perpendicularly to the lower end 
of the bar as in the diagram, how 
big must F be in order to hold the 
bar in equilibrium at an angle θ 
from the vertical?

 (a) 2mg  (b) 2mg sin θ
 (c) (mg/2) sin θ (d) 2mg cos θ
 (e) (mg/2) cos θ (f ) mg sin θ
 10.  A high diver in midair pulls her legs inward toward 

her chest in order to rotate faster. Doing so changes 
which of these quantities: her angular momentum L, her 
rotational inertia I, and her rotational kinetic energy Krot?

 (a) L only  (b) I only
 (c) Krot only  (d) L and I only
 (e) I and Krot only (f) all three

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

8.1 Rotational Kinetic Energy and Rotational 
Inertia
 1. Verify that 1

2Iω
2 has dimensions of energy.

 2. What is the rotational inertia of a solid iron disk of 
mass 49 kg, with a thickness of 5.00 cm and radius of 
20.0 cm, about an axis through its center and perpen-
dicular to it?

 3. A bowling ball made for a child has half the radius of 
an adult bowling ball. It is made of the same material 
(and therefore has the same mass per unit volume). 
By what factor is the (a) mass and (b) rotational iner-
tia of the child’s ball reduced compared with the 
adult ball?

 4. Find the rotational inertia of the 
system of point particles shown  
in the figure assuming the system 
rotates about the (a) x-axis,  
(b) y-axis, (c) z-axis. The z-axis is 
perpendicular to the xy-plane and 
points out of the page. Point particle A has a mass of 
200 g and is located at (x, y, z) = (−3.0 cm, 5.0 cm, 0), 
point particle B has a mass of 300 g and is at (6.0 cm, 0, 0), 
and point particle C has a mass of 500 g and is at  
(−5.0 cm, −4.0 cm, 0). (d) What are the x- and  
y-coordinates of the center of mass of the system?

Problems 5–6. Four point masses of 3.0 kg each are arranged 
in a square on massless rods. The length of a side of the 
square is 0.50 m. Consider rotation of this square about three 
different axes: (a) an axis passing through masses B and C; 
(b) an axis passing through masses A and C; and (c) an axis 
passing through the center of the square and perpendicular to 
the plane of the square
 5. Rank the three arrangements in increasing order of the 

rotational inertia.
 6. Calculate the rotational inertia for each of the three  

arrangements.

0.50 m

CD

BA

CD

BA

CD

BA

0.50 m 0.50 m

0.50 m0.50 m0.50 m

(a) (b) (c)

Problems	5	and	6

 7. How much work is done by the motor in a CD player to 
make a CD spin, starting from rest? The CD has a diam-
eter of 12.0 cm and a mass of 15.8 g. The laser scans at 
a constant tangential velocity of 1.20 m/s. Assume that 
the music is first detected at a radius of 20.0 mm from 
the center of the disc. Ignore the small circular hole at the 
CD’s center.

 8. Find the ratio of the rotational inertia of Earth for rota-
tion about its own axis to its rotational inertia for revolu-
tion about the Sun.

 9. A bicycle has wheels of radius 0.32 m. Each wheel has 
a rotational inertia of 0.080 kg·m2 about its axle. The 
total mass of the bicycle including the wheels and the 
rider is 79 kg. When coasting at constant speed, what 
fraction of the total kinetic energy of the bicycle 
(including rider) is the rotational kinetic energy of  
the wheels?

 10.  In many problems in previous chapters, cars and 
other objects that roll on wheels were considered to act 
as if they were sliding without friction. (a) Can the same 
assumption be made for a wheel rolling by itself    ? 
 Explain your answer. (b) If a moving car of total mass 
1300 kg has four wheels, each with rotational inertia of 
0.705 kg·m2 and radius of 35 cm, what fraction of the 
total kinetic energy is rotational?

 11.  A centrifuge has a rotational inertia of 6.5 ×  
10−3 kg·m2. How much energy must be supplied to bring 
it from rest to 420 rad/s (4000 rev/min)?

8.2 Torque
 12. A mechanic turns a wrench using a force of 25 N at a 

distance of 16 cm from the rotation axis. The force is 
perpendicular to the wrench handle. What magnitude 
torque does she apply to the wrench?

F

θ

y

x

A

B
C
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 13. The pull cord of a lawnmower engine is wound around 
a drum of radius 6.00 cm. While the cord is pulled with 
a force of 75 N to start the engine, what magnitude 
torque does the cord apply to the drum?

 14. A child of mass 40.0 kg is sitting on a horizontal seesaw 
at a distance of 2.0 m from the supporting axis. What is 
the magnitude of the torque about the axis due to the 
weight of the child?

 15. A 124 g mass is placed on one pan of a balance, at a 
point 25 cm from the support of the balance. What is the 
magnitude of the torque about the support exerted by 
the mass?

 16. A uniform door weighs 50.0 N and is 1.0 m wide and 
2.6 m high. What is the magnitude of the torque due to 
the door’s own weight about a horizontal axis perpen-
dicular to the door and passing through a corner?

 17. In each of the five situations shown, a force is applied to 
a point on the handle of an old pump. Rank the situa-
tions in order of the magnitude of the torque applied to 
the handle, smallest to largest.

50 cm

50 cm

20 N

(b) (c)(a)

(e)(d)

80 N

80 N

25 cm

40 N

25 cm 25 cm

40 N

Axis Axis Axis

AxisAxis

30°

60°

 18.  The human mandible (lower jaw) is attached to the 
temporomandibular joint (TMJ). The masseter muscle 
is largely responsible for pulling the mandible upward 
when you are talking or eating. It is attached at a hori-
zontal distance of about 2.5 cm from the TMJ. If this 
muscle exerts a force of 220 N when you bite, what is 
the force your incisors exert? The horizontal distance 
from the TMJ to your incisors is 6.6 cm. Assume that 
both forces are vertical.

 19. A tower outside the Houses of Parliament in London 
has a famous clock commonly referred to as Big Ben, 
the name of its 13 ton chiming bell. The hour hand of 
each clock face is 2.7 m long and has a mass of 
60.0 kg. Assume the hour hand to be a uniform rod 
attached at one end. (a) What is the torque on the 
clock mechanism due to the weight of one of the four 
hour hands when the clock strikes noon? The axis of 
rotation is perpendicular to a clock face and through 
the center of the clock. (b) What is the torque due to 

the weight of one hour hand about the same axis when 
the clock tolls 9:00 a.m.?

 20.   Any pair of equal and opposite forces acting on 
the same object is called a couple. Consider the couple 
in part (a) of the figure. The rotation axis is perpendicu-
lar to the page through point P. (a) Show that the mag-
nitude of the net torque is equal to Fd, where d is the 
distance between the lines of action. Because the dis-
tance d is independent of the location of the rotation 
axis, this shows that the torque is the same for any rota-
tion axis. (b) Repeat for the couple in part (b) of the 
figure. Show that the torque magnitude is still Fd if d is 
the perpendicular distance between the lines of action 
of the forces.

(a) (b)

x2

x1

d

F

F

x2

x1

P Pd

F

F

 21. As shown in the 
top-view diagram, 
a 46.4 N force is 
applied to the 
outer edge of a 
door of width 1.26 m in such a way that it acts (a) per-
pendicular to the door, (b) at an angle of 43.0° with re-
spect to the door surface, (c) so that the line of action of 
the force passes through the axis of the door hinges. Find 
the torque for these three cases.

 22. A trap door, of length and width 
1.65 m, is held open at an angle 
of 65.0° with respect to the floor. 
A rope is attached to the raised 
edge of the door and fastened to 
the wall behind the door in such 
a position that the rope pulls 
perpendicularly to the trap 
door. If the mass of the trap 
door is 16.8 kg, what is the torque exerted on the trap 
door by the rope?

 23. A weightless rod, 10.0 m long, supports three weights 
as shown. Where is its center of gravity?

5.0 kg 15.0 kg 10.0 kg

0.0 5.0 m 10.0 m

 24. A door weighing 300.0 N measures 2.00 m × 3.00 m 
and is of uniform density; that is, the mass is uniformly 
distributed throughout the volume. A doorknob is  

Axis

1.26 m 43.0°

(c)

(b)(a)

65.0°
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attached to the door as 
shown. Where is the 
center of gravity if 
the  doorknob weighs 
5.0  N and is located 
0.25 m from the edge?

 25.  A plate of uniform 
thickness is shaped as 
shown. Where is the 
center of gravity? As-
sume the origin (0, 0) 
is located at the lower 
left corner of the plate; the upper left corner is at (0, s); 
and the upper right corner is at (s, s).

s

s 0.50s

0.50s

0.50s

8.3 Calculating Work Done from the Torque
 26. A stone used to grind wheat into flour is turned through 

12 revolutions by a constant force of 20.0 N applied to 
the rim of a 10.0 cm radius shaft connected to the 
wheel. How much work is done on the stone during the 
12 revolutions?

 27. The radius of a wheel is 0.500 m. A rope is wound 
around the outer rim of the wheel. The rope is pulled 
with a force of magnitude 5.00 N, unwinding the rope 
and making the wheel spin CCW about its central axis. 
Ignore the mass of the rope. (a) How much rope unwinds 
while the wheel makes 1.00 revolution? (b) How much 
work is done by the rope on the wheel during this time? 
(c) What is the torque on the wheel due to the rope? 
(d) What is the angular displacement Δθ, in radians, of the 
wheel during 1.00 revolution? (e) Show that the numerical 
value of the work done is equal to the product τ Δθ.

 28.  A flywheel of mass 182 kg has an effective radius of 
0.62 m (assume the mass is concentrated along a circum-
ference located at the effective radius of the flywheel).  
(a) How much work is done to bring this wheel from rest to 
an angular speed of 120 rev/min in a time interval of 30.0 s? 
(b) What is the applied torque on the flywheel (assumed 
constant)?

 29.  A Ferris wheel rotates because a motor exerts a 
torque on the wheel. The radius of the London Eye, a 
huge observation wheel on the banks of the Thames, is 
67.5 m and its mass is 1.90 × 106 kg. The cruising angu-
lar speed of the wheel is 3.50 × 10−3 rad/s. (a) How 
much work does the motor need to do to bring the  
stationary wheel up to cruising speed? [Hint: Treat 

the wheel as a hoop.] (b) What is the torque (assumed 
constant) the motor needs to provide to the wheel if it 
takes 20.0 s to reach the cruising angular speed?

8.4 Rotational Equilibrium
 30. A light rod is being used as a lever as shown. The 

 fulcrum is 1.2 m from the load and 2.4 m from the ap-
plied force. If the load 
has a mass of 20.0 kg, 
what force must be ap-
plied to lift the load?

 31. An object that weighs 
1200 N rests on a lever 
at a point 0.50 m from a support. 
On the same side of the support, 
at a distance of 3.0 m from it, an 
upward force with magnitude F 
is applied. Ignore the weight of 
the board itself. If the system is 
in equilibrium, what is F?

 32. A sculpture is 4.00 m 
tall and has its cen-
ter of gravity lo-
cated 1.80 m above 
the center of its 
base. The base is a 
square with a side 
of 1.10 m. To what 
angle θ can the 
sculpture be tipped 
before it falls over?

 33. A house painter is 
standing on a uni-
form, horizontal 
platform that is 
held in equilibrium 
by two cables at-
tached to supports 
on the roof. The 
painter has a mass 
of 75 kg, and the 
mass of the plat-
form is 20.0 kg. 
The distance from the left end of the platform to where 
the painter is standing is d = 2.0 m, and the total length 
of the platform is 5.0 m. (a) How large is the force ex-
erted by the left-hand cable on the platform? (b) How 
large is the force exerted by the right-hand cable?

 34.  Four identical 
uniform metersticks 
are stacked on a ta-
ble as shown. Where 
is the x-coordinate of 
the cm of the  
metersticks if the  
origin is chosen at 

3.00 m

2.00 m

0.25 m

5.0 N

300.0 N
2.4 m

1.2 m

FA

F

3.0 m

0.50 m

1200 N

1.80 m

CG

1.10 m

θ

d

FL FR

0.8600 m

0.3333 m
0.1667 m 0.0833 m
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the left end of the lowest stick? Why does the system 
balance?

 35.  A uniform diving board, of length 5.0 m and mass 
55 kg, is supported at two points; one support is located 
3.4 m from the end of the board and the second is at 
4.6 m from the end (see Fig. 8.19). What are the forces 
acting on the board due to the two supports when a diver 
of mass 65 kg stands at the end of the board over the wa-
ter? Assume that these forces are vertical. [Hint: In this 
problem, consider using two different torque equations 
about different rotation axes. This may help you deter-
mine the directions 
of the two forces.]

 36.  A house painter 
stands 3.0 m above 
the ground on a 
5.0  m long ladder 
that leans against the 
wall at a point 4.7 m 
above the ground. 
The painter weighs 
680 N and the ladder 
weighs 120 N. As-
suming no friction 
between the house 
and the upper end of 
the ladder, find the 
force of friction that 
the driveway exerts 
on the bottom of the 
ladder.

 37.  A man is rappel-
ling down a vertical 
wall. The rope at-
taches to a buckle 
strapped to his waist 
15 cm to the right of 
his center of gravity. 
If the man weighs 
770 N, find (a) the 
tension in the rope 
and (b) the magni-
tude and direction of 
the contact force ex-
erted by the wall on 
his feet.

 38.  A sign is supported 
by a uniform horizontal 
boom of length 3.00 m 
and weight 80.0 N. A 
cable, inclined at an 
angle of 35° with the 
boom, is attached at a 
distance of 2.38 m from 
the hinge at the wall. 

The weight of the sign is 120.0 N. What is the tension in 
the cable, and what are the horizontal and vertical forces 
Fx and Fy exerted on the boom by the hinge? Comment on 
the magnitude of Fy.

 39.  A boom of mass m 
supports a steel girder of 
weight W hanging from 
its end. One end of the 
boom is hinged at the 
floor; a cable attaches to 
the other end of the 
boom and pulls horizontally on it. The boom makes an 
angle θ with the horizontal. Find the tension in the cable 
as a function of m, W, θ, and g. Comment on the tension 
at θ = 0 and θ = 90°.

 40. You are asked to hang 
a uniform beam and 
sign using a cable that 
has a breaking strength 
of 417 N. The store 
owner desires that it 
hang out over the side-
walk as shown. The 
sign has a weight of 
200.0 N and the beam’s 
weight is 50.0 N. The 
beam’s length is 1.50 m and the sign’s dimensions are 
1.00 m horizontally × 0.80 m vertically. What is the 
 minimum angle θ that you can have between the beam 
and cable?

 41. Refer to Problem 40. You chose an angle θ of 33.8°. An 
8.7 kg raccoon has climbed onto the beam and is walk-
ing from the wall toward the point where the cable meets 
the beam. How far can the raccoon walk before the ca-
ble breaks?

 42.  A man is doing push-ups. He has a mass of 68 kg and 
his center of gravity is located at a horizontal distance of 
0.70 m from his palms and 1.00 m from his feet. Find the 
forces exerted by the floor on his palms and feet.

0.70 m 1.00 m

CG

8.5 Application: Equilibrium in the Human Body
 43.  Your friend balances a package with mass m = 10 kg 

on top of his head while standing. The mass of his upper 
body is M = 55 kg (about 65% of his total mass). Be-
cause the spine is vertical rather than horizontal, the 
force exerted by the sacrum on the spine (F

→
s in Fig 8.33) 

is directed approximately straight up and the force  
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exerted by the back muscles (F
→

b) is negligibly small. 
Find the magnitude of F

→
s.

 44.  Find the tension in the Achilles tendon and the force 
that the tibia exerts on the ankle joint when a person who 
weighs 750 N supports himself on the ball of one foot. 
The normal force N = 750 N pushes up on the ball of the 
foot on one side of the ankle joint, while the Achilles 
tendon pulls up on the foot on the other side of the joint.

Achilles tendon

Gastrocnemius-
soleus muscles

Calcaneus
(heel bone)

Tibia

12.8 cm
4.60 cm

N

FAchilles FTibia

 45.  In the movie Terminator, Arnold Schwarzenegger 
lifts someone up by the neck and, with both arms fully 
extended and horizontal, holds the person off the 
ground. If the person being held weighs 700 N, is 60 cm 
from the shoulder joint, and Arnold has an anatomy 
analogous to that in Fig. 8.31, what force must each of 
the deltoid muscles exert to perform this task?

 46.  Find the force exerted by the biceps muscle in hold-
ing a 1.0 L milk carton (weight 9.9 N) with the forearm 
parallel to the floor. Assume that the hand is 35.0 cm 
from the elbow and that the upper arm is 30.0 cm long. 
The elbow is bent at a right angle, and one tendon of the 
biceps is attached to the forearm at a position 5.00 cm from 
the elbow, while the other tendon is attached at 30.0 cm 
from the elbow. The weight of the forearm and empty hand 
is 18.0 N, and the center of gravity of the forearm-with-
hand is at a distance of 16.5 cm from the elbow.

35.0 cm

30.0 cm

18.0 N

9.9 N
CG

Fb

16.5 cm
5.00 cm

 47.  A person is doing leg lifts with 3.0 kg ankle weights. 
She is sitting in a chair with her legs bent at a right angle 
initially. The quadriceps muscles are attached to the 
patella via a tendon; the patella is connected to the tibia 
by the patellar tendon, which attaches to bone 10.0 cm 

below the knee joint. Assume that the tendon pulls at an 
angle of 20.0° with respect to the lower leg, regardless 
of the position of the lower leg. The lower leg has a 
mass of 5.0 kg, and its center of gravity is 22 cm below 
the knee. The ankle weight is 41 cm from the knee. If 
the person lifts one leg, find the force exerted by the 
patellar tendon to hold the leg at an angle of (a) 30.0° 
and (b) 90.0° with respect to the vertical.

Tibia

Patellar
tendon

Quadriceps
muscle

Femur

10.0 cm
20.0°

Patella

22 cm

41 cm

 48.   A man is trying to lift 60.0 kg off the floor by 
bending at the waist (see Fig. 8.33). Assume that the 
man’s upper body weighs 455 N and the upper body’s 
center of gravity is 38 cm from the sacrum (tailbone). 
(a) If, when bent over, the hands are a horizontal distance 
of 76 cm from the sacrum, what torque must be exerted 
by the back muscles to lift 60.0 kg off the floor? (The 
axis of rotation passes through the sacrum, as shown in 
Fig. 8.33.) (b) When bent over, the back muscles are a 
horizontal distance of 44 cm from the sacrum and act at 
a 12° angle above the horizontal. What force (F

→
b in  

Fig. 8.33) do the back muscles need to exert to lift the 
weight? (c) What is the component of this force that 
compresses the spinal column?

8.6 Rotational Form of Newton’s Second Law
 49. Verify that the units of the rotational form of Newton’s 

second law [Eq. (8-19)] are consistent. In other words, 
show that the product of a rotational inertia expressed in 
kg·m2 and an angular acceleration expressed in rad/s2 is 
a torque expressed in N·m.

 50. A spinning flywheel has rotational inertia I =  
400.0 kg·m2. Its angular velocity decreases from  
20.0 rad/s to zero in 300.0 s due to friction. What is the 
frictional torque acting?

 51. A turntable must spin at 33.3 rev/min (3.49 rad/s) to play 
an old-fashioned vinyl record. How much torque must the 
motor deliver if the turntable is to reach its final angular 
speed in 2.0 revolutions, starting from rest? The turntable 
is a uniform disk of diameter 30.5 cm and mass 0.22 kg.

 52. A lawn sprinkler has three spouts that spray water, each 
15.0 cm long. As the water is sprayed, the sprinkler 
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turns around in a 
 circle. The sprinkler 
has a total rotational 
inertia of 9.20 ×  
10−2 kg·m2. If the sprin-
kler starts from rest and 
takes 3.20 s to reach its 
final angular speed of 
2.2 rev/s, what force does the water leaving each spout 
 exert on the sprinkler?

 53.  A discus thrower moves the discus in 1.5 complete 
revolutions in 1.4 s (starting from rest). The radius of 
the circular path of the discus is 0.90 m, and the mass of 
the discus is 2.0 kg. Assume a constant torque is applied 
to the discus by the athlete. (a) What is the angular 
speed of the discus just before release? (b) What torque 
does the athlete apply to the discus? (c) Approximately 
how far from the athlete does the discus land if it is re-
leased at a 45° angle to the horizontal?

 54. A chain pulls tangentially on a 40.6 kg uniform cylindri-
cal gear with a tension of 72.5 N. The chain is attached 
along the outside radius of the gear at 0.650 m from the 
axis of rotation. Starting from rest, the gear takes 1.70 s 
to reach its rotational speed of 1.35 rev/s. What is the 
total frictional torque 
opposing the rotation of 
the gear?

 55. Four masses are arranged 
as shown. They are con-
nected by rigid, massless 
rods of lengths 0.75 m 
and 0.50 m. What torque must be applied to cause an angu-
lar acceleration of 0.75 rad/s2 about the axis shown?

 56. A bicycle wheel, of radius 0.30 m and mass 2 kg (con-
centrated on the rim), is rotating at 4.00 rev/s. After 
50  s the wheel comes to a stop because of friction. 
What is the magnitude of the average torque due to 
frictional forces?

 57. A playground merry-go-round (see Fig. 8.5), made in the 
shape of a solid disk, has a diameter of 2.50 m and a mass 
of 350.0 kg. Two children, each of mass 30.0 kg, sit on 
opposite sides at the edge of the platform. Approximate 
the children as point masses. (a) What torque is required 
to bring the merry-go-round from rest to 25 rev/min in 
20.0 s? (b) If two other bigger children are going to push 
on the merry-go-round rim to produce this acceleration, 
with what force magnitude must each child push?

 58. Two children standing on opposite sides of a merry-go-
round (see Fig. 8.5) are trying to rotate it. They each 
push in opposite directions with forces of magnitude 
10.0 N. (a) If the merry-go-round has a mass of 180 kg 
and a radius of 2.0 m, what is the angular acceleration of 
the merry-go-round? (Assume the merry-go-round is a 
uniform disk.) (b) How fast is the merry-go-round rotat-
ing after 4.0 s?

 59.   Refer to Atwood’s machine (Example 8.2). (a) 
Assuming that the cord does not slip as it passes around 
the pulley, what is the relationship between the angular 
acceleration of the pulley (α) and the magnitude of the 
linear acceleration of the blocks (a)? (b) What is the net 
torque on the pulley about its axis of rotation in terms of 
the tensions T1 and T2 in the left and right sides of the 
cord? (c) Explain why the tensions cannot be equal if 
m1 ≠ m2. (d) Apply Newton’s second law to each of the 
blocks and Newton’s second law for rotation to the pul-
ley. Use these three equations to solve for a, T1, and T2. 
(e) Since the blocks move with constant acceleration, 
use the result of Example 8.2 along with the constant 
acceleration equation v2

fy − v2
iy = 2ay 

Δy to check your 
answer for a.

 60.  Derive the rota-
tional form of New-
ton’s second law as 
follows. Consider a 
rigid object that 
consists of a large 
number N of parti-
cles. Let Fn, mn, and 
rn represent the tan-
gential component of the net force acting on the nth 
 particle, the mass of that particle, and the particle’s dis-
tance from the axis of rotation, respectively. (a) Use 
Newton’s second law to find an, the particle’s tangential 
acceleration. (b) Find the torque acting on this particle. 
(c) Replace an with an equivalent expression in terms of 
the angular acceleration α. (d) Sum the torques due to 
all the particles and show that

∑
N

n=1
τn = Iα

8.7 The Motion of Rolling Objects
 61. A solid sphere is rolling without slipping down a board 

that is tilted at an angle of 35° with respect to the hori-
zontal. What is its acceleration?

 62. A solid cylinder (mass 160 g, radius 2.0 cm) rolls with-
out slipping at a speed of 5.0 cm/s. What is its total ki-
netic energy?

 63. A hollow cylinder, a uniform solid sphere, and a uniform 
solid cylinder all have the same mass m. The three ob-
jects are rolling on a horizontal surface with identical 
translational speeds v. Find their total kinetic energies in 
terms of m and v and order them from smallest to largest.

 64. A solid sphere is released from rest and allowed to roll 
down a board that has one end resting on the floor and 
is tilted at 30° with respect to the horizontal. If the 
sphere is released from a height of 60 cm above the floor, 
what is the sphere’s speed when it reaches the lower end 
of the board?

15.0 cm

Axis
0.75 m

0.50 m

A 4.0 kg
B 3.0 kg
C 5.0 kg
D 2.0 kg

BA

CD

Axns
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mnrn



 65. A solid sphere of mass 0.600 kg rolls without slip-
ping along a horizontal surface with a translational 
speed of 5.00 m/s. It comes to an incline that makes 
an angle of 30° with the horizontal surface. Ignoring 
energy losses due to friction, to what vertical height 
above the horizontal surface does the sphere rise on 
the incline?

 66. A 1.10 kg bucket is tied to a rope that is wrapped around 
a spool mounted horizontally on frictionless bearings. 
The  cylindrical spool has a diameter of 0.340 m and a 
mass of 2.60 kg. When the bucket is released from rest, 
how long will it take to fall to the bottom of the well, a 
 distance of 17.0 m?

 67. A bucket of water with a mass of 
2.0 kg is attached to a rope that is 
wound around a cylinder. The 
cylinder has a mass of 3.0 kg and 
is mounted horizontally on fric-
tionless bearings. The bucket is 
released from rest. (a) Find its 
speed after it has fallen through a 
distance of 0.80 m. What are 
(b)  the tension in the rope and 
(c) the acceleration of the bucket?

 68.  A hollow cylinder, of radius R and mass M, rolls 
without slipping down a loop-the-loop track of radius 
r ≫ R. The cylinder starts from rest at a height h above 
the horizontal section of track. What is the minimum 
value of h so that the cylinder remains on the track all 
the way around the loop?

 69.  A solid sphere 
of radius R and 
mass M slides with-
out friction down a 
loop-the-loop track. 
The sphere starts 
from rest at a height 
of h above the horizontal. Assume that the radius of the 
sphere is small relative to the radius r of the loop. 
(a) Find the minimum value of h in terms of r so that the 
sphere remains on the track all the way around the loop. 
(b) Find the minimum value of h if, instead, the sphere 
rolls without slipping on the track.

 70.  The string in a yo-yo is wound around an axle of ra-
dius 0.500 cm. The yo-yo has both rotational and trans-
lational motion, like a rolling object, and has mass 
0.200 kg and outer radius 2.00 cm. Starting from rest, it 
rotates and falls a distance of 1.00 m (the length of the 
string). Assume for simplicity that the yo-yo is a uni-
form circular disk and that the string is thin compared 
with the radius of the axle. (a) What is the speed of the 
yo-yo when it reaches the distance of 1.00 m? (b) How 
long does it take to fall? [Hint: The translational and 
rotational kinetic energies are related, but the yo-yo is 
not rolling on its outer radius.]

8.8 Angular Momentum
 71. A uniform disk of mass 5.00 kg has a radius of 0.100 m 

and spins with a frequency of 0.550 rev/s. What is its 
angular momentum?

 72. Assume Earth is a uniform solid sphere with radius of 
6.37 × 106 m and mass of 5.97 × 1024 kg. Find the mag-
nitude of the angular momentum of Earth due to rota-
tion about its axis.

 73. The mass of a flywheel is 5.6 × 104 kg. This particular 
flywheel has its mass concentrated at the rim of the 
wheel. If the radius of the wheel is 2.6 m and it is rotat-
ing at 350 rev/min, what is the magnitude of its angular 
momentum?

 74. The angular momentum of a spinning wheel is 
240  kg·m2/s. After application of a constant braking 
torque for 2.5 s, it slows and has a new angular momen-
tum of 115 kg·m2/s. What is the torque applied?

 75. How long would a braking torque of 4.00 N·m have to 
act to just stop a spinning wheel that has an initial angu-
lar momentum of 6.40 kg·m2/s?

 76. Six flywheels have masses, thicknesses, radii, and angu-
lar speeds as given in the table. Each flywheel is a solid 
disk. Rank the flywheels in order of their angular mo-
mentum, smallest to largest.

Mass  
(kg)

Thickness  
(cm)

Radius 
(cm)

Angular 
Speed (rad/s)

A 10 1 20 30
B 20 2 20 30
C 20 2 40 15
D 20 2 40 30
E 20 8 10 60
F 5 0.5 20 60

 77.  A figure skater is spinning at a rate of 1.0 rev/s with 
her arms outstretched. She then draws her arms in to her 
chest, reducing her rotational inertia to 67% of its origi-
nal value. What is her new rate of rotation?

 78.  A skater is initially spinning at a rate of 10.0 rad/s 
with a rotational inertia of 2.50 kg·m2 when her arms are 
extended. What is her angular velocity after she pulls her 
arms in and reduces her rotational inertia to 1.60 kg·m2?

 79.  A figure skater is spinning at 10.0 rad/s with her arms 
extended. Her rotational inertia is 2.50 kg·m2. After pulling 
her arms in, her rotational inertia is 1.60 kg·m2. How much 
work does she do to pull her arms in while spinning?

 80. A uniform disk with a mass of 800 g and radius 17.0 cm 
is rotating on frictionless bearings with an angular speed 
of 18.0 Hz when Jill drops a 120 g clod of clay on a 
point 8.00 cm from the center of the disk, where it 
sticks. What is the new angular speed of the disk?

 81. A spoked wheel with a radius of 40.0 cm and a mass of 
2.00 kg is mounted horizontally on frictionless bearings. 
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JiaJun puts his 0.500 kg guinea pig on the outer edge of 
the wheel. The guinea pig begins to run along the edge of 
the wheel with a speed of 20.0 cm/s with respect to the 
ground. What is the angular velocity of the wheel? As-
sume the spokes of the wheel have negligible mass.

 82.  A diver can change his rotational inertia by drawing 
his arms and legs close to his body in the tuck position. 
After he leaves the diving board (with some unknown 
angular velocity), he pulls himself into a ball as closely 
as possible and makes 2.00 complete rotations in 1.33 s. 
If his rotational inertia decreases by a factor of 3.00 
when he goes from the straight to the tuck position, what 
was his angular velocity when he left the diving board?

 83.   The rotational inertia for a diver in a pike posi-
tion is about 15.5 kg·m2; it is only 8.0 kg·m2 in a tuck 
position. (a) If the diver gives himself an initial angular 
momentum of 106 kg·m2/s as he jumps off the board, 
how many turns can he make when jumping off a 10.0 m 
platform in a tuck position? (b) How many in a pike posi-
tion? [Hint: Gravity exerts no torque on the person as he 
falls; assume he is rotating throughout the 10.0 m dive.]

©Jonathan Daniel/ 
ALLSPORT/Getty Images

©Tony Duffy/Getty Images

(a) (b)

Problem	83.	(a)	Mark	Ruiz	in	the	tuck	position.	(b)	Gregory	
Louganis	in	the	pike	position.

 84. Consider the merry-go-round of Practice Problem 8.1. 
The child is initially standing on the ground when the 
merry-go-round is rotating at 0.75 rev/s. The child then 
hops onto the merry-go-round. How fast is the merry-
go-round rotating now? By how much did the rotational 
kinetic energy of the merry-go-round and child change?

8.9 The Vector Nature of Angular Momentum

Problems 85–86. A solid cylindrical disk is to be used as a 
stabilizer in a ship. By using a massive disk rotating in the 
hold of the ship, the captain knows that a large torque is re-
quired to tilt its angular momentum vector. The mass of the 
disk to be used is 1.00 × 105 kg, and it has a radius of 2.00 m.
 85.  If the cylinder rotates at 300.0 rev/min, what is the 

magnitude of the average torque required to tilt its axis 
by 60.0° in a time of 3.00 s? [Hint: Draw a vector dia-
gram of the initial and final angular momenta.]

 86.  How should the disk be oriented to prevent rocking 
from side to side and from bow to stern? Does this ori-
entation make it difficult to steer the ship? Explain.

Collaborative Problems

 87.   One day when your friend from Problem 43 is 
picking up a package, you notice that he bends at the 
waist to pick it up rather than keeping his back straight 
and bending his knees. You suspect that the lower back 
pain he complains about is caused by the large force on 
his lower vertebrae (F

→
s in Fig. 8.33) when he lifts ob-

jects in this way. Suppose that when the spine is hori-
zontal, the back muscles exert a force F

→
b as in Fig. 8.33 

(44 cm from the sacrum and at an angle of 12° to the 
horizontal). Assume that the cm of his upper body (in-
cluding the arms) is at its geometric center, 38 cm from 
the sacrum. Find the horizontal component of F

→
s when 

your friend is holding a 10 kg package at a distance of 
76 cm from his sacrum. Compare this with the magni-
tude of F

→
s found in Problem 43.

 88.   A uniform solid cylinder rolls without slipping 
down an incline. A hole is drilled through the cylinder 
along its axis. The radius of the hole is 0.50 times the 
(outer) radius of the cylinder. (a) Does the cylinder take 
more or less time to roll down the incline now that 
the hole has been drilled? Explain. (b) By what percent-
age does drilling the hole change the time for the cylin-
der to roll down the incline?

 89.  (a) Assume Earth is a uniform solid sphere. Find 
the kinetic energy of Earth due to its rotation about its 
axis. (b) Suppose we could somehow extract 1.0% of 
Earth’s rotational kinetic energy to use for other pur-
poses. By how much would that change the length of 
the day? (c) For how many years would 1.0% of Earth’s 
rotational kinetic energy supply the world’s energy 
 usage (assume a constant 1.0 × 1021 J per year)?

 90.  One way to determine the location of your center of 
gravity is shown in the diagram. A 2.2 m long uniform 
plank is supported by two bathroom scales, one at either 
end. Initially the scales each read 100.0 N. A 1.60 m tall 
student then lies on top of the plank, with the soles of 
his feet directly above scale B. Now scale A reads 
394.0 N and scale B reads 541.0 N. (a) What is the stu-
dent’s weight? (b) How far is his center of gravity from 
the soles of his feet? (c) When standing, how far above 
the floor is his center of gravity, expressed as a fraction 
of his height?

BA

x2 x1

msg
mpg

CG

Problem	90



 COMPREHENSIVE	PROBLEMS 325

 91.  The posture of 
small animals may 
prevent them from 
being blown over by 
the wind. For ex-
ample, with wind 
blowing from the side, a small insect stands with bent 
legs; the more bent the legs, the lower the body and 
the smaller the angle θ. The wind exerts a force on the 
insect, which causes a torque about the point where 
the downwind feet touch. The torque due to the weight 
of the insect must be equal and opposite to keep the 
insect from being blown over. For example, the drag 
force on a blowfly due to a sideways wind is Fwind = 
cAv2, where v is the velocity of the wind, A is the 
cross-sectional area on which the wind is blowing, 
and c ≈ 1.3 N·s2 · m−4. (a) If the blowfly has a cross-
sectional side area of 0.10 cm2, a mass of 0.070 g, and 
crouches such that θ = 30.0°, what is the maximum 
wind speed in which the blowfly can stand? (Assume 
that the drag force acts at the center of gravity.) 
(b) How about if it stands so that θ = 80.0°? (c) Com-
pare with the maximum wind speed that a dog can 
withstand, if the dog stands such that θ = 80.0°, has a 
cross-sectional area of 0.030 m2, and weighs 10.0 kg. 
(Assume the same value of c.)

Comprehensive Problems

 92. The Moon’s distance from Earth varies between 3.56 × 
105 km at perigee and 4.07 × 105 km at apogee. What is 
the ratio of its orbital speed around Earth at perigee to 
that at apogee?

 93. A ceiling fan has four blades, each with a mass of 
0.35 kg and a length of 60 cm. Model each blade as a 
rod connected to the fan axle at one end. When the fan 
is turned on, it takes 4.35 s for the fan to reach its final 
angular speed of 1.8 rev/s. What torque was applied to 
the fan by the motor? Ignore torque due to the air.

 94.  The distance from the center of the breastbone to a 
man’s hand, with the arm outstretched and horizontal to 
the floor, is 1.0 m. The man is holding a 10.0 kg dumbbell, 
oriented vertically, in his hand, with the arm horizontal. 
What is the torque due to this weight about a horizontal 
axis through the breastbone perpendicular to his chest?

 95. A uniform rod of length L is free to pivot around a fixed 
axis through its upper end. If it is released from rest 
when horizontal, at what speed is the lower end moving 
at its lowest point? [Hint: The gravitational potential 
energy change is determined by the change in height of 
the center of gravity.]

 96.  A gymnast is performing a giant swing on the high 
bar. In a simplified model of the giant swing, treat the 
gymnast as a rigid object that swings around the bar 
without friction. With what angular speed should he be 

  moving at the bot-
tom of the giant 
swing in order to 
make it all the way 
around? The dis-
tance from the bar 
to his feet is 2.0 m 
and his center of 
gravity is 1.0 m 
from his feet. [Note: 
The bar can either 
push or pull on the 
gymnast, depend-
ing on the gym-
nast’s speed and 
position.]

 97.  The 12.2 m crane weighs 18 kN and is lifting a 
67  kN load. The hoisting cable (tension T1) passes 
over a pulley at the top of the crane and attaches to an 
electric winch in the cab. The pendant cable (tension 
T2), which supports the crane, is fixed to the top of 
the crane. Find the tensions in the two cables and the 
force F

→
p at the pivot.

5.0°

10.0°

18 kN

40.0°

T1

T1T2

12.2 m

67 kN

 98. A collection of objects is set to rolling, without slip-
ping, down a slope inclined at 30°. The objects are a 
solid sphere, a hollow sphere, a solid cylinder, and a 
hollow cylinder. A frictionless cube is also allowed to 
slide down the same incline. Rank the order in which 
they arrive at the finish line.

 99. A uniform cylinder with a 
radius of 15 cm has been 
attached to two cords and 
the cords are wound 
around it and hung from 
the ceiling. The cylinder is 
released from rest, and the 
cords unwind as the cylin-
der descends. (a) What is 
the acceleration of the cyl-
inder? (b) If the mass of 
the cylinder is 2.6 kg, what is the tension in each of the 
cords, which are equally far from its ends?

 100. A grinding wheel, with a mass of 20.0 kg and a 
 radius of 22.4 cm, is a uniform cylindrical disk. 

Fwind
LegLeg Body

mg

θ

r

Problem	96.	Notice	that	the		
angular	speed	is	much	greater	
at	the	bottom	of	the	swing.
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(a) Find the rotational inertia of the wheel about its 
central axis. (b) When the grinding wheel’s motor is 
turned off, friction causes the wheel to slow from 
1200 rev/min to rest in 60.0 s. What torque must the 
motor provide to accelerate the wheel from rest to 
1200 rev/min in 4.00 s? Assume that the frictional 
torque is the same regardless of whether the motor is 
on or off.

 101. A 0.185 kg spherical steel ball is used in a pinball ma-
chine. The ramp is 1.35 m long and tilted at an angle of 
5.00°. Just after a flipper hits the ball at the bottom of 
the ramp, the ball has an initial speed of 2.20 m/s. What 
is the speed of the ball when it reaches the top of the 
pinball machine, after rolling straight up the ramp with-
out slipping and without bumping into any obstacles?

 102. A rotating star collapses under the influence of gravi-
tational forces to form a pulsar. The radius of the pul-
sar is 1.0 × 10−4 times the radius of the star before 
collapse. There is no change in mass. In both cases, the 
mass of the star is uniformly distributed in a spherical 
shape. Find the ratios of the (a) angular momentum, 
(b) angular velocity, and (c) rotational kinetic energy 
of the star after collapse to the values before collapse. 
(d) If the period of the star’s rotation before collapse is 
1.0 × 107 s, what is its period after collapse?

 103. A 5.60 kg uniform door is 0.760 m wide by 2.030 m 
high, and is hung by two hinges, one at 0.280 m from 
the top and one at 0.280 m from the bottom of the door. 
If the vertical components of the forces on each of the 
two hinges are identical, find the vertical and horizon-
tal force components acting on each hinge due to the 
door. [Hint: Think about whether the axis of rotation 
you use for calculating torques should be vertical or 
horizontal.]

 104.  In a motor, a flywheel (solid disk of radius R and 
mass M) is rotating with angular velocity ωi. When the 
clutch is released, a second disk (radius r and mass m) 
initially not rotating is brought into frictional contact 
with the flywheel. The two disks spin around the same 
axle with frictionless bearings. After a short time, fric-
tion between the two disks brings them to a common 
angular velocity. (a) Ignoring external influences, what 
is the final angular velocity? (b) Does the total angular 
momentum of the two change? If so, account for the 
change. If not, explain why it does not. (c) Repeat 
(b) for the rotational kinetic energy.

 105. A uniform solid cylinder rolls without slipping or slid-
ing down an incline. The angle of inclination is 60.0°. 
Use energy considerations to find the cylinder’s speed 
after it has traveled a distance of 30.0 cm along the 
incline.

 106.  A person on a bicycle (combined total mass 
80.0 kg) starts from rest and coasts down a hill to the 
bottom 20.0 m below. Each wheel can be treated as a 
hoop with mass 1.5 kg and radius 40 cm. Ignore fric-

tion and air resistance. (a) Find the speed of the bike at 
the bottom. (b) Would the speed at the bottom be the 
same for a less massive rider? Explain.

 107.  A painter (mass 61 kg) is walking along a trestle, 
consisting of a uniform plank (mass 20.0 kg, length 
6.00 m) balanced on two sawhorses. Each sawhorse 
is placed 1.40 m from an end of the plank. A paint 
bucket (mass 4.0 kg, diameter 0.28 m) is placed as 
close as possible to the right-hand edge of the plank 
while still having the whole bucket in contact with 
the plank. (a) How close to the right-hand edge of 
the plank can the painter walk before tipping the 
plank and spilling the paint? (b) How close to the 
left-hand edge can the same painter walk before 
causing the plank to tip? [Hint: As the painter walks 
toward the right-hand edge of the plank and the 
plank starts to tip clockwise, what is the force acting 
upward on the plank from the left-hand sawhorse 
support?]

1.40 m
6.00 m

1.40 m
0.28 m

 108.  An experimental flywheel, used to store energy and 
replace an automobile engine, is a solid disk of mass 
200.0 kg and radius 0.40 m. (a) What is its rotational 
inertia? (b) When driving at 22.4 m/s (50 mi/h), the 
fully energized flywheel is rotating at an angular speed 
of 3160 rad/s. What is the initial rotational kinetic en-
ergy of the flywheel? (c) If the total mass of the car is 
1000.0 kg, find the ratio of the initial rotational kinetic 
energy of the flywheel to the translational kinetic en-
ergy of the car. (d) If the force of air resistance on the 
car is 670.0 N, how far can the car travel at a speed of 
22.4 m/s (50 mi/h) with the initial stored energy? Ig-
nore losses of mechanical energy due to means other 
than air resistance.

 109. A flat object in the xy-plane is free to rotate about the 
z-axis. The gravitational field is uniform in the  
−y-direction. Think of the object as a large number 
of particles with masses mn located at coordinates 
(xn, yn), as in the figure. (a) Show that the torques on 
the particles about the z-axis can be written τn =  
−xnmng. (b) Show that if the center of gravity is lo-
cated at (xCG, yCG), the total torque due to gravity on 
the object must be Στn = −xCGMg, where M is the 
total mass of the object. (c) Show that xCG = xCM. 



(This same line of reasoning can be applied to  objects 
that are not flat and to other axes of rotation to show 
that yCG = yCM and zCG = zCM.)
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Problem	109

 110. The operation of the Princeton Tokomak Fusion Test Re-
actor requires large bursts of energy. The power needed 
exceeds the amount that can be supplied by the utility 
company. Prior to pulsing the reactor, energy is stored in 
a giant flywheel of mass 7.27 × 105 kg and rotational 
inertia 4.55 × 106 kg·m2. The flywheel rotates at a maxi-
mum angular speed of 386 rev/min. When the stored 
energy is needed to operate the reactor, the flywheel is 
connected to an electrical generator, which converts 
some of the rotational kinetic energy into electric energy. 
(a) If the flywheel is a uniform disk, what is its radius? 
(b) If the flywheel is a hollow cylinder with its mass 
concentrated at the rim, what is its radius? (c) If the fly-
wheel slows to 252 rev/min in 5.00 s, what is the average 
power supplied by the 
flywheel during that 
time?

 111.  A box of mass 42 kg 
sits on top of a ladder. 
Ignoring the weight of 
the ladder, find the ten-
sion in the rope. Assume 
that the rope exerts hori-
zontal forces on the lad-
der at each end. [Hint: Use a symmetry argument; then 
analyze the forces and torques on one side of the lad-
der.]

 112.  Nina wants to lean a ladder of mass 15 kg and 
length 8.0 m against a wall. She lifts one end over her 
head. Then she “walks” her hands from rung to rung 
toward the other end, which rests on the ground. (a) 
When she is holding the ladder 2.0 m from the end 
where she started, what vertical force does she exert on 
the ladder? (b) To “walk” more than 4.0 m along the 
ladder, she will need a helper. Explain why. What 
should the helper do?

 113.  A crustacean (Hemisquilla ensigera) rotates its an-
terior limb to strike a mollusk, intending to break it 

open. The limb reaches an angular velocity of 175 rad/s 
in 1.50 ms. We can approximate the limb as a thin rod 
rotating about an axis perpendicular to one end (the joint 
where the limb attaches to the crustacean). (a) If the 
mass of the limb is 28.0 g and the length is 3.80 cm, 
what is the rotational inertia of the limb about that axis? 
(b) If the extensor muscle is 3.00 mm from the joint and 
acts perpendicular to the limb, what is the muscular 
force required to achieve the blow?

 114. A 2.0 kg uniform flat disk is thrown into the air with a 
linear speed of 10.0 m/s. As it travels, the disk spins at 
3.0 rev/s. If the radius of the disk is 10.0 cm, what is 
the magnitude of its angular momentum?

 115.   A hoop of 2.00 m circumference is rolling 
down an inclined plane of length 10.0 m in a time of 
10.0 s. It started out from rest. (a) What is its angular 
velocity when it arrives at the bottom? (b) If the mass 
of the hoop, concentrated at the rim, is 1.50 kg, what is 
the angular momentum of the hoop when it reaches the 
bottom of the incline? (c) What force(s) supplied the 
net torque to change the hoop’s angular momentum? 
Explain. [Hint: Use a rotation axis through the hoop’s 
center.] (d) What is the magnitude of this force?

 116. A large clock has a second hand with a mass of 0.10 kg 
concentrated at the tip of the pointer. (a) If the length 
of the second hand is 30.0 cm, what is its angular mo-
mentum? (b) The same clock has an hour hand with a 
mass of 0.20 kg concentrated at the tip of the pointer. 
If the hour hand has a length of 20.0 cm, what is its 
angular momentum?

 117.  A planet moves around the Sun in an elliptical orbit 
(see Fig. 8.40). (a) Show that the external torque acting 
on the planet about an axis through the Sun is zero. 
(b) Since the torque is zero, the planet’s angular momen-
tum about this axis is constant. Write an expression for 
the planet’s angular momentum in terms of its mass m, 
its distance r from the Sun, and its angular velocity ω. 
(c) Given r and ω, how much area is swept out during a 
short time Δt? [Hint: Think of the area as a fraction of 
the area of a circle, like a slice of pie; if Δt is short 
enough, the radius of the orbit during that time is nearly 
constant.] (d) Show that the area swept out per unit time 
is constant. You have just proved Kepler’s second law!

 118. A merry-go-round (radius R, rotational inertia Ii) spins 
with negligible friction. Its initial angular velocity is ωi. 
A child (mass m) on the merry-go-round moves from 
the center out to the rim. (a) Calculate the angular 
 velocity after the child moves out to the rim. (b) Calcu-
late the rotational kinetic energy and angular momentum 
of the system (merry-go-round + child) before and after.

 119.   A 68 kg woman stands straight with both feet flat 
on the floor. Her center of gravity is a horizontal dis-
tance of 3.0 cm in front of a line that connects her two 
ankle joints. The Achilles tendon attaches the calf mus-
cle to the foot a distance of 4.4 cm behind the  ankle 

75°
0.50h

1.26 m

42 kg

Rope

75°

h
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joint. If the Achilles tendon is inclined at an angle of 81° 
with respect to the horizontal, find the force that each 
calf muscle needs to exert while she is standing. [Hint: 
Consider the equilibrium of the part of the body above 
the ankle joint.]

 120.  A spool of thread 
of mass m rests on a 
plane inclined at an-
gle θ. The end of the 
thread is tied as 
shown. The outer ra-
dius of the spool is R, 
and the inner radius (where the thread is wound) is r. The 
rotational inertia of the spool is I. Give all answers in 
terms of m, θ, R, r, I, and g. (a) If there is no friction be-
tween the spool and the incline, describe the motion of the 
spool and calculate its acceleration. (b) If the coefficient 
of friction is large enough to keep the spool from slipping, 
calculate the magnitude and direction of the frictional 
force. (c) What is the minimum possible coefficient of 
friction to keep the spool from slipping in part (b)?

 121. A bicycle travels 
up an incline at 
constant velocity. 
The magnitude of 
the frictional force 
due to the road on 
the rear wheel is f = 
3.8 N. The upper 
section of chain 
pulls on the sprocket wheel, which is attached to the 
rear wheel, with a force F

→
C. The lower section of chain 

is slack. If the radius of the rear wheel is 6.0 times the 
radius of the sprocket wheel, what is the magnitude of 
the force F

→
C with which the chain pulls?

 122.  A circus roustabout is at-
taching the circus tent to the top 
of the main support post of 
length L when the post sud-
denly breaks at the base. The 
worker’s weight is negligible 
relative to that of the uniform 
post. What is the speed with 
which the roustabout reaches 
the ground if (a) he jumps at the 
instant he hears the post crack 
or (b) if he clings to the post and 
rides to the ground with it? 
 Assume the post swings down 
as if hinged at the bottom. 
(c) Which is the safest course of 
action for the roustabout?

 123.   A student stands on a platform that is free to ro-
tate and holds two dumbbells, each at a distance of 65 cm 
from his central axis. Another student gives him a push 

and starts the system 
of student, dumb-
bells, and platform 
rotating at 0.50 rev/s. 
The student on the 
platform then pulls 
the dumbbells in 
close to his chest so 
that they are each 
22 cm from his central axis. Each dumbbell has a mass of 
1.00 kg and the rotational inertia of the student, platform, 
and dumbbells is initially 2.40 kg·m2. Model each arm as 
a uniform rod of mass 3.00 kg with one end at the central 
axis; the length of the arm is initially 65 cm and then is 
reduced to 22 cm. What is his new rate of rotation?

 124.  (a) Redo Example 8.7 to find an algebraic solution for 
d in terms of M, m, μs, L, and θ. (b) Use this expression 
to show that placing the ladder at a larger angle θ (that is, 
more nearly vertical) enables the person to climb farther 
up the ladder without having it slip, all other things being 
equal. (c) Using the numerical values from Example 8.7, 
find the minimum angle θ that enables the person to 
climb all the way to the top of the ladder.

 125.  A person places his hand palm downward on a scale 
and pushes down on the scale until it reads 96 N. The 
triceps muscle is re-
sponsible for this 
arm extension force. 
Find the force ex-
erted by the triceps 
muscle. The bottom 
of the triceps mus-
cle is 2.5 cm to the 
left of the elbow 
joint, and the palm is pushing at approximately 38 cm to 
the right of the elbow joint.

Review and Synthesis

 126. A block of mass m2 hangs from a rope. The rope wraps 
around a pulley of rotational inertia I and then attaches 
to a second block of mass m1, which sits on a friction-
less table. What is the acceleration of the blocks when 
they are released?

Pulley

m2

I
m1

 127. A modern sculpture has a large horizontal spring, with 
a spring constant of 275 N/m, that is attached to a 
53.0 kg piece of uniform metal at its end and holds the 
metal at an angle of 50.0° above the horizontal direction. 

L

65 cm
22 cm

65 cm

38 cm
2.5 cm

96 N

R

r

θ

f

r1

r2
FC
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The other end of the metal is wedged into a corner as 
shown. By how much has the spring stretched?

50.0°

 128. A hollow cylinder rolls without slipping or sliding 
along a horizontal surface toward an incline. (a) If the 
cylinder’s speed is 3.00 m/s at the base of the incline 
and the angle of inclination is 37.0°, how far up the 
incline does the cylinder travel before coming to a 
stop? (b) What is the cylinder’s acceleration?

 129.  A bicycle and its rider have a total mass of 74.0 kg. 
Each of its wheels can be modeled as a thin hoop with 
mass 1.30 kg and diameter of 70.0 cm. When the brakes 
are applied, two brake pads squeeze the rims of each 
wheel. Assume that the four brake pads exert normal 
forces on the wheels that are equal and constant in magni-
tude. The coefficient of kinetic friction between a brake 
pad and a wheel is 0.90. The bicycle is moving on level 
ground with a linear speed of  7.5 m/s. When the brakes 
are applied, the bicycle is stopped in 4.5 s. Find the 
magnitudes of (a) the static frictional force exerted by 
the road on each tire; (b) the angular acceleration of the 
wheels; (c) the magnitude of the  net torque on each wheel; 
and (d) the normal force applied to a wheel by each of the 
brake pads.

 130. Consider the apparatus shown in the figure (not to scale). 
The pulley, which can be treated as a uniform disk, has a 
mass of 60.0 g and a radius of 3.00 cm. The spool also 
has a radius of 3.00 cm. The rotational inertia of the 
spool, axle, and paddles about their axis of rotation is 
0.001 40 kg·m2. The block has a mass of 0.870 kg and is 
released from rest. After the block has fallen a distance 
of 2.50 m, it has a speed of 3.00 m/s. How much energy 
has been delivered to the fluid in the beaker?

Pulley Spool

Axle

Paddles

 131. A uniform disk is rotated about its symmetry axis. The 
disk goes from rest to an angular speed of 11 rad/s in a 

time of 0.20 s with constant angular acceleration. The 
rotational inertia and radius of the disk are 1.5 kg·m2 
and 11.5 cm, respectively. (a) What is the angular ac-
celeration during the 0.20 s interval? (b) What is the 
net torque on the disk during this time? (c) After the 
applied torque stops, a frictional torque remains. This 
torque causes an angular acceleration of magnitude 
9.8  rad/s2. Through what total angle θ (starting from 
time t = 0) does the disk rotate before coming to rest? 
(d) What is the speed of a point halfway between the 
rim of the disk and its rotation axis 0.20 s after the ap-
plied torque is removed?

 132. A child’s toy is made of a 12.0 cm radius rotating 
wheel that picks up 1.00 g pieces of candy in a pocket 
at its lowest point, brings the candy to the top, then 
releases it. The frequency of rotation is 1.60 Hz. 
(a) How far from its starting point does the candy land? 
(b) What is the radial acceleration of the candy when it 
is on the wheel?

 133.  You are mowing the lawn on a hill near your house 
when the lawnmower blade strikes a stone of mass 
100 g and sends it flying horizontally toward a win-
dow. The lawnmower blade can be modeled as a thin 
rod with a mass of 2.0 kg and a length of 50 cm rotat-
ing about its center. The stone impacts the blade near 
one end and is ejected with a velocity perpendicular to 
the rotation axis and the blade at the moment of colli-
sion. As a result of the impact, the blade slows from 
60 rev/s to 55 rev/s. The window is 1.00 m in height, 
and its center is located 10.0 m away and at the same 
height as the lawnmower. (a) With what speed is the 
stone shot out by the mower? [Hint: The external force 
due to the lawnmower’s drive shaft on the system 
(blade + stone) cannot be ignored during the collision, 
but the external torque about the shaft can be ignored. 
The angular momentum of the stone just after impact 
can be calculated from its tangential velocity and its 
distance from the rotation axis.] (b) Ignoring air resis-
tance, will the stone hit the window?

10.0 mv 1.00 m

Answers to Practice Problems

8.1 390 kg·m2

8.2 v = √
2m2gh

m1 + m2 + I/R2

8.3 53 N; 8.4 N·m
8.4 −65 N·m
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8.5 8.3 J
8.6 left support, downward; right support, upward
8.7 0.27
8.8 57 N, downward
8.9 It must lie in the same vertical plane as the two ropes 
holding up the rings. Otherwise, the gravitational force 
would have a nonzero lever arm with respect to a horizontal 
axis that passes through the contact points between his hands 
and the rings; thus, gravity would cause a net torque about 
that axis.
8.10 460 N
8.11 (a) 2380 rad; (b) 3.17 kJ; (c) 1.34 N·m
8.12 solid ball, 2

7; hollow ball, 2
5

8.13 1
2g sin θ

8.14 5% increase
8.15 16 cm/s

Answers to Checkpoints

8.1 Rotational inertia involves distances from masses to the 
rotation axis; distances along the rotation axis are irrelevant. 
Another way to see it: cut the cylinder or disk into a large 

number of thin disks with the same radius. Each thin disk has 
rotational inertia Ii = 1

2miR
2. Now add up the rotational iner-

tias of the thin disks: 

I = ∑Ii = ∑1
2miR

2 = 1
2R

2∑mi = 1
2MR2

8.2 The longer handle lets you push at a greater distance 
from the rotation axis. Thus, you can exert a larger torque.
8.4 Yes in both cases. Torque depends not only on the mag-
nitude and direction of the force but also on the point where 
the force is applied. Two forces that do not add to zero can 
produce torques that add to zero due to different lever arms. 
Then the net torque is zero and the net force nonzero; the 
object is in rotational equilibrium but not in translational 
equilibrium. Similarly, two forces that add to zero can have 
different lever arms and produce torques that do not add to 
zero. In this case the net force is zero and the net torque is 
nonzero; the object is in translational equilibrium but not in 
rotational equilibrium.
8.7 (a) falling without spinning; (b) spinning about a fixed 
axis; (c) rolling without slipping along a surface
8.8 Yes. If friction is negligible, the external torque is zero so 
her angular momentum does not change. Extending her arms 
and leg makes her rotational inertia increase back to its initial 
value, so her angular velocity decreases to its initial value.
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∙ Blood flow and blood 
pressure (Sections 9.2, 9.5, 
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•	 conservation	of	energy	
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•	 force	as	rate	of	change	of	
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momentum	in	collisions	
	(Sections	7.7,	7.8)

•	 equilibrium	(Section	4.2)

Fluids

C H A P T E R
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A	hippopotamus	 in	Kruger	National	 Park,	 South	Africa,	wants	 to	 feed	
on	 the	vegetation	growing	on	 the	bottom	of	a	pond.	When	 the	hippo	
wades	into	the	pond,	it	floats.	How	does	a	hippopotamus	get	its	float-
ing	body	 to	sink	 to	 the	bottom	of	a	pond?
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9.1 STATES OF MATTER

Ordinary matter is usually classified into three familiar states or phases: solids, liquids, 
and gases. Solids tend to hold their shapes. Many solids are quite rigid; they are not 
easily deformed by external forces because each atom or molecule is held in a par-
ticular position by the forces exerted by its neighbors. Although the atoms or mole-
cules vibrate around fixed equilibrium positions, they do not have enough energy to 
break the bonds with their neighbors. To bend an iron bar, for example, the arrange-
ment of the atoms must be altered, which is not easy to do. A blacksmith heats iron 
in a forge to loosen the bonds between atoms so that he can bend the metal into the 
desired shape.

In contrast to solids, liquids and gases do not hold their shapes. A liquid flows 
and takes the shape of its container and a gas expands to fill its container. Fluids—
both liquids and gases—are easily deformed by external forces. This chapter deals 
mainly with properties that are common to both liquids and gases.

The atoms or molecules in a fluid do not have fixed positions, so a fluid does 
not have a definite shape. An applied force can easily make a fluid flow; for instance, 
the squeezing of the heart muscle exerts a force that pumps blood through the blood 
vessels of the body. However, this squeezing does not change the volume of the blood 
by much. In many situations we can think of liquids as incompressible—that is, as 
having a fixed volume that is impossible to change. The shape of the liquid can be 
changed by pouring it from a container of one shape into a container of a different 
shape, but the volume of the liquid remains the same.

In most liquids, the atoms or molecules are almost as closely packed as those in 
the solid phase of the same material. The intermolecular forces in a liquid are almost 
as strong as those in solids, but the molecules are not locked in fixed positions as 
they are in solids. That is why the volume of the liquid can remain nearly constant 
while the shape is easily changed. Water is one of the exceptions: in cold water, the 
molecules in the liquid phase are actually more closely packed than those in the solid 
phase (ice).

Gases, on the other hand, cannot be characterized by a definite volume nor by a 
definite shape. A gas expands to fill its container and can easily be compressed. The 
molecules in a gas are very far apart compared to the molecules in liquids and solids. 
The molecules are almost free of interactions with each other except when they collide.

9.2 PRESSURE

Microscopic Origin of Pressure A static fluid does not flow; it is everywhere at 
rest. In the study of fluid statics (hydrostatics), we also assume that any solid object 
in contact with the fluid—whether a vessel containing the fluid or an object sub-
merged in the fluid—is at rest. The atoms or molecules in a static fluid are not 
themselves static; they are continually moving. The motion of people bouncing up 
and down and bumping into each other in a mosh pit gives you a rough idea of the 
motion of the closely packed atoms or molecules in a liquid; in gases, the atoms or 
molecules are much farther apart than in liquids, so they travel greater distances 
between collisions.

Fluid pressure is caused by collisions of the fast-moving atoms or molecules of a 
fluid. When a single molecule hits a container wall and rebounds, its momentum changes 
due to the force exerted on it by the wall. Figure 9.1a shows a molecule of a fluid within 
a container making an elastic collision with one of the container walls. In this case, the 
y-component of momentum is unchanged, while the x-component reverses direction 
(Fig. 9.1b). The momentum change is in the +x-direction, which occurs because the 
wall exerts a force to the right on the molecule. By Newton’s third law, the molecule 
exerts a force to the left on the wall during the collision. If we consider all the molecules 
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Figure 9.1 (a) A single fluid 
molecule bouncing off a con-
tainer wall. (b) In this elastic 
collision, the y-component of 
the momentum is unchanged, 
while the x-component reverses 
direction.



 9.2 PRESSURE 333

colliding with this wall, on average they exert no force on the wall in the ±y-direction, 
but all exert a force in the −x-direction. The frequent collisions of fluid molecules with 
the walls of the container cause a net force pushing outward on the walls.

Definition of Pressure A static fluid exerts a force on any surface with which it 
comes in contact; the direction of the force is perpendicular to the surface (Fig. 9.2). A 
static fluid cannot exert a force parallel to the surface. If it did, the surface would exert 
a force on the fluid parallel to the surface, by Newton’s third law. This force would 
make the fluid flow along the surface, contradicting the premise that the fluid is static.

The average pressure of a fluid at points on a planar surface is

Average pressure

 Pav =
F

A
 (9-1)

where F is the magnitude of the force acting perpendicularly to the surface, and A is 
the area of the surface. By imagining a tiny surface at various points within the fluid 
and measuring the force that acts on it, we can define the pressure at any point within 
the fluid. In the limit of a small area A, P = F/A is the pressure of the fluid.

Pressure is a scalar quantity; it does not have a direction. The force acting on an 
object submerged in a fluid—or on some portion of the fluid itself—is a vector quan-
tity; its direction is perpendicular to the contact surface. Pressure is defined as a 
scalar because, at a given location in the fluid, the magnitude of the force per unit 
area is the same for any orientation of the surface. The molecules in a static fluid are 
moving in random directions; there can be no preferred direction since that would 
constitute fluid flow. There is no reason that a surface would have a greater number 
of collisions, or collisions with more energetic molecules, for one particular surface 
orientation compared with any other orientation.

The SI unit for pressure is the newton per square meter (N/m2), which is named 
the pascal (symbol Pa) after the French scientist Blaise Pascal (1623–1662). Another 
commonly used unit of pressure is the atmosphere (atm). One atmosphere is the average 
air pressure at sea level. The conversion factor between atmospheres and pascals is

1 atm = 101.3 kPa

Other units of pressure in common use are introduced in Section 9.5.

CHECKPOINT 9.2

A	quarter	(diameter	2.4	cm)	and	a	dime	(diameter	1.8	cm)	rest	on	the	bottom	
of	 a	 swimming	pool.	 The	water	 exerts	 a	downward	 force	on	 the	upper	 surface	
of	each	coin.	Assuming	the	water	pressure	is	the	same	on	both	coins,	by	what	
factor	 is	 this	downward	 force	on	 the	quarter	 larger	 than	 that	on	 the	dime?

Figure 9.2 Forces due to a 
static fluid acting on the walls 
of the container and on a sub-
merged object.

Example 9.1

Pressure due to Stiletto-Heeled Shoes

A young woman weighing 534 N (120 lb) walks to her bed-
room while wearing tennis shoes. She then gets dressed for 
her evening date, putting on her new stiletto-heeled dress 
shoes. The area of the heel section of her tennis shoe is 

60.0  cm2 and the area of the heel of her dress shoe is 
1.00 cm2. For each pair of shoes, find the average pressure 
caused by the heel making contact with the floor when her 
entire weight is supported by one heel.

continued on next page
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Atmospheric Pressure

On the surface of Earth, we live at the bottom of an ocean of fluid called air. The 
forces exerted by air on our bodies and on surfaces of other objects may be surpris-
ingly large: 1 atm is approximately 10 N/cm2 of surface area, or nearly 15 lb/in2. We 
are not crushed by this pressure because most of the fluids in our bodies are at 
approximately the same pressure as the air around us. As an analogy, consider a sealed 
bag of potato chips. Why is the bag not crushed by the air pushing in on all sides? 
Because the air inside the bag is at the same pressure and pushes out on the sides of 
the bag. The pressure of the fluids inside our cells matches the pressure of the sur-
rounding fluids pushing in on the cell membranes, so the cells do not rupture.

By contrast, the blood pressure in the arteries is as much as 20 kPa higher than 
atmospheric pressure. The strong, elastic arterial walls are stretched by the pressure 
of the blood inside; the walls squeeze the arterial blood to keep its higher pressure 
from being transmitted to other fluids in the body.

Changing weather conditions cause variations of approximately 5% in the actual 
value of air pressure at sea level; 101.3 kPa (1 atm) is only the average value. Air 
pressure also decreases with increasing elevation. (In Section 9.4, we study the effect 
of gravity on fluid pressure in detail.) The average air pressure in Leadville, Colorado, 
the highest incorporated city in the United States (elevation 3100 m), is 70 kPa. Some 
Tibetans live at altitudes of over 5000 m, where the average air pressure is only half 
its value at sea level. In problems, please assume that the atmospheric pressure is 
1 atm unless the problem states otherwise.

9.3 PASCAL’S PRINCIPLE

If the weight of a static fluid is negligible (as, for example, in a hydraulic system 
under high pressure), then the pressure must be the same everywhere in the fluid. 
Why? In Fig. 9.3, imagine the submerged cube to be composed of the same fluid as 
its surroundings. Ignoring the fluid’s weight, the only forces acting on the cubical 

Example 9.1 continued

For the stilettos:

P =
534 N

1.00 × 10−4 m2 = 5.34 × 106 N/m2 = 5.34 MPa

Discussion In atmospheres, these pressures are 0.879 atm 
and 52.7 atm, respectively. The pressure due to the dress 
shoe is 60 times the pressure due to the tennis shoe since the 
same force is spread over 1

60 the area.

Practice Problem 9.1 Pressure from an Ordinary 
Dress Shoe Heel

Fortunately for floor manufacturers, and for women’s feet, 
stiletto heels are out of fashion more often than they are in 
fashion. Suppose that a woman’s dress shoes have heels that 
are each 4.0 cm2 in area. Find the pressure on the floor, when 
the entire weight is on a single heel, for such a shoe worn by 
the same woman as in Example 9.1. Find the factor by which 
this pressure exceeds the pressure from the tennis shoe heel.

Strategy The average pressure is the force applied to the 
floor divided by the contact area. The force that the heel ex-
erts on the floor is 534 N. To keep the units straight, we 
convert the areas from square centimeters to square meters.

Solution To convert the area of the tennis shoe heel and 
the dress shoe heel from cm2 to m2, we use the conversion 
(1 m)2 = (102 cm)2. For the tennis shoe heel:

A = 60.0 cm2 × (
1 m

102 cm)
2

= 6.00 × 10−3 m2

For the dress shoe heel:

A = 1.00 cm2 × (
1 m

102 cm)
2

= 1.00 × 10−4 m2

The average pressure is the woman’s weight divided by the 
area of the heel. For the tennis shoe:

P =
F

A
=

534 N
6.00 × 10−3 m2 = 8.90 × 104 N/m2 = 89.0 kPa

Figure 9.3 Forces acting on 
a cube of fluid.
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piece of fluid are those due to the surrounding fluid pushing inward. The forces push-
ing on each pair of opposite sides of the cube must be equal in magnitude, since the 
fluid inside the cube is in equilibrium. Therefore, the pressure must be the same on 
both sides. Since we can extend this argument to any size and shape piece of fluid, 
the fluid pressure must be the same everywhere in a weightless, static fluid.

More generally, when the weight of the fluid is not negligible, the pressure 
is not the same everywhere. In this case, analysis of the forces acting on a piece 
of fluid (see Conceptual Question 15) leads to a more general result called  Pascal’s 
principle.

Pascal’s Principle

A change in pressure at any point in a confined fluid is transmitted everywhere 
throughout the fluid.

Applications of Pascal’s Principle: Hydraulic Lifts, Brakes, and Controls When 
a truck needs to have its muffler replaced, it is lifted into the air by a mechanism 
called a hydraulic lift (Fig. 9.4). A force is exerted on a liquid by a piston with a 
relatively small area; the resulting increase in pressure is transmitted everywhere 
throughout the liquid. Then the truck is lifted by the fluid pressure on a piston of 
much larger area. The upward force on the truck is much larger than the force applied 
to the small piston. Pascal’s principle has many other applications, such as the hydrau-
lic brakes in cars and trucks and the hydraulic controls in airplanes.

To analyze the forces in the hydraulic lift, let force F1 be applied to the small 
piston of area A1. The pressure of the fluid is then

 P =
F1

A1
 (9-2)

A truck is supported by a piston of much larger area A2 on the other side of the lift. 
The increase in pressure due to the small piston is transmitted everywhere in the 
liquid. Ignoring the weight of the fluid (or assuming the two pistons to be at the same 
height), the pressure of the fluid is the same everywhere, so the force F2 exerted by 
the fluid on the large piston is related to F1 by

 P =
F1

A1
=

F2

A2
 (9-3)

Since A2 is larger than A1, the force exerted on the large piston (F2) is larger than the 
force applied to the small piston (F1). We are not getting something for nothing; just 
as for the two-pulley systems discussed in Section 6.2, the advantage of the smaller 
force applied to the small piston is balanced by a greater distance it must be moved. 
The small piston has to move a long distance d1 while the large piston moves a short 
distance d2. Assuming the liquid to be incompressible, the volume of fluid displaced 
by each piston is the same, so

 ΔV = A1d1 = A2d2 (9-4)

The displacements of the pistons are inversely proportional to their areas, while the 
forces are directly proportional to the areas. Consequently, the two pistons do the same 
amount of work:

  W1 = F1d1 = (
F1

A1)(A1d1) = P ΔV  (9-5)

  W2 = F2d2 = (
F2

A2)(A2d2) = P ΔV = W2 (9-6)

F2

F1
A2

A1

d2 d1

Hydraulic fluid

Figure 9.4 Simplified dia-
gram of a hydraulic lift. Notice 
that piston 1 has to move a 
great distance (d1) to lift the 
truck a much smaller distance 
(d2). In a real hydraulic lift, 
piston 1 is usually replaced by 
a pump that draws fluid from a 
reservoir and pushes it into the 
hydraulic system.

CONNECTION:

Just as for levers, systems of 
pulleys, and other simple ma-
chines, the hydraulic lift can 
reduce the applied force 
needed to perform a task, but 
the work done is the same.
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9.4 THE EFFECT OF GRAVITY ON FLUID PRESSURE

On a drive through the mountains or on a trip in a small plane, the feeling of our ears 
popping is evidence that pressure is not the same everywhere in a static fluid. Grav-
ity makes fluid pressure increase as you move down and decrease as you move up. 
To understand more about this variation, we must first define the density of a fluid.

Density The density of a substance is its mass per unit volume. The Greek letter 
ρ (rho) is used to represent density. The density of a uniform substance of mass m 
and volume V is

Example 9.2

The Hydraulic Lift

In a hydraulic lift, if the radius of the smaller piston is 2.0 cm 
and the radius of the larger piston is 20.0 cm, what weight 
can the larger piston support when a force of 250 N is  applied 
to the smaller piston?

Strategy According to Pascal’s principle, the pressure in-
creases the same amount at every point in the fluid. A natu-
ral way to work is in terms of proportions since the forces are 
proportional to the areas of the pistons.

Solution Since the pressure on the two pistons increases 
by the same amount,

F1

A1
=

F2

A2

Equivalently, the forces are proportional to the areas:

F2

F1
=

A2

A1

The ratio of the radii is r2/r1 = 10, so the ratio of the areas is  
A2/A1 = (r2/r1)2 = 100. Then the weight that can be supported is

F2 = 100F1 = 25000 N = 25 kN

Discussion One common error in this sort of problem is to 
think of the area and the force as a trade-off—in other words, 
that the piston with the large area has the small force and vice 
versa. Since the pressures are the same, the force exerted by 
the fluid on either piston is proportional to the piston’s area. 
We make the piston that lifts the truck large because we know 
the force on it will be large, in direct proportion to its area.

Practice Problem 9.2 Application of Pascal’s 
 Principle

Consider the hydraulic lift of Example 9.2. (a) What is the 
increase in pressure caused by the 250 N force on the small 
piston? (b) If the larger piston moves 5.0 cm, how far does 
the smaller piston move?

Density

 ρ =
m

V
 (9-7)

The SI units of density are kilograms per cubic meter: kg/m3. For a nonuniform sub-
stance, Eq. (9-7) defines the average density.

Table 9.1 lists the densities of some common substances. Note that temperatures 
and pressures are specified in the table. For solids and liquids, density is only weakly 
dependent on temperature and pressure. On the other hand, gases are highly compress-
ible, so even a relatively small change in temperature or pressure can change the 
density of a gas significantly.

Pressure Variation with Depth due to Gravity Now, using the concept of density, 
we can find how pressure increases with depth due to gravity. Suppose we have a 
glass beaker containing a static liquid of uniform density ρ. Within this liquid,  imagine 
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a column or cylinder of liquid with cross-sectional area A and height d (Fig. 9.5a). 
The mass of the liquid in this cylinder is

 m = ρV (9-8)

where the volume of the cylinder is

 V = Ad (9-9)

The weight of the cylinder of liquid is therefore

 mg = (ρAd)g (9-10)

The vertical forces acting on this column of liquid are shown in Fig. 9.5b. The pres-
sure at the top of the cylinder is P1 and the pressure at the bottom is P2. Since the 
liquid in the column is in equilibrium, the net vertical force acting on it must be zero 
by Newton’s second law:

 ∑Fy = P2A − P1A − ρAdg = 0 (9-11)

Dividing by the common factor A and rearranging yields:

Gases
Density 
(kg/m3) Liquids

Density  
(kg/m3) Solids

Density  
(kg/m3)

Hydrogen 0.090 Gasoline 680 Polystyrene 100
Helium 0.18 Ethanol 790 Cork 240
Steam (100°C) 0.60 Oil 800–900 Wood (pine) 350–550
Methane 0.72 Water (20°C) 998.21 Wood (oak) 600–900
Air (20°C) 1.20 Water (0°C) 999.84 Ice 917
Nitrogen 1.25 Water (3.98°C) 999.98 Wood (ebony) 1000–1300
Carbon monoxide 1.25 Seawater 1025 Bone 1500–2000
Air (0°C) 1.29 Blood (37°C) 1060 Concrete 2000
Oxygen 1.43 Mercury 13 600 Quartz, granite 2700
Carbon dioxide 1.98 Aluminum 2702
Argon 1.66 Iron, steel 7860
Xenon 5.86 Copper 8920
Radon 9.73 Lead 11 300

Gold 19 300
Platinum 21 500

Table 9.1 Densities of Common Substances (at 0°C and 1 atm 
unless otherwise indicated)

Pressure variation with depth in a static fluid with uniform density

 P2 = P1 + ρgd (9-12)

where point 2 is a depth d below point 1

Since we can imagine a cylinder anywhere we choose within the liquid, Eq. (9-12) 
relates the pressure at any two points in a static liquid where point 2 is a depth d 
below point 1.

For gases, Eq. (9-12) can be applied as long as the depth d is small enough that 
changes in the density due to gravity are negligible. Since liquids are nearly incom-
pressible, Eq. (9-12) holds to great depths in liquids.

A

P2A

–P1A

d

y

–mg

(a)

(b)

Figure 9.5 Applying Newton’s 
second law to a cylinder of  
liquid tells us how pressure 
increases with increasing depth. 
(a) A cylinder of liquid of 
height d and area A. (b) Vertical 
forces on the cylinder of liquid.
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For a liquid that is open to the atmosphere, suppose we take point 1 at the surface 
and point 2 a depth d below. Then P1 = Patm, so the pressure at a depth d below the 
surface is

Pressure at a depth d below the surface of a liquid open to the atmosphere

 P = Patm + ρgd (9-13)

CHECKPOINT 9.4

Pressure	 in	 a	 static	 fluid	 depends	 on	 vertical	 position.	 Can	 it	 also	 depend	 on	
horizontal	position?	Explain.

Example 9.3

 A Diver

A diver swims to a depth of 3.2 m in a freshwater lake. 
What is the increase in the force pushing in on her eardrum, 
compared to what it was at the lake surface? The area of 
the eardrum is 0.60 cm2.

Strategy We can find the increase in pressure at a depth of 
3.2 m and then find the corresponding increase in force on 
the eardrum. If the force on the eardrum at the surface is P1A 
and the force at a depth of 3.2 m is P2A, then the increase in 
the force is (P2 − P1)A.

Solution The increase in pressure depends on the depth d 
and the density of water. From Table 9.1, the density of wa-
ter is 1000 kg/m3 to two significant figures for any reason-
able temperature.

P2 − P1 = ρgd

 ΔP = 1000 kg/m3 × 9.8 m/s2 × 3.2 m
 = 31.4 kPa

The increase in force on the eardrum is

ΔF = ΔP × A

where A = 0.60 cm2 = 6.0 × 10−5 m2. Then

 ΔF = (3.14 × 104 Pa) × (6.0 × 10−5 m2)

 = 1.9 N

Discussion A force also pushes outward on the eardrum 
due to the pressure inside the ear canal. If the diver descends 
rapidly so that the pressure inside the ear canal does not 
change, then a 1.9 N net force due to fluid pressure pushes 
inward on the eardrum. When the diver’s ear “pops,” the 
pressure inside the ear canal increases to equal the fluid 
pressure outside the eardrum, so that the net force due to 
fluid pressure on the eardrum is zero.

Practice Problem 9.3 Limits on Submarine Depth

A submarine is constructed so that it can safely withstand a 
pressure of 1.6 × 107 Pa. How deep may this submarine 
 descend in the ocean if the average density of seawater is 
1025 kg/m3?

Conceptual Example 9.4

The Hydrostatic Paradox

Three vessels have different shapes, but the same base area 
and the same weight when empty (Fig. 9.6). The vessels are 
filled with water to the same level and then the air is pumped 
out. The top surface of the water is then at a low pressure 
that, for simplicity, we assume to be zero. (a) Are the water 
pressures at the bottom of each vessel the same? If not, 
which is largest and which is smallest? (b) If the three  vessels 

continued on next page

A B C

d

Figure 9.6 
Three differently shaped vessels filled with water to same level.
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Conceptual Example 9.4 continued

thus, the net force on the container walls is zero. The force 
on the bottom is

F = PA = (ρgd) (πr2)

The volume of water in the cylinder is V = πr2d, so

F = ρgV = (ρV)g = mg

The force on the bottom of vessel C is equal to the weight of 
the water, as expected. However, the force on the bottom of 
vessel A is less than the weight of the water in the container, 
while the force on the bottom of vessel B is greater than the 
weight of the water. Then how can the water be in equilib-
rium? In vessel A, the forces on the container walls have 
downward components as well as horizontal components. 
The horizontal components of the forces on any two dia-
metrically opposite points are equal and opposite, so the 
horizontal components add to zero. The sum of the down-
ward components of the forces on the walls and the down-
ward force on the bottom of the container is equal to the 
weight of the water. Similarly, the forces on the walls of 
vessel B have upward components. In each case, the total 
force on the bottom and sides of the container due to the 
water is equal to the weight of the water.

Conceptual Practice Problem 9.4 Is Pressure  
Determined by Column Height?

Figure 9.8 shows a vessel with two 
points marked at the bottom of the water 
in the vessel. A narrow column of wa-
ter is drawn above each point. (a) Is the 
pressure at point 2, P2, the same as 
the pressure at point 1, P1, even though 
the column of water above point 2 is not 
as tall? (b) Does P = Patm + ρgd imply 
that P2 < P1? Explain.

containing water are weighed on a scale, do they give the 
same reading? If not, which weighs the most and which 
weighs the least? (c) If the water exerts the same downward 
force on the bottom of each vessel, is that force equal to the 
weight of water in the vessel? Is there a paradox here? [Hint: 
Think about the forces due to fluid pressure on the sides of 
the containers; do they have vertical components?]

Solution and Discussion (a) The water at the bottom of 
each vessel is the same depth d below the surface. Water at 
the surface of each vessel is at a pressure Psurface = 0. There-
fore, the pressures at the bottom must be equal:

P = Psurface + ρgd = ρgd

(b) The weight of each filled vessel is equal to the weight of 
the vessel itself plus the weight of the water inside. The ves-
sels themselves have equal weights, but vessel A holds more 
water than C, whereas vessel B holds less water than C. Ves-
sel A weighs the most and vessel B weighs the least.

(c) Each container supports the water inside by exerting an 
upward force equal in magnitude to the weight of the water. 
By Newton’s third law, the water exerts a downward force on 
the container of the same magnitude. Figure 9.7 shows the 
forces acting on each container due to the water. In vessel C, 
the horizontal forces on any two diametrically opposite 
points on the walls of the container are equal and opposite; 

A B C

d

Figure 9.7
Forces exerted on the containers by the water.

1 2

Figure 9.8
Two different points 
on the bottom of an 
open vessel.

9.5 MEASURING PRESSURE

Many other units are used for pressure besides atmospheres and pascals. In the United States, 
the pressure in an automobile tire can be measured in pounds per square inch (symbol lb/in2); 
barometric pressure might be reported in millibars (mbar or mb) or inches of mercury 
(inHg); and blood pressure is measured in millimeters of mercury (mmHg). Inches or 
millimeters of mercury may seem like strange units for pressure: how can a force per unit 
area be equal to a distance? There is an assumption inherent in using these pressure units that 
we can understand by studying the mercury manometer.

The Manometer

A mercury manometer consists of a vertical U-shaped tube, containing some mercury, 
with one side typically open to the atmosphere and the other connected to a vessel 
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 containing a gas whose pressure we want to measure. Figure 9.9 shows the manometer 
before it is connected to such a vessel. When both sides of the manometer are open to 
the atmosphere, the mercury levels are the same.

Now we connect an inflated balloon to the left side of the U-tube (Fig. 9.10). If 
the gas in the balloon is at a higher pressure than the atmosphere, the gas pushes the 
mercury down on the left side and forces it up on the right side. The density of a gas 
is small compared to the density of mercury, so every point within the gas is assumed 
to be at the same pressure no matter what the depth. At point B, the mercury pushes 
on the gas with the same magnitude force with which the gas pushes on the mercury, 
so point B is at the same pressure as the gas. Since point B′ is at the same height 
within the mercury as point B, the pressure at B′ is the same as at B. Point C is at 
atmospheric pressure.

The pressure at B is

 PB = PC + ρgd (9-14)

where ρ is the density of mercury. The difference in the pressures on the two sides 
of the manometer is

 ΔP = PB − PC = ρgd (9-15)

Thus, the difference in mercury levels d is a measure of the pressure difference— 
commonly reported in millimeters of mercury (mmHg).

The pressure measured when one side of the manometer is open is the difference 
between atmospheric pressure and the gas pressure rather than the absolute pressure 
of the gas. This difference is called the gauge pressure, since it is what most gauges 
(not just manometers) measure:

Starting
level

Hg

Open to the
atmosphere

A' A

B' B

Figure 9.9 A mercury 
manometer open on both sides. 
Points A and A′ are both at 
atmospheric pressure. Any two 
points (e.g., B and B′) at the 
same height within the fluid are 
at the same pressure: PB = P′B.

Hg

Open to the
atmosphere

Gas
C

B'B

d

Figure 9.10 The manometer 
connected on one side to a con-
tainer of gas at a pressure greater 
than atmospheric  pressure.

Gauge pressure

 Pgauge = Pabs − Patm (9-16)

Since the density of mercury is 13 600 kg/m3, 1.00 mmHg can be converted to 
pascals by substituting d = 1.00 mm in Eq. (9-15):

1.00 mmHg = ρgd = (13 600 kg/m3)(9.80 m/s2)(0.001 00 m) = 133 Pa

The liquid in a manometer may be something other than mercury, such as water or oil. 
Equation (9-15) still applies, as long as we use the correct density ρ of the liquid in the 
manometer.

Example 9.5

The Mercury Manometer

A manometer is attached to a container of gas to determine 
its pressure. Before the container is attached, both sides of 
the manometer are open to the atmosphere. After the con-
tainer is attached, the mercury on the side attached to the gas 
container rises 12 cm above its previous level. (a) What is 
the gauge pressure of the gas in Pa? (b) What is the absolute 
pressure of the gas in Pa?

Strategy The mercury column is higher on the side con-
nected to the container of gas, so we know that the pressure 

continued on next page

of the enclosed gas is lower than atmospheric pressure. We 
need to find the difference in levels of the mercury columns 
on the two sides. Careful: It is not 12 cm! If one side went 
up by 12 cm, then the other side has gone down by 12 cm, 
since the same volume of mercury is contained in the 
 manometer.

Solution (a) The difference in the mercury levels is 24 cm 
(Fig. 9.11). Since the mercury on the gas side went up, the 
absolute pressure of the gas is lower than atmospheric 
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Example 9.5 continued

(b) The absolute pressure of the gas is

 P = Pgauge + Patm

 = −32 kPa + 101 kPa = 69 kPa

Discussion As a check, the manometer tells us directly 
that the gauge pressure of the gas is −240 mmHg. Convert-
ing to pascals gives

−240 mmHg × 133 Pa/mmHg = −32 kPa

Practice Problem 9.5 Column Heights in  
Manometer

A mercury manometer is connected to a container of gas. 
(a) The height of the mercury column on the side connected 
to the gas is 22.0 cm (measured from the bottom of the ma-
nometer). What is the height of the mercury column on the 
open side if the gauge pressure is measured to be 13.3 kPa? 
(b) If the gauge pressure of the gas doubles, what are the new 
heights of the two columns?

 pressure. Therefore, the gauge pressure of the gas is less than 
zero. The gauge pressure in Pa is

Pgauge = ρgd

where the “depth” is d = −24 cm (the mercury is 24 cm 
higher on the gas side). Then

Pgauge = 13 600 kg/m3 × 9.8 m/s2 × (−0.24 m) = −32 kPa

Figure 9.11
When a container of gas is 
attached to one side of the 
manometer, one side goes 
down 12 cm and the other 
side goes up 12 cm.

Gas

Hg

Open to the
atmosphere

24 cm

12 cm

12 cm

CHECKPOINT 9.5

A	 manometer	 contains	 two	 different	 liquids	 of	 different	 densities	 (Fig.	 9.12).	
Both	sides	are	open	to	 the	atmosphere.	Rank	points	1–5	 in	order	of	 the	pres-
sure,	 largest	 to	smallest.

The Barometer

A manometer can act as a barometer—a device to measure atmospheric pressure. 
Instead of attaching a container with a gas to one end of the manometer, attach a 
container and a vacuum pump. Pump the air out of the container to get as close to a 
vacuum—zero pressure—as possible. Then the atmosphere pushes down on one side 
and pushes the fluid up on the other side toward the evacuated container.

Figure 9.13 shows a barometer in which the vacuum is not created by a vacuum 
pump. The barometer was invented by Evangelista Torricelli (1608–1647), an assistant 
to Galileo.

Atmospheric
pressure

B

d

A Hg

Vacuum (P = 0)
Figure 9.13 A simple barometer. A tube, of length greater than 76 cm and 
closed at one end, is filled with mercury. The tube is then inverted into an open 
container of mercury. Some mercury flows down from the tube into the bowl. The 
space left at the top of the tube is nearly a vacuum because nothing is left but a 
negligible amount of mercury vapor. Points A and B are at the same level in the 
mercury and, therefore, are both at atmospheric pressure since the bowl is open to 
the air. The distance d from A to the top of the mercury column in the closed tube 
is a measure of the atmospheric pressure (often called barometric pressure because 
it is measured with a barometer).

5

4

1

2

3

Figure 9.12 A manometer 
containing two different liquids. 
Both sides are open to the 
atmosphere.
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Application of the Manometer: Measuring Blood Pressure

Blood pressure is measured with a sphygmomanometer (Fig. 9.15). The oldest kind 
of sphygmomanometer consists of a mercury manometer on one side attached to a 
closed bag—the cuff. The cuff is wrapped around the upper arm at the level of the 
heart and is then pumped up with air. The manometer measures the gauge pressure 
of the air in the cuff.

At first, the pressure in the cuff is higher than the systolic pressure—the maxi-
mum pressure in the brachial artery that occurs when the heart contracts. The cuff 
pressure squeezes the artery closed, and no blood flows into the forearm. A valve on 
the cuff is then opened to allow air to escape slowly. When the cuff pressure decreases 
to just below the systolic pressure, a little squirt of blood flows past the constriction 
in the artery with each heartbeat. The sound of turbulent blood flow past the constric-
tion can be heard through the stethoscope.

As air continues to escape from the cuff, the sound of blood squirting through 
the constriction in the artery continues to be heard. When the pressure in the cuff 
reaches the diastolic pressure in the artery—the minimum pressure that occurs when 
the heart muscle is relaxed—there is no longer a constriction in the artery, so the 
pulsing sounds cease. The gauge pressures for a healthy heart are nominally around 
120 mmHg (systolic) and 80 mmHg (diastolic).

9.6 THE BUOYANT FORCE

When an object is immersed in a fluid, the pressure on the lower surface of the object 
is higher than the pressure on the upper surface. The difference in pressures leads to 
an upward net force acting on the object due to the fluid pressure. If you try to push 
a beach ball underwater, you feel the effects of the buoyant force pushing the ball 
back up. It takes a rather large force to hold such an object completely underwater; 
the instant you let go, the object pops back up to the surface.

Consider a rectangular solid immersed in a fluid of uniform density ρ (Fig. 9.16a). 
For each vertical face (left, right, front, and back), there is a face of equal area opposite 

EVERYDAY PHYSICS DEMO

When	you	next	have	a	drink	with	a	straw,	 insert	 the	straw	 into	 the	drink	and	
cover	 the	 top	 of	 the	 straw	 with	 your	 finger.	 Raise	 the	 straw	 up	 out	 of	 your	
drink.	What	holds	up	 the	 liquid	 that	 remains	 in	 the	straw?

Some	air	 is	 trapped	between	your	 finger	and	 the	 top	of	 the	 liquid	 in	 the	
straw;	 that	 air	 exerts	 a	 downward	 force	 on	 the	 liquid	 of	 magnitude	 P1A	
	(Fig. 9.14).	A	downward	gravitational	 force	mg	also	acts	on	the	 liquid.	The	air	
at	the	bottom	of	the	straw	exerts	an	upward	force	on	the	liquid	of	magnitude	
PatmA;	 this	 upward	 force	 is	what	holds	 the	 liquid	 in	place.	Because	 the	 liquid	
does	not	pour	out	of	 the	straw,	but	 instead	 is	 in	equilibrium,

∑Fy	=	PatmA	−	P1A	−	mg	=	0

Thus,	 the	 pressure	P1	 of	 the	 air	 trapped	 above	 the	 liquid	must	 be	 less	 than	
atmospheric	pressure.

How	 did	 P1	 become	 less	 than	 atmospheric	 pressure?	 As	 you	 pulled	 the	
straw	 up	 and	 out,	 the	 liquid	 in	 the	 straw	 falls	 a	 bit,	 expanding	 the	 volume	
available	to	the	air	trapped	above	the	 liquid.	When	a	gas	expands	under	con-
ditions	 like	 this,	 its	pressure	decreases.

When	you	remove	your	 finger	 from	the	top	of	the	straw,	air	can	get	 in	at	
the	top	of	the	straw.	Then	the	pressures	above	and	below	the	liquid	are	equal,	
so	 the	gravitational	 force	pulls	 the	 liquid	down	and	out	of	 the	straw.

–P1A

+y

PatmA

–mg

Figure 9.14 Forces acting on 
the liquid inside a straw.

Figure 9.15 A sphygmoma-
nometer being used to measure 
blood pressure.
Source: CDC

CONNECTION:

The buoyant force is not a 
new kind of force exerted by 
a fluid; it is the sum of forces 
due to fluid pressure.
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it. The forces on these two faces due to the fluid are equal in magnitude since the areas 
and the average pressures are the same. The directions are opposite, so the forces acting 
on the vertical faces cancel in pairs.

Let the top and bottom surfaces each have area A. The force on the lower face of 
the block is F2 = P2A; the force on the upper face is F1 = P1A. The total force on the 
block due to the fluid, called the buoyant force FB, is upward since F2 > F1 (Fig. 9.16b).

 F
→

B = F
→

1 + F
→

2 (9-17)

 FB = (P2 − P1)A (9-18)

Since P2 − P1 = ρgd, the magnitude of the buoyant force can be written as:

Figure 9.16 (a) Forces due 
to fluid pressure on the top and 
bottom of an immersed rectan-
gular solid. (b) The buoyant 
force is the sum of F

→
1 and F

→
2. 

Since ∣F
→

2∣ > ∣F
→

1∣, the net force 
due to fluid pressure is upward.

F2

F2

F1

F1

FB

(a)

(b)

d

FB

mg

Figure 9.17 Forces acting on 
a floating ice cube. The ice 
cube is in equilibrium, so 
F
→

B + mg→ = 0.

Buoyant force

 FB = ρgdA = ρgV  (9-19)

where V = Ad is the volume of the block.
Note that ρV is the mass of the volume V of the fluid that the block displaces. 

Thus, the buoyant force on the submerged block is equal to the weight of an equal 
volume of fluid, a result called Archimedes’ principle.

Archimedes’ Principle

A fluid exerts an upward buoyant force on a submerged object equal in magni-
tude to the weight of the volume of fluid displaced by the object.

As expected from Newton’s third law, the object exerts a force of equal magnitude 
downward on the fluid.

Archimedes’ principle applies to a submerged object of any shape even though we 
derived it for a rectangular block. Why? Imagine replacing an irregular submerged object 
with enough fluid to fill the object’s place. This “piece” of fluid is in equilibrium, so 
the buoyant force must be equal to its weight. The buoyant force is the net force exerted 
on the “piece” of fluid by the surrounding fluid, which is identical to the buoyant force 
on the irregular object since the two have the same shape and surface area.

The same argument can be used to show that if an object is only partly sub-
merged, the buoyant force is still equal to the weight of fluid displaced. Equation 
(9-19) applies as long as V is the part of the object’s volume below the fluid surface 
rather than the entire volume of the object.

Net Force due to Gravity and Buoyancy The net force due to gravity and buoy-
ancy acting on an object totally or partially immersed in a fluid (Fig. 9.17) is

 F
→

= mg→ + F
→

B (9-20)

The force of gravity on an object of volume Vo and average density ρo is

 W = mg = ρogVo (9-21)

and the buoyant force is

 FB = ρfgVf  (9-22)

where Vf and ρf are the volume of fluid displaced and the fluid density, respectively. 
Choosing up to be the +y-direction, the net force due to gravity and buoyancy is

 Fy = ρfgVf − ρogVo (9-23)

Here Fy can be positive or negative, depending on which density is larger. Imagine 
releasing a pebble and an air bubble underwater. The pebble’s average density is 
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greater than the density of water, so the net force on it is downward; the pebble sinks. 
An air bubble’s average density is less than the density of water, so the net force is 
upward, causing the bubble to rise toward the surface of the water.

If the object is completely submerged, the volumes of the object and the displaced 
fluid are the same and

 Fy = (ρf − ρo)gV  (9-24)

If ρo < ρf, the object floats with only part of its volume submerged. In equilib-
rium, the object displaces a volume of fluid whose weight is equal to the object’s 
weight. At that point the gravitational force equals the buoyant force and the object 
floats. Setting Fy = 0 in Eq. (9-23) yields

 ρfgVf = ρogVo (9-25)

which can be rearranged as:

 
Vf

Vo
=

ρo

ρf
 (9-26)

On the left side of this equation is the fraction of the object’s volume that is sub-
merged; it is equal to the ratio of the density of the object to the density of the fluid.

CHECKPOINT 9.6

Two	 identical	 pieces	 of	 wood	 are	 floating,	 one	 in	 a	 beaker	 of	 water	 and	 the	
other	 in	 a	beaker	of	 alcohol	 that	 has	a	density	0.8	 times	 that	of	water.	Does	
one	piece	of	wood	 float	 higher	 above	 the	 liquid	 surface	 than	 the	other?	 If	 so,	
which	 floats	higher?	Explain.

Specific Gravity The specific gravity of a substance is the ratio of its density to the 
density of water at 3.98°C. Water at 3.98°C is chosen as the reference material because 
at that temperature, the density of water is a maximum (at atmospheric pressure). To 
four significant figures, water at 3.98°C has a density of 1.000 g/cm3 (1000 kg/m3). If 
we say the specific gravity of seawater is 1.025, that means that seawater has a density 
of 1.025 g/cm3 (1025 kg/m3).

Specific gravity

 SG =
ρ

ρwater
=

ρ

1000 kg/m3 (9-27)

Applications of Specific-Gravity Measurements in Medicine Blood tests often 
include determination of the specific gravity of the blood—normally around 1.040 to 
1.065. A reading that is too low may indicate anemia, since the presence of red blood 
cells increases the average density of the blood. Before taking blood from a donor, a 
drop of the blood is placed in a solution of known density. If the drop does not sink, 
it is not safe for the donor to give blood because the concentration of red blood cells 
is too low. Urinalysis also includes a specific-gravity measurement (normally 1.015 
to 1.030); too high a value indicates an abnormally high concentration of dissolved 
salts, which can signal a medical problem.

Applications of Archimedes’ Principle Freighters, aircraft carriers, and cruise 
ships float, although they are made from steel and other materials that are more dense 
than seawater. When a ship floats, the buoyant force acting on the ship is equal to the 
ship’s weight. A ship is constructed so that it displaces a volume of seawater larger 
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than the volume of the steel and other construction materials. The average density of 
the ship is its weight divided by its total volume. A large part of a ship’s interior is 
filled with air. All of the “empty” space contributes to the total volume; the resulting 
average density is less than that of seawater, allowing the ship to float.

Now we can understand how a hippopotamus can sink to the bottom of a pond: 
it can expel some of the air in its body by exhaling. Exhalation increases the average 
density of the hippopotamus so that it is just slightly above the density of the water; 
thus, it sinks. (An armadillo does just the opposite: it swallows air, inflating its stom-
ach and intestines, to increase the buoyant force for a swim across a large lake. See 
Problem 41.) When the hippo needs to breathe, it swims back up to the surface.

©Tatiana Grozetskaya/Shutterstock

Example 9.6

The Golden (?) Falcon

A small statue in the shape of a falcon has a weight of 24.1 N. 
The owner of the statue claims it is made of solid gold. When 
the statue is completely submerged in a container brimful of 
water, the weight of the water that spills over the top and into 
a bucket is 1.25 N. Find the density and specific gravity of 
the metal. Is the density consistent with the claim that the 
falcon is solid gold?

Strategy When the statue is completely submerged, it dis-
places a volume V of water equal to its own volume. The weight 
of the displaced water is equal to the buoyant force. Let  
msg = 24.1 N represent the weight of the statue (in terms of its 
mass ms) and let mwg = 1.25 N represent the weight of the water.

Solution The specific gravity of the statue is

SG =
ρs

ρw
=

ms/V
mw/V

=
ms

mw

Rather than calculate the masses in kilograms, we recognize 
that a ratio of masses is equal to the ratio of the weights:

SG =
msg

mwg
=

24.1 N
1.25 N

= 19.3

The density of the statue is

ρs = SG × ρw = 19.3 × 1000 kg/m3 = 1.93 × 104 kg/m3

From Table 9.1, the statue has the correct density; it may 
possibly be gold.

Discussion According to legend, this method to deter-
mine the specific gravity of a solid was discovered by Archi-
medes in the third century b.c.e. King Hieron II asked 
Archimedes to find a way to check whether his crown was 
made of pure gold—without melting down the crown, of 
course! Archimedes came up with his method while he was 
taking a bath; he noticed the water level rising as he got in 
and connected the rising water level with the volume of wa-
ter displaced by his body. In his excitement, he jumped out 
of the bath and ran naked through the streets of Siracusa (a 
city in Sicily) shouting “Eureka!”

Practice Problem 9.6 Identifying an Unknown 
 Substance

An unknown solid substance has a weight of 142.0 N. The 
object is suspended from a scale and hung so that it is com-
pletely submerged in water (but not touching bottom). The 
scale reads 129.4 N. Find the specific gravity of the object 
and determine whether the substance could be anything 
listed in Table 9.1.

Example 9.7

Hidden Depths of an Iceberg

What percentage of a floating iceberg’s volume is above wa-
ter? The specific gravity of ice is 0.917 and the specific grav-
ity of the surrounding seawater is 1.025.

Strategy The ratio of the density of ice to the density of 
seawater tells us the ratio of the volume of ice that is 

 submerged in the seawater to the total volume of the iceberg. 
The rest of the ice is above the water.

Solution We could calculate the densities of seawater and 
of ice (ρsw and ρice) in SI units from their specific gravities, 

continued on next page
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Example 9.7 continued

but that is unnecessary. If we take the ratio of the specific 
gravities, the density of water ρw cancels out, so the ratio of 
the specific gravities is equal to the ratio of the densities:

SGice

SGsw
=

ρice/ρw

ρsw/ρw
=

ρice

ρsw

We know that the fraction of the iceberg’s volume that is 
submerged is equal to the ratio of the densities of ice and 
seawater [Eq. (9-26)]. Thus, the ratio of the volume sub-
merged to the total volume of ice is

 
Vsub

Vice
=

ρice

ρsw
=

SGice

SGsw

 =
0.917
1.025

= 0.895

89.5% of the ice is below the surface of the water, leaving 
only 10.5% above the surface.

Discussion An alternative solution does not depend on 
remembering that the ratio of the volumes is equal to the 
ratio of the densities. The buoyant force is equal to the weight 
of a volume Vsub of water:

FB = ρswVsubg

The weight of the iceberg is mg = ρiceViceg. From Newton’s 
second law, the buoyant force must be equal in magnitude to 
the weight of the iceberg when it is floating in equilibrium:

ρswVsubg = ρiceViceg

or
Vsub

Vice
=

ρice

ρsw

The fact that ice floats is of great importance for the bal-
ance of nature. If ice were more dense than water, it would 
gradually fill up the ponds and lakes from the bottom. It 
would not form on top of lakes and remain there. The conse-
quences for fish and other bottom dwellers of solidly frozen 
lakes would be catastrophic. The water below the surface 
layer of ice formed in winter remains just above freezing so 
that the fish are able to survive.

Practice Problem 9.7 Floating in Freshwater  
Versus Seawater

If the average density of a human body is 980 kg/m3, what 
fraction of the body floats above water in a freshwater pond 
and what fraction floats above seawater in the ocean? The 
specific gravity of seawater is 1.025.

Conceptual Example 9.8

A Hovering Fish

 How is it that a fish is able to hover almost motionless in 
one spot—until some attractive food is spotted and, with a 
flip of the tail, off it swims after the food? Fish have a thin-
walled bladder, called a swim bladder, located under the spi-
nal column. The swim bladder contains a mixture of oxygen 
and nitrogen obtained from the blood of the fish. How does 
the swim bladder help the fish keep the buoyant and gravita-
tional forces balanced so that it can hover?

Solution and Discussion If the fish’s average density is 
greater than that of the surrounding water, it will sink; if its 
average density is smaller than that of the water, it will rise. By 
varying the volume of the swim bladder, the fish is able to vary 
its overall volume and, thus, its average density. By adjusting 
its average density to match the density of the surrounding 

water, the fish can remain  suspended in position. The fish can 
also adjust the volume of the bladder when it wants to rise or 
sink. (See Problem 39.)

Conceptual Practice Problem 9.8  The Diving 
Beetle

A diving beetle traps a bubble of air under its wings. While 
under the water, the beetle uses the air in the bubble to 
breathe, gradually exchanging the oxygen for carbon diox-
ide. (a) What does the beetle do to the air bubble so that it 
can dive under the water? (b) Once under water, what does 
the beetle do so that it can rise to the surface? [Hint: Treat 
the beetle and the air bubble as a single system. How can the 
beetle change the buoyant force acting on the system?]

Buoyant Forces on Objects Immersed in a Gas Gases such as air are fluids 
and exert buoyant forces just as liquids do. The buoyant force due to air is often 
negligible if an object’s average density is much larger than the density of air. To see 
a significant buoyant force in air, we must use an object with a small average density. 
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A hot air balloon has an opening at the bottom and a burner for heating the air within 
(Fig. 9.18). Many molecules of the heated air escape through the opening, decreasing 
the balloon’s average density. When the balloon is less dense on average than the 
surrounding air, it rises because the buoyant force exceeds the weight of the balloon. 
At higher altitudes, the surrounding air becomes less and less dense, so at some par-
ticular altitude, the buoyant force is equal in magnitude to the weight of the balloon. 
Then, by Newton’s second law, the net force on the balloon is zero. The balloon is in 
stable equilibrium at this altitude: if the balloon rises a bit, it experiences a net force 
downward, while if the balloon sinks down a bit, it is pushed back upward.

9.7 FLUID FLOW

Types of Fluid Flow The study of moving fluids is a wonderfully complex subject. 
To illustrate some important ideas in less complex situations, we limit our study at 
first to fluids flowing under special conditions.

One difference between moving fluids and static fluids is that a moving fluid can 
exert a force parallel to any surface over or past which it flows; a static fluid cannot. 
Since the moving fluid exerts a force against a surface, the surface must also exert a 
force on the fluid. This viscous force opposes the flow of the fluid; it is the counterpart 
to the kinetic frictional force between solids. An external force must act on a viscous 
fluid (and thereby do work) to keep it flowing. Viscosity is considered in Section 9.9. 
Until then, we consider only nonviscous fluids—fluid flow where the viscous forces are 
negligibly small. We also ignore surface tension, which is considered in Section 9.11.

Fluid flow can be characterized as steady or unsteady. When the flow is steady, 
the velocity of the fluid at any point is constant in time. The velocity is not neces-
sarily the same everywhere, but at any particular point, the velocity of the fluid pass-
ing that point remains constant in time. The density and pressure at any point in a 
steadily flowing fluid are also constant in time.

Steady flow is laminar. The fluid flows in neat layers so that each small portion 
of fluid that passes a particular point follows the same path as every other portion of 
fluid that passes the same point. The path that the fluid follows, starting from any 
point, is called a streamline (Fig. 9.19). The streamlines may curve and bend, but 
they cannot cross each other; if they did, the fluid would have to “decide” which way 
to go when it gets to such a point. The direction of the fluid velocity at any point 
must be tangent to the streamline passing through that point. Streamlines are a con-
venient way to depict fluid flow in a sketch.

When the fluid velocity at a given point changes, the flow is unsteady. Turbulence 
is an extreme example of unsteady flow (Fig. 9.20). In turbulent flow, swirling 
 vortices—whirlpools of fluid—appear. The vortices are not stationary; they move with 
the fluid. The flow velocity at any point changes erratically; prediction of the direction 
or speed of fluid flow under turbulent conditions is difficult.

Figure 9.20 Turbulent flow 
of gas emerging from the 
 nozzle of an aerosol can.
©Gary Settles/ScienceSource

Figure 9.18 The buoyant 
force due to the outside air 
keeps these balloons aloft.
©_ig0rzh_/123RF

Figure 9.19 A wind tunnel 
shows the streamlines in the 
laminar flow of air past a car.
©culture-images GmbH/Alamy
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The Ideal Fluid The special case that we consider first is the flow of an ideal fluid. 
An ideal fluid is incompressible, undergoes laminar flow, and has no viscosity. Under 
some conditions, real fluids can be modeled as (nearly) ideal.

The flow of an ideal fluid is described by two principles: the continuity equation 
and Bernoulli’s equation. The continuity equation is an expression of conservation of 
mass for an incompressible fluid: since no fluid is created or destroyed, the total mass 
of the fluid must be constant. Bernoulli’s equation, discussed in Section 9.8, is a form 
of the energy conservation law applied to fluid flow. Together, these two equations 
enable us to predict the flow of an ideal fluid.

The Continuity Equation

We start by deriving the continuity equation, which relates the speed of flow to the 
cross-sectional area of the fluid. Suppose an incompressible fluid flows into a pipe 
of nonuniform cross-sectional area under conditions of steady flow. In Fig. 9.21, the 
fluid on the left moves at speed v1. During a time Δt, the fluid travels a distance

 x1 = v1 
Δt (9-28)

In a time interval Δt, the mass of fluid moving through the cross-section of area A1 is

 Δm1 = ρ
 
ΔV1 = ρA1x1 = ρA1v1 

Δt (9-29)

During this same time interval, the mass of fluid moving through the cross-section 
of area A2 is
 Δm2 = ρ

 
ΔV2 = ρA2x2 = ρA2v2 

Δt (9-30)

But, if the flow is steady, the mass passing through one section of pipe in time interval 
Δt must pass through any other section of the pipe in the same time interval. Therefore,

 Δm1 = Δm2 (9-31)

or
 ρA1v1 

Δt = ρA2v2 
Δt (9-32)

We call the quantity ρAv the mass flow rate of the fluid:

Mass flow rate

 
Δm

Δt
= ρAv (SI unit: kg/s)  (9-33)

Volume flow rate

 Q =
ΔV

Δt
= Av (SI unit: m3/s)  (9-34)

Since the time intervals Δt are the same, Eq. (9-32) says that the mass flow rate 
through any two cross sections is the same. Since the density of an incompressible 
fluid is constant, we can cancel it from both sides of Eq. (9-32). Dividing the mass 
flow rate ρAv by the density ρ gives the volume flow rate (symbol Q).

21

A1
A2

x1
v1

x2

v2

Δm1

Δm2

Figure 9.21 An incompress-
ible fluid flowing horizontally 
through a nonuniform pipe.
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Eq. (9-32) then implies that, for an incompressible fluid, the volume flow rate 
through any two cross sections is the same. This result is called the continuity equation.

Figure 9.22 Streamlines in a 
pipe of varying cross-sectional 
area. Streamlines are closer 
together where the fluid velocity 
is larger and farther apart 
where the velocity is smaller.

v2
v1

Continuity equation for incompressible fluid

 A1v1 = A2v2 (9-35)

The same volume of fluid that enters the pipe in a given time interval exits the 
pipe in the same time interval. Where the radius of the tube is large, the speed of 
the fluid is small; where the radius is small, the fluid speed is large. A familiar 
example is what happens when you use your thumb to partially block the end of a 
garden hose to make a jet of water. The water moves past your thumb, where the 
cross-sectional area is smaller, at a greater speed than it moves in the hose. Similarly, 
water traveling along a river speeds up, forming rapids, when the riverbed narrows 
or is partially blocked by rocks and boulders.

Streamlines are closer together where the fluid flows faster and farther apart 
where it flows more slowly (Fig. 9.22). Thus, streamlines help us visualize fluid flow. 
The fluid velocity at any point is tangent to a streamline through that point.

EVERYDAY PHYSICS DEMO

The	continuity	equation	applies	to	an	ideal	fluid	even	if	it	is	not	flowing	through	
a	 pipe.	 Turn	 on	 a	 faucet	 so	 that	 the	 water	 flows	 out	 in	 a	moderate	 stream	
(Fig.	9.23).	 The	 falling	water	 is	 in	 free	 fall,	 accelerated	by	 gravity	 until	 it	 hits	
the	 sink	 below.	 As	 the	 water	 falls,	 its	 speed	 increases.	 The	 stream	 of	 water	
gradually	narrows	as	 it	 falls	 so	 that	 the	product	of	 speed	and	cross-sectional	
area	 is	constant,	as	predicted	by	 the	continuity	equation.

CHECKPOINT 9.7 

An	 artery	 with	 an	 inner	 diameter	 of	 1.20	 cm	 narrows	 (due	 to	 plaque	 buildup)	
to	an	inner	diameter	of	1.00	cm.	By	what	percentage	does	the	speed	of	blood	
flow	change	when	entering	 the	narrower	section?

Figure 9.23 Demonstrating 
the continuity equation at a 
bathroom sink. Notice that the 
stream of water is narrower 
where the flow speed is faster.
©Michael Bodmann/Getty Images

Example 9.9

Speed of Blood Flow

 The heart pumps blood into the aorta, which has an inner 
radius of 1.0 cm. The aorta feeds 32 major arteries. If blood 
in the aorta travels at an average speed of 28 cm/s, at ap-
proximately what average speed does it travel in the arteries? 
Assume that blood can be treated as an ideal fluid and that the 
arteries each have an inner radius of 0.21 cm.

Strategy Since we have assumed blood to be an ideal fluid, 
we can apply the continuity equation in the form of Eq. (9-35). 
The main tube (the aorta) is connected to multiple tubes (the 
major arteries), so this problem seems to be more complicated 
than a single pipe with a constriction in it. What matters here 
is the total cross-sectional area into which the blood flows.

continued on next page
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9.8 BERNOULLI’S EQUATION

The continuity equation relates the flow velocities of an ideal fluid at two different 
points on a streamline based on the change in cross-sectional area of the pipe. Accord-
ing to the continuity equation, the fluid must speed up as it enters a constriction 
(Fig. 9.24) and then slow down to its original speed when it leaves the constriction. 
Using energy ideas, we will show that the pressure of the fluid in the constriction 
(P2) cannot be the same as the pressure before or after the constriction (P1). For 
horizontal flow the speed is higher where the pressure is lower. This principle is often 
called the Bernoulli effect.

The Bernoulli effect can seem counterintuitive at first; isn’t rapidly moving 
fluid at high pressure? For instance, if you were hit with the fast-moving water out 
of a firehose, you would be knocked over easily. The force that knocks you over 
is indeed due to fluid pressure; you would justifiably conclude that the pressure 
was high. However, the pressure is not high until you slow down the water by get-
ting in its way. The rapidly moving water in the jet is, in fact, approximately at 
atmospheric pressure (zero gauge pressure), but when you stop the water, its pres-
sure increases dramatically.

Let’s find the quantitative relationship between pressure changes and flow speed 
changes for an ideal fluid. In Fig. 9.25, the shaded volume of fluid flows to the right. 
If the left end moves a distance Δx1, then the right end moves a distance Δx2. Since 
the fluid is incompressible,

 A1 
Δx1 = A2 

Δx2 = V  (9-36)

Example 9.9 continued

Solution We start by finding the cross-sectional area of 
the aorta

A1 = πr2
aorta

and then the total cross-sectional area of the arteries

A2 = 32πr2
artery

Now we apply the continuity equation and solve for the un-
known speed.

A1v1 = A2v2

v2 = v1(
A1

A2) = 0.28 m/s ×
π(0.010 m)2

32π(0.0021 m)2 = 0.20 m/s

Discussion The blood flow slows in the arteries be-
cause the total cross-sectional area is greater than that of 

the aorta alone. From the arteries, the blood travels to the 
many capillaries of the body. Each capillary has a tiny 
cross-sectional area, but there are so many of them that the 
blood flow slows greatly once it reaches the capillaries 
(Problem 84). This allows time for the exchange of oxy-
gen, carbon dioxide, and nutrients between the blood and 
the body tissues.

Practice Problem 9.9 Hosing Down a  
Wastebasket

A garden hose fills a 32 L wastebasket in 120 s. The opening 
at the end of the hose has a radius of 1.00 cm. (a) How fast is 
the water traveling as it leaves the hose? (b) How fast does 
the water travel if half the exit area is obstructed by placing 
a finger over the opening?

BA

v2 > v1

P2 < P1

P2

P1P1

v1 v1v2

a a

Figure 9.24 A small volume 
of fluid speeds up as it moves 
into a constriction (position A) 
and then slows down as it 
moves out of the constriction 
(position B).
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Work is done by the neighboring fluid during this flow. Fluid behind (to the left) 
pushes forward, doing positive work, while fluid ahead pushes backward, doing neg-
ative work. The total work done on the shaded volume by neighboring fluid is

 W = P1A1 
Δx1 − P2 A2 

Δx2 = (P1 − P2)V  (9-37)

Since no dissipative forces act on an ideal fluid, the work done is equal to the total 
change in kinetic and gravitational potential energy. The net effect of the displacement 
is to move a volume V of fluid from height y1 to height y2 and to change its speed 
from v1 to v2. The energy change is therefore

 ΔE = ΔK + ΔU =
1
2

m(v2
2 − v2

1) + mg(y2 − y1)  (9-38)

where the +y-direction is up. Substituting m = ρV and equating the work done on the 
fluid to the change in its energy yields

 (P1 − P2)V =
1
2

ρV(v2
2 − v2

1) + ρVg(y2 − y1)  (9-39)

Dividing both sides by V and rearranging yields Bernoulli’s equation, named after 
Swiss mathematician Daniel Bernoulli (1700–1782), but first derived by fellow Swiss 
mathematician Leonhard Euler (pronounced like oiler, 1707–1783).

CONNECTION:

Bernoulli’s equation is a re-
statement of the principle of 
energy conservation applied 
to the flow of an ideal fluid.

(a)

Δx2

Δx1
P2

P1

y2

v2

v1

y1

(b)

Δx2

Δx1

A1

A2

Figure 9.25 Applying con-
servation of energy to the flow 
of an ideal fluid. The shaded 
volume of fluid in (a) is flow-
ing to the right; (b) shows the 
same volume of fluid a short 
time later.

Bernoulli’s equation (for ideal fluid flow)

P1 + ρgy1 +
1
2

ρv2
1 = P2 + ρgy2 +

1
2

ρv2
2

 (or P + ρgy +
1
2

 ρv2 = constant) (9-40)

Although we derived Bernoulli’s equation in a relatively simple situation, it applies 
to the flow of any ideal fluid as long as points 1 and 2 are on the same streamline.

Each term in Bernoulli’s equation has units of pressure, which in the SI system 
is Pa or N/m2. Since a joule is a newton-meter, the pascal is also equal to a joule per 
cubic meter (J/m3). Each term represents work or energy per unit volume. The pres-
sure is the work done by the fluid on the fluid ahead of it per unit volume of flow. 
The kinetic energy per unit volume is 1

2ρv2 and the gravitational potential energy per 
unit volume is ρgy.

CHECKPOINT 9.8

Discuss	 Bernoulli’s	 equation	 in	 two	 special	 cases:	 (a)	 horizontal	 flow	 (y1	=	 y2)	
and	 (b)	a	static	 fluid	 (v1	=	v2	=	0).
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Example 9.10

Torricelli’s Theorem

A barrel full of rainwater has a spigot near the bottom, at a 
depth of 0.80 m beneath the water surface. (a) When the spigot 
is directed horizontally (Fig. 9.26a) and is opened, how fast 
does the water come out? (b) If the opening points upward 
(Fig. 9.26b), how high does the resulting “fountain” go?

Strategy The water at the surface is at atmospheric pres-
sure. The water emerging from the spigot is also at atmo-
spheric pressure since it is in contact with the air. (Newton’s 
third law guarantees that the water in the stream can push on 
the air beside it no more or less strongly than the air pushes 
on the water.) We apply Bernoulli’s equation to two points: 
point 1 at the water surface and point 2 in the emerging 
stream of water.

Solution (a) Since P1 = P2, Bernoulli’s equation is

ρgy1 +
1
2

ρv2
1 = ρgy2 +

1
2

ρv2
2

Point 1 is 0.80 m above point 2, so

y1 − y2 = 0.80 m

The speed of the emerging water is v2. What is v1, the speed 
of the water at the surface? The water at the surface is mov-
ing slowly, since the barrel is draining. The continuity equa-
tion requires that

v1A1 = v2A2

Since the cross-sectional area of the spigot A2 is much 
smaller than the area of the top of the barrel A1, the speed of 
the water at the surface v1 is negligibly small compared with 
v2. Setting v1 = 0, Bernoulli’s equation reduces to

ρgy1 = ρgy2 + 1
2ρv2

2

After dividing through by ρ, we solve for v2:

g(y1 − y2) =
1
2

v2
2

v2 = √2g(y1 − y2) = 4.0 m/s

(b) Now take point 2 to be at the top of the fountain. Then  
v2 = 0 and Bernoulli’s equation reduces to

ρgy1 = ρgy2

The “fountain” goes right back up to the top of the water in 
the barrel!

Discussion The result of part (b) is called Torricelli’s 
theorem. In reality, the fountain does not reach as high as the 
original water level; some energy is dissipated due to viscos-
ity and air resistance.

Practice Problem 9.10 Fluid in Free Fall

Verify that the speed found in part (a) is the same as if the 
water just fell 0.80 m straight down. That shouldn’t be too 
surprising since Bernoulli’s equation is an expression of en-
ergy conservation.

1 1

0.80 m d = ?

v v

2

2

(a) (b)

Figure 9.26
Full barrel of rainwater with open spigot (a) horizontal and  
(b) upward.

Example 9.11

The Venturi Meter

A Venturi meter (Fig. 9.27) measures fluid speed in a pipe. 
A constriction (of cross-sectional area A2) is put in a pipe of 
normal cross-sectional area A1. Two vertical tubes, open to 
the atmosphere, rise from two points, one of which is in the 
constriction. The vertical tubes function like manometers, 
enabling the pressure to be determined. From this informa-
tion the flow speed in the pipe can be determined.

Suppose that the pipe in question carries water,  
A1 = 2.0A2, and the fluid heights in the vertical tubes are  

h1 = 1.20 m and h2 = 0.80 m. (a) Find the ratio of the flow 
speeds v2/v1. (b) Find the gauge pressures P1 and P2. (c) Find 
the flow speed v1 in the pipe.

Strategy Neither of the two flow speeds is given. We need 
more than Bernoulli’s equation to solve this problem. Since 
we know the ratio of the areas, the continuity equation gives 
us the ratio of the speeds. The height of the water in the 

continued on next page
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Example 9.11 continued

 vertical tubes enables us to find the pressures at points 1 and 
2. The fluid pressure at the bottom of each vertical tube is 
the same as the pressure of the moving fluid just beneath 
each tube—otherwise, water would flow into or out of the 
vertical tubes until the pressure equalized. The water in the 
vertical tubes is static, so the gauge pressure at the bottom is 
P = ρgd. Once we have the ratio of the speeds and the pres-
sures, we apply Bernoulli’s equation.

Solution (a) From the continuity equation, the product of 
flow speed and area must be the same at points 1 and 2. 
Therefore,

v2

v1
=

A1

A2
= 2.0

The water flows twice as fast in the constriction as in the rest 
of the pipe.

(b) The gauge pressures are:

 P1 = ρgh1 = 1000 kg/m3 × 9.80 N/kg × 1.20 m = 11.8 kPa

 P2 = ρgh2 = 1000 kg/m3 × 9.80 N/kg × 0.80 m = 7.8 kPa

(c) Now we apply Bernoulli’s equation. We can use gauge 
pressures as long as we do so on both sides—in effect we are 

just subtracting atmospheric pressure from both sides of the 
equation:

P1 + ρgy1 + 1
2ρv2

1 = P2 + ρgy2 + 1
2ρv2

2

Since the tube is horizontal, y1 ≈ y2 and we can ignore the small 
change in gravitational potential energy density ρgy. Then

P1 + 1
2ρv2

1 = P2 + 1
2ρv2

2

We are trying to find v1, so we can eliminate v2 by substitut-
ing v2 = 2.0v1:

P1 + 1
2ρv2

1 = P2 + 1
2ρ(2.0v1)2

Now we solve for v1.

P1 − P2 = 1.5ρv2
1

v1 = √
11800 Pa − 7800 Pa

1.5 × 1000 kg/m3 = 1.6 m/s

Discussion The assumption that y1 ≈ y2 is fine as long as 
the pipe radius is small compared with the difference be-
tween the static water heights (40 cm). Otherwise, we would 
have to account for the different y values in Bernoulli’s 
equation.

One subtle point: recall that we assumed that the fluid 
pressure at the bottom of the vertical tubes was the same as 
the pressure of the moving fluid just beneath. Does that con-
tradict Bernoulli’s equation? Since there is an abrupt change 
in fluid speed, shouldn’t there be a significant difference in 
the pressures? No, because these points are not on the same 
streamline.

Practice Problem 9.11 Garden Hose

Water flows horizontally through a garden hose of radius 
1.0 cm at a speed of 1.4 m/s. The water shoots horizontally 
out of a nozzle of radius 0.25 cm. What is the gauge pressure 
of the water inside the hose?

Streamlines

1
2

h1

h2

v2v1

A1
A2

Figure 9.27
Venturi meter.

Application of Bernoulli’s Principle: Arterial Flutter and Aneurisms Suppose 
an artery is narrowed due to buildup of plaque on its inner walls. The flow of blood 
through the constriction is similar to that shown in Fig. 9.24. Bernoulli’s equation 
tells us that the pressure P2 in the constriction is lower than the pressure elsewhere. 
The arterial walls are elastic rather than rigid, so the lower pressure allows the arterial 
walls to contract a bit in the constriction. Now the flow velocity is even higher and 
the pressure even lower. Eventually the artery wall collapses, shutting off the flow of 
blood. Then the pressure builds up, reopens the artery, and allows blood to flow. The 
cycle of arterial flutter then begins again.

The opposite may happen where the arterial wall is weak. Blood pressure pushes 
the artery walls outward, forming a bulge called an aneurism. The lower flow speed in 
the bulge is accompanied by a higher blood pressure, which enlarges the aneurism even 
more (see Problem 98). Ultimately the artery may burst from the increased  pressure.
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Application of Bernoulli’s Principle: Airplane Wings How does an airplane wing 
generate lift? Figure 9.28 is a sketch of some streamlines for air flowing past an air-
plane wing in a wind tunnel. The streamlines bend, showing that the wing deflects air 
downward. By Newton’s third law (or conservation of momentum), if the wing pushes 
downward on the air, the air also pushes upward on the wing. This upward force on 
the wing is lift. However, the situation is not as simple as air “bouncing” off the bot-
tom of the wing—note that air passing above the wing is also deflected downward.

We can use Bernoulli’s equation to get more insight into the generation of lift. 
(Bernoulli’s equation applies in an approximate way to moving air. Even though air 
is not incompressible, for subsonic flight the density changes are small enough to be 
ignored.) If the air exerts a net upward force on the wing, the air pressure must be lower 
above the wing than beneath the wing. In Fig. 9.28, the streamlines above the wing are 
closer together than beneath the wing, showing that the flow speed above the wing 
is faster than it is beneath. This observation confirms that the pressure is lower above 
the wing, because where the pressure is lower, the flow speed is faster.

9.9 VISCOSITY

Bernoulli’s equation ignores viscosity (fluid friction). According to Bernoulli’s equa-
tion, an ideal fluid can continue to flow in a horizontal pipe at constant velocity on 
its own, just as a hockey puck would slide across frictionless ice at constant velocity 
without anything pushing it along. However, all real fluids have some viscosity. To 
keep a viscous fluid flowing, a net force due to fluid pressure must push the fluid 
forward to compensate for the viscous forces that oppose the flow (Fig. 9.29a). A 
pressure difference between the ends of the pipe must be maintained to keep the fluid 
moving. With the x-axis pointing in the direction of flow, the pressure is smaller at 
larger values of x (Fig. 9.29b). The pressure difference is important—in everything 
from blood flowing through arteries to oil pumped through a pipeline.

To visualize viscous flow in a tube of circular cross section, imagine the fluid to 
flow in cylindrical layers, or shells. If there were no viscosity, all the layers would 
move at the same speed (Fig. 9.30a). In viscous flow, the fluid speed depends on the 
distance from the tube walls (Fig. 9.30b). The fastest flow is at the center of the tube. 
Layers closer to the wall of the tube move more slowly. The outermost layer of fluid, 
which is in contact with the tube, does not move. Each layer of fluid exerts viscous 
forces on the neighboring layers; these forces oppose the relative motion of the layers. 
The outermost layer exerts a viscous force on the tube.

A liquid is more viscous if the cohesive forces between molecules are stronger. 
The viscosity of a liquid decreases with increasing temperature because the molecules 
become less tightly bound. A decrease in the temperature of the human body is dan-
gerous because the viscosity of the blood increases and the flow of blood through the 
body is hindered. Gases, on the other hand, have an increase in viscosity for an 
increase in temperature. At higher temperatures the gas molecules move faster and 
collide more often with each other.

Figure 9.28 Streamlines 
showing the airflow past an 
airplane wing in a wind tunnel.

CONNECTION:

Kinetic friction makes a slid-
ing object slow down unless 
an applied force balances the 
force of friction. Similarly, 
viscous forces oppose the 
flow of a fluid. Steady flow 
of a viscous fluid requires an 
applied force to balance the 
viscous forces. The applied 
force is due to the pressure 
difference.

(b)

Direction of flow

Pressure

(a)
P1A –P2A

–Fv

x

x

P1

P2

Figure 9.29 (a) To maintain 
viscous flow, a net force due to 
fluid pressure (P1 − P2)A must 
be applied in the direction of 
flow to balance the viscous 
force Fv due to the pipe, which 
opposes flow. (b) The pressure 
in the fluid decreases from P1 
at the left end to P2 at the 
right end.
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The coefficient of viscosity (or simply the viscosity) of a fluid is written as the Greek 
letter eta (η) and has units of pascal-seconds (Pa⋅s) in SI. Other viscosity units in com-
mon use are the poise (pronounced pwäz, symbol P; 1 P = 0.1 Pa⋅s) and the centipoise 
(1 cP = 0.01 P = 0.001 Pa⋅s). Table 9.2 lists the viscosities of some common fluids.

Poiseuille’s Law

The volume flow rate Q for laminar flow of a viscous fluid through a horizontal, 
cylindrical pipe depends on several factors. First of all, the volume flow rate is pro-
portional to the pressure drop per unit length (ΔP/L)—also called the pressure gradi-
ent. If a pressure drop ΔP maintains a certain flow rate in a pipe of length L, then a 
similar pipe of length 2L needs twice the pressure drop to maintain the same flow 
rate (ΔP across the first half and another ΔP across the second half). Thus, the flow 
rate (ΔV/Δt) must be proportional to the pressure drop per unit length (ΔP/L).

Next, the flow rate is inversely proportional to the viscosity of the fluid. The 
more viscous the fluid, the smaller the flow rate, if all other factors are equal.

The only other consideration is the radius of the pipe. In the nineteenth century, 
during a study of flow in blood vessels, French physician Jean-Léonard Marie 
 Poiseuille (1799–1869) discovered that the flow rate is proportional to the fourth 
power of the pipe radius:

(a)  Fluid flow
       without viscosity

(b)  Viscous flow

Figure 9.30 (a) In nonvis-
cous flow through a tube, the 
flow speed is the same every-
where. (b) In viscous flow, the 
flow speed depends on distance 
from the tube wall. This simpli-
fied sketch shows layers of 
fluid each moving at a different 
speed, but in reality the flow 
speed increases continuously 
from zero for the outermost 
“layer” to a maximum speed at 
the center.

Poiseuille’s law (for viscous flow)

 Q =
π

8
 
ΔP/L

η
 r4 (9-41)

In Eq. (9-41), Q is the volume flow rate, ΔP is the pressure difference between the 
ends of the pipe, r and L are the inner radius and length of the pipe, respectively, and 
η is the viscosity of the fluid. Poiseuille’s name is pronounced pwahzoy, in a rough 
English approximation.
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The relationship between volume flow rate and flow speed is more complicated for 
viscous flow than for ideal flow [Eq. (9-34)] because the flow speed is not uniform; it 
is faster near the middle and slower near the walls. However, we can use Eq. (9-34) to 
define an average flow speed:

 vav =
Q

A
 (9-42)

It isn’t often that we encounter a fourth-power dependence. Why such a strong depen-
dence on radius? First of all, if fluids are flowing through two different pipes at the same 
average speed, the volume flow rates are proportional to radius squared (flow rate = 
average speed multiplied by cross-sectional area). But, in viscous flow, the average flow 
speed is larger for wider pipes; fluid farther away from the walls can flow faster. It turns 
out that the average flow speed for a given pressure gradient is also proportional to radius 
squared, giving the overall fourth power dependence on the pipe radius of Poiseuille’s law.

Application of Viscous Flow: High Blood Pressure The strong dependence of 
flow rate on radius is important in blood flow. A person with cardiovascular disease 
has arteries narrowed by plaque deposits. To maintain the necessary blood flow to 
keep the body functioning, the blood pressure increases. If the diameter of an artery 
narrows to 1

2 of its original value due to plaque deposits, the blood flow rate would 
decrease to 1

16 of its original value if the pressure drop across it were to stay the 
same. To compensate for some of this decrease in blood flow, the heart pumps harder, 
increasing the blood pressure. (See Problem 85.) High blood pressure is not good 
either; it introduces its own set of health problems, not least of which is the increased 
demands placed on the heart muscle.

Table 9.2 Viscosities of Some Fluids

Substance Temperature (°C) Viscosity (Pa · s)

Gases
 Water vapor 100 1.3 × 10−5

 Air 0 1.7 × 10−5

20 1.8 × 10−5

30 1.9 × 10−5

100 2.2 × 10−5

Liquids
 Acetone 30 0.30 × 10−3

 Methanol 30 0.51 × 10−3

 Ethanol 30 1.0 × 10−3

 Water 0 1.8 × 10−3

20 1.0 × 10−3

30 0.80 × 10−3

40 0.66 × 10−3

60 0.47 × 10−3

80 0.36 × 10−3

100 0.28 × 10−3

 Blood plasma 37 1.3 × 10−3

 Blood, whole 20 3.0 × 10−3

37 2.1 × 10−3

 Glycerin 20 0.83
30 0.63

  SAE 5W-30 motor oil −30 ≤ 6.6
150 ≥ 2.9 × 10−3
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Example 9.12

 Arterial Blockage

A cardiologist reports to her patient that the radius of the left 
anterior descending artery of the heart has narrowed by 
10.0%. What percent increase in the blood pressure drop 
across the artery is required to maintain the normal blood 
flow through this artery?

Strategy We assume that the viscosity of the blood has 
not changed, nor has the length of the artery. To maintain 
normal blood flow, the volume flow rate must stay the 
same:

Q1 = Q2

Solution If r1 is the normal radius and r2 is the actual ra-
dius, a 10.0% reduction in radius means r2 = 0.900r1. Then, 
from Poiseuille’s law,

Q =
π(ΔP1/L)r4

1

8η
=

π(ΔP2/L)r4
2

8η

r4
1 
ΔP1 = r4

2 
ΔP2

We solve for the ratio of the pressure drops:

ΔP2

ΔP1
=

r4
1

r4
2

=
1

(0.900)4 = 1.52

Discussion A factor of 1.52 means there is a 52% increase 
in the blood pressure difference across that artery. The in-
creased pressure must be provided by the heart. If the normal 
pressure drop across the artery is 10 mmHg, then it is now 
15.2 mmHg. The person’s blood pressure either must increase 
by 5.2 mmHg, or blood flow will be reduced through this artery. 
The heart is under greater strain as it works harder, attempting 
to maintain an adequate flow of blood. (See Problem 85.)

Practice Problem 9.12 New Water Pipe

The town water supply is operating at nearly full capacity. 
The town board decides to replace the water main with a big-
ger one to increase capacity. If the maximum flow rate is to 
increase by a factor of 4.0, by what factor should they in-
crease the radius of the water main?

9.10 VISCOUS DRAG

When an object moves through a fluid, the fluid exerts a drag force on it. When the 
relative velocity between the object and the fluid is low enough for the flow around 
the object to be laminar, the drag force derives from viscosity and is called viscous 
drag. The viscous drag force is proportional to the speed of the object (FD ∝ v). For 
larger relative speeds, the flow becomes turbulent and the drag force is proportional 
to the square of the object’s speed (FD ∝ v2).

The viscous drag force depends also on the shape and size of the object. For a 
spherical object, the viscous drag force is given by Stokes’s law:

Stokes’s law (viscous drag on a sphere)

 FD = 6πηrv (9-43)

where r is the radius of the sphere, η is the viscosity of the fluid, and v is the speed 
of the object with respect to the fluid.

CHECKPOINT 9.10

Compare	and	contrast	 the	viscous	drag	 force	with	 the	kinetic	 frictional	 force.

An object’s terminal velocity is the velocity that produces just the right drag 
force so that the net force is zero. An object falling at its terminal velocity has zero 
acceleration, so it continues moving at that constant velocity. Using Stokes’s law, we 
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can find the terminal velocity of a spherical object falling through a viscous fluid. 
When the object moves at terminal velocity, the net force acting on it is zero. If  
ρo > ρf, the object sinks; the terminal velocity is downward, and the viscous drag 
force acts upward to oppose the motion. For an object, such as an air bubble in oil, 
that rises rather than sinks (ρo < ρf), the terminal velocity is upward and the drag 
force is downward. Example 9.13 shows how to calculate the terminal velocity by 
setting the net force on the falling object equal to zero.

Example 9.13

Falling Droplet

In an experiment to measure the electric charge of the electron, 
a fine mist of oil droplets is sprayed into the air and observed 
through a telescope as they fall. These droplets are so tiny that 
they soon reach their terminal velocity. If the radius of the drop-
lets is 2.40 μm and the average density of the oil is 862 kg/m3, 
find the terminal speed of the droplets. The density of air is 
1.20 kg/m3 and the viscosity of air is 1.8 × 10−5 Pa⋅s.

Strategy When the droplets fall at their terminal velocity, 
the net force on them is zero. We set the net force equal to 
zero and use Stokes’s law for the drag force.

Solution We set the sum of the forces equal to zero when 
v = vt.

∑Fy = +FD + FB − W = 0

If mair is the mass of displaced air, then

6πηrvt + mairg − moilg = 0

Now we solve for vt algebraically and then substitute 
 numerical values.

 vt =
g(moil − mair)

6πηr
=

g(ρoil 
4
3πr3 − ρair 

4
3πr3)

6πηr

 =
2(ρoil − ρair)gr2

9η

 =
2(862 kg/m3 − 1.20 kg/m3)(9.80 N/kg)(2.40 × 10−6 m)2

9(1.8 × 10−5 Pa·s)
 = 6.0 × 10−4 m/s = 0.60 mm/s

Discussion We should check the units in the final 
 expression:

(kg/m3)·(N/kg)·m2

Pa·s
=

N/m
(N/m2)·s

=
m
s

Stokes’s law was applied in this way by Robert 
 Millikan (1868–1953) in his experiments in 1909–1913 to 
measure the charge of the electron. Using an atomizer, 
Millikan produced a fine spray of oil droplets. The drop-
lets picked up electric charge as they were sprayed through 
the atomizer. Millikan kept a droplet suspended without 
falling by applying an upward electric force. After remov-
ing the electric force, he measured the terminal speed of 
the droplet as it fell through the air. He calculated the mass 
of the droplet from the terminal speed and the density of 
the oil using Stokes’s law. By setting the magnitude of the 
electric force equal to the weight of a suspended droplet, 
Millikan calculated the electric charge of the droplet. He 
measured the charges of hundreds of different droplets and 
found that they were all multiples of the same quantity—
the charge of an electron.

Practice Problem 9.13 Rising Bubble

Find the terminal velocity of an air bubble of 0.500 mm ra-
dius in a cup of vegetable oil. The specific gravity of the oil 
is 0.840, and the viscosity is 0.160 Pa⋅s. Assume the diame-
ter of the bubble does not change as it rises.

EVERYDAY PHYSICS DEMO

A	demonstration	of	 terminal	 velocity	can	be	done	at	home.	Drop	 two	objects	
at	 the	same	time:	a	coin	and	 two	or	 three	nested	cone-shaped	paper	coffee	
filters	 (or	 cupcake	 papers).	 You	 will	 see	 the	 effects	 of	 viscous	 drag	 on	 the	
coffee	 filters	 as	 they	 fall	 with	 a	 constant	 terminal	 velocity.	 Enlist	 the	 help	 of	
a	 friend	 so	 you	 can	 get	 a	 side	 view	 of	 the	 two	 objects	 falling.	 Why	 do	 the	
coffee	 filters	work	so	well?

Application of Viscous Drag: Sedimentation Velocity and the Centrifuge For 
small particles falling in a liquid, the terminal velocity is also called the sedimentation 
velocity. The sedimentation velocity is often small for two reasons. First, if the  particle 
isn’t much more dense than the fluid, then the vector sum of the gravitational and 
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Blood flow
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network
on surface
of alveolus

buoyant forces is small. Second, the terminal velocity is proportional to r2 (see Exam-
ple 9.13); viscous drag is most important for small particles. Thus, it can take a long 
time for the particles to sediment out of solution. Because the sedimentation velocity 
is proportional to g, it can be increased by the use of a centrifuge, a rotating container 
that creates artificial gravity of magnitude geff = ω2r [see Eq. (5-17) and Section 5.7]. 
Ultracentrifuges are capable of rotating at 105 rev/min and produce artificial gravity 
approaching a million times g.

9.11 SURFACE TENSION

The surface of a liquid has special properties not associated with the interior of the 
liquid. The surface acts like a stretched membrane under tension. The surface tension 
(symbol γ, the Greek letter gamma) of a liquid is the force per unit length with which 
the surface pulls on its edge. The direction of the force is tangent to the surface at its 
edge. Surface tension is caused by the cohesive forces that pull the molecules toward 
each other.

Application: How Insects Can Walk on the Surface of a Pond The high surface 
tension of water enables water striders and other small insects to walk on the surface of 
a pond. The foot of the insect makes a small indentation in the water surface (Fig. 9.31); 
the deformation of the surface enables the water to push upward on the foot as if the 
water surface were a thin sheet of rubber. Visually it looks similar to a person walking 
across the mat of a trampoline. Other small water creatures, such as mosquito larvae and 
planaria, hang from the surface of water, using surface tension to hold themselves up. In 
plants, surface tension aids in the transport of water from the roots to the leaves.

EVERYDAY PHYSICS DEMO

Place	a	needle	 (or	a	 flat	plastic-coated	paper	clip)	gently	on	 the	surface	of	a	
glass	of	water.	 It	may	take	some	practice,	but	you	should	be	able	to	get	it	to	
“float”	 on	 top	 of	 the	 water.	 Now	 add	 some	 detergent	 to	 the	 water	 and	 try	
again.	The	detergent	reduces	the	surface	tension	of	the	water	so	 it	 is	unable	
to	support	the	needle.	Soaps	and	detergents	are	surfactants—substances	that	
reduce	the	surface	tension	of	a	 fluid.	The	reduced	surface	tension	allows	the	
water	 to	spread	out	more,	wetting	more	of	a	surface	 to	be	cleaned.

Application: Surfactant in the Lungs The high surface tension of water is a 
hindrance in the lungs. The exchange of oxygen and carbon dioxide between inspired 
air and the blood takes place in tiny sacs called alveoli, 0.05 to 0.15 mm in radius, 
at the end of the bronchial tubes (Fig. 9.32). If the mucus coating the alveoli had the 
same surface tension as other body fluids, the pressure difference between the inside 
and outside of the alveoli would not be great enough for them to expand and fill with 
air. The alveoli secrete a surfactant that decreases the surface tension in their mucous 
coating so they can inflate during inhalation.

Bubbles

In an underwater air bubble, the surface tension of the water surface tries to contract the 
bubble while the pressure of the enclosed air pushes outward on the surface. In equilib-
rium, the air pressure inside the bubble must be larger than the water pressure outside 
so that the net outward force due to pressure balances the inward force due to surface 
tension. The excess pressure ΔP = Pin − Pout depends both on the surface tension and 
the size of the bubble. In Problem 79, you can show that the excess pressure is

 ΔP =
2γ

r
 (9-44)

Figure 9.31 Gerris lacustris, 
commonly known as a water 
strider. Notice the indentations 
in the water surface. The water 
surface is stretched at these 
indentations and, as a result, 
exerts an upward force on the 
strider’s legs. 
©Jan Miko/Shutterstock

Figure 9.32 In the human 
lung, millions of tiny sacs 
called alveoli are inflated with 
each breath. Gas is exchanged 
between the air and the blood 
through the walls of the alveoli. 
The total surface area through 
which gas exchange takes place 
is about 80 m2—about 40 times 
the surface area of the body.
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Look closely at a glass of champagne and you can see strings of bubbles rising, 
originating from the same points in the liquid. Why don’t bubbles spring up from random 
locations? A very small bubble would require an insupportably large excess pressure. The 
bubbles need some sort of nucleus—a small dust particle, for instance—on which to form 
so they can start out larger, with excess pressures that aren’t so large. The strings of 
bubbles in the glass of champagne are showing where suitable nuclei have been “found.”

EVERYDAY PHYSICS DEMO

Blow	 up	 a	 balloon	 and	 notice	 that	 it’s	 hard	 to	 get	 started	 and	 then	 gets	
easier	as	the	balloon	starts	to	inflate.	As	with	bubbles	[Eq.	(9-44)],	the	excess	
pressure	your	lungs	must	supply	is	larger	when	the	radius	is	smaller.	Here	the	
elastic	 forces	 of	 the	 balloon	 take	 the	 place	 of	 surface	 tension	 for	 a	 bubble.	
Eventually	 it	gets	harder	again	as	 these	elastic	 forces	 increase	 (as	 if	 the	sur-
face	 tension	were	 to	 increase).

Example 9.14

 Lung Pressure

During inhalation the gauge pressure in the alveoli is about 
−400 Pa to allow air to flow in through the bronchial tubes. 
Suppose the mucous coating on an alveolus of initial radius 
0.050 mm had the same surface tension as water (0.070 N/m). 
What lung pressure outside the alveoli would be required to 
begin to inflate the alveolus?

Strategy We model an alveolus as a sphere coated with 
mucus. Due to the surface tension of the mucus, the alveolus 
must have a lower pressure outside than inside, as for a bubble.

Solution The excess pressure is

ΔP =
2γ

r
=

2 × 0.070 N/m
0.050 × 10−3 m

= 2.8 kPa

Thus, the pressure inside the alveolus would be 2.8 kPa 
higher than the pressure outside. The gauge pressure inside 
is −400 Pa, so the gauge pressure outside would be

Pout = −0.4 kPa − 2.8 kPa = −3.2 kPa

Discussion The actual gauge pressure outside the alveoli 
is about −0.5 kPa rather than −3.2 kPa; then ΔP = Pin − Pout = 
−0.4 kPa − (−0.5 kPa) = 0.1 kPa rather than 2.8 kPa. Here 
the surfactant comes to the rescue; by decreasing the surface 
tension in the mucus, it decreases ΔP to about 0.1 kPa and 
allows the expansion of the alveoli to take place. For a new-
born baby, the alveoli are initially collapsed, making the re-
quired pressure difference about 4 kPa. That first breath is as 
difficult an event as it is significant.

Practice Problem 9.14 Champagne Bubbles

A bubble in a glass of champagne is filled with CO2. When 
it is 2.0 cm below the surface of the champagne, its radius is 
0.50 mm. What is the gauge pressure inside the bubble? As-
sume that champagne has the same average density as water 
and a surface tension of 0.070 N/m.

Master the Concepts

 ∙ Fluids are materials that flow and include both liquids 
and gases. A liquid is nearly incompressible, whereas a 
gas expands to fill its container.

 ∙ Pressure is the magnitude of the perpendicular force per 
unit area that a fluid exerts on any surface with which it 
comes in contact (P = F/A). Pressure is a scalar, not a vec-
tor. The SI unit of pressure is the pascal (1 Pa = 1 N/m2).

 ∙ The average air pressure at sea level is 1 atm = 101.3 kPa.

 ∙ Pascal’s principle: A change in pressure at any point in 
a confined fluid is transmitted everywhere throughout 
the fluid.

 ∙ The average density of a substance is the ratio of its mass 
to its volume

 ρ =
m

V
 (9-7)

continued on next page
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Master the Concepts continued

 ∙ The specific gravity of a material is the ratio of its den-
sity to that of water at 3.98°C.

 ∙ Pressure variation with depth in a static fluid: if the 
density is uniform, then

 P2 = P1 + ρgd (9-12)

  where point 2 is a depth d below point 1.
 ∙ Instruments to measure pressure include the manometer 

and the barometer. The barometer measures the pressure 
of the atmosphere. The manometer measures a pressure 
difference.

 ∙ Gauge pressure is the amount by which the absolute 
pressure exceeds atmospheric pressure:

 Pgauge = Pabs − Patm (9-16)

 ∙ Archimedes’ principle: a fluid exerts an 
 upward buoyant force on a completely or 
partially submerged object equal in magni-
tude to the weight of the volume of fluid 
displaced by the object:

 FB = ρgV  (9-19)

  where V is the volume of the part of the object that is 
submerged and ρ is the density of the fluid.

 ∙ In steady flow, the velocity of the fluid at any point is 
constant in time. In laminar flow, the fluid flows in neat 
layers so that each small portion of fluid that passes a 
particular point follows the same path as every other por-
tion of fluid that passes the same point. The path that the 
fluid follows, starting from any point, is called a stream-
line. Laminar flow is steady. Turbulent flow is chaotic 
and unsteady. The viscous force opposes the flow of the 
fluid; it is the counterpart to the frictional force for solids.

 ∙ An ideal fluid exhibits laminar flow, has no viscosity, 
and is incompressible. The flow of an ideal fluid is gov-
erned by two principles: the continuity equation and 
Bernoulli’s equation.

 ∙ The continuity equation states that the volume flow rate 
for an ideal fluid is constant:

 Q =
ΔV

Δt
= A1v1 = A2v2 (9-34, 9-35)

 ∙ Bernoulli’s equation relates pressure changes to changes 
in flow speed and height:

 P1 + ρgy1 +
1
2

ρv2
1 = P2 + ρgy2 +

1
2

ρv2
2 (9-40)

1
A1

A2
x1

x2

Δm1

Δm2

2

v2v1

 ∙ Poiseuille’s law gives the volume flow rate ΔV/Δt for 
viscous flow in a horizontal pipe:

 Q =
π

8
 
ΔP/L

η
 r4 (9-41)

(b) Pressure
P1

–Fv

P2

Direction of flow

(a)
P1A –P2A

x

x

  In this equation, ΔP is the pressure difference between 
the ends of the pipe, r and L are the inner radius and 
length of the pipe, respectively, and η is the viscosity of 
the fluid.

 ∙ Stokes’s law gives the viscous drag force on a spherical 
object moving in a fluid:

 FD = 6πηrv (9-43)

 ∙ The surface tension γ (the Greek letter gamma) of a liq-
uid is the force per unit length with which the surface 
pulls on its edge.

FB

mg

Conceptual Questions

 1. Does a manometer (with one side open) measure abso-
lute pressure or gauge pressure? How about a barome-
ter? A tire pressure gauge? A sphygmomanometer?

 2. A volunteer firefighter holds the end of a firehose as a 
strong jet of water emerges. (a) The hose exerts a large 
backward force on the firefighter. Explain the origin of 
this force. (b) If another firefighter steps on the hose, 
forming a constriction (a place where the area of the 
hose is smaller), the hose begins to pulsate wildly. 
 Explain.

 3. The weight of a boat is listed on specification sheets as 
its “displacement.” Explain.

 4. In tall buildings, the water supply system uses multiple 
pumping stations on different floors. At each station, 
water pumped up from below collects in a storage tank 
held at atmospheric pressure before it enters the pump. 
The storage tank supplies water to the floors below it. 
What are some of the reasons why these multiple pump-
ing stations are used?

 5. Can an astronaut on the Moon use a straw to drink from 
a normal drinking glass? How about if he pokes a straw 
through an otherwise sealed juice box? Explain.
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 6. It is commonly said that wood floats because it is 
“lighter than water” or that a stone sinks because it is 
“heavier than water.” Are these accurate statements? If 
not, correct them.

 7.  Why must a blood pressure cuff be wrapped around 
the arm at the same vertical level as the heart?

 8. A hot air balloon is floating in equilibrium with the sur-
rounding air. (a) How does the pressure inside the balloon 
compare with the pressure outside? (b) How does the 
density of the air inside compare to the density outside?

 9. When helium weather balloons are released, they are 
purposely underinflated. Why? [Hint: The balloons go 
to very high altitudes.]

 10. Bernoulli’s equation applies only to steady flow. Yet 
Bernoulli’s equation allows the fluid velocity at one 
point to be different than the velocity at another point. 
For the fluid velocity to change, the fluid must be ac-
celerated as it moves from one point to another. In what 
way is the flow steady, then?

 11. Before getting an oil change, it is a good idea to drive a 
few miles to warm up the engine. Why?

 12.  Your ears “pop” when you change altitude quickly—
such as during takeoff or landing in an airplane, or 
during a drive in the mountains. Curiously, if you 
are a passenger in a high-speed train, your ears some-
times pop as the speed of the train increases rapidly—
even though there is little or no change in altitude. 
Explain.

 13. It is easier to get a good draft in a chimney on a windy 
day than when the outside air is still, all other things be-
ing equal. Why?

 14.  Two soap bubbles of different radii are formed at 
the ends of a tube with a closed valve in the middle. 
What happens to the bubbles when the valve is 
opened? (If the alveoli in the lung did not have a sur-
factant that reduces surface tension in the smaller 
 alveoli, the same thing would happen in the lung, with 
disastrous results!)

 15. Pascal’s principle: proof by contradiction. Points A and 
B are near each other at the same height in a fluid. Sup-
pose PA > PB. (a) Can both vA and vB be zero? Explain. 
(b) Point C is just above point D in a static fluid. Sup-
pose the pressure at C increases by an amount ΔP. What 
would happen if the pressure at D did not increase by 
the same amount?

 16. What are the advantages of using hydraulic systems 
rather than mechanical systems to operate automobile 
brakes or the control surfaces of an airplane?

 17. In any hydraulic system, it is important to “bleed” air 
out of the line. Why?

 18. Is it possible for a skin diver to dive to any depth as long 
as his snorkel tube is sufficiently long? (A snorkel is a 
face mask with a breathing tube that sticks above the 
surface of the water.)

 19. Is the buoyant force on a soap bubble greater than the 
weight of the bubble? If not, why do soap bubbles some-
times appear to float in air?

 20. A plastic water bottle open at the top is three-fourths full 
of water and is placed on a scale. The bottle has an in-
dentation for a label midway up the side, and a strap has 
been placed around this indentation. If the strap is tight-
ened, so the bottle is squeezed in at the middle and the 
water level is forced to rise, what happens to the reading 
on the scale? Is the water pressure at the bottom of the 
bottle the same?

Multiple-Choice Questions

 1. Bernoulli’s equation applies to
 (a) any fluid.
 (b) an incompressible fluid, whether viscous or not.
 (c)  an incompressible, nonviscous fluid, whether the 

flow is turbulent or not.
 (d) an incompressible, nonviscous, nonturbulent fluid.
 (e) a static fluid only.
 2. A dam holding back the water in a reservoir exerts a 

horizontal force on the water. The magnitude of this 
force depends on

 (a) the maximum depth of the reservoir.
 (b) the depth of the water at the location of the dam.
 (c) the surface area of the reservoir.
 (d) both (a) and (b).
 (e) all three—(a), (b), and (c).
 3. Bernoulli’s equation is an expression of
 (a) conservation of mass.
 (b) conservation of energy.
 (c) conservation of momentum.
 (d) conservation of angular momentum.

Questions 4–5. Two spheres, A and B, fall through the same 
viscous fluid.

Answer choices for Questions 4 and 5:
 (a) A has the larger terminal velocity.
 (b) B has the larger terminal velocity.
 (c) A and B have the same terminal velocity.
 (d) Insufficient information is given to reach a conclusion.
 4. A and B have the same radius; A has the larger mass. 

Which has the larger terminal velocity?
 5. A and B have the same density; A has the larger radius. 

Which has the larger terminal velocity?
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 6. A glass of ice water is filled to the brim with water; the 
ice cubes stick up above the water surface. After the ice 
melts, which is true?

 (a) The water level is below the top of the glass.
 (b)  The water level is at the top of the glass but no water 

has spilled.
 (c) Some water has spilled over the sides of the glass.
 (d)  Impossible to say without knowing the initial  

densities of the water and the ice.
 7. The continuity equation is an expression of
 (a) conservation of mass.
 (b) conservation of energy.
 (c) conservation of momentum.
 (d) conservation of angular momentum.
 8. What is the gauge pressure of the gas in the closed tube 

in the figure? (Take the atmospheric pressure to be 
760 mmHg.)

 (a) 200 mmHg (b) −200 mmHg (c) 960 mmHg
 (d) 560 mmHg (e) −960 mmHg (f) −560 mmHg

20 cm

Open to the
atmosphere

Gas Hg

 9. A manometer contains two different fluids of different 
densities. Both sides are open to the atmosphere. Which 
pair(s) of points in the figure have equal pressure?

 (a) P1 = P5    (b) P2 = P5 (c) P3 = P4
 (d) Both (a) and (c) (e) Both (b) and (c)

 

5

4

1

2

3

 10. A Venturi meter is used to measure the flow speed of a 
viscous fluid. With reference to the figure, which is true?

 (a) h3 = h1 (b) h3 > h1
 (c) h3 < h1 (d) Insufficient information to determine

Direction of flow

h1

h2

A1 A1
A2

h3

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

9.2 Pressure
 1. Someone steps on your toe, exerting a force of 500 N on 

an area of 1.0 cm2. What is the average pressure on that 
area in atm?

 2. What is the average pressure on the soles of the feet of a 
standing 90.0 kg person due to the contact force with the 
floor? Each foot has a surface area of 0.020 m2.

 3.  Atmospheric pressure is about 1.0 × 105 Pa on aver-
age. (a) What is the downward force of the air on a desk-
top with surface area 1.0 m2? (b) Convert this force to 
pounds to help others understand how large it is. (c) Why 
does this huge force not cause the desk to collapse?

 4. A 10 kg baby sits on a three-legged stool. The diameter 
of each of the stool’s round feet is 2.0 cm. A 60 kg adult 
sits on a four-legged chair that has four circular feet, 
each with a diameter of 6.0 cm. Who applies the greater 
pressure to the floor and by how much?

 5. A lid is put on a box that is 15 cm long, 13 cm wide, and 
8.0 cm tall, and the box is then evacuated until its inner 
pressure is 0.80 × 105 Pa. How much force is required to 
lift the lid (a) at sea level; (b) in Denver, on a day when the 
atmospheric pressure is 67.5 kPa (2

3 the value at sea level)?
 6. A container is filled with gas at a pressure of 4.0 × 105 Pa. 

The container is a cube, 0.10 m on a side, with one side 
facing south. What is the magnitude and direction of the 
force on the south side of the container due to the gas 
inside?

9.3 Pascal’s Principle
 7.  A nurse applies a force of 4.40 N to the piston of a 

syringe. The piston has an area of 5.00 × 10−5 m2. What 
is the pressure increase in the fluid within the syringe?

 8. In a hydraulic lift, the radii of the pistons are 2.50 cm and 
10.0 cm. A car weighing W = 10.0 kN is to be lifted by the 
force of the large piston. (a) What force Fa must be applied 
to the small piston? (b) When the small piston is pushed in 
by 10.0 cm, how far is the car lifted? (c) Find the me-
chanical advantage of the lift, which is the ratio W/Fa.

9.4 The Effect of Gravity on Fluid Pressure
 9. At the surface of a freshwater lake the air pressure is 

1.0 atm. At what depth under water in the lake is the 
water pressure 4.0 atm?

 10.  What is the pressure on a fish 10 m under the ocean 
surface?
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 11. The density of platinum is 21 500 kg/m3. Find the ratio 
of the volume of 1.00 kg of platinum to the volume of 
1.00 kg of aluminum.

 12. In the Netherlands, a dike holds back the sea from a 
town below sea level. The dike springs a leak 3.0 m be-
low the water surface. If the area of the hole in the dike 
is 1.0 cm2, what force must the Dutch boy exert to save 
the town?

 13. Each of five cylindrical drums with radius R is filled to 
a height h above the bottom with a liquid of density ρ. 
Rank the drums in order of the pressure at the bottom of 
the drum, largest to smallest.

 (a) R = 40 cm, h = 80 cm, ρ = 1000 kg/m3

 (b) R = 40 cm, h = 100 cm, ρ = 1000 kg/m3

 (c) R = 50 cm, h = 100 cm, ρ = 800 kg/m3

 (d) R = 50 cm, h = 80 cm, ρ = 800 kg/m3

 (e) R = 50 cm, h = 125 cm, ρ = 800 kg/m3

 14. Each of six barrels is filled to a height h above the bot-
tom with a liquid of density ρ. Each barrel has a hole of 
radius r in its side. The center of each hole is 20 cm 
above the barrel bottom. A plug in the hole keeps the 
liquid from escaping. Rank the barrels in order of the 
force on the plug due to the liquid in the barrel, from 
largest to smallest.

 (a) r = 1 cm, h = 100 cm, ρ = 1000 kg/m3

 (b) r = 1 cm, h = 120 cm, ρ = 1000 kg/m3

 (c) r = 1.25 cm, h = 120 cm, ρ = 800 kg/m3

 (d) r = 1.25 cm, h = 100 cm, ρ = 800 kg/m3

 (e) r = 1 cm, h = 145 cm, ρ = 1000 kg/m3

 15.  A giraffe’s brain is approximately 3.4 m above its 
heart. Estimate the minimum gauge pressure that its 
heart must produce to move the blood to his brain. Ig-
nore any effects from the blood flow through arteries of 
different area, and assume that giraffe blood is identical 
to human blood.

 16.  How high can you suck water up a straw? The pres-
sure in the lungs can be reduced to about 10 kPa below 
atmospheric pressure.

 17.  A sperm whale can reach depths of 2500 m below 
the surface of the ocean. What is the pressure on the 
whale’s skin at that depth, assuming that the density of 
seawater is constant from the surface to that depth?

 18.  A container has a large cy-
lindrical lower part with a long 
thin cylindrical neck open at 
the top. The lower part of the 
container holds 12.5 m3 of water 
and the surface area of the bot-
tom of the container is 5.00 m2. 
The height of the lower part of 
the container is 2.50 m, and the neck contains a column 
of water 8.50 m high. The total volume of the column of 
water in the neck is 0.200 m3. (a) What is the magnitude 
of the force exerted by the water on the bottom of the 

container? (b) Explain why it is not equal to the weight 
of the water.

 19.  The maximum pressure most organisms can survive 
is about 1000 times atmospheric pressure. Only small, 
simple organisms such as tadpoles and bacteria can sur-
vive such high pressures. What then is the maximum 
depth at which these organisms can live under the sea 
(assuming that the density of seawater is 1025 kg/m3)?

 20. At the surface of a freshwater lake the pressure is 105 kPa. 
(a) What is the pressure increase in going 35.0 m below 
the surface? (b) What is the approximate pressure de-
crease in going 35 m above the surface? Air at 20°C has 
density of 1.20 kg/m3.

9.5 Measuring Pressure
 21. When a mercury manometer is connected to a gas main, 

the mercury stands 40.0 cm higher in the tube that is open 
to the air than in the tube connected to the gas main. A 
barometer at the same location reads 740 mmHg. Deter-
mine the absolute pressure of the gas in mmHg.

 22. An experiment to deter-
mine the specific heat of a 
gas (Chapter 14) makes 
use of a water manometer 
attached to a flask. Initially 
the two columns of water 
are even. Atmospheric 
pressure is 1.0 × 105 Pa. 
After heating the gas, the 
water levels change to 
those shown. Find the 
change in pressure of the 
gas in pascals.

 23. A manometer using oil (density 0.90 g/cm3) as a fluid is 
connected to an air tank. Suddenly the pressure in the 
tank increases by 7.4 mmHg. (a) By how much does the 
fluid level rise in the side of the manometer that is open 
to the atmosphere? (b) What would your answer be if 
the manometer used mercury instead?

 24.  An IV is connected to a patient’s vein. The blood in 
the vein has a gauge pressure of 12 mmHg. At least how 
far above the vein must the IV bag be hung in order for 
fluid to flow into the vein? Assume the fluid in the IV 
has the same density as blood.

 25.  Estimate the average blood pressure in a person’s 
foot if the foot is 1.37 m below the aorta, where the aver-
age blood pressure is 104 mmHg. For the purposes of 
this estimate, assume the blood isn’t flowing.

 26.  A woman’s systolic blood pressure when resting is 
160 mmHg. What is this pressure in (a) Pa, (b) lb/in2, 
and (c) atm?

 27. The gauge pressure of the air in an automobile tire is 
32 lb/in2. Convert this to (a) Pa, (b) mmHg, (c) atm.

Gas

Initial levels

1.0 cm

Water

8.50 m 11.0 m

2.50 m
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9.6 The Buoyant Force
 28.  (a) Which has the larger buoyant force acting on it 

when immersed in water, 1.0 kg of lead or 1.0 kg of 
aluminum? Explain. (b) Which has the larger buoyant 
force acting on it, 1.0 kg of steel that is sinking to the 
bottom of a lake or 1.0 kg of wood with a density of 
500 kg/m3 that is floating on the lake? Explain. (c) Once 
you have answered the qualitative questions, find the 
quantitative answers to parts (a) and (b).

 29. Six wooden blocks (mass m) float in a barrel of water. 
The blocks are not all made from the same type of wood. 
The bottom of each block is submerged to a depth d 
below the water surface. Rank the blocks in order of the 
buoyant force on them, largest to smallest.

 (a) m = 20 g, d = 2.5 cm (b) m = 20 g, d = 2 cm
 (c) m = 25 g, d = 2 cm (d) m = 25 g, d = 2.5 cm
 (e) m = 10 g, d = 2 cm (f) m = 10 g, d = 1 cm
 30.  A Canada goose floats with 25% of its volume 

 below water. What is the average density of the goose?
 31. A flat-bottomed barge, loaded with coal, has a mass of 

3.0 × 105 kg. The barge is 20.0 m long and 10.0 m wide. 
It floats in freshwater. What is the depth of the barge 
below the waterline?

 32. (a) When ice floats in water at 0°C, what percent of its 
volume is submerged? (b) What is the specific gravity 
of ice?

 33. (a) What is the density of an object that is 14% sub-
merged when floating in water at 0°C? (b) What per-
centage of the object will be submerged if it is placed in 
ethanol at 0°C?

 34. (a) What is the buoyant force on 0.90 kg of ice float-
ing freely in liquid water? (b) What is the buoyant 
force on 0.90 kg of ice held completely submerged 
under water?

 35. A block of birch wood floats in oil with 90.0% of its 
volume submerged. What is the density of the oil? The 
density of the birch is 0.67 g/cm3.

 36. When a block of ebony is placed in ethanol, what per-
centage of its volume is submerged?

 37. A cylindrical disk has volume 8.97 × 10−3 m3 and mass 
8.16 kg. The disk is floating on the surface of some 
water with its flat surfaces horizontal. The area of each 
flat surface is 0.640 m2. (a) What is the specific gravity 
of the disk? (b) How far below the water level is its bot-
tom surface? (c) How far above the water level is its top 
surface?

 38. An aluminum cylinder weighs 1.03 N. When this same 
cylinder is completely submerged in alcohol, the vol-
ume of the displaced alcohol is 3.90 × 10−5 m3. If the 
cylinder is suspended from a scale while submerged in 
the alcohol, the scale reading is 0.730 N. What is the 
specific gravity of the alcohol?

 39.  A fish uses a swim bladder to change its density so 
it is equal to that of water, enabling it to remain sus-
pended under water. If a fish has an average density of 
1080 kg/m3 and mass 10.0 g with the bladder completely 
deflated, to what volume must the fish inflate the swim 
bladder in order to remain suspended in seawater of 
density 1060 kg/m3?

 40.  A solid piece of plastic, with a density of 890 kg/m3, 
is placed in oil with a density of 830 kg/m3 and the plas-
tic sinks (1). Then the plastic is placed in water and it 
floats (2). (a) What percentage of the plastic is sub-
merged in the water? (b) Finally, the same oil in which 
the plastic sinks is poured over the plastic and the water. 
Will less (3) or more (4) of the plastic be submerged in 
the water compared to 2? Explain. (c) Calculate the per-
centage of the plastic submerged in the water.

1 2 3 4

 41.  Nine-banded armadillos (Dasypus novemcinctus) 
have a typical mass density of 1200 kg/m3 and a mass of 
7.0 kg (including their armor). When faced with a body 
of water to cross, the armadillo has two choices: to hold 
its breath and walk across the bottom or to swallow air 
into the stomach and intestine and float across. Approx-
imately what volume of air does it need to swallow in 
order to float? Assume the swallowed air is at atmo-
spheric pressure.

 42.  The average density of a fish can be found by first 
weighing it in air and then finding the scale reading for 
the fish completely immersed in water and suspended 
from a scale. If a fish has weight 200.0 N in air and scale 
reading 15.0 N in water, what is the average density of 
the fish?

Problems 43–44. While vacationing on the Outer Banks of 
North Carolina, you find an old coin that looks like it is 
made of gold. You know that there were many shipwrecks 
here, so you take the coin home to test it.
 43. You suspend the coin from a spring scale and find that 

its mass is 49.7 g. You then let the coin hang completely 
submerged in a glass of water but not touching the bot-
tom and find that the scale reads 47.1 g. Should you get 
excited about the possibility that this coin might really 
be gold? Explain.

 44. On a kitchen scale you measure the coin’s mass to be 
49.7 g. You measure the mass of a small bowl of water 
as 314.8 g. You tie a slender thread around the coin and 
suspend it completely submerged in the water but not 
touching the bottom. The scale reading is now 317.4 g. 
Should you get excited about the possibility that this 
coin might really be gold? Explain.



366 CHAPTER	9 Fluids

 45.  (a) A piece of balsa wood with density 0.50 g/cm3 is 
released under water. What is its initial acceleration? (b) 
Repeat for a piece of maple with density 0.750 g/cm3. 
(c) Repeat for a ping-pong ball with an average density 
of 0.125 g/cm3.

 46.  A piece of metal is released under water. The volume 
of the metal is 50.0 cm3 and its specific gravity is 5.0. 
What is its initial acceleration?

9.7 Fluid Flow; 9.8 Bernoulli’s Equation
 47. A garden hose of inner radius 1.0 cm carries water at 

2.0 m/s. The nozzle at the end has inner radius 0.20 cm. 
How fast does the water move through the nozzle?

 48.  If the average volume flow of blood through the 
aorta is 8.5 × 10−5 m3/s and the cross-sectional area of 
the aorta is 3.0 × 10−4 m2, what is the average speed of 
blood in the aorta?

 49. A nozzle of inner radius 1.00 mm is connected to a hose 
of inner radius 8.00 mm. The nozzle shoots out water 
moving at 25.0 m/s. (a) At what speed is the water in the 
hose moving? (b) What is the volume flow rate? 
(c) What is the mass flow rate?

 50. Water entering a house flows with a speed of 0.20 m/s 
through a pipe of 1.0 cm inside radius. What is the speed 
of the water at a point where the pipe tapers to a radius 
of 2.5 mm?

 51. A horizontal segment of pipe tapers from a cross- 
sectional area of 50.0 cm2 to 0.500 cm2. The pressure at 
the larger end of the pipe is 1.20 × 105 Pa, and the speed 
is 0.040 m/s. What is the pressure at the narrow end of 
the segment?

 52. In a tornado or hurricane, a roof may tear away from the 
house because of a difference in pressure between the 
air inside and the air outside. Suppose that air is blowing 
across the top of a 2000 ft2 roof at 150 mi/h. What is the 
magnitude of the force on the roof?

 53. Use Bernoulli’s equation to estimate the upward force 
on an airplane’s wing if the average flow speed of air is 
190 m/s above the wing and 160 m/s below the wing. 
The density of the air is 1.3 kg/m3, and the area of each 
wing surface is 28 m2.

 54. An airplane flies on a level path. There is a pressure dif-
ference of 500 Pa between the lower and upper surfaces 
of the wings. The area of each wing surface is about 
100 m2. The air moves below the wings at a speed of 
80.5 m/s. Estimate (a) the weight of the plane and (b) 
the air speed above the wings.

 55. A nozzle is connected to a horizontal hose. The nozzle 
shoots out water moving at 25 m/s. What is the gauge 
pressure of the water in the hose? Ignore viscosity and 
assume that the diameter of the nozzle is much smaller 
than the inner diameter of the hose.

 56. Suppose air, with a den-
sity of 1.29 kg/m3, is 
flowing into a Venturi 
meter. The narrow sec-
tion of the pipe at point A 
has a diameter that is 1

3 of 
the diameter of the larger section of the pipe at point B. 
The U-shaped tube is filled with water and the differ-
ence in height between the two sections of pipe is 1.75 cm. 
How fast is the air moving at point B?

 57. A water tower supplies water through the plumbing in a 
house. A 2.54 cm diameter faucet in the house can fill 
a cylindrical container with a diameter of 44 cm and a 
height of 52 cm in 12 s. How high above the faucet is the 
top of the water in the tower? (Assume that the diameter 
of the tower is so large compared to that of the faucet 
that the water at the top of the tower does not move.)

 58.   The volume flow rate of the water supplied by a 
well is 2.0 × 10−4 m3/s. The well is 40.0 m deep. 
(a)  What is the power output of the pump—in other 
words, at what rate does the well do work on the water? 
(b) Find the pressure difference the pump must main-
tain. (c) Can the pump be at the top of the well or must 
it be at the bottom? Explain.

9.9 Viscosity
 59. Using Poiseuille’s law [Eq. (9-41)], show that viscosity 

has SI units of pascal-seconds.
 60. A viscous liquid is flowing steadily through a pipe of 

diameter D. Suppose you replace it by two parallel 
pipes, each of diameter D/2, but the same length as the 
original pipe. If the pressure difference between the 
ends of these two pipes is the same as for the original 
pipe, what is the total rate of flow in the two pipes com-
pared to the original flow rate?

 61.  A hypodermic syringe is attached to a needle that 
has an internal radius of 0.300 mm and a length of 
3.00 cm. The needle is filled with a solution of viscosity 
2.00 × 10−3 Pa⋅s; it is injected into a vein at a gauge 
pressure of 16.0 mmHg. Ignore the extra pressure 
 required to accelerate the fluid from the syringe into 
the entrance of the needle. (a) What must the pressure of 
the fluid in the syringe be in order to inject the solution 
at a rate of 0.250 mL/s? (b) What force must be applied 
to the plunger, which has an area of 1.00 cm2?

 62.   A bug from South America known as Rhodnius 
prolixus extracts the blood of animals. Suppose Rhodnius 
prolixus extracts 0.30 cm3 of blood in 25 min from a hu-
man arm through its feeding tube of length 0.20 mm and 
radius 5.0 μm. What is the absolute pressure at the bug’s 
end of the feeding tube if the absolute pressure at the other 
end (in the human arm) is 105 kPa? Assume the viscosity 
of blood is 0.0013 Pa⋅s. [Note: Negative absolute pres-
sures are possible in liquids in very slender tubes.]

B A

h

Air
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Problems 63–65.  Four identical sections of pipe are con-
nected in various ways to pumps that supply water at the 
pressures indicated in the figure. The water exits at the right 
at 1.0 atm. Assume viscous flow.
 63. If the total volume flow rates in systems A and C are the 

same and the average flow speed in each of the pipes in 
C is 3.0 m/s, what is the average flow speed in system A?

 64. If the total volume flow rate in system B is 0.020 m3/s, 
what is the total volume flow rate in system C?

 65. If the total volume flow rates in systems A and B are the 
same, at what pressure does the pump supply water in 
system A?

P = ?

A

P = 5.0 atm

B

P = 3.0 atm

C

Problems	63–65

 66.  A capillary carries blood in the direction shown. 
Viscosity is not negligible. Points C and D are on the 
central axis of the capillary. Rank the points in order of 
decreasing fluid speed.

A

B

DC

Direction of blood flow

 67.  (a) What is the pressure difference required to make 
blood flow through an artery of inner radius 2.0 mm and 
length 0.20 m at an average speed of 6.0 cm/s? (b) What is 
the pressure difference required to make blood flow at an 
average speed of 0.60 mm/s through a capillary of radius 
3.0 μm and length 1.0 mm? (c) Compare both answers to 
your average blood pressure, about 100 mmHg.

 68. (a) Since the flow rate is proportional to the pressure 
difference, show that Poiseuille’s law can be written in 
the form ΔP = IR, where I is the volume flow rate and 
R is a constant of proportionality called the fluid flow 
resistance. (Written this way, Poiseuille’s law is analo-
gous to Ohm’s law for electric current to be studied in 
Chapter 18: ΔV = IR, where ΔV is the potential drop 
across a conductor, I is the electric current flowing 
through the conductor, and R is the electrical resistance 

of the conductor.) (b) Find R in terms of the viscosity of 
the fluid and the length and radius of the pipe.

 69.  Blood plasma (at 37°C) is to be supplied to a patient 
at the rate of 2.8 × 10−6 m3/s. If the tube connecting the 
plasma to the patient’s vein has a radius of 2.0 mm and 
a length of 50 cm, what is the pressure difference be-
tween the plasma and the patient’s vein?

9.10 Viscous Drag
 70. Five spheres are falling through the same viscous fluid, 

not necessarily at their terminal speeds. The radii r and 
speeds v of the spheres are given. Rank the spheres in 
order of decreasing viscous drag force on them.

 (a) r = 1.0 mm, v = 15 mm/s
 (b) r = 1.0 mm, v = 30 mm/s
 (c) r = 2.0 mm, v = 15 mm/s
 (d) r = 2.0 mm, v = 30 mm/s
 (e) r = 3.0 mm, v = 20 mm/s
 71. Two identical spheres are dropped into two different 

columns: one column contains a liquid of viscosity 
0.5 Pa·s; the other contains a liquid of the same density 
but unknown viscosity. The sedimentation velocity in 
the second tube is 20% higher than the sedimentation 
velocity in the first tube. What is the viscosity of the 
second liquid?

 72. A sphere of radius 1.0 cm is dropped into a glass cylin-
der filled with a viscous liquid. The mass of the sphere 
is 12.0 g, and the density of the liquid is 1200 kg/m3. 
The sphere reaches a terminal speed of 0.15 m/s. What 
is the viscosity of the liquid?

 73. An air bubble of 1.0 mm radius is rising in a container 
of vegetable oil with specific gravity 0.85 and viscosity 
0.12 Pa·s. The container of oil and the air bubble are at 
20°C. What is its terminal velocity?

 74. What keeps a cloud from falling? A cumulus (fair-
weather) cloud consists of tiny water droplets of average 
radius 5.0 μm. Find the terminal velocity for these drop-
lets at 20°C, assuming viscous drag. (Besides the vis-
cous drag force, there are also upward air currents called 
thermals that push the droplets upward.)

 75.   A flea is on the back of a squirrel climbing a tall 
tree. When the squirrel is near the top, the flea jumps 
off. (a) Assuming the drag force is viscous, estimate the 
terminal speed of the flea. Treat the flea as a drop of 
water of radius 1.0 mm falling through air at 20°C. 
(b) Does your result seem reasonable? If not, what do 
you think the problem is?

 76.  An aluminum sphere (specific gravity = 2.7) falling 
through water reaches a terminal speed of 5.0 cm/s. 
What is the terminal speed of an air bubble of the same 
radius rising through water? Assume viscous drag in 
both cases and ignore the possibility of changes in size 
or shape of the air bubble; the temperature is 20°C.
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9.11 Surface Tension
 77. An underwater air bubble has an excess inside pressure 

of 10 Pa. What is the excess pressure inside an air bub-
ble with twice the radius?

 78.  Assume a water strider has a roughly circular foot of 
radius 0.02 mm. (a) What is the maximum possible up-
ward force on the foot due to surface tension of the wa-
ter? (b) What is the maximum mass of this water strider 
so that it can keep from breaking through the water sur-
face? The strider has six legs.

 79.  A hollow hemispherical object is filled with air as in 
part (a) of the figure. (a) Show that the magnitude of the 
force due to fluid pressure on the curved surface of the 
hemisphere has magnitude F = πr2P, where r is the ra-
dius of the hemisphere and P is the pressure of the air. 
Ignore the weight of the air. [Hint: First find the force on 
the flat surface. What is the net force on the hemisphere 
due to the air?] (b) Consider an underwater air bubble to 
be divided into two hemispheres along the circumfer-
ence as in part (b) of the figure. The upper hemisphere 
of the water surface exerts a force of magnitude 2πrγ 
(circumference times force per unit length) on the lower 
hemisphere due to surface tension. Show that the air 
pressure inside the bubble must exceed the water pres-
sure outside by ΔP = 2γ/r.

(a) (b)

Inside pressure
Inside pressure

Outside pressure

r

Surface tension

Collaborative Problems

 80.  A wooden barrel full of water has a 
flat circular top of radius 25.0 cm with a 
small hole in it. A tube of height 8.00 m 
and inner radius 0.250 cm is suspended 
above the barrel with its lower end in-
serted snugly in the hole. Water is poured 
into the upper end of the tube until it is 
full. (a) What is the weight of the water in 
the tube? (b) What is the force with which the water in 
the barrel pushes up on the top of the barrel? (c) How 
can adding such a small weight of water lead to such a 
large force on the top of the barrel? (As a demonstration 

of the principle now named for him, Pascal astonished 
spectators by showing that the addition of a small 
amount of water to the tube could make the barrel burst.)

 81. You are hiking through a lush forest with some of your 
friends when you come to a large river that seems impos-
sible to cross. However, one of your friends notices an 
old metal barrel sitting on the shore. The barrel is shaped 
like a cylinder and is 1.20 m high and 0.76 m in diameter. 
One of the circular ends of the barrel is open and the bar-
rel is empty. When you put the barrel in the water with 
the open end facing up, you find that the barrel floats 
with 33% of it under water. You decide that you can use 
the barrel as a boat to cross the river, as long as you leave 
about 30 cm sticking above the water. How much extra 
mass can you put in this barrel when you use it as a boat?

 82.   On a nice day when the temperature outside is 
20°C, you take the elevator to the top of the Willis 
Tower in Chicago, which is 440 m tall. (a) How much 
less is the air pressure at the top than the air pressure at 
the bottom? Express your answer both in Pa and atm. 
[Hint: The altitude change is small enough to treat the 
density of air as constant.] (b) How many pascals does 
the pressure decrease for every meter of altitude? (c) If 
the pressure gradient—the pressure decrease per meter 
of altitude—were uniform, at what altitude would the 
atmospheric pressure reach zero? (d) Atmospheric pres-
sure does not decrease with a uniform gradient since the 
density of air decreases as you go up. Which is true: the 
pressure reaches zero at a lower altitude than your an-
swer to (c), or the pressure is nonzero at that altitude and 
the atmosphere extends to a higher altitude? Explain.

 83.  A house with its own well has a pump in the base-
ment with an output pipe of inner radius 6.3 mm. The 
pump can maintain a gauge pressure of 410 kPa in the 
output pipe. A showerhead on the second floor (6.7 m 
above the pump’s output pipe) has 36 holes, each of ra-
dius 0.33 mm. The shower is on “full blast” and no other 
faucet in the house is open. (a) Ignoring viscosity, with 
what speed does water leave the showerhead? (b) With 
what speed does water move through the output pipe of 
the pump?

 84.  The average speed of blood in the aorta is 0.3 m/s, 
and the radius of the aorta is 1 cm. There are about 2 × 
109 capillaries with an average radius of 6 μm. What is 
the approximate average speed of the blood flow in the 
capillaries?

 85.   The diameter of a certain artery has decreased by 
25% due to arteriosclerosis. (a) If the same amount of 
blood flows through it per unit time as when it was un-
obstructed, by what percentage has the blood pressure 
difference between its ends increased? (b) If, instead, 
the pressure drop across the artery stays the same, by 
what factor does the blood flow rate through it decrease? 
(In reality we are likely to see a combination of some 
pressure increase with some reduction in flow.)

8.00 m

25.0 cm
(not to scale)
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 86.  The average adult has about 5 L of blood, and a 
healthy adult heart pumps blood at a rate of about 
80  cm3/s. Estimate how long it takes for medicine 
 delivered intravenously to travel throughout a person’s 
body.

Comprehensive Problems

 87. A block of aluminum that has dimensions 2.00 cm by 
3.00 cm by 5.00 cm is suspended by a thread from a 
spring scale. (a) What is the scale reading in grams? 
(b) A beaker full of oil (density 850 kg/m3) rests on a 
second scale, which reads 460.0 g. The block is then 
lowered so it is fully submerged in oil without touching 
the bottom of the beaker. What are the readings of the 
two scales now?

 88. A 85.0 kg canoe made of thin aluminum has the shape 
of half of a hollowed-out log with a radius of 0.475 m 
and a length of 3.23 m. (a) When this is placed in the 
water, what percentage of the volume of the canoe is 
below the waterline? (b) How much additional mass can 
be placed in this canoe before it begins to sink?

 89. Two identical beakers are filled to the brim and placed 
on balance scales. The base area of the beakers is large 
enough that any water that spills out of the beakers will 
fall onto the table the scales are resting on. A block of 
pine (density = 420 kg/m3) is placed in one of the bea-
kers. The block has a volume of 8.00 cm3. Another 
block of the same size, but made of steel, is placed in 
the other beaker. How does the scale reading change in 
each case?

 90. A very large vat of water has a hole 1.00 cm in diameter 
located a distance 1.80 m below the water level. (a) How 
fast does water exit the hole? (b) How would your an-
swer differ if the vat were filled with gasoline? (c) How 
would your answer differ if the vat contained water, but 
was on the Moon, where the gravitational field strength 
is 1.6 N/kg?

 91. An atomizer is a device that delivers a fine mist of some 
liquid such as perfume by blowing air horizontally over 
the top of a tube immersed in the liquid. Suppose a per-
fume with density 800 kg/m3 has a 3.0 cm tube extend-
ing vertically from the top of the liquid. What minimum 
speed does air flow over the top of the tube when the 
liquid just reaches the top of the tube?

 92. The deepest place in the ocean is the Marianas Trench 
in the western Pacific Ocean, which is over 11.0 km 
deep. On January 23, 1960, the research sub Trieste 
went to a depth of 10.915 km, nearly to the bottom of 
the trench. This still is the deepest dive on record. The 
density of seawater is 1025 kg/m3. (a) What is the water 
pressure at that depth? (b) What was the force due to 
water pressure on a flat section of area 1.0 m2 on the top 
of the sub’s hull?

 93. The pressure in a water pipe in the basement of an 
apartment house is 4.10 × 105 Pa, but on the seventh 
floor it is only 1.85 × 105 Pa. What is the height be-
tween the basement and the seventh floor? Assume the 
water is not flowing; no faucets are opened.

 94.  The body of a 90.0 kg person contains 0.020 m3 of 
body fat. If the density of fat is 890 kg/m3, what per-
centage of the person’s body weight is composed of fat?

 95. Near sea level, how high a hill must you ascend for the 
reading of a barometer you are carrying to drop by 
10 mmHg? Assume the temperature remains at 20°C 
as you climb. The reading of a barometer on an average 
day at sea level is 760 mmHg.

 96. If you watch water falling from a faucet, you will no-
tice that the flow decreases in radius as the water falls. 
This can be explained by the equation of continuity, 
since the cross-sectional area of the water decreases as 
the speed increases. If the water flows with an initial 
velocity of 0.62 m/s and a diameter of 2.2 cm at the 
faucet opening, what is the diameter of the water flow 
after the water has fallen 30 cm?

 97.  If the cardiac output of a small dog is 4.1 × 
10−5 m3/s, the radius of its aorta is 0.50 cm, and the 
aorta length is 40.0 cm, determine the pressure drop 
across the aorta of the dog. Assume the viscosity of 
blood is 4.0 × 10−3 Pa⋅s.

 98.  In an aortic aneurysm, a bulge forms where the 
walls of the aorta are weakened. If blood flowing 
through the aorta (radius 1.0 cm) enters an aneurysm 
with a radius of 3.0 cm, how much on average is the 
blood pressure higher inside the aneurysm than the 
pressure in the unenlarged part of the aorta? The aver-
age flow rate through the aorta is 120 cm3/s. Assume 
the blood is nonviscous and the patient is lying down 
so there is no change in height.

 99.  Scuba divers are admonished not to rise faster than 
their air bubbles when rising to the surface. This rule 
helps them avoid the rapid pressure changes that cause 
the “bends.” Air bubbles of 1.0 mm radius are rising 
from a scuba diver to the surface of the sea. Assume a 
water temperature of 20°C. (a) If the viscosity of the 
water is 1.0 × 10−3 Pa⋅s, what is the terminal velocity 
of the bubbles? (b) What is the largest rate of pressure 
change tolerable for the diver according to this rule?

 100.  A shallow well usually has the pump at the top of 
the well. (a) What is the deepest possible well for which 
a surface pump will work? [Hint: A pump maintains a 
pressure difference, keeping the outflow pressure higher 
than the intake pressure.] (b) Why is there not the same 
depth restriction on wells with the pump at the bottom?

 101.  A stone of weight W has specific gravity 2.50. 
(a) When the stone is suspended from a scale and sub-
merged in water, what is the scale reading in terms of its 
weight in air? (b) What is the scale reading for the stone 
when it is submerged in oil (specific gravity = 0.90)?
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 102.  A plastic beach ball has radius 20.0 cm and mass 
0.10 kg, not including the air inside. (a) What is the 
weight of the beach ball including the air inside? As-
sume the air density is 1.3 kg/m3 both inside and out-
side. (b) What is the buoyant force on the beach ball in 
air? The thickness of the plastic is about 2 mm— 
negligible compared with the radius of the ball. (c) The 
ball is thrown straight up in the air. At the top of its 
trajectory, what is its acceleration? [Hint: When v = 0, 
there is no drag force.]

 103.  A block of wood, with density 780 kg/m3, has a 
cubic shape with sides 0.330 m long. A cord of negli-
gible mass is used to tie a piece of lead to the bottom 
of the wood. The lead pulls the wood into the water 
until it is just completely covered with water. What is 
the mass of the lead? [Hint: Don’t forget to consider 
the buoyant force on both the wood and the lead.]

Problems 104–105. A hydrometer is an instrument for mea-
suring the specific gravity of a liquid. For example, vintners 
use a hydrometer to determine the density changes as wine is 
fermented, and producers of maple sugar and maple syrup 
use the hydrometer to find how much sugar is in the col-
lected sap. Markings along a stem are calibrated to indicate 
the specific gravity for the level at which the hydrometer 
floats in a liquid. The weighted base ensures that the 
 hydrometer floats vertically. 
 104. Suppose the hydrometer has a cylindrical stem of cross- 

sectional area 0.400 cm2. The total volume of the bulb 
and stem is 8.80 cm3, and the mass of the hydrometer is 
4.80 g. (a) How far from the top of the cylinder should a 
mark be placed to indicate a specific gravity of 1.00? 
(b) When the hydrometer is placed in alcohol, it floats 
with 7.25 cm of stem above the surface. What is the spe-
cific gravity of the alcohol? (c) What is the lowest spe-
cific gravity that can be measured with this  hydrometer?

Hydrometer

Fluid to be tested

Problems	104	and	105

 105.  Are evenly spaced specific-gravity markings on the 
cylinder of a hydrometer equal distances apart? In 
other words, is the depth d to which the cylinder is 
submerged linearly related to the density ρ of the fluid? 
To answer this question, assume that the cylinder has 
radius r and mass m. Find an expression for d in terms 
of ρ, r, and m, and see if d is a linear function of ρ.

 106.  To measure the airspeed of a plane, a device called 
a Pitot tube is used. A simplified model of the Pitot 
tube is a manometer with one side connected to a tube 
facing directly into the “wind” (stopping the air that 
hits it head-on) and the other side connected to a tube 
so that the “wind” blows across its openings. If the 
manometer uses mercury and the levels differ by 
25 cm, what is the plane’s airspeed? The density of air 
at the plane’s altitude is 0.90 kg/m3.

25 cm

 107.  A U-shaped tube is partly filled with water and 
partly filled with a liquid that does not mix with water. 
Both sides of the tube are open to the atmosphere. 
What is the density of the liquid (in g/cm3)?

Water

0.50 m 0.45 m

0.30 m

 108.  Atmospheric pressure is equal to the weight of a 
vertical column of air, extending all the way up through 
the atmosphere, divided by the cross-sectional area of 
the column. (a) Explain why that must be true. [Hint: 
Apply Newton’s second law to the column of air.] 
(b) If the air all the way up had a uniform density of 
1.29 kg/m3 (the density at sea level at 0°C), how high 
would the column of air be? (c) In reality, the density 
of air decreases with increasing altitude. Does that 
mean that the height found in (b) is a lower limit or an 
upper limit on the height of the atmosphere?

 109.  Water enters an apartment building 0.90 m below 
the street level with a gauge pressure of 52.0 kPa 
through the main pipe, which has a 5.00 cm radius. 
A second-story bathroom has an open faucet with a 
1.20 cm radius that is located 4.20 m above the 
street. How fast is the water moving through the 
main pipe?
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Review and Synthesis

 110. The pressure inside a bottle of champagne is 4.5 atm 
higher than the air pressure outside. The neck of the 
bottle has an inner radius of 1.0 cm. (a) What is the fric-
tional force on the cork due to the neck of the bottle? 
(b) The cork (mass 7.5 g) is loosened until the friction 
force is zero and then released, allowing the cork to 
shoot out of the bottle. If the cork moves 1.0 cm along 
the neck of the bottle as the gauge pressure in the bottle 
decreases from 4.5 atm to zero, estimate the speed at 
which the cork shoots out of the bottle. [Hint: Estimate 
the average force on the cork to be half of the maximum.]

 111. A hydraulic lift is lifting a car that weighs 12 kN. The 
area of the piston supporting the car is A, the area of the 
other piston is a, and the ratio A/a is 100.0. How far must 
the small piston be pushed down to raise the car a dis-
tance of 1.0 cm? [Hint: Consider the work to be done.]

 112.  Depressing the brake pedal in a car pushes on a 
piston with cross-sectional area 3.0 cm2. The piston 
applies pressure to the brake fluid, which is connected 
to two pistons, each with area 12.0 cm2. Each of these 
pistons presses a brake pad against one side of a rotor 
attached to one of the rotating wheels. See the figure 
for this problem. (a) When the force applied by the 
brake pedal to the small piston is 7.5 N, what is the 
normal force applied to each side of the rotor? (b) If 
the coefficient of kinetic friction between a brake pad 
and the rotor is 0.80 and each pad is (on average) 12 cm 
from the rotation axis of the rotor, what is the magni-
tude of the torque on the rotor due to the two pads?

Rotor

Master
cylinder

Brake
pedal Brake

fluid

PistonPiston Brake pad
F

(not to scale)

 113.  A dinoflagellate takes 5.0 s to travel 1.0 mm. 
 Approximate a dinoflagellate as a sphere of radius 
35.0 μm (ignoring the flagellum). (a) What is the drag 
force on the dinoflagellate in seawater of viscosity 
0.0010 Pa·s? (b) What is the power output of the flagellate?

 114.  The potential energy associated with surface tension 
is much like the elastic potential energy of a stretched 
spring or a balloon. Suppose we do work on a puddle of 
liquid, spreading it out through a distance of Δs along a 
line L perpendicular to the force. (a) What is the work 

done on the fluid surface in terms of γ, L, and Δs? (b) The 
work done is equal to the increase in surface energy of 
the fluid. Show that the increase in energy is propor-
tional to the increase in area. (c) Show that we can think 
of γ as the surface energy per unit area. (d) Show that the 
SI units of surface tension can be expressed either as 
N/m (force per unit length) or J/m2 (energy per unit area).

ΔA = L Δs

L

Δs

F

 115. A cube that is 4.00 cm on a side and of density 8.00 × 
102 kg/m3 is attached to one end of a spring. The other 
end of the spring is attached to the base of a beaker. 
When the beaker is filled with water until the entire 
cube is submerged, the spring is stretched by 1.00 cm. 
What is the spring constant?

 116.   A beach ball is thrown straight up in the air. The 
graph shows its vertical velocity component as a func-
tion of time. The dashed line is tangent to the curve at 
the point where vy = 0. (a) What shape would the vy(t) 
graph have if air drag on the beach ball were always 
negligibly small? (b) Describe feature(s) of the vy(t) 
graph that tell you that the force of air drag on the ball 
is not negligible. (c) Describe feature(s) of the graph 
that indicate that the buoyant force on the ball is sig-
nificant. [Hint: Look at a part of the graph where air 
drag is negligible.] (d) Estimate the buoyant force on 
the ball as a fraction of its weight. (e) If the ball is 
thrown from a height of 1.0 m above the ground, ap-
proximately when does it hit the ground?
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0.5

0
1 2 3 4

1
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Vertical velocity of beach ball as a function of time
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 117. A section of pipe with an internal diameter of 10.0 cm 
tapers to an inner diameter of 6.00 cm as it rises 
through a height of 1.70 m at an angle of 60.0° with 
respect to the horizontal. The pipe carries water and its 
higher end is open to air. (a) If the speed of the water at 
the lower point is 15.0 cm/s, what are the pressure at 
the lower end and the speed of the water as it exits the 
pipe? (b) If the higher end of the pipe is 0.300 m above 
ground, at what horizontal distance from the pipe out-
let does the water land?

1.70 m

0.300 m

60.0°

Answers to Practice Problems

9.1 1.3 × 106 N/m2 = 1.3 MPa; the pressure is a factor of 
15 greater than the pressure from the tennis shoe heel.

9.2 (a) 2.0 × 105 Pa; (b) 5.0 m
9.3 1.6 km
9.4 (a) Yes, P2 = P1. The column above point 2 is not as tall, 

but the pressure at the top of that column is greater than 
atmospheric pressure. (b) No, P = Patm + ρgd gives the 
pressure at a depth d below a point where the pressure 
is Patm.

9.5 (a) 32.0 cm; (b) 17.0 cm and 37.0 cm
9.6 SG = 11.3; could be lead
9.7 2% and 4%
9.8 (a) The beetle can squeeze the air bubble with its wings, 

compressing the air to reduce the bubble volume and 
decreasing the buoyant force. (b) When it is time to rise 
to the surface, the beetle relaxes the pressure on the 
bubble, allowing it to expand again.

9.9 (a) 0.85 m/s; (b) 1.7 m/s

9.10 √2gh = 4.0 m/s
9.11 250 kPa
9.12 1.4
9.13 2.85 mm/s upward
9.14 480 Pa

Answers to Checkpoints

9.2 1.8
9.4 Pressure in a static fluid cannot depend on horizontal 
position. The net horizontal force on any part of the fluid 
must be zero—otherwise the horizontal acceleration would 
be nonzero and the fluid would begin to flow. The net verti-
cal force including the weight of the fluid must also be zero, 
so pressure does depend on vertical position.
9.5  3 = 4, 2, 1 = 5. The pressures at 3 and 4 are equal be-
cause they are at the same depth in the red liquid. The pres-
sures at 1 and 5 are equal to the air pressure in the room. 
Point 2 is intermediate in pressure; in the blue liquid, pres-
sure increases with depth so P3 > P2 > P1.
9.6 In both cases, the weight of the displaced liquid is equal 
to the weight of the wood. A smaller volume of water is dis-
placed, due to its higher density, so the wood floats higher in 
water than in alcohol.
9.7 We expect the blood to flow faster in the narrower sec-
tion because the volume flow rate must be the same. From 
the continuity equation, v2/v1 = A1/A2 = (d1/d2)2 = 1.202 = 
1.44. The speed increases 44%.
9.8 (a) For horizontal flow, Bernoulli’s equation becomes 
P1 + 1

2ρv2
1 = P2 + 1

2ρv2
2; the pressure is lower where the flow 

speed is higher. (b) In a static fluid, Bernoulli’s equation 
becomes P1 + ρgy1 = P2 + ρgy2. Letting d = y1 − y2, we 
have P2 − P1 = ρgy1 − ρgy2 = ρgd, which is the pressure 
dependence with depth for a static fluid as discussed in 
 Section 9.4.
9.10 Viscous drag and kinetic friction are both forces that 
oppose the motion of an object (relative to the surrounding 
fluid or relative to the surface on which the object slides, 
respectively). However, viscous drag depends strongly on 
the speed of the object (FD ∝ v), but kinetic friction does not.
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Near	 the	 top	 of	 the	 241	m	 tall	 Hancock	 Tower	 in	 Boston,	 two	 steel	
boxes	 filled	 with	 lead	 are	 part	 of	 a	 system	 designed	 to	 reduce	 the	
swaying	and	 twisting	of	 the	building	caused	by	 the	wind.	The	mass	of	
each	box	 is	nearly	300	000	kg	 (weight	300	tons).	 It	might	seem	that	
adding	 a	 large	 mass	 to	 the	 top	 of	 the	 building	 would	 make	 it	 more	
“top	heavy”	and	might	increase	the	amount	of	swaying.	Why	is	such	a	
large	mass	used	and	how	does	 it	 reduce	the	swaying	of	 the	building?
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10.1 ELASTIC DEFORMATIONS OF SOLIDS

If the net force and the net torque on an object are zero, the object is in equilibrium—
but that does not mean that the forces and torques have no effect. An object is 
deformed when contact forces are applied to it (Fig. 10.1). A deformation is a change 
in the size or shape of the object. Many solids are stiff enough that the deformation 
cannot be seen with the human eye; a microscope or other sensitive device is required 
to detect the change in size or shape.

When the contact forces are removed, an elastic object returns to its original 
shape and size. Many objects are elastic as long as the deforming forces are not too 
large. On the other hand, any object may be permanently deformed or even broken if 
the forces acting are too large. An automobile that collides with a tree at a low speed 
may not be damaged; but at a higher speed the car suffers a permanent deformation, 
and the driver may suffer a broken bone.

CONNECTION:

The two topics of this  
chapter—elasticity and  
oscillations—may seem  
unrelated at first, but they are 
closely connected: many 
 oscillations are caused by the 
kinds of elastic forces we 
study in Sections 10.1 
through 10.4.

Figure 10.1 A tennis ball is 
flattened by the contact force 
exerted on it by the strings of 
the tennis racquet. Likewise, 
the strings of the racquet are 
deformed by the contact force 
exerted by the ball. The two 
forces are interaction partners.
©nikolay100/Getty Images

10.2 HOOKE’S LAW FOR TENSILE AND COMPRESSIVE FORCES

Suppose we stretch a wire by applying tensile forces of magnitude F to each end. The 
length of the wire increases from L to L + ΔL. How does the elongation ΔL depend 
on the original length L? Conceptual Example 10.1 helps answer this question.

Practice Problem 10.1 Cutting a Spring in Half

If a spring (spring constant k) is cut in half, what is the spring 
constant of each of the two newly formed springs?

Conceptual Example 10.1

 Stretching Tendons

If a given tensile force stretches a tendon by an amount ΔL, 
how much would the same force stretch a tendon twice as 
long but identical in thickness and composition?

Strategy and Solution Think of the tendon of length 2L 
as two tendons of length L placed end-to-end (Fig. 10.2). 
Under the same tension, each of the two tendons stretches by 
an amount ΔL, so the total deformation of the long tendon 
is 2 ΔL.

F L

ΔL

L A

ΔL

F

Figure 10.2
Two identical tendons are 
joined end-to-end and 
stretched by tensile forces. 
Each tendon stretches an 
amount ΔL.

Stress and Strain When stretched by the same tensile forces, the two tendons in 
Conceptual Example 10.1 get longer by an amount proportional to their original lengths: 
ΔL ∝ L. In other words, the two tendons have the same fractional length change ΔL/L. 
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The fractional length change is called the strain; it is a dimensionless measure of the 
degree of deformation.

 Strain =
ΔL

L
 (10-1)

Suppose we had wires of the same composition and length but different thick-
nesses. It would require larger tensile forces to stretch the thicker wire the same 
amount as the thinner one; a thick steel cable is harder to stretch than the same length 
of a thin strand of steel. In Conceptual Question 13, we conclude that the tensile force 
required is proportional to the cross-sectional area of the wire (F ∝ A). Thus, the same 
applied force per unit area produces the same deformation on wires of the same length 
and composition. The force per unit cross-sectional area is called the stress:

 Stress =
F

A
 (10-2)

The SI units of stress are the same as those of pressure: N/m2 or Pa.

Hooke’s Law The object being deformed need not be a wire. Suppose that a solid 
object is subjected to tensile or compressive forces of magnitude F. Its original dimen-
sion, measured parallel to the direction of the forces, is L, and the change in this 
dimension due to the forces is ΔL. According to Hooke’s law, the deformation is 
proportional to the deforming forces as long as they are not too large:

 F = k ΔL (10-3)

In Eq. (10-3), k is a measure of the object’s stiffness; it is analogous to the spring constant 
of a spring. This constant k depends on the object’s original length L and on its cross-
sectional area A, perpendicular to the forces. A larger cross-sectional area A makes k 
larger; a greater length L makes k smaller.

We can rewrite Hooke’s law in terms of stress (F/A) and strain (ΔL/L):

Hooke’s law
 stress ∝ strain

 
F

A
= Y 

ΔL

L
 (10-4)

CONNECTION:

Hooke’s law does not just 
 apply to springs. The defor-
mation of an object is often 
proportional to the forces 
 applied to it.

Equation (10-4) still says that the length change (ΔL) is proportional to the magnitude of 
the deforming forces (F). Stress and strain account for the effects of length and cross-
sectional area; the proportionality constant Y depends only on the inherent stiffness of the 
material from which the object is composed; it is independent of the length and cross-
sectional area. Comparing Eqs. (10-3) and (10-4), the “spring constant” k for the object is

 k =
YA

L
 (10-5)

The constant of proportionality Y in Eqs. (10-4) and (10-5) is called the elastic 
modulus, or Young’s modulus; Y has the same units as those of stress (Pa), since strain 
is dimensionless. Young’s modulus can be thought of as the inherent stiffness of a 
material; it measures the resistance of the material to elongation or compression. Mate-
rial that is flexible and stretches easily (e.g., rubber) has a low Young’s modulus. A stiff 
material (e.g., steel) has a high Young’s modulus; it takes a larger stress to produce the 
same strain. Table 10.1 gives Young’s modulus for a variety of common materials.

CHECKPOINT 10.2

Which	 stretches	more	 when	 put	 under	 the	 same	 tension:	 a	 steel	 wire	 2.0	m	
long	or	a	copper	wire	1.0	m	 long	with	 the	same	diameter?	 (See	Table	10.1.)
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Application: Strength of Bone and of Concrete Hooke’s law holds up to a 
maximum stress called the proportional limit. For many materials, Young’s modulus 
has the same value for tension and compression. Some composite materials, such as 
bone and concrete, have significantly different Young’s moduli for tension and com-
pression. The components of bone include fibers of collagen (a protein found in all 
connective tissue) that give it strength under tension and hydroxyapatite crystals (com-
posed of calcium and phosphate) that give it strength under compression. The differ-
ent properties of these two substances lead to different values of Young’s modulus 
for tension and compression.

Substance Young’s Modulus (GPa) Substance Young’s Modulus (GPa)

Rubber 0.002–0.008 Wood, along the grain 10–15
Human cartilage 0.024 Brick 14–20
Human vertebra 0.088 (compression);  

0.17 (tension)
Concrete
Marble

20–30 (compression)
50–60

Collagen, in bone 0.6 Aluminum 70
Human tendon 0.6 Cast iron 100–120
Wood, across the grain 1 Copper 120
Nylon 2–6 Wrought iron 190
Spider silk 4 Steel 200
Human femur 9.4 (compression); 16 (tension) Diamond 1200

Table 10.1 Approximate Values of Young’s Modulus for Various Substances

Example 10.2

Compression of the Femur

 A man whose weight is 0.80 kN 
is standing upright. By approxi-
mately how much is his femur 
(thighbone) shortened compared 
with when he is lying down? As-
sume that the compressive force on 
each femur is about half his weight 
(Fig. 10.3). The average cross- 
sectional area of the femur is 
8.0 cm2 and the length of the femur 
when lying down is 43.0 cm.

Strategy A change in length of 
the femur involves a strain. After 
finding the stress and looking up the 
Young’s modulus, we can find the 
strain using Hooke’s law. We assume that each femur 
 supports half the man’s weight.

Solution The strain is proportional to the stress:

F

A
= Y 

ΔL

L

Solving this equation for ΔL gives

ΔL =
F/A
Y

 L

From Table 10.1, Young’s modulus for a femur in compres-
sion is:

Y = 9.4 GPa

We need to convert the cross-sectional area to m2 since 
1 Pa = 1 N/m2:

A = 8.0 cm2 × (
1 m

100 cm)
2

= 0.000 80 m2

continued on next page

Figure 10.3
Compression of the 
 femur.

Femur

0.40 kN

43.0 cm

0.40 kN
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10.3 BEYOND HOOKE’S LAW

If the tensile or compressive stress exceeds the proportional limit, the strain is no 
longer proportional to the stress (Fig. 10.4). The solid still returns to its original length 
when the stress is removed as long as the stress does not exceed the elastic limit. If 
the stress exceeds the elastic limit, the material is permanently deformed. For still 
larger stresses, the solid fractures when the stress reaches the breaking point. The 
maximum stress that can be withstood without breaking is called the ultimate strength. 
The ultimate strength can be different for compression and tension; then we refer to 
the compressive strength or the tensile strength of the material.

A ductile material continues to stretch beyond its ultimate tensile strength without 
breaking; the stress then decreases from the ultimate strength (Fig. 10.4a). Examples 
of ductile solids are the relatively soft metals, such as gold, silver, copper, and lead. 
These metals can be pulled like taffy, becoming thinner and thinner until finally 
reaching the breaking point. For a brittle substance, the ultimate strength and the 
breaking point are close together (Fig. 10.4b).

The force on each leg is 0.40 kN, or 4.0 × 102 N. The length 
change is then

ΔL =
F/A
Y

 L =
(4.0 × 102 N)/(0.000 80 m2)

9.4 × 109 Pa
× 43.0 cm

              = 5.3 × 10−5 × 43.0 cm = 0.0023 cm

Discussion The strain—or fractional length change—is 
5.3 × 10−5. Since the strain is much smaller than 1, we are 
justified in not worrying about whether the length is 43.0 cm 

with or without the compressive load; we would calculate 
the same value of ΔL (to two significant figures) either way.

Practice Problem 10.2 Fractional Length Change 
of a Cable

A steel cable of diameter 3.0 cm supports a load of 2.0 kN. 
What is the fractional length increase of the cable compared 
with the length when there is no load if Y = 200 GPa?

Example 10.2 continued
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Figure 10.4 Stress-strain curves showing limits for (a) a ductile material, (b) a brittle material, and (c) compact bone. 
The elastic limit, ultimate strength, and breaking point are well separated for ductile materials, but close together for 
brittle materials.



378 CHAPTER	10 Elasticity and Oscillations

Application: Elastic Properties of Bone; Osteoporosis Bone is an example 
of a brittle material; it fractures abruptly if the stress becomes too large (Fig. 10.4c). 
Under either tension or compression, its elastic limit, breaking point, and ultimate 
strength are approximately the same. Babies have more flexible bones than adults 
because they have built up less of the calcium compound hydroxyapatite. As peo-
ple age, their bones become more brittle as the collagen fibers lose flexibility, and 
their bones also become weaker as calcium gets reabsorbed (a condition called 
osteoporosis).

Like bone, reinforced concrete has one component for tensile strength and another 
for compressive strength. Reinforced concrete contains steel rods that provide tensile 
and shear strength that concrete itself lacks (Fig. 10.5).

Application: The Human Vertebra Human anatomy has special features for adapt-
ing to the compressive stress associated with standing upright. For example, the ver-
tebrae in the spinal column gradually increase in size from the neck to the tailbone. 
Such an arrangement places the stronger vertebrae in the lower positions, where they 
must support more weight. The vertebrae are separated by fluid-filled disks, which 
have a cushioning effect by spreading out the compressive forces.

CHECKPOINT 10.3

Stress-strain	 graphs	 for	 two	 different	 materials	 are	 shown	 in	 Fig.	 10.6.	
Each  graph	 ends	 at	 the	 breaking	 point	 for	 that	material.	 (a)	Which	 has	 the	
larger	Young’s	modulus?	Explain.	 (b)	Which	has	the	higher	ultimate	strength?	
Explain.

Figure 10.5 Remnant of the 
Berlin Wall. The fourth and 
final stage of construction 
(1975–1980) employed about 
45 000 slabs of reinforced 
 concrete. Each slab was 3.6 m 
tall and 1.2 m wide.
©Steve Tulley/Alamy

Example 10.3

Crane with Steel Cable

A crane is required to lift loads of up to 100 kN (11 tons). 
(a)  What is the minimum diameter of the steel cable that 
must be used? (b) If a cable of twice the minimum diameter 
is used and it is 8.0 m long when no load is present, how 
much longer is it when supporting a load of 100 kN? (Data 
for steel: Y = 200 GPa; proportional limit = 0.20 GPa; elastic 
limit = 0.30 GPa; tensile strength = 0.50 GPa.)

Strategy The data given for steel consists of four quanti-
ties that all have the same units. It would be easy to mix them 
up if we didn’t understand what each one means. Young’s 
modulus is the proportionality constant of stress to strain. 

That will be useful in part (b) where we find the elongation 
of the cable; the elongation is the strain times the original 
length. However, we should first check that the stress is less 
than the proportional limit before using Young’s modulus to 
find the strain.

The elastic limit is the maximum stress so that no per-
manent deformation occurs; the tensile strength is the maxi-
mum stress so that the cable does not break. We certainly 
don’t want the cable to break, but it would be prudent to keep 
the stress under the elastic limit to give the cable a long use-
ful life. Therefore, we choose a minimum diameter in (a) to 
keep the stress below the elastic limit.

continued on next page
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Figure 10.6 Stress-strain 
graphs for two materials.
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Height Limits

What limits the height of a stone column? If the column is too tall, it could be crushed 
under its own weight. The maximum height of a column is limited since the compres-
sive stress at the bottom cannot exceed the compressive strength of the material (see 
Problem 82). However, the maximum height at which a vertical column buckles is gen-
erally less than the height at which it would be crushed.

Application: Bone Structure The bones of our limbs are hollow; the inside of the 
structural material is filled with marrow, which is structurally weak. A hollow bone 
is better able to resist fracture from bending and twisting forces than a solid bone 
with the same amount of structural material, although the hollow bone would buckle 
more easily under a compressive force along the central axis.

Application: Size Limitations on Organisms Why would the proportions of a 
giant’s bones have to be different from a human’s? If the giant’s average density is 
the same as a human’s, then his weight is larger by the same factor that his volume 
is larger. If the giant is five times as tall as a human, for instance, and has the same 
relative proportions, then his volume is 53 = 125 times as large, since each of the 
three dimensions of any body part has increased by a factor of 5. On the other hand, 
the cross-sectional area of a bone is proportional to the square of its radius. So 
although the leg bones must support 125 times as much weight, the maximum com-
pressive force they can withstand has only increased by a factor of 25. The giant 
would need much thicker legs (in relation to their length) to support his increased 
weight. Similar analysis can be applied to the twisting and bending forces that are 
more likely to break bones than are compressive forces. The result is the same: the 
bones of a giant could not have human proportions.

Some science fiction or horror movies portray giant insects as greatly magnified 
versions of a normal insect. Such a giant insect’s legs would collapse under the weight 
of the insect.

Solution (a) We choose the minimum diameter to keep 
the stress less than the elastic limit:

F

A
< elastic limit = 3.0 × 108 Pa

for F = 1.0 × 105 N. Then

A >
F

elastic limit
=

1.0 × 105 N
3.0 × 108 Pa

= 3.33 × 10−4 m2

The minimum cross-sectional area corresponds to the mini-
mum diameter. The cross-sectional area of the cable is πr2 or 
πd2/4, so

d = √
4A

π
= √

4 × 3.33 × 10−4 m2

π
= 2.1 cm

The minimum diameter is therefore 2.1 cm.

(b) If we double the diameter and keep the same load, the 
stress is reduced by a factor of 4 since the cross-sectional 
area is proportional to the square of the diameter. Therefore, 
the stress is

F

A
=

3.0 × 108 Pa
4

= 7.5 × 107 Pa

The strain is then

ΔL

L
=

F/A
Y

=
7.5 × 107 Pa
2.0 × 1011 Pa

= 3.75 × 10−4

The strain is the fractional length change. Then the 
length change is

ΔL = (3.75 × 10−4)L = 3.75 × 10−4 × 8.0 m = 3.0 mm

Discussion By using a cable twice as thick as the minimum, 
we build in a safety factor. We don’t want to be right at the edge 
of disaster! Since doubling the diameter of the cable increases 
the cross-sectional area of the cable by a factor of 4, the maxi-
mum stress on the cable is one fourth of the elastic limit.

Practice Problem 10.3 Tuning a Harpsichord String

A harpsichord string is made of yellow brass (Young’s mod-
ulus 90 GPa, tensile strength 630 MPa). When tuned cor-
rectly, the tension in the string is 59.4 N, which is 93% of the 
maximum tension that the string can endure without break-
ing. What is the radius of the string?

Example 10.3 continued

The San Jacinto monument in 
Texas is the tallest stone column 
in the world.
©Jorg Hackemann/Shutterstock

©John Springer Collection/CORBIS/
Corbis via Getty Image
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The units of shear stress and the shear modulus are the same as for tensile or com-
pressive stress and Young’s modulus: Pa. The strain is once again dimensionless. 
Table 10.2 lists shear moduli for various materials.

An example of shear stress is the cutting action of a pair of scissors (or “shears”) 
on a piece of paper. The forces acting on the paper from above and below are offset 
from each other and act parallel to the cross-sectional surfaces of the paper (Fig. 10.9).

10.4 SHEAR AND VOLUME DEFORMATIONS

In this section we consider two other kinds of deformation. In each case we define a 
stress (force per unit area), a strain (dimensionless), and a modulus (the constant of 
proportionality between stress and strain).

Shear Deformation

Unlike tensile and compressive forces, which are perpendicular to two opposite surfaces 
of an object, a shear deformation is the result of a pair of equal and opposite forces 
that act parallel to two opposite surfaces (Fig. 10.8). The shear stress is the magnitude 
of the shear force divided by the area of the surface on which the force acts:

 shear stress =
shear force

area of surface
=

F

A
 (10-6)

Shear strain is the ratio of the relative displacement Δx to the separation L of the 
two surfaces:

 shear strain =
displacement of surfaces

separation of surfaces
=

Δx

L
 (10-7)

The shear strain is proportional to the shear stress as long as the stress is not too 
large. The constant of proportionality is the shear modulus S.

EVERYDAY PHYSICS DEMO

Challenge	 a	 friend	 to	 use	 a	 single	 sheet	 of	 8.5	 in.	×	 11	 in.	 paper	 and	 two	
paper	clips	 to	support	a	book	at	 least	8	 in.	above	a	 table.	 If	 your	 friend	has	
no	idea	what	to	do,	roll	the	sheet	of	paper	into	a	narrow	cylinder	about	2	cm	
in	diameter;	 then	 fasten	 the	cylinder	at	 the	 top	and	bottom	with	paper	clips.	
Carefully	place	the	book	so	that	it	is	balanced	on	top	of	the	cylinder	(Fig. 10.7).	
If	 you	have	difficulty,	 try	using	 thicker	paper	or	a	 lighter	book.

Use	 the	 same	 “apparatus”	 to	 get	 some	 insight	 into	 the	 buckling	 of	 col-
umns.	Try	making	the	diameter	of	the	paper	cylinder	twice	as	large.	The	walls	
of	this	column	are	thinner	because	there	are	fewer	 layers	of	the	paper	 in	the	
cylinder	 wall,	 although	 the	 same	 cross-sectional	 area	 of	 paper	 supports	 the	
book.	If	nothing	happens,	try	a	larger	diameter.	You	will	see	the	walls	crumple	
in	on	 themselves	as	 the	cylinder	buckles	and	 the	book	 falls	 to	 the	 table.

Figure 10.7 A column made 
from a rolled sheet of paper 
can support a book.

Hooke’s law for shear deformation

shear stress ∝ shear strain

 
F

A
= S 

Δx

L
 (10-8)

F

AΔx
γ

L F

Figure 10.8 A book under 
shear stress. Shear forces pro-
duce the same kind of deforma-
tion in a solid block; the 
amount of the deformation is 
just smaller.

CONNECTION:

Hooke’s law takes the same 
form for different kinds of 
stresses and strains. In each 
case, the strain is propor-
tional to the stress.
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Material Shear Modulus S (GPa) Bulk Modulus B (GPa)

Gases
 Air* 0.000 10
 Air† 0.000 14
Liquids
 Ethanol 0.9
 Water 2.2
 Mercury 25
Solids
 Cast iron 40–50 60–90
 Marble 70
 Aluminum 25–30 70
 Copper 40–50 120–140
 Steel 80–90 140–160
 Diamond 620

*At 0°C and 1 atm; constant temperature expansion or compression
†At 0°C and 1 atm; no heat flow during expansion or compression

Table 10.2 Shear and Bulk Moduli for Various Materials

Example 10.4

Cutting Paper

A sheet of paper of thickness 0.20 mm is cut with scissors that 
have blades of length 10.0 cm and width 0.20 cm. While cut-
ting, the scissors blades each exert a force of 3.0 N on the paper; 
the length of each blade that makes contact with the paper is 
approximately 0.5 mm. What is the shear stress on the paper?

Strategy Shear stress is a force divided by an area. In 
this problem, identifying the correct area is tricky. The 
blades push two cross-sectional paper surfaces in opposite 
directions to make them move past each other. The shear 
stress is the force exerted by each blade divided by this 

continued on next page

Paper
moving
up

 Upward force
 from bottom
 blade

Downward
force from

top blade

Paper
moving

down

Sheared
region

Figure 10.9 Scissors apply shear stress to a sheet of paper. The shear stress is the force exerted by a blade divided by 
the cross-sectional area of the paper—the thickness of the paper times the length of blade that is in contact with the paper.
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Application: Spiral Fractures When a bone is twisted, it is subjected to a shear 
stress. Shear stress is a more common cause of fracture than a compressive or tensile 
stress along the length of the bone. The twisting of a bone can result in a spiral frac-
ture (Fig. 10.10).

Volume Deformation

As discussed in Chapter 9, a fluid exerts inward forces on an immersed solid object. 
These forces are perpendicular to the surfaces of the object. Since the fluid presses 
inward on all sides of the object (Fig. 10.11), the solid is compressed—its volume is 
reduced. The fluid pressure P is the force per unit surface area; it can be thought of 
as the volume stress on the solid object. Pressure has the same units as the other 
kinds of stress: Pa.

 volume stress = pressure =
F

A
= P (10-9)

The resulting deformation of the object is characterized by the volume strain, which 
is the fractional change in volume:

 volume strain =
change in volume
original volume

=
ΔV

V
 (10-10)

Unless the stress is too large, the stress and strain are proportional within a constant 
of proportionality called the bulk modulus B. A substance with a large bulk modulus 
is more difficult to compress than a substance with a small bulk modulus.

An object at atmospheric pressure is already under volume stress: the air pressure 
already compresses the object slightly compared with what its volume would be in a 
vacuum. For solids and liquids, the volume strain due to atmospheric pressure is, for 

cross-sectional area—the thickness of the paper times the 
length of blade in contact with the paper. (Compare 
Figs. 10.8 and 10.9.) The total length and the width of the 
blades are irrelevant.

Solution The cross-sectional area is

 A = thickness × contact length

 = 2.0 × 10−4 m × 5 × 10−4 m = 1 × 10−7 m2

The shear stress is

F

A
=

3.0 N
1 × 10−7 m2 = 30 MPa

Discussion To identify the correct area, remember that 
shear forces act in the plane of the surfaces that are displaced 
with respect to each other. By contrast, tensile and compres-
sive forces are perpendicular to the area used to find tensile 
and compressive stresses.

Practice Problem 10.4 Shear Stress Due to a  
Hole Punch

A hole punch has a diameter of 8.0 mm and presses onto ten 
sheets of paper with a force of 6.7 kN. If each sheet of paper 
is of thickness 0.20 mm, find the shear stress. [Hint: Be care-
ful in deciding what area to use. Remember that a shear force 
acts parallel to the surface whose area is relevant.]

Example 10.4 continued

Figure 10.10 (a) A skier 
falls and his leg is subjected to 
a shear stress. (b) X-ray of a 
spiral fracture of the tibia.
(a): ©Cameron Spencer/Getty Images 
(b): ©Dr P. Marazzi/Science Source

(a) (b)

F = PA2

F = PA2

F = PA1

F = PA1

F = PA3

F = PA3

Figure 10.11 Forces on an 
object when submerged in a 
fluid.
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most purposes, negligibly small (5 × 10−5 for water). Since we are usually concerned 
with the deformation due to a change in pressure ΔP from atmospheric pressure, we 
can write Hooke’s law as:

Hooke’s law for volume deformation

 ΔP = −B 

ΔV

V
 (10-11)

where V is the volume at atmospheric pressure. The negative sign in Eq. (10-11) allows 
the bulk modulus to be positive—an increase in the volume stress causes a decrease 
in volume, so ΔV is negative. Table 10.2 lists bulk moduli for various substances.

Unlike the stresses and strains discussed previously, volume stress can be applied 
to fluids (liquids and gases) as well as solids. The bulk moduli of liquids are generally 
not much less than those of solids, since the atoms in liquids are nearly as close together 
as those in solids. In Chapter 9 we assume that liquids are incompressible, which is 
often a good approximation since the bulk moduli of liquids are generally large. In 
gases, the atoms are much farther apart on average than in solids or liquids. Gases are 
much easier to compress than solids or liquids, so their bulk moduli are much smaller.

Example 10.5

Marble Statue Under Water

A marble statue of volume 1.5 m3 is being transported by ship 
from Athens to Cyprus. The statue topples into the sea when 
an earthquake-caused tidal wave sinks the ship; the statue 
ends up on the sea floor, 1.0 km below the surface. Find the 
change in volume of the statue in cm3 due to the pressure of 
the water. The density of seawater is 1025 kg/m3.

Strategy The water pressure is the volume stress; it is the 
force per unit area pressing inward and perpendicular to all 
the surfaces of the statue. The water pressure at a depth d is 
greater than the pressure at the water surface; we can find the 
pressure using the given density of seawater. Then, using 
the bulk modulus of marble given in Table 10.2, we find the 
change in volume from Hooke’s law.

Solution The pressure at a depth d = 1.0 km is larger than 
atmospheric pressure by

 ΔP = ρgd

 = 1025 kg/m3 × 9.8 N/kg × 1000 m
 = 1.005 × 107 Pa

According to Table 10.2, the bulk modulus for marble is 
70 GPa. This is the constant of proportionality between the 
volume stress (pressure increase) and the strain (fractional 
change in volume).

ΔP = −B 

ΔV

V

Solving for ΔV, we have

 ΔV = − 

ΔP

B
 V = −

1.005 × 107 Pa
70 × 109 Pa

× 1.5 m3

 = −2.2 × 10−4 m3 × (
100 cm

1 m )
3

= −220 cm3

The statue’s volume decreases approximately 220 cm3.

Discussion The fractional decrease in volume is

1.005 × 107 Pa
70 × 109 Pa

≈
1

7000

or a reduction of 0.014%.
In calculating the pressure increase, we assumed that the 

density of seawater is constant—the equation ΔP = ρgd is 
 derived for a constant fluid density ρ. Should we worry that our 
calculation of ΔP is wrong? The result of Practice Problem 10.5 
shows that the density of seawater at a depth of 1.0 km is only 
about 0.43% greater than its density at the surface. The calcula-
tion of ΔP is inaccurate by less than 0.5%—negligible here 
since we only know the depth to two significant figures.

Practice Problem 10.5 Compression of Water

Show that a pressure increase of 10 MPa (100 atm) on 1 m3 
of seawater causes a 0.43% decrease in volume. The bulk 
modulus of seawater is 2.3 GPa.
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10.5 SIMPLE HARMONIC MOTION

Vibration, one of the most common kinds of motion, is repeated motion back and forth 
along the same path. Vibrations occur in the vicinity of a point of stable equilibrium. 
An equilibrium point is stable if the net force on an object when it is displaced a small 
distance from equilibrium points back toward the equilibrium point (Fig. 10.12). Such 
a force is called a restoring force since it tends to restore equilibrium. A special kind 
of vibratory motion—called simple harmonic motion (SHM)—occurs whenever the 
restoring force is proportional to the displacement from equilibrium.

CONNECTION:

As shown in Sections  
10.2–10.4, Hooke’s law 
 applies to small deformations 
of many kinds of objects, not 
just springs. Thus, simple 
harmonic motion occurs in 
many situations as long as the 
vibrations are not too large.

Stable equilibrium point

(a) (b)

Unstable equilibrium  point

Figure 10.12 (a) A point of stable equilibrium for a roller-coaster car. If the car 
is displaced slightly from its position at the bottom of the track, the net force pulls 
the car back toward the equilibrium point. (b) A point of unstable equilibrium for a 
roller-coaster car. If the car is displaced slightly from the very top of the track, the 
net force pushes the car away from the equilibrium point.

Figure 10.13 shows a graph of Fx versus x for some restoring force. We choose 
x = 0 at the equilibrium position. Since the graph is not linear, the resulting oscilla-
tions are not SHM—unless the amplitude is small. For small amplitudes, we can 
approximate the graph near equilibrium by a straight line tangent to the curve at the 
equilibrium point. For small amplitude oscillations, the restoring force is approxi-
mately linear, so the resulting oscillations are (approximately) SHM. The ideal spring 
is a favorite model of physicists because the restoring force it provides is proportional 
to the displacement from equilibrium.

Consider a relaxed ideal spring with spring constant k and zero mass. The spring 
is fixed at one end and attached at the other to an object of mass m (Fig. 10.14) that 
slides without friction. Since the normal force is equal and opposite to the weight of 
the object, the net force on the object is that due to the spring. When the spring is 
relaxed, the net force is zero; the object is in equilibrium.

If the object is now pulled to the right to the position x = A and then released, 
the net force on the object is

 Fx = −kx (10-12)

where the negative sign tells us that the spring force is opposite in direction to the 
displacement from equilibrium. At first the object is to the right of the equilibrium 
position and the spring pulls to the left. Notice that the force exerted by the spring is 
in the correct direction to restore the object to the equilibrium position; it always 
pushes or pulls back toward the equilibrium point.

Imagine taking a series of photos at equal time intervals as the object oscillates 
back and forth. In Fig. 10.15 the blue dots are the positions of the object at equal 
time intervals over one-half of a full cycle, from one endpoint to the other. (A full 
cycle would include the return trip.)

F(x)

x

Figure 10.13 A nonlinear 
restoring force (red) can be 
approximated as a linear restor-
ing force (blue) for small 
 displacements.

0

Spring

–A

m

A x

Figure 10.14 Spring in 
relaxed position. We choose the 
object’s equilibrium position as 
the origin (x = 0).

0
Endpoint Equilibrium position Endpoint

–A A
x

Figure 10.15 Positions of an 
oscillating object at equal time 
intervals over half a period. The 
spring is omitted for clarity.
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Energy Analysis in SHM Figure 10.15 suggests that the speed is greatest as the 
object passes through the equilibrium position. The object slows as it approaches the 
endpoints and gains speed as it approaches the equilibrium point. At the endpoints 
(x = ±A) , the object is instantaneously at rest before heading back in the other direc-
tion. Conservation of energy supports these observations. The total mechanical energy 
of the mass and spring is constant.

E = K + U = constant

where K is the kinetic energy and U is the elastic potential energy stored in the spring. 
As the object oscillates back and forth, energy is converted from potential to kinetic 
and back to potential in the half-cycle shown in Fig. 10.15. From Section 6.7, the 
elastic potential energy of the spring is

 U =
1
2

 kx2 (6-38)

The speed at any point x can be found from the energy equation

 E =
1
2

 mv2
x +

1
2

 kx2 (10-13)

The maximum displacement of the object is the amplitude A. At the maximum 
displacement, where the motion changes direction, the velocity is zero. Since the kinetic 
energy is zero at x = ± A, all the energy is elastic potential energy at the endpoints. 
Therefore, the total energy E at the endpoints is

 Etotal =
1
2

 kA2 (10-14)

and, since energy is conserved, this must be the total energy at any point in the object’s 
motion. The maximum speed vm occurs at x = 0 where all the energy is kinetic. Thus, 
at x = 0, the total energy equals the kinetic energy

 Etotal =
1
2

 mv2
m (10-15)

and, from Eq. (10-14),

 
1
2

 mv2
m =

1
2

 kA2 (10-16)

Solving for vm yields

 vm = √
k

m
 A (10-17)

The maximum speed is proportional to the amplitude.

CHECKPOINT 10.5

What	 is	 the	displacement	of	 an	object	 in	SHM	when	 the	 kinetic	 and	potential	
energies	are	equal?

Acceleration in SHM The force on the object at any point x is given by Hooke’s 
law; Newton’s second law then gives the acceleration:

 Fx = −kx = max (10-18)

CONNECTION:

Our study of SHM is based 
on familiar principles of 
 energy conservation and 
Newton’s second law, 
 together with Hooke’s law.
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Solving for the acceleration, we obtain:

Acceleration of an object in SHM

 ax(t) = − 

k

m
 x(t)  (10-19)

Thus, the acceleration is a negative constant (−k/m) times the displacement; the accel-
eration and displacement are always in opposite directions. Whenever the acceleration 
is a negative constant times the displacement, the motion is SHM.

The acceleration has its maximum magnitude am, where the force is largest, which 
is at the maximum displacement x = ± A:

 am =
k

m
 A (10-20)

In SHM, the acceleration changes with time; Eq. (10-20) gives the maximum accel-
eration only. Equations derived for constant acceleration do not apply.

Example 10.6

Oscillating Model Rocket

A model rocket of 1.0 kg mass is attached to a horizontal 
spring with a spring constant of 6.0 N/cm. The spring 
is  compressed by 18.0 cm and then released. The intent 
is to shoot the rocket horizontally, but the release mecha-
nism fails to disengage, so the rocket starts to oscillate 
horizontally. Ignore friction and assume the spring to 
be  ideal. (a) What is the amplitude of the oscillation? 
(b) What is the maximum speed? (c) What are the rocket’s 
speed and acceleration when it is 12.0 cm from the 
 equilibrium point?

Strategy First, we sketch the situation (Fig. 10.16). Ini-
tially all of the energy is elastic potential energy and the ki-
netic energy is zero. The initial displacement must be the 
maximum displacement—or amplitude—of the oscillations 
since to get farther from equilibrium would require more 
elastic energy than the total energy available. The speed at 
any position can be found using energy conservation 
(1

2kx2 + 1
2mv2

x = 1
2kA2) . The maximum speed occurs when all 

of the energy is kinetic. The acceleration can be found from 
Newton’s second law.

Solution (a) The amplitude of the oscillation is the maxi-
mum displacement, so A = 18.0 cm.

(b) From energy conservation, the maximum kinetic energy 
is equal to the maximum elastic potential energy:

Km =
1
2

 mv2
m = E =

1
2

 kA2

Solving for vm yields 

vm = √
k

m
 A = √

6.0 × 102 N/m
1.0 kg

× 0.180 m = 4.4 m/s

(c) For the speed at a displacement of 0.120 m, we again use 
energy conservation.

1
2

 kx2 +
1
2

 mv2 =
1
2

 kA2

Solving for v yields

 v = √
kA2 − kx2

m
= √

k

m
 (A2 − x2)

 = √
6.0 × 102 N/m

1.0 kg
 [ (0.180 m)2 − (0.120 m)2] = 3.3 m/s

From Newton’s second law,

Fx = −kx = max

At x = ±0.120 m,

ax = − 

k

m
 x =

6.0 × 102 N/m
1.0 kg

× (±0.120 m) = ±72 m/s2

0–18.0 cm

Spring is
relaxed here

x

Figure 10.16
The model rocket before it is released.

continued on next page
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10.6 THE PERIOD AND FREQUENCY FOR SHM

Definitions of Period and Frequency SHM is periodic motion because the same 
motion repeats over and over—a particle goes back and forth over the same path in 
precisely the same way. Each time the particle repeats its original motion, we say that 
it has completed another cycle. To complete one cycle of motion, the particle must 
be at the same point and heading in the same direction as it was at the start of the 
cycle. The period T is the time interval occupied by one complete cycle. The fre-
quency f is the number of cycles per unit time:

 f =
1
T

  (SI unit: Hz = cycles per second) (5-10)

SHM is a special kind of periodic motion in which the restoring force is propor-
tional to the displacement from equilibrium. Not all periodic vibrations are examples 
of simple harmonic motion since not all restoring forces are proportional to the dis-
placement. Any restoring force can cause oscillatory motion. An electrocardiogram 
(Fig. 10.17) traces the periodic pattern of a beating heart, but the motion of the 
recorder needle is not simple harmonic motion. As we are about to show, in SHM 
the position is a sinusoidal function of time.

CHECKPOINT 10.6

The	pendulum	 in	 a	 grandfather	 clock	 swings	 from	 its	 extreme	 leftmost	 posi-
tion	 to	 its	 extreme	 rightmost	 position	 in	1.0	 s.	What	 is	 the	 frequency	 of	 its	
periodic	motion?

Circular Motion and SHM To learn more about SHM, imagine setting up an exper-
iment (Fig. 10.18). We attach an object to an ideal spring, move the object away from 
the equilibrium position, and then release it. The object vibrates back and forth in 
simple harmonic motion with amplitude A. At the same time a horizontal circular 
disk, of radius r = A and with a pin projecting vertically up from its outer edge, is 
set into rotation with uniform circular motion. Both the pin and the object attached 
to the spring are illuminated so that shadows of the vibrating object and of the pin 
on the rotating disk are seen on a screen. The speed of the disk is adjusted until the 
shadows oscillate with the same period. We will show that the motion of the two 
shadows is identical, so the mathematical description of one can be used for the other.

To find the mathematical description of SHM, we analyze the uniform circular 
motion of the pin. Figure 10.18b shows the pin P moving counterclockwise around a 

The magnitude of the acceleration is 72 m/s2; the direc-
tion is toward the equilibrium point.

Discussion Note that at a given position (say x = 
+0.120 m), we can find the speed of the rocket, but the direc-
tion of the velocity can be either left or right; the rocket 
passes through each point (other than the endpoints) both on 
its way to the left and on its way to the right. By contrast, the 
acceleration at x = +0.120 m is always in the −x-direction, 
regardless of whether the rocket is moving to the left or to 

the right. If the rocket is moving to the right, then it is slow-
ing down as it approaches x = +A; if it is moving to the left, 
then it is speeding up as it approaches x = 0.

Practice Problem 10.6 Maximum Acceleration  
of the Rocket

What is the maximum acceleration of the rocket in Exam-
ple 10.6 and at what position(s) does it occur?

Example 10.6 continued

CONNECTION:

The period and frequency are 
defined exactly as for uni-
form circular motion, which 
is another kind of periodic 
motion.

Figure 10.17  
An electrocardiogram.
©Don Farrall/Getty Images
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circle of radius A at a constant angular velocity ω in rad/s. For simplicity, let the pin 
start at θ = 0 at time t = 0. The location of the pin at any time is then given by the 
angle θ:

 θ(t) = ωt (10-21)

The motion of the pin’s shadow has the same x-component as the pin itself. Using a 
right triangle (Fig. 10.18c), we find that

 x(t) = A cos θ = A cos ωt (10-22)

Since the pin moves in uniform circular motion, its acceleration is constant in 
magnitude but not in direction; the acceleration is toward the center of the circle. In 
Section 5.2, the magnitude of the radial acceleration is shown to be

 ar = ω2r = ω2A (5-17)

At any instant the direction of the acceleration vector is opposite to the direction of the 
displacement vector in Fig. 10.18b—that is, toward the center of the circle. Therefore,

 ax = −ar cos θ = −ω2A cos ωt (10-23)

Comparing Eqs. (10-22) and (10-23), we see that, at any time t,

 ax(t) = −ω2x(t)  (10-24)

In Eq. (10-19) we showed that in SHM the acceleration is proportional to the 
displacement:

 ax = − 

k

m
  x (10-19)

Comparing the right-hand sides of Eqs. (10-19) and (10-24), the motions of the 
two shadows are identical as long as ω is given by

0

0

(a)

Light source

(b)

(c)

–A A

x

x

x

P

r

r

y

y

y

v

P

x

ω

x0 A–A

 θ = ωt 

ωt

θ
ω

Figure 10.18 (a) An experi-
ment to show the relation 
between uniform circular 
motion and SHM. (b) A pin 
P moving counterclockwise 
around a circle as a disk rotates 
with constant angular velocity 
ω. (c) Finding the x-component 
of the displacement.

Angular frequency of a mass-spring system

 ω = √
k

m
 (10-25)
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In the context of SHM, the quantity ω is called the angular frequency. Note that the 
angular frequency is determined by the mass and the spring constant but is independent 
of the amplitude. Most of the equations involving ω are correct only if ω is measured in 
radians per unit time (e.g., rad/s). Don’t forget to put your calculator into radian mode.

Equations (10-22) and (10-23) show that the position and acceleration of an object 
in SHM are sinusoidal functions of time (sine or cosine). In Problem 62, you can 
show that vx is also a sinusoidal function of time. The term harmonic in simple har-
monic motion refers to sinusoidal vibrations; this usage is related to similar usage in 
music and acoustics. In Chapter 12, we show that a complex vibration can be formed 
by combining harmonic (sinusoidal) vibrations at different frequencies, which is why 
the study of SHM is the basis for understanding more complex vibrations. The term 
simple in SHM means that no energy enters or leaves the system. In SHM, the ampli-
tude of the vibration is constant.

Period and Frequency for an Ideal Mass-Spring System Since the object in 
SHM and the pin in circular motion have the same frequency and period, the relation-
ships between ω, f, and T still apply. Therefore, the frequency and period of a mass-
spring system are

 f =
ω

2π
=

1
2π√

k

m
 (10-26)

and

 T =
1
f

= 2π√
m

k
 (10-27)

With the identification of ω for a mass-spring system, we can write the maximum 
speed and acceleration from Eqs. (10-14) and (10-16):

 vm = ωA (10-28)

 am = ω2A (10-29)

These expressions are more general than Eqs. (10-17) and (10-20)—they apply to any 
system in SHM, not just a mass-spring system.

To Find the Angular Frequency for Any Object in SHM

∙ Write down the restoring force as a function of the displacement from 
equilibrium. Since the restoring force is linear, it always takes the form  
F = −kx, where k is a constant.

∙ Use Newton’s second law to relate the restoring force to the acceleration.
∙ Solve for ω using ax = −ω2x [Eq. (10-24)].

A Vertical Mass and Spring

The mass and spring systems discussed so far oscillate horizontally. An oscillating 
mass on a vertical spring also exhibits SHM; the difference is that the equilibrium 
point is shifted downward by gravity. In our discussions, we assume ideal springs that 
obey Hooke’s law and have a negligibly small mass of their own.

Suppose that an object of weight mg is hung from an ideal spring of spring 
constant k (Fig. 10.19). The object’s equilibrium point is not the point at which the 
spring is relaxed. In equilibrium, the spring is stretched downward a distance d from 
its relaxed length so that the spring pulls up with a force equal to mg. Taking the 
+y-axis in the upward direction, the condition for equilibrium is

 ∑Fy = +kd − mg = 0 (at equilibrium) (10-30)
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Therefore, d = mg/k. Let us take the origin (y = 0) at the equilibrium point. If the 
object is displaced vertically from the equilibrium point to a position y, the spring’s 
extension is d − y and the spring force becomes

 Fspring,y = k(d − y)  (10-31)

If y is positive, the object is displaced upward and the spring force is less than kd. 
The y-component of the net force is then

 ∑Fy = k(d − y) − mg = kd − ky − mg (10-32)

From Eq. (10-30), we know that kd = mg; therefore,

 ∑Fy = −ky (10-33)

The restoring force provided by the spring and gravity together is −k times the dis-
placement from equilibrium. Therefore, the vertical mass-spring exhibits SHM with 
the same period and frequency as if it were horizontal.

(a)

+d

0

(b) (c)

Equilibrium
position

Displaced
position

Relaxed
position

y

y

d m

m

m

Figure 10.19 (a) A relaxed 
spring, of spring constant k, 
with mass m attached. (b) The 
same spring is extended to its 
equilibrium position, a distance 
d below the relaxed position, 
after mass m is allowed to hang 
freely. Note that we choose  
y = 0 at the equilibrium posi-
tion, not at the relaxed position. 
(c) The spring is displaced 
from the equilibrium position.

Example 10.7

A Vertical Spring

A spring with spring constant k is suspended vertically. A 
model goose of mass m is attached to the unstretched spring 
and then released so that the bird oscillates up and down. 
(Ignore friction and air resistance; assume an ideal massless 
spring.) Calculate the kinetic energy, the elastic potential 
energy, the gravitational potential energy, and the total me-
chanical energy at (a) the point of release and (b) the equilib-
rium point. Take the gravitational potential energy to be zero 
at the equilibrium point. (c) How long does it take the bird to 
move from its highest to its lowest position?

Strategy The bird oscillates in SHM about its equilib-
rium point y = 0 between two extreme positions y = +A and 
y = −A (Fig. 10.20). The amplitude A is equal to the dis-
tance the spring is stretched at the equilibrium point; it can 
be found by setting the net force on the bird equal to zero. 

The total mechanical energy is the sum of the kinetic en-
ergy, the elastic potential energy, and the gravitational po-
tential energy. We expect the total energy to be the same at 
the two points; since no dissipative forces act, mechanical 
energy is conserved.

Solution The equilibrium point is where the net force on 
the bird is zero:

 ∑Fy = +kd − mg = 0 (10-30)

In this equation, d is the extension of the spring at equilib-
rium. Since the bird is released where the spring is relaxed, 
d is also the amplitude of the oscillations:

A = d =
mg

k

continued on next page
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10.7 GRAPHICAL ANALYSIS OF SHM

We have shown that the position of a particle moving in SHM along the x-axis is

 x(t) = A cos ωt (10-22)

if we choose t = 0 at the particle’s maximum positive displacement. Figure 10.21a is 
a graph of the position as a function of time.

The velocity at any time is the slope of the x(t) graph. Note that the maximum 
slope in Fig. 10.21a occurs when x = 0, which confirms what we already know from 

(a) (b) (c)

Equilibrium
position

v = 0

v = 0

v = vm

y = +A

y = –A

y = 0

y

Figure 10.20
(a) The spring is unstretched before the model bird is released at 
position y = +A; (b) the model bird passes through the equilibrium 
position y = 0 with maximum speed; (c) the spring’s maximum 
extension occurs when the bird is at y = −A.

(a) At the point of release, v = 0 and the kinetic energy is 
zero. The elastic energy is also zero—the spring is un-
stretched. The gravitational potential energy is

Ug = mgy = mgA =
(mg)2

k

The total mechanical energy is the sum of the kinetic and 
potential (elastic + gravitational) energies,

E = K + Ue + Ug =
(mg)2

k

(b) At the equilibrium point, the bird moves with its maxi-
mum speed vm = ωA. The angular frequency is the same as 
for a horizontal spring: ω = √k/m Then the kinetic energy is

K =
1
2

 mv2
m =

1
2

 mω2A2

Now we substitute A = mg/k and ω2 = k/m.

K =
1
2

 m 

k

m
 
(mg)2

k2 =
1
2

 

(mg)2

k

The spring is stretched a distance A, so the elastic energy is

Ue =
1
2

 kA2 =
1
2

 k 

(mg)2

k2 =
1
2

 
(mg)2

k

The gravitational potential energy is zero at y = 0. Therefore, 
the total mechanical energy is

E = K + Ue + Ug =
1
2

 

(mg2)
k

+
1
2

 

(mg)2

k
+ 0 =

(mg)2

k

which is the same as at y = +A.

(c) The period is 2π√m/k. Moving from y = +A to y = −A is 
half of a complete cycle, so the time it takes is π√m/k.

Discussion As the bird moves down from the release 
point toward the equilibrium point, gravitational potential 
energy is converted into elastic energy and kinetic en-
ergy.  After the bird passes the equilibrium point, both 
 kinetic and gravitational energy are converted into elastic 
energy. At the lowest point in the motion, the gravita-
tional potential energy has its lowest value, while the 
elastic  potential energy has its greatest value. The total 
potential energy (gravitational plus elastic) has its mini-
mum value at  the equilibrium point since the kinetic 
 energy is maximum there.

Practice Problem 10.7 Energy at Maximum  
Extension

Calculate the energies at the lowest point in the oscillations 
in Example 10.7.

Example 10.7 continued
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energy conservation: the velocity is maximum at the equilibrium point. Note also that 
the velocity is zero when the displacement is a maximum (+A or −A). Figure 10.21b 
shows a graph of vx(t). The equation for vx can be derived using conservation of energy 
(see Problem 62):

 vx(t) = −vm sin ωt = −ωA sin ωt (10-34)

The acceleration is the slope of the vx(t) graph (Fig. 10.21c). From Eq. (10-23), 
we have

 ax(t) = −ω2x(t) = −ω2A cos ωt (10-23)

Figures 10.21d,e show the kinetic and potential energies as functions of time, 
respectively. The total mechanical energy E = K + U = 1

2kA2 is constant.
We have written the position as a function of time in terms of the cosine func-

tion, but we can just as correctly use the sine function. The difference between the 
two is the initial position at time t = 0. If the position is at a maximum (x = A) at 
t = 0, x(t) is a cosine function. If the position is at the equilibrium point (x = 0) 
at t = 0, x(t) is a sine function. By analyzing the slopes of the graphs and apply 
conservation of energy, you can show (Problem 59) that if the position as a function 
of time is

 x(t) = A sin ωt (10-35)

then the velocity is

 vx(t) = ωA cos ωt (10-36)

Applying Eq. (10-24), we find the acceleration to be

 ax(t) = −ω2A sin ωt (10-37)

   
   

  

(a)

One cycle, or one period

x = A cos ωt

vx = –vm sin ωt = –ωA sin ωt

vx

ax

ax = –am cos ωt = –ω2A cos ωt

t

x

A

0

0

0

vm

–vm

am

–am

–A

T TT 3–
2

1–
2

(b)
tT TT 3–

2
1–
2

(c)

(d)

t

K

E

0
t

T TT 3–
2

1–
2

T TT 3–
2

1–
2

(e)

U

E

0
tT TT 3–

2
1–
2

U =    kx21–
2

K =    mv x
1–
2

2 =    kA2 sin2 ωt1–
2

=    kA2 cos2 ωt1–
2

Figure 10.21 Graphs of 
(a) position, (b) velocity, and 
(c) acceleration as functions of 
time for a particle in simple 
harmonic motion. Observe the 
interrelationships between the 
three graphs. At any time, the 
value of vx is the slope of the 
graph of x and the value of ax 
is the slope of the graph of vx. 
When the displacement is max-
imum (x = ±A), the velocity is 
zero. At the equilibrium point 
(x = 0), the speed is maximum 
(vx = ±vm). The velocity graph 
is one-quarter of a cycle ahead 
of the position graph. That is, 
vx(t) reaches a maximum one-
quarter period before x(t) 
reaches its maximum. We say 
that vx(t) leads x(t) by one 
fourth of a cycle. The accelera-
tion is always proportional to 
the  displacement; its direction 
is always toward the equilib-
rium point (ax = –ω2x). (d) 
Kinetic energy as a function of 
time. (e) Potential energy as a 
function of time. The total 
mechanical energy E = K + U 
is constant.
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CHECKPOINT 10.7

(a)	 When	 the	 displacement	 of	 an	 object	 in	 SHM	 is	 zero,	 what	 is	 its	 speed?	
(b) When	 the	speed	 is	 zero,	what	 is	 the	displacement?

10.8 THE PENDULUM

Simple Pendulum

A simple pendulum consists of a bob (modeled as a point mass m) attached to a string 
or rod of length L and negligible mass. When a pendulum swings back and forth, the 
bob moves along a circular arc. The motion is periodic for any amplitude. As we show 
here, when the amplitude is small, the motion is approximately SHM.

The restoring force is the tangential component of the weight, which has magni-
tude mg sin θ when the tangential displacement along the circular arc is s = Lθ 
(Fig. 10.23). The restoring force is not proportional to the displacement, so the motion 
is not SHM.

However, for small angles, sin θ ≈ θ, and then the restoring force is Ftan ≈ −mgθ, 
which is (approximately) proportional to the displacement. Therefore, the motion of 

Example 10.8

A Vibrating Loudspeaker Cone

A loudspeaker has a movable diaphragm (the cone) that 
vibrates back and forth to produce sound waves. The dis-
placement of a loudspeaker cone playing a sinusoidal test 
tone is graphed in Fig. 10.22. Find (a) the amplitude of the 
motion, (b) the period of the motion, and (c) the frequency 
of the motion. (d) Write equations for x(t) and vx(t).

Strategy The amplitude and period can be read directly 
from the graph. The frequency is the inverse of the period. 
Since x(t) begins at the maximum displacement, it is described 
by a cosine function. By looking at the slope of x(t), we can 
tell whether the velocity is a positive or negative sine function.

Solution (a) The amplitude is the maximum displacement 
shown on the graph: A = 0.015 m.

(b) The period is the time for one complete cycle. From the 
graph: T = 0.040 s.

(c) The frequency is the inverse of the period.

f =
1
T

=
1

0.040 s
= 25 Hz

(d) Since x = +A at t = 0, we write x(t) as a cosine function:

x(t) = A cos ωt

where A = 0.015 m and

ω = 2π f = 160 rad/s

The slope of x(t) is initially zero and then goes negative. 
Therefore, vx(t) is a negative sine function:

vx(t) = −vm sin ωt

where ω = 2πf = 160 rad/s and

vm = ωA = 160 rad/s × 0.015 m = 2.4 m/s

Discussion As a check, the velocity should be one-quarter 
cycle ahead of the position. If we imagine shifting the verti-
cal axis to the right (ahead) by 0.01 s, the graph would have 
the shape of a negative sine function.

Practice Problem 10.8 Acceleration of the 
Speaker Cone

Sketch a graph and write an equation for ax(t).

0.015

0

–0.015

x (m)

t (s)0.02 0.04 0.05 0.060.030.01

Figure 10.22
Horizontal displacement of a vibrating cone as a function of time.
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the pendulum is approximately SHM for small amplitudes. In this case, after substitut-
ing θ = s/L, we have

 Ftan ≈ −(mg/L)s (10-38)

The effective spring constant—that is, the constant of proportionality between the 
restoring force and the displacement—is

 keff = mg/L (10-39)

Then the angular frequency of the SHM is

 ω = √
keff

m
= √

g

L
 (10-40)

and the period is

 T =
2π

ω
= 2π√

L

g
 (10-41)

Note that the period depends on L and g but not on the mass of the pendulum.
Remember that Eq. (10-41) is an approximation that assumes small amplitudes. The 

actual period of a pendulum is longer than the small-amplitude value of Eq. (10-41). 
The discrepancy is less than 1% for amplitudes up to θmax = 22° and rises to about 18% 
for an amplitude of θmax = 90°.

Be careful not to confuse the angular frequency of the pendulum [in Eqs. (10-40) 
and (10-41)] with its angular velocity. The angular frequency of a given pendulum is 
constant, whereas the angular velocity (the rate of change of θ) changes with time 
between zero (at the extremes) and its maximum magnitude (at the equilibrium point).

(a) (b)

mg

T

L

S

θ

mg

mg sin θ

θ
θ

Figure 10.23 (a) A simple 
pendulum of length L is dis-
placed so the string makes an 
angle θ with the vertical. The 
arc length s is equal to Lθ. The 
forces acting on the bob are the 
tension in the string and the 
weight. (b) The tangential com-
ponent of the weight has mag-
nitude mg sin θ. This is the 
restoring force; it always pulls 
the pendulum back toward the 
equilibrium position at θ = 0.

EVERYDAY PHYSICS DEMO

The relation between the period and the length of the pendulum is easily 
tested. Make a simple pendulum by taping a thin string to a coin. Holding the 
end of the string, let the coin swing through a small arc and note the time 
for the coin to make ten complete oscillations, starting from one extreme 
position and returning to the same position ten times. Divide the time by ten 
to get the period. (This gives a more accurate value than timing a single 
period.) Measure the length of the pendulum and test Eq. (10-41).

Repeat the experiment by holding the string at a position closer to the 
coin, shortening the length of the pendulum. What do you find? Is the period 
for the shorter pendulum longer, shorter, or the same as that measured for 
the longer pendulum?

The effect of a different mass on the period can also be tested by using 
two or three coins taped together, with the same length pendulum as used 
for the first measurement. Does a heavier coin oscillate with the same period 
as a lighter one (for the same length)?

Example 10.9

Grandfather Clock

A grandfather clock uses a pendulum with period 2.0 s to 
keep time. In one such clock, the pendulum bob has mass 
150 g; the pendulum is set into oscillation by displacing it 

33 mm to one side. (a) What is the length of the pendulum? 
(b) Does the initial displacement satisfy the small angle 
 approximation?

continued on next page
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Physical Pendulum

Imagine that you have a simple pendulum of length L. Beside it you have a uniform 
metal bar of the same length, which is free to swing about an axis at one end. Would 
the two have the same period if they are set into oscillation?

For the simple pendulum, the bob is assumed to be a point mass; all the mass of 
the pendulum is at a distance L from the rotation axis. For the metal bar, however, the 
mass is uniformly distributed from the axis to a maximum distance L away from the 
axis. The center of mass is located at the midpoint, a distance d = 1

2L from the axis 
(Fig. 10.24). Since the mass is on average closer to the axis, the period is shorter than 
that of the simple pendulum.

Would this bar have a period equal to that of a simple pendulum of length 
d = 1

2L? That is a good guess, since the center of mass of the bar is a distance 1
2L 

away from the rotation axis. Unfortunately, it isn’t quite that easy. The gravitational 
force acts at the center of mass, but we cannot think of all the mass as being 
concentrated at that point—that would give the wrong rotational inertia. When set 
into oscillation, the bar, or any other rigid object free to rotate about a fixed axis, 
is called a physical  pendulum. For small amplitudes, the period of a physical 
pendulum is

 T = 2π√
I

mgd
 (10-42)

where d is the distance from the rotation axis to the cm of the object and I is the 
rotational inertia about that axis.

For a uniform bar of length L, the cm is halfway down the bar:

 d =
1
2

 L (10-43)

Example 10.9 continued

Strategy The period depends on the length of the pendulum 
and on the gravitational field strength g. It does not  depend on 
the mass of the bob. It also does not depend on the initial 
 displacement, as long as it is small compared with the length.

Solution (a) Assuming small amplitudes, the period is

T = 2π√
L

g

Solving for L yields

 L =
T2g

(2π)2

 =
(2.0 s)2 × 9.80 m/s2

(2π)2 = 0.99 m

(b) The small angle approximation is valid if the maximum 
displacement is small compared with the length of the 
 pendulum.

x

L
=

33 mm
990 mm

= 0.033

Is that small enough? If sin θ = x/L = 0.033, then

θ = sin−1 0.033 = 0.033 006

Sin θ and θ differ by less than 0.02%. Since we only know T 
to two significant figures, the approximation is good.

Discussion We should check that we didn’t write the ex-
pression for the period “upside down,” which is the most 
likely error we could make. Besides checking that the units 
work out, we know that a longer pendulum has a longer 
period, so L must go in the numerator. On the other hand, if 
g were larger, the restoring force would be larger and we 
would expect the period to shorten; thus, g belongs in the 
denominator.

Practice Problem 10.9 Pendulum on the Moon

A pendulum of length 0.99 m is taken to the Moon by 
an astronaut. The period of the pendulum is 4.9 s. What 
is  the gravitational field strength on the surface of the 
Moon?

Tension
force

Axis Axis

L
L

d
θ θCM

mg
mg

(a) (b)

Figure 10.24 (a) A simple 
pendulum and (b) a physical 
pendulum.
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(a) (b) (c)

From Table 8.1, the rotational inertia of a uniform bar rotating about an axis through 
an endpoint is I = 1

3mL2. The period of oscillation is

 T = 2π√
I

mgd
= 2π√

1
3mL2

(mg)1
2L

= 2π√
2L

3g
 (10-44)

The bar has the same period as a simple pendulum of length 2
3L.

CHECKPOINT 10.8

The	 simple	 pendulum	 can	 be	 thought	 of	 as	 a	 limiting	 case	 of	 the	 physical	
pendulum	where	 all	 of	 the	mass	 is	 at	 the	 same	 distance	 L	 from	 the	 rotation	
axis.	 Is	 the	expression	 for	 the	period	of	a	physical	pendulum,	Eq.	 (10-42),	cor-
rect	 in	 this	 limiting	case?

Example 10.10

Comparison of Walking Frequencies and Speeds 
for Various Creatures

 During a relaxed walking pace, an animal’s leg can be 
thought of as a physical pendulum of length L that pivots 
about the hip. (a) What is the relaxed walking frequency for a 
cat (L = 30 cm), dog (60 cm), human (1 m), giraffe (2 m), and 
a mythological titan (10 m)? (b) Derive an equation that gives 
the walking speed (amount of ground covered per unit time) 
for a given walking frequency f. [Hint: Start by drawing a 
picture of the leg position at the start of the swing (leg back) 
and the end of the swing (leg forward) and assume a comfort-
able angle of about 30° between these two positions. To how 
many steps does a complete period of the pendulum corre-
spond?] (c) Find the walking speed for each of the animals 
listed in part (a).

Strategy We have to use an idealized model of the leg, 
since we don’t know the location of the center of mass or the 
rotational inertia. The simple pendulum is not a good model, 

since it would assume all the mass of the leg at the foot! A 
much better model is to think of the leg as a uniform cylinder 
pivoting about one end.

Solution (a) For a uniform cylinder, the center of mass is 
a distance d = 1

2L from the pivot and the rotational inertia 
about an axis at one end is I = 1

3mL2. Then the period is

T = 2π√
I

mgd
= 2π√

1
3mL2

(mg)1
2L

= 2π√
2L

3g

and the frequency f is

f =
1
T

=
1

2π√
3g

2L
≈ 0.2√

g

L

Substituting the numerical values of L for each animal, we 
find the frequencies to be 1 Hz (cat), 0.8 Hz (dog), 0.6 Hz 
(human), 0.4 Hz (giraffe), and 0.2 Hz (titan).

continued on next page

Figure 10.25
The forward motion of a leg during walking is similar to the swing of a physical pendulum. From (a) to (b), the right leg swings forward 
like a pendulum. In (c), the right foot is on the ground and the left leg is about to swing forward.
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Example 10.10 continued

(b) One period of the “pendulum” corresponds to two steps. 
In Fig. 10.25a, the right leg is about to step forward. The step 
occurs as the pendulum swings forward through half a cycle. 
In Fig. 10.25b, the right foot is about to touch the ground; in 
Fig. 10.25c, the right foot touches the ground and now the 
left leg is about to step forward. During this step, the right 
foot stays in place on the ground, but the right leg is swing-
ing backward relative to the hip joint. During each step, the 
distance covered is approximately the length of a 30° arc of 
radius L, which is one twelfth the circumference of a circle 
of radius L. So during one period, the distance walked is

D = 2 ×
1
12

× 2πL =
π

3
 L ≈ L

and the walking speed is

v =
D

T
= Lf = 0.2√gL

(c) The speeds are 0.3 m/s (cat), 0.5 m/s (dog), 0.6 m/s 
 (human), 0.9 m/s (giraffe), and 2 m/s (titan).

Discussion You may be more familiar with walking 
speeds in mi/h. Converting the units, 0.6 m/s ≈ 1.3 mi/h, 
which is just about right for a leisurely walk. A brisk walk is 
about 3 mi/h for most people; to go much faster than that, 
you need to jog or run.

The solution says that longer legs walk faster, but the 
frequency of the steps is lower.

Practice Problem 10.10  Walking Speed  
for a Human

A more realistic model of a human leg of length 1.0 m has 
the center of mass 0.45 m from the hip and a rotational 
inertia of 1

6mL2. What is the walking speed predicted by 
this model?

EVERYDAY PHYSICS DEMO

Test the conclusion of Example 10.10 by walking beside a friend who is much 
taller or much shorter than you. Does the person with longer legs tend to walk 
faster but with a lower frequency of steps?

10.9 DAMPED OSCILLATIONS

In SHM, we assume that no dissipative forces such as friction or viscous drag exist. 
Since the mechanical energy is constant, the oscillations continue forever with con-
stant amplitude. SHM is a simplified model. The oscillations of a swinging pendulum 
or a vibrating tuning fork gradually die out as energy is dissipated. The amplitude of 
each cycle is a little smaller than that of the previous cycle (Fig. 10.26a). This kind 
of motion is called damped oscillation, where the word damped is used in the sense 
of extinguished or restrained. For a small amount of damping, oscillations occur at 
approximately the same frequency as if there were no damping. A greater degree of 
damping lowers the frequency slightly (Fig. 10.26b). Even more damping prevents 
oscillations from occurring at all (Fig. 10.26c).

(a)

(b)

(c)

x

x

t

x

t

t

Figure 10.26 Graphs of x(t) 
for a mass-spring system with 
increasing amounts of damping. 
In (c) the damping is sufficient 
to prevent oscillations from 
occurring.
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Application: Shock Absorbers Damping is not always a disadvantage. The suspen-
sion system of a car includes shock absorbers that cause the vibration of the body—a 
mass connected to the wheels by springs—to be quickly damped. The shock absorbers 
reduce the discomfort that passengers would otherwise experience due to the bouncing 
of an automobile as it travels along a bumpy road. Figure 10.27 shows how a shock 
absorber works. In order to compress or expand the shock absorber, a viscous oil must 
flow through the holes in the piston. The viscous force dissipates energy regardless of 
which direction the piston moves. The shock absorber enables the spring to smoothly 
return to its equilibrium length without oscillating up and down (Fig. 10.26c). When 
the oil leaks out of the shock absorber, the damping is insufficient to prevent oscilla-
tions. After hitting a bump, the body of the car oscillates up and down (Fig. 10.26b).

10.10 FORCED OSCILLATIONS AND RESONANCE

When damping forces are present, the only way to keep the amplitude of oscillations 
from diminishing is to replace the dissipated energy from some other source. When a 
child is being pushed on a swing, the parent replaces the energy dissipated with a small 
push. In order to keep the amplitude of the motion constant, the parent gives a little push 
once per cycle, adding just enough energy each time to compensate for the energy dis-
sipated in one cycle. The frequency of the driving force (the parent’s push) matches the 
natural frequency of the system (the frequency at which it would oscillate on its own).

Forced oscillations (or driven oscillations) occur when a periodic external driv-
ing force acts on a system that can oscillate. The frequency of the driving force does 
not have to match the natural frequency of the system. Ultimately, the system oscillates 
at the driving frequency, even if it is far from the natural frequency. However, the 
amplitude of the oscillations is generally quite small unless the driving frequency f is 
close to the natural frequency f0 (Fig. 10.28). When the driving frequency is equal to 
the natural frequency of the system, the amplitude of the motion is a maximum. This 
condition is called resonance.

At resonance, the driving force is always in the same direction as the object’s veloc-
ity. Since the driving force is always doing positive work, the energy of the oscillator 
builds up until the energy dissipated balances the energy added by the driving force. 
For an oscillator with little damping, this requires a large amplitude. When the driving 
and natural frequencies differ, the driving force and velocity are no longer synchronized; 
sometimes they are in the same direction and sometimes in opposite directions. The 
driving force is not at resonance, so it sometimes does negative work. The net work 
done by the driving force decreases as the driving frequency moves away from reso-
nance. Therefore, the oscillator’s energy and amplitude are smaller than at resonance.

Applications of Resonance Large-amplitude vibrations due to resonance can be 
dangerous in some situations. Materials can be stressed past their elastic limits, caus-
ing permanent deformation or breaking. In 1940, the wind set the Tacoma Narrows 
Bridge in Washington state into vibration with increasing amplitude. Turbulence in 
the air as it flowed across the bridge caused the air pressure to fluctuate with a fre-
quency matching one of the bridge’s resonant frequencies. As the amplitude of the 
oscillations grew, the bridge was closed; soon after, the bridge collapsed (Fig. 10.29). 
Engineers now design bridges with much higher resonant frequencies so the wind 
cannot cause resonant vibrations.

In the nineteenth century, bridges were sometimes set into resonant vibration when 
the cadence of marching soldiers matched a resonant frequency of the bridge. After the 
collapse of several bridges due to resonance, soldiers were told to break step when cross-
ing a bridge to eliminate the danger of their cadence setting the bridge into resonance.

Tall buildings sway back and forth at a particular resonant frequency determined 
by the structure. The vibration pattern is similar to what you see if you hold one end 
of a ruler to the edge of a desk and then pluck the other end. Engineers have many 
methods to reduce the amplitude of the swaying. One of the simplest and most widely 

Holes in 
the piston

Viscous oil

Spring

Figure 10.27 A shock 
absorber.
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Figure 10.28 Two resonance 
curves for an oscillator with nat-
ural frequency f0. The amplitude 
of the driving force is constant. 
In the red graph, the oscillator 
has one fourth as much damp-
ing as in the blue graph.
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used is the tuned mass damper (TMD). Building engineers attach a damped mass-spring 
system to the structure at a point where its vibration amplitude is largest—near the top. 
In the Hancock Tower, each of the 300 000 kg boxes is attached to the building frame 
with springs and shock absorbers and can slide back and forth, riding on a thin layer 
of oil that covers a 9 m long steel plate. The resonant frequency of the TMD is matched 
to the resonant frequency of the swaying building. When the swaying of the building 
drives the TMD into oscillation, energy is dissipated in the shock absorbers. The TMD 
in the Hancock Tower reduces the amplitude of its swaying by about 50%.

Figure 10.29 (a) The Tacoma 
Narrows Bridge begins to 
vibrate. (b) The twisting motion 
became so severe that ulti-
mately the roadway collapsed.
(a): ©Everett Collection/Newscom;  
(b): ©World History Archive/Newscom

(a) (b)

Master the Concepts

 ∙ A deformation is a change in the size or shape of an object.
 ∙ When deforming forces are removed, an elastic object 

returns to its original shape and size.

 ∙ Hooke’s law, in a generalized form, says that the defor-
mation of a material (measured by the strain) is propor-
tional to the magnitude of the forces causing the 
deformation (measured by the stress). The definitions of 
stress and strain are as given in the following table.

Type of Deformation
Tensile or 
Compressive Shear Volume

Stress Force per unit 
cross-sectional 
area F/A

Shear force 
 divided by the 
parallel area of 
the surface on 
which it acts F/A

Pressure P

Strain Fractional 
length change 
ΔL/L

Ratio of the 
relative 
displacement Δx 
to the separation 
L of the two 
parallel surfaces 
Δx/L

Fractional 
volume 
change 
ΔV/V

Constant of 
proportionality

Young’s 
 modulus Y

Shear modulus S Bulk 
 modulus B

 ∙ If the tensile or compressive stress exceeds the propor-
tional limit, the strain is no longer proportional to the 
stress. The solid still returns to its original length when 
the stress is removed as long as the stress does not exceed 
the elastic limit. If the stress exceeds the elastic limit, the 

material is permanently deformed. For larger stresses 
yet, the solid fractures when the stress reaches the break-
ing point. The maximum stress that can be withstood 
without breaking is called the ultimate strength.

 ∙ Vibrations occur in the vicinity of a point of stable equi-
librium. An equilibrium point is stable if the net force on 
an object when it is displaced from equilibrium points 
back toward the equilibrium point. Such a force is called 
a restoring force since it tends to restore equilibrium.

 ∙ Simple harmonic motion is periodic motion that occurs 
whenever the restoring force is proportional to the displace-
ment from equilibrium. In SHM, the position, velocity, and 
acceleration as functions of time are sinusoidal (i.e., sine or 
cosine functions). Most oscillatory motion is approximately 
SHM if the amplitude is small, because for small oscilla-
tions the restoring force is approximately linear.

 ∙ The period T is the time interval occupied by one com-
plete cycle of oscillation. The frequency f is the number 
of cycles per unit time:

 f =
1
T

 (5-10)

  The angular frequency is measured in radians per unit time:

 ω = 2πf  (5-12)

 ∙ The maximum velocity and acceleration in SHM are

 vm = ωA and am = ω2A (10-28, 10-29)

  where ω is the angular frequency. The acceleration is 
proportional to and in the opposite direction from the 
displacement:

 ax(t) = −ω2x(t)  (10-24)
continued on next page
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Master the Concepts continued  ∙ The period of oscillation for a mass-spring system is

 T = 2π√
m

k
 (10-27)

  For a simple pendulum it is

 T = 2π√
L

g
 (10-41)

  and for a physical pendulum it is

 T = 2π√
I

mgd
 (10-42)

 ∙ In the absence of dissipative forces, the total mechanical 
energy of a simple harmonic oscillator is constant and 
proportional to the square of the amplitude:

 E =
1
2

 kA2 (10-14)

  where the potential energy has been chosen to be zero at 
the equilibrium point. At any point, the sum of the ki-
netic and potential energies is constant:

 E =
1
2

 mv2
x +

1
2

 kx2 =
1
2

 kA2 (10-13)

 ∙ The equations that describe SHM are
  If x = A at t = 0, If x = 0 at t = 0,
  x = A cos ωt x = A sin ωt

  vx = −vm sin ωt  vx = vm cos ωt

  ax = −am cos ωt  ax = −am sin ωt

(a)

One cycle, or one period

x = A cos ωt

vx = –vm sin ωt

vx

ax

ax = –am cos ωt

t

x

A

0

0

0

vm

–vm

am

–am

–A

T T1–
2

(b)
tT T1–

2

(c)

(d)

t

K

K =    mvx
E

0
t

T T1–
2

T T1–
2

1–
2

(e)

U

U =    kx2E

0
tT T1–

2

1–
2

2

Conceptual Questions

 1. Young’s modulus for diamond is about 20 times as large 
as that of glass. Does that tell you which is stronger? If 
not, what does it tell you?

 2. A grandfather clock is running too fast. To fix it, should 
the pendulum be lengthened or shortened? Explain.

 3. A karate student hits downward 
on a stack of concrete blocks 
supported at both ends. A block 
breaks. Explain where it starts 
to break first, at the bottom or at 
the top. (The block experiences 
shear, compressive, and tensile 
stresses. Recall that concrete 
has much less tensile strength 
than compressive strength. 
Which part of the block is 

stretched and which is compressed when the block 
bends in the middle?)

 4. A cylindrical steel bar is compressed by the application 
of forces of magnitude F at each end. What magnitude 
forces would be required to compress by the same 
amount (a) a steel bar of the same cross-sectional area 
but one half the length? (b) a steel bar of the same length 
but one half the radius?

 5. The columns built by 
the ancient Greeks 
and Romans to sup-
port temples and 
other structures are 
tapered; they are 
thicker at the bot-
tom than at the top. 
This certainly has an aesthetic purpose, but is there an 
engineering purpose as well? What might it be?©emyerson/Getty Images

©peuceta/Shutterstock
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 6. Explain how the period of a mass-spring system can 
be independent of amplitude, even though the dis-
tance traveled during each cycle is proportional to the 
amplitude.

 7. In a reciprocating saw, a Scotch yoke converts the rota-
tion of the motor into the back-and-forth motion of the 
blade. The Scotch yoke is a mechanical device used to 
convert oscillatory motion to circular motion or vice 
versa. A wheel with a fixed knob rotates at constant 
angular velocity; the knob is constrained within a verti-
cal slot causing the saw blade to move left and right 
without moving up and down. Is the motion of the saw 
blade SHM? Explain.

  
 8. An object hanging vertically from a spring and a simple 

pendulum both have a period of oscillation of 1 s on 
Earth. An astronaut takes the two devices to another 
planet where the gravitational field is stronger than that 
of Earth. For each of the two systems, state whether the 
period is now longer than 1 s, shorter than 1 s, or equal 
to 1 s. Explain your reasoning.

 9. A bungee jumper leaps from a bridge and comes to a stop 
a few centimeters above the surface of the water below. 
At that lowest point, is the tension in the bungee cord 
equal to the jumper’s weight? Explain why or why not.

 10.  Does it take more force to tear a longer tendon or a 
shorter tendon? Assume the tendons are identical except 
for their lengths and are ideal—there are no weak points. 
Does it take more energy to tear the long tendon or the 
short tendon? Explain.

 11. A pilot is performing vertical loop-the-loops over the 
ocean at noon. The plane speeds up as it approaches the 
bottom of the circular loop and slows as it approaches 
the top of the loop. An observer in a helicopter is watch-
ing the shadow of the plane on the surface of the water. 
Does the shadow exhibit SHM? Explain.

 12. Are you more likely to find steel rods in a horizontal 
concrete beam or in a vertical concrete column? Is con-
crete more in need of reinforcement under tensile or 
compressive stress?

 13. Suppose that it takes tensile forces of magnitude F to 
produce a given strain ΔL/L in a steel wire of cross-
sectional area A. If you had two such wires side by side 
and stretched them simultaneously, what magnitude ten-
sile forces would be required to produce the same strain? 
By thinking of a thick wire as two (or more) thinner 
wires side by side, explain why the force to produce a 
given strain must be proportional to the cross-sectional 
area. Thus, the strain depends on the stress—the force 
per unit area.

 14. Think of a crystalline solid as a set of atoms connected 
by ideal springs. When a wire is stretched, how is the 

elongation of the wire related to the elongation of each 
of the interatomic springs? Use your answer to explain 
why a given tensile stress produces an elongation of the 
wire proportional to the wire’s initial length—or, equiv-
alently, that a given stress produces the same strain in 
wires of different lengths.

  
 15. What are the advantages of using the concepts of stress 

and strain to describe deformations?
 16. An old highway is built out of concrete blocks of equal 

length. A car traveling on this highway feels a little 
bump at the joint between blocks. The passengers in the 
car feel that the ride is uncomfortable at a speed of 
45 mi/h, but much smoother at speeds either lower or 
higher than that. Explain.

 17. The period of oscillation of a simple pendulum does not 
depend on the mass of the bob. By contrast, the period 
of a mass-spring system does depend on mass. Explain 
the apparent contradiction. [Hint: What provides the re-
storing force in each case? How does the restoring force 
depend on mass?]

 18. An object connected to an ideal spring is oscillating 
without friction on a horizontal surface. Sketch graphs 
of the kinetic energy, potential energy, and total energy 
as functions of time for one complete cycle.

Multiple-Choice Questions

Questions 1–4. An object is suspended vertically from an 
ideal spring. The spring is initially in its relaxed position. 
The object is then released and oscillates about the equilib-
rium position. Answer choices for Questions 1–4:
 (a) The spring is relaxed.
 (b) The object is at the equilibrium point.
 (c) The spring is at its maximum extension.
 (d)  The spring is somewhere between the equilibrium 

point and maximum extension.
 1. The acceleration is greatest in magnitude and is directed 

upward when:
 2. The speed is greatest when:
 3. The acceleration is zero when:
 4. The acceleration is greatest in magnitude and is directed 

downward when:
 5. Two simple pendulums, A and B, have the same length, 

but the mass of A is twice the mass of B. Their vibrational 
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amplitudes are equal. Their periods are TA and TB, re-
spectively, and their energies are EA and EB. Choose the 
correct statement.

 (a) TA = TB and EA > EB  (b) TA  > TB and EA  > EB
 (c) TA  > TB and EA < EB  (d) TA = TB and EA  < EB
 6. A force F applied to each end of a steel wire (length L, 

diameter d) stretches it by 1.0 mm. How much does F 
stretch another steel wire, of length 2L and diameter 2d?

 (a) 0.50 mm (b) 1.0 mm (c) 2.0 mm
 (d) 4.0 mm (e) 0.25 mm
 7. A stiff material is characterized by
 (a) high ultimate strength.
 (b) high breaking strength.
 (c) high Young’s modulus.
 (d) high proportional limit.
 8. A brittle material is characterized by
 (a) high breaking strength and low Young’s modulus.
 (b) low breaking strength and high Young’s modulus.
 (c) high breaking strength and high Young’s modulus.
 (d) low breaking strength and low Young’s modulus.
 9. Which pair of quantities can be expressed in the same 

units?
 (a) stress and strain
 (b) Young’s modulus and strain
 (c) Young’s modulus and stress
 (d) ultimate strength and strain
 10. Two wires have the same diameter and length. One is 

made of copper, the other brass. The wires are con-
nected together end to end. When the free ends are 
pulled in opposite directions, the two wires must have 
the same

 (a) stress. (b) strain. (c) ultimate strength.
 (d) elongation. (e) Young’s modulus.

Questions 11–20.  See the graph of vx(t) for an object in 
SHM. Answer choices for each question:
 (a) 1 s, 2 s, 3 s (b) 5 s, 6 s, 7 s (c) 0 s, 1 s, 7 s, 8 s
 (d) 3 s, 4 s, 5 s (e) 0 s, 4 s, 8 s (f) 2 s, 6 s
 (g) 3 s, 5 s (h) 1 s, 3 s (i) 5 s, 7 s
 (j) 3 s, 7 s (k) 1 s, 5 s

2 4 6 8 t (s)

vx

Multiple-Choice	Questions	11–20

 11. When is the kinetic energy maximum?
 12. When is the kinetic energy zero?
 13. When is the potential energy maximum?
 14. When is the potential energy minimum?
 15. When is the object at the equilibrium point?
 16. When does the acceleration have its maximum magnitude?

 17. Which answer specifies times when the net force is in 
the +x-direction?

 18. Which answer specifies times when the object is on the 
−x-side of the equilibrium point (x  < 0)?

 19. Which answer specifies times when the object is mov-
ing away from the equilibrium point?

 20. Which answer specifies times when the potential energy 
is decreasing?

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

10.2 Hooke’s Law for Tensile  
and Compressive Forces
 1. A steel beam is placed vertically in the basement of a 

building to keep the floor above from sagging. The load 
on the beam is 5.8 × 104 N, the length of the beam is 2.5 m, 
and the cross-sectional area of the beam is 7.5 × 10−3 m2. 
Find the vertical compression of the beam.

 2.  A 91 kg man’s thighbone has a relaxed length of 
0.50  m, a cross-sectional area of 7.0 × 10−4 m2, and a 
Young’s modulus of 11 GPa. By how much does the thigh-
bone compress when the man is standing on both feet?

 3.  A man with a mass of 70 kg stands on one foot. His 
femur has cross-sectional area of 8.0 cm2 and uncom-
pressed length 50 cm. (a) How much shorter is the femur 
when he stands on one foot? (b) What is the fractional 
length change of the femur when the person moves from 
standing on two feet to standing on one foot?

 4. A brass wire with Young’s modulus of 92 GPa is 2.0 m 
long and has a cross-sectional area of 5.0 mm2. If a 
weight of 5.0 kN is hung from the wire, by how much 
does it stretch?

 5. A wire of length 5.00 m with a cross-sectional area of 
0.100 cm2 stretches by 6.50 mm when a load of 1.00 kN 
is hung from it. What is the Young’s modulus for this 
wire?

 6. Four brass wires are subjected to the same tensile stress. 
The wires have unstretched lengths and diameters as 
follows. Rank the four wires in decreasing order of the 
amount of stretch.

 (a) length L, diameter d
 (b) length 2L, diameter d
 (c) length 4L, diameter d/2
 (d) length L/4, diameter d/2
 7. Two steel wires (of the same length and different radii) 

are connected together, end to end, and tied to a wall. An 
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applied force stretches the combination by 1.0 mm. 
How far does the midpoint move?

Radius r Radius 2r

? 1.0 mm

F
L L

 8.  Abductin, an elastic protein found in the ligaments 
of scallops, has a Young’s modulus of 4.0 MPa. The in-
ner hinge ligament has a cross-sectional area of 
0.78 mm2 and a relaxed length of 1.0 mm. When the 
muscles in the shell relax, the shell opens. This increases 
efficiency as the muscles do not need to exert any force 
to open the shell, only to close it. If the muscles must 
exert a force of 1.5 N to keep the shell closed, by how 
much is the abductin ligament compressed?

 9.   Resilin is a rubber-like protein that helps insects to 
fly more efficiently. The resilin, attached from the wing to 
the body, is relaxed when the wing is down and is ex-
tended when the wing is up. As the wing is brought up, 
some elastic energy is stored in the resilin. The wing is 
then brought back down with little muscular energy, since 
the potential energy in the resilin is converted back into 
kinetic energy. Resilin has a Young’s modulus of 1.7 MPa. 
(a) If an insect wing has resilin with a relaxed length of 
1.0 cm and a cross-sectional area of 1.0 mm2, how much 
force must the wings exert to extend the resilin to 4.0 cm? 
(b) How much energy is stored in the resilin?

 10.   It takes a flea 1.0 × 10−3 s to reach a peak speed 
of 0.74 m/s. (a) If the mass of the flea is 0.45 × 10−6 kg, 
what is the average power required? (b) Insect muscle 
has a maximum output of 60 W/kg. If 20% of the flea’s 
weight is muscle, can the muscle provide the power 
needed? (c) The flea has a resilin pad at the base of the 
hind leg that compresses when the flea bends its leg to 
jump. If we assume the pad is a cube with a side of  
6.0 × 10−5 m and the pad compresses fully, what is the 
energy stored in the compression of the pads of the two 
hind legs? The Young’s modulus for resilin is 1.7 MPa. 
(d) Does this provide enough power for the jump?

 11. A 0.50 m long guitar string, of cross-sectional area 
1.0 × 10−6 m2, has Young’s modulus Y = 2.0 GPa. By how 
much must you stretch the string to obtain a tension of 20 N?

10.3 Beyond Hooke’s Law
 12. An acrobat of mass 55 kg is going to hang by her teeth 

from a steel wire and she does not want the wire to 
stretch beyond its elastic limit. The elastic limit for the 
wire is 250 MPa. What is the minimum diameter the 
wire should have to support her?

 13.   Using the stress-strain graph for bone (Fig. 10.4c), 
calculate Young’s moduli for tension and for compres-
sion. Consider only small stresses.

 14.  A hair breaks under a tension of 1.2 N. What is the 
diameter of the hair? The tensile strength is 200 MPa.

 15.  Common sports injuries result in the tearing of ten-
dons and ligaments due to overstretching. If the anterior 
cruciate ligament (ACL) in an athlete’s knee has a 
length of 1.0 cm, a breaking point of 190 MPa, and a 
Young’s modulus of 600 MPa, how far must it be 
stretched from its relaxed length to tear it?

 16.  The ratio of the tensile (or compressive) strength to 
the density of a material is a measure of how strong the 
material is “pound for pound.” (a) Compare tendon 
(tensile strength 80.0 MPa, density 1100 kg/m3) with 
steel (tensile strength 0.50 GPa, density 7700 kg/m3): 
which is stronger “pound for pound” under tension? 
(b)  Compare bone (compressive strength 160 MPa, 
density 1600 kg/m3) with concrete (compressive 
strength 0.40 GPa, density 2700 kg/m3): which is stron-
ger “pound for pound” under compression?

 17.  The leg bone (femur) breaks under a compressive 
force of about 5 × 104 N for a human and 10 × 104 N for a 
horse. The human femur has a compressive strength of 
160  MPa, whereas the horse femur has a compressive 
strength of 140 MPa. What is the effective cross-sectional 
area of the femur in a human and in a horse? (Note: Since 
the center of the femur contains bone marrow, which has 
essentially no compressive strength, the effective cross-
sectional area is about 80% of the total cross-sectional area.)

 18.  Consider the tibia (shinbone) for a person of weight 
750 N standing on the ball of one foot as in the following 
figure. The ankle joint pushes upward on the bottom of 
the tibia with a force of 2800 N, while the top end of the 
tibia must feel a net downward force of approximately 
2800 N (ignoring the weight of the tibia itself). The tibia 
has a length of 0.40 m, an average inner diameter of 

2050 N

2050 N

750 N

750 N

2800 N

2800 N2800 N

2800 N
0.40 m

1.3 cm

2.5 cm

Cross section

Problem	18
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1.3 cm, and an average outer diameter of 2.5 cm. (The 
central core of the bone contains marrow that has negli-
gible compressive strength.) (a) Find the average cross-
sectional area of the tibia. (b) Find the compressive stress 
in the tibia. (c) Find the change in length of the tibia due to 
the compressive forces.

 19. What is the maximum load that could be suspended from 
a copper wire of length 1.0 m and radius 1.0 mm without 
permanently deforming the wire? Copper has an elastic 
limit of 200 MPa and a tensile strength of 400 MPa.

 20. What is the maximum load that could be suspended 
from a copper wire of length 1.0 m and radius 1.0 mm 
without breaking the wire? Copper has an elastic limit 
of 200 MPa and a tensile strength of 400 MPa.

 21. The maximum strain of a steel wire with Young’s mod-
ulus 200 GPa, just before breaking, is 0.20%. What is 
the stress at its breaking point, assuming that strain is 
proportional to stress up to the breaking point?

 22. A marble column with a cross-sectional area of 25 cm2 
supports a load of 7.0 × 104 N. The marble has a 
Young’s modulus of 60 GPa and a compressive strength 
of 200 MPa. (a) What is the stress in the column? 
(b) What is the strain in the column? (c) If the column 
is 2.0 m high, how much is its length changed by sup-
porting the load? (d) What is the maximum weight the 
column can support?

 23. A copper wire of length 3.0 m is observed to stretch by 
2.1 mm when a weight of 120 N is hung from one end. 
(a) What is the diameter of the wire and what is the ten-
sile stress in the wire? (b) If the tensile strength of cop-
per is 400 MPa, what is the maximum weight that may 
be hung from this wire?

10.4 Shear and Volume Deformations
 24. A sphere of copper is subjected to 100 MPa of pressure. 

The copper has a bulk modulus of 130 GPa. By what 
fraction does the volume of the sphere change? By what 
fraction does the radius of the sphere change?

 25. Atmospheric pressure on Venus is about 90 times that 
on Earth. A steel sphere with a bulk modulus of 160 GPa 
has a volume of 1.00 cm3 on Earth. If it were put in a 
pressure chamber and the pressure were increased to 
that of Venus (9.12 MPa), how would its volume 
change?

 26. How would the volume of 1.00 cm3 of aluminum on Earth 
change if it were placed in a vacuum chamber and the 
pressure changed to that of the Moon (less than 10−9 Pa)?

 27.  Some claim that mountain climbers suffer from 
headaches due not only to a lack of oxygen in the brain, 
but also to the expansion of the brain in the cranium. 
Find the fractional change of the brain’s volume due to 
a reduction in pressure from 101 kPa at sea level to 
31  kPa high in the Himalayas. The bulk modulus is 

2.1 GPa. (Another reason the brain expands is the dila-
tion of the blood vessels in the brain in order to deliver 
more oxygen.)

 28. Two steel plates are fastened together using four bolts. 
The bolts each have a shear modulus of 80 GPa and a 
shear strength of 600 MPa. The radius of each bolt is 
1.0 cm. Normally, the bolts clamp the two plates together 
and the frictional forces between the plates keep them 
from sliding. If the bolts are loose, then the frictional 
forces are small and the bolts themselves would be sub-
ject to a large shear stress. What is the maximum shear-
ing force F on the plates that the four bolts can withstand?

F
F

 29. An anchor, made of cast iron of bulk modulus 60.0 GPa 
and of volume 0.230 m3, is lowered over the side of the 
ship to the bottom of the harbor where the pressure is 
greater than sea level pressure by 1.75 MPa. Find the 
change in the volume of the anchor.

 30. The upper surface of a cube of gelatin, 5.0 cm on a side, 
is displaced 0.64 cm by a tangential force. If the shear 
modulus of the gelatin is 940 Pa, what is the magnitude 
of the tangential force?

 31. A large sponge has forces of magnitude 12 N applied in 
opposite directions to two opposite faces of area 42 cm2 
(see Fig. 10.8 for a similar situation). The thickness of 
the sponge (L) is 2.0 cm. The deformation angle (γ) is 
8.0°. (a) What is Δx? (b) What is the shear modulus of 
the sponge?

10.5 Simple Harmonic Motion; 
10.6 The Period and Frequency for SHM
 32. The period of oscillation of a spring-and-mass system is 

0.50 s and the amplitude is 5.0 cm. What is the magni-
tude of the acceleration at the point of maximum exten-
sion of the spring?

 33. A sewing machine needle moves with a rapid vibratory 
motion, rather like SHM, as it sews a seam. Suppose the 
needle moves 8.4 mm from its highest to its lowest posi-
tion and it makes 24 stitches in 9.0 s. What is the maxi-
mum needle speed?

 34. Each prong of a vibrating tuning fork moves back and 
forth quite precisely in simple harmonic motion. The dis-
tance the prong moves between its extreme positions is 
2.24 mm. If the frequency of the tuning fork is 440.0 Hz, 
what are the maximum velocity and the maximum ac-
celeration of the prong?

 35. The period of oscillation of an object in an ideal spring-
and-mass system is 0.50 s and the amplitude is 5.0 cm. 
What is the speed at the equilibrium point?

 36. Five ideal mass-spring systems are described by their 
masses, spring constants, and amplitudes of oscillation 
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as follows. Rank them in decreasing order of the fre-
quency of oscillations.

 (a) mass m, spring constant k, amplitude A
 (b) mass 2m, spring constant k, amplitude A
 (c) mass m, spring constant k, amplitude 2A
 (d) mass 2m, spring constant k/2, amplitude A
 (e) mass 2m, spring constant 2k, amplitude A/2
 37. Five ideal mass-spring systems are described in Problem 

36. Rank them in decreasing order of their total energy.
 38.  The frequency of vibration of a lithotriptor, an ultra-

sound generator used to destroy kidney stones, is 1.0 MHz. 
(a) What is the period of vibration? (b) What is the 
 angular frequency?

 39.  The human eardrum responds to sound by vibrat-
ing. If the eardrum moves in simple harmonic motion 
at a frequency of 4.0 kHz and an amplitude of 0.10 nm 
(roughly the diameter of a single hydrogen atom), what 
is its maximum speed of vibration? (Amazingly, the 
ear can detect vibrations with amplitudes even smaller 
than this!)

 40.  The air pressure variations in a sound wave cause 
the eardrum to vibrate. (a) For a given vibration ampli-
tude, are the maximum velocity and acceleration of the 
eardrum greatest for high-frequency sounds or low- 
frequency sounds? (b) Find the maximum velocity and 
acceleration of the eardrum for vibrations of amplitude 
1.0 × 10−8 m at a frequency of 20.0 Hz. (c) Repeat 
(b) for the same amplitude but a frequency of 20.0 kHz.

 41. An object oscillates up and down between y = +A 
and y = −A at the end of a stretched spring. (a) At what 
point(s) is the kinetic energy maximum? (Give the 
value(s) of y.) (b) At what point(s) is the gravitational 
potential energy maximum? (c) At what point(s) is the 
elastic potential energy maximum? (d) At what point(s) 
is the total potential energy (gravitational + elastic) 
minimum?

 42. A 170 g object on a spring oscillates left to right on a 
frictionless surface with a frequency of 3.00 Hz and an 
amplitude of 12.0 cm. (a) What is the spring constant? 
(b) If the object starts at x = 12.0 cm at t = 0 and the 
equilibrium point is at x = 0, what equation describes its 
position as a function of time?

 43. Show that, for SHM, the maximum displacement, ve-
locity, and acceleration are related by v2

m = amA.
 44. An empty cart, tied between two ideal springs, oscillates 

with ω = 10.0 rad/s. A load is placed in the cart, making 
the total mass 4.0 times what it was before. What is the 
new value of ω?

Problems	44	and	45

 45. A cart with mass m is attached between two ideal 
springs, each with the same spring constant k. Assume 
that the cart can oscillate without friction. (a) When the 
cart is displaced by a small distance x from its equilib-
rium position, what force magnitude acts on the cart? 
(b) What is the angular frequency, in terms of m, x, and 
k, for this cart?

 46. In a playground, a wooden horse is attached to the 
ground by a stiff spring. When a 24 kg child sits on 
the horse, the spring compresses by 28 cm. With the 
child sitting on the horse, the spring oscillates up and 
down with a frequency of 0.88 Hz. What is the oscil-
lation frequency of the spring when no one is sitting 
on the horse?

 47.  A small bird’s wings can undergo a maximum 
 displacement amplitude of 5.0 cm (distance from the 
tip of the wing to the horizontal). If the maximum 
 acceleration of the wings is 12 m/s2, and we assume 
the wings are undergoing simple harmonic motion 
when beating, what is the oscillation frequency of the 
wing tips?

 48. Equipment to be used in airplanes or spacecraft is often 
subjected to a shake test to be sure it can withstand the 
vibrations that may be encountered during flight. A ra-
dio receiver of mass 5.24 kg is set on a platform that 
vibrates in SHM at 120 Hz and with a maximum accel-
eration of 98 m/s2 (= 10g). Find the radio’s (a) maxi-
mum displacement, (b) maximum speed, and (c) the 
maximum net force exerted on it.

 49. In an aviation test lab, pilots are subjected to vertical 
oscillations on a shaking rig to see how well they can 
recognize objects in times of severe airplane vibration. 
The frequency can be varied from 0.02 to 40.0 Hz and 
the amplitude can be set as high as 2 m for low frequen-
cies. What are the maximum velocity and acceleration 
to which the pilot is subjected if the frequency is set at 
25.0 Hz and the amplitude at 1.00 mm?

 50. The diaphragm of a speaker has a mass of 50.0 g and 
responds to a signal of frequency 2.0 kHz by moving 
back and forth with an amplitude of 1.8 × 10−4 m at that 
frequency. (a) What is the maximum force acting on the 
diaphragm? (b) What is the mechanical energy of the 
diaphragm?

 51. An ideal spring has a spring constant k = 25 N/m. The 
spring is suspended vertically. A 1.0 kg object is at-
tached to the unstretched spring and released. (a) What 
is the magnitude of the acceleration when the extension 
of the spring is a maximum? (b) What is the maximum 
extension of the spring?

 52. An ideal spring with a spring constant of 15 N/m is sus-
pended vertically. An object of mass 0.60 kg is attached 
to the unstretched spring and released. (a) What is the 
extension of the spring when the speed is a maximum? 
(b) What is the maximum speed?
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 53. A 0.50 kg object, suspended from an ideal spring of spring 
constant 25 N/m, is oscillating vertically. How much 
change of kinetic energy occurs while the object moves 
from the equilibrium position to a point 5.0 cm lower?

 54. A small rowboat has a mass of 47 kg. When a 92 kg 
person gets into the boat, the boat floats 8.0 cm lower in 
the water. If the boat is then pushed slightly deeper in 
the water, it will bob up and down with simple harmonic 
motion (neglecting any friction). What will the period 
of oscillation be for the boat as it bobs around its equi-
librium position?

 55. A baby jumper consists of a cloth seat suspended by an 
elastic cord from the lintel of an open doorway. The 
unstretched length of the cord is 1.2 m, and the cord 
stretches by 0.20 m when a baby of mass 6.8 kg is placed 
into the seat. The mother then pulls the seat down by 
8.0 cm and releases it. (a) What is the period of the mo-
tion? (b) What is the maximum speed of the baby?

10.7 Graphical Analysis of SHM
 56. An object of mass 306 g is attached to the base of a 

spring, with spring constant 25 N/m, that is hanging 
from the ceiling. A pen is attached to the back of the 
object, so that it can write on a paper placed behind 
the  mass-spring system. Ignore friction. (a) Describe 
the pattern traced on the paper if the object is held at the 
point where the spring is relaxed and then released at 
t = 0. (b) The experiment is repeated, but now the paper 
moves to the left at constant speed as the pen writes on 
it. Sketch the pattern traced on the paper. Imagine that 
the paper is long enough that it doesn’t run out for sev-
eral oscillations.

 57. The displacement of an object in SHM is given by y(t) = 
(8.0 cm) sin [(1.57 rad/s)t]. What is the frequency of the 
oscillations?

 58. (a) Sketch a graph of x(t) = A sin ωt (the position of an 
object in SHM that is at the equilibrium point at t = 0). 
(b) By analyzing the slope of the graph of x(t), sketch a 
graph of vx(t). (c) Use conservation of energy along with 
your graphs to show that vx(t) = ωA cos ωt [Eq. (10-36)].

 59. An object is attached to an ideal spring of spring con-
stant 2.5 N/m. The spring is initially in its relaxed posi-
tion. The object is then released and oscillates about its 
equilibrium position. The motion is described by

y = (4.0 cm) sin [ (0.70 rad/s)t]

  What is the maximum kinetic energy?
 60.  A ball is dropped from a height h onto the floor and 

keeps bouncing. No energy is dissipated, so the ball re-
gains the original height h after each bounce. Sketch the 
graph for y(t) and list several features of the graph that 
indicate that this motion is not SHM.

 61. A 230.0 g object on a spring oscillates on a frictionless 
horizontal surface with frequency 2.00 Hz and amplitude 

8.00 cm. Its position as a function of time is given by  
x = A sin ωt. (a) Sketch a graph of the elastic potential 
energy as a function of time. (b) Graph the system’s ki-
netic energy as a function of time. (c) Graph the sum of 
the kinetic energy and the potential energy as a function 
of time. (d) Describe qualitatively how your answers 
would change if the surface weren’t frictionless.

 62. An object moves in SHM. Its position as a function of 
time is x(t) = A cos ωt. (a) Apply conservation of energy 
to show that vx(t) = ±ωA sin ωt. [Hint: See Appendix 
A.7 for a useful trigonometric identity.] (b) Then refer to 
a graph of x(t) to explain why the correct choice of sign 
must be vx(t) = –ωA sin ωt.

10.8 The Pendulum
 63. What is the period of a pendulum consisting of a 6.0 kg 

mass hanging from a 4.0 m long string?
 64. A pendulum of length 75 cm and mass 2.5 kg swings with 

a mechanical energy of 0.015 J. What is the amplitude?
 65. A 0.50 kg mass is suspended from a string, forming a 

pendulum. The period of this pendulum is 1.5 s when 
the amplitude is 1.0 cm. The mass of the pendulum is 
now reduced to 0.25 kg. What is the period of oscilla-
tion now, when the amplitude is 2.0 cm?

 66. A bob of mass m is suspended from a string of length L, 
forming a pendulum. The period of this pendulum is 
2.0 s. If the pendulum bob is replaced with one of mass 
1
3m and the length of the pendulum is increased to 2L, 
what is the period of oscillation?

 67. Each of five pendulums has a bob of mass m suspended 
from a string of length L. Rank them in order of their 
frequency for small-amplitude oscillations, greatest to 
smallest.

 (a) m = 300 g, L = 1.10 m
 (b) m = 330 g, L = 1.10 m
 (c) m = 330 g, L = 1.00 m
 (d) m = 330 g, L = 1.21 m
 (e) m = 300 g, L = 1.21 m
 68. A pendulum (mass m) moves according to x = A sin ωt. 

(a) Write the equation for vx(t) and sketch one cycle of the 
vx(t) graph. (b) What is the maximum kinetic energy?

 69. A clock has a pendulum that performs one full swing 
every 1.0 s (back and forth). The object at the end of the 
pendulum weighs 10.0 N. What is the length of the 
 pendulum?

 70. A pendulum of length L1 has a period T1 = 0.950 s. The 
length of the pendulum is adjusted to a new value L2 
such that T2 = 1.00 s. What is the ratio L2/L1?

 71.  A pendulum clock has a period of 0.650 s on Earth. 
It is taken to another planet and found to have a period 
of 0.862 s. The change in the pendulum’s length is neg-
ligible. (a) Is the gravitational field strength on the other 
planet greater than or less than that on Earth? Explain. 
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(b) Find the gravitational field strength on the other 
planet.

 72. A grandfather clock is constructed so that it has a simple 
pendulum that swings from one side to the other, a dis-
tance of 20.0 mm, in 1.00 s. What is the maximum 
speed of the pendulum bob? Use two different methods. 
First, assume SHM and use the relationship between 
amplitude and maximum speed. Second, use energy 
conservation.

 73. Max’s arm weighs 34 N and is 63 cm long. If Max lets 
his relaxed arm swing back and forth like a pendulum, 
what is the period? Model the arm as a uniform rod.

 74. The pendulum for a grandfather clock consists of a thin 
rigid rod (of negligible mass) with two metal disks at-
tached to it. One disk has mass 0.600 kg and is attached 
to the rod 0.800 m from the pivot; the other has mass 
0.750 kg and is attached 1.20 m from the pivot. Treating 
the disks as point masses, find the period of the pendulum.

 75.  Christy has a grandfather clock with a pendulum that 
is 1.000 m long. (a) If the pendulum is modeled as a 
simple pendulum, what would be the period? (b) Christy 
observes the actual period of the clock, and finds that it 
is 1.00% faster than that for a simple pendulum that is 
1.000 m long. If Christy models the pendulum as two 
objects, a 1.000 m uniform thin rod and a point mass 
located 1.000 m from the axis of rotation, what percent-
age of the total mass of the pendulum is in the uniform 
thin rod?

 76.  A pendulum of length 120 cm swings with an ampli-
tude of 2.0 cm. Its mechanical energy is 5.0 mJ. What is 
the mechanical energy of the same pendulum when it 
swings with an amplitude of 3.0 cm?

10.9 Damped Oscillations
 77. (a) What is the energy of a pendulum (L = 1.0 m,  

m = 0.50 kg) oscillating with an amplitude of 5.0 cm? 
(b) The pendulum’s energy loss (due to damping) is re-
placed in a clock by allowing a 2.0 kg mass to drop 
1.0 m in 1 week. What average percentage of the pendu-
lum’s energy is lost during one cycle?

 78. The amplitude of oscillation of a pendulum decreases 
by a factor of 20.0 in 120 s. By what factor has its en-
ergy decreased in that time?

 79. Because of dissipative forces, the amplitude of an oscil-
lator decreases 5.00% in 10 cycles. By what percentage 
does its energy decrease in ten cycles?

Collaborative Problems 

 80. When a steel cable supports a heavy load of weight W, 
its length increases by an amount ΔL compared with its 
length without a load. Suppose the cable is cut into three 
equal pieces, and the three resulting cables are used side 

by side to support the same load. How much is each of 
the three cables stretched?

 81.  Martin caught a fish and wanted to know how much it 
weighed, but he didn’t have a scale. He did, however, have 
a stopwatch, a spring, and a 4.90 N weight. He attached 
the weight to the spring and found that the spring would 
oscillate 20 times in 65 s. Next he hung the fish on the 
spring and found that it took 220 s for the spring to oscil-
late 20 times. (a) Before answering part (b), determine 
whether the fish weighs more or less than 4.90 N. Explain 
your reasoning. (b) What is the weight of the fish?

 82.  The maximum height of a cylindrical column is lim-
ited by the compressive strength of the material; if the 
compressive stress at the bottom were to exceed the 
compressive strength of the material, the column would 
be crushed under its own weight. (a) For a cylindrical 
column of height h and radius r, made of material of 
density ρ, calculate the compressive stress at the bottom 
of the column. (b) Since the answer to part (a) is inde-
pendent of the radius r, there is an absolute limit to the 
height of a cylindrical column, regardless of how wide 
it is. For marble, which has a density of 2.7 × 103 kg/m3 
and a compressive strength of 200 MPa, find the maxi-
mum height of a cylindrical column. (c) Is this limit a 
practical concern in the construction of marble columns?

 83.  A bungee jumper leaps from a bridge and undergoes 
a series of oscillations. Assume g = 9.78 m/s2. (a) If a 
60.0 kg jumper uses a bungee cord that has an un-
stretched length of 33.0 m and she jumps from a height 
of 50.0 m above a river, coming to rest just a few centi-
meters above the water surface on the first downward 
descent, what is the period of the oscillations? Assume 
the bungee cord follows Hooke’s law. (b) The next 
jumper in line has a mass of 80.0 kg. Should he jump 
using the same cord? Explain.

 84.  You have a simple pendulum and a mass-spring sys-
tem in which the mass oscillates vertically. They both 
oscillate with the same period T. You take them both to 
the surface of the Moon, where the gravitational field is 
1/6 that of Earth. (a) Is the period of the simple pendu-
lum on the Moon greater than, equal to, or less than T ? 
Explain. (b) Find the ratio of the pendulum’s period on 
the Moon to its period on Earth (TM/T). (c) Is the period 
of the mass-spring system on the Moon greater than, 
equal to, or less than T ? Explain. (d) Find the ratio of 
period on the Moon to the period on Earth (TM/T).

Comprehensive Problems 

 85. Four people sit in a car. The masses of the people are 
45 kg, 52 kg, 67 kg, and 61 kg. The car’s mass is 1020 kg. 
When the car drives over a bump, its springs cause an 
oscillation with a frequency of 2.00 Hz. What would the 
frequency be if only the 45 kg person were present?
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 86. A pendulum passes x = 0 with a speed of 0.50 m/s; it 
swings out to A = 0.20 m. What is the period T of the 
pendulum? (Assume the amplitude is small.)

 87.  What is the length of a simple pendulum whose 
horizontal position is described by

x = (4.00 cm) cos [(3.14 rad/s)t]?

  What assumption do you make when answering this 
question?

 88. An object of mass m is hung from the base of an ideal 
spring that is suspended from the ceiling. The spring 
has a spring constant k. The object is pulled down a 
distance D from equilibrium and released. Later, the 
same system is set oscillating by pulling the object down 
a distance 2D from equilibrium and then releasing it. 
(a)  How do the period and frequency of oscillation 
change when the initial displacement is increased from 
D to 2D? (b) How does the total energy of oscillation 
change when the initial displacement is increased from 
D to 2D? Give the answer as a numerical ratio. (c) The 
mass-spring system is set into oscillation a third time. 
This time the object is pulled down a distance of 2D and 
then given a push downward some more, so that it has 
an initial speed vi downward. How do the period and 
frequency of oscillation compare to those you found in 
part (a)? (d) How does the total energy compare to when 
the object was released from rest at a displacement 2D?

 89. A naval aviator had to eject from her plane before it 
crashed at sea. She is rescued from the water by helicop-
ter and dangles from a cable that is 45 m long while 
being carried back to the aircraft carrier. What is the 
period of her vibration as she swings back and forth 
while the helicopter hovers over her ship?

 90.  A spider’s web can undergo SHM when a fly lands 
on it and displaces the web. For simplicity, assume that 
a web is described by Hooke’s law (even though really it 
deforms permanently when displaced). If the web is ini-
tially horizontal and a fly landing on the web is in equi-
librium when it displaces the web by 0.030 mm, what is 
the frequency of oscillation when the fly lands?

 91.   Spider silk has a Young’s modulus of 4.0 GPa 
and can withstand stresses up to 1.4 GPa. A single web 
strand has a cross-sectional area of 1.0 × 10−11 m2, and 
a web is made up of 50 radial strands. A bug lands in the 
center of a horizontal web so that the web stretches 

downward. (a) If the maximum stress is exerted on each 
strand, what angle θ does the web make with the hori-
zontal? (b) What does the mass of a bug have to be in 
order to exert this maximum stress on the web? (c) If the 
web is 0.10 m in radius, how far down does the web 
extend?

 92. A mass-spring system oscillates so that the position of the 
mass is described by x = (−10 cm) cos [(1.57 rad/s)t]. 
Make a motion diagram that has a dot for the position of 
the mass at t = 0, t = 0.2 s, t = 0.4 s, . . . , t = 4 s. The time 
interval between consecutive points should be 0.2 s. On 
your diagram, indicate where the mass is moving fastest 
and where it is moving slowest. How do you know?

 93. A hedge trimmer has a blade that moves back and forth 
with a frequency of 28 Hz. The blade motion is con-
verted from the rotation of an electric motor to oscilla-
tory motion by means of a Scotch yoke (see Conceptual 
Question 7). The blade moves 2.4 cm from one  extreme 
to the other. Assuming that the blade moves with 
SHM, what are its maximum speed and maximum 
 acceleration?

 94. A steel rod has length 60 cm and radius 2.2 cm. An alu-
minum rod has length 30 cm and radius 2.2 cm. The 
rods are joined end-to-end. When compressive forces of 
magnitude 5.4 kN are applied to the ends, by how much 
does the total length of the rods decrease?

 95. Luke is trying to catch a pesky animal that keeps eating 
vegetables from his garden. He is building a trap and 
needs to use a spring to close the door to his trap. He has 
a spring in his garage, and he wants to determine the 
spring constant of the spring. To do this, he hangs the 
spring from the ceiling and measures that it is 20.0 cm 
long. Then he hangs a 1.10 kg brick on the end of the 
spring, and it stretches to 31.0 cm. (a) What is the spring 
constant of the spring? (b) Luke now pulls the brick 
5.00 cm from the equilibrium position to watch it oscil-
late. What is the maximum speed of the brick? (c) When 
the displacement is 2.50 cm from the equilibrium posi-
tion, what is the speed of the brick? (d) How long will it 
take for the brick to oscillate five times?

 96. A 4.0 N object is attached to the bottom of an ideal 
spring of spring constant 250 N/m. The spring is initially 
in its relaxed position. Write an equation to describe the 
motion of the object if it is released at t = 0. [Hint: Let 
y = 0 at the equilibrium point and take +y = up.]

 97. A mass-spring system (mass m, spring constant k) oscil-
lates with amplitude A. Show, using dimensional analy-
sis alone, that the frequency f is independent of the 
amplitude A and is proportional to √k/m, assuming that 
m, k, and A are the only relevant quantities.

 98. A horizontal spring with spring constant of 9.82 N/m is 
attached to a block with a mass of 1.24 kg that sits on a 
frictionless surface. When the block is 0.345 m from its 
equilibrium position, it has a speed of 0.543 m/s. 
(a)  What is the maximum displacement of the block 

0.10 m

θ
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from the equilibrium position? (b) What is the maxi-
mum speed of the block? (c) When the block is 0.200 m 
from the equilibrium position, what is its speed?

 99. A steel piano wire  
(Y = 200 GPa) has a di-
ameter of 0.80 mm. At 
one end it is wrapped 
around a tuning pin of 
diameter 8.0 mm. The 
length of the wire (not including the wire wrapped 
around the tuning pin) is 66 cm. Initially, the tension in 
the wire is 381 N. To tune the wire, the tension must be 
increased to 402 N. Through what angle must the tun-
ing pin be turned?

 100. When the tension is 402 N, what is the tensile stress in 
the piano wire in Problem 99? How does that compare 
with the elastic limit of steel piano wire (826 MPa)?

 101. A tightrope walker who weighs 640 N walks along a 
steel cable. When he is halfway across, the cable makes 
an angle of 0.040 rad below the horizontal. (a) What is 
the strain in the cable? Assume the cable is horizontal 
with a tension of 80 N before he steps onto it. Ignore 
the weight of the cable itself. (b) What is the tension in 
the cable when the tightrope walker is standing at the 
midpoint? (c) What is the cross-sectional area of the 
cable? (d) Has the cable been stretched beyond its elas-
tic limit (250 MPa)?

  
Problem	101	(The	0.040	rad	angles	are	

greatly	exaggerated.)

0.040 rad 0.040 rad

 102.   The gravitational potential energy of a pendulum is 
U = mgy. (a) Taking y = 0 at the lowest point, show that 
y = L(1 − cos θ), where θ is the angle the string makes 
with the vertical. (b) If θ is small, (1 − cos θ) ≈ 1

2θ
2 

and θ ≈ x/L (Appendix A.9). Show that the potential 
energy can be written U ≈ 1

2kx2 and find the value 
of  k (the equivalent of the spring constant for the 
 pendulum).

 103.   What is the period of a pendulum formed by placing 
a horizontal axis (a) through the end of a meterstick 
(100 cm mark)? (b) through the 75 cm mark? (c) through 
the 60 cm mark?

 104.   A pendulum is made from a uniform rod of mass m1 
and a small block of mass m2 attached at the lower end. 
(a) If the length of the pendulum is L and the oscilla-
tions are small, find the period of the oscillations in 
terms of m1, m2, L, and g. (b) Check your answer to part 
(a) in the two special cases m1 ≫ m2 and m1 ≪ m2.

 105. A gibbon, hanging onto a horizontal tree branch with 
one arm, swings with a small amplitude. The gibbon’s 
cm is 0.40 m from the branch, and its rotational inertia 
divided by its mass is I/m = 0.25 m2. Estimate the fre-
quency of oscillation.

 106. A thin circular hoop is sus-
pended from a knife edge. 
Its rotational inertia about 
the rotation axis (along the 
knife) is I = 2mr2. Show 
that it oscillates with the 
same frequency as a simple 
pendulum of length equal 
to the diameter of the hoop.

Review and Synthesis

 107. By what percentage does the density of water increase 
at a depth of 1.0 km below the surface?

 108. A mass-and-spring system oscillates with amplitude A 
and angular frequency ω. (a) What is the average speed 
during one complete cycle of oscillation? (b) What is 
the maximum speed? (c) Find the ratio of the average 
speed to the maximum speed. (d) Sketch a graph of vx(t) 
and refer to it to explain why this ratio is greater than 1

2.
 109.   The motion of a simple pendulum is approxi-

mately SHM only if the amplitude is small. Consider a 
simple pendulum that is released from a horizontal po-
sition (θi = 90° in Fig. 10.23). (a) Using conservation 
of energy, find the speed of the pendulum bob at the 
bottom of its swing. Express your answer in terms of 
the mass m and the length L of the pendulum. Do not 
assume SHM. (b) Assuming (incorrectly, for such a 
large amplitude) that the motion is SHM, determine the 
maximum speed of the pendulum. Based on your an-
swers, is the period of a pendulum for large amplitudes 
larger or smaller than that given by Eq. (10-41)?

 110.   To escape a burning building, Arnold has to 
jump from a third-story window that is about 10 m above 
the ground. Arnold is worried about breaking his leg. 
The largest bone in Arnold’s leg is the femur, which has 
a minimum cross-sectional area of about 5 × 10−4 m and 
a maximum ultimate strength for compression of about 
1.70 × 108 N/m2. Arnold has a mass of 82 kg. (a) If 
 Arnold lands on the ground with his legs stiff, then his 
femur can compress only about 5 mm. What will happen 
to Arnold’s femur? (b) Suppose instead of landing on the 
ground, Arnold lands in deep snow so his legs can move 

Problems	99	and	100
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about 30 cm between the time they first hit the snow and 
the time he comes to a complete stop. What will happen 
to Arnold’s femur in this case?

 111. A 5.0 kg block of wood is attached to a spring with a 
spring constant of 150 N/m. The block is free to slide 
on a horizontal frictionless surface once the spring is 
stretched and released. A 1.0 kg block of wood rests on 
top of the first block. The coefficient of static friction 
between the two blocks of wood is 0.45. What is the 
maximum speed that this set of blocks can have as it 
oscillates if the top block of wood is not to slip?

 112. At a grocery store, a spring scale (spring constant = 
450 N/m) hangs near the produce section. The spring 
hangs vertically with a 0.250 kg pan suspended from its 
lower end. Jenna drops a 2.20 kg bag of oranges from a 
height of 30.0 cm above the pan. The pan and oranges 
start oscillating vertically in SHM. (a) What is the ve-
locity of the pan immediately after the oranges land on 
the pan? Assume a perfectly inelastic collision. (b) How 
far is the new equilibrium point of the pan (with oranges) 
below its position before the oranges were dropped on it? 
(c) What is the amplitude of the oscillations? (d) What is 
the frequency of the oscillations?

 113. A spherical balloon with a radius of 12.0 cm is filled 
with helium. The bottom of the balloon is attached to a 
2.30 m length of ribbon that is anchored to the ground. 
The balloon alone has a mass of 2.80 × 10−3 kg. Ignore 
the mass of the ribbon. (a) What is the tension in the 
ribbon? (b) After the balloon is displaced slightly to the 
side from its equilibrium position, it oscillates back and 
forth like an inverted pendulum. What is the period of 
oscillation? Ignore friction and air resistance.

Answers to Practice Problems

 10.1 2k (When the original spring is stretched an amount L, 
each of the half-springs stretches only 1

2L. Each of the newly 
formed springs stretches half as far as the original spring for 
a given applied force.)
 10.2 1.4 × 10−5

 10.3 0.18 mm
 10.4 130 MPa

 10.5  −
ΔP

B
= −

1.0 × 107 Pa
2.3 × 109 Pa

= −0.0043 =
ΔV

V

and ΔV = −0.43% × V
 10.6 110 m/s2 at x = ±A

 10.7  K = 0, Ue = 2(mg)2/k, Ug = −(mg)2/k, E = (mg)2/k

 10.8 

ax (m/s2)

370

0.02 0.04 0.06
–370

t (s)

ax(t) = −am cos ωt, where ω = 160 rad/s and am = 370 m/s2.
 10.9 1.6 m/s2 (about 1/6 that of Earth)
 10.10 0.82 m/s or 1.8 mi/h

Answers to Checkpoints

 10.2 The two wires are under the same stress (same tensile 
force and same cross-sectional area). Young’s modulus for 
steel is about 5

3 times that for copper, so the strain for the 
steel wire is 3

5 the strain of the copper wire. However, the 
strain is the fractional length change. The steel wire is twice 
as long, so its length change is 2 × (3/5) times the length 
change of the copper wire. The steel wire stretches more.
 10.3 (a) Young’s modulus is the constant of proportionality 
between stress and strain: stress = Y × strain. Therefore, Y is 
the slope of the linear part of the stress versus strain graph. 
Material A has the larger slope so its Young’s modulus is 
larger. (b) The ultimate strength is the largest stress the mate-
rial can withstand. The graph for material B reaches a larger 
stress, so it has the higher ultimate strength.
 10.5 When the kinetic and potential energies are equal, each 
is half of the total energy. When U = 1

2kx2 = 1
2Etotal = 1

2(1
2kA2), 

x = ±A/√2.
 10.6 0.50 Hz
 10.7 (a) When the displacement is zero, the potential energy 
has its minimum value. From conservation of energy, the ki-
netic energy then has its maximum value. Therefore, the 
speed has its maximum magnitude (v = ±vm), as shown in 
Fig. 10.20. (b) When the speed is zero, the kinetic energy is 
minimum and the potential energy is maximum. Therefore, 
the displacement has its maximum magnitude (x = ±A).
 10.8 Yes. For a simple pendulum of mass m at the end of 
a string of length L, the rotational inertia about the pivot is 
I = mL2. Then

T = 2π√
I

mgd
= 2π√

mL2

mgL
= 2π√

L

g

which agrees with Eq. (10-41).
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∙ Sensitivity of the human 
ear and eye (Section 11.1; 
Problem 2)

∙ Seismic waves used by 
animals to communicate 
and to monitor their 
 environment (Section 11.2)

∙ Ultrasonography  
(Example 11.5;  
Problem 44)

Concepts & Skills to Review

•	 period,	frequency,	angular	
frequency	(Section	10.6)

•	 position,	velocity,	
	acceleration,	and	energy	
in	SHM	(Section	10.5)

•	 resonance	(Section	10.10)
•	 graphical	analysis	of	SHM	

(Section	10.7)
•	 math skill:	sinusoidal	

functions	of	time	
	(Appendix	A.8)
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During	the	1995	Hanshin	earthquake	in	Japan,	sections	of	an	elevated	
highway	 collapsed	 while	 nearby	 buildings	 survived	 with	 little	 damage.	
What	 made	 the	 highway	 collapse,	 and	 how	 could	 it	 be	 modified	 to	
prevent	a	collapse	 in	a	 future	earthquake?
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11.1 WAVES AND ENERGY TRANSPORT

Basic Models: Particles and Waves Physicists use only a few basic models to 
describe the physical world. One such model is the particle: a pointlike object with 
no inner structure and with certain characteristics such as mass and electric charge. 
Another basic model is the wave. Water waves are familiar examples. When a pebble 
is dropped into a pond, it disturbs the surface of the water. Ripples on the surface of 
the pond travel away from the spot where the pebble landed. A wave is characterized 
as some sort of “disturbance” that travels away from its source.

Examples of Waves In Chapters 11 and 12, we concentrate on mechanical waves 
traveling through a material medium, such as water waves, sound waves, and the 
seismic waves caused by earthquakes. Particles in the medium are disturbed from 
their equilibrium positions as the wave passes, returning to their equilibrium posi-
tions after the wave has passed. In Chapter 22, we discuss electromagnetic waves 
such as radio waves and light waves, in which the disturbance consists of oscillating 
electromagnetic fields. Two of our five human senses are wave detectors: the ear is 
sensitive to the tiny fluctuations in air pressure caused by compressional waves in 
air (sound), and the eye is sensitive to electromagnetic waves in a certain frequency 
range (light).

Energy Transport by a Wave

Suppose we drop a pebble into a still pond. The kinetic energy of the pebble just 
before it hits the pond is partly converted into the energy carried off by the water 
wave. That waves carry energy is clear to anyone who has been surfing or swimming 
in the ocean. Speaking of surfing, information on the Internet is carried by waves of 
various sorts: electrical waves in wires, microwaves between Earth and communica-
tions satellites, light waves in optical fibers. Microwaves in ovens carry energy from 
their source to the food; the electromagnetic energy of the microwaves is absorbed by 
water molecules in the food and appears as thermal energy. Electromagnetic waves 
from the Sun bring the energy that fuels the growth of green plants. Seismic waves 
and tsunamis carry energy released by an earthquake far from the point of origin, 
sometimes with devastating results.

A wave can transmit energy from one point to another without transporting 
any matter between the two points (Fig. 11.1). The sound of thunder travels for 
kilometers in all directions, but none of the molecules in the air where lightning 
struck travels more than a meter or so during the short time it takes the sound to 

CONNECTION:

In wave motion, energy is 
transferred from one oscillat-
ing particle to another. En-
ergy is conserved overall, but 
the energy of any one oscil-
lating particle can change. 
Mechanical waves carry the 
same kinds of energy as a 
simple harmonic oscillator: 
kinetic energy and potential 
energy.

Figure 11.1 Two different ways to transfer energy. (a) When a baseball pitcher throws a ball to the catcher, the ball 
carries energy with it. The pitcher gives the ball kinetic energy; the catcher receives the energy when the ball hits his 
hand and his hand recoils. (b) Suppose instead that they hold a rope stretched between them. If the pitcher suddenly 
moves his hand up and down quickly, a wave pulse travels along the rope until it reaches the catcher’s hand. Once 
again, the pitcher sends the energy and the catcher receives it when the rope makes his hand recoil. However, in this 
case the pitcher is still holding his end of the rope; it never leaves his hand. Energy is transferred without any matter 
moving from the pitcher to the catcher.

(a)

Hand of
pitcher

(b)

Hand of
catcher

©Roblan/Shutterstock
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reach our ears. Similarly, seismic waves and tsunamis can wreak havoc hundreds 
or even thousands of kilometers away from an earthquake without carrying any of 
the soil or water from their point of origin.

EVERYDAY PHYSICS DEMO

Stretch	 a	 heavy	 rope	or	 belt	 between	 yourself	 and	 a	 friend	 and	 test	 out	 the	
transfer	 of	 energy	 from	 one	 to	 the	 other	 by	 sending	 wave	 pulses	 down	 the	
rope.	Can	you	 feel	 the	energy	 transfer	when	 the	pulse	arrives?

EVERYDAY PHYSICS DEMO

Observe	 carefully	 what	 happens	 when	 you	 snap	 your	 fingers.	 You	 start	 by	
pressing	your	thumb	against	your	fingers	and	then	sideways,	the	thumb	in	one	
direction	and	the	fingers	in	the	opposite	direction.	 Initially	friction	keeps	them	
from	moving	sideways,	but	suddenly	 they	slip,	 releasing	 the	built-up	energy.

Similarly,	 the	 rocks	on	 two	sides	of	a	 fault	 line	are	pressed	together	and	
sideways.	 Friction	 keeps	 them	 from	 moving	 sideways	 as	 elastic	 (or	 strain)	
energy	builds	up.	Then	suddenly	 they	slip,	 releasing	a	 tremendous	amount	of	
energy	 largely	 in	 the	 form	of	 seismic	waves	 that	carry	 vibrations	 far	 from	 the	
focus	of	 the	earthquake.

The	 bow	 of	 a	 stringed	 instrument	 such	 as	 a	 violin	 also	 uses	 a	 stick-slip	
mechanism	to	drive	the	string.	The	bow	carries	the	string	with	it	until	the	string	
suddenly	 slips,	 snapping	 back	 until	 the	 bow	 catches	 it	 again.	 The	 player	 has	
to	 carefully	 control	 bow	 speed	 and	 downward	 force	 on	 the	 string	 to	 get	 this	
to	happen.

Intensity

For a wave that travels in a three-dimensional medium (such as sound waves or seis-
mic waves traveling through Earth), the intensity (symbol I, SI unit W/m2) is a mea-
sure of the average power per unit area carried by the wave past a surface 
perpendicular to the wave’s direction of propagation.

Intensity

 I = P/A (11-1)

Application: Sensitivity of the Human Ear If a sound wave’s intensity is a fairly 
loud I = 10−5 W/m2 when it reaches the eardrum and the area of the eardrum is  
A = 10−4 m2, then the power delivered to the eardrum is P = IA = 10−9 W (assuming 
that all the energy incident on the eardrum is absorbed). The energy absorbed by the 
eardrum at this rate in one hour would be

10−9 W × 3600 s ≈ 4 μJ

The human ear is a very sensitive detector indeed.

Intensity and Distance from the Wave Source

For most waves, the intensity decreases as the distance from the source increases. 
Some of the energy can be absorbed (dissipated) by the wave medium. The amount 
of energy absorbed depends on the medium. Air absorbs relatively little sound energy, 
which is why we can hear sounds generated far away.
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Another reason intensity decreases with distance is that, as the wave spreads out, 
the energy gets spread over a larger and larger area. Consider a point source emitting 
a wave uniformly in all directions—an isotropic source (Fig. 11.2). The average power 
(energy per unit time) emitted is constant. Imagine a sphere surrounding the source; 
the rate at which energy passes through the surface of the sphere is the same no 
matter what the radius. The surface area of a sphere is 4πr2, so as the wave moves 
farther from the source, the energy spreads out over a larger and larger area. Thus, 
the power per unit area (intensity) decreases with distance. Assuming that no energy 
is absorbed by the medium and there are no obstacles to reflect or absorb sound,

r2

r1

(a) (b)

r1 r2

Figure 11.2 (a) A point 
source of sound radiating 
energy uniformly in all 
 directions. (b) The intensity at 
a distance r2 is smaller than the 
intensity at a distance r1 since 
the same power is spread out 
over a greater area.

Intensity for an isotropic source

 I =
P

A
=

P

4πr2  (11-2)

(assuming no reflection or absorption)

Therefore, if energy absorption by the medium can be ignored, the intensity of the 
sound is inversely proportional to the square of the distance from the source. This 
“inverse square law” is the result of a conserved quantity (here, energy) radiating 
uniformly from a point source in three-dimensional space.

CHECKPOINT 11.1

A	 siren	 in	 a	 fire	 tower	 20	 m	 high	 generates	 a	 sound	 wave	 with	 intensity		
0.090	W/m2	at	a	point	on	 the	ground	below	 the	 tower.	What	 is	 the	 intensity	of	
the	sound	wave	2.0	km	from	the	tower?	Assume	the	siren	is	an	isotropic	source.

11.2 TRANSVERSE AND LONGITUDINAL WAVES

A Slinky toy can be used to demonstrate two different kinds of waves. In a transverse 
wave, the motion of particles in the medium is perpendicular to the direction of propa-
gation of the wave. To send a transverse wave down a Slinky, wiggle the end of the 
Slinky back and forth in a direction perpendicular to the length of the Slinky (Fig. 11.3a). 
In a longitudinal wave, the motion of particles in the medium is along the same line 
as the direction of propagation of the wave. To send a longitudinal wave down  
the Slinky, jiggle the end in and out along its length to alternately stretch and compress 
the coils (Fig. 11.3b). A red dot painted on one coil of the Slinky helps illustrate the 
difference. In a transverse wave, the dot moves back and forth about a fixed position 
with its motion perpendicular to the direction of propagation of the wave; in a longitu-
dinal wave, the dot also moves back and forth about a fixed position but along the 
direction of propagation of the wave. In both cases, the wave itself moves from one end 
of the Slinky to the other while the dot is moving about its fixed position.
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The Slinky—or any long spring—is a better approximation to solid materials than 
the stretched rope. In solids both types of waves can exist; a transverse wave results 
from a shear disturbance and a longitudinal wave from a compressional disturbance. 
Therefore, seismic waves can be either longitudinal or transverse (Fig. 11.4).

Fluids can be compressed, but, because they flow, they do not sustain shear 
stresses. Therefore, longitudinal waves travel through fluids but transverse waves do 
not. However, gravity or surface tension can provide the transverse restoring force that 
allows a transverse wave to travel along the surface of a liquid.

A sound wave is longitudinal; each small volume of air vibrates back and forth 
along the direction of travel of the wave. Molecules are compressed together in some 
places and more thinly spaced (rarefied) in others; the air has regions of higher and 
lower density called compressions and rarefactions (see Fig. 11.3b).

CHECKPOINT 11.2

When	 an	 earthquake	 occurs,	 the	 S	waves	 (transverse	waves)	 are	 not	 detected	
on	 the	 opposite	 side	 of	 Earth,	 but	 the	 P	 waves	 (longitudinal	 waves)	 are.	 How	
does	 this	provide	evidence	 that	Earth’s	solid	core	 is	surrounded	by	 liquid?

Waves That Combine Transverse and Longitudinal Motion

Not all seismic waves are purely transverse or purely longitudinal. In a surface wave, 
the ground near the surface rolls approximately in a circle. Thus, the motion of the 
ground has components both parallel and perpendicular to the direction of propagation. 
The transverse component can either be up and down (as shown in Fig. 11.4c) or side 
to side. The motion of the ground is greatest at the surface.

Compression Compression

Rarefaction RarefactionRarefaction

(b)(a)Direction of
hand motion

Direction of
hand motion

Figure 11.3 (a) Transverse and (b) longitudinal waves on a Slinky.

P waves S waves Surface waves

Direction of
wave propagation

Direction of
wave propagation

Direction of
wave propagation

Motion of
rock particles

Motion of
rock particles

Motion of
rock particles

(a) (b) (c)

Figure 11.4 Three types of seismic waves. (a) Longitudinal body waves (P waves) are the fastest seismic waves (typically 
4–8 km/s). They are similar to sound waves in air: particles in Earth’s interior are pushed together and pulled apart in the 
same direction that the wave propagates. (b) Transverse body waves (S waves) travel more slowly (typically 2–5 km/s). In an 
S wave, particles in Earth’s interior vibrate at right angles to the direction that the wave travels. By measuring the time 
between the first arrivals of these two types of waves at different detection stations, geologists are able to determine the point 
of origin of the earthquake. (c) In a surface wave, the motion of the ground combines  longitudinal and transverse components.
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Ocean waves are similar to the surface seismic wave shown in Fig. 11.4c. Deep 
underwater, the wave is mostly longitudinal (Fig. 11.5); as the wave passes, water 
moves back and forth along the direction of propagation of the wave. Higher up, the 
wave has both transverse and longitudinal components; water moves in an oval as the 
wave passes. Water near the surface moves approximately in a circle. The air above 
the surface presents little resistance, so water swells upward more easily there and 
then is pulled back downward by gravity (or, for small amplitudes, by surface tension). 
When the wave gets close to shore, the crest often collapses or breaks; the motion of 
the water is then much more complex.

When a guitar string is plucked gently, the wave on the string is almost purely 
transverse; stretching of the string is negligible. When it is plucked more forcefully, 
the resulting wave is a combination of transverse and longitudinal waves. At any 
instant, the string is stretched more in some places than in others; a point on the string 
has longitudinal motion as well as transverse motion.

Application: Animal Communication Using Seismic Waves Animals monitor 
their surroundings, locate prey, and recognize nearby predators by detecting small-
amplitude seismic waves traveling through soil, plant stems, or leaves. Species known 
to be sensitive to seismic vibrations include snakes, frogs, toads, spiders, birds, ele-
phants, kangaroo rats, worms, and a wide variety of insects. Of terrestrial vertebrates, 
particularly acute sensitivity to seismic waves has been found in frogs. This sensitiv-
ity is due to a special organ in the inner ear (the sacculus) and a set of muscles and 
bones that connect the inner ear to the pectoral girdle. Many insects have specialized 
organs in their legs to detect vibration. Some mammals, such as elephants and cats, 
have fat pads on their feet that are believed to help transmit vibrations to the brain.

Many species of animals generate seismic waves to communicate with members 
of the same species. Various techniques are used to produce vibrations, including 
drumming (rhythmically tapping or thumping the substrate with a body part), tremu-
lation (whole-body vibration), and stridulation (rubbing together body parts). The 
resulting seismic waves are often species-specific and can be used to identify and 
court potential mates, to warn that a predator is near, to claim territory, or to coordi-
nate activities of a social group. Evidence suggests that elephants may use seismic 
waves to communicate with other elephants over distances as great as 16 km.

11.3 SPEED OF TRANSVERSE WAVES ON A STRING

The speed of a mechanical wave depends on properties of the wave medium. What prop-
erties of a string determine the speed of a transverse wave moving along it? Suppose that 
a string of length L and mass m is under tension F. In Problem 96, you can show that 
√FL/m is the only combination of those three quantities with the correct units for speed. 
There could be a dimensionless constant multiplier, but a derivation using more advanced 
mathematics shows that the constant is 1; the speed of a transverse wave on a string is

 v = √
FL

m
 (11-3)

For a given string composition and diameter (say, a yellow brass string of 0.030 in. 
diameter), the mass of the string is proportional to its length. By defining the linear 
mass density (mass per unit length) of the string to be

 μ =
m

L
 (11-4)

the speed of a transverse wave on a string can be written

Direction of
wave propagation

Figure 11.5 The motion of 
water in an ocean wave com-
bines transverse and longitudi-
nal motion.

Speed of a transverse wave on a string

 v = √
F

μ
 (11-5)

The spotted skunk (Spilogale 
putorius) is one of many mam-
mal species known to communi-
cate using a technique called 
footdrumming. The skunk 
stamps its front feet when it feels 
alarmed by the approach of an 
unfamiliar animal.
©Action Sports Photography
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 Equation (11-5) shows that the wave speed depends on local properties of the 
medium; it does not depend on how much of the medium there is. The wave speed 
in the vicinity of some point P, for instance, does not depend on how long the string 
is; only properties of the string in the immediate vicinity of point P can determine 
how fast the wave travels past that point.

Note that as tension increases, wave speed increases; as mass density increases, 
wave speed decreases. A somewhat more general way to think about it, applicable to 
other waves as well, is:

More restoring force makes faster waves; more inertia makes slower waves.

CHECKPOINT 11.3

Transverse	 waves	 travel	 on	 five	 stretched	 strings	 (Fig.	 11.6).	 Rank	 the	 strings	
according	 to	 the	speed	of	 transverse	waves,	 from	 largest	 to	smallest.

The speed at which a wave propagates is not the same as the speed at which a 
particle in the medium moves. Suppose a horizontal string is stretched along the x-axis 
and a transverse pulse in the y-direction is sent down the string. The speed of propagation 
of the wave v is the speed at which the pattern or disturbance moves along the string (in 
the x-direction); for a uniform string, the wave speed is constant. A point on the string 
vibrates up and down in the ±y-direction with a different speed that is not constant.

200 N400 N200 N 200 N 200 N

String mass m
(a) (b) (c) (d) (e)

String mass mString mass m String mass 2mString mass 2m

L LL2L 2L

Figure 11.6 Five stretched strings.

Example 11.1

A Piñata

A string of length 2.0 m has a 
mass of 125 mg. The string is 
attached to the ceiling and a pi-
ñata of mass 4.0 kg hangs from 
the other end. A child whacks 
the piñata sideways with a 
stick; as a result, a transverse 
pulse travels up the string to-
ward the ceiling. At what speed 
does the pulse travel?

Strategy We start with a di-
agram of the situation (see the 
figure). The piñata puts the 
string under tension. The ten-
sion in the string is equal to the 
weight of the piñata because 

the weight of the string itself is negligible in comparison. The 
mass and length of the string are given, so the linear mass 
density can be found. Then we can find the wave speed.

Solution The speed of a transverse wave on a string is 
given by Eq. (11-5):

v = √
F

μ

where F is the tension in the string and μ is the linear mass 
density of the string. The tension is equal to the weight hang-
ing on the string:

F = Mg

The linear mass density of the string is mass per unit 
length (μ = m/L). Substituting the tension and mass 

continued on next page

4.0 kg
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11.4 PERIODIC WAVES

A periodic wave repeats the same pattern over and over, each repeating section trans-
porting the energy that was used to generate it. A periodic water wave can be produced 
by steadily dropping a series of pebbles into the water; a wave on a cord can be pro-
duced by taking one end of the cord and moving it up and down, over and over, in a 
repeating pattern. As the wave propagates along the cord, every point on the cord 
oscillates with the same up and down pattern, though with a time delay that depends 
on the wave speed. Whereas musical sounds are often periodic waves, noise is aperi-
odic. The human voice makes a periodic sound wave when a vowel is sung at a steady 
pitch (constant frequency); most of the consonant sounds are aperiodic (Fig. 11.7).

Period, Frequency, Wavelength, and Amplitude At any given point in space, a 
periodic wave repeats itself after a time interval T called the period. The inverse of 
the period is the frequency f.

 f =
1
T
 (SI unit Hz = s−1)  (5-10)

The frequency tells how often the pattern of motion repeats itself at any single point. 
For instance, if the frequency is 20 Hz, then there are 20 repetitions, or cycles, per 
second. Each cycle takes a time T = 1/f = 0.05 s. The angular frequency is ω = 2πf 
and is measured in rad/s.

During one period T, a periodic wave traveling at speed v moves a distance vT. 
In Fig. 11.8, note that, at any instant, points separated by a distance vT along the direc-
tion of propagation of a wave move “in sync” with each other. Thus, vT is the repetition 
distance of the wave, just as the period is the repetition time. This distance is called 
the wavelength (symbol λ, the Greek letter lambda).

Example 11.1 continued

Practice Problem 11.1 Initial Velocity of Another 
Wave Pulse Traveling on a String

A string of length 10.0 m has a linear mass density of 25 g/m. 
The string is fixed at the top and has an object of mass 
0.200 kg hanging from the bottom. (a) What is the initial 
wave speed of a pulse sent up the string from the bottom? 
(b) What is the speed of the pulse as it approaches the top of 
the string? [Hint: Does the weight of the string itself affect 
the tension in either case?]

 density, we have

 v = √
F

m/L
=  √

(Mg)L

m

 = √
4.0 kg × 9.8 m/s 2 × 2.0 m

125 × 10−6 kg
= 790 m/s

Discussion The weight of the string (mg) is negligible in 
comparison with the weight hanging from the end of the 
string (Mg). That is not always the case, as can be seen in 
Practice Problem 11.1.

t

p

(a)

t

p

(b)

Figure 11.7 (a) Periodic sound 
wave pattern produced by singing 
the vowel /e/. (b) Aperiodic 
sound wave  pattern produced by 
hissing the consonant /s/. (A 
microphone generates an electri-
cal signal proportional to the 
pressure variations of the sound 
wave. The graphs show the pres-
sure as a function of time.)

CONNECTION:

The terminology for periodic 
waves is similar to that used 
for uniform circular motion 
(Chapter 5) and for simple har-
monic motion (Chapter 10).

Wavelength
 λ = vT  (11-6)
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Combining this relation and the expression for frequency, we obtain

Frequency and wavelength

 v =
λ

T
= fλ (11-7)

Equations (11-6) and (11-7) are true for all periodic waves, no matter how the wave 
is produced or what the shape of the wave.

CHECKPOINT 11.4

A	seismic	wave	travels	at	4.0	km/s	and	has	a	wavelength	of	20	km.	How	long	
does	 it	 take	a	 rock	particle	 to	complete	one	cycle	of	oscillation?

The maximum displacement of any particle from its equilibrium position is the 
amplitude A of the wave. For a sinusoidal wave traveling along a stretched string in 
the x-direction, the amplitude A is the maximum displacement of a particle in the 
positive or negative y-direction. For surface water waves, the amplitude is the height 
of a crest (a high point) above or the depth of a trough (a low point) below the undis-
turbed water level.

11.5 MATHEMATICAL DESCRIPTION OF A WAVE

A wave is represented mathematically by a variation in some quantity (e.g., pressure 
or displacement) that is described as a function of both position and time. For a 
transverse wave on a guitar string, the function specifies the displacement of each 
point on the string from its equilibrium position. If the string is oriented along the 
x-axis and the displacement of any point on the string is in the ±y-direction, then the 
wave is described by a function of two variables: y(x, t). The notation y(x, t) means 
that y is a function of x and t: the value of y depends on the values of x and t in such 
a way that only one value of y (the dependent variable) corresponds to a particular 
choice of x and t (the independent variables).

Harmonic Traveling Waves

A very important type of wave is the harmonic traveling wave. A traveling wave 
retains the same shape as it moves in a single direction (Fig. 11.9). A harmonic trav-
eling wave retains a sinusoidal shape. On a string, that would mean that the shape of 
the string at any instant is sinusoidal, and every point on the string moves back and 
forth in simple harmonic motion with the same frequency and amplitude. (Their 

Figure 11.8 Snapshot graph 
of a sinusoidal wave moving 
with speed v in the x-direction. 
The graph shows the displace-
ment y of particles in the wave 
medium as a function of x, 
their position along the direc-
tion of wave propagation, at 
one particular time t. The 
amplitude A and the wavelength 
λ are shown.

A

–A

x

y

λ

λ

Crest Crest

TroughTrough

y At t = 0

x = 0

x = 0 x = vt

At a later time t

y

x

x

Figure 11.9 A traveling 
wave pulse on a string, shown 
as two graphs: y vs. x at t = 0 
and y vs. x at a later time t. 
The shape of the pulse remains 
unchanged as it moves down 
the string.
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 oscillations are not synchronized, though; different points reach their maximum dis-
placements at different times.) The equation for such a wave can be written

 y(x, t) = A cos (ωt ± kx + ϕ)  (11-8)

or

 y(x, t) = A sin (ωt ± kx + ϕ)  (11-9)

The constants A, ω, and k are all positive. Two of the constants are familiar: A is the 
amplitude of the wave (the maximum displacement) and ω is the angular frequency.

The constant ϕ is called the phase constant. The value of ϕ is determined by 
the initial conditions (the shape of the string at t = 0) and by whether we decide to 
use sine or cosine. Whenever possible, we choose the time t = 0 to make the phase 
constant zero.

Then the equations take simpler forms:

 y(x, t) = A cos (ωt ± kx)  (11-10)

or

 y(x, t) = A sin (ωt ± kx)  (11-11)

The choice of sign in Eqs. (11-8) through (11-11) is determined by the direction of 
travel:

 (ωt − kx) for a wave traveling in the +x-direction (11-12)

 (ωt + kx) for a wave traveling in the −x-direction (11-13)

To see why, imagine the motion of a wave peak in a wave described by y(x, t) =  
A cos (ωt − kx). The location x of the peak as a function of time must keep the 
quantity (ωt − kx) constant, because y at the peak doesn’t change (y = A). As t 
increases, x must increase; therefore, the wave moves in the +x-direction. We can find 
the wave speed this way. We can solve ωt − kx = C, where C is some constant, for 
x to find x = (ω/k)t − C.

The wave speed is

 v =
ω

k
 (11-14)

On the other hand, the motion of the peak in a wave described by y(x, t) =  
A cos (ωt + kx) must satisfy ωt + kx = C, which implies x = −(ω/k)t + C. The wave 
moves in the −x-direction at speed ω/k.

The constant k is called the wavenumber. Using Eqs. (11-14) and (11-7), we 
find that k is closely related to the wavelength λ.

Wavenumber

 k =
ω

v
=

2πf

λf
=

2π

λ
 (11-15)

CONNECTION:

Note the analogy between ω 
and k. ω = 2π/T, where T is 
the repeat time; k = 2π/λ, 
where λ is the repeat distance 
ω is measured in radians per 
second; k is measured in radi-
ans per meter.

Points on the string move in SHM in the transverse direction. The maximum 
speed and maximum acceleration of a point on the string are

 vm = ωA (10-28)

 am = ω2A (10-29)

In Eq. (10-28), vm is not the same as v, the speed of wave propagation (see Section 11.3). 
The velocity of a point on the string is in the transverse (±y) direction and is a 
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 sinusoidal function of time with maximum value vm. The wave moves in the ±x- 
direction at constant speed v.

Amplitude, Energy, and Intensity of a Harmonic Wave The total energy of an 
object moving in SHM is proportional to the amplitude squared (Section 10.5), so the 
total energy of a harmonic wave is also proportional to the square of its amplitude. 
For a three-dimensional wave, intensity is the rate at which a wave transports energy 
per unit area perpendicular to the direction of propagation (Section 11.1). The inten-
sity of a harmonic wave is proportional to its total energy and, therefore, is propor-
tional to the square of the amplitude. That turns out to be a general result not limited 
to harmonic waves:

Intensity and Amplitude

The intensity of a wave is proportional to the square of its amplitude.

Example 11.2

A Traveling Harmonic Wave on a String

A harmonic traveling wave on a string moves in the  
−x-direction at 120 m/s. The amplitude is 6.0 mm and the 
wavelength is 90 cm. At t = 0, the wave has a peak at x = 0. 
Construct an equation to describe this wave.

Strategy Equations (11-8) through (11-11) describe trav-
eling harmonic waves. We can find the values of ω and k 
from the given values of v and λ. The wave propagation di-
rection (−x) determines the sign of the kx term. The initial 
condition (peak at x = 0, t = 0) determines whether we use 
the sine or cosine function and the phase constant.

Solution The angular frequency is

ω = 2πf = 2π 

v

λ
= 2π 

120 m/s
0.90 m

= 840 rad/s

The wavenumber is

k =
2π

λ
=

2π

0.90 m
= 7.0 rad/m

For a wave moving in the −x-direction, we have ωt + kx in the 
argument of the sine or cosine. If we use cosine, the phase 

constant is zero: at x = 0 and t = 0, cos (ωt + kx) = cos 0 = 1, 
so we have a peak. The equation for the wave is

y(x, t) = (6.0 mm) cos[(840 rad/s)t + (7.0 rad/m)x]

Discussion A quick check of the units: (840 rad/s)t and 
(7.0 rad/s)x both come out in radians, which is correct for the 
argument of the cosine function. To check the numerical 
calculations, use our values of ω and k in Eq. (11-14) to 
make sure we recover the wave speed: 

v =
ω

k
=

840 rad/s
7.0 rad/m

= 120 m/s

Practice Problem 11.2 Another Traveling Harmonic 
Wave on a String

A wave on a string is described by

y(x, t) = (0.0050 m) sin[(4.0 rad/s)t − (0.5 rad/m)x]

(a) In what direction does the wave travel? (b) What is the 
wavelength? (c) What is the wave speed?

11.6 GRAPHING WAVES

To graph a one-dimensional wave y(x, t), only one of the two independent variables 
(x, t) can be plotted. The other must be “frozen”; it is treated as a constant. If x is 
held constant, then one particular point (determined by the value of x) is singled out; 
the graph shows the motion of that point as a function of time (Fig. 11.10a). If instead 
t is held constant and y is plotted as a function of x, then the graph is like a 
snapshot—an instantaneous picture of what the wave looks like at that particular 
instant (Fig 11.10b).
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x

y

0

(b)

t

y

0

(a)

T

A

–A

A

–A

At x = 0, y(t) = A sin ωt At t = 0, y(x) = A sin (–kx)

λ

Figure 11.10 Two graphs of a harmonic wave on a string described by the equa-
tion y(x, t) = A sin (ωt − kx). (a) The vertical displacement y of a particular point 
on the string (x = 0) as a function of time t. (b) The vertical displacement y as a 
function of horizontal position x at a single instant of time (t = 0).

Example 11.3

A Transverse Harmonic Wave

A transverse harmonic wave travels in the +x-direction on 
a string at a speed of 5.0 m/s. Figure 11.11 shows a graph 
of y(t) for the point x = 0. (a) What is the period of the 
wave? (b) What is the wavelength? (c) What is the ampli-
tude? (d) Write the function y(x, t) that describes the wave. 
(e) Sketch a graph of y(x) at t = 0.

Strategy Since the graph uses time as the independent 
variable, the period can be read from the graph as the time 
for one cycle. The wavelength is the distance traveled by the 
wave during one period. The amplitude can be read from the 
graph as the maximum displacement. These are all the con-
stants needed to write the function y(x, t). We do have to 
think about the direction of travel and whether to write sine 
or cosine.

Solution (a) The period T is the time for one cycle. From 
the graph, T = 2.0 s.

(b) The wavelength λ is the distance traveled by the wave at 
speed v = 5.0 m/s during one period:

λ = vT = 5.0 m/s × 2.0 s = 10 m

(c) The amplitude A is the maximum displacement from 
equilibrium. From the graph, A = 3.0 cm.

(d) From Fig. 11.11, the motion of the point x = 0 is

y(t) = A sin ωt

where ω = 2π/T. If we replace ωt by (ωt − kx), we have a 
wave that moves in the +x-direction.

y(x, t) = A sin (ωt − kx)

This is the equation of the wave, where ω = 2π/T and  
k = 2π/λ = 2π/(vT).

(e) Substituting t = 0 into this equation yields

y(t) = A sin (−kx)

Using the identity sin (−θ) = −sin θ (Appendix A.7), we 
have

y(t) = −A sin kx

A graph of this function is an inverted sine function with 
amplitude A = 3.0 cm and wavelength λ = 2π/k = 10 m.

Figure 11.11
Graph of a transverse harmonic wave.
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Discussion Figure 11.11 shows that the point x = 0 is 
initially at y = 0 and then moves up (in the +y-direction) 
until it reaches the crest (maximum y) at t = 0.50 s. Imagine 
the graph in (e) to represent the first frame (at t = 0) of a 
movie of the wave. Since the wave moves to the right, the 
sinusoidal pattern shifts a little to the right in each succes-
sive frame. The point x = 0 moves up until it reaches the 
crest when the wave has traveled 2.5 m to the right. Since the 
wave speed is 5.0 m/s, the point x = 0 reaches the crest at  
t = (2.5 m)/(5.0 m/s) = 0.50 s.

continued on next page
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11.7 PRINCIPLE OF SUPERPOSITION

Suppose two waves of the same type pass through the same region of space. Do the waves 
affect each other? If the amplitudes of the waves are large enough, then particles in the 
medium are displaced far enough from their equilibrium positions that Hooke’s law (restor-
ing force ∝ displacement) no longer holds; in that case, the waves do affect each other. 
However, for small amplitudes, the waves can pass through each other and emerge unchanged. 
More generally, when the amplitudes are not too large, the principle of superposition applies:

Example 11.3 continued

(a) Sketch a graph of y(t) at x = 0. (b) Sketch a graph of 
y(x) at t = 0. (c) What is the period of the wave? (d) What 
is the wavelength? (e) What is the amplitude? (f) What is 
the speed of the wave? (g) In what direction does the wave 
move?

Practice Problem 11.3 Another Harmonic  
Transverse Wave

A wave is described by

y(x, t) = (1.2 cm) sin [ (10.0π rad/s)t + (2.5π rad/m)x]

Principle of Superposition

When two or more waves overlap, the net disturbance at any point is the sum 
of the individual disturbances due to each wave.

Figure 11.12 illustrates the superposition principle for two wave pulses traveling 
toward each other on a string. The wave pulses pass right through each other without 
affecting each other; once they have separated, their shapes and heights are the same 
as before the overlap (Fig. 11.12a). The principle of superposition enables us to dis-
tinguish two voices speaking in the same room at the same time; the sound waves 
pass through each other unaffected.

(a)

y1 + y2

y1
y2

y2

(b)

y1 + y2

y1

(c)

Figure 11.12 (a) Two 
 identical wave pulses traveling 
toward and through each other. 
(b), (c) Applying the superposi-
tion principle at two different 
times; in each case, the dashed 
lines are the separate wave pulses 
and the solid line is the sum. If 
one of the pulses (acting alone) 
would produce a displacement 
y1 at a certain point and the 
other would produce a displace-
ment y2 at the same point, the 
result when the two overlap is a 
displacement of y1 + y2.
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11.8 REFLECTION AND REFRACTION

Reflection

At an abrupt boundary between one medium and another, reflection occurs; a reflected 
wave carrying some of the energy of the incident wave travels backward from the 
boundary. A sound wave in air, for instance, reflects when it reaches a wall.

Example 11.4

Superposition of Two Wave Pulses

Two identical wave pulses travel at 0.5 m/s toward each other 
on a long cord (Fig. 11.13). Sketch the shape of the cord at 
t = 1.0, 1.5, and 2.0 s.

Strategy We start by sketching the two pulses in their new 
positions at each time given. Wherever they overlap, we apply 
superposition by adding the individual displacements at each 
point to find the net displacement of the cord at that point.

Solution Using graph paper, we draw the wave pulses at 
t = 0 (Fig. 11.14a). At t = 1.0 s, each pulse has moved 0.5 m 
toward the other. The leading edges of the pulses are just 
starting to overlap (Fig. 11.14b). At t = 1.5 s, each pulse has 
moved another 0.25 m; the crests overlap exactly. By adding 
the displacements point by point, we see that the string has 
the shape of a single pulse twice as high as either of the indi-
vidual pulses (Fig. 11.14c). At t = 2.0 s, the pulses have each 
moved another 0.25 m (Fig. 11.14d).

Discussion When the two pulses exactly overlap, the dis-
placement of points on the string is larger than for corre-
sponding points on a single pulse because we add 
displacements in the same direction (y > 0 for both). How-
ever, superposition does not always produce larger displace-
ments (see Practice Problem 11.4).

Practice Problem 11.4 Superposition of Two  
Opposite Wave Pulses

Repeat Example 11.4, except now let the pulse on the right 
be inverted (Fig. 11.15). [Hint: Points on the string below the 
x-axis have negative displacements (y < 0).]

y

x (m)

t = 0

1.5 m

Figure 11.15
Wave pulses for Practice Problem 11.4.

0.25 1.51.250

y
t = 0

4.0 mm

x (m)

Figure 11.13
Two wave pulses at t = 0.

1.5 m

0.750 1.51.00.5

(a)

x (m)

x (m)
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x (m)

t = 0 s

t = 2.0 s

t = 1.0 s

t = 1.5 s

y (mm)

y (mm)

4

4

4

4
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y (mm)

(b)

(c)

(d)

Figure 11.14
Wave positions at times t = 0, 1.0, 1.5, and 2.0 s.
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A reflected wave can be inverted. Let’s look at an extreme example: a string tied 
to a wall. If you send a wave pulse down the string, the reflected pulse is inverted 
(Fig. 11.16). By the principle of superposition, the shape of the string at any point is 
the sum of the incident and reflected waves, even at the fixed point at the end. The 
only way the end can stay in place is if the reflected wave is an upside down version 
of the incident wave. Another way to understand the inversion is by considering the 
force exerted on the string by the wall. When an upward pulse reaches the fixed end, 
the force exerted by the string on the wall has an upward component. By Newton’s 
third law, the wall exerts a force on the string with a downward component. This 
downward force produces a downward reflected pulse.

Now, instead of tying the string to the wall, tie it to another string with an enor-
mous linear mass density—so large that its motion is too small to measure. The 
original string doesn’t know the difference; it just knows that one end is fixed in place. 
The second string with the huge density has a much slower wave speed than the first 
string. Now make the mass density of the second string not huge, but still greater than 
the first string. The greater inertia inhibits the motion of the boundary point and 
causes the reflected wave to be inverted. In general, when a transverse wave on a 
string reflects from a boundary with a region of slower wave speed, the reflected wave 
is inverted. On the other hand, when such a wave reflects from a boundary with a 
region of faster wave speed, the reflected wave is not inverted.

Change in Wavelength at a Boundary

When there is an abrupt change in wave medium, an incident wave splits up at the 
boundary; part is reflected and part is transmitted past the boundary into the other 
medium. The frequencies of both the reflected and transmitted waves are the same as 
the frequency of the incident wave. To understand why, think of a wave incident on 
the knot between two different strings. Both the reflected and the transmitted waves 
are generated by the up-and-down motion of the knot; the knot vibrates at the fre-
quency dictated by the incident wave. However, if the wave speed changes at the 
boundary, the wavelength of the transmitted wave is not the same as the wavelength 
of the incident and reflected waves. Since v = λf and the frequencies are the same,

 f =
v1

λ1
=

v2

λ2
 (11-16)

Equation (11-16) applies to any kind of wave and is of particular importance in the 
study of optics.

Figure 11.16 Snapshots of 
the reflection of a wave pulse 
from a fixed end. The reflected 
pulse is upside down.

Example 11.5

 Wavelength in Ultrasonography

Ultrasonic imaging is used to detect the presence of gall-
stones in the gallbladder. A transducer generates ultrasound 
at a frequency of 6.00 MHz. The speed of sound in the 
 gallstone is 2180 m/s; the speed in the surrounding bile is 
1520 m/s. (a) What is the wavelength of the sound wave in 
the bile? (b) What is the wavelength of the sound wave in the 
gallstone?

Strategy The frequency of the sound wave in water is the 
same in the two materials. The wavelengths depend on both 
the frequency and the speed of sound in the medium.

Solution (a) The wavelength in bile is related to the speed 
of sound in bile and the frequency of the wave:

λb = vbT =
vb

f

Substituting numerical values yields

λb =
1520 m/s

6.00 × 106 Hz
= 0.253 mm

continued on next page
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Refraction

A transmitted wave not only has a different wavelength than the incident wave, it also 
travels in a different direction unless the incident wave’s direction of propagation is 
along the normal (the direction perpendicular to the boundary). This change in prop-
agation direction is called refraction.

Application: Why Ocean Waves Approach Shore Nearly Head-on If the change 
in wave speed is gradual, then the change in direction is gradual as well. The speed 
of ocean waves depends on the depth of the water; the waves are slower in shallower 
water. As waves approach the shore, they gradually slow down; as a result, they 
gradually bend until they reach shore nearly head-on.

Application: Seismology A sudden change in wave speed, such as when a seismic 
wave is incident on a boundary between different kinds of rock, causes a sudden 
refraction (Fig. 11.17). Understanding the propagation of seismic waves, including 
reflection and refraction due to boundaries between geological features, is an essential 
part of the effort to reduce damage from future earthquakes. Scientists create small 
seismic waves with a large vibrator, then use seismographs to record ground vibrations 
at various locations. The goal is to produce a seismic hazard map so that preventative 
measures can be targeted to areas with the highest risk of earthquake damage.

11.9 INTERFERENCE AND DIFFRACTION

Interference

The principle of superposition can lead to dramatic effects. Suppose waves with the 
same frequency f but different amplitudes A1 and A2 pass through the same point in 
space. If the waves are in phase at that point, the two waves consistently reach their 
maxima at the same time (Fig. 11.18a). The superposition of the waves that are in 
phase with each other is called constructive interference; the amplitude of the com-
bined waves is the sum of the amplitudes of the two individual waves (A1 + A2).

If two waves with the same frequency are 180° out of phase at a given point, 
one reaches its maximum when the other reaches its minimum (Fig. 11.18b).  
The superposition of waves that are 180° out of phase is called destructive 
 interference—the amplitude of the combined waves is the difference of the ampli-
tudes of the two individual waves (∣A1 − A2∣). Constructive interference yields 
the  maximum possible amplitude (A1 + A2) and destructive interference yields the 
minimum (∣A1 − A2∣).

Example 11.5 continued

Practice Problem 11.5 Working on the Railroad

A railroad worker, driving in spikes, misses the spike and 
hits the iron rail; a sound wave travels through the air and 
through the rail. (Ignore the transverse wave that also 
travels in the rail.) The wavelength of the sound in air is 
0.548 m. The speed of sound in air is 340 m/s; the speed 
of sound in iron is 5300 m/s. (a) What is the frequency of 
the wave? (b) What is the wavelength of the sound wave 
in the rail?

(b) The wave in the stone has the same frequency, but the 
speed of sound is different:

λs =
vs

f
=

2180 m/s
6.00 × 106 Hz

= 0.363 mm

Discussion As a quick check, the ratio of the wavelengths 
should be equal to the ratio of the wave speeds:

0.253 mm
0.363 mm

= 0.697; 
1520 m/s
2180 m/s

= 0.697

Wave crests

Figure 11.17 Wave crests 
for a seismic wave incident on 
a boundary between two differ-
ent kinds of rock. Not only 
does the wavelength (distance 
between wave crests) change at 
the boundary, the wave also 
refracts (changes its direction 
of propagation). The reflected 
wave is omitted for clarity.



 11.9 INTERFERENCE	AND	DIFFRACTION 427

In Fig. 11.19, two rods vibrate up and down in step with each other to generate 
circular waves on the surface of the water in a ripple tank. If the two waves travel the 
same distance to reach a point on the water surface, they arrive in phase and interfere 
constructively. At points where the distances are not equal, interference can be con-
structive, destructive, or something in between.

t

y

A1
A2

A1
A2

(a)

t

y

180˚ out of phase

In phase

cycle1
2

(b)

A1 + A2

|A1 – A2|

Figure 11.18 Waves that are (a) in phase and (b) 180° out of phase. (One wave 
is drawn with a lighter line to distinguish it from the other.) Note that in (b), one 
wave reaches its maximum a half cycle before the other. In both (a) and (b), the dashed 
curve is the superposition of the two waves. For constructive interference (a), the 
amplitude is A1 + A2. For destructive interference (b), the amplitude is ∣A1 − A2∣.

Interference due to path difference
Suppose that two waves start out in phase and then travel different distances 
d1, d2 to a point where they overlap. If the path difference ∣d1 − d2∣ is an inte-
gral number of wavelengths, then constructive interference occurs. If the path 
difference is 1

2λ, 32λ, 52λ, . . . , then destructive interference occurs.

Intensity Effects for Interfering Waves When waves interfere, the amplitudes 
add (for constructive interference) or subtract (for destructive interference). However, 
we cannot simply add or subtract the intensities of waves when they interfere.

d2d1

P

Figure 11.19 Overhead view 
of circular waves in a ripple tank 
generated by two rods (not 
shown, just above the top edge 
of the photo). At any point P, 
the distances traveled by the two 
waves (d1 and d2) from the 
sources to P determine whether 
the interference at P is construc-
tive, destructive, or something in 
between.

©The History Collection/Alamy
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Coherence

The phase difference Δϕ between two waves at a point where they overlap is a mea-
sure of how much one is ahead or behind the other in the cycle. It is usually given 
in degrees or radians rather than as a fraction of a cycle: 1 cycle corresponds to 360°, 
or 2π rad. In our discussion of interference, we’ve assumed that the waves are coherent—
that their phase difference is constant. Coherent waves that are in phase (Δϕ = 0) 
stay in phase, and waves that are 180° out of phase (Δϕ = 180°) stay 180° out of 
phase. Coherent waves can have phase differences other than 0 and 180°; then the 
amplitude when they are added is intermediate between the maximum (A1 + A2) and 
minimum ∣A1 − A2∣. Coherent waves must have the same frequency; otherwise there 
is no way to maintain a consistent phase difference.

One way to produce coherent waves is to get them from the same source. For 
example, one could send the same signal from an audio amplifier to two speakers. 
Should some fluctuation occur in the amplifier’s circuitry, the same fluctuation occurs 
in the signal to both speakers and they maintain their coherence.

Waves are incoherent if the phase relationship between them varies randomly. 
Waves from independent sources are incoherent. With incoherent waves, interference 
effects are averaged out due to the varying phase difference and the total intensity is 
the sum of the individual intensities. (As defined here, coherent and incoherent are 
idealized extremes.)

Why don’t we see and hear interference effects all the time? Light from ordinary 
sources—incandescent bulbs, fluorescent bulbs, or the Sun—is incoherent because it 
is generated by large numbers of independent atomic sources. Sound waves from 
independent sources are also incoherent. Even with a single sound source, in most 
situations many different sound waves reach our ears after traveling different paths 
due to the reflection of sound from walls, ceilings, chairs, and so forth. These waves 
arrive with many different phases, so interference effects may not be noticeable. Also 

Example 11.6

Intensity of Interfering Waves

Two harmonic waves interfere. The intensity of one of them 
(alone) is 9.0 times the intensity of the other. What is the 
ratio of the maximum possible intensity to the minimum 
possible intensity of the resulting wave?

Strategy The intensity is not the sum or difference of the 
individual intensities. The principle of superposition tells us 
that the maximum and minimum amplitudes of the interfer-
ing waves are the sum and difference of the individual am-
plitudes. For harmonic waves, the intensity is proportional to 
amplitude squared, so we find the ratio of the amplitudes and 
then add or subtract them.

Solution The intensities of the two individual waves are 
related by I1 = 9.0I2 or I1/I2 = 9.0. Since intensity is propor-
tional to amplitude squared,

A1

A2
= √

I1

I2
= 3.0

Thus, A1 = 3.0A2. The maximum possible amplitude for the 
superposition occurs if the waves are in phase:

Amax = A1 + A2 = 4.0A2

The minimum possible amplitude for the superposition oc-
curs if the waves are 180° out of phase:

Amin = ∣A1 − A2∣ = 2.0A2

The ratio of the maximum to minimum intensity is

Imax

Imin
= (

Amax

Amin )
2

= (
4.0
2.0)

2

= 4.0

Discussion Had we added and subtracted the intensities 
instead of the amplitudes, we would have found a ratio of 
10/8 = 1.25 between the maximum and minimum intensities.

Practice Problem 11.6 Two More Coherent Waves

Repeat Example 11.6, but change the ratio of the individual 
intensities to 4.0 (instead of 9.0).
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sound waves normally contain many different frequencies, so a point of constructive 
interference for one frequency is not a point of constructive interference for other 
frequencies. Nevertheless, sound engineers and acousticians who design classrooms 
and concert halls must take interference effects into account.

CHECKPOINT 11.9

Two	waves	have	intensities	of	I2	and	I1	=	9.0I2	by	themselves,	as	in	Example	11.6.	
(a)	What	 is	 the	 intensity	 of	 the	 superposition	of	 the	 two	 if	 they	 are	 incoherent?	
(b)	What	are	the	maximum	and	minimum	possible	intensities	if	they	are	coherent?

Diffraction

Diffraction is the spreading of a wave around an obstacle in its path (Fig. 11.20). The 
amount of diffraction depends on the relative size of the obstacle and the wavelength 
of the waves. Diffraction enables you to hear around a corner but not to see around 
a corner. Sound waves, with typical wavelengths in air of around 1 m, diffract around 
the corner much more than do light waves with much smaller wavelengths (less than 
1 μm). We will study interference and diffraction of electromagnetic waves (including 
light) in detail in Chapter 25.

11.10 STANDING WAVES

Standing waves occur when a wave is reflected straight back at a boundary, and the 
reflected wave interferes with the incident wave so that the wave appears not to 
propagate. Suppose that a harmonic wave on a string, coming from the right, hits a 
boundary where the string is fixed. The equation of the incident wave is

 y(x, t) = A sin (ωt + kx)  (11-17)

The + sign is chosen because the wave travels to the left.
The reflected wave travels to the right, so +kx is replaced with −kx; and the 

reflected wave is inverted, so +A is replaced with −A. Then the reflected wave is 
described by

 y(x, t) = −A sin (ωt − kx)  (11-18)

Applying the principle of superposition, the motion of the string is described by

 y(x, t) = A [sin (ωt + kx) − sin (ωt − kx) ]  (11-19)

This can be rewritten in a form that shows the motion of the string more clearly. Using 
the trigonometric identity (Appendix A.7)

sin α − sin β = 2 cos [
1
2

(α + β)] sin [
1
2

(α − β)]

where

 α = ωt + kx and β = ωt − kx (11-20)

the motion of the string is described by

 y(x, t) = 2A cos ωt sin kx (11-21)

Notice that t and x are separated. Every point moves in SHM with the same frequency. 
However, in contrast to a traveling harmonic wave, every point reaches its maximum 
distance from equilibrium simultaneously. In addition, different points move with dif-
ferent amplitudes; the amplitude at any point x is 2A sin kx.

Waves traveling 
toward the block

Figure 11.20 Demonstration 
of diffraction in a ripple tank. 
Ripples in the water are gener-
ated by a bar (not shown) that 
oscillates up and down. The 
ripples are visible as shadows 
when the tank is illuminated. 
Here, an obstacle is placed in 
the path of the waves and the 
waves can be seen to bend 
around the obstacle. If the 
waves traveled in straight-line 
paths, we would see instead a 
sharply bounded rectangular 
zone with no disturbance 
behind the obstacle. By analogy 
to light, it could be called a 
shadow with sharp edges.
©Matt Meadows/McGraw-Hill 
 Education
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Figure 11.21 shows the string at time intervals of 1
8T  where T is the period. What 

you actually see when looking at a standing wave is a blur of sections of moving string, 
with points that never move (nodes, labeled “N”) halfway between points of maximum 
amplitude (antinodes, labeled “A”). The nodes are the points where sin kx = 0. Since 
sin nπ = 0 (n = 0, 1, 2, . . .), the nodes are located at x = nπ/k = nλ/2. Thus, the 
distance between two adjacent nodes is 1

2λ. The antinodes occur where sin kx = ±1, 
which is precisely halfway between a pair of nodes. So the nodes and antinodes alter-
nate, with one quarter of a wavelength between a node and the neighboring antinode.

So far we have ignored what happens at the other end of the string. If the other 
end is fixed, then it is a node. The string thus has two or more nodes, with one at 
each end. The distance between each pair of nodes is 1

2λ, so

 n(λ/2) = L (11-22)

where L is the length of the string and n = 1, 2, 3, . . . . The possible wavelengths 
and frequencies for standing waves on a string are

A A A

t1 =   T
t0 = 0

NN N N

t1

t0

t2

t3

t4

t2 =   T

t3 =   T

t4 =   T

1–8
2–8
3–8
4–8

x

yFigure 11.21 A standing 
wave at various times: t = 0, 
1
8T , 2

8T , 3
8T , and 4

8T , where T is 
the period. The labels “A” and 
“N” indicate the locations of 
the antinodes and nodes, 
respectively. An antinode is a 
point that vibrates with maxi-
mum amplitude; a node is a 
point that doesn’t move (ampli-
tude of zero). The distance 
between a node and a neigh-
boring antinode is λ/4; the dis-
tance between two adjacent 
nodes is λ/2.

 λn =
2L

n
 (n = 1, 2, 3, . . .)  (11-23)

 fn =
v

λn

=
nv

2L
 (n = 1, 2, 3, . . .)  (11-24)

There is no need to memorize Eqs. (11-23) and (11-24). Start with a sketch like 
Fig. 11.22, find the wavelengths, and then use v = fλ to find the frequencies.

The lowest frequency standing wave (n = 1) is called the fundamental. Notice 
that the higher frequency standing waves are all integral multiples of the fundamental; 
the set of standing wave frequencies makes an evenly spaced set:

f1, 2f1, 3f1, 4f1, . . . , nf1, . . .

These frequencies are called the natural frequencies or resonant frequencies of the 
string. Resonance occurs when a system is driven at one of its natural frequencies; 
the resulting vibrations are large in amplitude compared to when the driving frequency 
is not close to any of the natural frequencies.

CHECKPOINT 11.10

A	standing	wave	on	a	string	1.0	m	long	has	four	nodes,	not	including	the	nodes	
at	 the	 two	 fixed	ends.	What	 is	 the	wavelength?

Figure 11.22 shows the first four standing wave patterns on a string. The two 
ends are always nodes since they are fixed in place. Notice that each successive pat-
tern has one more node and one more antinode than the previous one. The fundamen-
tal has the fewest possible number of nodes (2) and antinodes (1).

CONNECTION:

An ideal mass-spring system 
has a single resonant frequency 
(Section 10.10), but extended 
objects generally have many 
different resonant frequencies.
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n = 3

n = 4
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Figure 11.22 Four standing 
wave patterns for a string fixed 
at both ends. “N” marks the 
locations of the nodes and  
“A” marks the locations of the 
antinodes. In each case, the 
node-to-node distance is 1

2λ  
and n such “loops” fit into the 
length L of the string, so  
n(λ/2) = L.

Example 11.7

Wavelength of a Standing Wave

A string is attached to a vibrator driven at 120 Hz. A weight 
hangs from the other end of the string; the weight is adjusted 
until a standing wave is formed (Fig. 11.23). What is the 
wavelength of the standing wave on the string?

Strategy The measured distance of 42 cm encompasses 
six “loops”—that is, six segments of string between one node 
and the next. Each of the loops represents a length of  1

2λ.

Solution The length of one loop is

42 cm ×
1
6

= 7.0 cm

Since the length of one loop is 1
2λ, the wavelength is 14 cm.

Discussion This string is not fixed at both ends. The left 
end is connected to a moving vibrator, so it is not a node. The 
right end wraps around a pulley; it may not be easy to deter-
mine precisely where the “end” is. For this case, it is more 
accurate to measure the distance between two actual nodes 
rather than to assume that the ends are nodes.

Practice Problem 11.7 Standing Wave with  
Seven Loops

The vibrator frequency is increased until there are seven 
loops within the 42 cm length. What is the new standing 
wave frequency for this string (assuming the same tension)?

String
vibrator

f = 120 Hz 42 cm

Figure 11.23
Measuring distance between nodes for a standing wave.

Application of Resonance: Damage Caused by Earthquakes Resonance is 
responsible for much of the structural damage caused by seismic waves. If the fre-
quency at which the ground vibrates is close to a resonant frequency of a structure, 
the vibration of the structure builds up to a large amplitude. Thus, to construct a 
building that can survive an earthquake, it is not enough to make it stronger. Either 
the building must be designed so it is isolated from ground vibrations, or a damping 
mechanism—something like a shock absorber—must be incorporated to dissipate 
energy and reduce the amplitude of the vibrations. Damping is becoming increas-
ingly common in large buildings since it is just as effective and much less expensive 
than isolation.
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In the 1995 Hanshin earthquake, large sections of the Hanshin expressway col-
lapsed even though nearby buildings and roads suffered little damage. The frequency 
of vibration of the ground during the earthquake matched closely one of the resonant 
frequencies of the elevated roadway. The roadway twisted back and forth with increas-
ing amplitude until it collapsed. After the earthquake, rubber base isolators were 
installed to replace steel bearings connecting the roadway to the concrete piers. Part 
of their function is to act like shock absorbers to reduce the roadway’s vibration 
amplitude during a future earthquake.

Master the Concepts

 ∙ An isotropic source radiates sound uniformly in all direc-
tions. Assuming that no energy is absorbed by the me-
dium and there are no obstacles to reflect or absorb sound, 
the intensity I at a distance r from an isotropic source is

 I =
P

A
=

P

4πr2  (11-2)

 ∙ In a transverse wave, the motion of particles in the me-
dium is perpendicular to the direction of propagation of 
the wave. In a longitudinal wave, the motion of particles 
in the medium is along the same line as the direction of 
propagation of the wave.

Compression Compression

Rarefaction RarefactionRarefaction
(b)

(a)Direction of
hand motion

Direction of
hand motion

 ∙ The speed of a mechanical wave depends on properties 
of the wave medium. More restoring force makes faster 
waves; more inertia makes slower waves.

 ∙ The speed of a transverse wave on a string is

 v = √
F

μ
 (11-5)

  where
 μ = m/L (11-4)

 ∙ A periodic wave repeats the same pattern over and over. 
Harmonic waves are a special kind of periodic wave 
characterized by a sinusoidal function (either a sine or 
cosine function).

 ∙ If a periodic wave has period T and travels at speed v, 
the repetition distance of the wave is the wavelength:

 λ = vT  (11-6)

A

–A

x

y

λ

λ

Crest Crest

TroughTrough

 ∙ The principle of superposition: When two or more 
waves overlap, the net disturbance at any point is the 
sum of the individual disturbances due to each wave.

 ∙ A harmonic traveling wave can be described by

 y(x, t) = A cos (ωt ± kx)  (11-10)

  or
 y(x, t) = A sin (ωt ± kx)  (11-11)

  The constant k is the wavenumber:

 k =
ω

v
=

2πf

v
=

2π

λ
 (11-15)

 ∙ Reflection occurs at a boundary between different wave 
media. Some energy may be transmitted into the new 
medium, and the rest is reflected. The wave transmitted 
past the boundary is refracted (propagates in a different 
direction).

 ∙ Waves that are in phase with one another interfere con-
structively; those that are 180° out of phase interfere 
destructively.

 ∙ Diffraction occurs when a wave bends around an obsta-
cle in its path.

 ∙ In a standing wave on a 
string, every point 
moves in SHM with the 
same frequency. Nodes 
are points of zero ampli-
tude; antinodes are 
points of maximum am-
plitude. The distance 
between two adjacent nodes is 1

2λ. The distance between 
a node and a neighboring antinode is 1

4λ.
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Conceptual Questions

 1. Is the vibration of a string in a piano, guitar, or violin a 
sound wave? Explain.

 2. The spectators at a sports stadium are “doing the wave”: 
they stand and raise their arms simultaneously with 
those in front of them and slightly after their neighbors 
on one side. This gives the appearance of a wave pulse 
propagation around the stadium. Is “the wave” analo-
gous to a transverse wave or a longitudinal wave? Ex-
plain your answer. How would a group of people have to 
move to simulate the other kind of wave?

 3. The piano strings that vibrate with the lowest frequen-
cies consist of a steel wire around which a thick coil of 
copper wire is wrapped. Only the inner steel wire is 
under tension. What is the purpose of the copper coil?

 4. The wavelength of the fundamental standing wave on a 
cello string depends on which of these quantities: length 
of the string, mass per unit length of the string, or ten-
sion? The wavelength of the sound wave resulting from 
the string’s vibration depends on which of the same 
three quantities?

 5. If the length of a guitar string is decreased while the 
tension remains constant, what happens to each of these 
quantities? (a) the wavelength of the fundamental, 
(b) the frequency of the fundamental, (c) the time for a 
pulse to travel the length of the string, (d) the maximum 
velocity of a point on the string (assuming the amplitude 
is the same both times), (e) the maximum acceleration 
of a point on the string (assuming the amplitude is the 
same both times).

 6. Why is it possible to understand the words spoken by 
two people at the same time?

 7. A cello player can change the frequency of the sound 
produced by her instrument by (a) increasing the tension 
in the string, (b) pressing her finger on the string at dif-
ferent places along the fingerboard, or (c) bowing a dif-
ferent string. Explain how each of these methods affects 
the frequency.

 8. Why is a transverse wave sometimes called a shear 
wave?

 9. A longitudinal wave has a wavelength of 10 cm and an 
amplitude of 5.0 cm and travels in the y-direction. The 
wave speed in this medium is 80 cm/s. (a) Describe the 
motion of a particle in the medium as the wave travels 
through the medium. (b) How would your answer differ 
if the wave were transverse instead?

 10.  Simple ear-protection devices use materials that 
reflect or absorb sound before it reaches the ears. A 
newer technology, sometimes called noise cancella-
tion, uses a microphone to produce an electrical signal 
that mimics the noise. The signal is modified electron-
ically, then fed to the speakers in a pair of headphones. 
The speakers emit sound waves that cancel the noise. 

On what principle is this technology based? What kind 
of modification is made to the electrical signal?

 11. Audio speakers must be connected with the correct polar-
ity so that, if the same electrical signal is sent, they move 
in the same direction. If the wires going to one speaker 
are reversed, the listener hears a noticeably weaker bass 
(low frequencies). Explain what causes this and why low 
frequencies are affected more than high frequencies.

Multiple-Choice Questions

 1. A transverse wave travels on a string of mass m, length 
L, and tension F. Which statement is correct?

 (a)  The energy of the wave is proportional to the square 
root of the wave amplitude.

 (b) Every point on the string moves with the same speed.
 (c)  The wave speed can be calculated from the values of 

m, L, and F.
 (d) The wave must be periodic.
 2. Standing waves on a string are produced by the superpo-

sition of two waves with
 (a)  the same amplitude, frequency, and direction of 

propagation.
 (b)  the same amplitude and frequency, and opposite 

propagation directions.
 (c)  the same amplitude and direction of propagation, but 

different frequencies.
 (d)  the same amplitude, different frequencies, and op-

posite directions of propagation.
 3. A transverse wave on a string is described by y(x, t) =  

A cos (ωt + kx). It arrives at the point x = 0 where the 
string is fixed in place. Which function describes the 
reflected wave?

 (a) A cos (ωt + kx) (b) A cos (ωt − kx)
 (c) −A sin (ωt + kx) (d) −A cos (ωt − kx)
 (e) A sin (ωt + kx)
 4. A violin string of length L is fixed at both ends. Which 

one of these is not a wavelength of a standing wave on 
the string?

 (a) L (b) 2L (c) L/2 (d) L/3 (e) 2L/3 (f) 3L/2
 5. When a wave passes from one medium into another, 

which of these quantities must stay the same?
 (a) wavelength (b) wave speed
 (c) frequency (d) direction of propagation
 6. In a standing wave, what is the distance between two 

neighboring nodes?
 (a) λ (b) 2λ (c) λ/2
 (d) λ/4 (e) 4λ

 7. In a transverse wave, the motion of individual particles 
of the medium is

 (a) circular. (b) elliptical.
 (c) parallel to the direction of the wave’s travel.
 (d) perpendicular to the direction of the wave’s travel.
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 8. Which is the only one of these properties of a wave that 
could be changed without changing any of the others?

 (a) amplitude (b) wavelength
 (c) speed (d) frequency
 9. The intensity of an isotropic sound wave is
 (a) directly proportional to the distance from the source.
 (b)  inversely proportional to the distance from the source.
 (c)  directly proportional to the square of the distance 

from the source.
 (d)  inversely proportional to the square of the distance 

from the source.
 (e) none of the above.
 10. Two successive transverse pulses, one caused by a brief 

displacement to the right and the other by a brief dis-
placement to the left, are sent down a Slinky that is fas-
tened at the far end. At the point where the first reflected 
pulse meets the second advancing pulse, the deflection 
(compared with that of a single pulse) is

 (a) quadrupled. (b) doubled.
 (c) canceled. (d) halved.
 11. The drawing shows a complex wave moving to the right 

along a cord. At the instant shown, which points on the 
cord are moving downward?

 (a) A (b) B
 (c) C (d) A and C
 (e) A, B, and C

   

A

B

C

Direction of propagation

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

11.1 Waves and Energy Transport
 1. The intensity of sunlight that reaches Earth’s atmo-

sphere is 1400 W/m2. What is the intensity of the sun-
light that reaches Jupiter? Jupiter is 5.2 times as far from 
the Sun as Earth. [Hint: Treat the Sun as an isotropic 
source of light waves.]

 2.  Under favorable conditions, the human eye can detect 
light waves with intensities as low as 2.5 × 10−12 W/m2. 
(a) At this intensity, what is the average power incident on 
a pupil of diameter 9.0 mm? (b) If this light is produced by 
an isotropic source 10.0 m away, what is the average power 
emitted by the source?

 3. Michelle is enjoying a picnic across the valley from a 
cliff. She claps her hands and the echo takes 1.5 s to re-
turn. Given that the speed of sound in air is 343 m/s on 
that day, how far away is the cliff?

 4. The intensity of the sound wave from a jet airplane as it 
is taking off is 100 W/m2 at a distance of 5.0 m. What is 
the intensity of the sound wave that reaches the ears of a 
person standing at a distance of 120 m from the runway? 
Assume that the sound wave radiates from the airplane 
equally in all directions.

 5. At what rate does the jet airplane in Problem 4 radiate 
energy in the form of sound waves?

 6. The Sun emits electromagnetic waves (including light) 
equally in all directions. The intensity of the waves at 
Earth’s upper atmosphere is 1.4 kW/m2. At what rate 
does the Sun emit electromagnetic waves? (In other 
words, what is the power output?)

 7. Six sources emit sound equally in all directions with aver-
age power P. A microphone is placed at a distance d from 
each source. Rank the situations in order of the intensity 
at the location of the microphone, smallest to largest.

 (a) P = 10 W, d = 2 m (b) P = 5 W, d = 1 m
 (c) P = 20 W, d = 4 m (d) P = 20 W, d = 8 m
 (e) P = 5 W, d = 2 m

11.3 Speed of Transverse Waves on a String
 8. Transverse waves travel on five stretched strings with 

the following properties. Rank the strings according to 
the time it takes a transverse wave pulse to travel from 
one end to the other, from largest to smallest.

 (a) length L, total mass m, tension F
 (b) length 2L, total mass m, tension F
 (c) length L, total mass 2m, tension F
 (d) length L, total mass m, tension 2F
 (e) length 2L, total mass 2m, tension F
 9. (a) What is the position of the peak of the pulse shown 

in the figure at t = 3.00 s? (b) When does the peak of the 
pulse arrive at x = 4.00 m?
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Problems	9,	46–49,	and	95
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 10. When the tension in a cord is 75 N, the wave speed is 
140 m/s. What is the linear mass density of the cord?

 11. A metal guitar string has a linear mass density of  
μ = 3.20 g/m. What is the speed of transverse waves on 
this string when its tension is 90.0 N?

 12. Two children are playing with a tin-can telephone. The 
children are 12 m apart, the string connecting their tin 
cans has a linear mass density of 1.3 g/m, and it is 
stretched with a tension of 8.0 N. One child decides to 
pluck the string. How long does it take for the wave 
pulse to travel from one child to the other?

 13. Two strings, each 15.0 m long, are stretched side by 
side. One string has a mass of 78.0 g and a tension of 
180.0 N. The second string has a mass of 58.0 g and a 
tension of 160.0 N. A pulse is generated at one end of 
each string simultaneously. (a) On which string will the 
pulse move faster? (b) Once the faster pulse reaches the 
far end of its string, after what additional time interval 
will the slower pulse reach the end of its string?

 14. A uniform string of length 10.0 m and weight 0.25 N is 
attached to the ceiling. A weight of 1.00 kN hangs from 
its lower end. The lower end of the string is suddenly 
displaced horizontally. How long does it take the result-
ing wave pulse to travel to the upper end? [Hint: Is the 
weight of the string negligible in comparison with that 
of the hanging mass?]

11.4 Periodic Waves
 15. What is the speed of a wave whose frequency and wave-

length are 500.0 Hz and 0.500 m, respectively?
 16. What is the wavelength of a wave whose speed and pe-

riod are 75.0 m/s and 5.00 ms, respectively?
 17. What is the frequency of a wave whose speed and wave-

length are 120 m/s and 30.0 cm, respectively?
 18. The speed of sound in air at room temperature is 

343 m/s. (a) What is the frequency of a sound wave in 
air with wavelength 1.0 m? (b) What is the frequency of 
a radio wave with the same wavelength? (Radio waves 
are electromagnetic waves that travel at 3.0 × 108 m/s in 
air or in vacuum.)

 19. What is the wavelength of the microwaves transmitted 
by a cell phone at 900 MHz? (Microwaves travel at 
3.0 × 108 m/s.)

 20. Light visible to humans consists of electromagnetic 
waves with wavelengths (in air) in the range 400–700 nm 
(4.0 × 10−7 m to 7.0 × 10−7 m). The speed of light in air 
is 3.0 × 108 m/s. What are the frequencies of electro-
magnetic waves that are visible?

 21. A fisherman notices a buoy bobbing up and down in the 
water in ripples produced by waves from a passing 
speedboat. These waves travel at 2.5 m/s and have a 
wavelength of 7.5 m. At what frequency does the buoy 
bob up and down?

11.5 Mathematical Description of a Wave
 22. You are swimming in the ocean as water waves with 

wavelength 9.6 m pass by. What is the closest distance 
that another swimmer could be so that his motion is 
exactly opposite yours (he goes up when you go 
down)?

 23. A transverse wave on a string is described by

y(x, t) = A cos (ωt + kx)

  where A = 0.350 mm, ω = 50.0 rad/s, and k = 
6.00  rad/m. Find the (a) wavelength, (b) period, and  
(c) wave speed. (d) In what direction does the wave 
travel? (e) What is the maximum transverse speed of a 
point on the string?

 24. A transverse wave on a string is described by

y(x, t) = A cos (ωt − kx)

  where A = 4.0 mm, ω = 740 rad/s, and k = 2.8 rad/m. 
Find the (a) wavelength, (b) period, and (c) wave 
speed. (d) In what direction does the wave travel? 
(e) What is the maximum acceleration of a point on 
the string?

 25. A transverse wave on a string is described by

y(x, t) = (0.35 mm) sin {(1.047 rad/m)[x − (66 m/s)t]}

  Find the (a) amplitude, (b) wavelength, and (c) frequency 
of this wave. (d) In what direction does the wave travel? 
(e) What is the maximum transverse speed of a point on 
the string?

 26. A transverse wave on a string is described by

y(x, t) = (2.20 cm) sin [ (130 rad/s)t + (15 rad/m)x]

  Find the (a) amplitude, (b) wavelength, (c) frequency, 
and (d) wave speed of this wave. (e) In what direction 
does the wave travel? (f) What is the maximum accel-
eration of a point on the string?

 27. (a) Write an equation for a harmonic wave with ampli-
tude 1.20 mm, wavelength 30.0 cm, and wave speed 
6.40 m/s traveling in the −x-direction. At t = 0, the point 
x = 0 is moving in the +y-direction at its maximum 
transverse speed. (b) What is the value of the maximum 
transverse speed?

 28. (a) Write an equation for a harmonic wave with ampli-
tude 0.750 mm, frequency 36.0 Hz, and wave speed 
144 m/s traveling in the +x-direction. At t = 0, the 
point x = 0 is at its maximum displacement in the  
+y-direction. (b) What is the maximum acceleration of 
a point on the string?

 29.  Write the equation for a harmonic wave with ampli-
tude 2.50 cm and angular frequency 2.90 rad/s that is 
moving in the +x-direction with a wave speed that is 
5.00 times as fast as the maximum transverse speed of a 
point on the string. At t = 0, the point x = 0 is at y = 0 
and is moving in the −y-direction.
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11.6 Graphing Waves
Problems 30–32. The graphs show displacement y as a func-
tion of time t for five transverse waves at a fixed location x. 
The displacement and time axes use the same scale in each 
graph.
 30. Rank the waves in order of frequency, largest to smallest.
 31. Rank the waves in order of amplitude, largest to smallest.
 32. Rank the waves in order of maximum transverse speed, 

largest to smallest.
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Problems	30–32

 33. A sine wave is traveling to the right on a cord. The 
lighter line in the figure represents the shape of the cord 
at time t = 0; the darker line represents the shape of the 
cord at time t = 0.10 s. (Note that the horizontal and 
vertical scales are different.) What are (a) the amplitude 
and (b) the wavelength of the wave? (c) What is the 
speed of the wave? What are (d) the frequency and 
(e) the period of the wave?
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 34. (a) Plot a graph for
y(x, t) = (4.0 cm) sin [ (378 rad/s)t − (314 rad/cm)x]

  versus x at t = 0 and at t = 1
480 s. From the plots deter-

mine the amplitude, wavelength, and speed of the wave. 

(b) For the same function, plot a graph of y(x, t) versus t 
at x = 0 and find the period of the vibration. Show that 
λ = vT.

 35. For a transverse wave on a string described by
y(x, t) = (0.0050 m) cos [(4.0π rad/s)t − (1.0π rad/m)x]

  find the maximum speed and the maximum acceleration 
of a point on the string. Plot a graph showing one cycle 
of velocity vy versus t at the point x = 0.

 36. A transverse wave on a string is described by
y(x, t) = (1.2 mm)  sin  [ (2.0π rad/s)t − (0.50π rad/m)x]

  Plot the displacement y and the velocity vy versus t for 
one complete cycle of the point x = 0 on the string.

 37. Sketch a graph of y versus x for the function
y(x, t) = (0.80 mm) sin (kx + ωt)

  for the times t = 0 and 0.96 s. Make the graphs on the 
same axes, using a solid line for the first and a dashed 
line for the second. Use the values k = (π/5.0) rad/cm 
and ω = (π/6.0) rad/s. Is the wave traveling in the −x-
direction or in the +x-direction?

 38.  The drawing shows a snapshot of a transverse wave 
traveling along a string at 10.0 m/s. The equation for the 
wave is y(x, t) = A cos (ωt + kx). (a) Is the wave moving 
to the right or to the left? (b) What are the numerical 
values of A, ω, and k? (c) At what times could this snap-
shot have been taken? (Give the three smallest nonnega-
tive possibilities.)
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11.7 Principle of Superposition
 39. Two pulses on a cord at time t = 0 are moving toward 

each other; the speed of each pulse is 40 cm/s. Sketch 
the shape of the cord at 0.15 s and 0.25 s.
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 40. Two pulses on a cord at time t = 0 are moving toward 
each other; the speed of each pulse is 2.5 m/s. Sketch the 
shape of the cord at 0.60, 0.80, and 0.90 s.
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 41. Two sine waves are described by y1 = A sin (ωt + kx) 
and y2 = A sin (ωt + kx + π/3). Plot graphs of y1 versus 
t and y2 versus t on the same axes for the point x = 0. 
Plot y versus t for the superposition of the two waves at 
x = 0 and estimate its amplitude.

 42.  A traveling sine wave is the result of the superposi-
tion of two sine waves with equal amplitudes, wave-
lengths, and frequencies: y1 = A sin (ωt + kx) and y2 = 
A sin (ωt + kx −ϕ). The two component waves each 
have amplitude A = 5.00 cm. If the superposition wave 
has amplitude 6.69 cm, what is the phase difference ϕ 
between the component waves? [Hint: Use the trigono-
metric identity (Appendix A.7) for sin α + sin β to find 
y = y1 + y2, and identify the new amplitude in terms of 
the original amplitude.]

11.8 Reflection and Refraction
 43. Light of wavelength 0.500 μm (in air) enters the water in 

a swimming pool. The speed of light in water is 
0.750 times the speed in air. What is the wavelength of 
the light in water?

 44.  The speed of ultrasound in fat is 1450 m/s, and in 
muscle it is 1585 m/s. By what percentages do the fre-
quency and wavelength of ultrasound change when 
passing from fat into muscle?

 45. At t = 0, the wave pulses shown are moving toward each 
other on a string. The wave speed is 20 m/s. Use the 
principle of superposition to sketch the shape of the 
string at t = 2.0 ms.

x (cm)

y (mm)
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Problems 46–49. The pulse of Problem 9 travels to the right 
on a string whose ends at x = 0 and x = 4.0 m are both fixed 
in place. Imagine a reflected pulse that begins to move onto 
the string at an endpoint at the same time the incident pulse 
reaches that endpoint. The superposition of the incident and 
reflected pulses gives the shape of the string.
 46.  When does the string first look completely flat for t > 0?
 47. When is the first time for t > 0 that the string looks 

 exactly as it does at t = 0?
 48.  Sketch the shape of the string at t = 2.2 s.
 49.  Sketch the shape of the string at t = 1.6 s.

11.9 Interference and Diffraction
 50. A sound wave with a frequency of 400.0 Hz is incident 

upon a set of stairs. The reflected waves from the vertical 
surfaces of adjacent steps interfere destructively. What is 
the minimum tread depth of a step for this to occur?

Tread depth

 51. Two speakers vibrate in phase with each other at 523 Hz. 
At certain points in the room, the sound waves from the 
two speakers interfere constructively. One such point is 
2.28 m from speaker #1 and is between 2 m and 4 m 
from speaker #2. How far is this point from speaker #2? 
Find all possible distances between 2 m and 4 m. The 
speed of sound in air is 343 m/s.

 52. Two speakers vibrate in phase with each other at 523 Hz. 
At certain points in the room, the sound waves from the 
two speakers interfere destructively. One such point is 
2.28 m from speaker #1 and is between 2 m and 4 m 
from speaker #2. How far is this point from speaker #2? 
Find all possible distances between 2 m and 4 m. The 
speed of sound in air is 343 m/s.

 53. Two waves with identical frequency but different ampli-
tudes A1 = 5.0 cm and A2 = 3.0 cm occupy the same 
region of space (i.e., are superimposed). (a) What is the 
amplitude of the resulting wave if they interfere con-
structively? (b) What is its amplitude if they interfere 
destructively? (c) By what factor is the amplitude for 
constructive interference larger than the amplitude for 
destructive interference?

 54. Two waves with identical frequency but different ampli-
tudes A1 = 6.0 cm and A2 = 3.0 cm occupy the same 
region of space (i.e., are superimposed). (a) What is the 
amplitude of the resulting wave if they interfere con-
structively? (b) What is its amplitude if they interfere 
destructively? (c) By what factor is the intensity larger 
for constructive interference than the intensity for de-
structive interference?



438 CHAPTER	11 Waves

 55. A sound wave with intensity 25 mW/m2 interferes con-
structively with a sound wave that has an intensity of 
15 mW/m2. What is the intensity of the superposition 
of the two?

 56. A sound wave with intensity 25 mW/m2 interferes 
 destructively with a sound wave that has an intensity of 
28 mW/m2. What is the intensity of the superposition 
of the two?

 57. Two coherent sound waves have intensities of 0.040 W/m2 
and 0.090 W/m2 where you are listening. (a) If the waves 
interfere constructively, what is the intensity that you hear? 
(b) What if they interfere destructively? (c) If they were 
incoherent, what would be the intensity? [Hint: If your 
 answers are correct, then (c) is the average of (a) and (b).]

 58.  While testing speakers for a concert, Tomás sets up 
two speakers to produce sound waves at the same fre-
quency, which is between 100 Hz and 150 Hz. The two 
speakers vibrate in phase with each other. He notices 
that when he listens at certain locations, the sound is 
very soft (a minimum intensity compared to nearby 
points). One such point is 25.8 m from one speaker and 
37.1 m from the other. What are the possible frequen-
cies of the sound waves coming from the speakers? (The 
speed of sound in air is 343 m/s.)

11.10 Standing Waves
 59. Five stretched strings have the following properties. Rank 

the strings according to their fundamental frequencies 
(for transverse standing waves), from greatest to least.

 (a) length L, total mass m, tension F
 (b) length 2L, total mass m, tension F
 (c) length L, total mass 2m, tension F
 (d) length L, total mass m, tension 2F
 (e) length 2L, total mass 2m, tension F
 60. A guitar string has a fundamental frequency f. The ten-

sion in the string is increased by 1.0%. Ignoring the very 
small stretch of the string, how does the fundamental 
frequency change?

 61. A guitar string has a fundamental frequency f. The 
player presses on a fret, reducing the vibrating part of 
the string to 5/6 of its original length. Ignoring the very 
small change in tension, by what factor does the funda-
mental frequency change?

 62. A standing wave has wavenumber 200 rad/m. What is 
the distance between two adjacent nodes?

 63. A string 2.0 m long is held fixed at both ends. If a sharp 
blow is applied to the string at its center, it takes 0.050 s 
for the pulses to travel to the ends of the string and re-
turn to the middle. What are the lowest three standing 
wave frequencies for this string?

 64. The tension in a guitar string is increased by 15%. What 
happens to the fundamental frequency of the string?

 65. In order to decrease the fundamental frequency of a 
 guitar string by 4.0%, by what percentage should you 
reduce the tension?

 66. A harpsichord string of length 1.50 m and linear mass 
density 25.0 mg/m vibrates at a fundamental fre-
quency of 450.0 Hz. (a) What is the speed of the trans-
verse string waves? (b) What is the tension? (c) What 
are the wavelength and frequency of the sound wave 
in air produced by vibration of the string? (The speed 
of sound in air at room temperature is 343 m/s.)

©Dorling Kindersley/Getty Images 

 67. A cord of length 1.5 m is fixed at both ends. Its mass per 
unit length is 1.2 g/m and the tension is 12 N. (a) What 
is the frequency of the fundamental oscillation? 
(b) What tension is required to make the n = 3 mode 
have a frequency of 0.50 kHz?

 68. Tension is maintained in a string by attaching one end to a 
wall and by hanging a 2.20 kg object from the other end of 
the string after it passes over a pulley that is 2.00 m from 
the wall. The string has a mass per unit length of 3.55 mg/m. 
What is the fundamental  frequency of this string?

 69. A guitar’s E-string has length 65 cm and is stretched to 
a tension of 82 N. It vibrates at a fundamental frequency 
of 329.63 Hz. Determine the mass per unit length of the 
string.

 70. A 1.6 m long string fixed at both ends vibrates at resonant 
frequencies of 780 Hz and 1040 Hz, with no other reso-
nant frequency between these values. The tension in the 
string is 1200 N. (a) What is the fundamental frequency 
of this string? (b) What is the total mass of the string?

 71. In a lab experiment, a string has a mass per unit length of 
0.120 g/m. It is attached to a vibrating device and weight 
similar to that shown in Figure 11.23. The vibrator oscil-
lates at a constant frequency of 110 Hz. How heavy should 
the weight be in order to produce standing waves in a 
string of length 42 cm? Give the three largest possibilities.

 72.  The longest “string” (a thick metal wire) on a par-
ticular piano is 2.0 m long and has a tension of 300.0 N. 
It vibrates with a fundamental frequency of 27.5 Hz. 
What is the total mass of the wire?
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Collaborative Problems

 73. When the string of a guitar is pressed against any fret, 
the shortened string vibrates at a fundamental frequency 
5.95% higher than when the previous fret is pressed. If 
the whole length of the section of string that can vibrate 
is 64.8 cm, how far from one end of the string are the 
first three frets located?

 74. A guitar string has a fundamental frequency of 300.0 Hz. 
(a) What are the next three lowest standing wave frequen-
cies? (b) If you press a finger lightly against the string at its 
midpoint so that both sides of the string can still vibrate, 
you create a node at the midpoint. What are the lowest four 
standing wave frequencies now? (c) If you press hard at the 
same point, only one side of the string can vibrate. What 
are the lowest four standing wave frequencies?

 75.  The formula for the speed of transverse waves on a 
spring is the same as for a string. (a) A spring is stretched 
to a length much greater than its relaxed length. Explain 
why the tension in the spring is approximately propor-
tional to the length. (b) A wave takes 4.00 s to travel 
from one end of such a spring to the other. Then the 
length is increased 10.0%. Now how long does a wave 
take to travel the length of the spring? [Hint: Is the mass 
per unit length constant?]

 76.  The drawing shows 
a snapshot of a trans-
verse wave moving to 
the left on a string. The 
wave speed is 10.0 m/s. 
At the instant the snapshot is taken, (a) in what direction is 
point A moving? (b) In what direction is point B moving? 
(c) At which of these points is the speed of the string seg-
ment (not the wave speed) larger? Explain. (d) How do your 
answers change if the wave moves to the right instead?

 77.  Two speakers spaced a distance 1.5 m apart emit co-
herent sound waves at a frequency of 680 Hz in all di-
rections. The waves start out in phase with each other. A 
listener walks in a circle of radius greater than 1 m cen-
tered on the midpoint of the two speakers. At how many 
points does the listener observe destructive interfer-
ence? The listener and the speakers are all in the same 
horizontal plane and the speed of sound is 340 m/s. 
[Hint: Start with a diagram; then determine the  maximum 
path difference between the two waves at points on the 
circle.] Experiments like this must be done in a special 
room so that reflections are negligible.

Comprehensive Problems

78. A transverse wave on a string is described by
y(x, t) = (1.2 cm) sin [ (0.50π rad/s)t − (1.00π rad/m)x]

  Find the maximum velocity and the maximum accelera-
tion of a point on the string. Plot graphs for displacement 

y versus t, velocity vy versus t, and acceleration ay versus 
t at x = 0.

 79. The speed of waves on a lake depends on frequency. For 
waves of frequency 1.0 Hz, the wave speed is 1.56 m/s; 
for 2.0 Hz waves, the speed is 0.78 m/s. The 2.0 Hz 
waves from a speedboat’s wake reach you 120 s after the 
1.0 Hz waves generated by the same boat. How far away 
is the boat?

 80. An underground explosion sends out both transverse 
(S waves) and longitudinal (P waves) mechanical wave 
pulses (seismic waves) through Earth’s crust. Suppose 
the speed of transverse waves is 8.0 km/s and that of 
longitudinal waves is 10.0 km/s. On one occasion, both 
waves follow the same path from a source to a detector 
(a seismograph); the longitudinal pulse  arrives 2.0 s be-
fore the transverse pulse. What is the distance between 
the source and the detector?

 81. A sign is hanging from a single 
metal wire, as shown in part 
(a)  of the drawing. The shop 
owner notices that the wire vi-
brates at a fundamental reso-
nance frequency of 660 Hz, 
which irritates his customers. In 
an attempt to fix the problem, the 
shop owner cuts the wire in half and hangs the sign from 
the two halves, as shown in part (b). Assuming the ten-
sion in the two wires to be the same, what is the new 
fundamental frequency of each wire?

 82. (a) Write an equation for a surface seismic wave moving 
in the −x-direction with amplitude 2.0 cm, period 4.0 s, 
and wavelength 4.0 km. Assume the wave is harmonic, 
x is measured in meters, and t is measured in seconds. 
(b) What is the maximum speed of the ground as the 
wave moves by? (c) What is the wave speed?

 83. A seismic wave is described by the equation
y(x, t) = (7.00 cm) cos [(6.00π rad/cm)x + (20.0π rad/s)t]

  The wave travels through a uniform medium along the 
x-axis. (a) Is this wave moving right (+x-direction) or 
left (−x-direction)? (b) How far from their equilibrium 
positions do the particles in the medium move? (c) What 
is the frequency of this wave? (d) What is the wavelength 
of this wave? (e) What is the wave speed? (f) Describe 
the motion of a particle that is at y = 7.00 cm and x = 0 
when t = 0. (g) Is this wave transverse or longitudinal?

 84. A stretched string has a fundamental frequency of 
847 Hz. What is the fundamental frequency if the ten-
sion is increased by a factor of 3.0?

 85. A sound wave of frequency 1231 Hz travels through air 
directly toward a wall, then through the wall out into air 
again. If the initial speed of the sound wave is 341 m/s 
and its speed in the wall is 620 m/s, what are (a) the 
initial wavelength of the sound, (b) the wavelength of 
the sound in the wall, and (c) the wavelength of the 
sound when it exits the wall on the other side?

A
B

v

Problems	76	and	94

(a)

(b)
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 86. When a stand-
ing wave is pro-
duced in a string 
fixed at both 
ends, the string oscillates so fast that it looks like a blur. 
You want to photograph the string when it is at positions 
A, B, and C shown in the figure. The tension in the 
string is 2.00 N and its mass per unit length is 0.200 g/m. 
The string’s length is 0.720 m. Assume that you take 
your first picture when the string is in position A and let 
that be time t = 0. What are the first two times after  
t = 0 at which you can photograph the string in each of 
the positions A, B, and C?

 87. Consider the following equations for traveling waves on 
two different strings:

  I. y(x, t) = (1.50 cm) sin [(4.00 cm−1)x + (6.00 s−1)t]
  II. y(x, t) = (4.50 cm) sin [(3.00 cm−1)x − (3.00 s−1)t]
 (a) Which wave has the faster wave speed? What is that 

speed? (b) Which wave has the longer wavelength? What 
is that wavelength? (c) Which wave has the faster maxi-
mum speed of a point in the medium? What is that speed? 
(d) Which wave is moving in the positive x-direction?

 88. The lowest frequency string on a guitar is 65.5 cm long 
and is tuned to 82 Hz. (a) If the string has a mass of 3.31 g, 
what is the tension in the string? (b) By fingering the guitar 
at the fifth fret, you shorten the vibrating length of the 
string, thereby changing the fundamental frequency of this 
string to match that of the next-highest-frequency string on 
the guitar, 110 Hz. How long is the vibrating part of the 
lowest-frequency string when it is fingered at the fifth fret?

 89.  (a) Use a graphing calculator or computer graphing 
program to plot y versus x for the function
y(x, t) = (5.0 cm) [sin (kx − ωt) + sin (kx + ωt) ]

  for the times t = 0, 1.0 s, and 2.0 s. Use the values k = 
(π/5.0) rad/cm and ω = (π/6.0) rad/s. (b) Is this a travel-
ing wave? If not, what kind of wave is it?

 90.  Show that the amplitudes of the graphs you made in 
Problem 89 satisfy the equation A′ = 2A cos (ωt), where 
A′ is the amplitude of the wave you plotted and A is 5.0 cm, 
the amplitude of the waves that were added together.

 91.  The graph shows ground vibrations recorded by a 
seismograph 180 km from the focus of a small earth-
quake. It took the waves 30.0 s to travel from their 
source to the seismograph. Estimate the wavelength.

Time (s)

2.61.0

 92. Deep-water waves are dispersive (their wave speed 
 depends on the wavelength). The restoring force is 

 provided by gravity. Using dimensional analysis, find out 
how the speed of deep-water waves depends on wave-
length λ, assuming that λ and g are the only relevant quan-
tities. (Mass density does not enter into the expression 
because the restoring force, arising from the weight of the 
water, is itself proportional to the mass density.)

 93. In contrast to deep-water waves, shallow ripples on the 
surface of a pond are due to surface tension. The surface 
tension γ of water characterizes the restoring force; the 
mass density ρ of water characterizes the water’s inertia. 
Use dimensional analysis to determine whether the sur-
face waves are dispersive (the wave speed depends on the 
wavelength) or nondispersive (their wave speed is inde-
pendent of wavelength). [Hint: Start by assuming that the 
wave speed is determined by γ, ρ, and the wavelength λ.]

 94.  Consider a point on the flat segment to the left of 
point A in the drawing with Problem 76. Plot the posi-
tion of that point and the velocity of that point as a func-
tion of time as the wave passes the point.

Review and Synthesis

 95. Refer to the pulse in Problem 9. (a) What is the speed of 
propagation of the pulse? (b) At what average speed does 
the point at x = 2.0 m move during this time interval?

 96.  Suppose that a string of length L and mass m is under 
tension F. (a) Show that √FL/m has units of speed. 
(b) Show that there is no other combination of L, m, and 
F with units of speed. [Hint: Of the dimensions of the 
three quantities L, m, and F, only F includes time.] 
Thus, the speed of transverse waves on the string can 
only be some dimensionless constant times √FL/m.

 97. A tetherball set has a ball with 
mass 0.411 kg and a nylon 
string with diameter 2.50 mm, 
Young’s modulus 4.00 GPa, 
and density 1150 kg/m3. The 
nylon string has a length of 
2.200 m when the ball is at rest 
(hanging straight down). While 
playing tetherball, Monty hits 
the ball around the pole so it moves in a horizontal circle 
with the string at an angle of 65.0° to the pole. (a) How 
much does the string stretch compared with when the ball 
is at rest? (b) What is the ball’s kinetic energy? (c) How 
long would it take a transverse wave pulse to travel the 
length of the string from the ball to the top of the pole?

 98. A Foucault pendulum has an object with a mass of 
15.0  kg hung by a thin 14.0 m wire. (a) What is the 
 oscillation frequency of this pendulum? (b) If the pen-
dulum has a maximum oscillation angle of 6.10°, what 
is the maximum speed of this pendulum? (c) What is the 
maximum tension in the wire? (d) If the wire has a mass 
of 10.0 g, what is the fundamental frequency of a stand-
ing wave on the wire when it is at maximum tension?

A CB

65.0°
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  99. A transverse wave on a string is described by
y(x, t) = A cos (ωt + kx)

  where A = 0.40 mm, ω = 39.27 rad/s, and k = 6.0 rad/m. 
Draw a motion diagram for the point x = 0 for the times 
t = 0, 0.010 s, 0, 0.020 s, 0.030 s, and 0.040 s.

 100.  A transverse wave on a string has amplitude 4.0 mm, 
angular frequency 600 rad/s, and wavenumber 6.0 rad/m. 
(a) What is the maximum transverse speed of a point on 
the string? (b) What is the average transverse speed of a 
point on the string? [Hint: How much time does it take a 
point to move from y = 0 to y = +A?] (c) Is the average 
speed one-half of the maximum? If not, explain why it 
doesn’t have to be.

 101.  A harpsichord string is made of yellow brass 
(Young’s modulus 90 GPa, tensile strength 0.63 GPa, 
mass density 8500 kg/m3). When tuned correctly, the 
tension in the string is 59.4 N, which is 93% of the 
maximum tension that the string can endure without 
breaking. The length of the string that is free to vibrate 
is 9.4 cm. What is the fundamental frequency?

 102. A transverse wave on a string is described by
y(x, t) = (2.00 mm) sin [ (157 rad/s)t + (7.85  rad/m)x]

  Sketch graphs of the transverse velocity and accelera-
tion of the point x = 0 as functions of time, showing 
one complete cycle.

Answers to Practice Problems

11.1 (a) 8.9 m/s; (b) 13 m/s
11.2 (a) +x; (b) 13 m; (c) 8.0 m/s
11.3 

0

y (cm)

t (s)

y (cm)

x (m)

1.2

–1.2

0

0.2 0.4

(a)

(b)
0.6 0.8

0.05 0.10 0.15 0.20

1.2

–1.2

x = 0

t = 0

(c) T = 0.200 s; (d) λ = 0.80 m; (e) A = 1.2 cm; (f) v = 4.0 m/s; 
(g) the wave travels in the −x-direction because the signs of 
the terms containing x and t are the same.

11.4  

0.5

0.75

1.0

t = 1.0 s

0.5
1.0

t = 2.0 s

t = 1.5 s

x (m)

y

x (m)

y

x (m)

y

11.5 (a) 620 Hz; (b) 8.5 m
11.6 9.0
11.7 140 Hz

Answers to Checkpoints

11.1 For an isotropic source, I ∝ 1/r2. At a distance  
102 times as far from the tower, the intensity is 10−4 ×  
0.090 W/m2 = 9.0 μW/m2.
11.2 Since transverse waves do not travel through the core 
but longitudinal waves do, some part of the core is a liquid 
that cannot support the transmission of a transverse wave. A 
longitudinal wave can create compressions and rarefactions 
in the liquid and travel through the core.
11.3 (b) = (d), (a) = (e), (c)
11.4 The period T is the time for one cycle. During one pe-
riod, the wave travels 20 km at a speed of 4.0 km/s. Then the 
period is (20 km)/(4.0 km/s) = 5.0 s.
11.9 (a) The intensity is the sum of the intensities of the  
two waves: 10.0I2. (b) As in Example 11.6, Amax = 4.0A2. 
Intensity is proportional to amplitude squared, so Imax/I2 = 
(Amax/A2)2 = 16.0 and Imin/I2 = (Amin/A2)2 = 4.0. The maxi-
mum and minimum possible intensities are 16.0I2 and 4.0I2, 
respectively.
11.10 The nodes are evenly spaced, so the nodes are at  
x = 0, 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm. The  distance 
between nodes is half the wavelength, so the wavelength is 
40 cm.
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SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Frequency ranges of animal 
hearing (Section 12.1; 
Example 12.2;  
Problems 3, 26)

∙ The human ear  
(Sections 12.3, 12.6; 
Conceptual Questions 4, 5; 
Problems 3, 14–18, 63, 
67–69)

∙ Echolocation (Section 12.9; 
Problems 4, 5, 55, 56,  
70–72)

∙ Medical applications of 
ultrasound (Section 12.9; 
Conceptual Question 8)

∙ Angiodynography 
(Problems 49, 57, 58)

•	 gauge	pressure	
(Section 9.5)

•	 bulk	modulus	
(Section 10.4)

•	 relation	between	energy	
and	amplitude	in	SHM	
(Section	10.5)

•	 math skill:	sinusoidal	
functions	of	time	
(Appendix	A.8)

•	 period	and	frequency	in	
SHM	(Section	10.6)

•	 longitudinal	waves,	
intensity,	standing	waves,	
superposition	principle	
(Chapter	11)

•	 math skill:	exponents	and	
logarithms	(Appendix	A.4)

Concepts & Skills to Review Sound

C H A P T E R

12

Ultrasonic	 imaging	of	 the	 fetus	 is	an	 important	part	of	prenatal	care.	
Could	an	 image	of	 the	 fetus	be	produced	 just	as	well	using	sound	 in	
the	 audible	 range	 rather	 than	 ultrasound?	 Why	 is	 ultrasound	 used	
rather	than	some	other	imaging	technology,	such	as	x-rays?	Are	there	
other	medical	applications	of	ultrasound?
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12.1 SOUND WAVES

When a guitar string is plucked, a transverse wave travels along the string. The 
wave on the string is not what we hear, since the string has no direct connection 
to our eardrums. The vibration of the string is transmitted through the bridge to 
the body of the guitar, which in turn transmits the vibration to the air—a sound 
wave. A  transverse wave on a guitar string is not a sound wave, though it does 
cause a sound wave.

In the absence of a sound wave, molecules in the air dart around in random 
directions. On average, they are uniformly distributed and the pressure is the same 
everywhere (ignoring the insignificant variation of pressure due to small changes in 
altitude). In a sound wave, the uniform distribution of molecules is disturbed. A 
loudspeaker produces pressure fluctuations that travel through the air in all direc-
tions (Fig. 12.1). In some regions (compressions), the molecules are bunched 
together and the pressure is higher than the average pressure. In other regions (rar-
efactions), the molecules are spread out and the pressure is lower than average. The 
sound wave can be described mathematically by the gauge pressure p (the difference 
between the pressure at a given point and the average pressure in the surroundings) 
as a function of position and time (Fig. 12.2a).

The speaker cone produces these pressure variations by displacing molecules in 
the air from their uniform distribution (Fig. 12.2b). When the cone moves to the left 
of its equilibrium position, air spreads into a region of lower pressure (rarefaction). 
When the cone moves to the right, air is squeezed together into a region of higher 
pressure (compression).

Thus, the regions of higher and lower pressure are formed when molecules are 
displaced from a uniform distribution. A sound wave can be described equally well 
by the displacement s of an element of the air—a region of air that can be considered 
to move together as a unit (Fig. 12.2c). An element is much smaller than the wave-
length of the wave, but still large enough to contain many molecules. For a sinusoidal 
wave, elements at points of maximum or minimum pressure have zero displacement, 
while the neighboring elements move in toward them (a compression) or away from 
them (a rarefaction). Conversely, where the gauge pressure is zero, the displacement 
of an element has its maximum magnitude.
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Figure 12.1 The vibrating speaker cones in this wireless speaker create 
 alternating regions of high and low pressure in the air. Air nearby is affected by 
a net force due to the nonuniform air pressure; as a result, variations in pressure 
travel  in all directions away from the speakers. This traveling disturbance is 
a  sound wave.
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If the pressure is higher on one side than on the other, the net force pushes air 
toward the side with lower pressure. The uneven distribution of pressure results in air 
molecules being pushed toward rarefactions and away from compressions, as shown 
by the force arrows in Fig. 12.2b. Note that the directions of these force arrows, point-
ing opposite to the displacement arrows in a corresponding region, are such that where 
there is a compression at a given instant, there will later be a rarefaction, and vice 
versa; the pressure at a given point fluctuates above and below the average pressure.

Frequency Ranges of Animal Hearing

The human ear responds to sound waves within a limited range of frequencies. We 
generally consider the audible range to extend from 20 Hz to 20 kHz. (The terms 
infrasound and ultrasound refer to sound waves with frequencies below 20 Hz and 
above 20 kHz, respectively.) Very few people can actually hear sounds over that entire 
range. Even for a person with excellent hearing, the sensitivity of the human ear 
declines rapidly below 100 Hz and above 10 kHz. Age-related hearing loss is common 
and affects primarily the high frequencies, which makes it difficult for some older 
people to understand speech. Repeated or prolonged exposure to loud sounds can also 
cause hearing loss.

Figure 12.2 A sound wave generated by a loudspeaker. (a) Graph of the pressure 
variation p of the air as a function of position x. Pressure is high where air is 
squeezed together and low where it is more spread out. (b) Elements of the air are 
displaced from their equilibrium positions. Since the pressure is not uniform, air 
elements experience a net force due to air pressure; the force arrows indicate the 
direction of this net force. The force is always directed away from a compression 
(higher pressure) and toward a rarefaction. (c) Graph of the displacement s of an air 
element from its equilibrium position x as a function of x; the arrows indicate the 
directions of the displacements in each region. Air elements are displaced leftward 
or rightward toward compressions and away from rarefactions. Elements at the cen-
ter of each compression or rarefaction are at their equilibrium positions (s = 0).

R
ar

ef
ac

tio
n

C
om

pr
es

si
on

R
ar

ef
ac

tio
n

C
om

pr
es

si
on

FF FFF

p0

p

s

–p0

x

Pressure
variation

x

Right (+)

Left (–)

s0

–s0

Displacement
of air elements

(a)

(b)

(c)
s s s

s s

t = 0

t = 0



 12.2 THE	SPEED	OF	SOUND	WAVES 445

The audible ranges for animals can be quite different. Most mammals can hear 
frequencies much higher than we can. Dogs can hear frequencies as high as 50 kHz, 
which is why we can make a dog whistle that is inaudible to humans. Mice can pro-
duce and hear sounds with frequencies up to about 90 kHz, higher than what their 
predators can hear. Bats and bottlenose dolphins can hear frequencies above 100 kHz. 
Dolphins rely on hearing more than sight for navigation; studies have shown that many 
dolphins that beach themselves suffer from hearing loss.

Some animals can hear frequencies lower than humans can. Elephants and rhi-
noceri can hear frequencies down to about 14 Hz and 10 Hz, respectively. Some 
studies suggest that pigeons and monarch butterflies use infrasound to navigate.

Attenuation of Sound Waves

Attenuation is the decrease in intensity of a sound wave (or any kind of wave) as it 
propagates. Multiple effects contribute to the attenuation of a sound wave. One is 
geometric: as the wave propagates away from its source, it spreads out. The intensity 
decreases because the energy transported by the wave is spread over a larger and larger 
area. For example, in Section 11.1, we found that the intensity of a wave propagating 
isotropically away from a point source is proportional to 1/r2, where r is the distance 
from the source. Another cause of attenuation is the absorption of energy by the wave 
medium. A small fraction of the energy transported by the wave is dissipated in the 
medium, causing a slight increase in temperature. Thus, the energy transported by the 
wave decreases as it propagates through the medium. 

12.2 THE SPEED OF SOUND WAVES

For string waves, the restoring force is characterized by the tension in the string F, 
and the inertia is characterized by the linear mass density μ (mass per unit length). 
The speed of transverse waves on a string is

 v = √
F

μ
 (11-5)

For sound waves in a fluid, the restoring force is characterized by the bulk mod-
ulus B, defined in Section 10.4 as the constant of proportionality between an increase 
in pressure and the fractional volume change:

 ΔP = −B 
ΔV

V
 (10-11)

The inertia of the fluid is characterized by its mass density ρ. Following our 
dictum “more restoring force makes faster waves; more inertia makes slower waves,” 
we expect the speed of sound to be faster in a medium with a larger bulk modulus 
(harder to compress means more restoring force) and slower in a medium with a larger 
density. By analogy with Eq. (11-5), we might guess that

 v = √
a measure of the restoring force

a measure of the inertia
= √

B

ρ
  (in fluids)  (12-1)

This guess turns out to be correct; Eq. (12-1) is the correct expression for the speed 
of sound in fluids.

Temperature Dependence of the Speed of Sound in a Gas The bulk modulus 
B of an ideal gas is directly proportional to the density ρ and to T, the absolute tem-
perature (B ∝ ρT). As a result, the speed of sound in an ideal gas is proportional to 

CONNECTION:

Just as for transverse waves 
on a string, the speed of 
sound waves is determined 
by a balance between two 
characteristics of the wave 
medium: the restoring force 
and the inertia.
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the square root of the absolute temperature, but is independent of pressure and density 
(at a fixed temperature):

 v = √
B

ρ
∝ √

ρT

ρ
∝ √T (ideal gas)  (12-2)

The SI unit of absolute temperature is the kelvin (symbol K). To find absolute tem-
perature in kelvins, add 273.15 to the temperature in degrees Celsius:

 T(in K) = TC (in °C) + 273.15 (12-3)

Since v ∝ √T , the speed of sound in an ideal gas at any absolute temperature 
T can be found if it is known at one temperature:

Temperature dependence of the speed of sound in a gas

 v = v0√
T

T0
 (12-4)

where the speed of sound is v0 at absolute temperature T0. For example, the speed of 
sound in dry air (0% humidity) at 0°C (273.15 K) is 331.3 m/s. At 20°C (293.15 K), 
the speed of sound in dry air is

v = 331.3 m/s × √
293.15 K
273.15 K

= 343.2 m/s

An approximate formula that can be used for the speed of sound in dry air is

 v = 331.3 m/s + (0.6 

m/s
°C )TC (12-5)

where TC is air temperature in degrees Celsius (see Problem 11). Equation (12-5) 
gives speeds accurate to better than 1% all the way from −66°C to +89°C.

The speed of sound in air increases slightly with the concentration of water vapor. 
At 37°C and 100% relative humidity, the speed of sound is about 1% larger than in 
dry air at the same temperature. Please assume that problems involve dry air at 20°C, 
unless otherwise stated.

Table 12.1 Speed of Sound in Various Materials (at 0°C and 
1 atm Unless Otherwise Noted)

Medium Speed (m/s) Medium Speed (m/s)

Carbon dioxide 259 Seawater (25°C) 1533
Air (dry) 331 Blood (37°C) 1570
Nitrogen 334 Muscle (37°C) 1580
Air (dry, 20°C) 343 Concrete 3100
Helium 972 Copper 3560
Hydrogen 1284 Bone (37°C) 4000
Lead 1322 Aluminum 5100
Mercury (25°C) 1450 Pyrex glass 5640
Fat (37°C) 1450 Steel 5790
Water (25°C) 1493 Granite 6500
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Speed of Sound in a Solid The speed of sound in a solid depends on the Young’s 
modulus Y and the shear modulus S. For sound waves traveling along the length of a 
thin solid rod, the speed is approximately

 v = √
Y

ρ
 (thin solid rod)  (12-6)

Table 12.1 gives the speed of sound in various materials.

12.3 AMPLITUDE AND INTENSITY OF SOUND WAVES

Because we can describe a sound wave in two ways—pressure or displacement—the 
amplitude of a sound wave can take one of two forms: the pressure amplitude p0 or 
the displacement amplitude s0. The pressure amplitude p0 is the maximum pressure 
fluctuation above or below the equilibrium pressure; the displacement amplitude s0 is 
the maximum displacement of an element of the medium from its equilibrium posi-
tion. The pressure amplitude is proportional to the displacement amplitude. For a 
harmonic sound wave at angular frequency ω, an advanced analysis shows that

 p0 = ωvρs0 (12-7)

where v is the speed of sound and ρ is the mass density of the medium.
Is a larger amplitude sound wave perceived as louder? Yes, all other things being 

equal. However, the relationship between our perception of loudness and the amplitude 
of a sound wave is complex. Loudness is a subjective aspect of how sound is per-
ceived; it has to do with how the ear responds to sound and how the brain interprets 
signals from the ear. Perceived loudness turns out to be roughly proportional to the 
logarithm of the amplitude. If the amplitude of a sound wave doubles repeatedly, the 
perceived loudness does not double; it increases by a series of roughly equal steps. 
(See Appendix A.4 for a review of logarithms.)

Discussions of loudness are more often phrased in terms of intensity rather than 
amplitude since we are interested in how much energy the sound wave carries. The 
intensity (average power per unit area) of a sinusoidal sound wave is

Intensity and pressure amplitude

 I =
p2

0

2ρv
 (12-8)

Conceptual Example 12.1

Speed of Sound in Hydrogen and Mercury

From Table 12.1, the speed of sound in hydrogen gas at 0°C is 
almost as large as the speed of sound in mercury, even though 
the density of mercury is 150  000 times larger than the density 
of hydrogen. How is that possible? Shouldn’t the speed in 
mercury be much smaller, since it has so much more inertia?

Solution and Discussion The speed of sound depends 
on two characteristics of the medium: the restoring force 
(measured by the bulk modulus) and the inertia (measured 
by the density). The bulk modulus of mercury is much larger 
than the bulk modulus of hydrogen. The bulk modulus is a 

measure of how hard it is to compress a material. Liquids 
(e.g., mercury) are much more difficult to compress than are 
gases. Thus, the restoring forces in mercury are much larger 
than those in hydrogen; this allows sound to travel a bit faster 
in mercury than it does in hydrogen gas.

Conceptual Practice Problem 12.1 Speed of 
Sound in Solids Versus Liquids

Why does sound generally travel faster in a solid than in 
a liquid?
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where ρ is the mass density of the medium and v is the speed of sound in that medium. 
The most important thing to remember is that

Intensity is proportional to amplitude squared.

This is also true for waves other than sound. It is closely related to the fact that 
energy in SHM is proportional to amplitude squared [see Eq. (10-14)].

Sound Intensity Level

The perception of loudness by the human ear is roughly proportional to the logarithm of 
the intensity, which makes us capable of hearing sound over a wide range of intensities 
(Table  12.2). Therefore, measuring intensities on a logarithmic scale can be useful. By 
convention, we establish a reference value of I0 = 1 × 10–12 W/m2 . (This is roughly the 
lowest intensity sound wave that can be heard in the frequency range 1–6 kHz under ideal 
conditions by a person with excellent hearing.)

Example 12.2

 The Brown Creeper

The song of the Brown Creeper 
(Certhia americana) is high in 
frequency—about 8 kHz. Many 
people who have lost some of 
their high-frequency hearing 
can’t hear it at all. Suppose that 
you are out in the woods and 
hear the song. If the intensity of 
the song at your position is 
1.4  ×  10–8 W/m2 and the fre-
quency is 6.0 kHz, what are the 
pressure and displacement am-
plitudes? (Assume the tempera-
ture is 20°C.)

Strategy The displacement 
and pressure amplitudes are re-
lated through Eq. (12-7); the 

pressure amplitude is related to the intensity through 
Eq. (12-8). These relationships can be used to solve for both 
pressure amplitude, p0, and displacement amplitude, s0. The 
density of air at 20°C is ρ =1.20 kg/m3 (see Table 9.1). The 
speed of sound in air at 20°C is v = 343 m/s. We need to 
multiply the frequency by 2π to get the angular frequency ω.

Solution Intensity and pressure amplitude are related by

 I =
p2

0

2ρv
 (12-8)

Solving for p0, we find

p0 = √2Iρv

= √2 × 1.4 × 10−8 W/m2 × 1.20 kg/m3 × 343 m/s

= 3.4 × 10−3 Pa

The pressure and displacement amplitudes are related by

 p0 = ωvρs0 (12-7)

Substituting in Eq. (12-8) yields

I =
(ωvρs0)2

2ρv

Now we solve for s0.

s0 = √
2I

ρω2v
= √

2 × 1.4 × 10−8 W/m2

1.20 kg/m3 × (2π × 6000 Hz)2 × 343 m/s

= 2.2 × 10−10 m

Discussion This problem illustrates how sensitive the hu-
man ear is. The pressure amplitude is a fluctuation of one 
part in 30 million in the air pressure. Since the pressure 
amplitude is 3.4 × 10–3 Pa, the maximum force on the 
eardrum would be about

Fmax = 3.4 × 10−3 N/m2 × 10−4 m2 ≈ 3 × 10−7 N

which is about the weight of a large amoeba. The displace-
ment amplitude is about the size of an atom.

Practice Problem 12.2 Pressure and Intensity at 
an Outdoor Concert

At a distance of 5.0 m from the stage at an outdoor rock con-
cert, the sound intensity is 1.0 × 10–4 W/m2. Estimate the 
intensity and pressure amplitude at a distance of 25 m if 
there were no speakers other than those on stage. Explain the 
assumptions you make.

©Glenn Price/Shutterstock
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A sound intensity I is compared with the reference value I0 by taking the ratio of 
the two intensities. Suppose a sound has an intensity of 1 × 10−5 W/m2; the ratio is

I

I0
=

1 × 10−5 W/m2

1 × 10−12 W/m2 = 1 × 107

so the intensity is 10 million times that of the reference value. The power to which 
10 is raised is the sound intensity level β in units of bels (after Alexander Graham 
Bell). A ratio of 107 indicates a sound intensity level of 7 bels or, as it is more com-
monly stated, 70 decibels (dB). Since log10 (10x) = x [Eq. (A-29)], the sound intensity 
level β in decibels is

Sound intensity level

 β = (10 dB) log10 
I

I0
 (12-9)

 (I0 = 1 × 10−12 W/m2)

(The notation log10 stands for the base-10 logarithm. See Appendix A.4 for a review 
of the properties of logarithms.) An intensity level of 0 dB corresponds to the refer-
ence intensity I0. Although the intensity level is really a pure number, the “units” (dB) 
remind us what the number means.

Table 12.2 gives the pressure amplitudes, intensities, and intensity levels for a 
wide range of sounds. Notice that, even for sounds that are quite loud, the pressure 
fluctuations due to sound waves are small compared to the “background” atmospheric 
pressure.

Table 12.2 Pressure Amplitudes, Intensities, and Intensity Levels of a Wide Range of Sounds  
in Air at 20°C (Room Temperature)

Sound
Pressure  

Amplitude (atm)
Pressure  

Amplitude (Pa)
Intensity   
(W/m2)

Intensity 
Level (dB)

Threshold of hearing 3 × 10−10 3 × 10−5 10−12 0
Leaves rustling 1 × 10−9 1 × 10−4 10−11 10
Whisper (1 m away) 3 × 10−9 3 × 10−4 10−10 20
Library background noise 1 × 10−8 0.001 10−9 30
Living room background noise 3 × 10−8 0.003 10−8 40
Office or classroom 1 × 10−7 0.01 10−7 50
Normal conversation at 1 m 3 × 10−7 0.03 10−6 60
Inside a moving car, light traffic 1 × 10−6 0.1 10−5 70
City street (heavy traffic) 3 × 10−6 0.3 10−4 80
Shout (at 1 m); or inside a subway  
 train; risk of hearing damage if  
 exposure lasts several hours

1 × 10−5 1 10−3 90

Car without muffler at 1 m 3 × 10−5 3 10−2 100
Construction site 1 × 10−4 10 10−1 110
Indoor rock concert; threshold of  
 pain; hearing damage occurs  
 rapidly

3 × 10−4 30 1 120

Jet engine at 30 m 1 × 10−3 100 10 130
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CHECKPOINT 12.3

Why	doesn’t	 Table	12.2	 include	 a	 column	 listing	 the	 displacement	 amplitudes	
of	 the	sound	waves?

Example 12.3

 Roaring Lion

The sound intensity 0.250 m from a roaring lion is 
0.250 W/m2. What is the sound intensity level in decibels? 

Strategy We are given the intensity in W/m2 and asked for 
the intensity level in dB. First we find the ratio of the given 
intensity to the reference level. Then we take the logarithm 
of the result (to get the level in bels) and multiply by 10 (to 
convert from bels to dB).

Solution The ratio of the intensity to the reference value is

I

I0
=

0.250 W/m2

1.00 × 10−12 W/m2 = 2.50 × 1011

The intensity level in bels is

log10  

I

I0
= log10 2.50 × 1011 = 11.4 bels

The intensity level in decibels is

β = 11.4 bels × (10 dB/bel) = 114 dB

Discussion As a quick check, 110 dB corresponds to 
I = 0.1 W/m2 and 120 dB corresponds to I = 1 W/m2; since 
the intensity is between 0.1 W/m2 and 1 W/m2, the intensity 
level must be between 110 dB and 120 dB.

Practice Problem 12.3 Consequences of a Hole in 
the Muffler

When rust creates a hole in the muffler of a car, the sound 
intensity level inside the car is 26 dB higher than when the 
muffler was intact. By what factor does the intensity 
increase?

As we saw in Section 11.9, when two sounds are coming from different sources, the 
waves are incoherent. If we know the intensity of each wave alone at a certain point, then 
the intensity due to the two waves together at that point is the sum of the two intensities:

 I = I2 + I2  (incoherent waves) (12-10)

This is not true for two coherent waves, where the total intensity depends on the phase 
difference between the waves. Since there is no fixed phase difference between two 
incoherent waves, on average there is neither constructive nor destructive interference. 
The total power per unit area is the sum of the power per unit area of each wave.

Example 12.4

The Sound Intensity Level of Two Lathes

A metal lathe in a workshop produces a 90.0 dB sound inten-
sity level at a distance of 1 m. What is the intensity level 
when a second identical lathe starts operating? Assume the 
listener is at the same distance from both lathes.

Strategy The noise is coming from two different machines 
and, thus, they are incoherent sources. We cannot add 90.0 dB 
to 90.0 dB to get 180.0 dB, which would be a senseless result—
two lathes are not going to drown out a jet engine at close range 

(see Table 12.2). Instead, what doubles is the intensity. We 
must work in terms of intensity rather than intensity level.

Solution First find the intensity due to one lathe:

β = 90.0 dB = (10 dB) log10 
I

I0

log10 
I

I0
= 9.00,  so  

I

I0
= 1.00 × 109

continued on next page
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Example 12.4 continued

We could solve for I numerically but it is not necessary. With 
two machines operating, the intensity doubles, so

I′
I0

= 2.00 × 109

and the new intensity level is

 β′ = (10 dB) log10 
I′
I0

= (10 dB) log10 (2.00 × 109) = 93.0 dB

Discussion The new intensity level is just 3 dB higher 
than the original one, even though the intensity is twice as 

continued on next page

big. This turns out to be a general result: a 3 dB increase 
represents a doubling of the intensity.

Practice Problem 12.4 Intensity Change for an 
Increment of 5 dB

The maximum recommended exposure time to an intensity  
level of 90 dB is 8 h. For every increase of 5.0 dB up to 120 dB, 
the exposure time should be reduced by a factor of 2. (At  
120 dB, damage occurs almost immediately; there is no safe 
exposure time.) By what factor does intensity increase when 
the intensity level rises 5.0 dB?

Sound intensity level is useful because it roughly approximates the way we per-
ceive loudness. Equal increments in intensity level roughly correspond to equal 
increases in loudness. Two useful rules of thumb: every time the intensity increases 
by a factor of 10, the intensity level adds 10 dB; since log10 2 = 0.30, adding 3.0 dB 
to the intensity level doubles the intensity (see Problem 25). In Example 12.4, when 
both lathes are running at the same time, the intensity is twice as big as for one lathe, 
but the two do not sound twice as loud as one. Intensity level is a better guide to 
loudness; two lathes produce a level 3 dB higher than one lathe.

Decibels can also be used in a relative sense; instead of comparing an intensity 
to I0, we can compare two intensities directly. Suppose we have two intensities I1 and 
I2 and two corresponding intensity levels β1 and β2. Then

 β2 − β1 = 10 dB (log10 
I2

I0
− log10 

I1

I0) (12-11)

Since log x − log y = log 
x

y
 [Eq. (A-32)],

 β2 − β1 = (10 dB) log10 
I2/I0

I1/I0
= (10 dB) log10 

I2

I1
 (12-12)

Example 12.5

Variation of Intensity Level with Distance

At a distance of 30 m from a jet engine, the sound intensity 
level is 130 dB. Serious, permanent hearing damage occurs 
rapidly at intensity levels this high, which is why you see 
airport personnel using hearing protection out on the run-
way. Assume the engine is an isotropic source of sound and 
ignore reflections and absorption. At what distance is the 
intensity level 110 dB—still quite loud but below the thresh-
old of pain?

Strategy The intensity level drops 20 dB. According to 
the rule of thumb, each 10 dB change represents a factor of 

10 in intensity. Therefore, we must find the distance at which 
the intensity is 2 factors of 10 smaller—that is, 1

100 the origi-
nal intensity. The intensity is proportional to 1/r2 since we 
assume an isotropic source [see Eq. (11-2)].

Solution We set up a ratio between the intensities and the 
inverse square of the distances:

I1

I2
= (

r2

r1)
2
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12.4 STANDING SOUND WAVES

Pipe Open at Both Ends

Recall (Section 11.8) that a transverse wave on a string is reflected from a fixed end. 
A string fixed at both ends reflects the wave at each end. A standing wave on a string 
is caused by the superposition of two waves traveling in opposite directions. Standing 
sound waves are also caused by reflections at boundaries. Standing wave patterns for 
sound waves can be more complex, since sound is a three-dimensional wave. However, 
the air inside a pipe open at both ends gives rise to standing waves closely analogous 
to those on a string, as long as the pipe’s diameter is small compared with its length. 
Such a pipe is an excellent model of some organ pipes and flutes.

If the pipe is open at both ends, then the pipe has the same boundary condition 
at each end. At each open end, the column of air inside the pipe communicates with 
the outside air, so the pressure at the ends can’t deviate much from atmospheric pres-
sure. The open ends are therefore pressure nodes (Fig. 12.3). They are also displace-
ment antinodes—elements of air vibrate back and forth with maximum amplitude at 
the ends. Since nodes and antinodes alternate with equal spacing (λ/4), the wave-
lengths of standing sound waves in a pipe open at both ends are the same as for a 
string fixed at both ends (compare Fig. 12.3 with Fig. 11.22), regardless of whether 
you consider the pressure or the displacement description.

Standing sound waves (thin pipe open at both ends)

 λn =
2L

n
 (11-23)

 fn =
v

λn

= n 

v

2L
= nf1 (11-24)

where n = 1, 2, 3, . . .

Pipe Closed at One End

Some organ pipes are closed at one end and open at the other (Fig. 12.4). The closed 
end is a pressure antinode; the air at the closed end meets a rigid surface, so there is 
no restriction on how far the pressure can deviate from atmospheric pressure. The 

From the rule of thumb, we know that I2 = 1
100 I1. Then

r2

r1
= √

I1

I2
= √100 = 10

 r2 = 10r1 = 300 m

Discussion It is not necessary to use the rule of thumb. 
Let β1 = 130 dB and β2 = 110 dB. Then

β2 − β1 = −20 dB = (10 dB) log10 
I2

I1

From this, we find that

log10 
I2

I1
= −2  or  

I2

I1
=

1
100

We can only consider 300 m an estimate. The jet engine 
may not radiate sound equally in all directions; it might be 
louder in front than on the side. Sound is partly absorbed and 
partly reflected by the runway, by the plane, and by any nearby 
objects. The air itself absorbs some of the sound energy—that 
is, some of the energy of the wave is dissipated.

Practice Problem 12.5 A Plane as Quiet as 
a Library

At what distance from the jet engine would the intensity 
level be comparable to the background noise level of a 
library (30 dB)? Is your answer realistic?

CONNECTION:

The same sketch used to find 
wavelengths of standing 
waves for a string fixed at 
both ends can be used to find 
the wavelengths for a pipe 
open at both ends. (The wave 
speeds are different, however, 
so a string and pipe of the 
same length do not have the 
same standing wave 
frequencies.)

Example 12.5 continued
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closed end is also a displacement node since the air near it cannot move beyond that 
rigid surface. Some wind instruments are effectively pipes closed at one end. The reed 
of a clarinet admits only brief puffs of air into the instrument; the rest of the time 
the reed closes off that end of the pipe. The pressure at the reed end fluctuates above 
and below atmospheric pressure. The reed end is a pressure antinode and a displace-
ment node.

Open end
(pressure node)

(displacement antinode)

Open end
(pressure node)
(displacement antinode)

L1–
2
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2L1–

4 L3–
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λ

Figure 12.3 The first three standing sound wave patterns for a pipe open at both ends. The sketches in the center 
show the compressions (maximum pressure) and rarefactions (minimum pressure) at a single instant in time. The black 
arrows show the air displacement at the same instant. These sketches correspond to the orange graphs of displacement 
(left) and pressure (right). The red and light blue graphs are one-quarter and one-half period later, respectively. Although 
the displacement graphs show air displacement s on the vertical axis and x on the horizontal, remember that the displace-
ments are in the ±x-direction, as illustrated by the black displacement arrows.

Figure 12.4 Some organ pipes are open at the top; others are closed. A pipe 
closed at one end has a fundamental wavelength twice as large and therefore a fun-
damental frequency half as large as a pipe of the same length that is open at both 
ends, assuming the pipes are thin. (For musicians: the pitch of the pipe closed at one 
end sounds an octave lower than the other, since the interval of an octave corre-
sponds to a factor of 2 in frequency.)
©Dominik Michalek/Shutterstock
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The wavelengths and frequencies of the standing waves can be found using either 
the pressure or displacement descriptions of the wave. Using displacement, the fun-
damental has a node at the closed end, an antinode at the open end, and no other 
nodes or antinodes (Fig. 12.5). The distance from a node to the nearest antinode is 
always 1

4λ, so for the fundamental

 L =
1
4

λ  or  λ = 4L (12-13)

which is twice as large as the wavelength (2L) of the fundamental in a pipe of the 
same length open at both ends. Two thin organ pipes of the same length, one open 
at both ends and one closed at one end, do not have the same fundamental wavelength 
(see Fig. 12.4).

What are the other standing wave frequencies? The next standing wave mode is 
found by adding one node and one antinode. Then the length of the pipe is 3 quarter-
cycles: L = 3

4λ or λ = 4
3L. This is 1

3 the wavelength of the fundamental, and the fre-
quency is 3 times that of the fundamental. Adding one more node and one more 
antinode, the wavelength is 4

5L. Continuing the pattern, we find that the wavelengths 
and frequencies for standing waves are

Standing sound waves (thin pipe closed at one end)

 λn =
4L

n
 (12-14)

 fn =
v

λn

= n 

v

4L
= nf1 (12-15)

where n = 1, 3, 5, 7, . . .

Figure 12.5 The first three standing sound wave patterns for a pipe closed at one end. The sketches in the center 
show the compressions (maximum pressure) and rarefactions (minimum pressure) at a single instant in time. The black 
arrows show the air displacement at the same instant. These sketches correspond to the orange graphs of displacement 
(left) and pressure (right). The red and light blue graphs are one-quarter and one-half period later, respectively. Although 
the displacement graphs show air displacement s on the vertical axis and x on the horizontal, remember that the displace-
ments are in the ±x-direction, as illustrated by the black displacement arrows.
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Note that the standing wave frequencies for a pipe closed at one end are only odd 
multiples of the fundamental. The “missing” standing wave patterns for even values 
of n require a clarinet to have many more keys and levers than a flute (Fig. 12.6). 
What the keys do is effectively shorten the length of the pipe, making the standing 
wave frequencies higher.

CHECKPOINT 12.4

Why	can’t	 a	pipe	of	 length	L	 closed	at	one	end	support	 a	 standing	wave	with	
wavelength	2L?

Figure 12.6 A flute can be modeled as a pipe open at both ends, whereas a 
 clarinet can be modeled as a pipe closed at one end. Although the instruments are 
similar in length, the clarinet can play tones nearly an octave lower than is possible 
on the flute. (a) The flute’s open blow hole serves as one of its open “ends.” If a 
flute’s  fundamental frequency is f1 with no keys pressed, the next higher frequency 
possible without using any keys is 2f1. The flute needs enough keys to fill in all the 
notes with frequencies between f1 and 2f1. (b) The clarinet can be modeled as a pipe 
open at one end and closed at the other. The mouthpiece end with its vibrating reed 
is more like a closed end (pressure antinode) than an open end (pressure node). For a 
clarinet, if the  fundamental frequency is f1 with no keys pressed, the next highest fre-
quency  possible without using any keys is 3f1. The clarinet must have more keys 
because it has to accommodate all the notes with frequencies between f1 and 3f1.

(b) Clarinet

(a) Flute Open ends
Reed (closed end)

Blow hole (open end)

the water surface. Thus, we have an air column of variable 
length L, closed at one end by the water surface and open at 
the other end. The sound is amplified due to resonance; 
when the frequency of the tuning fork matches one of the 
natural frequencies of the air column, a large-amplitude 
standing wave builds up in the column. For standing waves 
in a column of air, the wavelength and frequency are related 
by the speed of sound in air. We start by finding the speed of 
sound in air from the temperature given. Then we can find 
the wavelength of the sound waves emanating from the tun-
ing fork. Last, we find the column lengths that support stand-
ing waves of that wavelength.

Solution From Eq. (12-5), the speed of sound in air 
at 18°C is

v = 331.3 m/s + (0.6 
m/s
°C )(18°C) = 342 m/s

continued on next page

Example 12.6

A Demonstration of Resonance

A thin hollow tube of length 1.00 m 
is inserted vertically into a tall 
container of water (Fig. 12.7). A 
tuning fork ( f = 520.0  Hz) is 
struck and held near the top of the 
tube as the tube is slowly pulled up 
and out of the water. At certain 
distances (L) between the top of 
the tube and the water surface, the 
otherwise faint sound of the tun-
ing fork is greatly amplified. At 
what values of L does this occur? 
The temperature of the air in the 
tube is 18°C.

Strategy Sound waves in the 
air inside the tube reflect from 

©Jill Braaten/McGraw-Hill Education 

Figure 12.7
Experimental setup for 
Example 12.6.

L
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Example 12.6 continued

With the speed of sound and the frequency known, we can 
find the wavelength. The wavelength is the distance traveled 
by a wave during one period:

λ = vT =
v

f
=

342 m/s
520.0 Hz

= 0.6577 m = 65.77 cm

The first possible resonance for a tube closed at one end oc-
curs when there is a pressure node at the open end, a pressure 
antinode at the closed end, and no other pressure nodes or 
antinodes. Therefore,

L1 =
1
4

λ =
1
4

× 65.77 cm = 16.4 cm

To reach other resonances, the tube must be pulled out to 
accommodate additional pressure nodes and antinodes. To 
add one node and one antinode, the additional distance is  
1
2λ = 32.9 cm. The resonances occur at intervals of 32.9 cm:

L2 = 16.4 cm + 32.9 cm = 49.3 cm
L3 = 49.3 cm + 32.9 cm = 82.2 cm

The next one requires a tube longer than 1.00 m, so there are 
three values of L that produce resonance in this tube.

Discussion As a check, we can sketch the standing wave 
pattern for the third resonance (Figs. 12.8a,b). There are 
5 quarter-wavelengths in the length of the column, so

L3 =
5
4

 λ =
5
4

× 65.77 cm = 82.2 cm

At the open end of the tube, the node for pressure and the 
antinode for maximum displacement is actually a little above 
the opening. For this reason it is best to measure the distance 
between two successive resonances to find an accurate value 

for a half-wavelength rather than measuring the distance for 
the first possible resonance, the shortest distance between 
the opening and the water surface, and setting it equal to a 
quarter-wavelength.

Practice Problem 12.6 A Roundabout Way to 
Measure Temperature

A tuning fork of frequency 440.0 Hz is held above the hol-
low tube in Example 12.6. If the distance ΔL that the tube is 
moved between resonances is 39.3 cm, what is the tempera-
ture of the air inside the tube?

Problem-Solving Strategy for Standing Waves

There is no need to memorize equations for standing wave frequencies and wave-
lengths. Just sketch the standing wave patterns as in Figs. 12.3 and 12.5. Make 
sure that nodes and antinodes alternate and that the boundary conditions at the 
ends are correct. Then determine the wavelengths by setting the distance between 
a node and antinode equal to 14λ. Once the wavelengths are known, the frequencies 
are found from v = f λ.

EVERYDAY PHYSICS DEMO

You can set up a resonance in an empty water bottle by blowing horizontally 
across the top of the bottle. Add varying amounts of water and listen for how 
the pitch changes. Notice that the shorter the air column within the bottle, 
the higher the pitch (because the fundamental frequency is higher).

Figure 12.8
(a) Standing wave pattern, showing displacement nodes and anti-
nodes, for the third resonance. (b) Standing wave pattern, showing 
pressure nodes and antinodes, for the third resonance.

(a) (b)

L

Pressure Top of
tube

Water
level

4

Displacement

λ
4
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12.5 TIMBRE

The sound produced by the vibration of a tuning fork is nearly a pure sinusoid at a 
single frequency. In contrast, most musical instruments produce complex sounds that 
are the superposition of many different frequencies. The standing wave on a string or 
in a column of air is almost always the superposition of many standing wave patterns 
at different frequencies. The lowest frequency in a complex sound wave is called the 
fundamental; the rest of the frequencies are sometimes called overtones. All the over-
tones of a periodic sound wave have frequencies that are integral multiples of the 
fundamental; the fundamental and the overtones are called harmonics.

Middle C played on an oboe does not sound the same as middle C played on a 
trumpet, even though the fundamental frequency is the same, largely because the two 
instruments produce harmonics with different relative amplitudes. What is different 
about the two sounds is the tone quality, or timbre (pronounced tamber).

Any periodic wave, no matter how complicated, can be decomposed into a set of 
harmonics, each of which is a simple sinusoid. The characteristic wave form for a 
note played on a clarinet, for example, can be decomposed into its harmonic series 
(Fig. 12.9). This process is called harmonic analysis, or Fourier analysis, in honor of 
the French mathematician, Jean Baptiste Joseph Fourier (1768–1830), who developed 
mathematical methods for analyzing periodic functions. Although the spectrum of a 
periodic wave consists only of members of a harmonic sequence, not all members of 
the sequence need be present, not even the fundamental (Fig. 12.10).

The opposite of harmonic analysis is harmonic synthesis: combining various har-
monics to produce a complex wave. Electronic synthesizers can mimic the sounds of 

Figure 12.9 (a) A graph of 
the sound wave produced by a 
clarinet. (b) A bar graph show-
ing the relative intensities of 
the harmonics, often called the 
 spectrum. The frequency of 
each harmonic is nf1, where 
f1 = 200 Hz. Notice that odd 
multiples of the fundamental 
dominate the spectrum. A sim-
ple pipe closed at one end 
would show only odd multiples 
in its spectrum. (Data courtesy 
of P. D. Krasicky, Cornell 
University.)
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Figure 12.10 Complex wave form (bottom wave) composed by superposition of 
three sinusoidal waves (three upper waves). A wave with three harmonic components 
having frequencies of 110, 165, and 220 Hz repeats at a frequency of 55 Hz because 
each of these three frequencies is an integral multiple of 55 Hz. Even though the funda-
mental is missing—there is no harmonic component at 55 Hz—the ear is clever enough 
to “reconstruct” a 55 Hz tone. That’s why you can listen to and recognize music on an 
inexpensive radio whose speaker may reproduce only a small range of frequencies.
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various instruments. Realistic-sounding synthesizers must also allow the adjustment 
of other parameters such as the attack and decay of the sound.

12.6 THE HUMAN EAR

Figure 12.11 shows the structure of the human ear. The human ear has an external 
part, or pinna, that acts something like a funnel, collecting sound waves and concen-
trating them at the opening of the auditory canal. The pinna is better at collecting 
sound coming from in front than from behind, which helps with localization. Reso-
nance in the auditory canal (see Problem 67) boosts the ear’s sensitivity in the 2 to 
5 kHz frequency range—a crucial range for understanding speech.

At the end of the auditory canal, the eardrum (tympanum) vibrates in response to 
the incident sound wave. The region just beyond the eardrum is called the middle ear. 
The vibrations of the eardrum are transmitted through three tiny bones of the middle 
ear (the auditory ossicles) to the oval window of the cochlea, a tapered spiral-shaped 
organ filled with fluid. The oval window is a membrane that is in contact with the fluid 
in the cochlea. The ossicles act as levers; the force exerted by the “stirrup” on the oval 
window is 1.5 to 2.0 times the force the eardrum exerts on the “hammer.” The area of 
the oval window is one-twentieth that of the eardrum, so there is an overall amplifica-
tion in pressure by a factor of 30 to 40. The ossicles protect the ear from damage: in 
response to a loud sound, a muscle pulls the stirrup away from the oval window. At the 
same time, another muscle increases the eardrum tension. These two changes make the 
ear temporarily less sensitive. It takes a few milliseconds for the muscles to respond in 
this way, so they provide no protection against sudden loud sounds.

The cochlear partition runs most of the length of the cochlea, separating it into two 
chambers (the scala vestibuli and the scala tympani). Vibration of the oval window sends 
a compressional wave down the fluid in the scala vestibuli, around the end of the partition, 
and back up the scala tympani to the round window. This wave sets the basilar membrane, 
located on the cochlear partition, into vibration. The basilar membrane is thinnest and 
under greatest tension near the oval and round windows; it gradually increases in thickness 
and decreases in tension toward its other end. High-frequency waves cause the membrane 
to vibrate with maximum amplitude near its thin, high-tension end; low-frequency waves 
cause maximum amplitude vibrations near its thicker, lower-tension end. The location of 

Figure 12.11 Structure of the human ear with a cross section of the cochlea.
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the maximum amplitude vibrations is one way the ear determines frequency; for low-
frequency sounds (up to about 1 kHz), the ear sends periodic nerve signals to the brain 
at the frequency of the sound wave. For complex sounds, which consist of the superposition 
of many different frequencies (see Section 12.5), the ear performs a spectral analysis—it 
decomposes the complex sound into its constituent frequencies.

Located on the basilar membrane is the sensory organ (the organ of Corti). Rows 
of hair cells on the basilar membrane excite neurons when they bend in response to 
vibration. These neurons send electrical signals to the brain.

Loudness

Although loudness is most closely correlated to intensity level, it also depends on 
frequency (as well as other factors). In other words, the sensitivity of the ear is 
 frequency-dependent. Figure 12.12 shows a set of curves of equal loudness for a 
typical person. Each curve shows the intensity levels at which sounds of different 
frequencies are perceived to be equally loud.

Pitch

Pitch is the perception of frequency. If you sing or play up and down a scale, it is 
the pitch that is rising and falling. Although pitch is the aspect of sound perception 
most closely tied to a single physical quantity, frequency, our sense of pitch is affected 
to a small extent by other factors such as intensity and timbre (Section 12.5).

Our sense of pitch is a logarithmic function of frequency, just as loudness is 
approximately a logarithmic function of intensity. If you start at the lowest note on 
the piano (which has a fundamental frequency of 27.5 Hz) and play a chromatic 
scale—every white and black key in turn—all the way to the highest note (4190 Hz), 
you hear a series of equal steps in pitch. The frequencies do not increase in equal 
steps; the fundamental frequency of each note is 5.95% higher than the previous note. 

Figure 12.12 Curves of equal loudness. For example, the two points marked lie on 
the same curve, so a 40 dB sound at 1000 Hz is as loud as a 62 dB sound at 100 Hz. 
The curves show that the ear is most sensitive to frequencies between 3 kHz and 
4 kHz, partly due to resonance in the auditory canal. The ear’s sensitivity falls off 
 rapidly below 800 Hz and above 10 kHz. At any given frequency between 800 Hz and 
10 kHz, the curves are approximately evenly spaced: equal steps in intensity level pro-
duce equal steps in loudness, which is why intensity level is often used as an approxi-
mate measure of loudness. In this frequency range, 1 dB is about the smallest change 
in intensity level that is perceptible as a change in loudness. The threshold of hearing 
is shown by the lowest curve in the set; a person with excellent hearing cannot hear 
sounds with intensity levels below this curve. The threshold of hearing is at an inten-
sity level of 0 dB or lower only in the frequency range of about 1–6 kHz.
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Under ideal conditions, most people can sense frequency changes as small as 0.3%. 
A trained musician can sense a frequency change of 0.1% or so.

Localization

How can you tell where a sound comes from? The ear has several different tools it 
uses to localize sounds:

∙ The principal method for high-frequency sounds (>4 kHz) is the difference in 
intensity sensed by the two ears. The head casts a “sound shadow,” so a sound 
coming from the right has a larger intensity at the right ear than at the left ear.

∙ The shape of the pinna makes it slightly preferential to sounds coming from the 
front. This helps with front-back localization for high-frequency sounds.

∙ For lower-frequency sounds, both the difference in arrival time and the phase 
difference between the waves arriving at the two ears are used for localization.

12.7 BEATS

When two sound waves are close in frequency (within about 15 Hz of each other), 
the superposition of the two produces an audible pulsation that we call beats. (If the 
difference in frequencies exceeds roughly 15 Hz, then the ear no longer perceives the 
beats; instead, we hear two tones at different pitches.) Beats can be produced by any 
kind of wave, not just by sound; they are a general result of the principle of super-
position when applied to two waves of nearly the same frequency.

Beats are caused by the slow change in the phase difference between the two 
waves. Suppose that at one instant (t = 0 in Fig. 12.13), the two waves are in phase 
with each other and interfere constructively. The amplitude of the superposition is the 
sum of the amplitudes of the two waves shown in Fig. 12.13a. However, since the 
frequencies are different, the waves do not stay in phase. The higher-frequency wave 

CONNECTION:

When two waves with 
 different frequencies are 
 superimposed, constructive 
interference alternates with 
destructive interference, 
 causing beats.

Figure 12.13 An example of the superposition of two sound waves with different 
frequencies, resulting in beats. (a) Graphs of two sound waves. One (red) has fre-
quency f1 = 1.0 kHz and pressure amplitude 0.02 Pa. The other (blue) has frequency 
f2 = 1.1 kHz and amplitude 0.03 Pa. (b) The superposition (purple) of the two waves 
has maximum amplitude 0.03 Pa + 0.02 Pa = 0.05 Pa (when in phase) and minimum 
amplitude 0.03 Pa − 0.02 Pa = 0.01 Pa (when 180° out of phase). The time from one 
occurrence of constructive interference to the next is Tbeat = 10 ms and the beat fre-
quency is fbeat = 1/Tbeat = 1/(10 ms) = 0.1 kHz, which is equal to the difference of the 
two frequencies: fbeat = ∣ f1 − f2∣ = 1.1 kHz − 1.0 kHz = 0.1 kHz.
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has a shorter cycle, so it gets ahead of the other one. The phase difference between 
the two steadily increases; as it does, the amplitude of the superposition decreases. 
At a later time (t = 5 ms), the phase difference reaches 180°; the waves are half a 
cycle out of phase and interfere destructively (Fig. 12.13b). Now the amplitude of the 
superposition is minimum; it is equal to the difference between the amplitudes of the 
two waves. As the phase difference continues to increase, the amplitude increases until 
constructive interference occurs again (t = 10 ms). The ear perceives the amplitude 
(and intensity) cycling from large to small to large to small as a pulsation—a repeat-
ing alternation of increasing and decreasing loudness.

At what frequency do the beats occur? It depends on how far apart the frequen-
cies of the two waves are. The time interval between beats (Tbeat) is the time from 
one occurrence of constructive interference to the next. In Fig. 12.13, the waves are 
in phase at t = 0 and are back in phase at t = 10 ms. During that time interval, there 
are 10  cycles of one wave (red) and 11 of the other (blue). To get back into phase, 
one wave had to go through 1 more cycle than the other. To write this mathematically 
for a general case, let T1 and T2 be the periods of the two waves, with T1 > T2. The 
number of cycles that occur for each wave during a time Tbeat is Tbeat/T. Then

 
Tbeat

T2
−

Tbeat

T1
= 1 (12-16)

We can rewrite this in terms of frequencies:

 
1
T2

−
1
T1

=
1

Tbeat
 (12-17)

Beat frequency

 ∣ f2 − f1∣ = fbeat (12-18)

We inserted the absolute value bars in Eq. (12-18) so we don’t have to assume that 
f2 > f1.

CHECKPOINT 12.7

At	 what	 time(s)	 in	 Fig.	 12.13	 do	 the	 two	 waves	 interfere	 destructively?	When	
would	be	the	next	time	(for	t	>	14	ms)	that	they	would	 interfere	destructively?

Application: Tuning a Piano Piano tuners listen for beats as they tune. The tuner 
sounds two strings and listens for the beats. The beat frequency indicates whether the 
interval is correct or not. If the two strings are played by the same key, they are tuned 
to the same fundamental frequency, so the beat frequency should be (nearly) zero. If 
the two strings belong to two different notes, the beat frequency is nonzero. In this 
case the tuner listens to beats between two higher harmonics that are close in frequency.

Example 12.7

The Piano Tuner

A piano tuner strikes his tuning fork (f = 523.3 Hz) and 
strikes a key on the piano at the same time. The two have 
nearly the same frequency; he hears 3.0 beats per second. As 
he tightens the piano string, he hears the beat frequency 

gradually decrease to 2.0 beats per second when the two 
sound together. (a) What was the frequency of the piano 
string before it was tightened? (b) By what percentage did 
the tension increase?

continued on next page
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12.8 THE DOPPLER EFFECT

A police car races by, its sirens screaming. As it passes, we hear the pitch change 
from higher to lower. The frequency change is called the Doppler effect, after the 
Austrian physicist Johann Christian Andreas Doppler (1803–1853). The observed fre-
quency is different from the frequency transmitted by the source when the source or 
the observer is in motion relative to the wave medium. The Doppler effect occurs for 
any kind of wave, not just sound, but sound will be our main example.

We consider only the motion of the source and observer directly toward or away 
from each other. We express the velocities of the source and observer with respect to the 
wave medium (vs and vo, respectively) as components along the direction of propagation 
of the wave (from source to observer). In other words, vs and vo are positive if the direc-
tion is from source to observer and negative if the direction is from observer to source.

In Fig. 12.14, the source (a siren) emits a sound wave with frequency fs (and 
period Ts = 1/fs). Once emitted, the wave crests travel outward in all directions at 
speed v. The distance between two wave crests at any instant is the wavelength λ. If 
the source is moving, then each wave crest is emitted at a different location of the 
source, which affects the wavelength. In front of the source, during one period Ts, the 
wave moves a distance vTs, the source moves a distance vsTs, and the wavelength is

 λ = vTs − vsTs = (v − vs)Ts =
v − vs

fs
 (12-19)

Example 12.7 continued

Strategy The beat frequency is the difference between the 
two frequencies; we only have to determine which is higher. 
The wavelength of the string is determined by its length, which 
does not change. The increase in tension increases the speed of 
waves on the string, which in turn increases the frequency.

Solution (a) Since the piano tuner heard 3.0 beats per sec-
ond, the difference in the two frequencies was 3.0 Hz:

Δf = 3.0 Hz

Is the piano string’s frequency 3.0 Hz higher or 3.0 Hz lower 
than the tuning fork’s frequency? As the tension increases 
gradually, the beat frequency decreases, which means that 
the frequency of the piano string is getting closer to the fre-
quency of the tuning fork. Therefore, the string frequency 
must be 3.0 Hz lower than the tuning fork frequency:

fstring = 523.3 Hz − 3.0 Hz = 520.3 Hz

(b) The tension (F) is related to the speed of the wave on the 
string (v) and the mass per unit length (μ) by

 v = √
F

μ
 (11-5)

The mass per unit length does not change, so v ∝ √F. The 
speed of the wave on the string is related to its wavelength 
and frequency by

v = λf

The wavelength λ in this expression is the wavelength of the 
transverse wave on the string, not the wavelength of the 

sound wave in air. Since λ does not change, v ∝ f. Therefore, 
f ∝ √F or

F ∝ f 
2

This means that the ratio of the tension F to the original ten-
sion F0 is equal to the ratio of the frequencies squared:

F

F0
= (

f

f0)
2

= (
521.3 Hz
520.3 Hz)

2

= 1.004

The tension was increased 0.4%.

Discussion We needed to find whether the original fre-
quency was too high or too low. As the beat frequency de-
creases, the frequency of the string is getting closer to the 
frequency of the tuning fork. Tightening the string makes the 
string’s frequency increase; since increasing the string’s fre-
quency brings it closer to the tuning fork’s frequency, we 
know that the original frequency of the string was lower than 
the frequency of the tuning fork. Had an increase in tension 
increased the beat frequency instead, we would know that 
the original frequency was already too high; the tension 
would have to be relaxed to tune the string.

Practice Problem 12.7 Tuning a Violin

A tuning fork with a frequency of 440.0 Hz produces 4.0 beats 
per second when sounded together with a violin string of 
nearly the same frequency. What is the frequency of the string 
if a slight increase in tension increases the beat frequency?
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Figure 12.15 An observer moving at speed vo (exaggerated for clarity) away from 
a sound source. The wavelength λ is the distance between wave crests. In the refer-
ence frame of the wave medium (here, the air), a wave crest moves a distance vTo 
and the observer moves a distance voTo during a time interval To, so λ = vTo − voTo.

The wavelength is shorter in front of the source and longer behind it. Equation (12-19) 
applies to both cases because, behind the source, vs < 0.

In Fig. 12.15, the observer moves away from the source. Wave crests reach the 
observer separated by a time To, the observed period. During a time To, the wave 
moves a distance vTo, which is the sum of the wavelength and the distance moved by 
the observer (voTo). Then

 λ = vTo − voTo = (v − vo)To =
v − vo

fo
 (12-20)

Equation (12-20) applies regardless of the observer’s direction of motion. If the 
observer moves toward the source instead, then vo < 0 in Eq. (12-20); the wave moves 
a distance shorter than the wavelength during a time To.

λ

Direction from source to observer +

1

2

3

4

5

1 2 3 4 5 6

5

5 6

(b)(a)

vsTs

vTs

vs
λ

Wavelength
in front of the

source

Figure 12.14 (a) A police speedboat is moving to the right at speed vs (exaggerated for clarity) while it blows its 
siren. The siren emits wave crests at positions 1, 2, 3, 4, 5, and 6; each wave crest moves outward in all directions, from 
the point at which it was emitted, at speed v. The wavelength λ is the distance between wave crests. (b) A snapshot at the 
instant that wave crest 6 is emitted. The source and wave crest 5 have moved distances vsTs and vTs, respectively, from 
the point where 5 was emitted. The wavelength is the distance between the two wave crests, so λ = vTs − vsTs. For a 
different observer behind the source, λ = vTs − vsTs would still hold, but now vs would be negative (the source is moving 
away from the observer), so the wavelength is longer behind the source and shorter in front of it.
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If both source and observer are moving relative to the medium, Eqs. (12-19) and 
(12-20) both correctly describe the same wavelength:

 λ =
v − vs

fs
=

v − vo

fo
 (12-21)

Solving for the observed frequency, we obtain

Doppler effect (moving source and/or observer)

 fo =
v − vo

v − vs
  fs (12-22)

Sign convention: vo and vs are positive in the direction of propagation of the 
wave (from source to observer) and negative in the opposite direction. All 
three velocities are measured relative to the wave medium.

Equations (12-19) and (12-20) can be interpreted in terms of relative velocities. 
The velocity of the wave relative to the source is v − vs. In a time Ts, the distance 
the wave moves relative to the source is λ. Then λ = (v − vs)Ts. Similarly, the velocity 
of the wave relative to the observer is v − vo. During a time To, the distance the wave 
moves relative to the observer is also λ, so λ = (v − vo)To = (v − vs)Ts.

Problem-Solving Strategy: Doppler Effect

∙ On a sketch of the situation, draw an arrow pointing from the source to the 
observer. This arrow establishes a consistent positive direction for the veloc-
ities. A velocity in the opposite direction is negative. All the velocities are 
measured with respect to the wave medium.

∙ Apply either of Eqs. (12-21) or (12-22).
∙ Some Doppler effect problems involve reflected waves. One way to handle 

a reflected wave is to think of the reflecting surface as first observing the 
wave and then reemitting it at the same frequency.

CHECKPOINT 12.8

(a)	 Does	 the	motion	of	 the	source	of	a	sound	wave	affect	 the	wavelength?
(b)	 Does	 the	motion	of	 the	observer	affect	 the	wavelength?

Example 12.8

Train Whistle and Doppler Shift

A monorail train approaches a platform at a speed of 10.0 m/s 
while it blows its whistle. A musician with perfect pitch 
standing on the platform hears the whistle as “middle C,” a 
frequency of 261 Hz. There is no wind and the temperature 
is a chilly 0°C. What is the observed frequency of the whistle 
when the train is at rest?

Strategy In this case, the source—the whistle—is moving 
and the observer is stationary. The source is moving toward 
the observer, so vs is positive. With the source approaching the 
observer, the observed frequency is higher than the source 
frequency. When the train is at rest, there is no Doppler shift; 
the observed frequency then is equal to the source frequency.

Solution For a moving source, the source ( fs) and observed 
( fo) frequencies are related by

fo =
v − vo

v − vs
  fs

where v = 331 m/s (the speed of sound in air at 0°C), vo = 0, 
vs = +10.0 m/s, and fo = 261 Hz. Solving for fs, we obtain

 fs =
v − vs

v
  fo

=
331 m/s − 10.0 m/s

331 m/s
× 261 Hz = 253 Hz

continued on next page
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Shock Waves

Let’s examine two interesting special cases of the Doppler formula [Eq. (12-22)]. First, 
what if the observer moves away from the source at the speed of sound (vo = v)? The 
Doppler-shifted frequency would be zero according to Eq. (12-22). What does that 

Example 12.8 continued

The source frequency is less than the observed frequency, as 
expected. The observed frequency when the train is at rest is 
equal to the source frequency: 253 Hz.

Discussion When the train is moving toward the plat-
form, the distance between source and observer is decreas-
ing. Wave crests emitted later take less time to reach the 
observer than if the train were at rest, so the time between 
arrivals of wave crests is smaller than if the train were 
stationary. When the distance between source and observer 
is decreasing, the observed frequency is higher than the 

source frequency; when the distance is increasing, the 
observed frequency is lower than the source frequency.

Practice Problem 12.8 A Sports Car Racing By

Justine is gardening in her front yard when a Mazda Miata 
races by at 32.0 m/s (71.6 mi/h). If she hears the sound of the 
Miata’s engine at 220.0 Hz as it approaches her, what 
frequency does she hear after it passes? Assume the tem-
perature is 20°C and there is no wind.

Example 12.9

Determining Speed from Horn Frequency

Two cars, with equal ground speeds, are moving in opposite 
directions away from each other on a straight highway. One 
driver blows a horn with a frequency of 111 Hz; the other 
measures the frequency as 105 Hz. If the speed of sound is 
338 m/s and there is no wind, what is the ground speed of 
each car?

Strategy The sound wave travels from source to observer. 
The source moves opposite the direction of the wave, so vs is 
negative. The observer moves in the direction of the wave, 
so vo is positive. The speeds are the same, so vs = −vo.

Solution With both the source and observer moving, the 
frequencies are related by

fo = (
v − vo

v − vs
 )fs = (

1 − vo /v
1 − vs /v) fs

To simplify the algebra, we let α = vo  /v = −vs/v. Then

fo = (
1 − α

1 + α) fs

Now we solve for α:

(1 + α) 

fo

fs
= 1 − α

 
fo

fs
+ α 

fo

fs
= 1 − α

α + α 
fo

fs
= 1 −

fo

fs

α =
1 − fo/fs

1 + fo/fs
=

1 − (105 Hz)/(111 Hz)
1 + (105 Hz)/(111 Hz)

= 0.027 78

Now we can find vo:

vo = αv = 0.027 78 × 338 m/s = 9.4 m/s

The speed of each car is 9.4 m/s.

Discussion Quick check on the algebra: substituting v = 
338 m/s, fs = 111 Hz, vo = 9.4 m/s, and vs = −9.4 m/s directly 
into Eq. (12-22) yields

fo =
1 − (9.4 m/s)/(338 m/s)

1 − (−9.4 m/s)/(338 m/s)
× 111 Hz = 105 Hz

Practice Problem 12.9 Finding Speed from 
the Doppler Shift

A car is driving due west at 15 m/s and sounds its horn with a 
frequency of 260.0 Hz. A passenger in a car heading east away 
from the first car hears the horn at a frequency of 230.0 Hz. How 
fast is the second car traveling? The speed of sound is 350 m/s.
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Figure 12.16 (a) Wave 
crests for a plane moving 
slower than sound. (b) A plane 
moving at the speed of sound; 
the wave crests pile up on one 
another since the plane moves 
to the right as fast as the wave 
crests. (c) Shock wave for a 
supersonic plane. The wave 
crests pile up along the cone 
indicated by the black lines.

Direction of travel
of shock wave

Direction of travel
of shock wave

(c)(b)(a)

mean? If the observer moves away from the source with a speed equal to (or greater 
than) the wave speed, the wave crests never reach the observer.

Second, what if the source moves toward the observer at a speed approaching 
the speed of sound (vs → v)? Then Eq. (12-22) gives an observed frequency that 
increases without bound (fo → ∞). Figure 12.16 helps us understand what that 
means. For a plane moving slower than sound, the wave crests in front of it are 
closer together due to the plane’s motion (Fig. 12.16a). An observer to the right 
would measure a frequency higher than the source frequency. As the plane’s speed 
increases, the wave crests in front of it get closer and closer together and the 
observed frequency increases. For a plane moving at the speed of sound  
(Fig. 12.16b), the wave crests pile up on top of one another; they move to the right 
at the same speed as the plane, so they can’t get ahead of it. An observer to the 
right would measure a wavelength of zero—zero distance between wave crests—
and therefore an infinite frequency.

What happens if the source moves at a speed greater than the speed of sound? 
Figure 12.16c shows that the wave crests pile up on top of one another to form cone-
shaped shock waves, which travel outward in the direction indicated. There are two 
principal shock waves formed, one starting at the nose of the plane and one at the 
tail (Fig. 12.17). The sound of a shock wave is referred to as a sonic boom. 

EVERYDAY PHYSICS DEMO

You	can	make	a	visible	shock	wave	by	trailing	your	finger	along	the	surface	of	
the	water	 in	 a	 sink	 or	 tub.	 If	 your	 finger	 pushes	 the	water	 faster	 than	water	
waves	travel,	water	piles	up	in	front	of	your	finger	and	forms	a	V-shaped	shock	
wave.	 See	 if	 you	 can	 approximate	 the	 case	 of	 a	 plane	moving	 at	 the	 speed	
of	 sound	 with	 rounded	 waves	moving	 outward	 from	 your	 finger	 (Fig.	 12.16b)	
instead	of	a	V-shaped	wave.	The	next	time	you	are	in	a	motor	boat,	or	watch-
ing	 one,	 notice	 the	 V-shaped	 bow	 wave	 that	 extends	 from	 the	 prow	 of	 the	
boat	when	 it	moves	 faster	 than	 the	speed	of	water	waves.

12.9 ECHOLOCATION AND MEDICAL IMAGING

Application: Animal Echolocation Bats, dolphins, whales, and some birds use 
echolocation to locate prey and to “see” their environment. To find their way around 
in the darkness of caves, oilbirds of northern South America and cave swiftlets of 
Borneo and East Asia emit sound waves and listen for the echoes. The time it takes 
for the echoes to return tells them how far they are from an obstacle or cave wall. 
Differences between the echoes that reach the two sides of the head provide informa-
tion on the direction from which the echo comes.

Figure 12.17 A bullet 
 moving through air faster than 
sound. Notice the two principal 
shock waves starting at either 
end of the bullet.
©Omikron/Science Source
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The sounds used by oilbirds and cave swiftlets for echolocation are audible to 
humans, but dolphins, whales, and most bats use ultrasound (20 to 200 kHz) instead. 
Bats and dolphins can also determine an object’s velocity by sensing the Doppler shift 
between the emitted and reflected waves—a clear advantage in locating prey that are 
darting around to avoid being eaten. Some horseshoe bats can detect frequency dif-
ferences as small as 0.1 Hz.

Prey are not completely helpless. Moths, lacewings, and praying mantises have 
primitive ears containing a few nerve cells to detect the ultrasound emitted by a nearby 
bat. A group of moths fluttering about at some distance from a cave may, for no 
apparent reason, fold their wings and drop suddenly to the ground. Folding their wings 
both reduces the amount of reflected sound and helps them drop quickly to the ground 
to evade the swooping bat. The moths’ bodies are fuzzy rather than smooth to help 
absorb some of the sound waves and thus reduce the intensity of reflected sound.

When the tiger moth detects the ultrasound from a bat, it emits its own ultrasound 
by flexing a part of its exoskeleton. The extra sounds mixed in with the echoes tend 
to confuse the bat, perhaps encouraging it to hunt elsewhere.

Application: Sonar and Radar Echolocation is a useful navigational tool for sea-
farers. To find the depth of water below a boat, a sonar (sound navigation and rang-
ing) device sends out ultrasonic pulses (Fig. 12.18). The time delay Δt between an 
emitted ultrasonic pulse and the return of its reflection is used to determine the 
 distance to the seafloor. Seismic P waves—sound waves traveling through Earth—
generated by explosions or air guns are used to study the interior structure of Earth 
and to find oil beneath the surface.

Radar is a form of echolocation that uses electromagnetic waves instead of sound 
waves, but otherwise the concept is similar. Weather forecasting relies on Doppler 
radar to show not only the location of a storm, but also the wind velocity.

Medical Applications of Ultrasound

Millions of expectant parents see their unborn child for the first time when the mother 
has an ultrasonic examination. Ultrasonic imaging uses a pulse-echo technique similar 
to that used by bats and in sonar. Pulses of ultrasound are reflected at boundaries 
between different types of tissue.

In the early stages of pregnancy (tenth to fourteenth weeks), the scan is used to 
verify that the fetus is alive and to check for twins. The length of the fetus is mea-
sured to help determine the due date more accurately. Some abnormalities can be 
discovered even at this early stage. For example, some chromosomal abnormalities 
can be detected by measuring the thickness of the skin at the back of the neck. After 

Figure 12.18 A boat with a sonar device to locate the depth of the seafloor; an 
ultrasound pulse, sent out from the boat by a transmitter, is reflected from the sea-
floor and detected by a receiver on the boat.

1–2 v Δt

Boat motion

Emitted pulses
Reflected pulses

©Oxford Scientific/Getty Images
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the eighteenth week, the fetus can be examined in even more detail. The major organs 
are examined to be sure they are developing normally. After the thirtieth week, the 
flow of blood in the umbilical cord is checked to ensure that oxygen and nutrients 
reach the fetus. The position of the placenta is also checked.

Why are sound waves used rather than, say, electromagnetic waves such as x-rays? 
X-ray radiation is damaging to tissue—especially to rapidly growing fetal tissue. After 
decades of use, ultrasound has no known adverse effects. In addition, ultrasound 
images are captured in real time, so they are available immediately and can show 
movement. A third reason is that regular x-rays detect the amount of radiation that 
passes through tissue, but cannot resolve details at different depths, and so cannot 
produce an image of a “slice” of the abdomen; a more complicated and expensive 
diagnostic tool such as a CT scan (computed tomography) would be required to 
resolve details at different depths. Fourth, some kinds of tissue are not detected well 
by x-rays but are clearly resolved in ultrasound.

Why is ultrasound used rather than sound waves of audible frequencies? Sound 
waves with high frequencies have small wavelengths. Waves with small wavelengths 
diffract less around the same obstacle than do waves with larger wavelengths (see 
Section 11.9). Too much diffraction would obscure details in the image. As a rough 
guideline, the wavelength is a lower limit on the smallest detail that can be resolved. 
The frequencies used in imaging are typically in the range 1 to 15 MHz, which means 
that the wavelengths in human tissue are in the range 0.1 to 1.5 mm. As a comparison, 
if sound waves at 15 kHz were used, the wavelength inside the body would be 10 cm. 
Higher frequencies give better resolution but at the expense of less penetration; sound 
waves are absorbed within a distance of about 500λ in tissue.

The medical applications of ultrasonic imaging are not limited to prenatal care. 
Ultrasound is also used to examine organs such as the heart, liver, gallbladder, kidneys, 
bladder, breasts, and eyes, and to locate tumors. It can be used to diagnose various 
heart conditions and to assess damage after a heart attack (Fig. 12.19). Ultrasound 
can show movement, so it is used to assess heart valve function and to monitor blood 
flow in large blood vessels. Because ultrasound provides real-time images, it is some-
times used to guide procedures such as biopsies, in which a needle is used to take a 
sample from an organ or tumor for testing.

Doppler ultrasound is a technique that is used to examine blood flow. It can help 
reveal blockages to blood flow, show the formation of plaque in arteries, and provide 
detailed information on the heartbeat of the fetus during labor and delivery. The 
Doppler-shifted reflections interfere with the emitted ultrasound, producing beats. The 
beat frequency is proportional to the speed of the reflecting object (see Problem 58).

Figure 12.19 Ultrasonic imaging is used to diagnose heart disease.
©BSIP/UIG/Getty Images
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 ∙ A sound wave can be described either by the gauge pres-
sure p, which measures the pressure fluctuations above 
and below the ambient atmospheric pressure, or by the 
displacement s of each point in the medium from its 
undisturbed position.
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 ∙ Humans with excellent hearing can hear frequencies 
from 20 Hz to 20 kHz. The terms infrasound and ultra-
sound are used to describe sound waves with frequen-
cies below 20 Hz and above 20 kHz, respectively.

 ∙ The speed of sound in a fluid is

 v = √
B

ρ
 (12-1)

 ∙ The speed of sound in an ideal gas at any absolute tem-
perature T can be found if it is known at one temperature:

 v = v0√
T

T0
 (12-4)

  where the speed of sound at absolute temperature T0 is v0.
 ∙ The speed of sound in dry air at 0°C is 331 m/s.
 ∙ For sound waves traveling along the length of a thin 

solid rod, the speed is approximately

 v = √
Y

ρ
  (thin solid rod)  (12-6)

 ∙ The pressure amplitude of a sound wave is proportional 
to the displacement amplitude. For a harmonic sound 
wave at angular frequency ω,
 p0 = ωvρs0 (12-7)

  where v is the speed of sound and ρ is the mass density 
of the medium.

 ∙ The intensity of a sound wave is related to the pressure 
amplitude as follows:

 I =
p2

0

2ρv
 (12-8)

Master the Concepts

  where ρ is the mass density of the medium and v is the 
speed of sound in that medium. The most important 
thing to remember is that intensity is proportional to 
amplitude squared, which is true for all waves, not just 
sound.

 ∙ Sound intensity level in decibels is

 β = (10 dB) log10 
I

I0
 (12-9)

  where I0 = 10–12 W/m2. Sound intensity level is useful 
since it roughly corresponds to the way we perceive 
loudness. Equal increments in intensity level roughly 
correspond to equal increases in loudness.

 ∙ In a standing sound wave in a thin pipe, an open end is a 
pressure node and a displacement antinode; a closed 
end is a pressure antinode and a displacement node.

  For a pipe open at both ends,

 λn =
2L

n
 (11-23)

 fn = n 

v

2L
= nf1 (11-24)

  where n = 1, 2, 3, . . . .
  For a pipe closed at one end,

 λn =
4L

n
 (12-14)

 fn = n 

v

4L
= nf1 (12-15)

  where n = 1, 3, 5, 7, . . . .
 ∙ When two sound waves are close in frequency, the su-

perposition of the two produces a pulsation called beats.

 fbeat = ∣ f2 − f1∣ (12-18)
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 ∙ Doppler effect: if vs and vo are the velocities of the 
source and observer and v is the wave speed, the ob-
served frequency is

 fo = (
v − vo

v − vs)
fs (12-22)

  where vs and vo are positive in the direction of propaga-
tion of the wave and are measured with respect to the 
wave medium.
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Conceptual Questions

 1. Explain why the pitch of a bassoon is more sensitive to 
a change in air temperature than the pitch of a cello. 
(That’s why wind players keep blowing air through the 
instrument to keep it in tune.)

 2. On a warm day, a piano is tuned to match an organ in an 
auditorium. Will the piano still be in tune with the organ 
the next morning, when the room is cold? If not, will the 
organ be higher or lower in pitch than the piano? (As-
sume that the piano’s tuning doesn’t change. Why is that 
a reasonable assumption?)

 3. Many real estate agents have an ultrasonic rangefinder 
that enables them to quickly and easily measure the di-
mensions of a room. The device is held to one wall and 
reads the distance to the opposite wall. How does it work?

 4.  For high-frequency sounds, the ear’s principal 
method of localization is the difference in intensity 
sensed by the two ears. Why can’t the ear reliably use 
this method for low-frequency sounds? Doesn’t the head 
cast a “sound shadow” regardless of the frequency? Ex-
plain. [Hint: Consider diffraction of sound waves around 
the head.]

 5.  For low-frequency sounds, the ear uses the phase dif-
ference between the sound waves arriving at the two ears 
to determine direction. Why can’t the ear reliably use 
phase difference for high-frequency sounds? Explain.

 6. A sign along the road in Tompkins County reads, “State 
Law: Noise Limit, 90 decibels.” If you were subjected to 
such a noise level for an extended period of time, would 
you need to worry about your hearing being affected?

 7. Why is it that your own voice sounds strange to you 
when you hear it played back on a tape recorder, but 
your friends all agree that it is just what your voice 
sounds like? [Hint: Consider the medium through which 
the sound wave travels when you usually hear your own 
voice.]

 8.  What is the purpose of the gel that is spread over the 
skin before an ultrasonic imaging procedure? [Hint: The 
speed of sound in the gel is similar to the speed in the 
body, while the speed in air is much slower. What hap-
pens to a wave at an abrupt change in wave speed?]

 9. A stereo system whose amplifier can produce 60 W per 
channel is replaced by one rated 120 W per channel. 
Would you expect the new stereo to be able to play twice 
as loudly as the old one? Explain.

 10. A moving source emits a sound wave that is heard by a 
moving observer. Imagine a thin wall at rest between the 
source and observer. The wall completely absorbs the 
sound and instantaneously emits an identical sound 
wave. Use this scenario to explain why we can combine 
the Doppler shifts due to motion of the source and 
observer as in Eq. (12-22). [Hint: What is the net effect 
of this imaginary wall?]

 11. Explain why the displacement of air elements at con-
densations and rarefactions is zero.

 12. Why is the speed of sound in solids generally much 
faster than the speed of sound in air?

 13. If the pressure amplitude of a sound wave is doubled, 
what happens to the displacement amplitude, the inten-
sity, and the intensity level?

 14. The source and observer of a sound wave are both at rest 
with respect to the ground. The wind blows in the direc-
tion from source to observer. Is the observed frequency 
Doppler-shifted? Explain.

 15. Many brass instruments have valves that increase the 
total length of the pipe from mouthpiece to bell. When a 
valve is depressed, is the fundamental frequency raised 
or lowered? What happens to the pitch?

 16. When the viola section of an orchestra with six mem-
bers plays together, is the sound 6 times as loud as when 
a single viola plays? Explain. Is the intensity 6 times 
what it would be for a single viola? [Hint: The six sound 
waves are not coherent.]

 17. The fundamental frequency of the highest note on the 
piano is 4.186 kHz. Most musical instruments do not go 
that high; only a few singers can produce sounds with 
fundamental frequencies higher than around 1 kHz. Yet 
a good-quality stereo system must reproduce frequen-
cies up to at least 16 to 18 kHz. Explain.

Multiple-Choice Questions

 1. An organ pipe is closed at 
one end. Several standing 
wave patterns are sketched 
in the drawing. Which one 
is not a possible standing 
wave pattern for this pipe?

 2. Of the standing wave pat-
terns sketched in the draw-
ing, which shows the 
lowest frequency standing 
wave for an organ pipe 
closed at one end?

 3. The intensity of a sound 
wave is directly propor-
tional to

 (a) the frequency.
 (b) the amplitude.
 (c) the square of the amplitude.
 (d) the square of the speed of sound.
 (e) none of the above.

Multiple-Choice		
Questions	1	and	2

(d)

(c)

(b)

(a)
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 4. The speed of sound in water is 4 times the speed of 
sound in air. A whistle on land produces a sound wave 
with a frequency f. When this sound wave enters the 
water, its frequency becomes

 (a) 4f.
 (b) f.
 (c) f∕4.
 (d) Not enough information is given.
 5. A source of sound with frequency 620 Hz is placed on a 

moving platform that approaches a physics student at 
speed v; the student hears sound with a frequency f1. Then 
the source of sound is held stationary while the student 
approaches it at the same speed v; the  student hears sound 
with a frequency f2. Choose the correct statement.

 (a) f1 = f2; both are greater than 620 Hz.
 (b) f1 = f2; both are less than 620 Hz.
 (c) f1 > f2 > 620 Hz.
 (d) f2 > f1 > 620 Hz.
 6. A van and a small car are traveling in the same direction 

on a two-lane road. After the van passes the car, the 
driver of the car sounds his horn, frequency = 440 Hz, 
to signal the van that it is safe to return to the lane. (The 
van is still moving faster than the car.) Which is the cor-
rect statement?

 (a)  The car driver and van driver both hear the horn 
frequency as 440 Hz.

 (b)  The car driver hears 440 Hz, but the van driver hears 
a lower frequency.

 (c)  The car driver hears 440 Hz, but the van driver hears 
a higher frequency.

 (d)  Both drivers hear the same frequency, and it is lower 
than 440 Hz.

 7. A trombone and a bassoon play notes of equal loudness 
with the same fundamental frequency. The two sounds 
differ primarily in

 (a) pitch.
 (b) intensity level.
 (c) amplitude.
 (d) timbre.
 (e) wavelength.
 8. The fundamental frequency of a pipe closed at one end 

is f1. How many nodes are present in a standing wave of 
frequency 9f1?

 (a) 4  (b) 5  (c) 6  (d) 8  (e) 9  (f) 10
 9. The length of a pipe closed at one end is L. In the stand-

ing wave whose frequency is 7 times the fundamental 
frequency, what is the distance between adjacent nodes?

 (a) 1
14L  (b) 1

7L  (c) 2
7L  (d) 4

7L  (e) 8
7L

 (f) None of the above.
 10. The three lowest resonant frequencies of a system are 

50 Hz, 150 Hz, and 250 Hz. The system could be
 (a) a tube of air closed at both ends.
 (b) a tube of air open at one end.

 (c) a tube of air open at both ends.
 (d) a vibrating string with fixed ends.
 11. The speed of sound in water is _____ than the speed of 

sound in air because _____.
 (a) faster; water is much harder to compress
 (b) faster; water is much more dense
 (c) slower; water is much easier to compress
 (d) slower; water is much less dense
 (e) equal; the two fluids are at the same pressure

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

Note: Assume a temperature of 20.0°C in all problems un-
less otherwise indicated.

12.2 The Speed of Sound Waves
 1. In Death Valley, the highest recorded outdoor tempera-

ture so far is 56.7°C (in the shade!). What is the speed of 
sound in air at that temperature?

 2. What is the speed of sound in helium at body tempera-
ture (37°C)?

 3.  What are the wavelengths of sound waves at the 
lower and upper limits of human hearing (10 Hz and 
20 kHz, respectively)?

 4.  Bats emit ultrasonic waves with a frequency as high 
as 1.0 × 105 Hz. What is the wavelength of such a wave 
in air of temperature 15°C?

 5.  Dolphins emit ultrasonic waves with a frequency as 
high as 2.5 × 105 Hz. What is the wavelength of such a 
wave in seawater at 25°C?

 6. At a baseball game, a spectator is 60.0 m away from the 
batter. How long does it take the sound of the bat con-
necting with the ball to travel to the spectator’s ears? 
The air temperature is 27.0°C.

 7. A lightning flash is seen in the sky, and 8.2 s later the 
boom of the thunder is heard. The temperature of the air 
is 12°C. (a) What is the speed of sound at that tempera-
ture? [Hint: Light travels at a speed of 3.00 × 108 m/s.] 
(b) How far away is the lightning strike?

 8. During a thunderstorm, you can easily estimate your dis-
tance from a lightning strike. Count the number of sec-
onds that elapse from when you see the flash of lightning 
to when you hear the thunder. The rule of thumb is that 
5 s elapse for each mile of distance. Verify that this rule 
of thumb is (approximately) correct. (Light travels at a 
speed of 3 × 108 m/s.)
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 9. A copper alloy has a Young’s modulus of 1.1 × 1011 Pa 
and a density of 8.92 × 103 kg/m3. What is the speed 
of sound in a thin rod made from this alloy? Compare 
your result with the value for copper given in 
 Table 12.1.

 10. Find the speed of sound in mercury, which has a 
bulk modulus of 2.8 × 1010 Pa and a density of 1.36 × 
104 kg/m3.

 11. Derive Eq. (12-5): (a) Starting with Eq. (12-4), substitute 
T = TC + 273.15. (b) Apply the binomial approximation 
to the square root (see Appendix A.9) and simplify.

 12.  Stan and Ollie are standing next to a train track. Stan 
puts his ear to the steel track to hear the train coming. 
He hears the sound of the train whistle through the track 
2.1 s before Ollie hears it through the air. How far away 
is the train?

12.3 Amplitude and Intensity of Sound Waves
 13. Six sound waves have pressure amplitudes p0 and fre-

quencies f as given. Rank them in order of the displace-
ment amplitude, largest to smallest.

 (a) p0 = 0.05 Pa, f = 400 Hz
 (b) p0 = 0.01 Pa, f = 400 Hz
 (c) p0 = 0.01 Pa, f = 2000 Hz
 (d) p0 = 0.05 Pa, f = 80 Hz
 (e) p0 = 0.05 Pa, f = 16 Hz
 (f) p0 = 0.25 Pa, f = 400 Hz
 14.  A sound wave with an intensity level of 80.0 dB is 

incident on an eardrum of area 0.600 × 10−4 m2. How 
much energy is incident on the eardrum in 3.00 min?

 15.  (a) What is the pressure amplitude of a sound wave 
with an intensity level of 120.0 dB in air? (b) What 
 maximum force does this wave exert on an eardrum of 
area 0.550 × 10−4 m2?

 16.  A 40 Hz sound wave is barely audible at a sound 
intensity level of 60 dB. What is the displacement am-
plitude of this sound wave? Compare it with the average 
distance between molecules in air at room temperature, 
about 3 nm.

 17.  Chronic exposure to loud noises can be damaging 
to one’s hearing. This can be a problem in occupations 
in which heavy machinery is used. If a machine pro-
duces sound with an intensity level of 100.0 dB, what 
would its intensity level have to be to reduce the inten-
sity by a factor of 2.0?

 18.  Table 12.2 lists 120 dB as the intensity level at the 
threshold of pain for humans. (a) Show that the corre-
sponding pressure amplitude is 29 Pa. (b) What is this 
pressure amplitude as a fraction of atmospheric pressure?

 19. A sound wave in room-temperature air has an intensity 
level of 65.0 dB and a frequency of 131 Hz. (a) What is 
the pressure amplitude? (b) What is the displacement 
amplitude?

 20. The sound level 25 m from a loudspeaker is 71 dB. 
What is the rate at which sound energy is produced by 
the loudspeaker, assuming it to be an isotropic source?

 21. In a factory, three machines produce noise with inten-
sity levels of 85 dB, 90 dB, and 93 dB. When all three 
are running, what is the intensity level? How does this 
compare to running just the loudest machine?

 22. At the race track, one race car starts its engine with a 
resulting intensity level of 98.0 dB at point P. Then 
seven more cars start their engines. If the other seven 
cars each produce the same intensity level at point P as 
the first car, what is the new intensity level with all eight 
cars running?

 23. An intensity level change of +1.00 dB corresponds to 
what percentage change in intensity?

 24. (a) Show that if I2 = 10.0I1, then β2 = β1 + 10.0 dB. (A 
factor of 10 increase in intensity corresponds to a 10.0 dB 
increase in intensity level.) (b) Show that if I2 = 2.0I1, 
then β2 = β1 + 3.0 dB. (A factor of 2 increase in intensity 
corresponds to a 3.0 dB increase in intensity level.

 25. At a rock concert, the engineer decides that the music 
isn’t loud enough. He turns up the amplifiers so that the 
amplitude of the sound, where you’re sitting, increases by 
50.0%. (a) By what percentage does the intensity 
increase? (b) How does the intensity level (in dB) change?

12.4 Standing Sound Waves
 26.  Humans can hear sounds with frequencies up to 

about 20.0 kHz, but dogs can hear frequencies up to 
about 40.0 kHz. Dog whistles are made to emit sounds 
that dogs can hear but humans cannot. If the part of a 
dog whistle that actually produces the high frequency is 
made of a tube open at both ends, what is the longest 
possible length for the tube?

 27. The figure shows standing wave patterns in five pipes of 
equal length. Pipes (c) and (e) are open at both ends; the 
others are closed at one end. Rank the standing waves in 
order of the frequency, largest to smallest.

 28.  A glass tube is closed at one end and has a dia-
phragm covering the other end. The tube is filled with 
gas and some very fine sawdust has been scattered along 
inside the tube. When the diaphragm is driven at a fre-
quency of 1457 Hz, the sawdust forms small piles 20 cm 

(a) (b) (c) (d) (e)
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apart. (a) What is the speed of the sound in the gas?  
(b) Do the piles of sawdust represent displacement 
nodes or antinodes in the sound wave? Explain.

 29. (a) What should be the length of an organ pipe, closed at 
one end, if the fundamental frequency is to be 261.5 Hz? 
(b) What is the fundamental frequency of the organ pipe 
of part (a) if the temperature drops to 0.0°C?

 30. Repeat Problem 29 for an organ pipe that is open at 
both ends.

 31. An organ pipe that is open at both ends has a fundamen-
tal frequency of 382 Hz at 0.0°C. What is the fundamen-
tal frequency for this pipe at 20.0°C?

 32. What is the length of the organ pipe in Problem 31?
 33. In an experiment to measure the speed of sound in air, 

standing waves are set up in a narrow pipe open at both 
ends using a speaker driven at 702 Hz. The length of the 
pipe is 2.0 m. What is the air temperature inside the pipe 
(assumed reasonably near room temperature, 20°C to 
35°C)? [Hint: The standing wave is not necessarily the 
fundamental.]

 34. When a tuning fork is held over the open end of a very 
thin tube, as in Fig. 12.7, the smallest value of L that 
produces resonance is found to be 30.0 cm. (a) What is 
the wavelength of the sound? [Hint: Assume that the 
displacement antinode is at the open end of the tube.] 
(b) What is the next larger value of L that will produce 
resonance with the same tuning fork? (c) If the fre-
quency of the tuning fork is 282 Hz, what is the speed of 
sound in the tube?

 35. Two tuning forks, A and B, excite the next-to-lowest 
resonant frequency in two air columns of the same 
length, but A’s column is closed at one end and B’s col-
umn is open at both ends. What is the ratio of A’s fre-
quency to B’s frequency?

 36. How long a pipe is needed to make a tuba whose lowest 
note is low C (frequency 130.8 Hz)? Assume that a tuba 
is a long straight pipe open at both ends.

12.7 Beats
 37.  A violin is tuned by adjusting the tension in the 

strings. Brian’s A string is tuned to a slightly lower fre-
quency than Jennifer’s, which is correctly tuned to 
440.0 Hz. (a) What is the frequency of Brian’s string if 
beats of 2.0 Hz are heard when the two bow the strings 
together? (b) Does Brian need to tighten or loosen his A 
string to get in tune with Jennifer? Explain.

 38. A piano tuner sounds two strings simultaneously. One 
has been previously tuned to vibrate at 293.0 Hz. The 
tuner hears 3.0 beats per second. The tuner increases the 
tension on the as-yet untuned string, and now when they 
are played together the beat frequency is 1.0 s−1. 
(a)  What was the original frequency of the untuned 
string? (b) By what percentage did the tuner increase 
the tension on that string?

 39. An auditorium has organ pipes at the front and at the 
rear of the hall. Two identical pipes, one at the front and 
one at the back, have fundamental frequencies of 264.0 Hz 
at 20.0°C. During a performance, the organ pipes at the 
back of the hall are at 25.0°C, while those at the front 
are still at 20.0°C. What is the beat frequency when the 
two pipes sound simultaneously?

 40. A musician plays a string on a guitar that has a funda-
mental frequency of 330.0 Hz. The string is 65.5 cm 
long and has a mass of 0.300 g. (a) At what speed do the 
waves travel on the string? (b) What is the tension in the 
string? (c) While the guitar string is still being plucked, 
another musician plays a slide whistle that is closed at 
one end and open at the other. He starts at a very high 
frequency and slowly lowers the frequency until beats, 
with a frequency of 5 Hz, are heard with the guitar. 
What is the fundamental frequency of the slide whistle 
with the slide in this position? (d) How long is the open 
tube in the slide whistle for this frequency?

 41.  A cello string has a fundamental frequency of 
65.40 Hz. What beat frequency is heard when this cello 
string is bowed at the same time as a violin string with 
frequency of 196.0 Hz? [Hint: The beats occur between 
the third harmonic of the cello string and the fundamen-
tal of the violin.]

12.8 The Doppler Effect
 42. An ambulance traveling at 44 m/s approaches a car 

heading in the same direction at a speed of 28 m/s. The 
ambulance driver has a siren sounding at 550 Hz. At 
what frequency does the driver of the car hear the siren?

 43. At a factory, a noon whistle is sounding with a fre-
quency of 500 Hz. As a car traveling at 85 km/h ap-
proaches the factory, the driver hears the whistle at 
frequency fi. After driving past the factory, the driver 
hears frequency ff. What is the change in frequency 
ff − fi heard by the driver?

 44. In parts of the midwestern United States, sirens sound 
when a severe storm that may produce a tornado is ap-
proaching. Mandy is walking at a speed of 1.56 m/s di-
rectly toward one siren and directly away from another 
siren when they both begin to sound with a frequency of 
698 Hz. What beat frequency does Mandy hear?

 45. A source of sound waves of frequency 1.0 kHz is travel-
ing through the air at 0.50 times the speed of sound. 
(a)  Find the frequency of the sound received by a 
s tationary observer if the source moves toward her. 
(b) Repeat if the source moves away from her instead.

 46. A source of sound waves of frequency 1.0 kHz is sta-
tionary. An observer is traveling at 0.50 times the speed 
of sound. (a) What is the observed frequency if the ob-
server moves toward the source? (b) Repeat if the 
observer moves away from the source instead.
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 47. A speedboat is traveling at 20.1 m/s toward another boat 
moving in the opposite direction with a speed of 
15.6 m/s. The speedboat pilot sounds his horn, which 
has a frequency of 312 Hz. What is the frequency heard 
by a passenger in the oncoming boat?

 48. A source and an observer are each traveling at 0.50 times 
the speed of sound. The source emits sound waves at 
1.0 kHz. Find the observed frequency if (a) the source 
and observer are moving toward each other; (b) the source 
and observer are moving away from each other; (c) the 
source and observer are moving in the same direction.

 49.  Blood flow rates can be found by measuring the 
Doppler shift in frequency of ultrasound reflected by red 
blood cells (known as angiodynography). If the speed of 
the red blood cells is v, the speed of sound in blood is u, 
the ultrasound source emits waves of frequency f, and we 
assume that the blood cells are moving directly toward 
the ultrasound source, show that the frequency fr of re-
flected waves detected by the apparatus is given by

fr = f  

u + v

u − v

  [Hint: There are two Doppler shifts. A red blood cell 
first acts as a moving observer; then it acts as a moving 
source when it reradiates the reflected sound at the same 
frequency that it received.]

 50.  The pitch of the sound from a race car engine drops 
the musical interval of a fourth when it passes the spec-
tators. This means the frequency of the sound after pass-
ing is 0.75 times what it was before. How fast is the race 
car moving?

12.9 Echolocation and Medical Imaging
 51. A ship is lost in a dense fog in a Norwegian fjord that is 

1.80 km wide. The air temperature is 5.0°C. The captain 
fires a pistol and hears the first echo after 4.0 s. (a) How 
far from one side of the fjord is the ship? (b) How long 
after the first echo does the captain hear the second 
echo?

 52. A ship mapping the depth of the ocean emits a sound of 
38 kHz. The sound travels to the ocean floor and returns 
0.68 s later. (a) How deep is the water at that location? 
(b) What is the wavelength of the wave in water? 
(c) What is the wavelength of the reflected wave as it 
travels into the air, where the speed of sound is 350 m/s?

 53. A boat is using sonar to detect the bottom of a freshwa-
ter lake. If the echo from a sonar signal is heard 0.540 s 
after it is emitted, how deep is the lake? Assume the 
temperature of the lake is uniform and at 25°C.

 54. A geological survey ship mapping the floor of the ocean 
sends sound pulses down from the surface and measures 
the time taken for the echo to return. How deep is the 
ocean at a point where the echo time (down and back) is 
7.07 s? The temperature of the seawater is 25°C.

 55.   A bat emits chirping sounds of frequency 
82.0 kHz while hunting for moths to eat. If the bat is 
flying toward the moth at a speed of 4.40 m/s and the 
moth is flying away from the bat at 1.20 m/s, what is the 
frequency of the sound wave reflected from the moth as 
observed by the bat? Assume it is a cool night with a 
temperature of 10.0°C. [Hint: There are two Doppler 
shifts. Think of the moth as a receiver, which then be-
comes a source as it “retransmits” the reflected wave.]

 56.  The bat of Problem 55 emits a chirp that lasts for 
2.0 ms and then is silent while it listens for the echo. If 
the beginning of the echo returns just after the outgoing 
chirp is finished, how close to the moth is the bat? [Hint: 
Is the change in distance between the two significant 
during a 2.0 ms time interval?]

 57.   Doppler ultrasound is used to measure the speed 
of blood flow (see Problem 49). The reflected sound 
interferes with the emitted sound, producing beats. If 
the speed of red blood cells is 0.10 m/s, the ultrasound 
frequency used is 5.0 MHz, and the speed of sound in 
blood is 1570 m/s, what is the beat frequency?

 58.   (a) In Problem 49, find the beat frequency be-
tween the outgoing and reflected sound waves. (b) Show 
that the beat frequency is proportional to the speed of 
the blood cell if v ≪ u. [Hint: Use the binomial ap-
proximation from Appendix A.9.]

Collaborative Problems

 59. A certain pipe has resonant frequencies of 234 Hz, 390 Hz, 
and 546 Hz, with no other resonant frequencies between 
these values. (a) Is this a pipe open at both ends or 
closed at one end? (b) What is the fundamental 
 frequency of this pipe? (c) How long is this pipe?

 60.   An aluminum rod, 1.0 m long, is held lightly in 
the middle. One end is struck head-on with a rubber 
mallet so that a longitudinal pulse—a sound wave—
travels down the rod. The fundamental frequency of the 
longitudinal vibration is 2.55 kHz. (a) Describe the lo-
cations of the displacement and pressure nodes and an-
tinodes for the fundamental mode of vibration. 
(b) Calculate the speed of sound in aluminum from the 
information given in the problem. (c) The vibration of 
the rod produces a sound wave in air that can be heard. 
What is the wavelength of the sound wave in the air? 
Take the speed of sound in air to be 334 m/s. (d) Do the 
two ends of the rod vibrate longitudinally in phase or 
out of phase with each other? That is, at any given in-
stant, do they move in the same direction or in opposite 
directions?

 61.  One cold and windy winter day, Zach notices a hum-
ming sound coming from his chimney, which is open at 
the top and closed at the bottom. He opens the chimney 
at the bottom and notices that the sound changes. He 
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goes over to the piano to try to match the note that the 
chimney is producing with the bottom open. He finds 
that the “C” three octaves below middle “C” matches 
the chimney’s fundamental frequency. Zach knows that 
the frequency of middle “C” is 261.6 Hz, and each lower 
octave is one half of the frequency of the octave above. 
From this information, Zach finds the height of the 
chimney and the fundamental frequency of the note that 
was produced when the chimney was closed at the bot-
tom. Assuming that the speed of sound in the cold air is 
330 m/s, reproduce Zach’s calculations to find (a) the 
height of the chimney and (b) the fundamental fre-
quency of the chimney when it is closed at the bottom.

 62.  Your friend needs advice on her newest “acoustic 
sculpture.” She attaches one end of a steel wire, of diam-
eter 4.00 mm and density 7860 kg/m3, to a wall. After 
passing over a pulley, located 1.00 m from the wall, the 
other end of the wire is attached to a hanging weight. Be-
low the horizontal length of wire she places a 1.50 m long 
hollow tube, open at one end and closed at the other. Once 
the sculpture is in place, air will blow through the tube, 
creating a sound. Your friend wants this sound to cause 
the steel wire to vibrate transversely at the same resonant 
frequency as the tube. What weight (in newtons) should 
she hang from the wire if the temperature is 18.0°C?

 63.    In this problem, you will estimate the smallest 
kinetic energy of vibration that the human ear can de-
tect. Suppose that a harmonic sound wave at the thresh-
old of hearing (I = 1.0 × 10−12 W/m2) is incident on the 
eardrum. Take the speed of sound as 340 m/s and the 
density of air as 1.2 kg/m3. (a) What is the maximum 
speed of an element of air in the sound wave? [Hint: See 
Eq. (10-28).] (b) Assume the eardrum vibrates with dis-
placement s0 at angular frequency ω; its maximum 
speed is then equal to the maximum speed of an air ele-
ment. The mass of the eardrum is approximately 0.1 g. 
What is the average kinetic energy of the eardrum?  
(c) The average kinetic energy of the eardrum due to col-
lisions with air molecules in the absence of a sound wave is 
about 10−20 J. Compare your answer with (b) and discuss.

 64. Akiko rides her bike toward a brick wall with a speed of 
7.00 m/s while blowing a whistle that is emitting sound 
with a frequency of 512.0 Hz. (a) What is the frequency of 
the sound that is reflected from the wall as heard by 
Haruki, who is standing still? (b) Junichi is walking away 
from the wall at a speed of 2.00 m/s. What is the frequency 
of the sound reflected from the wall that Junichi hears?

Comprehensive Problems 

 65. Kyle is climbing a sailboat mast and is 5.00 m above the 
surface of the ocean, while his friend Rob is scuba div-
ing below the boat. Kyle shouts to someone on another 
boat and Rob hears him shout 0.0210 s later. The ocean 

temperature is 25°C and the air is at 20°C. How deep is 
Rob below the boat?

 66. What are the four lowest standing wave frequencies for 
an organ pipe that is 4.80 m long and closed at one end?

 67.  The length of the auditory canal in humans aver-
ages about 2.5 cm. What are the lowest three standing 
wave frequencies for a pipe of this length open at one 
end? What effect might resonance have on the sensitiv-
ity of the ear at various frequencies? (Refer to Fig. 12.12. 
Note that frequencies critical to speech recognition are 
in the range 2 to 5 kHz.)

 68.  A sound wave arriving at your ear is transferred to 
the fluid in the cochlea. If the intensity in the fluid is 
0.80 times that in air and the frequency is the same as 
for the wave in air, what will be the ratio of the pressure 
amplitude of the wave in air to that in the fluid? Ap-
proximate the fluid as having the same values of density 
and speed of sound as water.

 69.  At what frequency f does a sound wave in air have a 
wavelength of 15 cm, about half the diameter of the hu-
man head? Some methods of localization work well 
only for frequencies below f, whereas others work well 
only above f. (See Conceptual Questions 4 and 5.)

 70.  Some bats determine their distance to an object by 
detecting the difference in intensity between echoes. 
(a) If intensity falls off at a rate that is inversely propor-
tional to the distance squared, show that the echo inten-
sity is inversely proportional to the fourth power of 
distance. (b) The bat was originally 0.60 m from one 
object and 1.10 m from another. After flying closer, it is 
now 0.50 m from the first and at 1.00 m from the second 
object. What is the percentage increase in the intensity 
of the echo from each object?

 71.  Bats of the Vespertilionidae family detect the distance 
to an object by timing how long it takes for an emitted 
signal to reflect off the object and return. Typically they 
emit sound pulses 3 ms long and 70 ms apart while cruis-
ing. (a) If an echo is heard 60 ms later (vsound = 331 m/s), 
how far away is the object? (b) When an object is only 
30 cm away, how long will it be before the echo is heard? 
(c) Will the bat be able to detect this echo?

 72.  Horseshoe bats use the Doppler effect to determine 
their location. A Horseshoe bat flies toward a wall at a 
speed of 15 m/s while emitting a sound of frequency 
35 kHz. What is the beat frequency between the emis-
sion frequency and the echo?

 73. According to a treasure map, a treasure lies at a depth of 
40.0 fathoms on the ocean floor due east from the light-
house. The treasure hunters use sonar to find where the 
depth is 40.0 fathoms as they head east from the light-
house. What is the elapsed time between an emitted pulse 
and the return of its echo at the correct depth if the water 
temperature is 25°C? [Hint: One fathom is 1.83 m.]
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 74.  When playing fortissimo (very loudly), a trumpet 
emits sound energy at a rate of 0.800 W out of a bell 
(opening) of diameter 12.7 cm. (a) What is the sound in-
tensity level right in front of the trumpet? (b) If the trum-
pet radiates sound waves uniformly in all directions, what 
is the sound intensity level at a distance of 10.0 m?

 75.  A periodic wave is composed of the superposition of 
three sine waves whose frequencies are 36, 60, and 
84 Hz. The speed of the wave is 180 m/s. What is the 
wavelength of the wave? [Hint: The 36 Hz is not neces-
sarily the fundamental frequency.]

 76.  Analysis of the periodic sound wave produced by a 
violin’s G string includes three frequencies: 392, 588, 
and 980 Hz. What is the fundamental frequency? [Hint: 
The wave on the string is the superposition of several 
different standing wave patterns.]

 77.  During a rehearsal, all eight members of the first vio-
lin section of an orchestra play a very soft passage. The 
sound intensity level at a certain point in the concert hall 
is 38.0 dB. What is the sound intensity level at the same 
point if only one of the violinists plays the same pas-
sage? [Hint: When playing together, the violins are in-
coherent sources of sound.]

Review and Synthesis

 78. (a) Show that since the bulk modulus has SI units N/m2 
and mass density has SI units kg/m3, Eq. (12-1) gives 
the speed of sound in m/s. Thus, the equation is dimen-
sionally consistent. (b) Show that no other combination 
of B and ρ can give dimensions of speed. Thus, 
Eq. (12-1) must be correct except for the possibility of a 
dimensionless constant.

 79. A child swinging on a swing set hears the sound of a 
whistle that is being blown directly in front of her. At 
the bottom of her swing when she is moving toward the 
whistle, she hears a higher pitch, and at the bottom of 
her swing when she is moving away from the swing she 
hears a lower pitch. The higher pitch has a frequency 
that is 5.0% higher than the lower pitch. What is the 
speed of the child at the bottom of the swing?

 80. A 30.0 cm long string has a mass of 0.230 g and is vi-
brating at its third-lowest natural frequency f3. The ten-
sion in the string is 7.00 N. (a) What is f3? (b) What are 
the frequency and wavelength of the sound in the sur-
rounding air if the speed of sound is 350 m/s?

 81. The A string on a guitar has length 64.0 cm and funda-
mental frequency 110.0 Hz. The string’s tension is 133 N. 
It is vibrating in its fundamental standing wave mode 
with a maximum displacement from equilibrium of 
2.30 mm. The air temperature is 20.0°C. (a) What is the 
wavelength of the fundamental mode of vibration? 
(b) What is the wave speed on the string? (c) What is the 
linear mass density of the string? (d) What is the 

maximum speed of any point on the oscillating string? 
(e) The string transmits vibrations through the bridge to 
the body of the instrument and then to the air. What is 
the frequency of the sound wave in air? (f) What is the 
wavelength of the sound wave in air?

 82. A piano “string” is steel wire with radius 0.50 mm and 
length 1.2 m. It is under 800 N of tension. (a) What is the 
speed of transverse waves on the string? (b) What is the 
fundamental frequency for transverse waves? (c) What is 
the speed of longitudinal waves (i.e., sound) in the wire? 
Consider the wire to be a thin solid steel rod. (d) Assum-
ing nodes at the ends, what is the fundamental frequency 
for longitudinal waves? (Longitudinal waves in the wire 
do contribute to the characteristic sound of the piano.)

Answers to Practice Problems

 12.1 Although solids usually have somewhat higher densi-
ties than liquids, they have much higher bulk moduli—they 
are much stiffer. The greater restoring forces in solids cause 
sound waves to travel faster.
 12.2 Assumptions: Treat the stage as a point source; ignore 
reflection and absorption of waves. 4.0 × 10−6 W/m2, 0.057 Pa.
 12.3 400
 12.4 a factor of 3.2
 12.5 3000 km. No, it is not realistic to ignore absorption and 
reflection over such a great distance.
 12.6 24°C
 12.7 444.0 Hz
 12.8 182.5 Hz
 12.9 27 m/s

Answers to Checkpoints

 12.3 The relationship between pressure and displacement 
amplitudes depends on the frequency and, therefore, does 
not have a unique value for a given pressure amplitude and 
intensity.
 12.4 A pipe of length L closed at one end has a node at one 
end and an antinode at the other. The wavelength can be 2L 
only if both ends are nodes (or both are antinodes), because 
the distance between two successive nodes (or two succes-
sive antinodes) is 1

2λ.
 12.7 Destructive interference means the two waves are 180° 
out of phase, which occurs at t = 5 ms. At this time, the su-
perposition has its minimum amplitude. Destructive inter-
ference would next occur at t = 15 ms.
 12.8  (a) The motion of the source does affect the wave-
length: λ is shorter in front of the source and longer behind it 
(see Fig. 12.14). (b) The motion of the observer does not 
affect the wavelength, which is the instantaneous distance 
between two wave crests (see Fig. 12.15).
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BIOMEDICAL 
APPLICATIONS

∙ Regulation of body tem-
perature (Example 13.1; 
Section 13.7; Problem 106)

∙ Temperature dependence of 
biological processes (Sec-
tion 13.7; Problems 73, 74) 

∙ Diffusion of O2, water, 
platelets (Section 13.8; 
Example 13.9; Problems 
80, 81)

∙ Breathing of divers, 
 emphysema patients  
(Example 13.6; Problems 
45, 84, 115, 116) 

Concepts & Skills to Review

•	 energy	conservation	
(Chapter	6)

•	 momentum	conservation	
(Section	7.4)

•	 collisions	(Sections	7.7	
and	7.8)

•	 math skill:	exponents	and	
logarithms	(Section	A.4)

PART TWO Thermal	Physics

C H A P T E R

13

A crocodile basks on a rock in Lake Baringo (Kenya) to get warm.  
©Mitch Reardon/Getty Images

In	homeothermic	(“warm-blooded”)	animals,	body	temperature	is	care-
fully	 regulated.	 The	 hypothalamus,	 located	 in	 the	 brain,	 acts	 as	 the	
master	 thermostat	 to	 keep	 body	 temperature	 constant	 to	 within	 a	
fraction	of	a	degree	Celsius	 in	a	healthy	animal.	 If	 the	body	tempera-
ture	starts	to	deviate	much	from	the	desired	constant	level,	the	hypo-
thalamus	causes	changes	in	blood	flow	and	initiates	other	processes,	
such	 as	 shivering	 or	 perspiration,	 to	 bring	 the	 temperature	 back	 to	
normal.	What	evolutionary	advantage	does	a	constant	body	 tempera-
ture	give	 the	homeotherms	 (e.g.,	birds	and	mammals)	over	 the	poiki-
lotherms	(e.g.,	reptiles	and	insects),	whose	body	temperatures	are	not	
kept	constant?	What	are	 the	disadvantages?
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13.1 TEMPERATURE AND THERMAL EQUILIBRIUM

The measurement of temperature is part of everyday life. We measure the temperature 
of the air outdoors to decide how to dress when going outside; a thermostat measures 
the air temperature indoors to control heating and cooling systems to keep our homes 
and offices comfortable. Regulation of oven temperature is important in baking. When 
we feel ill, we measure our body temperature to see if we have a fever. Despite how 
matter-of-fact it may seem, temperature is a subtle concept. Although our subjective 
sensations of hot and cold are related to temperature, they can easily mislead.

EVERYDAY PHYSICS DEMO

Try	an	experiment	described	by	 the	English	philosopher	 John	Locke	 in	1690.	
Fill	one	container	with	water	 that	 is	hot	 (but	not	 too	hot	 to	 touch);	 fill	a	sec-
ond	container	with	 lukewarm	water;	and	 fill	 a	 third	container	with	cold	water.	
Put	one	hand	in	the	hot	water	and	one	in	the	cold	water	(Fig.	13.1)	for	about	
10	 to	 20	 s.	 Then	 plunge	 both	 hands	 into	 the	 container	 of	 lukewarm	 water.	
Although	both	hands	are	now	 immersed	 in	water	 that	 is	at	a	single	 tempera-
ture,	 the	 hand	 that	 had	 been	 in	 the	 hot	 water	 feels	 cool	 but	 the	 hand	 that	
had	 been	 in	 the	 cold	 water	 feels	 warm.	 This	 demonstration	 shows	 that	 we	
cannot	 trust	our	 subjective	senses	 to	measure	 temperature.

The definition of temperature is based on the concept of thermal equilibrium. 
Suppose two objects or systems are allowed to exchange energy directly between their 
molecules, without doing macroscopic work. The net flow of energy is always from 
the object at the higher temperature to the object at the lower temperature. As energy 
flows, the temperatures of the two objects approach each other. When the temperatures 
are the same, there is no longer any net flow of energy; the objects are now said to 
be in thermal equilibrium. Thus, temperature is a quantity that determines when 
objects are in thermal equilibrium. (The objects do not necessarily have the same 
energy when in thermal equilibrium.) The energy that flows between two objects or 
systems due to a temperature difference between them is called heat. In Chapter 14 
we discuss heat in detail. If heat can flow between two objects or systems, the objects 
or systems are said to be in thermal contact.

To measure the temperature of an object, we put a thermometer into thermal 
contact with the object. Temperature measurement relies on the zeroth law of 
thermodynamics.

Cold HotLukewarm

Figure 13.1 It is easy to 
trick our sense of temperature.

Zeroth Law of Thermodynamics

If two objects are each in thermal equilibrium with a third object, then the two 
are in thermal equilibrium with each other.

Without the zeroth law, it would be impossible to define temperature, since dif-
ferent thermometers could give different results. The rather odd name zeroth law of 
thermodynamics came about because this law was formulated historically after the 
first, second, and third laws of thermodynamics and yet it is so fundamental that it 
logically comes before the others. Thermodynamics, the subject of Chapters 13 to 
15, concerns temperature, heat flow, and the internal energy of systems.

13.2 TEMPERATURE SCALES

Thermometers measure temperature by exploiting some property of matter that is 
temperature-dependent. The familiar liquid-in-glass thermometer relies on thermal 
expansion: the mercury or alcohol expands more than the glass as its temperature 
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rises (or contracts as its temperature drops) and we read the temperature on a 
calibrated scale. Since some materials expand more than others, these thermom-
eters must be calibrated on a scale using some easily reproducible phenomenon, 
such as the melting point of ice or the boiling point of water. The assignment of 
temperatures to these phenomena is arbitrary.

The most commonly used temperature scale in the world is the Celsius scale. On 
the Celsius scale, 0°C is the freezing temperature of water at P = 1 atm (the ice point) 
and 100°C is the boiling temperature of water at P = 1 atm (the steam point). The 
Celsius scale is named for Swedish astronomer Anders Celsius (1701–1744), who 
used a temperature scale that was the reverse of what we use today (water’s freezing 
point at 100° and water’s boiling point at 0°).

In the United States, the Fahrenheit scale, named after physicist Daniel Gabriel 
Fahrenheit (1686–1736), is still commonly used (Fig. 13.2). At 1 atm, the ice point 
is 32°F and the steam point is 212°F, so the difference between the steam and ice 
points is 180°F. A temperature difference of 1°C is equivalent to a difference 
of 1.8°F:

 ΔTF = ΔTC × 1.8 
°F
°C

 (13-1)

Since the two scales also have an offset (0°C is not the same temperature as 0°F), 
conversion between the two is:

 TF = (1.8°F/°C)TC + 32°F (13-2)

 TC =
TF − 32°F
1.8°F/°C

 (13-3)

The SI unit of temperature is the kelvin (symbol K, without a degree sign), named 
after British physicist William Thomson (Lord Kelvin) (1824–1907). The kelvin has 
the same degree size as the Celsius scale; that is, a temperature difference of 1°C is 
the same as a difference of 1 K. However, 0 K represents absolute zero—there are 
no temperatures below 0 K. The ice point is 273.15 K, so temperature in °C (TC) and 
temperature in kelvins (T) are related by

 TC = T − 273.15 (13-4)

Equation (13-4) is the definition of the Celsius scale in terms of the kelvin. Table 13.1 
shows some temperatures in kelvins, °C, and °F.

Table 13.1 Some Reference Temperatures in K, °C, and °F

K °C °F

Absolute zero 0 −273.15 −459.67
Lowest transient temperature  
 achieved (laser cooling)

10−9

Intergalactic space 3 −270 −454
Helium boils 4.2 −269 −452
Nitrogen boils 77 −196 −321
Carbon dioxide freezes  
 (“dry ice”)

195 −78 −108

Mercury freezes 234 −39 −38
Ice melts/water freezes 273.15 0 32.0
Human body temperature 310 37 98.6

K °C °F

Water boils 373.15 100.00 212.0
Campfire 1 000 700 1 300
Gold melts 1 337 1 064 1 947
Incandescent lightbulb  
 filament

3 000 2 700 4 900

Surface of Sun; iron  
 welding arc

6 300 6 000 11 000

Center of Earth 16 000 15 700 28 300
Lightning channel 30 000 30 000 50 000
Center of Sun 107 107 107

Interior of neutron star 109 109 109

212°F100°C
(Steam point)

FahrenheitCelsius

50°C

0°C
(Ice point)

–40°C

200°F

150°F

100°F

50°F

0°F

–40°F

32°F

68°F

         37°C
(Core body temp.)

       20°C
(Room temp.)

Figure 13.2 The Fahrenheit 
and Celsius temperature scales.
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13.3 THERMAL EXPANSION OF SOLIDS AND LIQUIDS

Most objects expand as their temperature increases. Long before the cause of thermal 
expansion was understood, the phenomenon was put to practical use. For example, 
the cooper (barrel maker) heated iron hoops red hot to make them expand before fit-
ting them around the wooden staves of a barrel. The iron hoops contracted as they 
cooled, pulling the staves tightly together to make a leak-tight barrel.

Linear Expansion

If the length of a wire, rod, or pipe is L0 at temperature T0 (Fig. 13.3), then

Example 13.1

A Sick Friend

 A friend suffering from the flu feels like she has a fever; 
her body temperature is 38.6°C. What is her temperature in 
(a) K and (b) °F?

Strategy (a) Kelvins and °C differ only by a shift of the 
zero point. Converting from °C to K requires only the addi-
tion of 273.15 K since 0°C (the ice point) corresponds to 
273.15 K. (b) The °F is a different size than the °C, as well 
as having a different zero. In the Celsius scale, the zero is at 
the ice point. First multiply by 1.8°F/°C to find how many °F 
above the ice point. Then add 32°F (the Fahrenheit tempera-
ture of the ice point).

Solution (a) The temperature is 38.6 K above the ice point 
of 273.15 K. Therefore, the kelvin temperature is

T = 38.6 K + 273.15 K = 311.8 K

(b) First find how many °F above the ice point:

ΔTF = 38.6°C × (1.8°F/°C) = 69.5°F

The ice point is 32°F, so

TF = 32.0°F + 69.5°F = 101.5°F

Discussion The answer is reasonable since 98.6°F is nor-
mal body temperature.

Practice Problem 13.1  Normal Body  
Temperatures with Two Scales

Convert the normal human body temperature (98.6°F) to de-
grees Celsius and kelvins.

 
ΔL

L0
= α ΔT  (13-5)

where ΔL = L − L0 and ΔT = T − T0. The length at temperature T is

 L = L0 + ΔL = (1 + α ΔT )L0 (13-6)

The constant of proportionality α is called the coefficient of linear expansion of the 
substance. It plays a role in thermal expansion similar to that of the elastic modulus in 
tensile stress. If T is measured in kelvins or in degrees Celsius, then α has units of K−1 
or °C−1. Since only the change in temperature is involved in Eq. (13-5), either Celsius 
or Kelvin temperatures can be used to find ΔT; a temperature change of 1 K is the same 
as a temperature change of 1°C. The L can be interpreted as any linear dimension of a 
solid object, such as the diameter of a cylinder or of the hole in a washer.

As is true for the elastic modulus, the coefficient of linear expansion has differ-
ent values for different solids and also depends to some extent on the starting tem-
perature of the object. Table 13.2 lists the coefficients for various solids.

CHECKPOINT 13.3

A	steel	 tower	 is	150	m	 tall	at	40°C.	How	much	shorter	 is	 it	at	−10°C?

L0
ΔL

T > T0
L

T0

Figure 13.3 Expansion of a 
solid rod with increasing 
 temperature.
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Figure 13.4 is a graph of the relative length of a steel girder as a function of 
temperature over a wide range of temperatures. The curvature of this graph shows that 
the thermal expansion of the girder is in general not proportional to the temperature 
change. However, over a limited temperature range, the curve can be approximated by 
a straight line; the slope of the tangent line is the coefficient α at the temperature T0. 
For small temperature changes near T0, the change in length of the girder can be 
treated as being proportional to the temperature change with only a small error.

Applications of Thermal Expansion: Expansion Joints in Bridges and Buildings  
Allowances must be made in building sidewalks, roads, bridges, and buildings to leave 
space for expansion in hot weather. Old subway tracks have small spaces left between 
rail sections to prevent the rails from pushing into each other and causing the track 
to bow. A train riding on such tracks is subject to a noticeable amount of “clickety-
clack” as it goes over these small expansion breaks in the tracks. Expansion joints are 
easily observed in bridges (Fig. 13.5). Concrete roads and sidewalks have joints 
between sections. Homeowners sometimes build their own sidewalks without realizing 
the necessity for such joints; these sidewalks begin to crack almost immediately!

Allowances must also be made for contraction in cold weather. If an object is not 
free to expand or contract, then as the temperature changes it is subjected to thermal 
stress as its environment exerts forces on it to prevent the thermal expansion or con-
traction that would otherwise occur.

CONNECTION:

Recall that the fractional 
length change (strain) caused 
by a tensile or compressive 
stress is proportional to the 
stress that caused it [Hooke’s 
law, Eq. (10-4)]. Similarly, 
the fractional length change 
caused by a temperature 
change is proportional to the 
temperature change, as long 
as the temperature change is 
not too great.

Material α (10−6 K−1)
Glass (Vycor)  0.75
Brick  1.0
Glass (Pyrex)  3.25
Granite  8
Glass, most types  9.4
Cement or concrete 12
Iron or steel 12
Copper 16
Silver 18
Brass 19
Aluminum 23
Lead 29
Ice (at 0°C) 51

Table 13.2 Coefficients of Linear Expansion α for Solids  
(at T = 20°C Unless Otherwise Indicated)

Figure 13.5 Expansion joints 
permit the roadbed of a bridge 
to expand and contract as the 
temperature changes.
©Tom Uhlman/Alamy

T0

L0
L

T

Slope = α
1

Figure 13.4 The relative 
length of a steel girder as a 
function of temperature. The 
dashed tangent line shows what 
Eq. (13-5) predicts for small 
temperature changes in the 
vicinity of T0. The slope of this 
tangent line is the value of α at 
T = T0.
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Example 13.2

Expanding Rods

Two metal rods, one aluminum and one brass, are each 
clamped at one end (Fig. 13.6). At 0.0°C, the rods are each 
50.0 cm long and are separated by 0.024 cm at their unfas-
tened ends. At what temperature will the rods just come 
into contact? (Assume that the base to which the rods are 
clamped undergoes a negligibly small thermal expansion.)

Strategy Two rods of different materials expand by differ-
ent amounts. The sum of the two expansions (ΔLbr + ΔLAl) 
must equal the space between the rods. After finding ΔT, we 
add it to T0 = 0.0°C to obtain the temperature at which the 
two rods touch.
Known: L0 = 50.0 cm, T0 = 0.0°C for both
Look up: αbr = 19 × 10−6 K−1; αAl = 23 × 10−6 K−1

Requirement: ΔLbr + ΔLAl = 0.024 cm
Find: Tf = T0 + ΔT

Solution The brass rod expands by

ΔLbr = (αbr ΔT)L0

and the aluminum rod by

ΔLAl = (αAl ΔT)L0

The sum of the two expansions is known:

ΔLbr + ΔLAl = 0.024 cm

Since both the initial lengths and the temperature changes 
are the same,

(αbr + αAl)ΔT × L0 = 0.024 cm

We can now solve for ΔT:

 ΔT =
0.024 cm

(αbr + αAl)L0

 =
0.024 cm

(19 × 10−6 K−1 + 23 × 10−6 K−1) × 50.0 cm

 = 11.4°C

The temperature at which the two touch is

Tf = T0 + ΔT = 0.0°C + 11.4°C → 11°C

Discussion As a check on the solution, we can find how 
much each individual rod expands and then add the two 
amounts:

 ΔLAl = (αAl ΔT)L0

 = 23 × 10−6 K−1 × 11.4 K × 50.0 cm = 0.013 cm
 ΔLbr = (αbr ΔT)L0

 = 19 × 10−6 K−1 × 11.4 K × 50.0 cm = 0.011 cm

total expansion = 0.013 cm + 0.011 cm = 0.024 cm
which is correct.

Practice Problem 13.2 Expansion of a Wall

The outer wall of a building is constructed from concrete 
blocks. If the wall is 5.00 m long at 20.0°C, how much lon-
ger is the wall on a hot day (30.0°C)? How much shorter is it 
on a cold day (−5.0°C)?

T0 = 0.0°C
Brass Aluminum

50.0 cm 50.0 cm

0.024 cm

Figure 13.6
Two clamped rods.

Differential Expansion

When two strips made of different metals are joined together and then heated, one 
expands more than the other (unless they have the same coefficient of expansion). 
This differential expansion can be put to practical use: the joined strips bend into a 
curve, allowing one strip to expand more than the other.

Application: Bimetallic Strips The bimetallic strip (Fig. 13.7) is made by joining a 
material with a lower coefficient of expansion, such as steel, and one of a higher coeffi-
cient of expansion, such as brass. Unequal expansions or contractions of the two materials 
force the bimetallic strip to bend. In Fig. 13.7, the brass expands more than the steel when 
the bimetallic strip is heated. As the strip is cooled, the brass contracts more than the steel.
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The bimetallic strip is used in many wall thermostats. The bending of the bime-
tallic strip closes or opens an electrical switch in the thermostat that turns the furnace 
or air conditioner on or off. Inexpensive oven thermometers also use a bimetallic strip 
wound into a spiral coil; the coil winds tighter or unwinds as the temperature changes.

Area Expansion

As you might suspect, each dimension of an object expands when the object’s tem-
perature increases. For instance, a pipe expands not only in length, but also in radius. 
An isotropic substance expands uniformly in all directions, causing changes in area 
and volume that leave the shape of the object unchanged. In Problem 25, you can 
show that, for small temperature changes, the area of any flat surface of a solid 
changes in proportion to the temperature change:

 
ΔA

A0
= 2α ΔT  (13-7)

The factor of two in Eq. (13-7) arises because the surface expands in two perpen-
dicular directions.

Volume Expansion

The fractional change in volume of a solid or liquid is also proportional to the tem-
perature change as long as the temperature change is not too large:

Bimetallic strip

Room temperature HotCold

Brass

Steel

Figure 13.7 A bimetallic 
strip bends when its tempera-
ture changes; brass expands and 
contracts more than steel for 
the same temperature change.

CONNECTION:

Compare Eq. (10-11). There, 
the fractional volume change 
is proportional to the  pressure 
change; here it is proportional 
to the temperature change. 

ΔV

V0
= β ΔT  (13-8)

The coefficient of volume expansion, β, is the fractional change in volume per unit 
temperature change. For solids, the coefficient of volume expansion is three times the 
coefficient of linear expansion (as shown in Problem 26):

 β = 3α (13-9)

The factor of three in Eq. (13-9) arises because the object expands in three- dimensional 
space. For liquids, the volume expansion coefficient is the only one given in tables. 
Since liquids do not necessarily retain the same shape as they expand, the quantity 
that is uniquely defined is the change in volume. Table 13.3 provides values of β for 
some common liquids and gases.

*Below 3.98°C, water contracts with increasing temperature.

Table 13.3 Coefficients of Volume Expansion β for Liquids  
and Gases (at T = 20°C Unless Otherwise Indicated)

Material β  (10−6 K−1)
Liquids
 Water (liquid at 0°C)* −68
 Mercury 182
 Water (at 20°C) 207
 Gasoline 950
 Ethyl alcohol 1120
 Benzene 1240
Gases
 Air (and most other gases) at 1 atm 3340
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Expansion of a Cavity When a solid expands, every point in the solid gets farther 
away from every other point. Therefore, a hollow cavity in a solid expands just as if 
it were filled. For example, the interior of a steel gasoline container expands when 
its temperature increases just as if it were a solid steel block. The steel wall of the 
can does not expand inward to make the cavity smaller. See Conceptual Question 4 
for further discussion of cavity expansion.

Application: Thermometers In an ordinary alcohol-in-glass or mercury-in-glass 
thermometer, it is not just the liquid that expands as temperature rises. The reading 
of the thermometer is determined by the difference in the volume expansion of the 
liquid and that of the interior of the glass. The calibration of an accurate thermom-
eter must account for the expansion of the glass. Comparison of Tables 13.2 and 13.3 
shows that, as is usually the case, the liquid expands much more than the glass for a 
given temperature change.

Example 13.3

Hollow Cylinder Full of Water

A hollow copper cylinder is filled to the brim with water at 
20.0°C. If the water and the container are heated to a tem-
perature of 91°C, what percentage of the water spills over 
the top of the container?

Strategy The volume expansion coefficient for water is 
greater than that for copper, so the water expands more than 
the interior of the cylinder. The cavity expands just as if it 
were solid copper. Since the problem does not specify the 
initial volume, we call it V0. We need to find out how much 
a volume V0 of water expands and how much a volume V0 of 
copper expands; the difference is the water volume that spills 
over the top of the container.
Known:  Initial copper cylinder interior volume = initial  

water volume = V0

Initial temperature = T0 = 20.0°C
Final temperature = 91°C; ΔT = 71°C

Look up: αCu = 16 × 10−6 °C−1; βH2O
 = 207 × 10−6 °C−1

Find: ΔVH2O
 − ΔVCu as a percentage of V0

Solution The volume expansion of the interior of the cop-
per cylinder is

ΔVCu = (βCu ΔT)V0

where βCu = 3αCu. The volume expansion of the water is

ΔVH2O = (βH2O ΔT)V0

The amount of water that spills is

 ΔVH2O − ΔVCu = (βH2O ΔT)V0 − (βCu ΔT)V0

 = [(βH2O − βCu) ΔT]V0

 = (207 × 10−6 °C−1 − 3 × 16 × 10−6 °C−1)
× 71°C × V0

 = 0.011V0

The percentage of water that spills is therefore 1.1%.

Discussion As a check, we can find the change in volume of 
the copper container and of the water and find the difference.

 ΔVCu = (βCu  
ΔT)V0 = 3 × 16 × 10−6 °C−1 × 71°C × V0

 = 0.0034V0

 ΔVH2O = (βH2O  
ΔT)V0 = 207 × 10−6 °C−1 × 71°C × V0

 = 0.0147V0

volume of water that spills = 0.0147V0 − 0.0034V0 = 0.0113V0

which again shows that 1.1% spills.

Practice Problem 13.3 Overflowing Gas Can

A driver fills an 18.9 L steel gasoline can with gasoline at 
15.0°C right up to the top. He forgets to replace the cap and 
leaves the can in the back of his truck. The temperature climbs 
to 30.0°C by 1 p.m. How much gasoline spills out of the can?

13.4 MOLECULAR PICTURE OF A GAS

Number Density As we saw in Chapter 9, the densities of liquids are generally not 
much less than the densities of solids. Gases are much less dense than liquids and 
solids because the molecules are, on average, much farther apart. The mass density—
mass per unit volume—of a substance depends on the mass m of a single molecule 
and the number of molecules N packed into a given volume V of space (Fig. 13.8). 
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The number of molecules per unit volume, N/V, is called the number density to 
distinguish it from mass density. In SI units, number density is written as the number 
of molecules per cubic meter, usually written simply as m−3 (read “per cubic meter”). 
If a gas has a total mass M, occupies a volume V, and each molecule has a mass m, 
then the number of gas molecules is

 N =
M

m
 (13-10)

and the average number density is

 
N

V
=

M

mV
=

ρ

m
 (13-11)

where ρ = M/V is the mass density.

Moles It is common to express the amount of a substance in units of moles (abbre-
viated mol). The mole is an SI base unit and is defined as follows: one mole of 
anything contains the same number of units as there are atoms in 12 grams (not 
kilograms) of carbon-12. This number is called Avogadro’s number and has the value

(a) (b)

Figure 13.8 These two gases 
have the same mass per unit 
volume but different number 
densities. The red arrows repre-
sent the molecular velocities. In 
(a), there are a larger number 
of molecules in a given 
 volume, but the mass of each 
molecule in (b) is greater.

Avogadro’s number

 NA = 6.022 × 1023 mol−1 (13-12)

 1 u = 1.66 × 10−27 kg (13-14)

Avogadro’s number is written with units, mol−1, to show that this is the number per 
mole. The number of moles, n, is therefore given by

number of moles =
total number

number per mole

 n =
N

NA
 (13-13)

Molecular Mass and Molar Mass The mass of a molecule is often expressed in 
units other than kg. The most common is the atomic mass unit (symbol u). By 
definition, one atom of carbon-12 has a mass of 12 u (exactly). Using Avogadro’s 
number, the relationship between atomic mass units and kilograms can be calculated 
(see Problem 27):

The proton, neutron, and hydrogen atom all have masses within 1% of 1 u—which 
is why the atomic mass unit is so convenient. More precise values are 1.007 u for the 
proton, 1.009 u for the neutron, and 1.008 u for the hydrogen atom. The mass of an 
atom is approximately equal to the number of nucleons (neutrons plus protons)—the 
atomic mass number—times 1 u.
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Instead of the mass of one molecule, tables commonly list the molar mass—the 
mass of the substance per mole. For an element with several isotopes (such as 
 carbon-12, carbon-13, and carbon-14, which all have the same atomic number but 
different mass numbers), the molar mass is averaged according to the naturally occur-
ring abundance of each isotope. The atomic mass unit is chosen so that the mass of 
a molecule in “u” is numerically the same as the molar mass in g/mol. For example, 
the molar mass of O2 is 32.0 g/mol and the mass of one molecule is 32.0 u.

The mass of a molecule is very nearly equal to the sum of the masses of its 
constituent atoms. The molar mass of a molecule is therefore equal to the sum of the 
molar masses of the atoms, as they are listed on a periodic table of the elements. For 
example, the molar mass of carbon is 12.01 g/mol and the molar mass of (atomic) 
oxygen is 16.00 g/mol; therefore, the molar mass of carbon dioxide (CO2) is 
(12.01 + 2 × 16.00) g/mol = 44.01 g/mol.

CHECKPOINT 13.4

(a)	What	is	the	mass	(in	u)	of	a	CO2	molecule?	(b)	What	is	the	mass	(in	grams)	
of	3.00	mol	of	CO2?

Example 13.4

A Helium Balloon

A helium balloon of volume 0.010 m3 contains 0.40 mol of 
He gas. (a) Find the number of atoms, the number density, 
and the mass density. (b) Estimate the average distance be-
tween He atoms.

Strategy The number of moles tells us the number of at-
oms as a fraction of Avogadro’s number. Once we have the 
number of atoms, N, the next quantity we are asked to find is 
N/V. To find the mass density, we can look up the atomic 
mass of helium in the periodic table. The mass per atom 
times the number density (atoms per cubic meter) equals the 
mass density (mass per cubic meter). To find the average 
distance between atoms, imagine a simplified picture in 
which each atom is at the center of a spherical volume equal 
to the total volume of the gas divided by the number of at-
oms. In this approximation, the average distance between 
atoms is equal to the diameter of each sphere.

Solution (a) The number of atoms is

 N = nNA

 = 0.40 mol × 6.022 × 1023 atoms/mol
 = 2.4 × 1023 atoms

The number density is

N

V
=

2.4 × 1023 atoms
0.010 m3 = 2.4 × 1025 atoms/m3

The mass of a helium atom is 4.00 u. Then the mass in kilo-
grams of a helium atom is

m = 4.00 u × 1.66 × 10−27 kg/u = 6.64 × 10−27 kg

and the mass density of the gas is

 ρ =
M

V
= m ×

N

V

 = 6.64 × 10−27 kg × 2.4 × 1025 m−3 = 0.16 kg/m3

(b) We assume that each atom is at the center of a sphere of 
radius r (Fig. 13.9). The volume of the sphere is

V

N
=

1
N/V

=
1

2.4 × 1025 atoms/m3 = 4.2 × 10−26 m3 per atom

Then

V

N
=

4
3

 πr3 ≈ 4r3 (since π ≈ 3)

Solving for r yields

r ≈ (
V

4N)
1/3

= 2.2 × 10−9 m = 2.2 nm

Figure 13.9
Simplified model in which equally spaced helium atoms sit at the 
centers of spherical volumes of space.

continued on next page
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13.5 ABSOLUTE TEMPERATURE AND THE IDEAL GAS LAW

We have examined the thermal expansion of solids and liquids. What about gases? Is 
the volume expansion of a gas proportional to the temperature change? We must be 
careful; since gases are easily compressed, we must also specify what happens to the 
pressure. The French scientist Jacques Charles (1746–1823) found experimentally that, 
if the pressure of a gas is held constant, the change in temperature is indeed propor-
tional to the change in volume (Fig. 13.10a).

 Charles’s law: ΔV ∝ ΔT (for constant P)  (13-15)

According to Charles’s law, a graph of V versus T for a gas held at constant pressure 
is a straight line, but the line does not necessarily pass through the origin (Fig. 13.10b).

However, if we graph V versus T (at constant P) for various gases, something 
interesting happens. If we extrapolate the straight line to where it reaches V = 0, 
the temperature at that point is the same regardless of what gas we use, how many 
moles of gas are present, or what the pressure of the gas is (Fig. 13.10c). (One 
reason we have to extrapolate is that all gases become liquids or solids before they 

Example 13.4 continued

The average distance between atoms is d = 2r ≈ 4 nm (since 
this is an estimate).

Discussion For comparison, in liquid helium the average 
distance between atoms is about 0.4 nm, so in the gas the 
average separation is about ten times larger.

Practice Problem 13.4 Number Density for Water

The mass density of liquid water is 1000.0 kg/m3. Find the 
number density.

Gas AConstant P Constant P
Gas B

Beaker of water
(b)

Thermometer Hg

Volume (V )
of enclosed
gas

Gas C
Gas D
Gas E

V

T (K)

V

T (°C)

00
(d)

(a)

(c)

ΔT

ΔV

V

Tlimit T (°C)

Figure 13.10 (a) Apparatus to verify Charles’s law. The pressure of the enclosed 
gas is held constant by the fixed quantity of mercury resting on top of it and atmo-
spheric pressure pushing down on the mercury. If the temperature of the gas is 
changed, it expands or contracts, moving the mercury column above it. (b) Charles’s 
law: for a gas held at constant pressure, changes in temperature are proportional to 
changes in volume. (c) Volume versus temperature graphs for various gas samples, 
each at a constant pressure, are extrapolated to V = 0. The graphs intersect the tem-
perature axis at the same temperature, Tlimit, even though the gases may differ in 
composition and mass. (d) An absolute temperature scale sets Tlimit = 0.
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reach V = 0.) This temperature, −273.15°C or −459.67°F, is called absolute zero—
the lower limit of attainable temperatures. In kelvins—an absolute temperature 
scale—absolute zero is defined as 0 K (Fig. 13.10d). As long as it is understood 
that an absolute temperature scale is to be used, then Charles’s law can be written

 V ∝ T (for constant P)  (13-16)

EVERYDAY PHYSICS DEMO

Take	 an	 empty	 plastic	 soda	 bottle,	 cap	 it	 tightly,	 and	 put	 it	 in	 the	 freezer.	
Check	 it	an	hour	 later;	what	has	happened?	Estimate	the	percentage	change	
in	 the	 volume	 of	 the	 air	 inside	 and	 compare	 with	 the	 percentage	 change	 in	
absolute	temperature	(if	you	don’t	have	a	thermometer	handy,	a	typical	freezer	
temperature	 is	about	−10°C).

Thermal expansion of a gas can be used to measure temperature. Gas thermometers 
are universal: it does not matter what gas is used or how many moles of gas are present, 
as long as the number density is sufficiently low. Gas thermometers give absolute tem-
perature in a natural way and they are extremely accurate and reproducible. The main 
disadvantage of gas thermometers is that they are much less convenient to use than most 
other thermometers, so they are mainly used to calibrate other thermometers.

A thermometer based on Charles’s law would be called a constant pressure gas 
thermometer. More common is the constant volume gas thermometer (Fig. 13.11), 
which is based on Gay-Lussac’s law:

 P ∝ T (for constant V)  (13-17)

Here we keep the volume of the gas constant, measure the pressure and use that to 
indicate the temperature. (It is much easier to keep the volume constant and measure 
the pressure than to do the opposite.)

Both Charles’s law and Gay-Lussac’s law are valid only for a dilute gas—a gas 
where the number density is low enough (and, therefore, the average distance between 
gas molecules is large enough) that interactions between the molecules are negligible 
except when they collide. Two other experimentally discovered laws that apply to 
dilute gases are Boyle’s law and Avogadro’s law. Boyle’s law states that the pressure 
of a gas is inversely proportional to its volume at constant temperature:

 P ∝
1
V
 (for constant T)  (13-18)

Avogadro’s law states that the volume occupied by a gas at a given temperature and 
pressure is proportional to the number of gas molecules N:

 V ∝ N (constant P, T)  (13-19)

(A constant number of gas molecules was assumed in the statements of Boyle’s, Gay-
Lussac’s, and Charles’s laws.)

One equation combines all four of these gas laws—the ideal gas law:

Open end
Patm

Flexible tube

Fixed
reference
level

Pgas Δh

Figure 13.11 A constant 
volume gas thermometer. A 
dilute gas is contained in the 
vessel on the left, which is con-
nected to a mercury manome-
ter. The right side can be 
moved up or down to keep the 
mercury level on the left at a 
fixed level, so the volume of 
gas is kept constant. Then the 
manometer is used to measure 
the pressure of the gas:  
Pgas = Patm + ρg Δh.

Ideal gas law (microscopic form)

 PV = NkBT (N = number of molecules)  (13-20)

In the ideal gas law, T stands for absolute temperature (in K) and P stands for abso-
lute (not gauge) pressure. The constant of proportionality is a universal quantity 
known as Boltzmann’s constant (symbol kB); its value is

 kB = 1.38 × 10−23 J/K (13-21)
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The macroscopic form of the ideal gas law is written in terms of n, the number 
of moles of the gas, in place of N, the number of molecules. Substituting

 N = nNA (13-22)

into the microscopic form yields

 PV = nNAkBT  (13-23)

The product of NA and kB is called the universal gas constant:

 R = NAkB = 8.31 
J/K
mol

 (13-24)

Then the ideal gas law in macroscopic form is written

Ideal gas law (macroscopic form)

 PV = nRT (n = number of moles)  (13-25)

Problem-Solving Tips for the Ideal Gas Law

∙ In most problems, some change occurs; decide which of the four quantities 
(P, V, N or n, and T) remain constant during the change.

∙ Use the microscopic form if the problem deals with the number of mole-
cules and the macroscopic form if the problem deals with the number of 
moles.

∙ Use subscripts (i and f) to distinguish initial and final values.
∙ Work in terms of ratios so that constant factors cancel out.
∙ Write out the units when doing calculations.
∙ Remember that P stands for absolute pressure (not gauge pressure) and T 

stands for absolute temperature (in kelvins, not °C or °F).

CHECKPOINT 13.5

Two	 containers	 with	 the	 same	 volume	 are	 filled	 with	 two	 different	 gases.	 The	
pressure	of	the	two	gases	is	the	same.	(a)	Must	their	temperatures	be	the same?	
Explain.	(b)	 If	their	temperatures	are	the	same,	must	they	have	the	same	num-
ber	density?	The	same	mass	density?

Example 13.5

Temperature of the Air in a Tire

Before starting out on a long drive, you check the air in 
your tires to make sure they are properly inflated. The pres-
sure gauge reads 31.0 lb/in2 (214 kPa), and the tempera-
ture is 15°C. After a few hours of highway driving, you 
stop and check the pressure again. Now the gauge reads 
35.0 lb/in2 (241 kPa). What is the temperature of the air in 
the tires now?

Strategy We treat the air in the tire as an ideal gas. We 
must work with absolute temperatures and absolute pres-
sures when using the ideal gas law. The pressure gauge reads 
gauge pressure; to get absolute pressure we add 1 atm = 
101 kPa. We don’t know the number of molecules inside the 
tire or the volume, but we can reasonably assume that neither 
changes. The number is constant as long as the tire does not 

continued on next page
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Example 13.5 continued

leak. The volume may actually change a bit as the tire warms 
up and expands, but this change is small. Since N and V are 
constant, we can rewrite the ideal gas law as a proportional-
ity between P and T.

Solution First convert the initial and final gauge pressures 
to absolute pressures:

 Pi = 214 kPa + 101 kPa = 315 kPa

 Pf = 241 kPa + 101 kPa = 342 kPa

Now convert the initial temperature to an absolute 
 temperature:

Ti = 15°C + 273 K = 288 K

According to the ideal gas law, pressure is proportional to 
temperature, so

Tf

Ti
=

Pf

Pi
=

342 kPa
315 kPa

Then

Tf =
Pf

Pi
 Ti =

342
315

× 288 K = 313 K

Now convert back to °C:

313 K − 273 K = 40°C

Discussion The final answer of 40°C seems reasonable 
since, after a long drive, the tires are noticeably warm, but 
not hot enough to burn your hand.

It is often most convenient to work with the ideal gas 
law by setting up a proportion. In this problem, we did not 
know the volume or the number of molecules, so we had no 
choice. In essence, what we used was Gay-Lussac’s law. 
Starting with the ideal gas law, we can “rederive” Gay- 
Lussac’s law or Charles’s law or any other proportionality 
inherent in the ideal gas law.

Practice Problem 13.5 Air Pressure in the Tire  
After the Temperature Decreases

Suppose you now (unwisely) decide to bleed air from the 
tires, since the manufacturer suggests keeping the pressure 
between 28 lb/in2 and 32 lb/in2 (The manufacturer’s speci-
fication refers to when the tires are “cold.”) If you let out 
enough air so that the pressure returns to 31 lb/in2, what 
percentage of the air molecules did you let out of the tires? 
What is the gauge pressure after the tires cool back down 
to 15°C?

EVERYDAY PHYSICS DEMO

The	 next	 time	 you	 take	 a	 car	 trip,	 check	 the	 tire	 pressure	with	 a	 gauge	 just	
before	 the	 trip	and	 then	again	after	 an	hour	or	more	of	 highway	driving.	Cal-
culate	 the	 temperature	of	 the	air	 in	 the	 tires	 from	the	 two	pressure	 readings	
and	the	initial	temperature.	Feel	the	tire	with	your	hand	to	see	if	your	calcula-
tion	 is	 reasonable.

Example 13.6

Scuba Diver

 A scuba diver 
needs air delivered at a 
pressure equal to the 
pressure of the sur-
rounding water—the 
pressure in the lungs 
must match the water 
pressure on the diver’s 
body to prevent the lungs from collapsing. Since the pressure in 
the air tank is much higher, a regulator delivers air to the diver 

at the appropriate  pressure. The compressed air in a diver’s tank 
lasts 80 min at the water’s surface. About how long does the 
same tank last at a depth of 30 m under water? (Assume that the 
volume of air breathed per minute does not change and ignore 
the small quantity of air left in the tank when it is “empty.”)

Strategy The compressed air in the tank is at a pressure 
much higher than the pressure at which the diver breathes, 
whether at the surface or at 30 m depth. The constant quan-
tity is N, the number of gas molecules in the tank. We also 

continued on next page
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13.6 KINETIC THEORY OF THE IDEAL GAS

In a gas, the interaction between two molecules weakens rapidly as the distance 
between the molecules increases. In a dilute gas, the average distance between gas 
molecules is large enough that we can ignore interactions between the molecules 
except when they collide. In addition, the volume of space occupied by the molecules 
themselves is a small fraction of the total volume of the gas—the gas is mostly “empty 
space.” The ideal gas is a simplified model of a dilute gas in which we think of the 
molecules as pointlike classical particles that move independently in free space with 
no interactions except for elastic collisions.

This simplified model is a good approximation for many gases under ordinary 
conditions. Many properties of gases can be understood from this model; the micro-
scopic theory based on it is called the kinetic theory of the ideal gas.

Microscopic Basis of Pressure

The force that a gas exerts on a surface is due to collisions that the gas molecules 
make with that surface. For instance, think of the air inside an automobile tire. When-
ever an air molecule collides with the inner tire surface, the tire exerts an inward force 
to turn the air molecule around and return it to the bulk of the gas. By Newton’s third 
law, the gas molecule exerts an outward force on the tire surface. The net force per 
unit area on the inside of the tire due to all the collisions of the many air molecules 
is equal to the air pressure in the tire. The pressure depends on three things: how 
many molecules there are, how often each one collides with the wall, and the momen-
tum transfer due to each collision.

We want to find out how the pressure of an ideal gas is determined by the motions 
of the gas molecules. To simplify the discussion, consider a gas contained in a box of 
length L and side area A (Fig. 13.12a)—the result does not depend on the shape of the 

Example 13.6 continued

assume that the temperature of the gas remains the same; it 
may change slightly, but much less than the pressure or 
 volume.

Solution Since N and T are constant,

PV = constant

or

P ∝ 1/V

The pressure at the surface is (approximately) 1 atm, while 
the pressure at 30 m under water is

P = 1 atm + ρgh

ρgh = 1000 kg/m3 × 9.8 m/s2 × 30 m = 294 kPa ≈ 3 atm

Therefore, at a depth of 30 m,

P ≈ 4 atm

To match the pressure of the surrounding water, the pressure 
of the compressed air is four times larger at a depth of 30 m; 
then the volume of air is one fourth what it was at the  surface. 

The diver breathes the same volume per minute, so the tank 
will last one fourth as long: 20 min.

Discussion To do the same thing a bit more formally, we 
could write:

PiVi = PfVf

After setting Pi = 1 atm and Pf = 4 atm, we find that 
Vf 

/Vi = 1
4.

In this problem, the only numerical values given (indi-
rectly) were the initial and final pressures. Assuming that N 
and T remain constant, we then can find the ratio of the final 
and initial volumes. Whenever there seems to be insufficient 
numerical information given in a problem, think in terms of 
ratios and look for constants that cancel out.

Practice Problem 13.6 Pressure in the Air Tank 
 After the Temperature Increases

A tank of compressed air is at an absolute pressure of 
580 kPa at a temperature of 300.0 K. The temperature in-
creases to 330.0 K. What is the pressure in the tank now?
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container. Figure 13.12b shows a gas molecule about to collide with the rightmost wall 
of the container. For simplicity, we assume that the collision is elastic; a more advanced 
analysis shows that the result is correct even though not all collisions are elastic.

For an elastic collision, the x-component of the molecule’s momentum is reversed 
in direction since the wall is much more massive than the molecule. Since the gas 
exerts only an outward force on the wall (a static fluid exerts no tangential force on 
a boundary), the y- and z-components of the molecule’s momentum are unchanged. 
Thus, the molecule’s momentum change is Δpx = 2m∣vx∣.

When does this molecule next collide with the same wall? Ignoring for now col-
lisions with other molecules, its x-component of velocity never changes magnitude—
only the sign of vx changes when it reverses direction (Fig. 13.12c). The time it takes 
the molecule to travel the length L of the container and hit the other wall is L/∣vx∣. 
Then the round-trip time is

 Δt = 2 

L

∣vx∣
 (13-26)

The average force exerted by the molecule on the wall is the change in momentum 
(Fig. 13.12d) divided by the time for one complete round-trip:

 Fav,x =
Δpx

Δt
=

2m∣vx∣
2L/∣vx∣

=
m∣vx∣2

L
=

mv2
x

L
 (13-27)

The total force on the wall is the sum of the forces due to each molecule in the 
gas. If there are N molecules in the gas, we can simply multiply N by the average 
force due to one molecule to get the total force on the wall. To represent such an 
average, we use angle brackets ⟨ ⟩; the quantity inside the brackets is averaged over 
all the molecules in the gas.

 F = N ⟨Fav⟩ =
Nm

L
 ⟨v2

x⟩ (13-28)

The pressure is then

 P =
F

A
=

Nm

AL
 ⟨v2

x⟩ =
Nm

V
 ⟨v2

x⟩ (13-29)

where V = AL is the volume of the box. Eq. (13-29) is correct regardless of the shape 
of the container enclosing the gas. Since we end up averaging over all the molecules 
in the gas, the simplifying assumption about no collisions with other molecules does 
not affect the result.

The product m⟨v2
x⟩ suggests kinetic energy. It certainly makes sense that if the 

average kinetic energy of the gas molecules is larger, the pressure is higher. The aver-
age translational kinetic energy of a molecule in the gas is ⟨Ktr⟩ = 1

2 m⟨v2⟩. For any 
gas molecule, v2 = v2

x + v2
y + v2

z , since velocity is a vector quantity. The gas as a whole 

After molecule
hits the wall

Before molecule
hits the wall of
area A

vy

vx

x

vy

–vx

(a)

L
A

(b) (c) (d)

vi

vf
p

pf–pi

Δ `

Figure 13.12 (a) Gas mole-
cules confined to a container of 
length L and area A. (b) A mol-
ecule is about to collide with 
the wall of area A. (c) After an 
elastic collision, vx has changed 
sign, while vy and vz are 
unchanged. (d) The change in 
momentum due to the collision 
has magnitude 2∣px∣ and is per-
pendicular to the wall.

CONNECTION:

We are using the principle 
that force is the rate of change 
of momentum (Newton’s 
 second law) to draw a conclu-
sion about pressure in a gas.
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is at rest, so there is no preferred direction of motion. Then the average value of v2
x  

must be the same as the averages of v2
y  and v2

z , so

 ⟨v2
x⟩ =

1
3

 ⟨v2⟩ (13-30)

Therefore,

 m⟨v2
x⟩ =

1
3

 m⟨v2⟩ =
2
3

 ⟨Ktr⟩ (13-31)

Substituting this into Eq. (13-29), we find the pressure is

 P =
2
3

 (
N⟨Ktr⟩

V ) =
2
3(

N

V)⟨Ktr⟩ (13-32)

 ⟨Ktr⟩ =
3
2

 kBT  (13-35)

Equation (13-32) is written with the variables grouped in two different ways to 
give two different insights. The first grouping says that pressure is proportional to the 
kinetic energy density (the kinetic energy per unit volume). The second says that 
pressure is proportional to the product of the number density N/V and the average 
molecular kinetic energy. The pressure of a gas increases if either the gas molecules 
are packed closer together or if the molecules have more kinetic energy.

Note that ⟨Ktr⟩ is the average translational kinetic energy of a gas molecule and 
v is the cm speed of a molecule. A gas molecule with more than one atom (such as 
N2) has vibrational and rotational kinetic energy in addition to its translational kinetic 
energy Ktr, but Eq. (13-32) still holds.

What about the assumption that the gas molecules never collide with each other? 
It certainly is not true that the same molecule returns to collide with the same wall 
at a fixed time interval and has the same vx each time it returns! However, the deriva-
tion really only relies on average quantities. In a gas at equilibrium, an average quan-
tity like ⟨v2

x⟩ remains unchanged even though any one particular molecule changes its 
velocity components as a result of each collision.

Temperature and Translational Kinetic Energy

The temperature of an ideal gas has a direct physical interpretation that we can 
now bring to light. We found that in an ideal gas, the pressure, volume, and num-
ber of molecules are related to the average translational kinetic energy of the gas 
molecules:

 P =
2
3

 

N

V
 ⟨Ktr⟩ (13-32)

Solving for the average kinetic energy, we find

 ⟨Ktr⟩ =
3
2

 

PV

N
 (13-33)

By rearranging the ideal gas law [Eq. (13-20)], we find that P, V, and N occur in the 
same combination as in Eq. (13-33):

 
PV

N
= kBT  (13-34)

Then by substituting kBT for (PV)/N in Eq. (13-33), we find that
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Therefore, the absolute temperature of an ideal gas is proportional to the average 
translational kinetic energy of the gas molecules. Temperature then is a way to 
describe the average translational kinetic energy of the gas molecules. At higher tem-
peratures, the gas molecules have (on average) greater kinetic energy.

CHECKPOINT 13.6

At	what	 temperature	 in	°C	do	molecules	of	O2	have	 twice	 the	average	 transla-
tional	 kinetic	energy	 that	molecules	of	H2	have	at	20°C?

RMS Speed The speed of a gas molecule that has the average kinetic energy is 
called the rms (root mean square) speed. The rms speed is not the same as the aver-
age speed. Instead, the rms speed is the square root of the mean (average) of the speed 
squared. Since

 ⟨Ktr⟩ =
1
2

 m⟨v2⟩ =
1
2 

 mv2
rms (13-36)

the rms speed is
 vrms = √⟨v2⟩ (13-37)

Squaring before averaging emphasizes the effect of the faster-moving molecules, so 
the rms speed is a bit higher than the average speed—about 9% higher as it turns out.

Since the average kinetic energy of molecules in an ideal gas depends only on 
temperature, Eq. (13-36) implies that more massive molecules move more slowly on 
average than lighter ones at the same temperature. If two different gases are placed 
in a single chamber so that they reach thermal equilibrium and are at the same tem-
perature, their molecules must have the same average translational kinetic energies. If 
one gas has molecules of larger mass, its molecules must move with a slower average 
velocity than those of the gas with the lighter mass molecules. In Problem 71, you 
can show that

 vrms = √
3kBT

m
 (13-38)

where m is the mass of a molecule. Therefore, at a given temperature, the rms speed 
is inversely proportional to the square root of the mass of the molecule.

Example 13.7

O2 Molecules at Room Temperature

Find the average translational kinetic energy and the rms 
speed of the O2 molecules in air at room temperature (20°C).

Strategy The average translational kinetic energy depends 
only on temperature. We must remember to use absolute 
temperature. The rms speed is the speed of a molecule that 
has the average kinetic energy.

Solution The absolute temperature is

20°C + 273 K = 293 K

Therefore, the average translational kinetic energy is

 ⟨Ktr⟩ =
3
2

 kBT

 = 1.50 × 1.38 × 10−23 J/K × 293 K
 = 6.07 × 10−21 J

From the periodic table, we find the atomic mass of 
oxygen to be 16.0 u; the molecular mass of O2 is twice that 
(32.0 u). First we convert that to kg:

32.0 u × 1.66 × 10−27 kg/u = 5.31 × 10−26 kg
continued on next page
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Maxwell-Boltzmann Distribution

So far we have considered only the average kinetic energy and rms speed of a molecule. 
Sometimes we may want to know more: how many molecules have speeds in a certain 
range? The distribution of speeds is called the Maxwell-Boltzmann distribution. The 
distribution for oxygen at two different temperatures is shown in Fig. 13.13. The inter-
pretation of the graphs is that the number of gas molecules having speeds between any 
two values v1 and v2 is proportional to the area under the curve between v1 and v2. In 
Fig. 13.13, the shaded areas represent the number of oxygen molecules having speeds 
above 800 m/s at the two selected temperatures. A relatively small temperature change 
has a significant effect on the number of gas molecules with high speeds.

Any given molecule changes its kinetic energy often—at each collision, which means 
billions of times per second. However, the total number of gas molecules in a given 
kinetic energy range in the gas stays the same, as long as the temperature is constant. In 
fact, it is the frequent collisions that maintain the stability of the Maxwell-Boltzmann 
distribution. The collisions keep the kinetic energy distributed among the gas molecules 
in the most disordered way possible, which is the Maxwell-Boltzmann distribution.

Application of the Maxwell-Boltzmann Distribution: Composition of Planetary 
Atmospheres The Maxwell-Boltzmann distribution helps us understand planetary 
atmospheres. Why does Earth’s atmosphere contain nitrogen, oxygen, and water vapor, 
among other gases, but not hydrogen or helium, which are by far the most common 
elements in the universe? Molecules in the upper atmosphere that are moving faster 

Example 13.7 continued

The rms speed is the speed of a molecule with the aver-
age kinetic energy:

⟨Ktr⟩ =
1
2

 mv2
rms

vrms = √
2⟨Ktr⟩

m
= √

2 × 6.07 × 10−21 J
5.31 × 10−26 kg

= 478 m/s

Discussion How can we decide if the result is reasonable, 
since we have no first-hand experience watching molecules 
bounce around? Recall from Chapter 12 that the speed of 

sound in air at room temperature is 343 m/s. Since sound 
waves in air propagate by the collisions that occur between 
air molecules, the speed of sound must be of the same order 
of magnitude as the average speeds of the molecules.

Practice Problem 13.7 CO2 Molecules at Room 
Temperature

Find the average translational kinetic energy and the rms 
speed of the CO2 molecules in air at room temperature 
(20°C).
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Figure 13.13 The probability 
distribution of kinetic energies 
in oxygen at two temperatures: 
−10°C (263 K) and +30°C 
(303 K). The area under either 
curve for any range of speeds is 
proportional to the number of 
molecules whose speeds lie in 
that range. Despite the relatively 
small difference in rms speeds 
(453 m/s at 263 K and 486 m/s 
at 303 K), the fraction of mol-
ecules in the high-speed tail is 
quite different.
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than the escape speed (see Example 6.8) have enough kinetic energy to escape from 
the planetary atmosphere to outer space. Those that are heading away from the plan-
et’s surface will escape if they avoid colliding with another molecule. The high-energy 
tail of the Maxwell-Boltzmann distribution does not get depleted by molecules that 
escape. Other molecules will get boosted to those high kinetic energies as a result of 
collisions; these replacements will in turn also escape. Thus, the atmosphere gradually 
leaks away.

How fast the atmosphere leaks away depends on how far the rms speed is from 
the escape speed. If the rms speed is too small compared with the escape speed, the 
time for all the gas molecules to escape is so long that the gas is present in the atmo-
sphere indefinitely. This is the case for nitrogen, oxygen, and water vapor in Earth’s 
atmosphere. On the other hand, since hydrogen and helium are much less massive, 
their rms speeds are higher. Though only a tiny fraction of the molecules are above 
the escape speed, the fraction is sufficient for these gases to escape quickly from 
Earth’s atmosphere (Fig. 13.14). The Moon is often said to lack an atmosphere. The 
Moon’s low escape speed (2400 m/s) allows most gases to escape, but it does have 
an atmosphere about 1 cm tall composed of krypton (a gas with molecular mass 83.8 u, 
about 2.6 times that of oxygen).

13.7 TEMPERATURE AND REACTION RATES

What we have learned about the distribution of kinetic energies and its relationship 
to temperature has a great relevance to the dependence of chemical reaction rates on 
temperature. Imagine a mixture of two gases, N2 and O2, which can react to form 
nitric oxide (NO):

N2 + O2 → 2NO

In order for the reaction to occur, a molecule of nitrogen must collide with a 
molecule of oxygen. But the reaction does not occur every time such a collision takes 
place. The reactant molecules must possess enough kinetic energy to initiate the reac-
tion, because the reaction involves the rearrangement of chemical bonds between 
atoms. Some chemical bonds must be broken before new ones form; the energy to 
break these bonds must come from the energy of the reactants. (Note in this reaction 
that energy must be supplied to break a bond. Forming a bond releases energy.) The 
minimum kinetic energy of the reactant molecules that allows the reaction to proceed 
is called the activation energy (Ea).

If a molecule of N2 collides with one of O2, but their total kinetic energy is less 
than the activation energy, then the two just bounce off each other. Some energy may 
be transferred from one molecule to the other, or converted between translational, 
rotational, and vibrational energy, but we are still left with one molecule of N2 and 
one of O2.

Now we begin to see why, with few exceptions, rates of reaction increase with 
temperature. At higher temperatures, the average kinetic energy of the reactants is 
higher and therefore a greater fraction of the collisions have total kinetic energies 
exceeding the activation energy. If the activation energy is much greater than the 
average translational kinetic energy of the reactants,

 Ea ≫
3
2

 kBT  (13-39)

then the only candidates for reaction are molecules far off in the exponentially decay-
ing, high-energy tail of the Maxwell-Boltzmann distribution. In this situation, a small 
increase in temperature can have a dramatic effect on the reaction rate: the reaction 
rate R depends exponentially on temperature.

 R ∝ e−Ea/(kBT) (13-40)
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Figure 13.14 Maxwell-
Boltzmann distributions for 
oxygen and hydrogen at  
T = 300 K. Escape speed from 
Earth is 11 200 m/s (not shown 
on the graph).

CONNECTION:

The basic principle behind 
escape speed is conservation 
of energy (see Chapter 6). At 
the escape speed, an atom or 
molecule has just enough 
 kinetic energy to escape the 
planet’s gravitational pull.
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(See Section A.4 for a review of exponents and logarithm.) Although we have discussed 
reactions in terms of gases, the same general principles apply to reactions in liquid 
solutions. The temperature determines what fraction of the collisions have enough 
energy to react, so reaction rates are temperature-dependent whether the reaction occurs 
in a gas mixture or a liquid solution.

Example 13.8

Increase in Reaction Rate with Temperature 
Increase

The activation energy for the reaction N2O → N2 + O is  
4.0 × 10−19 J. By what percentage does the reaction rate 
 increase if the temperature is increased from 700.0 K to 
707.0 K (a 1% increase in absolute temperature)?

Strategy We should first check that Ea ≫ 3
2 kBT ; other-

wise, Eq. (13-40) does not apply. Assuming that checks 
out, we can set up a ratio of the reaction rates at the two 
temperatures.

Solution Start by calculating Ea/(kBT1), where T1 = 700.0 K:

Ea

kBT1
=

4.0 × 10−19 J
1.38 × 10−23 J/K × 700.0 K

= 41.41

So Ea is about 41 times kBT, or about 28 times 3
2 kBT . The acti-

vation energy is much greater than the average kinetic en-
ergy; thus, only a small fraction of the collisions might cause 
a reaction to occur.

At T2 = 707.0 K,

Ea

kBT2
=

4.0 × 10−19 J
1.38 × 10−23 J/K × 707.0 K

=
41.41
1.01

= 41.00

The ratio of the reaction rates is

R2

R1
=

e−41.00

e−41.41 = e−(41.00−41.41) = e0.41 = 1.5

The reaction rate at 707.0 K is 1.5 times the rate at 
700.0 K—a 50% increase in reaction rate for a 1% increase 
in temperature!

Discussion Normally we might suspect an error when a 
1% change in one quantity causes a 50% change in another! 
However, this problem illustrates the dramatic effect of an 
exponential dependence. Reaction rates can be extremely 
sensitive to small temperature changes.

Note that we have been careful to set up this problem as a 
ratio of the two reaction rates. We don’t have enough information 
to calculate either of the rates, but Eq. (13–40)—which is written 
as a proportionality, not an equation—lets us find the ratio of two 
rates when the only thing that differs is the temperature.

Practice Problem 13.8 Decrease in Reaction Rate 
for Lower Temperature

What is the percentage decrease in the rate of the same reac-
tion if the temperature is lowered from 700.0 K to 699.0 K?

Application: Requlation of Body Temperature At the beginning of this chapter, 
we asked about the necessity for temperature regulation in homeotherms (Fig. 13.15). 
The temperature dependence of chemical reaction rates has a profound effect on bio-
logical functions. If our internal temperatures varied, we would have a varying meta-
bolic rate, becoming sluggish in cold weather.

By maintaining a constant body temperature higher than that of the environment, 
homeotherms are able to tolerate a wider range of environmental temperatures than 
poikilotherms (e.g., reptiles and insects). Temperature fluctuation in the environment 
is much more severe on land than in water; thus, land animals are more likely to be 
homeothermic than aquatic animals. Keeping muscles at their optimal temperatures 
contributes to the much larger effort required to move around on land or in the air as 
opposed to moving through water. Keeping the muscles and vital organs warm allows 
the high level of aerobic metabolism needed to sustain intense physical activity.

Poikilotherms depend mostly on the environment for temperature regulation. As 
a crocodile’s blood temperature goes down in cold weather, the crocodile becomes 
inactive and lethargic. Thus, we see a crocodile lying on a rock heated by the Sun in 
an attempt to keep warm.
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However, if environmental conditions become too extreme, it may be difficult for 
homeotherms to maintain ideal body temperature. Hypothermia occurs when the cen-
tral core of the body becomes too cold; bodily processes slow and eventually cease. 
People caught outside in blizzards are urged to stay awake and to keep moving; the 
metabolic rate during strenuous exercise may be up to 20 times that of the resting 
body, which can compensate for heat loss in extreme cold.

Homeotherms must consume much more food than poikilotherms of a similar 
size; metabolic processes in homeotherms act like a furnace to keep the body warm. 
A human must consume about 6 MJ of food energy per day just to keep warm when 
resting at 20°C; an alligator of similar body mass needs only about 0.3 MJ/day at rest 
at 20°C.

13.8 DIFFUSION

Mean Free Path How far does a gas molecule move, on average, between collisions? 
The mean (average) length of the path traveled by a gas molecule as a free particle 
(no interactions with other particles) is called the mean free path (Λ, the Greek 
capital lambda). The mean free path depends on two things: the diameter d of each 
molecule and their number density. A detailed calculation yields

Figure 13.15 Warm-blooded animals use different strategies to maintain a constant body temperature. (a) The fur of 
an Arctic fox serves as a layer of insulation to help it stay warm. (b) Dogs pant and (c) people sweat when their bodies 
are in danger of overheating. In cases (b) and (c), the evaporation of water has a cooling effect on the body.
(a): ©Robert Marien/Getty Images; (b): ©dezy/Shutterstock; (c): ©Brand X Pictures/PunchStock

(a) (b) (c)

Mean free path in a gas

 Λ =
1

√2 πd2(N/V)
 (13-41)

Typically the mean free path is much larger than the average distance between 
neighboring molecules. Nitrogen molecules in air at room temperature have mean free 
paths of about 0.1 μm, which is about 25 times the average distance between  molecules. 
Each molecule collides an average of 5 × 109 times per second.
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Diffusion

A gas molecule moves in a straight line between collisions—the effect of gravity on 
the velocity of the molecule is negligible during a time interval of only 0.2 ns. At each 
collision, both the speed and direction of the molecule’s motion change. The mean free 
path tells us the average length of the molecule’s straight line paths between collisions. 
The result is that a given molecule follows a random walk trajectory (Fig. 13.16).

After an elapsed time t, how far on average has a molecule moved from its initial 
position? The answer to this question is relevant when we consider diffusion. Someone 
across the room opens a bottle of perfume: how long until the scent reaches you? As 
gas molecules diffuse into the air, the frequent collisions are what determine how long 
it takes the scent to travel across the room (assuming, as we do here, that there are no 
air currents). When there is a difference in concentrations between different points in 
a gas, the random thermal motion of the molecules tends to even out the concentrations 
(other things being equal). The net flow from regions of high concentration (near the 
perfume bottle) to regions of lower concentration (across the room) is diffusion.

Consider a molecule of perfume in the air. It has a mean free path Λ. After a large 
number of collisions N, it has traveled a total distance NA. However, its displacement 
from its original position is much less than that, since at each collision it changes direc-
tion. It can be shown using statistical analysis of the random walk that the rms magnitude 
of its displacement after N collisions is proportional to √N . Since the number of colli-
sions is proportional to the elapsed time, the rms displacement is proportional to √t.

The root mean squared displacement in one direction is

 xrms = √2Dt (13-42)

where D is a diffusion constant such as those given in Table 13.4. The diffusion 
constant D depends on the molecule or atom that is diffusing and the medium through 
which it is moving. Equation (13-42) applies to diffusion in liquids as well as in gases, 
but the diffusion constants for liquids are much smaller than for gases.

Application: Diffusion of Oxygen Through Cell Membranes Diffusion is crucial 
in biological processes such as the transport of oxygen. Oxygen molecules diffuse 
from the air in the lungs through the walls of the alveoli and then through the walls 
of the capillaries to oxygenate the blood. The oxygen is then carried by hemoglobin 
in the blood to various parts of the body, where it again diffuses through capillary 
walls into intercellular fluids and then through cell membranes into cells. Diffusion 
is a slow process over long distances but can be quite effective over short distances—
which is why cell membranes must be thin and capillaries must have small diameters. 
Evolution has seen to it that the capillaries of animals of widely different sizes are 
all about the same size—as small as possible while still allowing blood cells to flow 
through them.

Figure 13.16 Successive 
straight-line paths traveled by a 
molecule between collisions.

Table 13.4 Diffusion Constants at 1 atm and 20°C

Diffusing Molecule Medium  D  (m2/s)

DNA Water 1.3 × 10−12

Oxygen Tissue (cell membrane) 1.8 × 10−11

Hemoglobin Water 6.9 × 10−11

Sucrose (C12H22O11) Water 5.0 × 10−10

Glucose (C6H12O6) Water 6.7 × 10−10

Oxygen Water 1.0 × 10−9

Oxygen Air 1.8 × 10−5

Hydrogen Air 6.4 × 10−5
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Example 13.9

Diffusion Time for Oxygen into Capillaries

 How long on average does it take an oxygen molecule in 
an alveolus to diffuse into the blood? Assume for simplicity 
that the diffusion constant for oxygen passing through the 
two membranes (alveolus and capillary walls) is the same: 
1.8 × 10−11 m2/s. The total thickness of the two membranes 
is 1.2 × 10−8 m.

Strategy Take the x-direction to be through the mem-
branes. Then we want to know how much time elapses until 
xrms = 1.2 × 10−8 m.

Solution Solving Eq. (13-42) for t yields

t =
x2

rms

2D

Now substitute xrms = 1.2 × 10−8 m and D = 1.8 × 10−11 m2/s:

t =
(1.2 × 10−8 m)2

2 × 1.8 × 10−11 m2/s
= 4.0 × 10−6 s

Discussion The time is proportional to the square of the 
membrane thickness. It would take four times as long for an 
oxygen molecule to diffuse through a membrane twice as 
thick. The rapid increase of diffusion time with distance is a 
principal reason why evolution has favored thin membranes 
over thicker ones.

Practice Problem 13.9  Time for Oxygen to Get 
Halfway Through the Membrane

How long on average does it take an oxygen molecule to get 
halfway through the alveolus and capillary wall?

Master the Concepts

 ∙ Temperature is a quantity that determines when objects 
are in thermal equilibrium. The flow of energy that oc-
curs between two objects or systems due to a tempera-
ture difference between them is called heat flow. If heat 
can flow between two objects or systems, the objects or 
systems are said to be in thermal contact. When two 
systems in thermal contact have the same temperature, 
there is no net flow of heat between them; the objects 
are said to be in thermal equilibrium.

 ∙ Zeroth law of thermodynamics: if two objects are each 
in thermal equilibrium with a third object, then the two 
are in thermal equilibrium with each other.

 ∙ The SI unit of temperature is the kelvin (symbol K, 
without a degree sign). The kelvin scale is an absolute 
temperature scale, which means that T = 0 is set to ab-
solute zero.

 ∙ Temperature in °C (TC) and temperature in kelvins (T) 
are related by

 TC = T − 273.15 (13-4)

 ∙ As long as the temperature change is not too great, the 
fractional length change of a solid is proportional to the 
temperature change:

 
ΔL

L0
= α ΔT  (13-5)

  The constant of proportionality α is called the coeffi-
cient of linear expansion of the substance.

L0
ΔL

T > T0
L

T0

 ∙ The fractional change in volume of a solid or liquid is 
also proportional to the temperature change as long as 
the temperature change is not too large:

 
ΔV

V0
= β ΔT  (13-8)

  For solids, the coefficient of volume expansion is three 
times the coefficient of linear expansion: β = 3α.

 ∙ The mole is an SI base unit and is defined as: one mole of 
anything contains the same number of units as there are 
atoms in 12 grams (not kilograms) of carbon-12. This 
number is called Avogadro’s number and has the value

 NA = 6.022 × 1023 mol−1

 ∙ The mass of an atom or molecule is often expressed in 
the atomic mass unit (symbol u). By definition, one 
atom of carbon-12 has a mass of 12 u (exactly).

 1 u = 1.66 × 10−27 kg (13-14)
continued on next page
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  The atomic mass unit is chosen so that the mass of an 
atom or molecule in “u” is numerically the same as the 
molar mass in g/mol.

 ∙ In an ideal gas, the molecules move independently in 
free space with no interactions except when two mole-
cules collide. The ideal gas is a useful model for many 
real gases, provided that the gas is sufficiently dilute. 
The ideal gas law:

 microscopic form: PV = NkBT  (13-20)

 macroscopic form: PV = nRT  (13-25)
  where Boltzmann’s constant and the universal gas 

 constant are

 kB = 1.38 × 10−23 J/K (13-21)

 R = NAkB = 8.31 
J/K
mol

 (13-24)

  In the ideal gas law, P stands for absolute pressure and T 
stands for absolute temperature.

 ∙ The pressure of an ideal gas is proportional to the aver-
age translational kinetic energy of the molecules:

 P =
2
3

 

N

V
  ⟨Ktr⟩ (13-32)

 ∙ The average translational kinetic energy of the mole-
cules is proportional to the absolute temperature:

 ⟨Ktr⟩ =
3
2

 kBT  (13-35)

 ∙ The speed of a gas molecule that has the average kinetic 
energy is called the rms speed:

 ⟨Ktr⟩ =
1
2

 mv2
rms (13-36)

 ∙ The distribution of molecular speeds in an ideal gas is 
called the Maxwell-Boltzmann distribution.

v (m/s)

T = 300 K

Hydrogen

Oxygen

Re
la

tiv
e 

nu
m

be
r o

f m
ol

ec
ul

es

5000 1000 1500 2000 2500

 ∙ If the activation energy for a chemical reaction is 
much greater than the average kinetic energy of the 
reactants, the reaction rate depends exponentially on 
temperature:

 R ∝ e−Ea/(kBT) (13-40)

 ∙ The mean free path (Λ) is the average length of the path 
traveled by a gas molecule as a free particle (no interac-
tions with other particles) between collisions:

 Λ =
1

√2 πd2(N/V)
 (13-41)

 ∙ The root mean square displacement of a diffusing mol-
ecule along the x-axis is

 xrms = √2Dt (13-42)

  where D is a diffusion constant.

Conceptual Questions

 1. Explain why it would be impossible to uniquely define 
the temperature of an object if the zeroth law of thermo-
dynamics were violated.

 2. Why do we call the temperature 0 K “absolute zero”? 
How is 0 K fundamentally different from 0°C or 0°F?

 3. Under what special circumstances can kelvins or  Celsius 
degrees be used interchangeably?

 4. (a) Imagine drawing a circle on the surface of a metal 
plate. When the temperature increases, what happens to 
the size of the circle? (b) Instead of drawing a circle, 
suppose you cut out the circle and then put it back inside 
the hole in the plate. What would happen to the two 
pieces when the temperature increases? Does the hole 
get larger or smaller? Explain.

 5. Why would silver and brass probably not be a good 
choice of metals for a bimetallic strip (leaving aside the 
question of the cost of silver)? (See Table 13.2.)

 6. One way to loosen the lid on a glass jar is to run it under 
hot water. How does that work?

 7. Why must we use absolute temperature (temperature 
in kelvins) in the ideal gas law (PV = NkBT)? Explain 
how using the Celsius scale would give nonsensical 
results.

 8. Natural gas is sold by volume. In the United States, the 
price charged is usually per cubic foot. Given the price 
per cubic foot, what other information would you need 
in order to calculate the price per mole?

 9. What are the SI units of mass density and number den-
sity? If two different gases have the same number den-
sity, do they have the same mass density?

Master the Concepts continued
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 10. Suppose we have two tanks, one containing helium gas 
and the other nitrogen gas. The two gases are at the 
same temperature and pressure. Which has the higher 
number density (or are they equal)? Which has the 
higher mass density (or are they equal)?

 11. The mass of an aluminum atom is 27.0 u. What is the 
mass of one mole of aluminum atoms? (No calculation 
required!)

 12. A Ping-Pong ball that has been dented during hard play 
can often be restored by placing it in hot water. Explain 
why this works.

 13. Why does a helium weather balloon expand as it 
rises into the air? Assume the temperature remains 
constant.

 14. Explain why there is almost no hydrogen (H2) or he-
lium (He) in Earth’s atmosphere, yet both are present 
in Jupiter’s atmosphere. [Hint: Escape velocity from 
Earth is 11.2 km/s and escape velocity from Jupiter is 
60 km/s.]

 15. Explain how it is possible that more than half of the 
molecules in an ideal gas have kinetic energies less than 
the average kinetic energy. Shouldn’t half have less and 
half have more?

 16. In air under ordinary conditions (room temperature 
and atmospheric pressure), the average intermolecu-
lar distance is about 4 nm and the mean free path is 
about 0.1 μm. The diameter of a nitrogen molecule is 
about 0.3 nm. Explain how the mean free path can be 
so much larger than the average distance between 
molecules.

 17. In air under ordinary conditions (room temperature 
and atmospheric pressure), the average intermolecular 
distance is about 4 nm and the mean free path is about 
0.1 μm. The diameter of a nitrogen molecule is about 
0.3 nm. Which two distances should we compare to 
decide that air is dilute and can be treated as an ideal 
gas? Explain.

 18. In air under ordinary conditions (room temperature and 
atmospheric pressure), the average intermolecular dis-
tance is about 4 nm and the mean free path is about 
0.1  μm. The diameter of a nitrogen molecule is about 
0.3 nm. What would it mean if the intermolecular dis-
tance and the molecular diameter were about the same? 
In that case, would it make sense to speak of a mean free 
path? Explain.

 19. Explain how an automobile airbag protects the pas-
senger from injury. Why would the airbag be ineffec-
tive if the gas pressure inside is too low when the 
passenger comes into contact with it? What about if it 
is too high?

 20. It takes longer to hard-boil an egg in Mexico City 
(2200  m above sea level) than it does in Amsterdam 
(parts of which are below sea level). Why? [Hint: At 
higher altitudes, water boils at less than 100°C.]

Multiple-Choice Questions

 1. In a mixed gas such as air, the rms speeds of different 
molecules are

 (a) independent of molecular mass.
 (b) proportional to molecular mass.
 (c) inversely proportional to molecular mass.
 (d) proportional to √molecular mass.
 (e) inversely proportional to √molecular mass.
 2. The average kinetic energy of the molecules in a sample 

of an ideal gas increases with the volume remaining 
constant. Which of these statements must be true?

 (a)  The pressure increases and the temperature stays the 
same.

 (b) The number density decreases.
 (c)  The temperature increases and the pressure stays the 

same.
 (d) Both the pressure and the temperature increase.
 3. The absolute temperature of an ideal gas is directly pro-

portional to
 (a) the number of molecules in the sample.
 (b) the average momentum of a molecule of the gas.
 (c) the average translational kinetic energy of the gas.
 (d) the diffusion constant of the gas.
 4. Which of these increases the average kinetic energy of 

the molecules in an ideal gas?
 (a) reducing the volume, keeping P and N constant
 (b) increasing the volume, keeping P and N constant
 (c) reducing the volume, keeping T and N constant
 (d) increasing the pressure, keeping T and V constant
 (e) increasing N, keeping V and T constant
 5. The rms speed is the
 (a) speed at which all the gas molecules move.
 (b) speed of a molecule with the average kinetic energy.
 (c) average speed of the gas molecules.
 (d) maximum speed of the gas molecules.
 6. An ideal gas has the volume V0. If the temperature and 

the pressure are each tripled during a process, the new 
volume is

 (a) V0.
 (b) 9V0.

 (c) 3V0.
 (d) 0.33V0.

 7. What are the most favorable conditions for real gases to 
approach ideal behavior?

 (a) high temperature and high pressure
 (b) low temperature and high pressure
 (c) low temperature and low pressure
 (d) high temperature and low pressure
 8. If the temperature of an ideal gas is doubled and the pres-

sure is held constant, the rms speed of the molecules
 (a) remains unchanged.
 (b) is 2 times the original speed.
 (c) is √2 times the original speed.
 (d) is 4 times the original speed.
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 9. The average kinetic energy of a gas molecule can be 
found from which of these quantities?

 (a) pressure only
 (b) number of molecules only
 (c) temperature only
 (d) pressure and temperature are both required
 10. A metal box is heated until each of its sides has ex-

panded by 0.1%. By what percent has the volume of the 
box changed?

 (a) −0.3%   (b) −0.2%  (c) +0.1%
 (d) +0.2%   (e) +0.3%

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

13.2 Temperature Scales
 1. On a warm summer day, the air temperature is 84°F. 

Express this temperature in (a) °C and (b) kelvins.
 2. The temperature at which liquid nitrogen boils (at atmo-

spheric pressure) is 77 K. Express this temperature in 
(a) °C and (b) °F.

 3. (a) At what temperature (if any) does the numerical value 
of the temperature in Celsius degrees equal its numerical 
value in Fahrenheit degrees? (b) At what temperature (if 
any) does the numerical value of the temperature in 
 kelvins equal its numerical value in Fahrenheit degrees?

 4. A room air conditioner causes a temperature change of 
−6.0°C. (a) What is the temperature change in kelvins? 
(b) What is the temperature change in °F?

 5. Aliens from the planet Jeenkah have based their tempera-
ture scale on the boiling and freezing temperatures of 
ethyl alcohol. These temperatures are 78°C and −114°C, 
respectively. The people of Jeenkah have six digits on each 
hand, so they use a base-12 number system and have de-
cided to have 144°J between the freezing and boiling tem-
peratures of ethyl alcohol. They set the freezing point to 
0°J. How would you convert from °J to °C?

13.3 Thermal Expansion of Solids and Liquids
 6. Five slabs with temperature coefficients of expansion α 

have lengths L at Ti = 20°C. Their temperatures then 
rise to Tf. Rank them in order of how much their lengths 
increase, greatest to smallest.

 (a) L = 90 cm, Tf = 40°C, α = 8 × 10−6 K−1 (granite)
 (b) L = 90 cm, Tf = 50°C, α = 8 × 10−6 K−1 (granite)
 (c) L = 60 cm, Tf = 40°C, α = 8 × 10−6 K−1 (granite)
 (d) L = 90 cm, Tf = 40°C, α = 12 × 10−6 K−1 (concrete)
 (e) L = 60 cm, Tf = 50°C, α = 12 × 10−6 K−1 (concrete)

 7. A 2.4 m length of copper pipe extends directly from a 
water heater in a basement to a faucet on the first floor 
of a house. If the faucet isn’t fixed in place, how much 
will it rise when the pipe is heated from 20.0°C to 
90.0°C? Ignore any increase in the size of the faucet it-
self or of the water heater.

 8. Two 35.0 cm metal rods, one made of copper and one 
made of aluminum, are placed end to end, touching each 
other. One end is fixed, so that it cannot move. The rods 
are heated from 0.0°C to 150°C. How far does the other 
end of the system of rods move?

 9. Steel railroad tracks of length 18.30 m are laid at 10.0°C. 
How much space should be left between the track sec-
tions if they are to just touch when the temperature is 
50.0°C?

Cool

18.30 m 10.0°C
?

Warm

50.0°C

 10. A highway is made of concrete slabs that are 15 m long 
at 20.0°C. (a) If the temperature range at the location of 
the highway is from −20.0°C to +40.0°C, what size ex-
pansion gap should be left (at 20.0°C) to prevent buck-
ling of the highway? (b) How large are the gaps at 
−20.0°C?

 11. A lead rod and a common glass rod both have the same 
length when at 20.0°C. The lead rod is heated to 50.0°C. 
To what temperature must the glass rod be heated so 
that they are again at the same length?

 12. The coefficient of linear expansion of brass is  
1.9 × 10−5 °C−1. At 20.0°C, a hole in a sheet of brass has 
an area of 1.00 mm2. How much larger is the area of the 
hole at 30.0°C?

 13. Aluminum rivets used in airplane construction are made 
slightly too large for the rivet holes to be sure of a tight 
fit. The rivets are cooled with dry ice (−78.5°C) before 
they are driven into the holes. If the holes have a diam-
eter of 0.6350 cm at 20.5°C, what should be the diame-
ter of the rivets at 20.5°C if they are to just fit when 
cooled to the temperature of dry ice?

 14. The George Washington Bridge crosses the Hudson 
River between New York and New Jersey. The span of 
the steel bridge is about 1.6 km. If the temperature can 
vary from a low of −15°F in winter to a high of 105°F 
in summer, by how much might the length of the span 
change over an entire year?

 15. The fuselage of an Airbus A340 has a circumference of 
17.72 m on the ground. The circumference increases by 
26 cm when it is in flight. Part of this increase is due to 
the pressure difference between the inside and outside 
of the plane and part is due to the increase in the tem-
perature due to air drag while it is flying along at 
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950 km/h. Suppose we wanted to heat a full-size model 
of the airbus made of aluminum to cause the same in-
crease in circumference without changing the pressure. 
What would be the increase in temperature needed?

 16.  Suppose you have a filling in one of your teeth, and, 
while eating some ice cream, you suddenly realize that 
the filling came out. One of the reasons the filling may 
have become detached from your tooth is the differential 
contraction of the filling relative to the rest of the tooth 
due to the temperature change. (a) Find the change in 
volume for a metallic dental filling due to the difference 
between body temperature (37°C) and the temperature 
of the ice cream you ate (−5°C). The initial volume of 
the filling is 30 mm3, and its expansion coefficient is 
α = 42 × 10−6 K−1. (b) Find the change in volume of the 
cavity. The expansion coefficient of the tooth is α  = 
17 × 10−6 K−1.

 17. A cylindrical brass container with a base of 75.0 cm2 
and height of 20.0 cm is filled to the brim with water 
when the system is at 25.0°C. How much water over-
flows when the temperature of the water and the con-
tainer is raised to 95.0°C?

 18. An ordinary drinking glass is filled to the brim with 
water (268.4 mL) at 2.0°C and placed on the sunny pool 
deck for a swimmer to enjoy. If the temperature of the 
water rises to 32.0°C before the swimmer reaches for 
the glass, how much water will have spilled over the top 
of the glass? Assume the glass does not expand.

 19. Consider the situation described in Problem 18. (a) Take 
into account the expansion of the glass and calculate how 
much water will spill out of the glass. Compare your an-
swer with the case where the expansion of the glass was 
not considered. (b) By what percentage has the answer 
changed when the expansion of the glass is considered?

 20. A steel sphere with radius 1.0010 cm at 22.0°C must 
slip through a brass ring that has an internal radius of 
1.0000 cm at the same temperature. To what tempera-
ture must the brass ring be heated so that the sphere, still 
at 22.0°C, can just slip through?

 21. A square brass plate, 8.00 cm on a side, has a hole cut 
into its center of area 4.908 74 cm2 (at 20.0°C). The hole 
in the plate is to slide over a cylindrical steel shaft of 
cross-sectional area 4.910 00 cm2 (also at 20.0°C). To 
what temperature must the brass plate be heated so that 
it can just slide over the steel cylinder (which remains at 
20.0°C)? [Hint: The steel cylinder is not heated so it 
does not expand; only the brass plate is heated.]

Hole

Brass plate
Steel

cylinder Cylinder

Side viewTop view

Plate

 22. A copper washer is to be fit in place over a steel bolt. 
Both pieces of metal are at 20.0°C. If the diameter of the 
bolt is 1.0000 cm and the inner diameter of the washer 
is 0.9980 cm, to what temperature must the washer be 
raised so it will fit over the bolt? Only the copper washer 
is heated.

 23. Repeat Problem 22, but now the copper washer and the 
steel bolt are both raised to the same temperature. At 
what temperature will the washer fit on the bolt?

0.9980 cm

1.0000 cm

Problems	22	and	23

 24.  A steel rule is calibrated for measuring lengths at 
20.00°C. The rule is used to measure the length of a 
Vycor glass brick; when both are at 20.00°C, the brick 
is found to be 25.00 cm long. If the rule and the brick 
are both at 80.00°C, what would be the length of the 
brick as measured by the rule?

 25.  A flat square of side s0 at temperature T0 expands by 
Δs in both length and width when the temperature in-
creases by ΔT. The original area is s2

0 = A0 and the final 
area is (s0 + Δs)2 = A. Show that if Δs ≪ s0,

  
ΔA

A0
= 2α ΔT  (13-7)

  (Although we derive this relation for a square plate, it 
applies to a flat area of any shape.)

 26.  The volume of a solid cube with side s0 at temperature 
T0 is V0 = s3

0. Show that if Δs ≪ s0, the change in volume 
ΔV due to a change in temperature ΔT is given by

  
ΔV

V0
= 3α ΔT  (13-8, 13-9)

  and therefore that β = 3α. (Although we derive this rela-
tion for a cube, it applies to a solid of any shape.)

13.4 Molecular Picture of a Gas
 27. Use the definition that 1 mol of 12C (carbon-12) atoms has 

a mass of exactly 12 g, along with Avogadro’s number, to 
derive the conversion between atomic mass units and kg.

 28. Find the molar mass of ammonia (NH3).
 29. Find the mass (in kg) of one molecule of CO2.
 30. The mass of 1 mol of 13C (carbon-13) is 13.003 g. 

(a) What is the mass in u of one 13C atom? (b) What is 
the mass in kilograms of one 13C atom?

 31.  Estimate the number of H2O molecules in a human 
body of mass 80.2 kg. Assume that, on average, water 
makes up about 62% of the mass of a human body.
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 32. The mass density of diamond (a crystalline form of car-
bon) is 3500 kg/m3. How many carbon atoms per cubic 
centimeter are there?

 33. How many hydrogen atoms are present in 684.6 g of 
sucrose (C12H22O11)?

 34. How many moles of He are in 13 g of He?
 35. The principal component of natural gas is methane 

(CH4). How many moles of CH4 are present in 144.36 g 
of methane?

 36. What is the mass of one gold atom in kilograms?
 37. Air at room temperature and atmospheric pressure has a 

mass density of 1.2 kg/m3. The average molecular mass 
of air is 29.0 u. How many molecules are in 1.0 cm3 of 
air?

 38. At 0.0°C and 1.00 atm, 1.00 mol of a gas occupies a 
volume of 0.0224 m3. (a) What is the number density? 
(b) Estimate the average distance between the mole-
cules. (c) If the gas is nitrogen (N2), the principal com-
ponent of air, what is the total mass and mass density?

 39. Sand is composed of SiO2. Find the order of magnitude of 
the number of silicon (Si) atoms in a grain of sand. Ap-
proximate the sand grain as a sphere of diameter 0.5 mm 
and an SiO2 molecule as a sphere of diameter 0.5 nm.

13.5 Absolute Temperature and the  
Ideal Gas Law
 40. A flight attendant wants to change the temperature of 

the air in the cabin from 18.0°C to 21.0°C without 
changing the pressure. What fractional change in the 
number of moles of air in the cabin would be required?

 41. A cylinder in a car engine takes Vi = 4.50 × 10−2 m3 of 
air into the chamber at 30°C and at atmospheric pres-
sure. The piston then compresses the air to one-ninth of 
the original volume (0.111 Vi) and to 20.0 times the 
original pressure (20.0 Pi). What is the new temperature 
of the air?

 42. A tire with an inner volume of 0.0250 m3 is filled with 
air at a gauge pressure of 36.0 lb/in2. If the tire valve is 
opened to the atmosphere, what volume outside of the 
tire does the escaping air occupy? Some air remains 
within the tire occupying the original volume, but now 
that remaining air is at atmospheric pressure. Assume 
the temperature of the air does not change.

 43. Six cylinders contain ideal gases (not necessarily the 
same gas) with the properties given (P = pressure,  
V = volume, N = number of molecules). Rank them in 
order of temperature, highest to lowest.

 (a) P = 100 kPa, V = 4 L, N = 6 × 1023

 (b) P = 200 kPa, V = 4 L, N = 6 × 1023

 (c) P = 50 kPa, V = 8 L, N = 6 × 1023

 (d) P = 100 kPa, V = 4 L, N = 3 × 1023

 (e) P = 100 kPa, V = 2 L, N = 3 × 1023

 (f) P = 50 kPa, V = 4 L, N = 3 × 1023

 44. What fraction of the air molecules in a house must be 
pushed outside while the furnace raises the inside tem-
perature from 16.0°C to 20.0°C? The pressure does not 
change since the house is not airtight.

 45.  A patient with emphysema is breathing pure O2 
through a face mask. The cylinder of O2 contains 
0.0170 m3 of O2 gas at a pressure of 15.2 MPa. (a) What 
volume would the oxygen occupy at atmospheric pres-
sure (and the same temperature)? (b) If the patient takes 
in 8.0 L/min of O2 at atmospheric pressure, how long 
will the cylinder last?

 46. Incandescent lightbulbs are filled with an inert gas to 
lengthen the filament life. With the current off (at  
T = 20.0°C), the gas inside a lightbulb has a pressure of 
115 kPa. When the bulb is burning, the temperature rises 
to 70.0°C. What is the pressure at the higher temperature?

 47. What is the mass density of air at P = 1.0 atm and  
T = (a) −10°C and (b) 30°C? The average molecular 
mass of air is approximately 29 u.

 48. A constant volume gas thermometer containing 
 helium is immersed in boiling ammonia (−33°C), and 
the pressure is read once equilibrium is reached. The 
thermometer is then moved to a bath of boiling water 
(100.0°C). After the manometer was adjusted to keep 
the volume of helium constant, by what factor was the 
pressure multiplied?

 49. A hydrogen balloon at Earth’s surface has a volume of 
5.0 m3 on a day when the temperature is 27°C and the 
pressure is 1.00 × 105 N/m2. The balloon rises and ex-
pands as the pressure drops. What would the volume of 
the same number of moles of hydrogen be at an altitude 
of 40 km where the pressure is 0.33 × 103 N/m2 and the 
temperature is −13°C?

 50. An ideal gas that occupies 1.2 m3 at a pressure of  
1.0 × 105 Pa and a temperature of 27°C is compressed to 
a volume of 0.60 m3 and heated to a temperature of 
227°C. What is the new pressure?

 51. In intergalactic space, there is an average of about one 
hydrogen atom per cubic centimeter and the tempera-
ture is 3 K. What is the absolute pressure?

 52. A tank of compressed air of volume 1.0 m3 is pressur-
ized to 20.0 atm at T = 273 K. A valve is opened, and air 
is released until the pressure in the tank is 15.0 atm. 
How many molecules were released?

 53. A mass of 0.532 kg of molecular oxygen is contained in 
a cylinder at a pressure of 1.0 × 105 Pa and a tempera-
ture of 0.0°C. What volume does the gas occupy?

 54. Verify, using the ideal gas law, the assertion in Problem 
38 that 1.00 mol of a gas at 0.0°C and 1.00 atm occupies 
a volume of 0.0224 m3.

 55.  A bubble rises from the bottom of a lake of depth 
80.0 m, where the temperature is 4°C. The water tem-
perature at the surface is 18°C. If the bubble’s initial 
diameter is 1.00 mm, what is its diameter when it 
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reaches the surface? (Ignore the surface tension of wa-
ter. Assume the bubble warms as it rises to the same 
temperature as the water and retains a spherical shape. 
Assume Patm = 1.0 atm.)

 56.  Consider the expansion of an ideal gas at constant 
pressure. The initial temperature is T0 and the initial 
volume is V0. (a) Show that ΔV/V0 = β ΔT, where β =  
1/T0. (b) Compare the coefficient of volume expansion 
β for an ideal gas at 20°C to the values for liquids and 
gases listed in Table 13.3.

13.6 Kinetic Theory of the Ideal Gas
 57. What is the temperature of an ideal gas whose mole-

cules have an average translational kinetic energy of 
3.20 × 10−20 J?

 58. What is the total translational kinetic energy of the gas 
molecules of air at atmospheric pressure that occupies a 
volume of 1.00 L?

 59. What is the kinetic energy per unit volume in an ideal 
gas at (a) P = 1.00 atm and (b) P = 300.0 atm?

 60. Show that, for an ideal gas,

P =
1
3

 ρv2
rms

  where P is the pressure, ρ is the mass density, and vrms is 
the rms speed of the gas molecules.

 61. Rank the six gases of Problem 43 in order of the total 
translational kinetic energy, greatest to least.

 62. What is the total internal kinetic energy of 1.0 mol of an 
ideal gas at 0.0°C and 1.00 atm?

 63. If 2.0 mol of nitrogen gas (N2) are placed in a cubic box, 
25 cm on each side, at 1.6 atm of pressure, what is the 
rms speed of the nitrogen molecules?

 64. There are two identical containers of gas at the same 
temperature and pressure, one containing argon and the 
other neon. What is the ratio of the rms speed of the ar-
gon atoms to that of the neon atoms? The atomic mass 
of argon is twice that of neon.

 65. A smoke particle has a mass of 1.38 × 10−17 kg, and it is 
randomly moving about in thermal equilibrium with 
room temperature air at 27°C. What is the rms speed of 
the particle?

 66. Find the rms speed in air at 0.0°C and 1.00 atm of (a) the 
N2 molecules, (b) the O2 molecules, and (c) the CO2 
molecules.

 67. What are the rms speeds of helium atoms, and nitrogen, 
hydrogen, and oxygen molecules at 25°C?

 68. If the upper atmosphere of Jupiter has a temperature of 
160 K and the escape speed is 60 km/s, would an astro-
naut expect to find much hydrogen there?

 69. What is the temperature of an ideal gas whose mole-
cules in random motion have an average translational 
kinetic energy of 4.60 × 10−20 J?

 70.  On a cold day, you take a breath, inhaling 0.50 L of 
air whose initial temperature is −10°C. In your lungs, its 
temperature is raised to 37°C. Assume that the pressure 
is 101 kPa and that the air may be treated as an ideal gas. 
What is the total change in translational kinetic energy 
of the air you inhaled?

 71.  Show that the rms speed of a molecule in an ideal 
gas at absolute temperature T is given by

  vrms = √
3kBT

m
 (13-38)

  where m is the mass of a molecule.
 72.  Show that the rms speed of a molecule in an ideal 

gas at absolute temperature T is given by

vrms = √
3RT

M

  where M is the molar mass—the mass of the gas per mole.

13.7 Temperature and Reaction Rates
 73.   The reaction rate for the prepupal development of 

male Drosophila is temperature-dependent. Assuming 
that the reaction rate is exponential as in Eq. (13-41), the 
activation energy for this development is 2.81 × 10−19 J. A 
Drosophila is originally at 10.00°C, and its temperature is 
increasing. If the rate of development has increased 3.50%, 
how much has its temperature increased?

 74.   The reaction rate for the hydrolysis of benzoyl-l-
arginine amide by trypsin at 10.0°C is 1.878 times faster 
than that at 5.0°C. Assuming that the reaction rate is ex-
ponential as in Eq. (13-41), what is the activation energy?

 75.  At high altitudes, water boils at a temperature lower 
than 100.0°C due to the lower air pressure. A rule of 
thumb states that the time to hard-boil an egg doubles 
for every 10.0°C drop in temperature. What activation 
energy does this rule imply for the chemical reactions 
that occur when the egg is cooked?

13.8 Diffusion
 76. Estimate the mean free path of a N2 molecule in air at (a) 

sea level (P ≈ 100 kPa and T ≈ 290 K), (b) the top of Mt. 
Everest (altitude = 8.8 km, P ≈ 50 kPa, and T ≈ 230 K), 
and (c) an altitude of 30 km (P ≈ 1 kPa and T ≈ 230 K). 
For simplicity, assume that air is pure nitrogen gas. The 
diameter of a N2 molecule is approximately 0.3 nm.

 77. About how long will it take a perfume molecule to dif-
fuse a distance of 5.00 m in one direction in a room if 
the diffusion constant is 1.00 × 10−5 m2/s? Assume that 
the air is perfectly still—there are no air currents.

 78. Estimate the time it takes a sucrose molecule to move 
5.00 mm in one direction by diffusion in water. Assume 
there are no currents in the water.
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 79. Your friend is 3.0 m away from you in a room. There are 
no significant air currents. She opens a bottle of per-
fume, and you first smell it 20 s later. How long would 
it have taken for you to smell it if she had been 6.0 m 
away instead?

 80.  Platelet cells in blood play an essential role in the 
formation of clots and exist in normal human blood at 
the level of about 200 000 per cubic millimeter. In order 
to illustrate that diffusion alone is not responsible for 
transporting platelets, consider the following situation. 
The diffusion constant for platelets in blood is approxi-
mately 5 × 10−10 m2/s. About how long would it take a 
platelet to diffuse from the center of an artery (diameter 
8.0 mm) to a clot forming on one wall of the artery?

 81.  In plants, water diffuses out through small openings 
known as stomatal pores. If D = 2.4 × 10−5 m2/s for 
water vapor in air, and the length of the pores is 2.5 × 
10−5 m, how long does it take for a water molecule to 
diffuse out through the pore?

Collaborative Problems

 82. Agnes Pockels (1862–1935) was able to determine Avo-
gadro’s number using only a few household chemicals, in 
particular oleic acid, whose formula is C18H34O2. (a) What 
is the molar mass of this acid? (b) The mass of one drop of 
oleic acid is 2.3 × 10−5 g and the volume is 2.6 × 10−5 cm3. 
How many moles of oleic acid are there in one drop? 
(c) When oleic acid is spread out on water, it lines up in a 
layer one molecule thick. If the base of the molecule of 
oleic acid is a square of side d, the height of the molecule 
is known to be 7d. Pockels spread out one drop of oleic 
acid on some water, and measured the area to be 70.0 cm2. 
Using the volume and the area of oleic acid, what is d? 
(d) If we assume that this film is one molecule thick, how 
many molecules of oleic acid are there in the drop? 
(e) What value does this give you for Avogadro’s number?

 83. As a Boeing 747 gains altitude, the passenger cabin is 
pressurized. However, the cabin is not pressurized fully 
to atmospheric (1.01 × 105 Pa), as it would be at sea 
level, but rather pressurized to 7.62 × 104 Pa. Suppose a 
747 takes off from sea level when the temperature in the 
airplane is 25.0°C and the pressure is 1.01 × 105 Pa. 
(a) If the cabin temperature remains at 25.0°C, what is the 
percentage change in the number of moles of air in 
the cabin? (b) If instead, the number of moles of air in the 
cabin does not change, what would the temperature be?

 84.  For divers going to great depths, the composition of 
the air in the tank must be modified. The ideal composi-
tion is to have approximately the same number of O2 
molecules per unit volume as in surface air (to avoid 
oxygen poisoning), and to use helium instead of nitro-
gen for the remainder of the gas (to avoid nitrogen 
 narcosis, which results from nitrogen dissolving in the 

bloodstream). Of the molecules in dry surface air, 78% 
are N2, 21% are O2, and 1% are Ar. (a) How many O2 
molecules per cubic meter are there in surface air at 
20.0°C and 1.00 atm? (b) For a diver going to a depth of 
100.0 m, what percentage of the gas molecules in the 
tank should be O2? (Assume that the density of seawater 
is 1025 kg/m3 and the temperature is 20.0°C.)

 85. If you wanted to make a scale model of air at 0.0°C and 
1.00 atm, using Ping-Pong balls (diameter, 3.75 cm) to 
represent the N2 molecules (diameter, 0.30 nm), (a) how 
far apart on average should the Ping-Pong balls be at 
any instant? (b) How far would a Ping-Pong ball travel 
on average before colliding with another?

Comprehensive Problems

 86. A Pyrex container is filled to the very top with 4.00 L of 
water. Both the container and the water are at a temperature 
of 90.0°C. When the temperature has cooled to 20.0°C, 
how much additional water can be added to the container?

 87. A hot air balloon with a volume of 12.0 m3 is initially filled 
with air at a pressure of 1.00 atm and a temperature of 
19.0°C. When the balloon air is heated, the volume and the 
pressure of the balloon remain constant because the bal-
loon is open to the atmosphere at the bottom. How many 
moles are in the balloon when the air is heated to 40.0°C?

 88. In a certain bimetallic strip (see Fig. 13.7) the brass strip 
is 0.100% longer than the steel strip at a temperature of 
275°C. At what temperature do the two strips have the 
same length?

 89. The driver from Practice Problem 13.3 fills his 18.9 L 
steel gasoline can in the morning when the temperature 
of the can and the gasoline is 15.0°C and the pressure is 
1.0 atm, but this time he remembers to replace the 
tightly fitting cap after filling the can. Assume that the 
can is completely full of gasoline (no air space) and that 
the cap does not leak. The temperature climbs to 30.0°C. 
Ignoring the expansion of the steel can, what would be 
the pressure of the gasoline? The bulk modulus for gas-
oline is 1.00 × 109 N/m2.

 90. An iron bridge girder (Y = 2.0 × 1011 N/m2) is constrained 
between two rock faces whose spacing doesn’t change. At 
20.0°C the girder is relaxed. How large a stress develops 
in the iron if the sun heats the girder to 40.0°C?

 91. Consider the sphere and ring of Problem 20. What must 
the final temperature be if both the ring and the sphere 
are heated to the same final temperature?

 92.  Suppose due to a bad break of your femur, you re-
quire the insertion of a titanium rod to help the fracture 
heal. The coefficient of linear expansion for titanium is 
α = 8.6 × 10−6 K−1, and the length of the rod when it 
is in equilibrium with the leg bone and muscle at 37°C 
is 5.00 cm. How much shorter was the rod at room tem-
perature (20°C)?
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  93. A certain acid has a molecular mass of 63 u. By mass, it 
consists of 1.6% hydrogen, 22.2% nitrogen, and 76.2% 
oxygen. What is the chemical formula for this acid?

  94. The data in the following table are from a constant-
volume gas thermometer experiment. The volume of 
the gas was kept constant, while the temperature was 
changed. The resulting pressure was measured. Plot 
the data on a pressure versus temperature diagram. 
Based on these data, estimate the value of absolute 
zero in Celsius.

T (°C) P (atm)
0 1.00

20 1.07
100 1.37
−33 0.88

−196 0.28

  95.  At a normal body temperature of 37.0°C, (a) what 
is the average kinetic energy of the gas molecules in 
the lungs? (b) If a fever increases the temperature to 
37.8°C, by what percentage does the average kinetic 
energy of the molecules increase?

  96.  The volume of air taken in by a warm-blooded 
vertebrate in the Andes Mountains is 210 L/day at 
standard temperature and pressure (i.e., 0°C and 
1 atm). If the air in the lungs is at 39°C, under a pres-
sure of 450 mm Hg, and we assume that the vertebrate 
takes in an average volume of 100 cm3 per breath at the 
temperature and pressure of its lungs, how many 
breaths does this vertebrate take per day?

  97. An iron cannonball of radius 0.08 m has a cavity of 
radius 0.05 m that is to be filled with gunpowder. If the 
measurements were made at a temperature of 22°C, 
how much extra volume of gunpowder, if any, will be 
required to fill 500 cannonballs when the temperature 
is 30°C?

  98. Ten students take a test and get the following scores: 
83, 62, 81, 77, 68, 92, 88, 83, 72, and 75. What are the 
average value, the rms value, and the most probable 
value, respectively, of these test scores?

  99. A hand pump is being used to inflate a bicycle tire that 
has a gauge pressure of 40.0 lb/in2. If the pump is a 
cylinder of length 18.0 in. with a cross-sectional area 
of 3.00 in.2, how far down must the piston be pushed 
before air will flow into the tire? Assume the air re-
mains at constant temperature.

 100. An ideal gas in a constant-volume gas thermometer 
(Fig. 13.11) is held at a volume of 0.500 L. As the tem-
perature of the gas is increased by 20.0°C, the mercury 
level on the right side of the manometer must rise by 
8.00 mm in order to keep the gas volume constant. 
(a) What is the slope of a graph of P versus T for this gas 
(in mmHg/°C)? (b) How many moles of gas are present?

 101. A cylinder with an interior cross-sectional area of 
70.0 cm2 has a moveable piston of mass 5.40 kg at the 
top that can move up and down without friction. The 
cylinder contains 2.25 × 10−3 mol of an ideal gas at 
23.0°C. (a) What is the volume of the gas when the pis-
ton is in equilibrium? Assume the air pressure outside 
the cylinder is 1.00 atm. (b) By what factor does the 
volume change if the gas temperature is raised to 223.0°C 
and the piston moves until it is again in equilibrium?

 102. Estimate the average distance between molecules in air 
at 0.0°C and 1.00 atm.

 103. Show that, in two gases at the same temperature, the 
rms speeds are inversely proportional to the square 
root of the molecular masses:

(vrms)1

(vrms)2
= √

m2

m1

 104.  The alveoli (see Section 13.8) have an average ra-
dius of 0.125 mm and are approximately spherical. If 
the pressure in the sacs is 1.00 × 105 Pa, and the tem-
perature is 310 K (average body temperature), how 
many air molecules are in an alveolus?

 105.  A 10.0 L vessel contains 12 g of N2 gas at 20°C. 
(a) Estimate the nearest-neighbor distance. (b) Can the 
gas be considered to be dilute? [Hint: Compare the 
nearest-neighbor distance to the diameter of an N2 
molecule, about 0.3 nm.]

 106.  During hibernation, an animal’s metabolism slows 
down, and its body temperature lowers. For example, a 
California ground squirrel’s body temperature lowers 
from 40.0°C to 10.0°C during hibernation. If we assume 
that the air in the squirrel’s lungs is 75.0% N2 and 25.0% 
O2, by how much will the rms speed of the air molecules 
in the lungs have decreased during hibernation?

 107.  A steel ring of inner diameter 7.000 00 cm at 20.0°C 
is to be heated and placed over a brass shaft of outer 
diameter 7.002 00 cm at 20.0°C. (a) To what tempera-
ture must the ring be heated to fit over the shaft? 
The shaft remains at 20.0°C. (b) Once the ring is on the 
shaft and has cooled to 20.0°C, to what temperature 
must the ring plus shaft combination be cooled to allow 
the ring to slide off the shaft again?

 108.  The inner tube of a Pyrex 
glass mercury thermometer has a 
diameter of 0.120 mm. The bulb 
at the bottom of the thermometer 
contains 0.200 cm3 of mercury. 
How far will the thread of mer-
cury move for a change of 
1.00°C? Remember to take into 
account the expansion of the glass.

 109.  A wine barrel has a diameter at its widest point of 
134.460 cm at a temperature of 20.0°C. A circular iron 
band, of diameter 134.448 cm, is to be placed around 

Mercury

0.120 mm

Pyrex
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the barrel at the widest spot. The iron band is 5.00 cm 
wide and 0.500 cm thick. (a) To what temperature 
must the band be heated to be able to fit it over the bar-
rel? (b) Once the band is in place and cools to 20.0°C, 
what will be the tension in the band?

 110.  A bimetallic strip is made from metals with expan-
sion coefficients α1 and α2 (with α2 > α1). The thickness 
of each layer is s. At some temperature T0, the bimetallic 
strip is relaxed and straight. (a) Show that, at tempera-
ture T0 + ΔT, the radius of curvature of the strip is

R ≈
s

(α2 − α1) ΔT

R
ss

T0 T0 + ΔT

θ

R

  [Hint: At T0, the lengths of the two layers are the same. 
At temperature T0 + ΔT, the layers form circular arcs of 
radii R and R + s, which subtend the same angle θ. As-
sume a small ΔT so that α ΔT ≪ 1 (for either value of 
α).] (b) If the layers are made of iron and brass, with s = 
0.1 mm, what is R for ΔT = 20.0°C?

Review and Synthesis

 111. Michael has set the gauge pressure of the tires on his 
car to 36.0 lb/in2. He draws chalk lines around the 
edges of the tires where they touch the driveway sur-
face to measure the area of contact between the tires 
and the ground. Each front tire has a contact area of 
24.0 in.2 and each rear tire has a contact area of 20.0 in.2 
(a) What is the weight (in lb) of the car? (b) The center-
to-center distance between front and rear tires is 7.00 ft. 
Taking the straight line between the centers of the tires 
on the left side (driver’s side) to be the y-axis with the 
origin at the center of the front left tire (positive direc-
tion pointing forward), what is the y-coordinate of the 
car’s cm?

 112.  (a) Calculate Earth’s escape speed—the minimum 
speed needed for an object near the surface to escape 
Earth’s gravitational pull. [Hint: Use conservation of 
energy and ignore air resistance.] (b) Calculate the av-
erage speed of a hydrogen molecule (H2) at 0°C. 
(c) Calculate the average speed of an oxygen molecule 
(O2) at 0°C. (d) Use your answers from parts 
(a)  through (c) along with what you know about the 
distribution of molecular speeds to explain why 
Earth’s atmosphere contains plenty of oxygen but 
 almost no hydrogen.

 113. A long, narrow steel rod of length 2.5000 m at 25°C is 
oscillating as a pendulum about a horizontal axis 
through one end. If the temperature changes to 0°C, 
what will be the fractional change in its period?

 114. A temperature change ΔT causes a volume change ΔV 
but has no effect on the mass of an object. (a) Show 
that the change in density Δρ is given by Δρ = −βρ ΔT. 
(b) Find the fractional change in density (Δρ/ρ) of a 
brass sphere when the temperature changes from 32°C 
to −10.0°C.

 115.  A diver rises quickly to the surface from a 5.0 m 
depth. If she did not exhale the gas from her lungs 
before rising, by what factor would her lungs 
 expand? Assume the temperature to be constant and 
the pressure in the lungs to match the pressure 
 outside the diver’s body. The density of seawater is 
1.03 × 103 kg/m3.

 116.  A scuba diver has an air tank with a volume of 
0.010 m3. The air in the tank is initially at a pressure 
of  1.0 × 107 Pa. Assuming that the diver breathes 
0.500  L/s of air, find how long the tank will last at 
depths of (a) 2.0 m and (b) 20.0 m. (Make the same 
assumptions as in Example 13.6.)

 117. A sealed cylinder contains a sample of ideal gas at a 
pressure of 2.0 atm. The rms speed of the molecules is 
v0. (a) If the rms speed is then reduced to 0.90  v0, what 
is the pressure of the gas? (b) By what percentage does 
the speed of sound in the gas change?

 118.  Estimate the percentage of the O2 molecules in air 
at 30°C that are moving faster than the speed of sound 
in air at that temperature (see Fig. 13.13).

 119. The diameter of an oxygen (O2) molecule is approxi-
mately 0.3 nm. For an oxygen molecule in air at atmo-
spheric pressure and 20°C, estimate the average 
magnitudes of these quantities during a 1.0 s time in-
terval: (a) the distance traveled between collisions with 
other molecules; (b) the number of collisions; (c) the 
total distance traveled; (d) the displacement.

 120.  A 12.0 cm cylindrical chamber has an 8.00 cm 
diameter piston attached to one end. The piston is 
connected to an ideal spring as shown. Initially, the 
gas inside the chamber is at atmospheric pressure 
and 20.0°C and the spring is not compressed. When 
a total of 6.50 × 10−2 mol of gas is added to the 
chamber at 20.0°C, the spring compresses a distance 
of Δx = 5.40 cm. What is the spring constant of the 
spring?

8.00 cm

12.0 cm 5.40 cm
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Answers to Practice Problems

13.1 37.0°C; 310.2 K
13.2 0.60 mm longer; 1.5 mm shorter
13.3 0.26 L
13.4 3.34 × 1028 molecules/m3

13.5 7.9% of the air molecules; 189 kPa (27 lb/in2)
13.6 640 kPa
13.7 ⟨Ktr⟩ = 6.07 × 10−21 J (same as O2) and vrms = 408 m/s 
(lower than that of O2 since the CO2 molecule is more massive)
13.8 6% decrease
13.9 1.0 × 10−6 s

Answers to Checkpoints

13.3 From Table 13.2, α = 12 × 10−6 K−1. The temperature 
change is −50°C = −50 K and the fractional length change 
is ΔL/L0 = α ΔT = −6.0 × 10−4. Then 

ΔL = −6.0 × 10−4 × 150 m = −0.090 m

The tower is 9.0 cm shorter.
13.4 (a) The molar mass is 44.0 g/mol, so one CO2 molecule 
has a mass of 44.0 u. (b) 3.00 mol of CO2 have a mass of 
(3.00 mol) × (44.0 g/mol) = 132 g.
13.5 (a) The temperatures do not have to be the same, 
because they could have different numbers of molecules 
(N) or moles (n). (b) If the temperatures are the same, then 
they have the same number of molecules, so they have the 
same number density N/V. They would have the same mass 
density only if their molar masses are the same.
13.6 The average translational kinetic energy of an ideal gas 
depends only on absolute temperature. The H2 is at 20°C = 
293 K, so to have twice the translational kinetic energy, the 
O2 must be at 2 × 293 K = 586 K = 313°C.
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The	weather	forecast	predicts	a	late	spring	hard	freeze	one	night;	the	
temperature	 is	 to	 fall	 several	degrees	below	0°C	and	 the	apple	crop	
is	in	danger	of	being	ruined.	To	protect	the	tender	buds,	farmers	rush	
out	and	spray	the	trees	with	water.	How	does	that	protect	 the	buds?
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14.1 INTERNAL ENERGY

From Section 13.6, the average translational kinetic energy ⟨Ktr⟩ of the molecules of 
an ideal gas is proportional to the absolute temperature of the gas:

 ⟨Ktr⟩ =
3
2

 kBT  (13-36)

The molecules move about in random directions even though, on a macroscopic scale, 
the gas is neither moving nor rotating. Equation (13-36) also gives the average trans-
lational kinetic energy of the random motion of molecules in liquids, solids, and 
nonideal gases except at very low temperatures. This random microscopic kinetic 
energy is part of what we call the internal energy of the system:

Definition of Internal Energy

The internal energy of a system is the total energy of all of the molecules in 
the system except for the macroscopic kinetic energy (kinetic energy associated 
with macroscopic translation or rotation) and the external potential energy 
(energy due to external interactions).

A system is whatever we define it to be: one object or a group of objects. Every-
thing that is not part of the system is considered to be external to the system, or in 
other words, in the surroundings of the system.

Internal energy includes

∙ Translational and rotational kinetic energy of molecules due to their individual 
random motions.

∙ Vibrational energy—both kinetic and potential—of molecules and of atoms within 
molecules due to random vibrations about their equilibrium points.

∙ Potential energy due to interactions between the atoms and molecules of the 
system.

∙ Chemical and nuclear energy—the kinetic and potential energy associated with 
the binding of atoms to form molecules, the binding of electrons to nuclei to form 
atoms, and the binding of protons and neutrons to form nuclei.

Internal energy does not include

∙ The kinetic energy of the molecules due to translation, rotation, or vibration of 
the whole system or of a macroscopic part of the system.

∙ Potential energy due to interactions of the molecules of the system with some-
thing outside of the system (such as a gravitational field due to something outside 
of the system).

CONNECTION:

We’ve used the idea of a sys-
tem before, for instance when 
finding the net external force 
on a system or the momen-
tum change of a system.

CONNECTION:

Revisit Table 6.1 for an over-
view of the forms of energy 
discussed in this book.

Example 14.1

Dissipation of Energy by Friction

A block of mass 10.0 kg starts at point A at a height of 2.0 m 
above the horizontal and slides down a frictionless incline 
(Fig. 14.1). It then continues sliding along the horizontal sur-
face of a table that has friction. The block comes to rest at point 
C, a distance of 1.0 m along the table surface. How much has 
the internal energy of the system (block + table) increased?

Strategy Gravitational potential energy is converted to 
macroscopic translational kinetic energy as the block’s speed 
increases. Friction then converts this macroscopic kinetic 
energy into internal energy—some of it in the block and 
some in the table. Since total energy is conserved, the 

continued on next page
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A change in the internal energy of a system does not always cause a temperature 
change. As we explore further in Section 14.5, the internal energy of a system can change 
while the temperature of the system remains constant—for instance, when ice melts.

Example 14.1 continued

 increase in internal energy is equal to the decrease in gravi-
tational potential energy:

 decrease in PE from A to B = increase in KE from A to B
 = decrease in KE from B to C

 =  increase in internal energy 
from B to C

Solution The initial potential energy (taking Ug = 0 at the 
horizontal surface) is

Ug = mgy = 10.0 kg × 9.8 m/s2 × 2.0 m = 200 J

The final potential energy is zero. The initial and final 
translational kinetic energies of the block are both zero. 
Ignoring the small transfer of energy to the air, the 
 increase in the internal energy of the block and table  
is 200 J.

Discussion We do not know how much of this internal 
energy increase appears in the object and how much in the 
table; we can only find the total. We call friction a noncon-
servative force, but that only means that macroscopic me-
chanical energy is not conserved; total energy is always 
conserved. Friction merely converts some macroscopic 
mechanical energy into internal energy of the block and the 
table. This internal energy increase manifests itself as a 
slight temperature increase. We often say that mechanical 
energy is dissipated by friction or other nonconservative 
forces; in other words, energy in an ordered form (transla-
tional motion of the block) has been changed into disor-
dered energy (random motion of molecules within the 
block and table).

Practice Problem 14.1 On the Rebound

If a rubber ball of mass 1.0 kg is dropped from a height of 
2.0 m and rebounds on the first bounce to 0.75 of the height 
from which it was dropped, how much energy is dissipated 
during the collision with the floor?

f

2.0 m

B

A

C

Frictionless

1.0 m

v

Stops

m
Figure 14.1
An object sliding down a 
frictionless incline and 
then across a horizontal 
surface with friction.

Conceptual Example 14.2

Internal Energy of a Bowling Ball

A bowling ball at rest has a temperature of 18°C. The ball is 
then rolled down a bowling alley. Ignoring the dissipation of 
energy by friction and drag forces, is the internal energy of 
the ball higher, lower, or the same as when the ball was at 
rest? Is the temperature of the ball higher, lower, or the same 
as when the ball was at rest?

Strategy, Solution, and Discussion The only change is 
that the ball is now rolling—the ball has macroscopic trans-
lational and rotational kinetic energy. However, the defini-
tion of internal energy does not include the kinetic energy of 

the molecules due to translation, rotation, or vibration of the 
system as a whole. Therefore, the internal energy of the ball 
is the same. Temperature is associated with the average 
translational kinetic energy due to the individual random 
motions of molecules; the temperature is still 18°C.

Conceptual Practice Problem 14.2 Total  
Translational KE

Is the total translational kinetic energy of the molecules in the 
ball higher, lower, or the same as when the ball was at rest?
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14.2 HEAT

We defined heat in Section 13.1:

Definition of Heat

Heat is energy in transit between two objects or systems due to a temperature 
difference between them.

Many eighteenth-century scientists thought that heat was a fluid, which they called 
“caloric.” The flow of heat into an object was thought to cause the object to expand 
in volume in order to accommodate the additional fluid; why no mass increase 
occurred was a mystery. Now we know that heat is not a substance but is a flow of 
energy. One experiment that led to this conclusion was carried out by Count Rumford 
(Benjamin Thompson, 1753–1814). While supervising the boring of cannon barrels, 
he noted that the drill doing the boring became quite hot. At the time it was thought 
that the grinding up of the cannon metal into little pieces caused caloric to be released 
because the tiny bits of metal could not hold as much caloric as the large piece from 
which they came. But Rumford noticed that the drill got hot even when it became so 
dull that metal was no longer being bored out of the cannon and that he could create 
a limitless amount of what we now call internal energy. He decided that “heat” must 
be a form of microscopic motion instead of a material substance.

It was not until later experiments were done by James Prescott Joule (1818–1889) 
that Rumford’s ideas were finally accepted. In his most famous experiment (Fig. 14.2), 
Joule showed that a temperature increase can be caused by mechanical means. In a 
series of such experiments, Joule determined the “mechanical equivalent of heat,” or 
the amount of mechanical work required to produce the same effect on a system as a 
given amount of heat. In those days heat was measured in calories, where one calorie 
was defined as the heat required to change the temperature of 1 g of water by 1°C 
(specifically from 14.5 to 15.5°C). Joule’s experimental results were within 1% of the 
currently accepted value, which is

 1 cal = 4.186 J (14-1)

The Calorie (with an uppercase letter C) used by dietitians and nutritionists is actually 
a kilocalorie:

1 Calorie = 1 kcal = 103 cal = 4186 J

Although the calorie is still used, the SI unit for internal energy and for heat is the 
same as that used for all forms of energy and all forms of energy transfer: the joule.

Rotating
paddles

Stationary
fins

Insulated
container

Water

Thermometer

Figure 14.2 Joule’s experi-
ment. As the two hanging 
objects move down steadily, 
they cause paddles to rotate 
within an insulated container 
(not to scale) filled with water. 
The paddles agitate the water 
and cause its temperature to 
rise. By measuring the distance 
moved by the hanging objects 
and the temperature change of 
the known quantity of water, 
Joule determined the mechani-
cal work done and the internal 
energy increase of the water.
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Heat and Work Heat and work are similar in that both describe a particular kind 
of energy transfer. Work is an energy transfer due to a force acting through a displace-
ment. Heat is a microscopic form of energy transfer involving large numbers of par-
ticles; the exchange of energy occurs due to the individual interactions of the particles. 
No macroscopic displacement occurs when heat flows, and no macroscopic force is 
exerted by one object on the other.

It does not make sense to say that a system has 15 kJ of heat, just as it does not 
make sense to say that a system has 15 kJ of work. Similarly, we cannot say that the 
heat of a system has changed (nor that the work of a system has changed). A system 
can possess energy in various forms (including internal energy), but it cannot possess 
heat or work. Heat and work are two ways of transferring energy from one system to 
another. Joule’s experiments showed that a quantity of work done on a system or the 
same quantity of heat flowing into the system causes the same increase in the system’s 
internal energy. If the internal energy increase comes from mechanical work, as from 
Joule’s paddle wheel, no heat flow occurs.

CHECKPOINT 14.2

Take	 a	 rubber	 band	 and	 stretch	 it	 rapidly	 several	 times.	 Then	 hold	 it	 against	
your	 wrist	 or	 your	 lip.	 In	 everyday	 language,	 you	 might	 say	 the	 rubber	 band	
“heats	 up.”	 Is	 the	 temperature	 increase	 caused	 by	 heat	 flow	 into	 the	 rubber	
band?	 If	not,	what	has	happened?

Direction of Heat Flow Heat flows spontaneously from a system at higher tem-
perature to one at lower temperature. Temperature is associated with the microscopic 
translational kinetic energy of the molecules; thus, the flow of heat tends to equalize 
the average microscopic translational kinetic energy of the molecules. When two sys-
tems are in thermal contact and no net heat flow occurs, the systems are in thermal 
equilibrium and have the same temperature.

CONNECTION:

Heat, like work, is a kind of 
energy transfer.

Example 14.3

A Joule Experiment

In an experiment similar to that done by Joule, two objects of 
total mass 12.0 kg descend a distance of 1.25 m while caus-
ing the rotation of a paddle wheel in an insulated container 
of water. If the descent is repeated 20 times, what is the in-
ternal energy increase of the water in joules?

Strategy Each time the objects descend, gravitational po-
tential energy is converted into kinetic energy of the paddle 
wheel, which in turn agitates the water and converts kinetic 
energy into internal energy of the water.

Solution The change in gravitational potential energy 
 during one downward trip is

 ΔUg = mg Δy

 = 12.0 kg × 9.80 N/kg × (−1.25 m) = −147 J

If all of this energy goes into the water, the internal energy 
increase of the water during 20 trips is 20 × 147 J = 2.94 kJ. 

Discussion To perform an experiment like Joule’s, we 
can vary the amount of energy delivered to the water. One 
way is to change the number of times the object is allowed to 
descend. Other possibilities include varying the mass of the 
descending object or raising the apparatus so that the object 
can descend a greater distance. All of these variations allow 
a change in the amount of gravitational potential energy con-
verted into internal energy without requiring any changes in 
the complicated mechanism involving the paddle wheel.

Practice Problem 14.3 Temperature Change of 
the Water

If the water temperature in the insulated container is found to 
have increased 2.0°C after 20 descents of the falling object, 
what mass of water is in the container? Assume all of the 
internal energy increase appears in the water (ignore any in-
ternal energy change of the paddle wheel itself).



516 CHAPTER	14 Heat

The Cause of Thermal Expansion

If not to accommodate additional “caloric,” then why do objects generally expand 
when their temperatures increase? (See Section 13.3.) An object expands when the 
average distance between the atoms (or molecules) increases. The atoms are not at 
rest; even in a solid, where each atom has a fixed equilibrium position, they vibrate 
to and fro about their equilibrium positions. The energy of vibration is part of the 
internal energy of the object. When heat flows into the object, raising its temperature, 
the internal energy increases. Some of the increase goes into vibration, so the average 
vibrational energy of an atom increases with increasing temperature.

The average distance between atoms usually increases with increasing vibrational 
energy because the forces between atoms are highly asymmetrical. Two atoms separated by 
less than their equilibrium distance repel each other strongly, whereas two atoms separated 
by more than their equilibrium distance attract each other much less strongly. Therefore, as 
vibrational energy increases, the maximum distance between the atoms increases more than 
the minimum distance decreases; the average distance between the atoms increases.

The coefficient of expansion varies from material to material because the strength 
of the interatomic (or intermolecular) bonds varies. As a general rule, the stronger the 
atomic bond, the smaller the coefficient of expansion. Liquids have much greater 
coefficients of volume expansion than do solids because the molecules are more 
loosely bound in a liquid than in a solid.

14.3 HEAT CAPACITY AND SPECIFIC HEAT

Heat Capacity

Suppose we have a system on which no mechanical work is done, but we allow heat 
to flow into the system by placing it in thermal contact with another system at higher 
temperature. (In Chapter 15, we consider cases in which both work and heat change 
the internal energy of a system.) As the internal energy of the system increases, its 
temperature increases (provided that no part of the system undergoes a change of 
phase, such as from solid to liquid). If heat flows out of the system rather than into 
it, the internal energy of the system decreases. We account for that possibility by 
making Q negative if heat flows out of the system; since Q is defined as the heat into 
the system, a negative heat represents heat flow out of the system.

For a large number of substances, under normal conditions, the temperature 
change ΔT is approximately proportional to the heat Q. The constant of proportional-
ity is called the system’s heat capacity (symbol C):

CONNECTION:

Section 13.3 discussed 
 thermal expansion. Now we 
discuss why the expansion 
occurs.

Definition of heat capacity
 Q = C ΔT  (14-2)

The heat capacity depends both on the substance and on how much of it is present: 
1 cal of heat into 1 g of water causes a temperature increase of 1°C, but 1 cal of heat 
into 2 g of water causes a temperature increase of 0.5°C. The SI unit of heat capacity 
is J/K. We can write J/K or J/°C interchangeably since only temperature changes are 
involved; a temperature change of 1 K is equivalent to a temperature change of 1°C.

The term heat capacity is unfortunate since it has nothing to do with a capacity 
to hold heat, or a limited ability to absorb heat, as the name seems to imply. Instead, 
it relates the heat into a system to the temperature increase. Think of heat capacity 
as a measure of how much heat must flow into or out of the system to produce a 
given temperature change.

Specific Heat

The heat capacity of the water in a drinking glass is much smaller than the heat capac-
ity of the water in Lake Superior. Since the heat capacity of a system is proportional 
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to the mass of the system, the specific heat capacity (symbol c) of a substance is 
defined as the heat capacity per unit mass:

Table 14.1 Specific Heats of Common Substances at 1 atm and 20°C

 Specific Heat  Specific Heat

Substance
 (

kJ
kg·K) 

Substance
 (

kJ
kg·K)

Gold 0.128 Pyrex glass 0.75
Lead 0.13 Granite 0.80
Mercury 0.139 Marble 0.86
Silver 0.235 Aluminum 0.900
Brass 0.384 Air (50°C) 1.05
Copper 0.385 Wood (average) 1.68
Iron 0.44 Steam (110°C) 2.01
Steel 0.45 Ice (0°C) 2.1
Flint glass 0.50 Alcohol (ethyl) 2.4
Crown glass 0.67 Human tissue (average) 3.5
Vycor 0.74 Water (15°C) 4.186

Definition of specific heat capacity

 c =
C

m
=

Q

m ΔT
 (14-3)

Specific heat capacity is often abbreviated to specific heat. The SI units of specific 
heat are J/(kg·K). In SI units, the specific heat is the number of joules of heat required 
to produce a 1 K temperature change in 1 kg of the substance. Again, since only 
temperature changes are involved, we can equivalently write J/(kg·°C).

Table 14.1 lists specific heats for some common substances at 1 atm and 20°C 
(unless otherwise specified). For the range of temperatures in our examples and prob-
lems, assume these specific heat values to be valid. Note that water has a relatively 
large specific heat compared with most other substances. The relatively large specific 
heat of water causes the oceans to warm slowly in the spring and to cool slowly as 
winter approaches, moderating the temperature along the coast.

Rearrangement of Eq. (14-3) leads to an expression for the heat required to pro-
duce a known temperature change in a system:

 Q = mc ΔT  (14-4)

Note that in Eqs. (14-3) and (14-4), the sign convention for Q is consistent: a tem-
perature increase (ΔT > 0) is caused by heat flowing into the system (Q > 0), whereas 
a temperature decrease (ΔT < 0) is caused by heat flowing out of the system (Q < 0).

Equations (14-2) through (14-4) apply when no phase change occurs. The value 
of the specific heat is different for different phases of the same substance. That’s why 
Table 14.1 lists different values for ice, liquid water, and steam.

CHECKPOINT 14.3

A	 10	 g	 brass	 washer	 at	 80°C	 is	 dropped	 into	 a	 container	 of	 100	 g	 of	 water	
initially	at	20°C.	 Ignoring	heat	flow	to	or	from	the	surroundings,	will	 the	equilib-
rium	 temperature	be	 less	 than,	equal	 to,	or	greater	 than	50°C?	Explain.
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Heat Flow with More Than Two Objects Suppose some water is heated in a large 
iron pot by dropping a hot piece of copper into the pot. We can define the system to 
be the water, the copper, and the iron pot; the environment is the room containing the 
system. Heat continues to flow among the three substances (iron pot, water, copper) 
until thermal equilibrium is reached—that is, until all three substances are at the same 
temperature. If losses to the environment are negligible, all the heat that flows out of 
the copper flows into either the iron or the water:

QCu + QFe + QH2O = 0

In this case, QCu is negative since heat flows out of the copper; QFe and QH2O are 
positive since heat flows into both the iron and the water.

Calorimetry

A calorimeter is an insulated container that enables the careful measurement of heat 
(Fig. 14.3). The calorimeter is designed to minimize the heat flow to or from the surround-
ings. A typical constant volume calorimeter, called a bomb calorimeter, consists of a hollow 
aluminum cylinder of known mass containing a known quantity of water; the cylinder is 

Example 14.4

Heating Water in a Saucepan

A saucepan containing 5.00 kg of water initially at 20.0°C is 
heated over a gas burner for 10.0 min. The final temperature 
of the water is 30.0°C. (a) What is the internal energy in-
crease of the water? (b) What is the expected final tempera-
ture if the water were heated for an additional 5.0 min? (c) Is 
it possible to estimate the flow of heat from the burner dur-
ing the first 10.0 min?

Strategy We are interested in the internal energy and the 
temperature of the water, so we define a system that consists 
of the water in the saucepan. Although the pan is also heated, 
it is not part of this system. The pan, the burner, and the 
room are all outside the system.

Since no work is done on the water, the internal energy 
increase is equal to the heat flowing into the water. The heat 
can be found from the mass of the water, the specific heat of 
water, and the temperature change. As long as the burner 
delivers heat at a constant rate, we can find the additional 
heat delivered in the additional time. Since the temperature 
change is proportional to the heat delivered, the temperature 
changes at a constant rate (a constant number of °C per minute). 
So, in half the time, half as much energy is delivered and the 
temperature change is half as much.

Solution (a) First find the temperature change:

ΔT = Tf − Ti = 30.0°C − 20.0°C = 10.0 K

(A change of 10.0°C is equivalent to a change of 10.0 K.) 
The increase in the internal energy of the water is

 ΔU = Q = mc ΔT

 = 5.00 kg × 4.186 kJ/(kg·K) × 10.0 K = 209 kJ

(b) We assume that the heat delivered is proportional to the 
elapsed time. The temperature change is proportional to the 
energy delivered, so if the temperature changes 10.0°C in 
10.0 min, it changes an additional 5.0°C in an additional 
5.0 min. The final temperature is

T = 20.0°C + 15.0°C = 35.0°C

(c) Not all of the heat flows into the water. Heat also flows 
from the burner into the saucepan and into the room. All we 
can say is that more than 209 kJ of heat flows from the 
burner during the 10.0 min.

Discussion As a check, the heat capacity of the water is 
5.00 kg × 4.186 kJ/(kg·K) = 20.9 kJ/K; 20.9 kJ of heat must 
flow for each 1.0 K change in temperature. Since the tem-
perature change is 10.0 K, the heat required is

20.9 kJ/K × 10.0 K = 209 kJ

Practice Problem 14.4 Price of a Bubble Bath

If the cost of electricity is $0.080 per kilowatt-hour, what 
does it cost to heat 160 L of water for a bubble bath from 
10.0°C (the temperature of the well water entering the house) 
to 45.0°C? [Hint: 1 L of water has a mass of 1 kg. 1 kW·h = 
1000 J/s × 3600 s.]

CONNECTION:

Here we apply the principle 
of energy conservation.
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inside a larger aluminum cylinder with insulated walls. An evacuated space separates the 
two cylinders. An insulated lid fits over the opening of the cylinders; often there are two 
small holes in the lid, one for a thermometer to be inserted into the contents of the inner 
cylinder and one for a stirring device to help the contents reach equilibrium faster.

Suppose an object at one temperature is placed in a calorimeter with the water 
and aluminum cylinder at another temperature. By conservation of energy, all the heat 
that flows out of one substance (Q < 0) flows into some other substance (Q > 0). If 
no heat flows to or from the environment, the total heat into the object, water, and 
aluminum must equal zero:

Qo + Qw + Qa = 0

Example 14.5 illustrates the use of a calorimeter to measure the specific heat of an 
unknown substance. The measured specific heat can be compared with a table of 
known values to help identify the substance.

Insulated
jacket

Thermometer
Stirrer

Lid

Figure 14.3 A calorimeter.

Example 14.5

Specific Heat of an Unknown Metal

A sample of unknown metal of mass 0.550 kg is heated in a 
pan of hot water until it is in equilibrium with the water at a 
temperature of 75.0°C. The metal is then carefully removed 
from the heat bath and placed into the inner cylinder of an 
aluminum calorimeter that contains 0.500 kg of water at 
15.5°C. The mass of the inner cylinder is 0.100 kg. When the 
contents of the calorimeter reach equilibrium, the tempera-
ture inside is 18.8°C. Find the specific heat of the metal 
sample and determine whether it could be any of the metals 
listed in Table 14.1.

Strategy Heat flows from the sample to the water and 
to  the aluminum until thermal equilibrium is reached, at 
which time all three have the same temperature. We use 
subscripts to keep track of the three heat flows and three 
temperature changes. Let Tf be the final temperature of all 
three. Initially, the water and aluminum are both at 15.5°C 
and the sample is at 75.0°C. When thermal equilibrium is 
reached, all three are at 18.8°C. We assume negligible heat 
flow to the environment—in other words, that no heat 
flows into or out of the system consisting of aluminum + 
water + sample.

Solution Heat flows out of the sample (Qs < 0) and into 
the water and aluminum cylinder (Qw > 0 and Qa > 0). As-
suming no heat into or out of the surroundings,

Qs + Qw + Qa = 0

For each substance, the heat is related to the temperature 
change. Substituting Q = mc ΔT for each gives

 mscs ΔTs + mwcw ΔTw + maca ΔTa = 0 (1)

A table helps organize the given information:

 Sample H2O Al

Mass (m) 0.550 kg 0.500 kg 0.100 kg
Specific heat (c) cs (unknown) 4.186 kJ/(kg·°C) 0.900 kJ/(kg·°C)
Heat capacity (mc) 0.550 kg × cs 2.093 kJ/°C 0.0900 kJ/°C
Ti 75.0°C 15.5°C 15.5°C
Tf 18.8°C 18.8°C 18.8°C
ΔT −56.2°C 3.3°C 3.3°C

We can now solve Eq. (1) for cs.

 cs = − 

mwcw ΔTw + maca ΔTa

ms ΔTs

 = − 

(2.093 kJ/°C)(3.3°C) + (0.0900 kJ/°C)(3.3°C)
(0.550 kg)(−56.2°C)

 = 0.23 
kJ

kg·°C

By comparing this result with the values in Table 14.1, it 
appears that the unknown sample could be silver.

Discussion As a quick check, the heat capacity of the 
sample is approximately 1

17 that of the water since its 
 temperature change is 56.2°C/3.3°C ≈ 17 times as much—
ignoring the small heat capacity of the aluminum. Since the 
masses of the water and sample are about equal, the specific 
heat of the sample is roughly 1

17 that of the water:

1
17

× 4.186 
kJ

kg·°C
= 0.25 

kJ
kg·°C

That is quite close to our answer.

Practice Problem 14.5 Final Temperature 

If 0.25 kg of water at 90.0°C is added to 0.35 kg of water at 
20.0°C in an aluminum calorimeter with an inner cylinder of 
mass 0.100 kg, find the final temperature of the mixture.
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14.4 SPECIFIC HEAT OF IDEAL GASES

Since the average translational kinetic energy of a molecule in an ideal gas is

 ⟨Ktr⟩ =
3
2

  kBT  (13-36)

the total translational kinetic energy of a gas containing N molecules (n moles) is

 Ktr =
3
2

  NkBT =
3
2

  nRT  (14-5)

Suppose we allow heat to flow into a monatomic ideal gas—one in which the gas 
molecules consist of single atoms—while keeping the volume of the gas constant. Since 
the volume is constant, no work is done on the gas, so the change in the internal energy 
is equal to the heat. If we think of the atoms as point particles, the only way for the inter-
nal energy to change when heat flows into the gas is for the translational kinetic energy of 
the atoms to change. The rest of the internal energy is “locked up” in the atoms and does 
not change unless something else happens, such as a change of phase (e.g., from gas to 
liquid) or a chemical reaction—neither of which can happen in an ideal gas. Then

 Q = ΔKtr =
3
2

 nR ΔT  (14-6)

From Eq. (14-6), we can find the specific heat of the monatomic ideal gas. How-
ever, with gases it is more convenient to define the molar specific heat at constant 
volume (CV) as

 CV =
Q

n ΔT
 (14-7)

The subscript “V” is a reminder that the volume of the gas is held constant during 
the heat flow. The molar specific heat is the heat capacity per mole rather than per 
unit mass. In one case, we measure the amount of substance by the number of moles; 
in the other case, by the mass.

From Eqs. (14-6) and (14-7), we can find the molar specific heat of a monatomic 
ideal gas:

 Q =
3
2

 nR ΔT = nCV ΔT  (14-8)

 CV =
3
2

 R = 12.5 
J/K
mol
  (monatomic ideal gas)  (14-9)

A glance at Table 14.2 shows that this calculation is remarkably accurate at room 
temperature for monatomic gases.

Diatomic gases have larger molar specific heats than monatomic gases. Why? We 
cannot model the diatomic molecule as a point mass; the two atoms in the molecule 
are separated, giving the molecule a much larger rotational inertia about two perpen-
dicular axes (Fig. 14.4). The molar specific heat is larger because not all of the 
internal energy increase goes into the translational kinetic energy of the molecules; 
some goes into rotational kinetic energy.

z

x

(a)

y

(b) (c)

Figure 14.4 Rotation of a 
model diatomic molecule about 
three perpendicular axes. The 
rotational inertia about the 
x-axis (a) is negligible, so we 
can ignore rotation about this 
axis. The rotational inertias 
about the y- and z-axes (b) and 
(c) are much larger than for a 
single atom of the same mass 
because of the larger distance 
between the atoms and the axis 
of rotation.

CONNECTION:

Specific heat and molar 
 specific heat can be thought 
of as the same quantity— 
heat capacity per amount of 
substance—expressed in  
different units.

Table 14.2
Molar Specific Heats  
at Constant Volume  
of Gases at 25°C

 Gas CV(
J/K
mol)

Monatomic He 12.5
 Ne 12.7
 Ar 12.5
Diatomic H2 20.4
 N2 20.8
 O2 21.0
Polyatomic CO2 28.2
 N2O 28.4
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As we show in Chapter 15, the molar specific heat of a diatomic ideal gas at 
room temperature is approximately

 CV =
5
2

  R = 20.8 
J/K
mol
  (diatomic ideal gas at room temperature)  (14-10)

Why 5
2R instead of 3

2R? The diatomic molecule has rotational kinetic energy about two 
perpendicular axes (Fig. 14.4b and c) in addition to translational kinetic energy asso-
ciated with motion in three independent directions. Thus, the diatomic molecule has 
five ways to “store” internal energy whereas the monatomic molecule has only three. 
The theorem of equipartition of energy—which we cannot prove here—says that 
random collisions distribute internal energy equally among all the possible ways in 
which it can be stored (as long as the temperature is sufficiently high). Each indepen-
dent form of energy has an average of 1

2kBT  of energy per molecule and contributes 
1
2R to the molar specific heat at constant volume.

Example 14.6

Heating Some Xenon Gas

A cylinder contains 250 L of xenon gas (Xe) at 20.0°C and 
a pressure of 5.0 atm. How much heat is required to raise 
the  temperature of this gas to 50.0°C, holding the volume 
constant? Treat the xenon as an ideal gas.

Strategy The molar heat capacity is the heat required per 
degree per mole. The number of moles of xenon (n) can be 
found from the ideal gas law, PV = nRT. Xenon is a mona-
tomic gas, so we expect CV = 3

2R.

Solution First we convert the known quantities into SI units.

 P = 5.0 atm = 5 × 1.01 × 105 Pa = 5.05 × 105 Pa
 V = 250 L = 250 × 10−3 m3

 T = 20.0°C = 293.15 K

From the ideal gas law, we find the number of moles,

n =
PV

RT
=

5.05 × 105 Pa × 250 × 10−3 m3

8.31 J/(mol·K) × 293.15 K
= 51.8 mol

We should check the units. Since Pa = N/m2,

Pa × m3

J/(mol·K) × K
=

N/m2 × m3

J/mol
=

N·m
J

× mol = mol

For a monatomic gas at constant volume, the energy all 
goes into increasing the translational kinetic energy of the 

gas molecules. The molar specific heat is defined by  
Q = nCV ΔT, where, for a monatomic gas, CV = 3

2R. Then,

Q =
3
2

 nR ΔT

where

ΔT = 50.0°C − 20.0°C = 30.0°C

Substituting numerical values yields

Q =
3
2

× 51.8 mol × 8.31 J/(mol·°C) × 30.0°C = 19 kJ

Discussion Constant volume implies that all the heat is 
used to increase the internal energy of the gas; if the gas were 
to expand, it could transfer energy by doing work. When we 
find the number of moles from the ideal gas law, we must 
remember to convert the Celsius temperature to kelvins. Only 
when an equation involves a change in temperature, can we 
use kelvin or Celsius temperatures interchangeably.

Practice Problem 14.6 Heating Some Helium Gas

A storage cylinder of 330 L of helium gas is at 21°C and is sub-
jected to a pressure of 10.0 atm. How much energy must be added 
to raise the temperature of the helium in this container to 75°C?

You may wonder why we can ignore rotation for the monatomic molecule—which 
in reality is not a point particle—or why we can ignore rotation about one axis for the 
diatomic molecule. The answer comes from quantum mechanics. Energy cannot be added 
to a molecule in arbitrarily small amounts; energy can only be added in discrete amounts, 
or “steps.” At room temperature, there is not enough internal energy to excite the rota-
tional modes with small rotational inertias, so they do not participate in the specific heat. 
We also ignored the possibility of vibration for the diatomic molecule. That is fine at 
room temperature, but at higher temperatures vibration becomes significant, adding two 
more energy modes (one kinetic and one potential). Thus, as temperature increases, the 
molar specific heat of a diatomic gas increases, approaching 7

2R at high temperatures.
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14.5 PHASE TRANSITIONS

If heat continually flows into the water in a pot, the water eventually begins to boil; 
liquid water becomes steam. If heat flows into ice cubes, they eventually melt and 
turn into liquid water. A phase transition occurs whenever a material is changed from 
one phase, such as the solid phase, to another, such as the liquid phase.

When some ice cubes at 0°C are placed into a glass in a room at 20°C, the ice 
gradually melts. A thermometer in the water that forms as the ice melts reads 0°C 
until all the ice is melted. At atmospheric pressure, ice and water can only coexist in 
equilibrium at 0°C. Once all the ice is melted, the water gradually warms up to room 
temperature. Similarly, water boiling on a stove remains at 100°C until all the water 
has boiled away. Suppose we change 1.0 kg of ice at −25°C into steam at 125°C. 
Assume the changes occur slowly enough that the entire system is all at (very nearly) 
the same temperature at any instant. A graph of the temperature versus heat is shown 
in Fig. 14.5. During the two phase transitions, heat flow continues, and the internal 
energy changes, but the temperature of the mixture of two phases does not change. 
Table 14.3 shows the heat during each step of the process.

Latent Heat The heat required per unit mass of substance to produce a phase 
change is called the latent heat (L). The word latent is related to the lack of tem-
perature change during a phase transition.

Table 14.3 Heat to
Turn 1 kg of Ice at 
−25°C to Steam at 125°C

Phase Transition or 
Temperature Change Q (kJ)

Ice: −25°C to 0°C 52.3
Melting: ice at 0°C  333.7 
 to water at 0°C 
Water: 0°C to 100°C 419
Boiling: water at 100°C  2256 
 to steam at 100°C 
Steam: 100°C to 125°C 50

Definition of latent heat

 ∣Q∣ = mL (14-11)

The sign of Q in Eq. (14-11) depends on the direction of the phase transition. For 
melting or boiling, Q > 0 (heat flows into the system). For freezing or condensation, 
Q < 0 (heat flows out of the system).

The heat per unit mass for the solid-liquid phase transition (in either direction) is 
called the latent heat of fusion (Lf). From Table 14.3, it takes 333.7 kJ to change 1 kg 
of ice to water at 0°C, so for water Lf = 333.7 kJ/kg. For the liquid-gas phase transition 
(in either direction), the heat per unit mass is called the latent heat of vaporization 
(Lv). From Table 14.3, to change 1 kg of water to steam at 100°C requires 2256 kJ, so 
for water Lv = 2256 kJ/kg. If 2256 kJ must be supplied to turn 1 kg of water into steam, 
then 2256 kJ of heat is released from 1 kg of steam when it condenses to form water. 
Table 14.4 lists latent heats of fusion and vaporization for various materials.

CHECKPOINT 14.5

Why	 is	 a	 burn	 caused	 by	 100°C	 steam	often	much	more	 severe	 than	 a	 burn	
caused	by	100°C	 liquid	water?

The large latent heat of fusion of water is partly why spraying fruit trees with 
water can protect the buds from freezing. Before the buds can freeze, first the water 

–25

0

125
100

T (°C)

Ice

Ice + water
Water

Melting

Boiling

Water + steam

52.3 386 Heat added (kJ)805 31113061

Steam

Figure 14.5 Temperature 
versus heat for 1 kg of ice that 
starts at a temperature below 
0°C. (Horizontal axis not to 
scale.) During the two phase 
transitions—melting and 
 boiling—the temperature does 
not change.
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must be cooled to 0°C and then it must freeze. In the process of freezing, the water 
gives up a large amount of heat and keeps the temperature of the buds from going 
below 0°C. Even if the water freezes, then the layer of ice over the buds acts like 
insulation since ice is not a particularly good conductor of heat.

Microscopic View of a Phase Change To understand what is happening during 
a phase change, we must consider the substance on the molecular level. When a sub-
stance is in solid form, bonds between the atoms or molecules hold them near fixed 
equilibrium positions. Energy must be supplied to break the bonds and change the solid 
into a liquid. When the substance is changed from liquid to gas, energy is used to 
separate the molecules from the loose bonds holding them together and to move the 
molecules apart. Temperature does not change during these phase transitions because 
the kinetic energy of the molecules is not changing. Instead, the potential energy of 
the molecules changes as work is done against the forces holding them together.

Table 14.4 Latent Heats of Some Common Substances

Substance Melting Point (°C) Heat of Fusion (kJ/kg) Boiling Point (°C) Heat of Vaporization (kJ/kg)

Alcohol (ethyl) −114 104 78 854
Aluminum 660 397 2450 11400
Copper 1083 205 2340 5070
Gold 1063 66.6 2660 1580
Lead 327 22.9 1620 871
Silver 960.8 88.3 1950 2340
Water 0.0 333.7 100 2256

Example 14.7

Making Silver Charms

A jewelry designer plans to make some specially ordered 
silver charms for a commemorative bracelet. If the melting 
point of silver is 960.8°C, how much heat must the jeweler 
add to 0.500 kg of silver at 20.0°C to be able to pour silver 
into her charm molds?

Strategy The solid silver first needs to be heated to its melt-
ing point; then more heat has to be added to melt the silver.

Solution The total heat flow into the silver is the sum of 
the heat to raise the temperature of the solid and the heat that 
causes the phase transition:

Q = mc ΔT + mLf

The temperature change of the solid is

ΔT = 960.8°C − 20.0°C = 940.8°C

We look up the specific heat of solid silver and the latent 
heat of fusion of silver. Substituting numerical values into 
the equation for Q yields

Q = 0.500 kg × 0.235 kJ/(kg·°C) × 940.8°C
 + 0.500 kg × 88.3 kJ/kg
 = 110.5 kJ + 44.15 kJ = 155 kJ

Discussion An easy mistake to make is to use the wrong 
latent heat. Here we were dealing with melting, so we needed 
the latent heat of fusion. Another possible error is to use the 
specific heat for the wrong phase: here we raised the tem-
perature of solid silver, so we needed the specific heat of 
solid silver. With water, we must always be careful to use the 
specific heat of the correct phase; the specific heats of ice, 
water, and steam have three different values.

Practice Problem 14.7 Making Gold Medals

Some gold medals are to be made from 750 g of solid gold at 
24°C (Fig. 14.6). How much heat is required to melt the gold 
so that it can be poured into the molds for the medals?

Figure 14.6
A gold medal: the Nobel 
Prize for physics.  
©SSPL/Getty Images
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Example 14.8

Making Ice

Ice cube trays are filled with 0.500 kg of water at 20.0°C and 
placed into the freezer compartment of a refrigerator. How 
much energy must be removed from the water to turn it into 
ice cubes at −5.0°C?

Strategy We can think of this process as three consecu-
tive steps. First, the liquid water is cooled to 0°C. Then the 
phase change occurs at constant temperature. Now the water 
is frozen; the ice continues to cool to −5.0°C. The energy 
that must be removed for the whole process is the sum of the 
energy removed in each of the three steps.

Solution For liquid water going from 20.0°C to 0.0°C,

Q1 = mcw ΔT1

where

ΔT1 = 0.0°C − 20.0°C = −20.0°C

Since ΔT1 is negative, Q1 is negative: heat must flow out 
of the water in order for its temperature to decrease. Next 
the water freezes. The heat is found from the latent heat of 
fusion:

Q2 = −mLf

Again, heat flows out so Q2 is negative. For phase transitions, 
we supply the correct sign of Q according to the direction of 
the phase transition (negative sign for freezing, positive sign 
for melting). Finally, the ice is cooled to −5.0°C:

Q3 = mcice ΔT2

where

ΔT2 = −5.0°C − 0.0°C = −5.0°C

We use subscripts on the specific heats to distinguish the 
specific heat of ice from that of water. The total heat is

Q = m (cw 
ΔT1 − Lf + cice ΔT2)

Now we look up cw, Lf, and cice in Tables 14.1 and 14.4 and 
substitute numerical values:

cw ΔT1 = 4.186 
kJ

kg·K × (−20 K) = −83.72 
kJ
kg

Lf = 333.7 
kJ
kg

cice ΔT2 = 2.1 
kJ

kg·K × (−5.0 K) = −10.5 
kJ
kg

Q = 0.500 kg × [−83.72 
kJ
kg

− 333.7 
kJ
kg

− 10.5 
kJ
kg] = −214 kJ

So 214 kJ of heat flows out of the water that becomes ice cubes.

Discussion We cannot consider the entire temperature 
change from +20°C to −5°C in one step. A phase change 
occurs, so we must include the flow of heat during the phase 
change. Also, the specific heat of ice is different from the 
specific heat of liquid water; we must find the heat to cool 
water 20°C and then the heat to cool ice 5°C.

Practice Problem 14.8 Frozen Popsicles

Nigel pulls a tray of frozen popsicles out of the freezer to share 
with his friends. If the popsicles are at −4°C and go directly 
into hungry mouths at 37°C, how much energy is used to 
bring a popsicle of mass 0.080 kg to body temperature? As-
sume the frozen popsicles have the same specific heat as ice 
and the melted popsicle has the specific heat of water.

Example 14.9

Cooling a Drink

Two 50 g ice cubes are placed into 0.200 kg of water in a 
Styrofoam cup. The water is initially at a temperature of 
25.0°C, and the ice is initially at a temperature of −15.0°C. 
What is the final temperature of the drink? The average spe-
cific heat for ice between −15°C and 0°C is 2.05 kJ/(kg·°C).

Strategy Since heat flows out of the water and into ice, 
Qw < 0 and Qice > 0. Assuming heat flow to or from the 
 environment is negligible, their sum is zero:

Qw + Qice = 0

Each of the quantities Qw and Qice includes the heat to change 
the temperature as well as the latent heat for any phase tran-
sitions that occur. To find the final temperature, we have to 
determine whether the final state is all ice, ice and water in 
equilibrium, or all water.
Given:  mice = 0.100 kg at −15.0°C; mw = 0.200 kg at 25.0°C; 

 cice = 2.05 kJ/(kg·°C)
Look up: Lf for water = 333.7 kJ/kg; cw = 4.186 kJ/(kg·°C)
Find: Tf

continued on next page
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Evaporation

If you leave a cup of water out at room temperature, the water gradually evaporates. 
Recall that the temperature of the water reflects the average kinetic energy of the 
water molecules; some have higher than average energies and some have lower. The 
most energetic molecules have enough energy to break loose from the molecular bonds 
at the surface of the water. As these highest-energy molecules leave the water, the 
average energy of those left behind decreases—which is why evaporation is a cooling 
process. Approximately the same latent heat of vaporization applies to evaporation as 
to boiling, since the same molecular bonds are being broken. Perspiring basketball 
players cover up while sitting on the bench for a short time during a game to prevent 
getting a chill even though the air in the stadium may be warm.

When the humidity is high—meaning there is already a lot of water vapor in the 
air—evaporation proceeds more slowly. Water molecules in the air can also condense 
into water; the net evaporation rate is the difference in the rates of evaporation and 
condensation. A hot, humid day is uncomfortable because our bodies have trouble 
staying cool when perspiration evaporates slowly.

Example 14.9 continued

Solution The heat flow out of the water if it cools all the 
way to 0°C is

 Q = mwcw(Tf − Ti)
 = 0.200 kg × 4.186 kJ/(kg·°C) × (−25.0°C)
 = −20.93 kJ

Is this enough to bring the ice to 0°C? The heat flow 
into the ice if it warms to 0°C is

 Q = micecice ΔT
 = 0.100 kg × 2.05 kJ/(kg·°C) × (+15.0°C)
 = +3.075 kJ

Heat flow out of the water is more than enough to bring the 
ice to 0°C, since 20.93 kJ > 3.075 kJ. Therefore, the ice 
reaches 0°C and starts to melt.

Does all of the ice melt? The heat flow required to do 
that, starting from −15.0°C, is

 Q = +3.075 kJ + miceLf
 = +3.075 kJ + 0.100 kg × 333.7 kJ/kg
 = +36.445 kJ

Since 20.93 kJ < 36.445 kJ, not all of the ice melts. The 
 final state is ice and water in equilibrium at 0°C.

Discussion The water initially at 25.0°C ends up at 0°C, 
so Qw = −20.9 kJ. All of this heat flows into the ice, so 
Qice = +20.9 kJ.

If we had assumed that all the ice melts and the final 
state is all water, we would have found a final temperature of 
−12.4°C. That result would not make sense (the water would 
not be liquid at −12.4°C) so we would know that the as-
sumption was not correct.

Practice Problem 14.9 Melting Ice

How much of the ice of Example 14.9 melts?

EVERYDAY PHYSICS DEMO

The	 effects	 of	 evaporation	 can	 easily	 be	 felt.	 Rub	 some	water	 on	 the	 inside	
of	 your	 forearm	and	 then	blow	on	 your	 arm.	 The	motion	of	 the	air	 over	 your	
arm	 removes	 the	 newly	 evaporated	 molecules	 from	 the	 vicinity	 of	 your	 arm	
and	allows	other	molecules	to	evaporate	more	quickly.	You	can	feel	 the	cool-
ing	effect.	If	you	have	some	rubbing	alcohol,	repeat	the	experiment.	Since	the	
alcohol	evaporates	 faster,	 the	cooling	effect	 is	noticeably	greater.

Phase Diagrams

A useful tool in the study of phase transitions is the phase diagram—a diagram on 
which pressure is plotted on the vertical axis and temperature on the horizontal axis. 
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Figure 14.7a is a phase diagram for water. A point on the phase diagram represents 
water in a state determined by the pressure and the temperature at that point. The 
curves on the phase diagram are the demarcations between the solid, liquid, and gas 
phases. For most temperatures, there is one pressure at which two particular phases 
can coexist in equilibrium. Since point P lies on the fusion curve, water can exist as 
liquid, or as solid, or as a mixture of the two at that temperature and pressure. At 
point Q, water can only be a solid. Similarly, at A, water is a liquid; at B, it is a gas.

The one exception is at the triple point, where all three phases (solid, liquid, and 
gas) can coexist in equilibrium. Triple points are used in precise calibrations of ther-
mometers. The triple point of water is precisely 0.01°C at 0.006 atm.

From the vapor pressure curve, we see that as the pressure is lowered, the tem-
perature at which water boils decreases. (The term vapor refers to a gas below its 
critical temperature.) It takes longer to cook a hard-boiled egg at high elevations 
because the temperature of the boiling water is less than 100°C; the chemical reactions 
proceed more slowly at a lower temperature. It might take as long as half an hour to 
hard-boil an egg on Pike’s Peak, where the average pressure is 0.6 atm.

If either the temperature or the pressure or both are changed, the point represent-
ing the state of the water moves along some path on the phase diagram. If the path 
crosses one of the curves, a phase transition occurs and the latent heat for that phase 
transition is either absorbed or released (depending on direction). Crossing the fusion 
curve represents freezing or melting; crossing the vapor pressure curve represents 
condensation or vaporization.

Notice that the vapor pressure curve ends at the critical point. At temperatures 
above the critical temperature and pressures above the critical pressure, it is impos-
sible to make a clear distinction between the liquid and gas phases; we then refer to 
the substance as a supercritical fluid. If the path for changing a liquid to a gas goes 
around the critical point without crossing the vapor pressure curve, a continuous phase 
transition occurs with no associated latent heat.

Sublimation occurs when a solid becomes gas (or vice versa) without passing 
through the liquid phase. An example occurs when ice on a car windshield becomes 
water vapor on a cold dry day. Mothballs and dry ice (solid carbon dioxide) also pass 
directly from solid to gas. At atmospheric pressure, only the solid and gas phases of 
CO2 exist (Fig. 14.7b). The liquid phase is not stable below 5.2 atm of pressure, so 
carbon dioxide does not melt at atmospheric pressure. Instead it sublimates; it goes 
from solid directly to gas. Solid CO2 is called dry ice because it is cold and looks 
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like ice, but does not melt. Sublimation has its own latent heat; the latent heat for 
sublimation is not the sum of the latent heats for fusion and vaporization.

The Unusual Phase Diagram of Water The phase diagram of water has an 
unusual feature: the slope of the fusion curve is negative. The fusion curve has a 
negative slope only for substances (e.g., water, gallium, and bismuth) that expand on 
freezing. In these substances the molecules are closer together in the liquid than they 
are in the solid! As liquid water starting at room temperature is cooled, it contracts 
until it reaches 3.98°C. At this temperature water has its highest density (at a pressure 
of 1 atm); further cooling makes the water expand. When water freezes, it expands 
even more; ice is less dense than water.

One consequence of the expansion of water on freezing is that cell walls might rupture 
when foods are frozen and thawed. The taste of frozen food suffers as a result. Another 
consequence is that lakes, rivers, and ponds do not freeze solid in the winter. A layer of 
ice forms on top since ice is less dense than water; underneath the ice, liquid water remains, 
which permits fish, turtles, and other aquatic life to survive until spring (Fig. 14.8).

14.6 THERMAL CONDUCTION

Until now we have considered the effects of heat flow, but not the mechanism of how 
heat flow occurs. We now turn our attention to three types of heat flow—conduction, 
convection, and radiation.

The conduction of heat can take place within solids, liquids, and gases. Conduc-
tion is due to collisions between atoms (or molecules) in which energy is exchanged. 
If the average energy is the same everywhere, there is no net flow of heat. If, on the 
other hand, the temperature is not uniform, then on average the atoms with more 
energy transfer some energy to those with less. The net result is that heat flows from 
the higher-temperature region to the lower-temperature region.

Conduction also occurs between objects that are in contact. A teakettle on an 
electric burner receives heat by conduction since the heating coil of the burner is in 
contact with the bottom of the kettle. The atoms that are vibrating in the object at 
higher temperature (the coil) collide with atoms in the object at lower temperature 
(the bottom of the kettle), resulting in a net transfer of energy to the colder object. If 
conduction is allowed to proceed, with no heat flow to or from the surroundings, then 
the objects in contact eventually reach thermal equilibrium when the average transla-
tional kinetic energies of the atoms are equal.

Fourier’s Law of Heat Conduction Suppose we consider a simple geometry such 
as an object with uniform cross section in which heat flows in a single direction. Exam-
ples are a plate of glass, with different temperatures on the inside and outside surfaces, 
or a cylindrical bar, with its ends at different temperatures (Fig. 14.9). The rate of heat 
conduction depends on the temperature difference ΔT = Thot − Tcold, the length (or 
thickness) d, the cross-sectional area A through which heat flows, and the nature of the 
material itself. The greater the temperature difference, the greater the heat flow. The 
thicker the material, the longer it takes for the heat to travel through—since the energy 
transfer has to be passed along a longer “chain” of atomic collisions—making the rate 
of heat flow smaller. A larger cross-sectional area allows more heat to flow.

The nature of the material is the final thing that affects the rate of energy trans-
fer. In metals the electrons associated with the atom are free to move about and they 
carry the heat. When a material has free electrons, the transfer rate is faster; if the 
electrons are all tightly bound, as in nonmetallic solids, the transfer is slower. Liquids, 
in turn, conduct heat less readily than solids, because the forces between atoms are 
weaker. Gases are even less efficient as conductors of heat than solids or liquids since 
the atoms of a gas are so much farther apart and have to travel a greater distance 
before collisions occur. The thermal conductivity (symbol κ, the Greek letter kappa) 

Figure 14.8 A Nunavut 
 villager fishing for Arctic char.
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of a substance is directly proportional to the rate at which energy is transferred through 
the substance. Higher values of κ are associated with good conductors of heat, smaller 
values with thermal insulators that tend to prevent the flow of heat. Table 14.5 lists 
the thermal conductivities for several common substances.

Let 𝒫 = Q/Δt represent the rate of heat flow (or power). (The script 𝒫  is used 
to avoid confusing power with pressure.) The dependence of the rate of heat flow 
through a substance on all the factors mentioned is given by

Table 14.5 Thermal
Conductivities at 20°C

Material κ (
W

m·K)

Air 0.023
Rigid panel polyure - 0.023–0.026 
 thane insulation 
Fiberglass insulation 0.029–0.072
Rock wool insulation 0.038
Cork 0.046
Wood 0.13
Soil (dry) 0.14
Asbestos 0.17
Snow 0.25
Sand 0.39
Water 0.6
Window glass  0.63 
 (typical) 
Pyrex glass 1.13
Vycor 1.34
Concrete 1.7
Ice 1.7
Stainless steel 14
Lead 35
Steel 46
Nickel 60
Tin 66.8
Platinum 71.6
Iron 80.2
Brass 122
Zinc 116
Tungsten 173
Aluminum 237
Gold 318
Copper 401
Silver 429

CONNECTION:

Fourier’s law says that the 
rate of heat flow is propor-
tional to the temperature 
 gradient. Closely analogous 
is Poiseuille’s law for viscous 
fluid flow [Eq. (9-41)] in 
which the volume flow rate is 
proportional to the pressure 
gradient.

Fourier’s law of heat conduction

 𝒫 = κA 

ΔT

d
 (14-12)

where κ is the thermal conductivity of the material, A is the cross-sectional area, d is 
the thickness (or length) of the material, and ΔT is the temperature difference between 
one side and the other. The quantity ΔT/d is called the temperature gradient; it tells 
how many °C or K the temperature changes per unit of distance moved along the path 
of heat flow. Inspection of Eq. (14-12) shows that the SI units of κ are W/(m·K).

In Fig. 14.9b, a slab of material is shown that conducts heat because of a tempera-
ture difference between the two sides. We can rearrange Eq. (14-12) to solve for ΔT:

 ΔT = 𝒫  
d

κA
= 𝒫 R (14-13)

The quantity d/(κA) is called the thermal resistance R.

 R =
d

κA
 (14-14)

Thermal resistance has SI units of K/W (kelvins per watt). Notice that the thermal 
resistance depends on the nature of the material (through the thermal conductivity κ) 
and the geometry of the object (d/A). Equation (14-13) is useful for solving problems 
when heat flows through one material after another.

Conduction Through Two or More Materials in Series Suppose we have two 
layers of material between two temperature extremes as in Fig. 14.10. These layers 
are in series because the heat flows through one and then through the other. Looking 
at one layer at a time,

 T1 − T2 = 𝒫 R1 and T2 − T3 = 𝒫 R2 (14-15)

Then, adding the two together yields

 (T1 − T2) + (T2 − T3) = 𝒫 R1 + 𝒫 R2 (14-16)

 ΔT = T1 − T3 = 𝒫 (R1 + R2)  (14-17)

The rate of heat flow through the first layer is the same as the rate through the second 
layer because otherwise the temperatures would be changing. For n layers,

 ΔT = 𝒫 ∑Rn n = 1, 2, 3, . . . (14-18)

Equation (14-18) shows that the effective thermal resistance for layers in series is the 
sum of each layer’s thermal resistance.

CHECKPOINT 14.6

In	Fig.	14.10,	which	of	 the	 two	materials	has	 the	 larger	 thermal	conductivity?
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Thermal Conductivity of Air Air has a low thermal conductivity; it is an excellent 
thermal insulator when it is still. An accurate calculation of the energy loss through 
a single-paned window must take into account the thin layer of stagnant air, due to 
viscosity, on each side of the glass. If the temperature is measured near a window, 
the temperature of the air just beside the window is intermediate in value between the 
temperatures of the room air and the outside air (Fig. 14.11). Thus, the temperature 
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Figure 14.10 (a) Conduction 
of heat through two different 
layers (T1 > T2 > T3). (b) Graph 
of temperature T as a function 
of position x. The slope of the 
graph in either material is the 
temperature gradient ΔT/d in 
that material. The temperature 
gradients are not the same 
because the materials have dif-
ferent thermal conductivities.

Example 14.10

The Rate of Heat Flow Through Window Glass

A windowpane that measures 20.0 cm by 15.0 cm is set 
into the front door of a house. The glass is 0.32 cm thick. 
The temperature outdoors is −15°C and inside is 22°C. At 
what rate does heat leave the house through that one small 
window?

Strategy We assume one side of the glass to be at the 
temperature of the air inside the house and the other to be at 
the outdoor temperature.
Given: ΔT = 22°C − (−15°C) = 37°C; thickness of window-

pane d = 0.32 × 10−2 m; area of windowpane  
A = 0.200 m × 0.150 m = 0.0300 m2

Look up: thermal conductivity for glass = 0.63 W/(m·K)
Find: rate of heat flow, 𝒫 

Solution The temperature gradient is

ΔT

d
=

37°C
0.32 × 10−2 m

= 1.16 × 104 K/m

Now we have all the information we need to find the rate of 
conductive heat flow:

 𝒫 = κA
ΔT

d

 = 0.63 W/(m·K) × 0.0300 m2 × 1.16 × 104 K/m
 = 220 W

Discussion A loss of 220 W through one small window is 
significant. However, our assumption about the temperatures 
of the two glass surfaces exaggerates the temperature differ-
ence across the glass. In reality, the inside surface of the 
glass is colder than the air inside the house, and the outside 
surface is warmer than the air outside.

Practice Problem 14.10 An Igloo

A group of children build an igloo in their backyard. The 
snow walls are 0.30 m thick. If the inside of the igloo is at 
10.0°C and the outside is at −10.0°C, what is the rate of heat 
flow through the snow walls of area 14.0 m2?

22°C

–15°C

Window glass

Stagnant
air layers

T

x

Figure 14.11 Temperature 
variation on either side of a win-
dowpane. A plot of temperature 
versus position is superimposed 
on a cross section of the win-
dow glass and the air layers on 
either side.
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gradient across the glass is considerably smaller than the difference between indoor 
and outdoor temperatures. In fact, much of the thermal resistance of a window is due 
to the stagnant air layers rather than to the glass.

Example 14.11

Heat Loss Through a Double-Paned Window

The single-paned window of Example 14.10 is replaced by 
a double-paned window with an air gap of 0.50 cm between 
the two panes. The inner surface of the inner pane is at 
22°C and the outer surface of the outer pane is at −15°C. 
What is the new rate of heat loss through the double-paned 
window?

Strategy Now there are three layers to consider: two 
layers of glass and one layer of air. We find the thermal 
resistance of each layer and then add them together to 
find the total thermal resistance. Then we find the tem-
perature difference between the inside of the house and 
the air outdoors and divide by the total thermal resistance 
to find the rate at which heat is lost through the replace-
ment window.

Solution For the first layer of glass,

R1 =
d

κA
=

0.32 × 10−2 m
0.63 W/(m·K) × 0.0300 m2 = 0.169 K/W

For the air gap,

R1 =
d

κA
=

0.50 × 10−2 m
0.023 W/(m·K) × 0.0300 m2 = 7.246 K/W

The second layer of glass has the same thermal resistance as 
the first:

R3 = R1

The total thermal resistance is

∑  Rn = 0.169 + 7.246 + 0.169 = 7.584 K/W

and the rate of conductive heat flow is

𝒫 =
Q

Δt
=

ΔT

∑Rn

=
37 K

7.584 K/W
= 4.9 W

Discussion The reduction in the rate of heat loss by 
 replacing a single-paned window with a double pane is sig-
nificant. This example, however, overestimates the reduction 
since we assume that heat can only be conducted through the 
air layer. In reality, heat can also flow through air by convec-
tion and radiation. A more accurate calculation would have 
to account for the other methods of heat flow.

Practice Problem 14.11 Two Panes of Glass  
Without the Air Gap

Repeat Example 14.11 if the two panes of glass are touching 
one another, without the intervening layer of air.

R-Factors The U.S. building industry rates materials used in construction with 
R-factors. The R-factor is not quite the same as the thermal resistance; thermal resis-
tance cannot be specified without knowing the cross-sectional area. The R-factor is 
the thickness divided by the thermal conductivity:

 R-factor =
d

κ
= RA (14-19)

 
𝒫 

A
=

ΔT

R-factor
 (14-20)

Unfortunately, SI units are not commonly used. The R-factors quoted in the United 
States are in units of °F·ft2/(Btu/h)! R-factors are added, just as thermal resistances 
are, when heat flows through several different layers.

14.7 THERMAL CONVECTION

Convection involves fluid currents that carry heat from one place to another. In con-
duction, energy flows through a material but the material itself does not move. In 
convection, the material itself moves from one place to another. Thus, convection can 
occur only in fluids, not in solids. When a wood stove is burning, convection currents 
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in the air carry heat upward to the ceiling. The heated air is less dense than cooler air, 
so the buoyant force causes it to rise, carrying heat with it. Meanwhile, cooler air that 
is more dense sinks toward the floor. An example of convection currents at the seashore 
is shown in Fig. 14.12. Air is a poor conductor of heat, but it can easily flow and carry 
heat by convection. 

The use of sealed, double-paned windows replaces the large air gap of about 6 
or 7 cm between a storm window and regular window with a much smaller gap. The 
smaller air gap minimizes circulating convection currents between the two panes. 
Down jackets and quilts are good insulators because air is trapped in many little spaces 
among the feathers, minimizing heat flow due to convection. Materials such as rock 
wool, glass wool, or fiberglass are used to insulate walls; much of their insulating 
value is due to the air trapped around and between the fibers.

Natural and Forced Convection In natural convection, the currents are due to 
gravity. Fluid with a higher density sinks because the buoyant force is smaller than 
the weight; less dense fluid rises because the buoyant force exceeds the weight 
(Figs. 14.13 and 14.14). In forced convection, fluid is pushed around by mechanical 
means such as a fan or pump. In forced-hot-air heating, warm air is blown into rooms 
by a fan (Fig. 14.15); in hot water baseboard heating, hot water is pumped through 
baseboard radiators.

Application: Forced Convection in the Human Body Another example of forced 
convection is blood circulation in the body. The heart pumps blood around the body. 
When our body temperature is too high, the blood vessels near the skin dilate so that 
more blood can be pushed into them by the heart. The blood carries heat from the 
interior of the body to the skin; heat then flows from the skin into the cooler sur-
roundings. If the surroundings are hotter than the skin, such as in a hot tub, this 
strategy backfires and can lead to dangerous overheating of the body. The hot water 
delivers heat to the dilated blood vessels; the blood carries the heat back to the cen-
tral core of the body, raising the core temperature.

Application of Convection: Global Climate Change

Global warming—the increase in the global average surface temperature—does not 
necessarily mean that the climate of every region on Earth will get warmer. For 
example, some models predict that northern Europe might experience a colder 
 climate—a seeming contradiction that results from an interruption of the natural 
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Figure 14.12 (a) During the day, air coming off the ocean is heated as it passes over 
the warm ground on shore; the heated air rises and expands. The expansion cools the air; 
it becomes more dense and falls back down. This cycle sets up a convection current that 
brings cool breezes from the sea to the shore. (b) The reverse circulation occurs at night 
when the land is cold and the sea is warmer, retaining heat absorbed during the day.
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Figure 14.13 Convection  
currents in heated water. Heat 
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face of the pot by conduction 
and then heats the layer of water 
in contact with the pot bottom. 
The heated water is less dense, 
so buoyant forces make it rise, 
setting up convection currents.
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convection cycle. Earth’s climate is influenced by convection currents caused by 
temperature differences between the poles and the tropics (Fig. 14.16). Massive sea 
currents travel through the Pacific and Atlantic oceans, carrying about half of the 
heat from the tropics to the poles. Storms moving north from the tropics carry much 
of the rest of the heat. If the polar regions warm at a faster rate than the tropics, 
the smaller temperature difference between them changes the patterns of the prevail-
ing winds, the tracks followed by storms, the speed of ocean currents, and the 
amount of precipitation.

The melting of the ice shelves combined with increased precipitation could lead 
to a layer of freshwater lying on top of the more dense saltwater in the North Atlan-
tic. Normally, the cold ocean water at the surface sinks and starts the process of 
convection. With the buoyancy of the less dense freshwater layer keeping it from 
sinking, the convection currents slow down or are stopped. Without the pull of the 
convection current, the usual northward movement of water from the warm Gulf 
Stream would slow or cease, causing colder temperaturves in northern Europe.

Such an effect on climate is not without precedent. At the end of the last Ice Age, 
freshwater from melting glaciers flowed out the St. Lawrence River and into the North 
Atlantic. A freshwater layer, buoyed up by the more dense saltwater, disrupted the 
usual ocean currents. The Gulf Stream was effectively shut down and Europe experi-
enced a thousand years of deep freeze.

14.8 THERMAL RADIATION

All objects emit energy through electromagnetic radiation due to the oscillation of elec-
tric charges in the atoms. Thermal radiation consists of electromagnetic waves that travel 
at the speed of light. Unlike conduction and convection, radiation does not require a 
material medium; the Sun radiates heat to Earth through the near vacuum of space.

An object emits thermal radiation while absorbing some of the thermal radiation 
emitted by other objects. The rate of absorption may be less than, equal to, or greater 
than the rate of emission. When solar radiation reaches Earth, it is partially absorbed 
and partially reflected. Earth also emits radiation at nearly the same average rate that 
it absorbs energy from the Sun. If there were equal rates of absorption and emission, 
Earth’s average temperature would stay constant. However, increasing concentrations 
of CO2 and other “greenhouse gases” in Earth’s atmosphere cause energy to be emit-
ted at a slightly lower rate than it is absorbed. As a result, Earth’s average temperature 
is rising. Although the predicted temperature increase may seem small on an absolute 
scale, it will have dramatic consequences for life on Earth.
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Stefan’s Radiation Law

An idealized body that absorbs all the radiation incident upon it is called a blackbody. 
A blackbody absorbs not only all visible light, but infrared, ultraviolet, and all other 
wavelengths of electromagnetic radiation. It turns out (see Conceptual Question 23) 
that a good absorber is also a good emitter of radiation. A blackbody emits more 
radiant power per unit surface area than any real object at the same temperature. The 
rate at which a blackbody emits radiation per unit surface area is proportional to 
the fourth power of the absolute temperature, as expressed by Stefan’s law, named for 
the Slovene physicist Joseph Stefan (1835–1893):

radiation than it emits. Absorption increases internal energy 
while emission decreases it, so the alligator’s internal energy 
is increasing at a rate of 130 W. Thus, we expect the alliga-
tor’s body temperature to rise. (The actual rate of increase of 
internal energy would be smaller since conduction and con-
vection carry heat away as well.)

Conceptual Practice Problem 14.12  Maintaining 
Constant Temperature

After some time elapses, the alligator’s body temperature 
reaches a constant level. The rate of absorption is still 230 W. 
If the alligator loses heat by conduction and convection at a 
rate of 90 W, at what rate does it emit radiation?

Conceptual Example 14.12

 An Alligator Lying in the Sun

An alligator crawls out into the Sun to get warm. Solar radia-
tion is incident on the alligator at the rate of 300 W; 70 W of it 
is reflected. (a) What happens to the other 230 W? (b) If the 
alligator emits 100 W, does its body temperature rise, fall, or 
stay the same? Ignore heat flow by conduction and convection.

Solution and Discussion (a) When radiation falls on an 
object, some can be absorbed, some can be reflected, and—
for a transparent or translucent object—some can be trans-
mitted through the object without being absorbed or 
reflected. Since the alligator is opaque, no radiation is trans-
mitted through it. All the radiation is either absorbed or re-
flected, so the other 230 W is absorbed. (b) Since 230 W is 
absorbed while 100 W is emitted, the alligator absorbs more 

Stefan’s law of radiation (ideal blackbody)

 𝒫 = σAT 
4 (14-21)

In Eq. (14-21), A is the surface area and T is the surface temperature of the blackbody 
in kelvins. Since Stefan’s law involves the absolute temperature and not a temperature 
difference, °C cannot be substituted. The universal constant σ (Greek letter sigma) is 
called Stefan’s constant:

 σ = 5.670 × 10−8 W/(m2·K4)  (14-22)

The fourth-power temperature dependence implies that the power emitted is extremely 
sensitive to temperature changes. If the absolute temperature of an object doubles, the 
energy emitted increases by a factor of 24 = 16.

Emissivity Since real bodies are not perfect absorbers and therefore emit less than 
a blackbody, we define the emissivity (e) as the ratio of the emitted power of the body 
to that of a blackbody at the same temperature. Then Stefan’s law becomes

Stefan’s law of radiation

 𝒫 = eσAT 
4 (14-23)

The emissivity ranges from 0 to 1; e = 1 for a perfect radiator and absorber (a blackbody) 
and e = 0 for a perfect reflector. The emissivity for polished aluminum, an excellent 
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reflector, is about 0.05; for soot (carbon black) it is about 0.95. Equation (14-23) is 
a refinement of Stefan’s law, but it is still an approximation because it treats the emis-
sivity as a constant. Emissivity is actually a function of the wavelength of the emitted 
radiation. Equation (14-23) is useful when the emissivity is approximately constant 
over the range of wavelengths in which most of the power is radiated.

Human skin, no matter what the pigmentation, has an emissivity of about 0.97 in 
the infrared part of the spectrum. Many objects have high emissivities in the infrared 
even though they may reflect much of the visible light incident on them and, therefore, 
have low emissivities in the visible range.

Radiation Spectrum

The electromagnetic radiation we are concerned with falls into three wavelength 
ranges. Infrared radiation includes wavelengths from about 100 μm down to 0.7 μm. 
The wavelengths of visible light range from about 0.7 μm to about 0.4 μm. The 
familiar colors of the visible spectrum from longest to shortest wavelength are red, 
orange, yellow, green, blue, and violet. Ultraviolet wavelengths are less than 0.4 μm.

The total power radiated is not the only thing that varies with temperature. 
Figure 14.17 shows the radiation spectrum—a graph of how much radiation occurs 
as a function of wavelength—for blackbodies at two different temperatures. The 
wavelength at which the maximum power is emitted decreases as temperature 
increases. Objects at ordinary temperatures emit primarily in the infrared—around 
10 μm in wavelength for 300 K. The Sun, since it is much hotter, radiates primar-
ily at shorter wavelengths. Its radiation peaks in the visible (no surprise there) but 
includes plenty of infrared and ultraviolet as well. The wavelength of maximum 
radiation is inversely proportional to the absolute temperature:
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Figure 14.17 Graphs of 
blackbody radiation as a func-
tion of wavelength at two differ-
ent temperatures. At the higher 
temperature, the wavelength of 
maximum radiation is shorter 
(Wien’s law) and the total power 
radiated, represented by the  
area under the graph, increases 
(Stefan’s law).

Wien’s law

 λmaxT = 2.898 × 10−3 m·K (14-24)

where the temperature T is the temperature in kelvins and λmax is the wavelength of 
maximum radiation in meters. This relationship is named for the German physicist 
Wilhelm Wien (1864–1928).

As the temperature of a blackbody rises to 1000 K and above, the peak intensity 
shifts toward shorter wavelengths until a significant fraction of the emitted radiation 
falls in the visible part of the spectrum. The longest visible wavelengths are for red 
light, so the blackbody appears dull red. As the temperature of the blackbody contin-
ues to increase, the red glow becomes brighter red, then orange, then yellow-white, 
and eventually blue-white. “Red-hot” is not as hot as “white-hot.”

An incandescent lightbulb is a common example of thermal radiation. Electric 
current passes through a thin tungsten filament, which becomes hot enough to emit 
a significant fraction of its thermal radiation in the visible part of the spectrum.

EVERYDAY PHYSICS DEMO

Locate	an	 incandescent	 lightbulb	controlled	by	a	dimmer	switch.	The	dimmer	
works	by	 reducing	 the	current	 through	the	 filament;	as	a	 result	 the	 filament’s	
temperature	drops	and	 the	power	 radiated	decreases	 (Stefan’s	 law).	Observe	
that	 as	 the	 light	 dims,	 its	 color	 also	 changes,	 becoming	more	 reddish.	 At	 a	
lower	temperature,	the	spectrum	has	a	reduced	fraction	of	its	visible	radiation	
in	the	shorter	wavelengths	(blue,	violet)	and	an	increased	fraction	in	the	longer	
wavelengths	 (red,	orange).
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CHECKPOINT 14.8

A	distant	star	looks	reddish	in	color.	How	does	its	surface	temperature	compare	
with	the	Sun’s?	Can	you	determine	which	star	emits	radiation	at	a	higher	rate?

Example 14.13

Temperature of the Sun

The maximum rate of energy emission from the Sun occurs 
in the middle of the visible range—at about λ = 0.5 μm. 
 Estimate the temperature of the Sun’s surface.

Strategy We assume the Sun to be a blackbody. Then the 
wavelength of maximum emission and the surface tempera-
ture are related by Wien’s law.

Solution Given: λmax = 0.5 μm = 5 × 10−7 m. Then from 
Wien’s law, we know that the product of the wavelength for 
maximum power emission and the corresponding tempera-
ture for the power emission is

λmaxT = 2.898 × 10−3 m·K
We can solve for the temperature since we know λmax:

 T =
2.898 × 10−3 m·K

5 × 10−7 m
 = 6000 K

Discussion Quick check: an object at 300 K has  
λmax ≈ 10 μm, which is 20 times the λmax in the radiation 
from the Sun (0.5 μm). Since λmax and T are inversely 
 proportional, the Sun’s surface temperature is 20 times 
300 K = 6000 K.

Practice Problem 14.13  Wavelengths of 
 Maximum Power Emission for Skin

The temperature of skin varies from 30°C to 35°C depending 
on the blood flow near the skin surface. What is the range of 
wavelengths of maximum power emission from skin?

Simultaneous Emission and Absorption of Thermal Radiation

An object simultaneously emitting and absorbing thermal radiation has a net 
rate  of heat flow due to thermal radiation given by 𝒫 net = 𝒫 emitted − 𝒫 absorbed. 
 Suppose an object with surface area A and temperature T is bathed in thermal 
radiation coming from its surroundings in all directions that are at a uniform 
temperature Ts. Then the net rate of heat flow due to emission and absorption of 
thermal radiation is

 𝒫 net = eσAT 
4 − eσAT 

4
s = eσA(T 

4 − T 
4
s )  (14-25)

An object emits energy even if it is at the same temperature as its surroundings; it 
just emits at the same rate that it absorbs, so 𝒫 net = 0. If T > Ts, the object emits 
more thermal radiation than it absorbs. If T < Ts, the object absorbs more thermal 
radiation than it emits.

Why is the rate of absorption proportional to the emissivity? Because a good 
emitter is also a good absorber. The emissivity e measures not only how much the 
object emits compared to a blackbody, it also measures how much the object absorbs 
compared with a blackbody. A blackbody at the same temperature as its surroundings 
would have to absorb radiation at the rate 𝒫 absorbed = σAT4

s  to balance the rate of 
emission. However, emissivity does depend on temperature. Equation (14-25) assumes 
the emissivity at temperature T is the same as the emissivity at temperature Ts. If T 
and Ts are very different, we would have to modify Eq. (14-25) to use two different 
emissivities.
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Do not substitute temperature in Celsius degrees into Eq. (14-25). The quan-
tity inside the parentheses might look like a temperature difference, but it is not. 
The two kelvin temperatures are raised to the fourth power, then subtracted—
which is not the same as the corresponding two Celsius temperatures subjected to 
the same mathematical operations. By the same token, do not subtract the tem-
peratures in kelvins and then raise to the fourth power. The difference of the fourth 
powers is not equal to the difference raised to the fourth power, as can be readily 
demonstrated:

(24 − 14) = 15 but (2 − 1)4 = 1

Medical Applications of Thermal Radiation 

Thermal radiation from the body is used as a diagnostic tool in medicine. “Instant-
read” thermometers work by measuring the intensity of thermal radiation in 
the  patient’s ear. A thermogram shows whether one area is radiating more heat 
than it should, indicating a higher temperature due to abnormal cellular activity 
(Fig. 14.18). For example, when a broken bone is healing, heat can be detected 
at the location of the break just by placing a hand lightly on the area of skin 
over  the break. Infrared detectors, originally developed for military uses 
 (nightscopes, for example), can be used to detect radiation from the skin. The 
radiation is absorbed and an electrical signal is produced that is then used to 
produce a  visual display. Thermography has been used to screen travelers at 
 airports for the high fever that accompanies infection with severe acute respiratory 
syndrome (SARS).

Figure 14.18 Thermography 
can be used to detect foot-and-
mouth disease in cattle. In this 
false-color image, regions that 
emit the greatest intensity of 
thermal radiation are colored 
red. The elevated temperature 
of the hooves indicates foot-
and-mouth disease.
Photo by Craig Packer, USDA-ARS

Example 14.14

Thermal Radiation from the Human Body

 A person of body surface area 2.0 m2 is sitting in a 
doctor’s examining room with no clothing on. The tem-
perature of the room is 22°C and the person’s average skin 
temperature is 34°C. Skin emits about 97% as much as a 
blackbody at the same temperature for wavelengths in the 
infrared region, where most of the emission occurs. At 
what net rate is energy radiated away from the body?

Strategy Both radiation and absorption occur in the infrared—
the absolute temperatures of the skin and the room are not very 
different. Therefore, we can assume that 97% of the incident 
 radiation from the room is absorbed. Equation (14-25) therefore 
applies. We must convert the Celsius temperatures to kelvins.
Given:  surface area, A = 2.0 m2; Troom = 22°C; skin tempera-

ture, T = 34°C; fraction of energy emitted, e = 0.97
To find: net rate of energy transfer, 𝒫 net

Solution The temperature of the skin surface is
T = 273 + 34 = 307 K

and of the room is
Ts = 273 + 22 = 295 K

The net rate of energy transfer between the room and the body is
𝒫 net = eσA(T4 − T4

s )

We can now substitute numerical values:

 𝒫 net = 0.97 × 5.67 × 10−8 W/(m2·K4) × 2.0 m2 × (3074− 2954) K4

   = 140 W

Discussion This rate of heat loss is significant. To stay at 
a constant body temperature, an inactive person must give 
off heat at a rate of about 90 W to account for basal meta-
bolic activity; if the rate of heat loss exceeds that, the body 
temperature starts to drop. The patient had better wrap a 
blanket around his body or start running in place.

We need only the fraction of energy emitted and ab-
sorbed by the body; the emissivity of the walls of the room 
is irrelevant. If the walls are poor emitters, then they also 
absorb poorly, so they reflect radiation. The amount of radia-
tion incident on the body is the same.

Practice Problem 14.14  The Rollerblader 
 Radiates

Find how much energy per unit time a rollerblader loses 
by radiation from her body. Her skin temperature is 35°C 
and the air temperature is 30°C. Her surface area is 1.2 m2, 
of which 75% is exposed to the air. Assume skin has  
e = 0.97.
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Application of Thermal Radiation: Global Climate Change

Earth receives heat by radiation from the Sun. The atmosphere helps trap some of the 
radiation, acting rather like the glass in a greenhouse. When sunlight falls on the glass 
of a greenhouse, most of the visible radiation and short-wavelength infrared (near-
infrared) travel right on through; the glass is transparent to those wavelengths. The 
glass absorbs much of the incoming ultraviolet radiation. The radiation that gets 
through the glass is mostly absorbed inside the greenhouse. Since the inside of the 
greenhouse is much cooler than the Sun, it emits primarily infrared radiation (IR). 
The glass is not transparent to this longer-wavelength IR; much of it is absorbed by 
the glass. The glass itself also emits IR, but in both directions: half of it is emitted 
back inside the greenhouse. The absorption of IR by the glass keeps the greenhouse 
warmer than it would otherwise be. (The glass in a greenhouse has a second function 
not mirrored in Earth’s atmosphere—it prevents heat from being carried away by 
convection.)

Earth is something like a greenhouse, where the atmosphere fulfills the role 
of the glass. Like glass, the atmosphere is largely transparent to visible and near 
IR; the ozone layer in the upper atmosphere absorbs some of the ultraviolet. The 
atmosphere absorbs a great deal of the longer-wavelength IR emitted by Earth’s 
surface. The atmosphere radiates IR in two directions: back toward the surface and 
out toward space (Fig. 14.19). “Greenhouse gases” such as CO2 and water vapor 
are particularly good absorbers of IR. The higher the concentration of greenhouse 

Example 14.15

Radiative Equilibrium of Earth

Radiant energy from the Sun reaches Earth at a rate of 
1.7  × 1017 W. An average of about 30% is reflected, and 
the rest is absorbed. Energy is also radiated by the atmo-
sphere. Assuming equal rates of absorption and emission, 
and that the atmosphere emits as a blackbody in the infra-
red (e = 1), calculate the temperature of the atmosphere. 
(The Sun’s radiation peaks in the visible part of the spec-
trum, but Earth’s radiation peaks in the infrared due to its 
much lower surface temperature.)

Strategy Earth must radiate the same power as it absorbs. 
We use Stefan’s law to find the rate at which energy is radi-
ated as a function of temperature and then equate that to the 
rate of energy absorption.

Solution Earth absorbs 70% of the incident solar radia-
tion. To have a relatively constant temperature, it must emit 
radiation at the same rate:

𝒫 = 0.70 × 1.7 × 1017 W = 1.2 × 1017 W

From Stefan’s law,
𝒫 = eσAT4

where we take e = 1 since the atmosphere is assumed to emit 
as a blackbody. Earth’s surface area is

A = 4πR2
E

Solving Stefan’s law for T yields

T = (
𝒫 

eσA)
1/4

Now we substitute numerical values:

 T = (
𝒫 

eσ4πR2
E
)

1/4

 = [
1.2 × 1017 W

1 × 5.67 × 10−8 W/(m2·K4) × 4π(6.4 × 106 m)2]
1/4

 = 253 K = −20°C

Discussion Remember that −20°C is supposed to be the 
average temperature of the atmosphere, not of Earth’s sur-
face. This relatively simple calculation gives impressively 
accurate results. To find the temperature of Earth’s surface, 
we must take the greenhouse effect into account.

Practice Problem 14.15 Reflecting Less Incident 
Radiation

If Earth were to reflect 25% of the incident radiation instead 
of 30%, what would be the average temperature of the 
atmosphere?
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gases in the atmosphere, the more IR is absorbed and the warmer Earth’s surface 
becomes. Even small changes in the average surface temperature can have dramatic 
effects on climate.

In applying Stefan’s radiation law to Earth, there are some complications. One is 
the effect of the cloud cover. Clouds are quite reflective, but they are sometimes there 
and sometimes not. The heating of the lakes and oceans causes water to evaporate 
and form clouds. The clouds then serve as a screen and reflect sunlight away from 
Earth, reducing the temperature again.

UV

IR

IR emitted by
atmosphere

Visible

Atmosphere
Ozone 

Earth

From the Sun

IR emitted by Earth’s surface

Figure 14.19 The global 
greenhouse effect. In this simpli-
fied diagram, all the UV from 
the Sun is absorbed by the 
atmosphere, while all the visible 
and IR from the Sun is trans-
mitted. Earth absorbs the visible 
and IR and radiates longer-
wavelength IR. The longer-
wavelength IR is absorbed by 
the atmosphere, which itself 
radiates IR both back toward the 
surface and out toward space.

Master the Concepts

 ∙ The internal energy of a system is the total energy of all 
of the molecules in the system except for the macro-
scopic kinetic energy (kinetic energy associated with 
macroscopic translation or rotation) and the external po-
tential energy (energy due to external interactions).

 ∙ Heat is a flow of energy that occurs due to a temperature 
difference.

 ∙ The joule is the SI unit for all forms of energy, for heat, 
and for work. An alternative unit sometimes used for 
heat and internal energy is the calorie:

 1 cal = 4.186 J (14-1)

 ∙ The ratio of heat flow into a system to the temperature 
change of the system is the heat capacity of the system:

 Q = C ΔT  (14-2)

 ∙ The heat capacity per unit mass is the specific heat ca-
pacity (or specific heat) of a substance:

 c =
Q

m ΔT
 (14-3)

 ∙ The molar specific heat is the heat capacity per mole:

 CV =
Q

n ΔT
 (14-7)

  At room temperature, the molar heat capacity at con-
stant volume for a monatomic ideal gas is approximately 
CV = 3

2R, and for a diatomic ideal gas it is approxi-
mately CV = 5

2R.
 ∙ Phase transitions occur at constant temperature. The 

heat per unit mass that must flow to melt a solid or to 
freeze a liquid is the latent heat of fusion Lf. The latent 
heat of vaporization Lv is the heat per unit mass that 
must flow to change the phase from liquid to gas or 
from gas to liquid.

–25
0

125
100

T (°C)

Ice

Ice + water
Water

Melting

Boiling

Water + steam

52.3 386 Heat added (kJ)805 31113061

Steam

 ∙ Sublimation occurs when a solid changes directly to a 
gas without going into a liquid form.

 ∙ A phase diagram is a graph of pressure versus tempera-
ture that indicates solid, liquid, and gas regions for a 
substance. The sublimation, fusion, and vapor pressure 

continued on next page
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Master the Concepts continued

curves separate the three phases. Crossing one of these 
curves represents a phase transition.
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 ∙ Heat flows by three processes: conduction, convection, 
and radiation.

 ∙ Conduction is due to atomic (or molecular) collisions 
within a substance or from one object to another when 
they are in contact. The rate of heat flow within a sub-
stance is:

 𝒫 = κA 

ΔT

d
 (14-12)

  where 𝒫  is the rate 
of heat flow (or 
power delivered), κ 
is the thermal con-
ductivity of the ma-
terial, A is the cross- 
sectional area, d is 
the thickness (or 
length) of the material, and ΔT is the temperature differ-
ence between one side and the other.

 ∙ Convection involves fluid currents that carry heat from 
one place to another. In convection, the material itself 
moves from one place to another.

Chimney

Exhaust

Cold air

Hot air

Furnace

 ∙ Thermal radiation does not have to travel through a ma-
terial medium. The energy is carried by electromagnetic 
waves that travel at the speed of light. All bodies emit 
energy through electromagnetic radiation. An idealized 
object that absorbs all the radiation incident on it is 
called a blackbody. A blackbody emits more radiant 
power per unit surface area than any real object at the 
same temperature. Stefan’s law of thermal radiation is

 𝒫 = eσAT 
4 (14-23)

  where the emissivity e ranges from 0 to 1, A is the sur-
face area, T is the surface temperature in kelvins, and 
Stefan’s constant is σ = 5.670 × 10−8 W/(m2·K4). The 
wavelength of maximum power emission is inversely 
proportional to the absolute temperature:

 λmaxT = 2.898 × 10−3 m·K (14-24)

  The difference between the power emitted by the object 
and that absorbed by the object from its surroundings is 
the net power emitted:

 𝒫 net = eσA(T 
4 − T 

4
s )  (14-25)

Direction
of heat flow
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Tcold
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Conceptual Questions

 1. What determines the direction of heat flow when two 
objects at different temperatures are placed in thermal 
contact?

 2. When an old movie has a scene of someone ironing, the 
person is often shown testing the heat of a hot flat iron 
with a moistened finger. Why is this safe to do?

 3. Why do lakes and rivers freeze first at their surfaces?
 4. Why is drinking water in a camp located near the equa-

tor often kept in porous jars?
 5. Why are several layers of clothing warmer than one coat 

of equal weight?
 6. Why are vineyards planted along lakeshores or river-

banks in cold climates?
 7. A metal plant stand on a wooden deck feels colder than 

the wood around it. Is it necessarily colder? Explain.

 8. Near a large lake, in what direction does a breeze pass-
ing over the land tend to blow at night?

 9. What is the purpose of having fins on an automobile or 
motorcycle radiator?

 10. Why do roadside signs warn that bridges ice before 
roadways? Explain.

 11. Why do cooking directions on packages advise different 
timing to be followed for some locations?

 12. Explain the theory behind the pressure cooker. How 
does it speed up cooking times?

 13. When you eat a pizza that has just come from the oven, 
why is it that you are apt to burn the roof of your mouth 
with the first bite although the crust of the pizza feels 
only warm to your hand?

 14. Explain why the molar specific heat of a diatomic gas 
such as O2 is larger than that of a monatomic gas such 
as Ne.
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 15. At very low temperatures, the molar specific heat of 
hydrogen (H2) is CV = 1.5R. At room temperature, 
CV = 2.5R. Explain.

 16. When the temperature as measured in °C of a radiating 
object is doubled (such as a change from 20°C to 40°C), is 
the radiation rate necessarily increased by a factor of 16?

 17. A cup of hot coffee has been poured, but the coffee 
drinker has a little more work to do at the computer be-
fore she picks up the cup. She intends to add some milk 
to the coffee. To keep the coffee hot as long as possible, 
should she add the milk at once, or wait until just before 
she takes her first sip?

 18. Would heat loss be reduced or increased by increasing 
the air gap, usually about 1 cm, between commercially 
made double-paned windows? Explain your reasoning. 
[Hint: Consider convection.]

 19. A study of food preservation in Britain discovered that 
the temperature of meat that is kept in transparent plas-
tic packages and stored in open and lighted freezers can 
be as much as 12°C above the temperature of the freezer. 
Why is this? How could this be prevented?

 20. Which possesses more total internal energy, the water 
within a large, partially ice-covered lake in winter or a 
6 cup teapot filled with hot tea? Explain.

 21. A room in which the air temperature is held constant 
may feel warm in the summer but cool in the winter. 
Explain. [Hint: The walls are not necessarily at the same 
temperature as the air.]

 22. Many homes are heated with “radiators,” which are hollow 
metal devices filled with hot water or steam and located in 
each room of the house. They are sometimes painted with 
metallic, high-gloss silver paint so that they look well pol-
ished. Does this make them better radiators of heat? If not, 
what might be a more efficient finish to use?

 23. Two objects with the same surface area are inside an 
evacuated container. The walls of the container are kept 
at a constant temperature. Suppose one object absorbs a 
larger fraction of incident radiation than the other. Ex-
plain why that object must emit a correspondingly 
greater amount of radiation than the other. Thus a good 
absorber must be a good emitter.

 24. Even though heat is not a fluid, Eq. (14-13) has a close 
analogy in Poiseuille’s law, which describes the viscous 
flow of a fluid through a pipe (see Problem 9.68). 
(a)  Explain the analogy. (b) For two or more thermal 
conductors in series, the total thermal resistance is just 
the sum of the thermal resistances [Eq. (14-18)]. Is the 
total fluid flow resistance for two or more pipes in series 
equal to the sum of the resistances? Explain.

 25. In a conventional exterior wall, a 2 × 6 wooden stud is 
placed every 16 in. (A stud is an upright support.) The 
stud runs all the way from the exterior siding to the inte-
rior wall and the spaces between studs are filled with 
insulation. In offset stud wall construction, 2 × 4 studs 

are staggered as shown in the figure. Each stud connects 
with the exterior siding or the interior wall, but not both. 
Explain why an offset stud wall is much more energy 
efficient than a conventional wall of the same thickness 
and with the same insulation material.

16''

2 × 6 Studs

Conventional exterior wall

Insulation

16''

2 × 4 Studs

Offset stud construction

Insulation

 26.  (a) Why is the coolant fluid in an automobile kept 
under high pressure? (b) Why do radiator caps have 
safety valves, allowing you to reduce the pressure before 
removing the cap? [Hint: See Fig. 14.7a, the phase dia-
gram for water.]

Multiple-Choice Questions

 1. The main loss of heat from Earth is by
 (a) radiation.
 (b) convection.
 (c) conduction.
 (d)  All three processes are significant modes of heat loss 

from Earth.
 2. The average temperature of Earth’s atmosphere is 

253 K. What would be the eventual average temperature 
of Earth’s atmosphere if the power radiated by the Sun 
were to decrease by 10%?

 (a) 253 K
 (b) (0.90)1/4 × 253 K = 246 K
 (c) 0.90 × 253 K = 228 K
 (d) (0.90)4 × 253 K = 166 K
 3. Which term best represents the relation between a 

blackbody and radiant energy? A blackbody is an ideal 
_____ of radiant energy.

 (a) emitter (b) absorber
 (c) reflector (d) emitter and absorber
 4. If Mars orbits the Sun with an orbital radius that is 

1.5 times the orbital radius of Earth about the Sun, what 
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is the approximate atmospheric temperature of Mars? 
The atmospheric temperature of Earth is 253 K.

 (a) (253 K)/1.5 = 170 K (b) (253 K)/1.52 = 112 K
 (c) (253 K)/1.54 = 50 K (d) (253 K)/1.51/2 = 207 K
 5. Iron has a specific heat that is about 3.4 times that of 

gold. A cube of gold and a cube of iron, both of equal 
mass and at 20°C, are placed in two different Styrofoam 
cups, each filled with 100 g of water at 40°C. The Sty-
rofoam cups have negligible heat capacities. After equi-
librium has been attained,

 (a)  the temperature of the gold is lower than that of the 
iron.

 (b)  the temperature of the gold is higher than that of the 
iron.

 (c)  the temperatures of the water in the two cups are the 
same.

 (d)  Either (a) or (b), depending on the mass of the 
cubes.

 6. A window conducts power 𝒫  from a house to the cold 
outdoors. What power is conducted through a window 
of half the area and half the thickness?

 (a) 4𝒫   (b) 2𝒫   (c) 𝒫   (d) 𝒫 /2  (e) 𝒫 /4
 7. If you place your hand underneath, but not touching, a 

kettle of hot water, you mainly feel the presence of heat 
from

 (a) conduction.
 (b) convection.
 (c) radiation.
 8. Two thin rods are made from the same material and are 

of lengths L1 and L2. The two ends of the rods have the 
same temperature difference. What should the relation 
be between their diameters and lengths so that they con-
duct equal amounts of heat energy in a given time?

 (a) 
L1

L2
=

d1

d 2
 (b) 

L1

L2
=

d 2

d1

 (c) 
L1

L2
=

d 
2
1

d 
2
2
 (d) 

L1

L2
=

d 
2
2

d 
2
1

 9. Sublimation is involved in which of these phase 
changes?

 (a) liquid to gas (b) solid to liquid
 (c) solid to gas (d) gas to liquid
 10. When a gas condenses to a liquid,
 (a) its internal energy increases.
 (b) its temperature rises.
 (c) its temperature falls.
 (d) it gives off internal energy.
 11. When a substance is at its triple point, it
 (a) is in its solid phase.
 (b) is in its liquid phase.
 (c) is in its gas phase.
 (d) may be in any or all of these phases.

 12. The phase diagram for water is shown in the figure. If the 
temperature of a certain amount of ice is increased by 
following the path represented by the horizontal dashed 
line from A to B through point P, which of the graphs of 
temperature as a function of heat added is correct?
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Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

14.1 Internal Energy
 1.  A mass of 1.4 kg of water at 22°C is poured from a 

height of 2.5 m into a vessel containing 5.0 kg of water 
at 22°C. (a) How much does the internal energy of the 
6.4 kg of water increase? (b) Is it likely that the water 
temperature increases? Explain.

 2. The water passing over Victoria Falls, located along the 
Zambezi River on the border of Zimbabwe and Zambia, 
drops about 105 m. How much internal energy is pro-
duced per kilogram as a result of the fall?

 3. How much internal energy is generated when a 20.0 g 
lead bullet, traveling at 7.00 × 102 m/s, comes to a stop 
as it strikes a metal plate?

 4. Nolan threw a baseball, of mass 147.5 g, at a speed of 
162 km/h to a catcher. How much internal energy was 
generated when the ball struck the catcher’s mitt?

 5.  A child of mass 15 kg climbs to the top of a slide 
that is 1.7 m above a horizontal run that extends for 
0.50 m at the base of the slide. After sliding down, the 
child comes to rest just before reaching the very end of 
the horizontal portion of the slide. (a) How much inter-
nal energy was generated during this process? (b) Where 
did the generated energy go? (To the slide, to the child, 
to the air, or to all three?)
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 6. A 64 kg sky diver jumped out of an airplane at an alti-
tude of 0.90 km. She opened her parachute after a while 
and eventually landed on the ground with a speed of 
5.8 m/s. How much energy was dissipated by air resis-
tance during the jump?

 7.  During basketball practice Shane made a jump shot, 
releasing a 0.60 kg basketball from his hands at a height 
of 2.0 m above the floor with a speed of 7.6 m/s. The 
ball swooshes through the net at a height of 3.0 m above 
the floor and with a speed of 4.5 m/s. How much energy 
was dissipated by air drag from the time the ball left 
Shane’s hands until it went through the net?

14.2 Heat; 14.3 Heat Capacity and Specific Heat
 8. What is the heat capacity of 20.0 kg of silver?
 9. What is the heat capacity of a gold ring that has a mass 

of 5.00 g?
 10. What is the heat capacity of a 30.0 kg block of ice?
 11. What is the heat capacity of 1.00 m3 of aluminum?
 12. Convert 1.00 kJ to kilowatt-hours (kWh).
 13. If 125.6 kJ of heat are supplied to 5.00 × 102 g of water 

at 22°C, what is the final temperature of the water?
 14. Rank these six situations in order of the temperature 

increase, largest to smallest.
 (a) 1 kJ of heat into 400 g of steel with c = 0.45 kJ/(kg·K)
 (b) 2 kJ of heat into 400 g of steel
 (c) 2 kJ of heat into 800 g of steel
 (d)  1 kJ of heat into 400 g of aluminum with c =  

0.90 kJ/(kg·K)
 (e) 2 kJ of heat into 400 g of aluminum
 (f) 2 kJ of heat into 800 g of aluminum
 15. What is the heat capacity of a system consisting of 

(a) a 0.450 kg brass cup filled with 0.050 kg of water? 
(b) 7.5 kg of water in a 0.75 kg aluminum bucket?

 16. A 0.400 kg aluminum teakettle contains 2.00 kg of 
 water at 15.0°C. How much heat is required to raise the 
temperature of the water (and kettle) to 100.0°C?

 17.  How much heat is required to raise the body tem-
perature of a 50.0 kg woman from 37.0°C to 38.4°C?

 18. It takes 880 J to raise the temperature of 350 g of lead 
from 0°C to 20.0°C. What is the specific heat of lead?

 19. A mass of 1.00 kg of water at temperature T is poured 
from a height of 0.100 km into a vessel containing water 
of the same temperature T, and a temperature change of 
0.100°C is measured. What mass of water was in the ves-
sel? Ignore heat flow into the vessel, the thermometer, 
and so on.

 20. An experiment is conducted with a Joule apparatus (see 
Fig. 14.2). The hanging objects descend through a dis-
tance of 1.25 m each time. After 30 descents, a total of 
1.00 kJ has been delivered to the water. What is the total 
mass of the hanging objects?

 21. It is a damp, chilly day in a New England seacoast 
town suffering from a power failure. To warm up the 
cold, clammy sheets, Jen decides to fill hot water bot-
tles to tuck between the sheets at the foot of the beds. 
If she wishes to heat 2.0 L of water on the wood stove 
from 20.0°C to 80.0°C, how much heat must flow into 
the water?

 22.  An 83 kg man eats a banana of energy content 
418 kJ (100 kcal). If all of the energy from the banana is 
converted into kinetic energy of the man, how fast is he 
moving, assuming he starts from rest?

 23.  A high jumper of mass 60.0 kg consumes a meal of 
3.00 × 103 kcal prior to a jump. If 3.3% of the energy 
from the food could be converted to gravitational 
 potential energy in a single jump, how high could the 
athlete jump?

 24. A thermometer containing 0.10 g of mercury is cooled 
from 15.0°C to 8.5°C. How much energy left the mer-
cury in this process?

 25. A bit of space debris penetrates the hull of a spaceship 
traversing the asteroid belt and comes to rest in a con-
tainer of water that was at 20.0°C before being hit. The 
mass of the debris is 1.0 g and the mass of the water is 
1.0 kg. If the space rock traveled at 8.4 × 103 m/s with 
respect to the spaceship and if all of its kinetic energy is 
used to heat the water, what is the final temperature of 
the water?

 26. A 7.30 kg steel ball at 15.2°C is dropped from a height 
of 10.0 m into an insulated container with 4.50 L of 
water at 10.1°C. If no water splashes, what is the final 
temperature of the water and steel?

 27. A heating coil inside an electric kettle delivers 2.1 kW 
of electric power to the water in the kettle. How long 
will it take to raise the temperature of 0.50 kg of water 
from 20.0°C to 100.0°C?

14.4 Specific Heat of Ideal Gases
 28. A cylinder contains 250 L of hydrogen gas (H2) at 

0.0°C and a pressure of 10.0 atm. How much energy 
is  required to raise the temperature of this gas to 
25.0°C?

 29. A container of nitrogen gas (N2) at 23°C contains 
425 L at a pressure of 3.5 atm. If 26.6 kJ of heat are 
added to the container, what will be the new tempera-
ture of the gas?

 30.  Imagine that 501 people are present in a movie the-
ater of volume 8.00 × 103 m3 that is sealed shut so no air 
can escape. Each person gives off heat at an average rate 
of 110 W. By how much will the temperature of the air 
have increased during a 2.0 h movie? The initial pres-
sure is 1.01 × 105 Pa and the initial temperature is 
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20.0°C. Assume that all the heat output of the people 
goes into heating the air (a diatomic gas).

 31.  Jill takes in 0.021 mol of air in a single breath. The 
air is taken in at 20°C and exhaled at 35°C. (a) How 
much heat leaves her body in a single breath due to the 
temperature increase of the air? Ignore the humidifica-
tion of the air in the lungs and treat air as an ideal di-
atomic gas. (b) Her respiration rate is 14 breaths per 
minute. At what average rate does heat leave her body 
due to the temperature increase of the air? Compare this 
with 72 W, the total rate of heat loss from her body.

 32. A chamber with a fixed volume of 1.0 m3 contains a 
monatomic gas at 3.00 × 102 K. The chamber is heated 
to a temperature of 4.00 × 102 K. This operation  requires 
10.0 J of heat. (Assume all the energy is transferred to 
the gas.) How many gas molecules are in the chamber?

14.5 Phase Transitions
 33. As heat flows into a substance, its temperature changes 

according to the graph 
in the diagram. For 
which sections of the 
graph is the substance 
undergoing a phase 
change? For the sec-
tions you identified, 
what kind of phase 
change is occurring?

 34. Given these data, compute the heat of vaporization 
of  water. The specific heat capacity of water is  
4.186 J/(g·K).

Mass of calorimeter =  
 3.00 × 102 g

Specific heat of calorimeter =  
 0.380 J/(g·K)

Mass of water =  
 2.00 × 102 g

Initial temperature of water and  
 calorimeter = 15.0°C

Mass of condensed  
 steam = 18.5 g

Initial temperature of steam =  
 100.0°C
Final temperature of calorimeter 
 = 62.0°C

 35. Given these data, compute the heat of fusion of water. 
The specific heat capacity of water is 4.186 J/(g·K).

Mass of calorimeter =  
 3.00 × 102 g

Specific heat of calorimeter =  
 0.380 J/(g·K)

Mass of water =  
 2.00 × 102 g

Initial temperature of water and  
 calorimeter = 20.0°C

Mass of ice = 30.0 g Initial temperature of ice = 0°C
Final temperature of calorimeter =  
 8.5°C

 36.  In an emergency, it is sometimes the practice of 
medical professionals to immerse a patient who suffers 
from heat stroke in an ice bath, a mixture of ice and 
water in equilibrium at 0°C, in order to reduce her body 
temperature. (a) If a 75 kg patient whose body tempera-
ture is 40.8°C must have her temperature reduced to the 
normal range, how much heat must be removed? (b) If 
she is placed in a bath containing 7.5 kg of ice, will 
there be ice remaining in the bath when her body tem-
perature is 37.0°C? If so, how much? If not, what will 
the final water temperature be?

 37. In a physics lab, a student accidentally drops a 25.0 g 
brass washer into an open dewar of liquid nitrogen at 
77.2 K. How much liquid nitrogen boils away as the 
washer cools from 293 K to 77.2 K? The latent heat of 
vaporization for nitrogen is 199.1 kJ/kg.

 38. What mass of water at 25.0°C added to a Styrofoam cup 
containing two 50.0 g ice cubes from a freezer at −15.0°C 
will result in a final temperature of 5.0°C for the drink?

 39. How much heat is required to change 1.0 kg of ice, orig-
inally at −20.0°C, into steam at 110.0°C? Assume 
1.0 atm of pressure.

 40. Ice at 0.0°C is mixed with 5.00 × 102 mL of water at 
25.0°C. How much ice must melt to lower the water 
temperature to 0.0°C?

 41. Tina is going to make iced tea by first brewing hot tea, 
then adding ice until the tea cools. How much ice, at a 
temperature of −10.0°C, should be added to a 2.00 × 
10−4 m3 glass of tea at 95.0°C to cool the tea to 10.0°C? 
Ignore the temperature change of the glass.

 42. Repeat Problem 41 without ignoring the temperature 
change of the glass. The glass has a mass of 350 g and 
the specific heat of the glass is 0.837 kJ/(kg·K). By what 
percentage does the answer change from the answer for 
Problem 41?

 43. The graph shows the change in temperature as heat is 
supplied to a certain mass of ice initially at −80.0°C. 
What is the mass of the ice?
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 44. How many grams of aluminum at 80.0°C must be 
dropped into a hole in a block of ice at 0.0°C to melt 
10.0 g of ice?

 45.  Is it possible to heat the aluminum of Problem 44 to 
a high enough temperature so that it melts an equal mass 
of ice? If so, what temperature must the aluminum have?
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 46.  If a leaf is to maintain a temperature of 40°C (rea-
sonable for a leaf), it must lose 250 W/m2 by transpira-
tion (evaporative heat loss). Note that the leaf also loses 
heat by radiation, but we will ignore this. How much 
water is lost after 1 h through transpiration only? The 
area of the leaf is 0.005 m2.

 47.  A birch tree loses 618 mg of water per minute through 
transpiration (evaporation of water through stomatal 
pores). What is the rate of heat lost through transpiration?

 48. (a) How much ice at −10.0°C must be placed in 0.250 kg 
of water at 25.0°C to cool the water to 0°C and melt all 
of the ice? (b) If half that amount of ice is placed in the 
water, what is the final temperature of the water?

 49. A 75 g cube of ice at −10.0°C is placed in 0.500 kg of 
water at 50.0°C in an insulating container so that no heat 
is lost to the environment. Will the ice melt completely? 
What will be the final temperature of this system?

 50.  A 0.360 kg piece of solid lead at 20°C is placed into 
an insulated container holding 0.980 kg of liquid lead at 
420°C. The system comes to an equilibrium tempera-
ture with no loss of heat to the environment. Ignore the 
heat capacity of the container. (a) Is there any solid lead 
remaining in the system? (b) What is the final tempera-
ture of the system?

 51.   A dog loses a lot of heat through panting. The air 
rushing over the upper respiratory tract causes evapora-
tion and thus heat loss. A dog typically pants at a rate of 
around 300 pants per minute. As a rough calculation, 
assume that one pant causes 0.010 g of water to be evap-
orated from the respiratory tract. What is the rate of heat 
loss for the dog through panting?

 52.   A phase dia-
gram is shown. Start-
ing at point A, follow 
the dashed line to 
point E and consider 
what happens to the 
substance repre-
sented by this dia-
gram as its pressure 
and temperature are 
changed. (a) Explain 
what happens for 
each line segment, AB, BC, CD, and DE. (b) What is the 
significance of point a and of point b?

 53.  You are given 250 g of coffee (same specific heat as 
water) at 80.0°C (too hot to drink). In order to cool this 
to 60.0°C, how much ice (at 0.0°C) must be added? 
 Ignore the heat capacity of the cup and heat exchanges 
with the surroundings.

 54.  Compute the heat of fusion of a substance from these 
data: 31.15 kJ will change 0.500 kg of the solid at 21°C 
to liquid at 327°C, the melting point. The specific heat 
of the solid is 0.129 kJ/(kg·K).

14.6 Thermal Conduction
 55. (a) What thickness of cork would have the same R- factor 

as a 1.0 cm thick stagnant air pocket? (b) What thick-
ness of tin would be required for the same R-factor?

 56. A metal rod with a diameter of 2.30 cm and length of 
1.10 m has one end immersed in ice at 32.0°F and the 
other end in boiling water at 212°F. If the ice melts at a 
rate of 1.32 g every 175 s, what is the thermal conduc-
tivity of this metal? What metal could it be? Assume 
there is no heat lost to the surrounding air.

 57. Given a slab of material with area 1.0 m2 and thickness 
2.0 × 10−2 m, (a) what is the thermal resistance if the 
material is asbestos? (b) What is the thermal resistance 
if the material is iron? (c) What is the thermal resistance 
if the material is copper?

 58. A copper rod of length 
0.50 m and cross-sectional 
area 6.0 × 10−2 cm2 is con-
nected to an iron rod with 
the same cross section and 
length 0.25 m. One end of 
the copper is immersed in 
boiling water and the other end is at the junction with 
the iron. If the far end of the iron rod is in an ice bath at 
0°C, find the rate of heat transfer passing from the boil-
ing water to the ice bath. Assume there is no heat loss to 
the surrounding air.

 59. A wall that is 2.74 m high and 3.66 m long has a 
thickness composed of 1.00 cm of wood plus 3.00 cm 
of insulation (with the thermal conductivity approxi-
mately of wool). The inside of the wall is 23.0°C and 
the outside of the wall is at −5.00°C. (a) What is the 
rate of heat flow through the wall? (b) If half the area 
of the wall is replaced with a single pane of glass that 
is 0.500 cm thick, how much heat flows out of the 
wall now?

 60. Boiling water in an aluminum pan is being converted to 
steam at a rate of 10.0 g/s. The flat bottom of the pan has 
an area of 325 cm2 and the pan’s thickness is 3.00 mm. 
If 27.0% of all heat that is transferred to the pan from the 
flame beneath it is lost from the sides of the pan and the 
remaining 73.0% goes into the water, what is the tem-
perature of the base of the pan?

 61. Your hot water tank is insulated, but not very well. To 
reduce heat loss, you wrap some old blankets around it. 
With the water at 81°C and the room at 21°C, a ther-
mometer inserted between the outside of the original 
tank and your blanket reads 36°C. By what factor did 
the blanket reduce the heat loss?

 62. A copper rod has one end in ice at a temperature of 0°C, 
the other in boiling water. The length and diameter of 
the rod are 1.00 m and 2.00 cm, respectively. At what 
rate in grams per hour does the ice melt? Assume no 
heat flows out the sides of the rod.
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 63.  The thermal conductivity of the fur (including the 
skin) of a male Husky dog is 0.026 W/(m·K). The 
dog’s heat output is measured to be 51 W, its internal 
temperature is 38°C, its surface area is 1.31 m2, and 
the thickness of the fur is 5.0 cm. How cold can the 
outside temperature be before the dog must increase its 
heat output?

 64.  The thermal resistance of a seal’s fur and blubber 
combined is 0.33 K/W. If the seal’s internal temperature 
is 37°C and the temperature of the sea is about 0°C, 
what must be the heat output of the seal in order for it to 
maintain its internal temperature?

 65.  A hiker is wearing wool clothing of 0.50 cm thick-
ness to keep warm. Her skin temperature is 35°C and 
the outside temperature is 4.0°C. Her body surface area 
is 1.2 m2. (a) If the thermal conductivity of wool is 
0.040 W/(m·K), what is the rate of heat conduction 
through her clothing? (b) If the hiker is caught in a rain-
storm, the thermal conductivity of the soaked wool in-
creases to 0.60 W/(m·K) (that of water). Now what is 
the rate of heat conduction?

 66.  Find the temperature drop across the epidermis (the 
outer layer of skin) under these conditions: the rate of 
heat flow via conduction through a 10.0 cm2 area of the 
epidermis is 50 mW; the epidermis is 2.00 mm thick and 
has thermal conductivity 0.45 W/(m·K).

 67.   One cross-country skier is wearing a down jacket 
that is 2.0 cm thick. The thermal conductivity of goose 
down is 0.025 W/(m·K). Her companion on the ski out-
ing is wearing a wool jacket that is 0.50 cm thick. The 
thermal conductivity of wool is 0.040 W/(m·K). (a) If 
both jackets have the same surface area and the skiers 
both have the same body temperature, which one will 
stay warmer longer? (b) How much longer can the per-
son with the warmer jacket stay outside for the same 
amount of heat loss?

 68. Five walls of a house have different surface areas, insu-
lation materials, and insulation thicknesses. Rank them 
in order of the rate of heat flow through the wall, great-
est to smallest. Assume the same indoor and outdoor 
temperatures for each wall.

 (a)  area = 120 m2; 10 cm thickness of insulation with 
thermal conductivity 0.030 W/(m·K)

 (b)  area = 120 m2; 15 cm thickness of insulation with 
thermal conductivity 0.045 W/(m·K)

 (c)  area = 180 m2; 10 cm thickness of insulation with 
thermal conductivity 0.045 W/(m·K)

 (d)  area = 120 m2; 10 cm thickness of insulation with 
thermal conductivity 0.045 W/(m·K)

 (e)  area = 180 m2; 15 cm thickness of insulation with 
thermal conductivity 0.030 W/(m·K)

 69. For a temperature difference ΔT = 20.0°C, one slab of 
material conducts 10.0 W/m2; another of the same shape 
conducts 20.0 W/m2. What is the rate of heat flow per 

square meter of surface area when the slabs are placed 
side by side with ΔTtot = 20.0°C?

ΔTtot = 20.0°C10.0 W/m2 
for

ΔT = 20.0°C

20.0 W/m2 
for

ΔT = 20.0°C

 70.  A wall consists of a layer of wood and a layer of 
cork insulation of the same thickness. The temperature 
inside is 20.0°C, and the temperature outside is 0.0°C. 
(a) What is the temperature at the interface between the 
wood and cork if the cork is on the inside and the wood 
on the outside? (b) What is the temperature at the inter-
face if the wood is inside and the cork is outside? 
(c) Does it matter whether the cork is placed on the in-
side or the outside of the wooden wall? Explain.

T = ?

Outside

Cork Wood

Inside

T = 0.0°C T = 0.0°CT = 20.0°C T = 20.0°C

T = ?
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 71. A brick wall with thermal conductivity κ = 1.3 W/(m·K) 
is covered completely with a sheet of foam of the same 
thickness as the brick, but with κ = 0.025 W/(m·K). 
How is the rate at which heat is conducted through the 
wall changed by the addition of the foam?

14.8 Thermal Radiation
 72. If a blackbody is radiating at T = 1650 K, at what wave-

length is the maximum intensity?
 73. Wien studied the spectral distribution of many radiating 

bodies to finally discover a simple relation between wave-
length and intensity. Use the limited data shown in Fig. 14.17 
to find the constant predicted by Wien for the product of 
wavelength of maximum emission and  temperature.

 74. Six wood stoves have total surface areas A and surface 
temperatures T as given. Rank them in order of the 
power radiated, from greatest to least. Assume they all 
have the same emissivity.

 (a) A = 1.00 m2, T = 227°C (b) A = 1.01 m2, T = 227°C
 (c) A = 1.05 m2, T = 227°C (d) A = 1.00 m2, T = 232°C
 (e) A = 0.99 m2, T = 232°C (f) A = 0.98 m2, T = 232°C
 75. A sphere with a diameter of 80 cm is initially at a tem-

perature of 250°C. If the intensity of the radiation de-
tected at a distance of 2.0 m from the sphere’s center is 
102 W/m2, what is the emissivity of the sphere?

 76. An incandescent lightbulb has a tungsten filament that is 
heated to a temperature of 3.00 × 103 K when an  electric 



546 CHAPTER	14 Heat

current passes through it. If the surface area of the fila-
ment is approximately 1.00 × 10−4 m2 and it has an emis-
sivity of 0.32, what is the power radiated by the bulb?

 77. A tungsten filament in a lamp is heated to a temperature 
of 2600 K by an electric current. The tungsten has an 
emissivity of 0.32. What is the surface area of the fila-
ment if the lamp delivers 40.0 W of power?

 78.  A person of surface area 1.80 m2 is lying out in the 
sunlight to get a tan. If the intensity of the incident 
sunlight is 7.00 × 102 W/m2, at what rate must heat be 
lost by the person in order to maintain a constant body 
temperature? (Assume the effective area of skin ex-
posed to the Sun is 42% of the total surface area, 57% 
of the incident radiation is absorbed, and that internal 
metabolic processes contribute another 90 W for an 
inactive person.)

 79.  A student wants to lose some weight. He knows 
that  rigorous aerobic activity uses about 700 kcal/h 
(2900 kJ/h) and that it takes about 2000 kcal per day 
(8400 kJ) just to support necessary biological functions, 
including keeping the body warm. He decides to burn 
calories faster simply by sitting naked in a 16°C room 
and letting his body radiate calories away. His body has 
a surface area of about 1.7 m2, and his skin temperature 
is 35°C. Assuming an emissivity of 1.0, at what rate (in 
kcal/h) will this student “burn” calories?

 80.  A student in a lecture hall has 0.25 m2 of skin (arms, 
hands, and head) exposed. The skin is at 34°C and has 
an emissivity of 0.97. The temperature of the room is 
20°C (air, walls, ceiling, and floor all at the same tem-
perature). (a) At what rate does the skin emit thermal 
radiation? (b) At what rate does the skin absorb thermal 
radiation? (c) What is the net rate of heat flow from the 
body due to thermal radiation? Compare this to the total 
rate of heat flow from the body, about 100 W.

 81.  It is often argued that the head is the most important 
part of the body to cover when out in cold weather. Es-
timate the total energy loss by radiation if a person’s 
head is uncovered for 15 min on a very cold, −15°C day, 
assuming he is bald, his skin temperature is 35°C, and 
that skin has an emissivity (in the infrared) of 97%.

 82.  Consider the net rate of heat loss by radiation from 
exposed skin on a cold day. By what factor does the rate 
for an outdoor temperature of 0°C exceed the rate at 
5°C? Assume an initial skin temperature of 35°C.

 83.   A lizard of mass 3.0 g is warming itself in the 
bright sunlight. It casts a shadow of 1.6 cm2 on a piece 
of paper held perpendicularly to the Sun’s rays. The in-
tensity of sunlight at Earth is 1.4 × 103 W/m2, but only 
half of this energy penetrates the atmosphere and is ab-
sorbed by the lizard. (a) If the lizard has a specific heat 
of 4.2 J/(g·°C), what is the rate of increase of the lizard’s 
temperature? (b) Assuming that there is no heat loss by 
the lizard (to simplify), how long must the lizard lie in 
the Sun in order to raise its temperature by 5.0°C?

 84.   If the total power per unit area from the Sun inci-
dent on a horizontal leaf is 9.00 × 102 W/m2, and we as-
sume that 70.0% of this energy goes into heating the leaf, 
what would be the rate of temperature rise of the leaf? The 
specific heat of the leaf is 3.70 kJ/(kg·°C), the leaf’s area 
is 5.00 × 10−3 m2, and its mass is 0.500 g.

 85.   Consider the leaf of Problem 84. Assume that 
the top surface of the leaf absorbs 70.0% of 9.00 × 
102 W/m2 of radiant energy, while the bottom surface 
absorbs all of the radiant energy incident on it due to its 
surroundings at 25.0°C. (a) If the only method of heat 
loss for the leaf is thermal radiation, what would be the 
temperature of the leaf? (Assume that the leaf radiates 
like a blackbody.) (b) If the leaf is to remain at a tem-
perature of 25.0°C, how much power per unit area must 
be lost by other methods such as transpiration (evapora-
tive heat loss)?

 86. An incandescent lightbulb radiates at a rate of 60.0 W 
when the temperature of its filament is 2820 K. During 
a brownout (temporary drop in line voltage), the power 
radiated drops to 58.0 W. What is the temperature of the 
filament? Ignore changes in the filament’s length and 
cross-sectional area due to the temperature change.

 87. If the maximum intensity of radiation for a blackbody is 
found at 2.65 μm, what is the temperature of the black-
body?

 88. A black wood stove has a surface area of 1.20 m2 and a 
surface temperature of 175°C. What is the net rate at 
which heat is radiated into the room? The room 
 temperature is 20°C.

 89.  At a tea party, a coffeepot and a teapot are placed on 
the serving table. The coffeepot is a shiny silver-plated 
pot with emissivity of 0.12; the teapot is ceramic and 
has an emissivity of 0.65. Both pots hold 1.00 L of liq-
uid at 98°C when the party begins. If the room tempera-
ture is at 25°C, what is the rate of radiative heat loss 
from the two pots? [Hint: To find the surface area, ap-
proximate the pots with cubes of similar volume.]

Collaborative Problems

 90.   A scientist working late at night in her low- 
temperature physics laboratory decides to have a cup of 
hot tea, but discovers the lab hot plate is broken. Not to 
be deterred, she puts about 8 oz of water, at 12°C, from 
the tap into a lab dewar (essentially a large thermos bot-
tle) and begins shaking it up and down. With each shake 
the water is thrown up and falls back down a distance of 
33 cm. If she can complete 30 shakes per minute, how 
long will it take for the water to reach 87°C? Would this 
really work? If not, why not?

 91.    Small animals eat much more food per kilo-
gram of body mass than do larger animals. The basal 
metabolic rate (BMR) is the minimal energy intake 



 COMPREHENSIVE	PROBLEMS 547

 necessary to sustain life in a state of complete inactivity. 
The table lists the BMR in kilocalories per day, the mass, 
and the surface area for five animals. (a) Calculate the 
BMR per kilogram of body mass for each animal. Is it 
true that smaller animals must consume much more food 
per kilogram of body mass? (b) Calculate the BMR per 
square meter of surface area. (c) Can you explain why 
the BMR per square meter is approximately the same for 
animals of different sizes? Consider what happens to the 
food energy metabolized by an animal in a resting state.

Animal
BMR  

(kcal/d) Mass (kg)
Surface 

Area (m2)
Mouse 3.80 0.018 0.0032
Dog 770 15 0.74
Human 2050 64 2.0
Horse 4900 440 5.1

 92.    Imagine a person standing naked in a room 
at 23.0°C. The walls are well insulated, so they also are 
at 23.0°C. The person’s surface area is 2.20 m2, and his 
basal metabolic rate is 2167 kcal/day. His emissivity is 
0.97. (a) If the person’s skin temperature were 37.0°C 
(the same as the internal body temperature), at what net 
rate would heat be lost through radiation? (Ignore losses 
by conduction and convection.) (b) Clearly the heat 
loss  in (a) is not sustainable—but skin temperature is 
less than internal body temperature. Calculate the skin 
temperature such that the net heat loss due to radiation 
is equal to the basal metabolic rate. (c) Does wearing 
clothing slow the loss of heat by radiation, or does it 
only decrease losses by conduction and convection? 
Explain.

 93.  A copper bar of thermal conductivity 401 W/(m·K) 
has one end at 104°C and the other end at 24°C. The 
length of the bar is 0.10 m, and the cross-sectional area 
is 1.0 × 10−6 m2. (a) What is the rate of heat conduc-
tion 𝒫  along the bar? (b) What is the temperature 
 gradient in the bar? (c) If two such bars were placed 
in  series (end to end) between the same constant- 
temperature baths, what would 𝒫  be? (d) If two such 
bars were placed in parallel (side by side) with the 
ends in the same temperature baths, what would 𝒫  be? 
(e) In the series case, what is the temperature at the 
junction where the bars meet?

Comprehensive Problems

 94. A hotel room is in thermal equilibrium with the rooms 
on either side and with the hallway on a third side. The 
room loses heat primarily through a 1.30 cm thick glass 
window that has a height of 76.2 cm and a width of 
156 cm. If the temperature inside the room is 75°F and 

  the temperature outside is 32°F, what is the approximate 
rate (in kJ/s) at which heat must be supplied to the room 
to maintain a constant temperature of 75°F? Ignore the 
stagnant air layers on either side of the glass.

  95. While camping, some students decide to make hot 
chocolate by heating water with a solar heater that 
 focuses sunlight onto a small area. Sunlight falls on 
their solar heater, of area 1.5 m2, with an intensity of 
750 W/m2. How long will it take 1.0 L of water at 
15.0°C to rise to a boiling temperature of 100.0°C?

  96. Five ice cubes, each with a mass of 22.0 g and at a 
temperature of −50.0°C, are placed in an insulating 
container. How much heat will it take to change the ice 
cubes completely into steam?

  97. A 10.0 g iron bullet with a speed of 4.00 × 102 m/s and 
a temperature of 20.0°C is stopped in a 0.500 kg block 
of wood, also at 20.0°C, which is fixed in place. (a) At 
first all of the bullet’s kinetic energy goes into the in-
ternal energy of the bullet. Calculate the temperature 
increase of the bullet. (b) After a short time the bullet 
and the block come to the same temperature T. Calcu-
late T, assuming no heat is lost to the environment.

  98.  If the temperature surrounding the sunbather in 
Problem 78 is greater than the normal body tempera-
ture of 37°C and the air is still, so that radiation, con-
duction, and convection play no part in cooling the 
body, how much water (in liters per hour) from perspi-
ration must be given off to maintain the body tempera-
ture? The heat of vaporization of water is 2430 J/g at 
normal skin temperature.

  99.  Many species cool themselves by sweating, because 
as the sweat evaporates, heat is transferred to the sur-
roundings. A human exercising strenuously has an evap-
orative heat loss rate of about 650 W. If a person exercises 
strenuously for 30.0 min, how much water must he drink 
to replenish his fluid loss? The heat of vaporization of 
water is 2430 J/g at normal skin temperature.

 100. A wall consists of a layer of wood outside and a layer 
of insulation inside. The temperatures inside and out-
side the wall are +22°C and −18°C; the temperature at 
the wood/insulation boundary is −8.0°C. By what fac-
tor would the heat loss through the wall increase if the 
insulation were not present?

 101.  If 4.0 g of steam at 100.0°C condenses to water on 
a burn victim’s skin and cools to 45.0°C, (a) how much 
heat is given up by the steam? (b) If the skin was orig-
inally at 37.0°C, how much tissue mass was involved 
in cooling the steam to water? See Table 14.1 for the 
specific heat of human tissue.

 102.  If 4.0 g of boiling water at 100.0°C was splashed 
onto a burn victim’s skin and if it cooled to 45.0°C on 
the 37.0°C skin, (a) how much heat is given up by the 
water? (b) How much tissue mass, originally at 37.0°C, 
was involved in cooling the water? See Table 14.1. 
Compare the result with that found in Problem 101.
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 103. Two 62 g ice cubes are dropped into 186 g of water in 
a glass. If the water is initially at a temperature of 24°C 
and the ice is at −15°C, what is the final temperature 
of the drink?

 104. A 0.500 kg slab of granite is heated so that its tempera-
ture increases by 7.40°C. The amount of heat supplied 
to the granite is 2.93 kJ. Based on this information, 
what is the specific heat of granite?

 105. A spring of force constant k = 8.4 × 103 N/m is com-
pressed by 0.10 m. It is placed into a vessel containing 
1.0 kg of water and then released. Assuming all the 
energy from the spring goes into heating the water, 
find the change in temperature of the water.

 106. One end of a cylindrical iron rod of length 1.00 m and 
of radius 1.30 cm is placed in the blacksmith’s fire and 
reaches a temperature of 327°C. If the other end of the 
rod is being held in your hand (37°C), what is the rate 
of heat flow along the rod? The thermal conductivity 
of iron varies with temperature, but an average value 
between the two temperatures is 67.5 W/(m·K).

 107. A blacksmith heats a 0.38 kg piece of iron to 498°C in 
his forge. After shaping it into a decorative design, he 
places it into a bucket of water to cool. If the available 
water is at 20.0°C, what minimum amount of water 
must be in the bucket to cool the iron to 23.0°C? The 
water in the bucket should remain in the liquid phase.

 108. The student from Problem 79 realizes that standing na-
ked in a cold room will not give him the desired weight 
loss results since it is much less efficient than simply 
exercising. So he decides to “burn” calories through 
conduction. He fills the bathtub with 16°C water and 
gets in. The water right next to his skin warms up to the 
same temperature as his skin, 35°C, but the water only 
3.0 mm away remains at 16°C. At what rate (in kcal/h) 
would he “burn” calories? The thermal conductivity of 
water at this temperature is 0.58 W/(m·K). [Warning: 
Do not try this. Sitting in water this cold can lead to 
hypothermia and even death.]

 109. A 2.0 kg block of copper at 100.0°C is placed into 
1.0 kg of water in a 2.0 kg iron pot. The water and the iron 
pot are at 25.0°C just before the copper block is placed 
into the pot. What is the final temperature of the water, 
assuming negligible heat flow to the environment?

 110. A piece of gold of mass 0.250 kg and at a temperature 
of 75.0°C is placed into a 1.500 kg copper pot contain-
ing 0.500 L of water. The pot and water are at 22.0°C 
before the gold is added. What is the final temperature 
of the water?

 111. On a hot summer day, Daphne is off to the park for a 
picnic. She puts 0.10 kg of ice at 0°C in a thermos and 
then adds tea initially at 25°C. How much tea will just 
melt all the ice?

 112. The inner vessel of a calorimeter contains 2.50 × 102 g 
of tetrachloromethane, CCl4, at 40.00°C. The vessel is 

surrounded by 2.00 kg of water at 18.00°C. After a 
time, the CCl4 and the water reach the equilibrium tem-
perature of 18.54°C. What is the specific heat of CCl4?

 113.  A stainless steel saucepan, with a base that is made 
of 0.350 cm thick steel [κ = 46.0 W/(m·K)] fused to a 
0.150 cm thickness of copper [κ = 401 W/(m·K)], sits 
on a ceramic heating element at 104.00°C. The diam-
eter of the pan is 18.0 cm, and it contains boiling water 
at 100.00°C. (a) If the copper-clad bottom is touching 
the heat source, what is the temperature at the copper-
steel interface? (b) At what rate will the water evapo-
rate from the pan?

 114. It requires 17.10 kJ to melt 1.00 × 102 g of urethane 
[CO2(NH2)C2H5] at 48.7°C. What is the latent heat of 
fusion of urethane in kJ/mol?

Review and Synthesis

 115. A 20.0 g lead bullet leaves a rifle at a temperature of 
47.0°C and travels at a speed of 5.00 × 102 m/s until it 
hits a 6.0 kg block of ice at 0°C that is initially at rest on 
a frictionless surface. The bullet becomes embedded in 
the ice. (a) How fast is the the block of ice moving after 
the bullet is embedded? (b) How much ice melts?

 116. A star’s spectrum emits more radiation with a wave-
length of 700.0 nm than with any other wavelength. 
(a) What is the surface temperature of the star? (b) If 
the star’s radius is 7.20 × 108 m, what power does it 
radiate? (c) If the star is 9.78 ly from Earth, what will 
an Earth-based observer measure for this star’s inten-
sity? Stars are nearly perfect blackbodies. [Note: ly 
stands for light-years.]

 117.  A 3.0 L container of nitrogen gas (N2) and a 5.0 L 
container of oxygen gas (O2) are both at 20°C and 
1.0 atm. (a) Which gas has the larger rms speed? Ex-
plain. (b) At what temperature will oxygen gas have 
the same rms speed as nitrogen when the nitrogen is at 
20°C? (c) How much heat must flow into or out of the 
container of oxygen to change its temperature from 
20°C to the temperature you found in part (b)?

 118.  Two aluminum blocks are in thermal contact. 
(a)  Are the blocks necessarily in physical contact? 
 Explain. (b) If they have the same temperature, do they 
necessarily have the same internal energy? Explain. 
(c) If their internal energies are not equal, is there nec-
essarily a net energy transfer between the two blocks? 
Explain. (d) One block has mass 1.00 kg and tempera-
ture 40.0°C. The other has mass 3.00 kg and tempera-
ture 20.0°C. Find the final equilibrium temperature 
and the changes in internal energy of each block.

 119. A 60.0 g piece of ice slides 5.00 m down an icy roof 
inclined at 27.0° to the horizontal. The magnitude of 
its acceleration is 4.10 m/s2. All the ice is at 0°C. How 
much ice melts?
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 120.  A 75 kg block of ice at 0.0°C breaks off from a 
glacier, slides along the frictionless ice to the ground 
from a height of 2.43 m, and then slides along a hori-
zontal surface consisting of gravel and dirt. Find how 
much of the mass of the ice is melted by the friction 
with the rough surface, assuming 75% of the internal 
energy generated stays in the ice.

Answers to Practice Problems

14.1 4.9 J
14.2 Higher. The molecules have the same amount of ran-
dom translational kinetic energy plus the additional kinetic 
energy associated with the ball’s translation and rotation.
14.3 350 g
14.4 a minimum of $0.52
14.5 48°C
14.6 92 kJ
14.7 150 kJ
14.8 40 kJ
14.9 53.5 g
14.10 230 W
14.11 110 W
14.12 To maintain constant temperature, the net heat must 
be zero. The rate at which energy is emitted is 140 W.
14.13 9.4 μm (at 35°C) to 9.6 μm (at 30°C)
14.14 28 W
14.15 −16°C

Answers to Checkpoints

14.2 No, the temperature increase is not caused by heat 
flow. When you stretch the rubber band, you do work on it. 
Along with increasing its elastic potential energy, some of 
the work increases its internal energy and its temperature. (If 
you now put the rubber band down, heat does flow out of the 
rubber band, decreasing its internal energy and its tempera-
ture until it is in thermal equilibrium with its surroundings.)
14.3 The heat capacity of the washer is smaller than the heat 
capacity of the water, both because brass has a smaller spe-
cific heat than water and because the mass of the washer is 
less than the mass of the water. Therefore, heat flow out of 
the washer causes more of a temperature change than the 
same amount of heat flow into the water. The final tempera-
ture is less than 50°C.
14.5 The steam releases a large quantity of heat as it con-
denses into water on the skin. Much more energy is trans-
ferred to the skin than would be the case for the same amount 
of liquid water at 100°C.
14.6 The rate of heat flow through the two materials is the 
same, so the material with the larger thermal conductivity 
has the smaller temperature gradient. Figure 14.10b shows 
that the temperature gradient is smaller in the material on the 
left, so it has the larger thermal conductivity.
14.8 The red star’s surface temperature is lower than the 
Sun’s because the peak wavelength of emitted light is 
 longer. We can’t tell which emits radiation at a higher rate 
because that depends on surface area as well as on surface 
temperature.
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Thermodynamics

•	 conservation	of	energy	
(Section	6.1)

•	 internal	energy	and	heat	
(Sections	14.1–14.2)

•	 zeroth	law	of	
thermodynamics	
(Section 13.1)

•	 a	system	and	its	
surroundings	
(Section 14.1)

•	 work	done	is	the	area	
under	a	graph	of	Fx	
versus	x	(Section	6.6)

•	 heat	capacity	
(Section 14.3)

•	 the	ideal	gas	law	
(Section 13.5)

•	 specific	heat	of	ideal	
gases	at	constant	volume	
(Section	14.4)

•	 math skill:	natural	
logarithms	(Appendix	A.4)

Concepts & Skills to Review

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Entropy and evolution 
(Section 15.8)

∙ Changes in internal 
energy and entropy for 
biological processes 
(Example 15.1; 
Problems 67–70, 78, 
85, 96)
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The	 gasoline	 engines	 in	 cars	 are	 terribly	 inefficient.	 Of	 the	 chemical	
energy	 that	 is	 released	 in	 the	burning	 of	 gasoline,	 typically	 only	20%	
to	25%	 is	converted	 into	useful	mechanical	work	done	on	 the	car	 to	
move	 it	 forward.	 Yet	 scientists	 and	 engineers	 have	 been	 working	 for	
decades	 to	 make	 a	 more	 efficient	 gasoline	 engine.	 Is	 there	 some	
fundamental	limit	to	the	efficiency	of	a	gasoline	engine?	Is	it	possible	
to	make	 an	 engine	 that	 converts	 all—or	 nearly	 all—of	 the	 chemical	
energy	 in	 the	 fuel	 into	useful	work?
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15.1 THE FIRST LAW OF THERMODYNAMICS

Both work and heat can change the internal energy of a system. Work can be done 
on a rubber ball by squeezing it, stretching it, or slamming it into a wall. Heat will 
flow into the ball if it is left out in the Sun or put into a hot oven. These two meth-
ods of changing the internal energy of a system lead to the first law of thermodynamics:

First Law of Thermodynamics

The change in internal energy of a system is equal to the heat flow into the 
system plus the work done on the system.

The choice of a system is made in any way convenient for a given problem.
The first law is a specialized statement of energy conservation applied to a ther-

modynamic system, such as a gas inside a cylinder that has a movable piston. The 
gas can exchange energy with its surroundings in two ways. Heat can flow between 
the gas and its surroundings when they are at different temperatures, and work can 
be done on the gas when the piston is pushed in.

In equation form, we can write

First law of thermodynamics

 ΔU = Q + W  (15-1)

In Eq. (15-1), ΔU is the change in internal energy of the system. (The symbol U, 
previously used for potential energy, is used exclusively for internal energy in this 
chapter.) The internal energy can increase or decrease, so ΔU can be positive or 
negative. The signs of Q and W have the same meaning we have used in previous 
chapters. If heat flows into the system, Q is positive, but if heat flows out of the 
system, Q is negative. W represents the work done on the system, which can be 
positive or negative, depending on the directions of the applied force and the displace-
ment. Using the example of the gas in a cylinder, if the piston is pushed in, then the 
force on the gas due to the piston and the displacement of the gas are in the same 
direction (Fig. 15.1a) and W is positive. If the piston moves out, then the force and 
the displacement are in opposite directions, because the piston still pushes inward on 
the gas, and W is negative (Fig. 15.1b). Table 15.1 summarizes the meanings of the 
signs of ΔU, Q, and W.

The force on the piston due to the gas and the force on the gas due to the piston 
are interaction partners (equal in magnitude and opposite in direction). If we calculate 
the work done on the piston by the gas, the force is opposite in direction but the 
displacement is the same, so

 W (on gas by piston) = −W (on piston by gas)  (15-2)

Figure 15.1 (a) When a gas is compressed, the work done on the gas by the pis-
ton is positive; the work done on the piston by the gas is negative. (b) When a gas 
expands, the work done on the gas by the piston is negative; the work done on the 
piston by the gas is positive.

Displacement
of piston

Force on
gas due
to piston

(a)

Displacement
of piston

Force on
gas due
to piston

(b)

Displacement
of piston

Force on
gas due
to piston

(a)

Displacement
of piston

Force on
gas due
to piston

(b)

CONNECTION:

The first law is not a new 
principle—just a specialized 
form of energy conservation.

CONNECTION:

Our sign conventions for Q 
and W are consistent with 
their definitions in previous 
chapters (Chapter 6 for work 
and Chapter 14 for heat).
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Table 15.1 Sign Conventions for the First Law of Thermodynamics

Quantity Definition Meaning of + Sign Meaning of − Sign

Q Heat flow into the system Heat flows into the  
system

Heat flows out of the 
system

W Work done on the system Surroundings do 
positive work on the 
system

Surroundings do negative 
work on the system  
(system does positive work 
on the surroundings)

ΔU Internal energy change Internal energy 
increases

Internal energy decreases

The rate is negative because the internal energy is 
 decreasing. In 30 min, the internal energy change is

ΔU = −1130 J/s × 30 min × 60 s/min = −2.0 MJ

(b) Each serving of pasta supplies 1.0 MJ, so 2.0 servings 
would supply enough energy for the workout.

Discussion In Eq. (15-1), Q and W stand for the heat flow 
into the system and the work done on the system, respec-
tively. In this example heat flows out of the system and work 
is done by the system, so both Q and W are negative—they 
represent energy transfers out of the system.

Conceptual Practice Problem 15.1 Changing 
 Internal Energy of a Gas

While 14 kJ of heat flows into the gas in a cylinder with a 
moveable piston, the internal energy of the gas increases by 
42 kJ. Was the piston pulled out or pushed in? Explain. 
[Hint: Determine whether the piston does positive or nega-
tive work on the gas.]

Example 15.1

Working Out

 Katie works out on an elliptical trainer for 30 min. Dur-
ing the workout, she does work (pushing the machine with 
her feet) at an average rate of 220 W. Heat flows from her 
body into the surroundings by evaporation, convection, and 
radiation at an average rate of 910 W. (a) What is the change 
in her internal energy during the workout? (b) One serving 
of pasta supplies 1.0 MJ (240 kcal) of internal energy. How 
many servings of pasta would supply enough internal energy 
for the workout?

Strategy We will consider Katie to be the “system” and 
analyze the energy transfers into or out of this system. From 
conservation of energy, the internal energy of the system 
changes due to both work and heat.

Solution (a) The internal energy is decreasing by 220 J/s 
due to the work done by the system and by 910 J/s due to the 
heat flow out of the system. Therefore the rate of change of 
internal energy is

−(220 J/s + 910 J/s) = −1130 J/s

15.2 THERMODYNAMIC PROCESSES

A thermodynamic process is the method by which a system is changed from one state 
to another. The state of a system is described by a set of state variables such as 
pressure, temperature, volume, number of moles, and internal energy. State variables 
describe the state of a system at some instant of time but not how the system got to 
that state. Heat and work are not state variables—they describe how a system gets 
from one state to another.

The PV Diagram

If a system is changed so that it is always very near equilibrium, the changes in state 
can be represented by a curve on a plot of pressure versus volume (called a PV 
diagram). Each point on the curve represents an equilibrium state of the system. 
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The PV diagram is a useful tool for analyzing thermodynamic processes. One of the 
chief uses of a PV diagram is to find the work done on the system.

Work and Area Under a PV Curve Figure 15.2a shows the expansion of a gas, start-
ing with volume Vi and pressure Pi; Fig. 15.2b is the PV diagram for the process. In 
Fig. 15.2, the force exerted by the piston on the gas is downward, and the displacement 
of the gas is upward, so the piston does negative work on the gas. This work represents 
a transfer of energy from the gas to its surroundings. (Equivalently, we can say the gas 
does positive work on the piston.) The piston pushes against the gas with a force of mag-
nitude F = PA, where P is the pressure of the gas and A is the cross-sectional area of the 
piston. This force is not constant since the pressure decreases as the gas expands. As was 
shown in Section 6.6, the work done by a variable force is the area under a graph of Fx 
versus x. Can we find the work done on the gas from the area under a graph of P vs. V?

Imagine that the piston moves out a small distance d—small enough that the 
pressure change is insignificant. The work done on the gas is

 W = Fd cos 180° = −PAd  (15-3)

The volume change of the gas is
 ΔV = Ad (15-4)

So the work done on the gas is W = −P ΔV. The same reasoning applies to the work 
done on any system, as long as the pressure is constant.

Work done on a system (constant pressure)

 W = −P ΔV  (15-5)

To find the total work done on the gas, we add up the work done during each 
small volume change. During each small ΔV, the magnitude of the work done is the 
area of a thin strip of height P and width ΔV under the PV curve (Fig. 15.3). Therefore,

The magnitude of the total work done on a system is the area under the 
PV curve.

Volume change Work done on the system

Increase Negative
Decrease Positive
No change Zero

CONNECTION:

In Chapter 6, we saw that 
work is represented by the 
area under a graph of force 
versus displacement. Here we 
use the same concept; we just 
modify which variables are 
being graphed.

Figure 15.2 (a) Expansion of a gas from initial pressure Pi and volume Vi to final pressure Pf and volume Vf. During the 
expansion, negative work is done on the gas by the moving piston because the force exerted on the gas and the displacement 
are in opposite directions. (b) A PV diagram for the expansion shows the pressure and volume of the gas starting at the 
 initial values Pi, Vi, and ending at the final values Pf, Vf.

Initial state

Piston of
cross-sectional

area A

Final state

(a) (b)

Process

Vi Vf

Pi

Pf

P

V

Pi, Vi (initial state)

Pf, Vf (final state)

d

Pi, Vi
Pf, Vf
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The magnitude of the work done on a system depends on the path taken on the PV 
curve. Figures 15.4a and 15.4b show PV diagrams for two other possible paths between 
the same initial and final states as those of Fig. 15.3. The work done differs from one 
process to another, even though the initial and final states are the same in each case.

Work Done During a Closed Cycle Because the work done on a system depends 
on the path on the PV diagram, the net work done on a system during a closed cycle—
a series of processes that leave the system in the same state it started in—can be nonzero. 
The magnitude of the net work done during a cycle is the area inside the cycle on the 
PV diagram because it is the sum of the negative work done during expansion and 
the  positive work done during compression (Fig. 15.4c). A closed cycle during which 
the system does net work is the essential idea behind the heat engine (see Section 15.5).

Constant-Pressure Processes

A process by which the state of a system is changed while the pressure is held constant 
is called an isobaric process. The word isobaric comes from the same Greek root as 
the word “barometer.” In Fig. 15.4a, the first change of state from Vi to Vf along the 
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i i

VfVi

Pi
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V

Constant-pressure
expansion

Constant-
volume
process

Constant-pressure
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Constant-volume
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Compression

VfVi

Pi

Pf

(a) (b)

P

VVfVi
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Figure 15.4 (a) and (b) Two paths between the same initial and final states as the process shown in Fig. 15.3. 
The magnitude of the work done on the gas is equal to the area under the graph, and is negative because the volume 
increases. For (a), W = −Pi(Vf − Vi), and for (b), W = −Pf(Vf − Vi). Note that the work done depends on the path 
taken between the initial and final states. (c) A closed cycle. The work done on the gas from i to f is −Pi(Vf − Vi), as 
in (a). The work done from f back to i is +Pf(Vf − Vi), the same magnitude as in (b) but opposite in sign because we 
have reversed the process (compression instead of expansion). The net work done during the cycle is the sum of these: 
Wnet = −Pi(Vf − Vi) + Pf(Vf − Vi)   = −(Pi − Pf)(Vf − Vi). The magnitude of Wnet is the area of the shaded rectangle, 
and the sign is negative because the negative work done during expansion (i to f ) is larger in magnitude than the 
positive work done during compression (f to i).
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Process Magnified view
of one strip
under PV curve

Vi Vf
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P

V

P ΔV

P

Figure 15.3 (a) The area under the PV curve is divided into many narrow strips 
of width ΔV and of varying heights P. The sum of the areas of the strips is the 
total area under the PV curve, which represents the magnitude of the work done on 
the gas. (b) An enlarged view of one strip under the curve. If the strip is very 
 narrow, we can ignore the change in P and approximate its area as P ΔV.
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line from 1 to 2 occurs at the constant pressure P = Pi. A constant-pressure process 
appears as a horizontal line on the PV diagram. The work done on the gas is

 W = −P(Vf − Vi) = −P ΔV (constant pressure)  (15-6)

Constant-Volume Processes

A process by which the state of a system is changed while the volume remains constant 
is called an isochoric process. Such a process is illustrated in Fig. 15.4a when the system 
moves along the line from 2 to 3 as the pressure changes from Pi to Pf at the constant 
volume Vf. No work is done during a constant-volume process; without a displacement, 
work cannot be done. The area under the PV curve—a vertical line—is zero:

 W = 0   (constant volume) (15-7)

If no work is done, then from the first law of thermodynamics, the change in internal 
energy is equal to the heat flow into the system:

 ΔU = Q   (constant volume) (15-8)

Constant-Temperature Processes

A process in which the temperature of the system remains constant is called an 
 isothermal process. On a PV diagram, a path representing a constant-temperature 
process is called an isotherm (Fig. 15.5). All the points on an isotherm represent 
states of the system with the same temperature.

How can we keep the temperature of the system constant? One way is to put the 
system in thermal contact with a constant-temperature bath or with a heat reservoir 
(something with a heat capacity so large that it can exchange heat in either direction 
without changing its temperature significantly). Then as long as the state of the system 
does not change too rapidly, the heat flow between the system and the reservoir keeps 
the system’s temperature constant.

Adiabatic Processes

A process in which no heat is transferred into or out of the system is called an  adiabatic 
process. An adiabatic process is not the same as a constant-temperature (isothermal) 
process. In an isothermal process, heat flow into or out of a system is necessary to 
maintain a constant temperature. In an adiabatic process, no heat flow occurs, so if work 
is done, the temperature of the system may change. One way to perform an adiabatic 
process is to completely insulate the system so that no heat can flow in or out; another 
way is to perform the process so quickly that there is no time for heat to flow in or out.

For example, the compressions and rarefactions caused by a sound wave occur 
so fast that heat flow from one place to another is negligible. Hence, the compressions 
and rarefactions are adiabatic. Isaac Newton made a now-famous error when he 
assumed that these processes were isothermal and calculated a speed of sound that 
was about 20% lower than the measured value.

From the first law of thermodynamics, when no heat flows the change in internal 
energy is equal to the work done on the system:

 ΔU = W   (adiabatic)  (15-9)

Table 15.2 summarizes all of the thermodynamic processes discussed.

CHECKPOINT 15.2

(a)	Can	an	adiabatic	process	cause	a	change	 in	 temperature?	Explain.	 (b)	Can	
heat	flow	during	an	isothermal	process?	(c)	Can	the	internal	energy	of	a	system	
change	during	an	 isothermal	process?

Figure 15.5 Isotherms for a 
sample of an ideal gas at two 
different temperatures. Each 
isotherm is a graph of 
P = nRT/V for a  constant 
temperature. The shaded area 
represents the work done by 
the gas during an  isothermal 
compression at  temperature T2, 
which is  positive. (The work 
done by the gas during an 
isothermal  expansion would be 
negative.)
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P

V 

T2 > T1

Isotherms

Isothermal
compressionf

i

ViVf

Pf
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15.3 THERMODYNAMIC PROCESSES FOR AN IDEAL GAS

Constant Volume

Figure 15.6 is a PV diagram for heat flow into an ideal gas at constant volume. Since 
the temperature of the gas changes, the initial and final states are shown as points on 
two different isotherms. (Note that the higher-temperature isotherm is farther from the 
origin.) The area under the vertical line is zero; no work is done when the volume is 
constant. With W = 0, the heat flow increases the internal energy of the gas, so the 
temperature increases.

In Section 14.4, we discussed the molar specific heat of an ideal gas at constant 
volume. The first law of thermodynamics enables us to calculate the internal energy 
change ΔU. Since no work is done during a constant-volume process, ΔU = Q. For 
a constant-volume process, Q = nCV ΔT and, therefore, ΔU = nCV ΔT.

Internal energy is a state variable—its value depends only on the current state of 
the system, not on the path the system took to get there. Therefore, as long as the 
number of moles is constant, the internal energy of an ideal gas changes only when 
the temperature changes. Equation (15-10) therefore gives the internal energy change 
of an ideal gas for any thermodynamic process, not just for constant-volume processes.

 ΔU = nCV  
ΔT (ideal gas, any process)  (15-10)

Because we are concerned only with changes in internal energy, we can define 
the internal energy to be zero at T = 0. With this choice, the internal energy of an 
ideal gas at absolute temperature T is
 U = nCVT (ideal gas)  (15-11)

Constant Pressure

Another common situation occurs when the pressure of the gas is constant. In this 
case, work is done because the volume changes. The first law of thermodynamics 
enables us to calculate the molar specific heat at constant pressure (CP), which is 
different from the molar specific heat at constant volume (CV).

Figure 15.7 shows a PV diagram for the constant-pressure expansion of an ideal 
gas starting and ending at the same temperatures as for the constant-volume process 
of Fig. 15.6. Applying the first law to the constant-pressure process requires that

ΔU = Q + W

where the work done on the gas is, from the ideal gas law,

 W = −P ΔV = −nR Δ T  (15-12)

The definition of CP is

 Q = nCP  
Δ

 
T  (15-13)

Substituting Q and W into the first law, we obtain

 ΔU = nCP  
Δ

 
T − nR Δ T  (15-14)

CONNECTION:

Section 15.2 described some 
general aspects of various 
thermodynamic processes. 
Now we find out what 
happens when the system 
undergoing the process is an 
ideal gas.

Figure 15.6 A PV diagram 
for a constant-volume process 
for an ideal gas. Every point on 
an isotherm (red dashed lines) 
represents a state of the gas at 
the same temperature.

Constant-
volume
process

Isotherms:

Ti

Vi

Pi

Pf

Tf = Ti + ΔT

P = nRTf /V
P = nRTi /V

P

V

f

i

Table 15.2 Summary of Thermodynamic Processes

Process Name Condition Consequences

Constant temperature Isothermal T = constant ( For an ideal gas, ΔU = 0)
Constant pressure Isobaric P = constant W = −P ΔV

Constant volume Isochoric V = constant W = 0; ΔU = Q
No heat flow Adiabatic Q = 0 ΔU = W
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Figure 15.7 A PV diagram 
of a constant-pressure expansion 
of an ideal gas. Heat flows into 
the ideal gas (Q > 0). The 
increase in the internal energy 
ΔU is less than Q because 
negative work is done on the 
expanding gas by the piston. 
The work done on the gas is 
the negative of the shaded area 
under the path.

Constant-
pressure
process

Isotherms

f

i

Vi Vf

Vi

Vf

P

Tf = Ti + ΔTTiP

V 

Since the internal energy of an ideal gas is determined by its temperature, ΔU for this 
constant-pressure process is the same as ΔU for the constant-volume process between 
the same two temperatures:
 ΔU = nCV 

Δ
 
T  (15-15)

Then
 nCV  

ΔT = nCP  
Δ

 
T − nR Δ T  (15-16)

Canceling common factors of n and ΔT, this reduces to
 CP = CV + R (ideal gas)  (15-17)
Since R is a positive constant, the molar specific heat of an ideal gas at constant 
pressure is larger than the molar specific heat at constant volume.

Is this result reasonable? When heat flows into the gas at constant pressure, the 
gas expands, doing work on the surroundings. Thus, not all of the heat goes into 
increasing the internal energy of the gas. More heat has to flow into the gas at constant 
pressure for a given temperature increase than at constant volume.

is CV = 3
2R. The molar specific heat at constant pressure is 

then CP = CV + R = 5
2R. Then the heat flow into the gas 

during its expansion is Q = nCP Δ T.

Solution The ideal gas law is

PV = nRT

Using the initial volume and temperature, we can solve for the 
number of moles:

n =
PVi

RTi

Example 15.2

Warming a Balloon at Constant Pressure

A weather balloon is filled with helium gas at 20.0°C and 
1.0 atm of pressure. The volume of the balloon after filling 
is measured to be 8.50 m3. The helium is heated until its 
temperature is 55.0°C. During this process, the balloon 
expands at constant pressure (1.0 atm). What is the heat 
flow into the helium?

Strategy We can find how many moles of gas n are pres-
ent in the balloon by using the ideal gas law. For this prob-
lem, we consider the helium to be a system. Helium is a 
monatomic gas, so its molar specific heat at constant volume 

continued on next page
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For an ideal gas at constant pressure, the heat required to 
change the temperature is

Q = nCP  
Δ

 
T

where CP = 5
2R. The temperature change is

ΔT = 55.0°C − 20.0°C = 35.0 K

The initial pressure, volume, and temperature are P = 
1.0 atm = 1.01 × 105 Pa, Vi = 8.50 m3, and Ti = 273 K + 
20.0°C = 293 K. Then

Q = nCP  
Δ

 
T = (

PVi

RTi)(
5
2

R)Δ T

=
5
2(

1.01 × 105 Pa × 8.50 m3

293 K )(35.0 K) = 260 kJ

Discussion We do not have to find the work done on the 
gas separately and then subtract it from the change in 
internal energy to find Q. The work done is already ac-
counted for by the molar specific heat at constant pressure. 
This simplifies the problem since we use the same method 
for constant pressure as we use for constant volume; the only 
change is the choice of CV or CP.

Practice Problem 15.2 Air Instead of Helium

Suppose the balloon were filled with dry air instead of 
helium. Find Q for the same temperature change. (Dry air 
is mostly N2 and O2, so assume an ideal diatomic gas.)

Example 15.2 continued

Constant Temperature

For an ideal gas, we can plot isotherms using the ideal gas law PV = nRT (see  
Fig. 15.5). Since the change in internal energy of an ideal gas is proportional to the 
temperature change,

 ΔU = 0 (ideal gas, isothermal process)  (15-18)

From the first law of thermodynamics, ΔU = 0 means that Q = −W. Note that 
Eq. (15-18) is true for an ideal gas at constant temperature. Other systems can change 
internal energy without changing temperature; one example is when the system under-
goes a phase change.

It can be shown (using calculus to find the area under the PV curve) that the 
work done on an ideal gas during a constant-temperature expansion or contraction 
from volume Vi to volume Vf is

 W = nRT ln 
Vi

Vf
 (ideal gas, isothermal)  (15-19)

In Eq. (15-19), “ln” stands for the natural (or base-e) logarithm.

continued on next page

Example 15.3

Constant-Temperature Compression  
of an Ideal Gas

An ideal gas is kept in thermal contact with a heat reservoir 
at 7°C (280 K) while it is compressed from a volume of 
20.0 L to a volume of 10.0 L (Fig. 15.8). During the com-
pression, an average force of 33.3 kN is used to move the 
piston a distance of 0.15 m. How much heat is exchanged 
between the gas and the reservoir? Does the heat flow into or 
out of the gas?

Strategy We can find the work done on the gas from the 
average force applied and the distance moved. For isother-
mal compression of an ideal gas, ΔU = 0. Then Q = −W.

Solution The work done on the gas is

W = fd = 33.3 kN × 0.15 m = 5.0 kJ

This work adds 5.0 kJ to the internal energy of the gas. Then 
5.0 kJ of heat must flow out of the gas if its internal energy 
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15.4 REVERSIBLE AND IRREVERSIBLE PROCESSES

Have you ever wished you could make time go backward? Perhaps you accidentally 
broke an irreplaceable treasure in a friend’s house, or missed a one-time opportunity 
to meet your favorite movie star, or said something unforgivable to someone close to 
you. Why can’t the clock be turned around?

Imagine a perfectly elastic collision between two billiard balls. If you were to 
watch a movie of the collision, you would have a hard time telling whether the movie 
was being played forward or backward. The laws of physics for an elastic collision 
are valid even if the direction of time is reversed. Since the total momentum and the 
total kinetic energy are the same before and after the collision, the reversed collision 
is physically possible.

The perfectly elastic collision is one example of a reversible process. A revers-
ible process is one that does not violate any laws of physics if “played in reverse.” 
Most of the laws of physics do not distinguish forward in time from backward in 
time. A projectile moving in the absence of air resistance (on the Moon, say) is 
reversible: if we play the movie backward, the total mechanical energy is still 
 conserved and Newton’s second law Σ F→ = ma→ still holds at every instant in the 
projectile’s trajectory.

Notice the caveats in the examples: “perfectly elastic” and “in the absence of air 
resistance.” If friction or air resistance is present, then the process is irreversible. If 
you played backward a movie of a projectile with noticeable air resistance, it would 
be easy to tell that something is wrong. The force of air resistance on the projectile 
would act in the wrong direction—in the direction of the velocity, instead of opposite 
to it. The same would be true for sliding friction. Slide a book across the table; friction 
slows it down and brings it to rest. The macroscopic kinetic energy of the book—due 
to the orderly motion of the book in one direction—has been converted into disordered 

does not change. The work done on the gas is positive since 
the piston is pushed with an inward force as it moves inward.

Q = −W = −5.0 kJ

Since positive Q represents heat flow into the gas, the 
negative sign tells us that heat flows out of the gas into the 
reservoir.

Discussion Although the temperature remains constant 
during the process, it does not mean that no heat flows. To 
maintain a constant temperature when work is done on the 
gas, some heat must flow out of the gas. If the gas were 
thermally isolated so no heat could flow, then the work done 
on the gas would increase the internal energy, resulting in an 
increase in the temperature of the gas.

Practice Problem 15.3 Work Done During 
 Constant-Temperature Expansion of a Gas

Suppose 2.0 mol of an ideal gas are kept in thermal contact 
with a heat reservoir at 57°C (330 K) while the gas expands 
slowly from a volume of 20.0 L to a volume of 40.0 L. Does 
heat flow into or out of the gas? How much heat flows? 
[Hint: Use Eq. (15-19).] 

Example 15.3 continued

Figure 15.8
Isothermal compression of an ideal gas. Thermal contact with a 
heat reservoir keeps the gas at a constant temperature.

f
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energy associated with the random motion of molecules; the table and book will be at 
slightly higher temperatures. The reversed process certainly would never occur, even 
though it does not violate the first law of thermodynamics (energy conservation). We 
would not expect a slightly warmed book placed on a slightly warmed table surface to 
spontaneously begin to slide across the table, gaining speed and cooling off as it goes, 
even if the total energy is the same before and after. It is easy to convert ordered energy 
into disordered energy, but not so easy to do the reverse. The presence of energy dis-
sipation (sliding friction, air resistance) always makes a process irreversible.

As another example of an irreversible process, imagine placing a container of 
warm lemonade into a cooler with some ice (Fig. 15.9). Some of the ice melts and 
the lemonade gets cold as heat flows out of the lemonade and into the ice. The reverse 
would never happen: putting cold lemonade into a cooler with some partially melted 
ice, we would never find that the lemonade gets warmer as the liquid water freezes. 
Spontaneous heat flow from a hotter system to a colder system is always irreversible.

lemonade would remain unchanged—energy would be con-
served. The process would never occur, but not because en-
ergy conservation would be violated.

Conceptual Practice Problem 15.4 A Campfire

On a camping trip, you gather some twigs and logs and 
start a fire. Discuss the campfire in terms of irreversible 
processes.

Conceptual Example 15.4

Irreversibility and Energy Conservation

Suppose heat did flow spontaneously from the cold ice to 
the warm lemonade, making the ice colder and the lemon-
ade warmer. Would conservation of energy be violated by 
this process?

Solution and Discussion Heat flow from the ice to the 
lemonade would increase the internal energy of the lemon-
ade by the same amount that the internal energy of the ice 
would decrease. The total internal energy of the ice and the 

Figure 15.9 Spontaneous 
heat flow goes from warm to 
cool; the reverse does not 
 happen spontaneously.

Warm

Spontaneous heat flow

Cold

Reverse heat flow does not
happen spontaneously

Warm Cold

Warm

Spontaneous heat flow

Cold

Reverse heat flow does not
happen spontaneously

Warm Cold

As we will see later in this chapter, irreversible processes such as the frictional 
dissipation of energy and the spontaneous heat flow from a hotter to a colder system 
can be thought of in terms of a change in the amount of order in the system. A sys-
tem never goes spontaneously from a disordered state to a more ordered state. Revers-
ible processes are those that do not change the total amount of disorder in the universe; 
irreversible processes increase the amount of disorder.

Second Law of Thermodynamics According to the second law of thermodynamics, 
the total amount of disorder in the universe never decreases. Irreversible processes 
increase the disorder of the universe. Spontaneous heat flow from a colder system to 
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Second Law of Thermodynamics (Clausius Statement)

Heat never flows spontaneously from a colder system to a hotter system.

The second law of thermodynamics determines what we sense as the direction of 
time—none of the other physical laws we have studied would be violated if the direc-
tion of time were reversed.

CHECKPOINT 15.4

A	perfectly	elastic	collision	is	reversible.	What	about	an	inelastic	collision?	Explain.

15.5 HEAT ENGINES

We said in Section 15.4 that it is far easier to convert ordered energy into disordered 
energy than to do the reverse. Converting ordered into disordered energy occurs spon-
taneously, but the reverse does not. A heat engine is a device designed to convert 
disordered energy into ordered energy—loosely speaking, to “convert heat into work.” 
Fuel is burned, and the energy released is used to do some useful work (such as 
generating electricity or propelling an automobile.) We will see that the second law 
of thermodynamics places a fundamental limitation on how much work can be pro-
duced by a heat engine from a given amount of heat.

The development of practical steam engines—heat engines that use steam as the 
working substance—around the beginning of the eighteenth century was one of the 
crucial elements in the industrial revolution. These steam engines were the first machines 
that produced a sustained work output using an energy source other than muscle, wind, 
or moving water. Steam engines are still used in many electric power plants.

The source of energy in a heat engine is most often the burning of some fuel 
such as gasoline, coal, oil, natural gas, and the like. A nuclear power plant is a heat 
engine using energy released by a nuclear reaction instead of a chemical reaction (as 
in burning). A geothermal engine uses the high temperature found beneath Earth’s 
crust (which comes to the surface in places such as volcanoes and hot springs).

Cyclical Engines Practical engines operate in cycles. Each cycle consists of several 
thermodynamic processes that are repeated the same way during each cycle. The 
magnitudes of the energy transfers during each cycle are as follows (Fig. 15.10): the 
heat input to the engine is QH, the net work done by the engine is Wnet, and the heat 
exhausted from the engine is QC. (The subscripts “H” and “C” remind us that heat is 
taken in from something hot and exhausted to something colder.)

Sign convention for heat engines

QH, Wnet, and QC represent magnitudes (all three are positive)

Wnet is the net work done by the engine

In order for these processes to repeat the same way, the engine must end each 
cycle in the same state in which it started. In particular, the internal energy of the 

Figure 15.10 Diagram of 
the energy transfers in a heat 
engine. The engine is repre-
sented by a circle, and the 
arrows indicate the directions 
of the energy transfers. The 
total energy entering the engine 
during one cycle (QH) equals 
the total energy leaving the 
engine during the cycle 
(Wnet + QC).

Heat
engine

Work done
by the engine
Wnet

Heat flow into
the engine
QH

Heat flow out
of the engine
QC

a hotter system does not occur because it would decrease the total disorder in the 
universe. One statement of the second law, phrased in terms of heat flow, is:
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Figure 15.11 Diagram of an idealized condensing steam engine. Burning fuel releases heat that is used to boil water 
and make high-pressure steam. The steam does work on a piston or turbine as it expands; this is the useful work output 
of the engine. In the condenser, the steam is turned back into water; cooling water carries away the exhaust heat. 
 (Additional exhaust heat is carried away by the combustion gases in the boiler.) The water is then pumped back into the 
boiler to start the cycle again. (Not all steam engines have condensers. In some, a water source feeds water into the 
boiler and the steam is released into the environment after driving the piston or turbine.)

Condenser

Piston

Cooling
water
out

Cooling
water in

Exhaust
heat

Boiler

Heat
input from
burning fuel

Pump
Water

Direction
of flow

Steam

Work
output

engine must be the same at the end of a cycle as it was in the beginning. Then for 
one complete cycle, ΔU = QH − Wnet − QC = 0. Rearranging the terms, we find

Energy conservation in a cyclical engine

 QH = Wnet + QC (15-20)

In a steam engine (Fig. 15.11), the heat input QH comes from burning fuel or from 
a nuclear reaction. Pressurized steam does work Wnet as it pushes against a piston or, more 
commonly, a turbine. Exhaust heat QC is carried off by cooling water or by release of the 
steam itself. The coal burned, for example, releases heat that is used to make steam; the 
steam is the working substance of the engine that does work to drive the turbines.

Application: The Internal Combustion Engine One familiar engine is the internal 
combustion engine found in automobiles. Internal combustion refers to the fact that 
gasoline is burned inside a cylinder; the resulting hot gases push against a piston and 
do work. (A steam engine is an external combustion engine.)

Most automobile engines work in a cyclic thermodynamic process shown in 
Fig.  15.12. Of the energy released by burning gasoline, only about 20% to 25% is 
turned into mechanical work used to move the car forward and run other systems. 
The rest is discarded. The hot exhaust gases carry energy out of the engine, as does 
the liquid cooling system.

Efficiency of an Engine

To measure how effectively an engine converts heat into mechanical work, we define 
the engine’s efficiency e as what you get (net useful work) divided by what you sup-
ply (heat input):

Efficiency of an engine

 e =
net work done by the engine

heat input
=

Wnet

QH
 (15-21)
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Figure 15.12 The four-stroke automobile engine. Each cycle has four strokes during which the piston moves 
(steps 1, 2, 4, and 5).

Fuel + air
mixture
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Valve open

Piston

1. Intake stroke:
The piston is pulled out,
drawing the fuel-air
mixture into the
cylinder at atmospheric
pressure.

2. Compression stroke:
The piston is pushed
back in, compressing
the fuel-air mixture.
During this stroke,
work is done on the
gas.

4. Power stroke:
The high pressure that
results from ignition
pushes the piston out.
The gases do work on
the piston and some
heat flows out of the
cylinder.

3. Ignition: A spark
ignites the gases,
quickly and dramatically
raising the temperature
and pressure.

5. Exhaust stroke:
A valve is opened and
the exhaust gases are
pushed out of the
cylinder.

Piston

Valve 
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Valve
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Spark 

If an engine does work at a constant rate and its efficiency does not change, then 
it also takes in and exhausts heat at constant rates. The work done, heat input, and heat 
exhausted during any time interval are all proportional to the elapsed time. Therefore, 
all the same relationships that are true for the amounts of heat flow and work done 
apply to the rates at which heat flows and work is done. For example, the efficiency is

 e =
net work done

heat input
=

net rate of doing work
rate of taking in heat

=
Wnet /Δt

QH /Δt
 (15-22)

is QC/Δt. The efficiency is defined as e = Wnet /QH. To relate 
QH to QC and Wnet, apply energy conservation (the first law 
of thermodynamics).

Solution The efficiency is

e =
Wnet

QH

Example 15.5

Rate at Which Heat Is Exhausted from an Engine

An engine operating at 25% efficiency produces work at a 
rate of 0.10 MW. At what rate is heat exhausted into the 
 surroundings?

Strategy The problem gives the rate at which work is 
done, which we can write Wnet /Δt, where Wnet is the net work 
done per cycle and Δt is the elapsed time for one cycle. The 
problem asks for the rate at which heat is exhausted, which 

continued on next page
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Efficiency and the First Law According to the first law of thermodynamics, the 
efficiency of a heat engine cannot exceed 100%. An efficiency of 100% would mean 
that all of the heat input is turned into useful work and no “waste” heat is exhausted. 
It might seem theoretically possible to make a 100% efficient engine by eliminating 
all of the imperfections in design such as friction and lack of perfect insulation. How-
ever, the second law of thermodynamics requires that the efficiency of even an ideal 
engine be less than 100%, as we see in Section 15.7.

15.6 REFRIGERATORS AND HEAT PUMPS

The second law of thermodynamics says that heat cannot spontaneously flow from a 
colder system to a hotter system; but machines such as refrigerators and heat pumps 
can make that happen. In a refrigerator, heat is pumped out of the food compartment 
into the warmer room. That doesn’t happen by itself; it requires the input of work. 
The electricity used by a refrigerator turns the compressor motor, which does the work 
required to make the refrigerator function (Fig. 15.13). An air conditioner is essen-
tially the same thing: it pumps heat out of the house into the hotter outdoors.

The only difference between a refrigerator (or an air conditioner) and a heat pump 
is which end is performing the useful task. Refrigerators and air conditioners pump heat 
out of a compartment that they are designed to keep cool. Heat pumps pump heat from 

Figure 15.13 In a 
refrigerator, a fluid is 
compressed, increasing its 
temperature. Heat is exhausted 
as the fluid passes through the 
condenser. Now the fluid is 
allowed to expand; its 
temperature falls. Heat flows 
from the food compartment 
into the cold fluid. The fluid 
returns to the compressor to 
begin the  same cycle again.
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Since the internal energy of the engine does not change over 
a complete cycle, energy conservation (or the first law of 
thermodynamics) requires that

QH = Wnet + QC

We now solve for QC, using the definition of efficiency 
to make the substitution QH = Wnet /e:

QC = QH − Wnet =
Wnet

e
− Wnet = Wnet(

1
e

− 1)
Then the rates of heat exhausted and work done and are 

related as follows:

QC

Δt
=

Wnet

Δt (
1
e

− 1) = 0.10 MW × (
1

0.25
− 1) = 0.30 MW

Discussion As a check: 25% efficiency means that 1
4 of 

the heat input does work and 3
4 of it is exhausted. Therefore, 

the ratio of work to exhaust is

1/4
3/4

=
1
3

=
0.10 MW
0.30 MW

Practice Problem 15.5 Heat Engine Efficiency

An engine “wastes” 4.0 J of heat for every joule of work 
done. What is its efficiency?

Example 15.5 continued
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the colder outdoors into the warmer house. The idea is not to cool the outdoors; it is 
to warm the house.

Notice that the energy transfers in a heat pump are reversed in direction from 
those in a heat engine (Fig. 15.14). In the heat engine, heat flows from hot to cold, 
with work as the output. In a heat pump, heat flows from cold to hot, with work as 
the input. We use the same symbols QH, QC, and Wnet to stand for the magnitudes 
of the energy transfers, but all the directions are opposite: Wnet is the work input, 
QC is the heat removed from something cold, and QH is the heat exhausted to some-
thing hotter.

Sign convention for engines, refrigerators, and heat pumps

QH, QC, and Wnet are all positive.

Just as for a heat engine, conservation of energy requires that

 QH = Wnet + QC (15-20)

for a refrigerator or heat pump.

Coefficient of Performance To measure the performance of a heat pump or refrig-
erator, we define a coefficient of performance K. Just as for the efficiency of an engine, 
the coefficients of performance are ratios of what you get divided by what you pay for:

Coefficient of performance for a heat pump:

 Kp =
heat delivered
net work input

=
QH

Wnet
 (15-23)

Coefficient of performance for a refrigerator or air conditioner:

 Kr =
heat removed
net work input

=
QC

Wnet
 (15-24)

A higher coefficient of performance means a better heat pump or refrigerator. 
Unlike the efficiency of an engine, coefficients of performance can be (and usually 
are) greater than 1. The second law says that heat cannot flow spontaneously from 
cold to hot—we need to do some work to make that happen. That’s equivalent to 
saying that the coefficient of performance can’t be infinite.

Figure 15.14 Energy trans-
fers during one cycle for (a) a 
heat engine and (b) a refrigera-
tor or heat pump. The directions 
of all three energy transfers for 
the refrigerator are opposite 
those for the engine. With our 
definition of QH, QC, and Wnet 
as positive quantities, in either 
case conservation of energy 
requires that QH = Wnet + QC.

Heat
engine

Refrigerator
or heat pump

Wnet

Wnet

QH

QH

QC

QC

(a)

(b)

Heat
engine

Refrigerator
or heat pump

Wnet

Wnet

QH

QH

QC

QC

(a)

(b)

CONNECTION:

A refrigerator or heat pump is 
like a heat engine with the 
directions of the energy trans-
fers reversed.

Example 15.6

A Heat Pump

A heat pump has a performance coefficient of 2.5. (a) How 
much heat is delivered to the house for every 1.0 J of electri-
cal energy that has to be put in? (b) In an electric heater, for 
each joule of electric energy input, one joule of heat is deliv-
ered to the house. Where does the “extra” heat delivered by 
the heat pump come from?

Strategy First, we identify the energy transfers. The work 
input is the electric energy used to run the heat pump, so 
Wnet = 1.0 J. The heat delivered to the house is QH, which we 
are to find. Second, we must be careful to use the correct 

 coefficient of performance. For a heat pump, whose object is to 
deliver heat to the house, the coefficient of performance is the 
heat delivered (QH) per unit of net work done to run the pump.

Solution (a) As a heat pump,

Kp =
heat delivered
net work input

=
QH

Wnet
= 2.5

QH = 2.5 Wnet

For every 1.0 J of electric energy, 2.5 J of heat are delivered 
to the house.

continued on next page
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15.7 REVERSIBLE ENGINES AND HEAT PUMPS

Reversible Engines

Sadi Carnot (1796–1832), a French engineer, published a treatise in 1824 that greatly 
expanded the understanding of how heat engines work. His treatment introduced a 
hypothetical, ideal engine using an ideal gas as working substance. The engine assumes 
the existence of two reservoirs, a hot reservoir at absolute temperature TH and a cold 
reservoir at absolute temperature TC (where TC < TH). The engine takes its heat input 
from the hot reservoir and exhausts heat into the cold reservoir (Fig. 15.15). Recall 
that a heat reservoir is a system with such a large heat capacity that it can exchange 
heat in either direction with a negligibly small temperature change. Therefore, the 
cold reservoir stays at temperature TC, and the hot reservoir stays at temperature TH.

In the ideal engine, no irreversible processes take place, so we call it a reversible 
engine. We must assume that all friction has somehow been eliminated—otherwise 
an irreversible dissipation of energy would occur. We also must avoid heat flow across 
a nonzero temperature difference, which would be irreversible. Whenever the engine 
takes in or gives off heat, the gas must be at the same temperature as the reservoir 
with which it exchanges energy.

Using the second law of thermodynamics, Carnot proved that:

 ∙ All reversible engines operating between the same two reservoirs have the 
same efficiency.

 ∙ The efficiency of a reversible engine depends only on the absolute tempera-
tures of the two reservoirs.

 ∙ The efficiency of any real engine that exchanges heat with two reservoirs 
cannot be greater than the efficiency of a reversible engine using the same 
two reservoirs.

Carnot also showed that the efficiency of a reversible engine is given by this remark-
ably simple expression:

Efficiency of a reversible engine

 er = 1 −
TC

TH
 (15-25)

Remember that the temperatures in Eq. (15-25) must be absolute temperatures. Abso-
lute temperature is also called thermodynamic temperature because the efficiency of 
reversible engines can be used to define a temperature scale. In fact, the definition of 
the kelvin is based on Eq. (15-25).

Figure 15.15 Energy trans-
fers in a reversible heat engine. 
Heat flows into the engine from 
a reservoir at temperature TH, 
and heat flows out of the engine 
into a reservoir at TC. The heat 
transfers are isothermal—in 
other words, the working sub-
stance in the engine is at the 
same temperature as the reser-
voir when heat is exchanged. 
Energy transfers in a reversible 
heat pump or refrigerator are in 
the opposite directions from 
those for the engine.

TC
Cold reservoir

Hot reservoir

Heat
engine Wnet

QH

QC

TH

(b) The 2.5 J of heat delivered include the 1.0 J of work 
input plus 1.5 J of heat pumped in from the outside. The 
electric heater just transforms the joule of work into a 
joule of heat.

Discussion One thing that makes a heat pump econom-
ical in many situations is that the same machine can func-
tion as a heat pump (in winter) and as an air conditioner 
(in summer). As a heat pump, it delivers heat QH to the 

interior of the house, while as an air conditioner, it re-
moves heat QC.

Practice Problem 15.6 Heat Exhausted by Air 
Conditioner

An air conditioner with a coefficient of performance Kr = 3.0 
consumes electricity at an average rate of 1.0 kW. During 
1.0 h of use, how much heat is exhausted to the outdoors?

Example 15.6 continued
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The efficiency of a reversible engine is always less than 100%, assuming that the 
cold reservoir is not at absolute zero. Even an ideal, perfectly reversible engine must 
exhaust some heat, so the efficiency can never be 100%, even in principle. Efficiencies 
of real engines cannot be greater than those of reversible engines, so the second law 
of thermodynamics sets a limit on the theoretical maximum efficiency of an engine: 
e < 1 − TC/TH.

Using Eq. (15-25), the ratio of the heat exhaust to the heat input for a reversible 
engine is

 
QC

QH
=

QH − Wnet

QH
= 1 −

Wnet

QH
= 1 − er =

TC

TH
 (15-26)

The Carnot Cycle Carnot’s reversible engine operates in a four-step cycle. During 
two of the steps, heat is exchanged between the gas and one of the reservoirs. For the 
heat exchange to be reversible, the gas must be at the same constant temperature as 
the reservoir, so these two steps are isothermal processes.

How is it possible to get heat to flow without a temperature difference? Imagine 
putting the gas in good thermal contact with a reservoir at the same temperature. Now 
slowly pull a piston so that the gas expands. As long as the expansion occurs slowly, 
heat flows into the gas fast enough to keep its temperature nearly constant. The slower 
the expansion, the closer we get to the behavior of the idealized reversible engine.

The other two steps in the cycle must change the gas temperature from TH to TC 
and back to TH. These processes must be adiabatic (no heat flow) since otherwise an 
irreversible heat flow would occur.

Reversible Refrigerators and Heat Pumps

Equation (15-26) also applies to reversible heat pumps and refrigerators because they 
are just reversible engines with the directions of the energy transfers reversed.

 
QC

QH
=

TC

TH
 (15-26)

(reversible engine, refrigerator, or heat pump)

Using Eq. (15-26) and the first law, we can find the coefficients of performance for 
reversible heat pumps and refrigerators (see Problems 56 and 57):

 Kp, rev =
1

1 − TC/TH
 and Kr, rev =

1
TH/TC − 1

 (15-27)

Real heat pumps cannot have coefficients of performance greater than that of a reversible 
heat pump operating between the same two reservoirs. The same is true for refrigerators:

 Kp < Kp, rev and Kp < Kp, rev (15-28)

Example 15.7

Efficiency of an Automobile Engine

In an automobile engine, the combustion of the fuel-air mix-
ture can reach temperatures as high as 3000°C and the ex-
haust gases leave the cylinder at about 1000°C. (a) Find the 
efficiency of a reversible engine operating between reser-

voirs at those two temperatures. (b) Theoretically, we might 
be able to have the exhaust gases leave the engine at the 
temperature of the outside air (20°C). What would be the 
efficiency of the hypothetical reversible engine in this case?

continued on next page
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Strategy First we identify the temperatures of the hot and 
cold reservoirs in each case. We must convert the reservoir 
temperatures to kelvins in order to find the efficiency of a 
reversible engine.

Solution (a) The reservoir temperatures in kelvins are 
found using

T = TC + 273 K

Therefore,
TH = 3000°C = 3273 K
TC = 1000°C = 1273 K

The efficiency of a reversible engine operating between 
these temperatures is

er = 1 −
TC

TH
= 1 −

1273 K
3273 K

= 0.61 = 61%

(b) The high-temperature reservoir is still at 3273 K, whereas 
the low-temperature reservoir is now

TC = 293 K

This gives a higher efficiency:

er = 1 −
TC

TH
= 1 −

293 K
3273 K

= 0.910 = 91.0%

Discussion As mentioned in the chapter opener, real gaso-
line engines achieve efficiencies of only about 20% to 25%. 
Although improvement is possible, the second law of thermo-
dynamics limits the theoretical maximum efficiency to that of 
a reversible engine operating between the same temperatures. 
The theoretical maximum efficiency can only be increased by 
using a hotter hot reservoir or a colder cold reservoir. How-
ever, practical considerations may prevent us from using a 
hotter hot reservoir or colder cold reservoir. Hotter combus-
tion gases might cause engine parts to wear out too fast, or 
there may be safety concerns. Letting the gases expand to a 
greater volume would make the exhaust gases colder, leading 
to an increase in efficiency, but might reduce the power the 
engine can deliver. (A reversible engine has the theoretical 
maximum efficiency, but the rate at which it does work is 
vanishingly small because it takes a long time for heat to flow 
across a small temperature difference.)

Practice Problem 15.7 Temperature of Hot Gases

If the efficiency of a reversible engine is 75% and the tem-
perature of the outdoor world into which the engine sends its 
exhaust is 27°C, what is the combustion temperature in the 
engine cylinder? [Hint: Think of the combustion tempera-
ture as the temperature of the hot reservoir.]

Example 15.7 continued

The efficiency of a reversible engine operating between 
these temperatures is

er = 1 −
TC

TH
= 1 −

292 K
979 K

= 0.702

We want to find the rate at which heat is exhausted, which is 
QC/Δt. The efficiency is equal to the ratio of the net work 
output to the heat input from the hot reservoir:

e =
Wnet

QH

Conservation of energy requires that

QH = QC + Wnet

We can now solve for QC:

QC = QH − Wnet =
Wnet

e
− Wnet = Wnet(

1
e

− 1)

Example 15.8

Coal-Burning Power Plant

A coal-burning electrical power plant burns coal at 706°C. 
Heat is exhausted into a river near the power plant; the aver-
age river temperature is 19°C. What is the minimum possi-
ble rate of thermal pollution (heat exhausted into the river) if 
the station generates 125 MW of electricity?

Strategy The minimum discharge of heat into the river 
would occur if the engine generating the electricity were 
reversible. As in Example 15.5, we can take all of the rates 
to be constant. The rate at which electrical energy is gener-
ated is Wnet /Δt = 125 MW. The question asks for the rate of 
heat exhausted, which is QC /Δt.

Solution First find the absolute temperatures of the 
reservoirs:

TH = 706°C = 979 K
 TC = 19°C = 292 K

continued on next page
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Assuming that all the rates are constant,

QC

Δt
= 125 MW × (

1
0.702

− 1) = 53 MW

The rate at which heat enters the river is 53 MW.

Discussion We expect the actual rate of thermal pollution 
to be higher. A real, irreversible engine would have a lower 
efficiency, so more heat would be dumped into the river.

Practice Problem 15.8 Generating Electricity 
from Coal

What is the minimum possible rate of heat input (from the 
burning of coal) needed to generate 125 MW of electricity in 
this same plant?

Example 15.8 continued

15.8 ENTROPY

When two systems of different temperatures are in thermal contact, heat flows out of 
the hotter system and into the colder system. There is no change in the total energy 
of the two systems; energy just flows out of one and into the other. Why then does 
heat flow in one direction but not in the other? As we will see, heat flow into a 
system not only increases the system’s internal energy, it also increases the disorder 
of the system. Heat flow out of a system decreases not only its internal energy but 
also its disorder.

The entropy of a system (symbol S) is a quantitative measure of its disorder. 
Entropy is a state variable (like U, P, V, and T): a system in equilibrium has a unique 
entropy that does not depend on the past history of the system. (Recall that heat and 
work are not state variables. Heat and work describe how a system goes from one 
state to another.) The word entropy was coined by Rudolf Clausius (1822–1888) in 
1865; its Greek root means evolution or transformation.

If an amount of heat Q flows into a system at constant absolute temperature T, 
the entropy change of the system is

Entropy change (constant temperature)

 ΔS =
Q

T
 (15-29)

The SI unit for entropy is J/K. Heat flowing into a system increases the system’s 
entropy (both ΔS and Q are positive); heat leaving a system decreases the system’s 
entropy (both ΔS and Q are negative). Equation (15-29) is valid as long as the tem-
perature of the system is constant, which is true if the heat capacity of the system is 
large (as for a reservoir), so that the heat flow Q causes a negligibly small temperature 
change in the system.

Note that Eq. (15-29) gives only the change in entropy, not the initial and final 
values of the entropy. As with potential energy, the change in entropy is what’s impor-
tant in most situations.

If a small amount of heat Q flows from a hotter system to a colder system 
(TH > TC), the total entropy change of the systems is

 ΔStot = ΔSH + ΔSC =
−Q

TH
+

Q

TC
 (15-30)

Since TH > TC, the increase in the colder system’s entropy is larger than the decrease 
of the hotter system’s entropy and the total entropy increases. Every irreversible pro-
cess increases the total entropy of the universe. A process that would decrease the 
total entropy of the universe is impossible. A reversible process causes no change in 
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Second Law of Thermodynamics (Entropy Statement)

The entropy of the universe never decreases.

 ΔStot > 0  (irreversible process) (15-31)
 ΔStot = 0   (reversible process) (15-32)

For example, a reversible engine removes heat QH from a hot reservoir at tem-
perature TH and exhausts QC to a cold reservoir at TC. The entropy of the engine itself 
is left unchanged since it operates in a cycle. The entropy of the hot reservoir decreases 
by an amount QH/TH and that of the cold reservoir increases by QC/TC. Since the 
entropy of the universe must be unchanged by a reversible engine, it must be true that

 ΔStot = − 

QH

TH
+

QC

TC
= 0 (15-33)

as we found in Eq. (15-26).
Entropy is not a conserved quantity like energy. The entropy of the universe is 

always increasing. It is possible to decrease the entropy of a system, but only at the 
expense of increasing the entropy of the surroundings by at least as much (usually more).

CHECKPOINT 15.8

The	entropy	of	 a	 system	 increases	by	10	 J/K.	Does	 this	mean	 the	process	 is	
necessarily	 irreversible?	Explain.

not necessarily mean there is no entropy 
change. Since entropy is a state variable, 
ΔS depends only on the initial and final 
states of the gas, not the intermediate 
states. We can therefore find the entropy 
change using any thermodynamic pro-
cess with the same initial and final states. 
The initial and final temperatures of the 
gas are identical since the internal energy 
does not change; therefore we find 
the  entropy change for an isothermal 
 expansion.

Solution Imagine the gas confined to 
a  cylinder with a moveable piston 
(Fig. 15.17). In an isothermal expansion, heat flows into the 
gas from a reservoir at a constant temperature T. As the gas 
expands, it does work on the piston. If the temperature is to stay 
constant, the work done must equal the heat flow into the gas:

ΔU = 0 implies Q + W = 0

Example 15.9

Entropy Change of a Freely Expanding Gas

Suppose 1.0 mol of an ideal gas is allowed to freely expand 
into an evacuated container of equal volume so that the vol-
ume of the gas doubles (Fig. 15.16). No work is done on the 
gas as it expands, since there is nothing pushing against it. 
The containers are insulated so no heat flows into or out of 
the gas. What is the entropy change of the gas?

Strategy The only way to calculate entropy changes that 
we’ve learned so far is for heat flow at a constant tempera-
ture. In free expansion, there is no heat flow—but that does 

continued on next page

Figure 15.16
Two chambers connected by a valve. One chamber contains a gas, 
and the other has been evacuated. When the valve is opened, the 
gas expands until it fills both chambers.

Valve closed

VacuumGas

Figure 15.17
As the gas in the 
cylinder expands, 
heat flows into it 
from the reservoir 
and keeps its tem-
perature constant.

Heat
reservoir

the total entropy of the universe. We can restate the second law of thermodynamics 
in terms of entropy:



 15.8 ENTROPY 571

Example 15.9 continued

In Section 15.3, we found the work done by an ideal gas dur-
ing an isothermal expansion:

W = nRT ln (
Vi

Vf)

The volume of the gas doubles, so Vi/Vf = 0.50:

W = nRT ln 0.50

Since Q = −W, the entropy change is

ΔS =
Q

T
= −nR ln 0.50

= −(1.0 mol) × (8.31
J

mol·K) × (−0.693) = +5.8 J/K

Discussion The entropy change is positive, as expected. 
Free expansion is an irreversible process; the gas molecules 
do not spontaneously collect back in the original container. 
The reverse process would cause a decrease in entropy, with-
out a larger increase elsewhere, and so violates the second law.

Practice Problem 15.9 Entropy Change of the 
 Universe When a Lump of Clay Is Dropped

A room-temperature lump of clay of mass 400 g is dropped 
from a height of 2 m and makes a totally inelastic collision 
with the floor. Approximately what is the entropy change of 
the universe due to this collision? [Hint: The temperature of 
the clay rises, but only slightly.]

Application of the Second Law to Evolution

Some have argued that evolution cannot have occurred because it would violate the 
second law of thermodynamics. The argument views evolution as an increase in order: 
life spontaneously developed from simple life forms to more complex, more highly 
ordered organisms.

However, the second law says only that the total entropy of the universe cannot 
decrease. It does not say that the entropy of a particular system cannot decrease. When 
heat flows from a hotter system to a colder system, the entropy of the hotter system 
decreases, but the increase in the colder system’s entropy is greater, so the entropy of the 
universe increases. A living organism is not a closed system and neither is Earth. An adult 
human, for instance, requires roughly 10 MJ of chemical energy from food per day. What 
happens to this energy? Some is turned into useful work by the muscles, some more is 
used to repair body tissues, but most of it is dissipated and leaves the body as heat. The 
human body therefore is constantly increasing the entropy of its environment. As evolution 
progresses from simpler to more complicated organisms, the increase in order within the 
organisms must be accompanied by a larger increase in disorder in the environment.

Application of the Second Law to the “Energy Crisis”

When people speak of “conserving energy,” they usually mean using fuel and electric-
ity sparingly. In the physics sense of the word conserve, energy is always conserved. 
Burning natural gas to heat your house does not change the amount of energy around; 
it just changes it from one form to another.

What we need to be careful not to waste is high-quality energy. Our concern is not 
the total amount of energy, but rather whether the energy is in a form that is useful and 
convenient. The chemical energy stored in fuel is relatively high-quality (ordered) energy. 
When fuel is burned, the energy is degraded into lower-quality (disordered) energy.

Statistical Interpretation of Entropy

Thermodynamic systems are collections of huge numbers of atoms or molecules. How 
these atoms or molecules behave statistically determines the disorder in the system. 
In other words, the second law of thermodynamics is based on the statistics of systems 
with extremely large numbers of atoms or molecules.

The microstate of a thermodynamic system specifies the state of each constituent 
particle. For instance, in a monatomic ideal gas with N atoms, a microstate is speci-
fied by the position and velocity of each of the N atoms. As the atoms move about 
and collide, the system changes from one microstate to another. The macrostate of 
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Master the Concepts

 ∙ The first law of thermodynamics is a statement of energy 
conservation:
 ΔU = Q + W  (15-1)

  where Q is the heat flow into the system and W is the 
work done on the system.

 ∙ Pressure, temperature, volume, number of moles, inter-
nal energy, and entropy are state variables; they describe 
the state of a system at some instant of time but not how 
the system got to that state. Heat and work are not state 
variables—they describe how a system gets from one 
state to another.

 ∙ The work done on a system when the pressure is 
constant—or for a volume change small enough that the 
pressure change is insignificant—is

 W = −P ΔV  (15-5)

  The magnitude of the work done is the total area under 
the PV curve.

Displacement
of piston

Force on
gas due
to piston

W > 0 for compression

 ∙ Table 15.2 is a summary of the properties of four ther-
modynamic processes: isothermal, isobaric, isochoric, 
and adiabatic.

 ∙ The change in internal energy of an ideal gas is deter-
mined solely by the temperature change. Therefore, the 

continued on next page

a thermodynamic system specifies only the values of the macroscopic state variables 
(e.g., pressure, volume, temperature, and internal energy).

Statistical analysis is the microscopic basis for the second law of thermodynam-
ics. It turns out, remarkably, that the number of microstates corresponding to a given 
macrostate is related to the entropy of that macrostate in a simple way. Letting Ω 
(the Greek capital omega) stand for the number of microstates, the  relationship is

Statistical basis of entropy

 S = kB ln Ω (15-34)

where kB is Boltzmann’s constant. Equation (15-34) is inscribed on the tombstone of 
Ludwig Boltzmann (1844–1906), the Austrian physicist who made the connection 
between entropy and statistics in the late nineteenth century. The relationship between 
S and Ω has to be logarithmic because entropy is additive: if system 1 has entropy 
S1 and system 2 has entropy S2, then the total entropy is S1 + S2. However, the 
number of microstates is multiplicative. Think of dice: if die 1 has 6 microstates and 
die 2 also has 6, the total number of microstates when rolling two dice is not 12, but 
6 × 6 = 36. The entropy is additive since ln 6 + ln 6 = ln 36.

15.9 THE THIRD LAW OF THERMODYNAMICS

Like the second law, the third law of thermodynamics can be stated in several equiv-
alent ways. We will state just one of them:

Third Law of Thermodynamics

It is impossible to cool a system to absolute zero.

Although it is impossible to reach absolute zero, there is no limit on how close we 
can get. Scientists who study low-temperature physics have attained equilibrium tem-
peratures as low as 1 μK and have sustained temperatures of 2 mK; transient 
temperatures in the nano- and picokelvin range have been observed.

CONNECTION:

In Chapter 13, we learned 
about the distribution of 
speeds in gas molecules 
(the Maxwell-Boltzmann 
distribution). Why should 
the speeds be distributed in 
this particular way? Because 
it has the highest entropy. 
The Maxwell-Boltzmann 
distribution can be calculated 
statistically by maximizing 
the number of microstates for 
a given macrostate.
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internal energy of an ideal gas is not changed by an 
isothermal process:

 ΔU = 0 (ideal gas, ΔT = 0) (15-18)

 ∙ No work is done on the system during an isochoric (con-
stant volume) process.

 ∙ A process in which no heat is transferred into or out of 
the system (Q = 0) is called an adiabatic process. An 
adiabatic process can cause a change in temperature.

 ∙ The molar specific heats of an ideal gas at constant vol-
ume and constant pressure are related by

 CP = CV + R (15-17)

  CP is larger than CV because it must account for the 
work done on the gas (see Section 15.3).

 ∙ Spontaneous heat flow from a hotter system to a colder 
system is always irreversible.

Warm

Spontaneous heat flow

Cold

 ∙ For one cycle of an engine, heat pump, or refrigerator, 
conservation of energy requires

 QH = Wnet + QC

  where QH, QC, and Wnet are defined as positive quantities.

Heat
engine

Refrigerator
or heat pump

Wnet Wnet

QH QH

QCQC

 ∙ The efficiency of an engine is defined as

 e =
Wnet

QH
 (15-21)

 ∙ The coefficient of performance for a heat pump is

 Kp =
heat delivered
net work input

=
QH

Wnet
 (15-23)

 ∙ The coefficient of performance for a refrigerator or air 
conditioner is

 Kr =
heat removed
net work input

=
QC

Wnet
 (15-24)

 ∙ A reservoir is a system with such a large heat capacity 
that it can exchange heat in either direction with a neg-
ligibly small temperature change.

Reverse heat flow does not
happen spontaneously

Warm Cold

 ∙ The second law of thermodynamics can be stated in 
various equivalent ways. Two of them are: (1) heat never 
flows spontaneously from a colder system to a hotter 
system, and (2) the entropy of the universe never 
decreases.

 ∙ The efficiency of a reversible engine is determined only 
by the absolute temperatures of the hot and cold reservoirs:

 er = 1 −
TC

TH
 (15-25)

  The efficiency of a real engine is less than the efficiency 
of a reversible engine operating between the same 
temperature reservoirs.

 ∙ The coefficient of performance of a reversible heat 
pump or refrigerator is determined only by the absolute 
temperatures of the reservoirs:

Kp, rev =
1

1 − TC/TH
 and Kr, rev =

1
TH/TC − 1

 (15-27)

  The coefficient of performance of a real heat pump is 
less than that of a reversible heat pump operating 
between the same temperature reservoirs. The same is 
true for a refrigerator.

 ∙ If an amount of heat Q flows into a system at constant ab-
solute temperature T, the entropy change of the system is

 ΔS =
Q

T
 (15-29)

 ∙ The third law of thermodynamics: it is impossible to 
cool a system to absolute zero.

Master the Concepts continued
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Conceptual Questions

 1. Is it possible to make a heat pump with a coefficient of 
performance equal to 1? Explain.

 2. An electric baseboard heater can convert 100% of the 
electric energy used into heat that flows into the house. 
Since a gas furnace might be located in a basement and 
sends exhaust gases up the chimney, the heat flow into 
the living space is less than 100% of the chemical en-
ergy released by burning. Does this mean that electric 
heating is better? Which heating method consumes less 
fuel? In your answer, consider how the electricity might 
have been generated and the efficiency of that process.

 3. A whimsical statement of the laws of thermodynamics— 
probably not one favored by gamblers—goes like this:

  I. You can never win; you can only lose or break even.
  II. You can only break even at absolute zero.
  III. You can never get to absolute zero.
  What do we mean by “win,” “lose,” and “break even”? 

[Hint: Think about a heat engine.]
 4. Why must all reversible engines (operating between the 

same reservoirs) have the same efficiency? Try an 
argument by contradiction: imagine that two reversible 
engines exist with e1 > e2. Reverse one of them (into a 
heat pump) and use the work output from the engine to 
run the heat pump. What happens? (If it seems fine at 
first, switch the two.)

 5. When supplies of fossil fuels such as petroleum and coal 
dwindle, people might call the situation an “energy 
crisis.” From the standpoint of physics, why is that not 
an accurate name? Can you think of a better one?

 6. If you leave the refrigerator door open and the refrigera-
tor runs continuously, does the kitchen get colder or 
warmer? Explain.

 7. Most heat pumps incorporate an auxiliary electric 
heater. For relatively mild outdoor temperatures, the 
electric heater is not used. However, if the outdoor tem-
perature gets very low, the auxiliary heater is used to 
supplement the heat pump. Why?

 8. Why are heat pumps more often used in mild climates 
than in areas with severely cold winters?

 9. Are entropy changes always caused by the flow of heat? 
If not, give some other examples of processes that in-
crease entropy.

 10. Can a heat engine be made to operate without creating 
any “thermal pollution,” that is, without making its cold 
reservoir get warmer in the long run? The net work out-
put must be greater than zero.

 11. A warm pitcher of lemonade is put into an ice chest. 
Describe what happens to the entropies of lemonade 
and ice as heat flows from the lemonade to the ice 
within the chest.

 12. A new dormitory is being built at a college in North Caro-
lina. To save costs, it is proposed to not include air condi-
tioning ducts and vents. A member of the board overseeing 

the construction says that stand-alone air conditioning 
units can be supplied to each room later. He has seen ad-
vertisements that claim these new units do not need to be 
vented to the outside. Can the claim be true? Explain.

 13. After a day at the beach, a child brings home a bucket 
containing some saltwater. Eventually the water evapo-
rates, leaving behind a few salt crystals. The molecular 
order of the salt crystals is greater than the order of the 
dissolved salt sloshing around in the seawater. Is this a 
violation of the entropy principle? Explain.

 14. Explain why the molar specific heat at constant volume 
is not the same as the molar specific heat at constant 
pressure for gases. Why is the distinction between con-
stant volume and constant pressure usually insignificant 
for the specific heats of liquids and solids?

Multiple-Choice Questions

 1. A heat engine runs between reservoirs at temperatures 
of 300°C and 30°C. What is its maximum possible 
efficiency?

 (a) 10% (b) 47% (c) 53%
 (d) 90% (e) 100%
 2. The PV diagram illustrates 

several paths to get from an 
initial to a final state. For 
which path does the sys-
tem do the most work?

 (a) path igf
 (b) path if
 (c) path ihf
 (d) All paths represent equal work.
 3. If two different systems are put in thermal contact so 

that heat can flow from one to the other, then heat will 
flow until the systems have the same

 (a) energy.
 (b) heat capacity.

 (c) entropy.
 (d) temperature.

 4. When the first law of thermodynamics (ΔU = Q + W) is 
applied to a system S, the variables Q and W stand for

 (a) the heat flow out of S and the work done on S.
 (b) the heat flow out of S and the work done by S.
 (c) the heat flow into S and the work done by S.
 (d) the heat flow into S and the work done on S.
 5. As a system undergoes a constant-volume process
 (a) the pressure does not change.
 (b) the internal energy does not change.
 (c) the work done on the system is zero.
 (d) the entropy stays the same.
 (e) the temperature of the system does not change.
 6. As an ideal gas is adiabatically expanding,
 (a) the temperature of the gas does not change.
 (b) the internal energy of the gas does not change.
 (c) work is not done on or by the gas.
 (d) no heat is given off or taken in by the gas.
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 (e) both (a) and (d)
 (f) both (a) and (b)
 7. An ideal gas is confined to the left chamber of an insu-

lated container. The right chamber is evacuated. A valve 
is opened between the chambers, allowing gas to flow 
into the right chamber. After equilibrium is established, 
the temperature of the gas _____. [Hint: What happens 
to the internal energy?]

 (a) is lower than the initial temperature
 (b) is higher than the initial temperature
 (c) is the same as the initial temperature
 (d)  could be higher than, the same as, or lower than the 

initial temperature
 8. Which choice correctly identifies the three processes 

shown in the diagrams?
 (a) I = isobaric; II = isochoric; III = adiabatic
 (b) I = isothermal; II = isothermal; III = isobaric
 (c) I = isochoric; II = adiabatic; III = isobaric
 (d) I = isobaric; II = isothermal; III = isochoric
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Question	8;	Problem	12

 9. As an ideal gas is compressed at constant temperature,
 (a) heat flows out of the gas.
 (b) the internal energy of the gas does not change.
 (c) the work done on the gas is zero.
 (d) None of the above is correct.
 (e) Both (a) and (b) are correct.
 (f) Both (a) and (c) are correct.
 10. As moisture from the air condenses on the outside of a 

cold glass of water, the entropy of the condensing moisture
 (a) stays the same.
 (b) increases.
 (c) decreases.
 (d) Not enough information is provided.
 11. Given 1 mole of an ideal gas, in a state characterized by 

PA, VA, a change occurs so that the final pressure and 
volume are equal to PB, VB, where VB > VA. Which of 
these is true?

 (a)  The heat supplied to the gas during the process is com-
pletely determined by the values PA, VA, PB, and VB.

 (b)  The change in the internal energy of the gas during 
the process is completely determined by the values 
PA, VA, PB, and VB.

 (c)  The work done by the gas during the process is com-
pletely determined by the values PA, VA, PB, and VB.

 (d) All three are true.
 (e) None of these is true.

 12. On a summer day, you keep the air conditioner in your 
room running. From the list numbered 1 to 4, choose the 
hot reservoir and the cold reservoir.

 1. the air outside
 2.  the compartment inside the air conditioner where the 

air is compressed
 3.  the freon gas that is the working substance (expands 

and compresses in each cycle)
 4. the air in the room
  (a) 1 is the hot reservoir, 2 is the cold reservoir.
  (b) 1 is the hot reservoir, 3 is the cold reservoir.
  (c) 1 is the hot reservoir, 4 is the cold reservoir.
  (d) 2 is the hot reservoir, 3 is the cold reservoir.
  (e) 2 is the hot reservoir, 4 is the cold reservoir.
  (f) 3 is the hot reservoir, 4 is the cold reservoir.
 13. Which of these statements are implied by the second 

law of thermodynamics?
 (a)  The entropy of an engine (including its fuel and/or 

heat reservoirs) operating in a cycle never 
 decreases.

 (b)  The increase in internal energy of a system in any 
process is the sum of heat absorbed plus work done 
on the system.

 (c)  A heat engine, operating in a cycle, that exhausts no 
heat to the low-temperature reservoir is impossible.

 (d) Both (a) and (c).
 (e) All three [(a), (b), and (c)].

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

15.1 The First Law of Thermodynamics;
15.2 Thermodynamic Processes;
15.3 Thermodynamic Processes for an Ideal Gas
 1. On a cold day, Ming rubs her hands together to warm 

them up. She presses her hands together with a force of 
5.0 N. Each time she rubs them back and forth, they 
move a distance of 16 cm with a coefficient of kinetic 
friction of 0.45. Assuming no heat flow to the sur-
roundings, after she has rubbed her hands back and 
forth eight times, by how much has the internal energy 
of her hands increased?

 2. A system takes in 550 J of heat while it does 840 J of 
work on the surroundings. What is the change in inter-
nal energy of the system?

 3. The internal energy of a system increases by 400 J while 
the work done on the system is 500 J. What was the heat 
flow into or out of the system?
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 4. Verify the units in Eq. (15-5)—that is, show that the SI 
unit of pressure times volume is equal to the SI unit of 
work.

 5. How much does the internal energy change for 1.00 m3 
of water after it has fallen from the top of a waterfall and 
landed in the river 11.0 m below? Assume no heat flow 
from the water to the air.

 6. A pot containing 2.00 kg of water is sitting on a hot stove, 
and the water is stirred violently by a mixer that does 
6.0 kJ of mechanical work on the water. The temperature 
of the water rises by 4.00°C. What quantity of heat flowed 
into the water from the stove during the process?

 7. A contractor uses a paddle stirrer to mix a can of paint. 
The paddle turns at 28.0 rad/s and exerts a torque of 
16.0 N·m on the paint, doing work on the paint at a rate

power = τω = 16.0 N·m × 28.0 rad/s = 448 W

  An internal energy increase of 12.5 kJ causes the tem-
perature of the paint to increase by 1.00 K. (a) If there 
were no heat flow between the paint and the surround-
ings, what would be the temperature change of the paint 
as it is stirred for 5.00 min? (b) If the actual temperature 
change was 6.3 K, how much heat flowed from the paint 
to the surroundings?

 8. The figure shows PV diagrams for five systems as they 
undergo various thermodynamic processes. Rank them 
in order of the work done on the system, from greatest 
to least. Rank positive work higher than negative work.

Volume

Pressure

A

B C

D

E

 9. A monatomic ideal gas at 27°C 
undergoes a constant-pressure 
process from A to B and a constant-
volume process from B to C. Find 
the total work done on the gas 
during these two processes.

 10. A monatomic ideal gas at 
27°C undergoes a constant-
volume process from A to B 
and a constant-pressure pro-
cess from B to C. Find the 
total work done on the gas 
during these two processes.

 11. An ideal monatomic gas is 
taken through the cycle in 
the PV diagram. (a) If there 
are 0.0200 mol of this gas, 
what are the temperature and 
pressure at point C? (b) What 
is the change in internal 
energy of the gas as it is taken from A to B? (c) How 
much work is done on this gas per cycle? (d) What is the 
total change in internal energy of this gas in one cycle?

 12. The three processes shown with Multiple Choice Ques-
tion 8 involve a diatomic ideal gas. Rank them in order of 
the change in internal energy, from greatest to smallest.

 13. In a refrigerator, 
2.00  mol of an ideal 
monatomic gas are 
taken through the 
cycle shown in the 
figure. The tempera-
ture at point A is 
800.0 K. (a) What are the temperature and pressure at 
point D? (b) What is the net work done on the gas as it 
is taken through four cycles? (c) What is the internal 
energy of the gas when it is at point A? (d) What is the 
total change in internal energy of this gas during four 
complete cycles?

 14. A balloon contains 200.0 L of nitrogen gas at 20.0°C 
and at atmospheric pressure. How much energy must be 
added to raise the temperature of the nitrogen to 40.0°C 
while allowing the balloon to expand at atmospheric 
pressure?

 15. An ideal gas is heated at a constant pressure of 2.0 × 
105 Pa from a temperature of −73°C to a temperature of 
+27°C. The initial volume of the gas is 0.10 m3. The 
heat energy supplied to the gas in this process is 25 kJ. 
What is the increase in internal energy of the gas?

 16.  If the pressure on a fish increases from 1.1 atm to 
1.2 atm, its swim bladder decreases in volume from 
8.16  mL to 7.48 mL while the temperature of the air 
inside remains constant. How much work is done on the 
air in the bladder?
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 17. An ideal gas is in contact with a heat reservoir so that it 
remains at a constant temperature of 300.0 K. The gas is 
compressed from a volume of 24.0 L to a volume of 
14.0 L. During the process, the mechanical device push-
ing the piston to compress the gas is found to expend 
5.00 kJ of energy. How much heat flows between the 
heat reservoir and the gas, and in what direction does 
the heat flow occur?

 18. Suppose 1.00 mol of oxygen is heated at constant 
pressure of 1.00 atm from 10.0°C to 25.0°C. (a) How 
much heat is absorbed by the gas? (b) Using the ideal 
gas law, calculate the change of volume of the gas in 
this process. (c) What is the work done by the gas 
during this expansion? (d) From the first law, calcu-
late the change of internal energy of the gas in this 
process.

 19.  Suppose a monatomic ideal gas is changed from 
state A to state D by one of the processes shown on 
the PV diagram. (a) Find the total work done on the 
gas if it follows the constant-volume path AB fol-
lowed by the constant-pressure path BCD. (b) Calcu-
late the total change in internal energy of the gas 
during the entire process and the total heat flow into 
the gas.

2 atm

IsothermsP

EA

B C D
1 atm

4 L 8 L 16 L V

Problems	19–21

 20.  Repeat Problem 19 for the case when the gas follows 
the constant-temperature path AC followed by the con-
stant-pressure path CD.

 21.  Repeat Problem 19 for the case when the gas follows 
the constant-pressure path AE followed by the constant-
temperature path ED.

15.5 Heat Engines; 15.6 Refrigerators and  
Heat Pumps
Problems 22–23.  The figure shows PV diagrams for five 
cyclical processes. (Cycle D is a simplified model of a steam 
engine cycle.)
 22. Rank the processes in order of the net work done by 

the system per cycle, from greatest to least. Rank 
positive work done by the system (as in an engine) 
higher than negative work done by the system (as in a 
heat pump).

 23.  (a) Which might describe a heat engine? (b) Which 
might describe a heat pump? (c) Which might describe 
a refrigerator? Explain.

Volume

Pressure

A

B
C

D
E

Problems	22–23

 24. A heat engine follows 
the cycle shown in the 
figure. (a) How much 
net work is done by 
the engine in one 
cycle? (b) What is the 
net heat flow into the 
engine per cycle?

 25. What is the efficiency of an electric generator that pro-
duces 1.17 kW·h per kilogram of coal burned? The heat 
of combustion of coal is 6.71 × 106 J/kg.

 26. A heat pump delivers heat at a rate of 7.81 kW for 10.0 h. 
If its coefficient of performance is 6.85, how much heat is 
taken from the cold reservoir during that time?

 27. (a) How much heat does an engine with an efficiency of 
33.3% absorb in order to deliver 1.00 kJ of work? 
(b) How much heat is exhausted by the engine?

 28. The efficiency of an engine is 0.21. For every 1.00 kJ of 
heat absorbed by the engine, how much (a) net work is 
done by it and (b) heat is released by it?

 29. The United States generates about 5.0 × 1016 J of elec-
tric energy a day. This energy is equivalent to work, 
since it can be converted into work with almost 100% 
efficiency by an electric motor. (a) If this energy is gen-
erated by power plants with an average efficiency of 
0.30, how much heat is dumped into the environment 
each day? (b) How much water would be required to 
absorb this heat if the water temperature is not to 
increase more than 2.0°C?

 30. The intensity (power per unit area) of the sunlight inci-
dent on Earth’s surface, averaged over a 24 h period, is 
about 0.20 kW/m2. If a solar power plant is to be built 
with an output capacity of 1.0 × 109 W, how big must 
the area of the solar energy collectors be for photocells 
operating at 20.0% efficiency?

V0.200 m3 0.800 m3

P
4.00 atm

1.00 atm
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 31. An engine releases 0.450 kJ of heat for every 0.100 kJ of 
work it does. What is the efficiency of the engine?

 32. How much heat does a heat pump with a coefficient of 
performance of 3.0 deliver when supplied with 1.00 kJ 
of electricity?

 33. An air conditioner whose coefficient of performance is 
2.00 removes 1.73 × 108 J of heat from a room per day. 
How much does it cost to run the air conditioning unit 
per day if electricity costs $0.10 per kilowatt-hour? 
(Note that 1 kilowatt-hour = 3.6 × 106 J.)

 34. A steam engine has a piston with a diameter of 15.0 cm 
and a stroke (the displacement of the piston) of 20.0 cm. 
The average pressure applied to this piston is 1.3 × 105 Pa. 
What operating frequency in cycles per second (Hz) 
would yield an average power output of 27.6 kW?

15.7 Reversible Engines and Heat Pumps
 35. An ideal engine has an efficiency of 0.725 and uses gas 

from a hot reservoir at a temperature of 622 K. What is 
the temperature of the cold reservoir to which it ex-
hausts heat?

 36. A heat engine takes in 125 kJ of heat from a reservoir at 
815 K and exhausts 82 kJ to a reservoir at 293 K. 
(a) What is the efficiency of the engine? (b) What is the 
efficiency of an ideal engine operating between the 
same two reservoirs?

 37. In a certain steam engine, the boiler temperature is 
127°C and the cold reservoir temperature is 27°C. While 
this engine does 8.34 kJ of work, what minimum amount 
of heat must be discharged into the cold reservoir?

 38. Calculate the maximum possible efficiency of a heat 
engine that uses surface lake water at 18.0°C as a source 
of heat and rejects waste heat to the water 0.100 km 
below the surface where the temperature is 4.0°C.

 39. An ideal refrigerator removes heat at a rate of 0.10 kW 
from its interior (+2.0°C) and exhausts heat at 40.0°C. 
How much electrical power is used?

 40. A heat pump is used to heat a house with an interior 
temperature of 20.0°C. On a chilly day with an outdoor 
temperature of −10.0°C, what is the minimum work in-
put in order to deliver 1.0 kJ of heat to the house?

 41. An ideal refrigerator keeps its contents at 0.0°C and 
exhausts heat into the kitchen at 40.0°C. For every 
1.0 kJ of work done, (a) how much heat is exhausted? 
(b) How much heat is removed from the contents?

 42. The outdoor temperature on a winter’s day is −4°C. If 
you use 1.0 kJ of electric energy to run a heat pump, 
how much heat does that put into your house at 21°C? 
Assume that the heat pump is ideal.

 43. The motor that drives a refrigerator produces 148 W of 
useful power. The hot and cold temperatures of the heat 
reservoirs are 20.0°C and −5.0°C. What is the maxi-
mum possible amount of ice it can produce in 2.0 h from 
water that is initially at 8.0°C?

 44.  A new organic semiconductor device is able to gen-
erate electricity (which can be used to charge a battery or 
light an LED) using the warmth of human skin. If your 
skin temperature is maintained by your body at 35°C and 
the temperature of the surroundings is 20°C, what is the 
maximum possible efficiency for this device?

 45.  The human body could potentially serve as a very 
good thermal reservoir, as its internal temperature re-
mains quite constant at around 37°C and is stabilized by 
continual intake of food. Suppose an inventor designed 
microscopic engines that could be implanted under the 
skin in order to charge batteries or power other equipment 
(e.g., pacemakers, or other necessary medical devices) by 
using the temperature difference between the interior of 
the body and the outside temperature. If such an engine 
were capable of half the Carnot efficiency and were able 
to store 5.0 nJ of energy in a battery in the course of a day, 
at what rate would the body be supplying energy if the 
temperature of the surroundings were 20°C?

 46. Two engines operate between the same two tempera-
tures of 750 K and 350 K, and have the same rate of heat 
input. One of the engines is a reversible engine with a 
power output of 23 kW. The second engine has an 
efficiency of 42%. What is the power output of the sec-
ond engine?

 47. (a) Calculate the efficiency of a reversible engine that 
operates between the temperatures 600.0°C and 
300.0°C. (b) If the engine absorbs 420.0 kJ of heat from 
the hot reservoir, how much does it exhaust to the cold 
reservoir?

 48. A reversible engine with an efficiency of 30.0% has 
TC = 310.0 K. (a) What is TH? (b) How much heat is 
exhausted for every 0.100 kJ of work done?

 49. An electric power station generates steam at 500.0°C 
and condenses it with river water at 27°C. By how much 
would its theoretical maximum efficiency decrease if it 
had to switch to cooling towers that condense the steam 
at 47°C?

 50. An oil-burning electric power plant uses steam at 773 K 
to drive a turbine, after which the steam is expelled at 
373 K. The engine has an efficiency of 0.40. What is the 
theoretical maximum efficiency possible at those tem-
peratures?

 51. An inventor proposes a heat engine to propel a ship, us-
ing the temperature difference between the water at the 
surface and the water 10 m below the surface as the two 
reservoirs. If these temperatures are 15.0°C and 10.0°C, 
respectively, what is the maximum possible efficiency 
of the engine?

 52. A heat engine uses the warm air at the ground as the hot 
reservoir and the cooler air at an altitude of several thou-
sand meters as the cold reservoir. If the warm air is at 
37°C and the cold air is at 25°C, what is the maximum 
possible efficiency for the engine?
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 53. A reversible refrigerator has a coefficient of perfor-
mance of 3.0. How much work must be done to freeze 
1.0 kg of liquid water initially at 0°C?

 54.  (a) For a reversible engine, will you obtain a better 
efficiency by increasing the high-temperature reservoir 
by an amount ΔT or decreasing the low-temperature 
reservoir by the same amount ΔT? Explain. (b) To 
illustrate your answer to this question, calculate the 
efficiencies of a reversible engine that initially uses 
reservoirs at 373 K and 923 K for ΔT = 50 K.

 55.  An engine operates between temperatures of 650 K 
and 350 K at 65.0% of its maximum possible efficiency. 
(a) What is the efficiency of this engine? (b) If 
6.3 × 103 J is exhausted to the low temperature reser-
voir, how much work does the engine do?

 56. Show that the coefficient of performance for a revers-
ible heat pump is 1/(1 − TC/TH).

 57. Show that the coefficient of performance for a revers-
ible refrigerator is 1/[(TH/TC) − 1].

15.8 Entropy
 58. Rank these in order of increasing entropy: (a) 0.5 kg of 

ice and 0.5 kg of (liquid) water at 0°C; (b) 1 kg of ice at 
0°C; (c) 1 kg of (liquid) water at 0°C; (d) 1 kg of water 
at 20°C.

 59. Rank these in order of increasing entropy: (a) 1 mol of 
water at 20°C and 1 mol of ethanol at 20°C in separate 
containers; (b) a mixture of 1 mol of water at 20°C and 
1 mol of ethanol at 20°C; (c) 0.5 mol of water at 20°C 
and 0.5 mol of ethanol at 20°C in separate containers; 
(d) a mixture of 1 mol of water at 30°C and 1 mol of 
ethanol at 30°C.

 60. An ice cube at 0.0°C is slowly melting. What is the 
change in the ice cube’s entropy for each 1.00 g of ice 
that melts?

 61. From Table 14.4, we know that it takes 2256 kJ to trans-
form 1.00 kg of water at 100°C to steam at 100°C. What 
is the change in entropy of 1.00 kg of water evaporating 
at 100.0°C? (Specify whether the change in entropy is 
an increase, +, or a decrease, −.)

 62. What is the change in entropy of 10 g of steam at 100°C 
as it condenses to liquid water at 100°C?

 63. A large block of copper initially at 20.0°C is placed in a 
vat of hot water (80.0°C). For the first 1.0 J of heat that 
flows from the water into the block, find (a) the entropy 
change of the block, (b) the entropy change of the water, 
and (c) the entropy change of the universe. Note that the 
temperatures of the block and water are essentially un-
changed by the flow of only 1.0 J of heat.

 64. A large, cold (0.0°C) block of iron is immersed in a tub of 
hot (100.0°C) water. In the first 10.0 s, 41.86 kJ of heat is 
transferred, although the temperatures of the water and 
the iron do not change much in this time. Ignoring heat 

flow between the system (iron + water) and its surround-
ings, calculate the change in entropy of the system (iron 
+ water) during this time.

 65. On a cold winter day, the outside temperature is 
−15.0°C. Inside the house the temperature is +20.0°C. 
Heat flows out of the house through a window at a rate 
of 220.0 W. At what rate is the entropy of the universe 
changing due to this heat conduction through the 
window?

 66. Within an insulated system, 418.6 kJ of heat is con-
ducted through a copper rod from a hot reservoir at 
+200.0°C to a cold reservoir at +100.0°C. (The reser-
voirs are so big that this heat exchange does not change 
their temperatures appreciably.) What is the net change 
in entropy of the system, in kJ/K?

 67.  A student eats 2000 kcal per day. (a) Assuming that 
all of the food energy is released as heat, what is the rate 
of heat released (in watts)? (b) What is the rate of change 
of entropy of the surroundings if all of the heat is re-
leased into air at room temperature (20°C)?

 68.  Humans cool off by perspiring; the evaporating 
sweat removes heat from the body. If the skin tempera-
ture is 35.0°C and the air temperature is 28.0°C, what is 
the entropy change of the universe due to the evapora-
tion of 150 mL of sweat? Take the latent heat of vapor-
ization of sweat to be the same as that for water.

 69.  Polypeptides are transformed from a random coil 
into their characteristic three-dimensional structures by 
a process called protein folding. In the folded state, the 
proteins are highly ordered (low in entropy). Through 
the application of heat, proteins can become denatured—
a state in which the structure unfolds and approaches a 
random structure with higher entropy. This denaturation 
often is observable macroscopically, as in the case of 
the difference between uncooked and cooked egg albu-
min. Suppose a particular protein has a molar mass of 
33 kg/mol. (a) If, at a constant temperature of 72°C, a 
sample of 45 mg of this protein is denatured such that 
the sample’s entropy change is 2.1 mJ/K, how much 
heat did this process require? (b) How much did the 
energy of each molecule increase?

 70.  Suppose you have a 35.0 g sample of a protein for 
which denaturation required an input of 2.20 J at a con-
stant temperature of 60.0°C. If the molar mass of the 
protein is 29.5 kg/mol, what is the entropy change per 
protein molecule?

Collaborative Problems

 71. A coal-fired electrical generating station can use a 
higher TH than a nuclear plant; for safety reasons the 
core of a nuclear reactor is not allowed to get as hot as 
burning coal. Suppose that TH = 727°C for a coal station 
but TH = 527°C for a nuclear station. Both power plants 
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exhaust waste heat into a lake at TC = 27°C. How much 
waste heat does each plant exhaust into the lake per day 
to produce 1.00 × 1014 J of electricity per day? Assume 
both operate as reversible engines.

 72.  A 0.500 kg block of iron at 60.0°C is placed in contact 
with a 0.500 kg block of iron at 20.0°C. (a) The blocks 
soon come to a common temperature of 40.0°C. Estimate 
the entropy change of the universe when this occurs. 
[Hint: Assume that all the heat flow occurs at an average 
temperature for each block.] (b) Estimate the entropy 
change of the universe if, instead, the temperature of the 
hotter block increased to 80.0°C while the temperature of 
the colder block decreased to 0.0°C. Explain how your 
answer indicates that the process is impossible.

 73.  A town is planning on using the water flowing 
through a river at a rate of 5.0 × 106 kg/s to carry away 
the heat from a new power plant. Environmental studies 
indicate that the temperature of the river should only 
increase by 0.50°C. The maximum design efficiency for 
this plant is 30.0%. What is the maximum possible 
power this plant can produce?

 74.  A town is considering using its lake as a source of 
power. The average temperature difference from the top 
to the bottom is 15°C, and the average surface tempera-
ture is 22°C. (a) Assuming that the town can set up a 
reversible engine using the surface and bottom of the 
lake as heat reservoirs, what would be its efficiency? 
(b) If the town needs about 1.0 × 108 W of power to be 
supplied by the lake, how many cubic meters of water 
does the heat engine use per second? (c) The surface 
area of the lake is 8.0 × 107 m2 and the average incident 
intensity (over 24 h) of the sunlight is 200 W/m2. Can 
the lake supply enough heat to meet the town’s energy 
needs with this method?

Comprehensive Problems

 75. On a day when the temperature is 19°C, a 0.15 kg base-
ball is dropped from the top of a 24 m tower. After the 
ball hits the ground, bounces a few times, and comes to 
rest, approximately how much has the entropy of the 
universe increased?

 76. Suppose you mix 4.0 mol of a monatomic ideal gas at 
20.0°C and 3.0 mol of another monatomic ideal gas 
at  30.0°C. If the mixture is allowed to reach equilib-
rium, what is the final temperature of the mixture? 
[Hint: Use energy conservation.]

 77. A balloon contains 160 L of nitrogen gas at 25°C and 
1.0 atm. How much energy must be added to raise the 
temperature of the nitrogen to 45°C while allowing the 
balloon to expand at atmospheric pressure?

 78.  Suppose you inhale 0.50 L of air initially at 20°C 
and 100 kPa pressure. While holding your breath, this 
air is warmed at constant pressure to 37°C. Treating the 

air as an ideal diatomic gas, how much heat flows from 
the body into the air?

 79.  On a hot day, you are in a sealed, insulated room. 
The room contains a refrigerator, operated by an electric 
motor. The motor does work at the rate of 250 W when 
it is running. The refrigerator removes heat from the 
food storage space at a rate of 450 W when the motor is 
running. In an effort to cool the room, you open the 
refrigerator door and let the motor run continuously. At 
what net rate is heat added to (+) or subtracted from (−) 
the room and all of its contents?

 80. (a) What is the entropy change of 1.00 mol of H2O when 
it changes from ice to water at 0.0°C? (b) If the ice is in 
contact with an environment at a temperature of 10.0°C, 
what is the entropy change of the universe when the 
ice melts?

 81. Estimate the entropy change of 850 g of water when it is 
heated from 20.0°C to 50.0°C. [Hint: Assume that the 
heat flows into the water at an average temperature 
of 35.0°C.]

 82. For a more realistic estimate of the maximum coeffi-
cient of performance of a heat pump, assume that a heat 
pump takes in heat from the outdoors at 10°C below the 
ambient outdoor temperature, to account for the tem-
perature difference across its heat exchanger. Similarly, 
assume that the output must be 10°C hotter than the 
house (which is kept at 20°C) to make the heat flow into 
the house. Make a graph of the coefficient of perfor-
mance of a reversible heat pump under these conditions 
as a function of outdoor temperature (from −15°C to 
+15°C in 5°C increments).

 83. A container holding 1.20 kg of water at 20.0°C is placed 
in a freezer that is kept at −20.0°C. The water freezes 
and comes to thermal equilibrium with the interior of 
the freezer. What is the minimum amount of electrical 
energy required by the freezer to do this if it operates 
between reservoirs at temperatures of 20.0°C 
and −20.0°C?

 84. A reversible heat engine has an efficiency of 33.3%, re-
moving heat from a hot reservoir and rejecting heat to a 
cold reservoir at 0°C. If the engine now operates in re-
verse, how long would it take to freeze 1.0 kg of water 
at 0°C, if it operates on a power of 186 W?

 85.   A fish at a pressure of 1.1 atm has its swim blad-
der inflated to an initial volume of 8.16 mL. If the fish 
starts swimming horizontally, its temperature increases 
from 20.0°C to 22.0°C as a result of the exertion. 
(a) Since the fish is still at the same pressure, how much 
work is done by the air in the swim bladder? [Hint: First 
find the new volume from the temperature change.] 
(b) How much heat is gained by the air in the swim blad-
der? Assume air to be a diatomic ideal gas. (c) If this 
quantity of heat is lost by the fish, by how much will its 
temperature decrease? The fish has a mass of 5.00 g, 
and its specific heat is about 3.5 J/(g·°C).



 REVIEW	AND	SYNTHESIS 581

Review and Synthesis

Problems 86–88. The PV diagram shown is for a heat engine 
that uses 1.000 mol of a diatomic ideal gas as its working 
substance. In the constant-temperature processes A and C, 
the gas is in contact with reservoirs at temperatures 373 K 
and 273 K, respectively. In constant-volume process B, the 
gas temperature decreases as heat flows into the cold reser-
voir. In constant-volume process D, the gas temperature 
increases as heat flows from the hot reservoir.
 86. (a) Find the work done by the engine during each of the 

four steps and the net work done for the cycle. (b) If the 
heat input per cycle is 2770 J, what is the efficiency of 
the engine? (c) Compare the efficiency to that of an 
ideal engine using the same reservoirs.

 87. Find the change in internal energy of the gas during 
each of the four steps.

 88. (a) Find the heat flow into or out of the gas during each of 
the four steps. (b) What is the net heat flow into the gas 
per cycle? (c) Calculate the change in entropy of the cold 
reservoir (not of the gas) in steps B and C and the change 
in entropy of the hot reservoir in steps A and D. (d) What 
is the total entropy change of the universe per cycle?
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Problems	86–88

Problems 89–91. In a heat engine, 3.00 mol of a monatomic 
ideal gas, initially at 4.00 atm of pressure, undergoes an 
isothermal expansion, increasing its volume by a factor of 9.50 
at a constant temperature of 650.0 K. The gas is then compressed 
at a constant pressure to its original volume. Finally, the pressure 
is increased at constant volume back to the original pressure.
 89. Draw a PV diagram to illustrate the cycle for this en-

gine. Label the axes with numerical values.
 90. (a) Calculate the work done by the engine during each 

step and the net work done per cycle. (b) If the heat 
input per cycle is 58.3 kJ, what is the efficiency?

 91.  (a) Find the heat flow into or out of the gas during 
each step. (b) Find the entropy change of the gas during 
the isothermal step. (c) What is the entropy change of the 
gas for a complete cycle? Is it equal in magnitude to the 
entropy change of the environment per cycle? Explain.

 92. A model steam engine of 1.00 kg mass pulls eight cars 
of 1.00 kg mass each. The cars start at rest and reach a 
velocity of 3.00 m/s in a time of 3.00 s while moving 
a distance of 4.50 m. During that time, the net heat input 
is 135 J. What is the change in the internal energy of the 
engine?

 93. A certain engine can propel a 1800 kg car from rest to a 
speed of 27 m/s in 9.5 s with an efficiency of 27%. What 
are the rate of heat flow into the engine at the high tem-
perature and the rate of heat flow out of the engine at the 
low temperature?

 94. An engine has a 30.0% efficiency. The engine raises a 
5.00 kg crate from rest to a vertical height of 10.0 m, at 
which point the crate has a speed of 4.00 m/s. How 
much heat input is required for this engine?

 95.  A 0.50 kg block of iron [c = 0.44 kJ/(kg·K)] at 
20.0°C is in contact with a 0.50 kg block of aluminum 
[c = 0.900 kJ/(kg·K)] at a temperature of 20.0°C. The 
system is completely isolated from the rest of the uni-
verse. Suppose heat flows from the iron into the alumi-
num until the temperature of the aluminum is 22.0°C. 
(a) From the first law, calculate the final temperature of 
the iron. (b) Estimate the entropy change of the system. 
(c) Explain how the result of part (b) shows that this 
process is impossible. [Hint: Since the system is 
isolated, ΔSsystem = ΔSuniverse.]

 96.  The efficiency of a muscle during weight lifting is 
equal to the work done in lifting the weight divided by 
the total energy output of the muscle (work done plus 
internal energy dissipated in the muscle). Determine the 
efficiency of a muscle that lifts a 161 N weight through 
a vertical displacement of 0.577 m and dissipates 139 J 
in the process.

 97. A power plant burns coal to produce pressurized steam 
at 535 K. The steam then condenses back into water at a 
temperature of 323 K. (a) What is the maximum possible 
efficiency of this plant? (b) If the plant operates at 50.0% 
of its maximum efficiency and its power output is 1.23 × 
108 W, at what rate must heat be removed by means of a 
cooling tower? (c) During periods of low demand, the 
steam engine is used to pump water 380 m uphill from 
one reservoir to another. (Then during periods of high 
demand, the water is released to drive turbines and 
generate electricity.) What is the maximum possible rate 
(in m3/s) at which water can be pumped uphill?

Problems 98–100.  The figure shows a PV diagram for an 
engine that uses a monatomic ideal gas as the working sub-
stance. The temperature at point A is 470.0 K.
 98. (a) How much net work does this engine do per cy-

cle? (b) Assuming that the efficiency of the engine is 
0.444, what is the heat input into the gas per cycle? 
(c) How much heat is exhausted per cycle? (d)  It 
takes 3.0 s for the engine to go through each cycle. 
The engine is used to drive a turbine that spins at
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Problems	98–100

5.00 atm
P B

A
C1.00 atm

0.500 m3 2.00 m3 V

  3000  rev/min. What is 
the average torque ex-
erted on the turbine?

 99. (a) What is the maximum 
temperature of the gas? 
(b)  What would be the 
efficiency of an ideal en-
gine with reservoirs at 
the maximum and minimum temperatures of this en-
gine? Compare this to the actual efficiency, 0.444.

 100.  (a) How many moles of gas are used in this engine? 
(b) Calculate the heat flow into or out of the gas in 
steps AB and CA. (c) Calculate the work done by the 
gas during each step.

Answers to Practice Problems

15.1 The internal energy increase is greater than the heat 
flow into the gas, so positive work was done on the gas. 
Positive work is done by the piston when it moves inward.
15.2 360 kJ
15.3 Heat flows into the gas; Q = 3.8 kJ.
15.4 The fire is irreversible: smoke, carbon dioxide, and ash 
will not come together spontaneously to form logs and twigs.

15.5 20%
15.6 4.0 kW˙h = 14 MJ
15.7 1200 K
15.8 178 MW
15.9 0.03 J/K

Answers to Checkpoints

15.2 (a) Yes. The heat flow during an adiabatic process is 
zero (Q = 0), but work can be done. The work done on the 
system changes its internal energy, which can cause a 
temperature change. (b) Yes. If a system is in thermal 
contact with a heat reservoir, heat flows between the 
reservoir and the system to keep the temperature constant. 
(c) Yes. During a phase transition such as freezing or 
melting, the internal energy of the system changes but the 
temperature does not.
15.4 An inelastic collision involves the conversion of kinetic 
energy into internal energy, an irreversible process.
15.8 No, in an irreversible process the total entropy of 
the universe increases. If the entropy of one system in-
creases by 10 J/K while the entropy of its surroundings 
decreases by 10  J/K, the process would be reversible 
(ΔStot = 0).
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PART THREE Electromagnetism
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The	 elegant	 fish	 in	 the	 photograph	 is	 the	 Gymnarchus niloticus,	 a	
native	of	Africa	found	in	the	Nile	River.	Gymnarchus	has	some	interest-
ing	traits.	 It	swims	gracefully	with	equal	facility	either	forward	or	back-
ward.	 Instead	of	propelling	 itself	 by	 lashing	 its	 tail	 sideways,	 as	most	
fish	 do,	 it	 keeps	 its	 spine	 straight—not	 only	when	 swimming	 straight	
ahead,	but	even	when	turning.	Its	propulsion	is	accomplished	by	means	
of	 the	undulations	of	 the	 fin	along	 its	back.
 Gymnarchus	 navigates	 with	 great	 precision,	 darting	 after	 its	 prey	
and	 evading	 obstacles	 in	 its	 path.	 What	 is	 surprising	 is	 that	 it	 does	
so	just	as	precisely	when	swimming	backward.	Furthermore,	Gymnarchus	
is	 nearly	 blind;	 its	 eyes	 respond	 only	 to	 extremely	 bright	 light.	 How,	
then,	 is	 it	able	 to	 locate	 its	prey	 in	 the	dim	 light	of	a	muddy  river?
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Figure 16.1 Amber is a 
hard, fossilized form of the sap 
from pine trees. This pendant 
has a fossilized scorpion 
embedded in a piece of amber.
©Wilson Valentin/iStockphoto/Getty 
Images

16.1 ELECTRIC CHARGE

In Part Three of this book, we study electric and magnetic fields in detail. Recall from 
Chapter 4 that all interactions in the universe fall into one of four categories: gravi-
tational, electromagnetic, strong, and weak. All of the familiar, everyday forces other 
than gravity—contact forces, tension in cables, and the like—are fundamentally elec-
tromagnetic. What we think of as a single interaction is really the net effect of huge 
numbers of microscopic interactions between electrons and atoms. Electromagnetic 
forces bind electrons to nuclei to form atoms and molecules. They hold atoms together 
to form liquids and solids, from skyscrapers to trees to human bodies. Technological 
applications of electromagnetism abound, especially once we realize that radio waves, 
microwaves, light, and other forms of electromagnetic radiation consist of oscillating 
electric and magnetic fields.

Many everyday manifestations of electromagnetism are complex; hence we study 
simpler situations in order to gain some insight into how electromagnetism works. 
The hybrid word electromagnetism itself shows that electricity and magnetism, which 
were once thought to be completely separate forces, are really aspects of the same 
fundamental interaction. This unification of the studies of electricity and magnetism 
occurred in the late nineteenth century. However, understanding comes more easily if 
we first tackle electricity (Chapters 16–18), then magnetism (Chapter 19), and finally 
see how they are closely related (Chapters 20–22).

The existence of electric forces has been familiar to humans for at least 3000 
years. The ancient Greeks used pieces of amber (Fig. 16.1) to make jewelry. When a 
piece of amber was polished by rubbing it with a piece of fabric, it was observed that 
the amber would subsequently attract small objects, such as bits of string or hair. 
Using modern understanding, we say that the amber is charged by rubbing: some 
electric charge is transferred between the amber and the cloth. Our word electric 
comes from the Greek word for amber (elektron).

A similar phenomenon occurs on a dry day when you walk across a carpeted 
room wearing socks. Charge is transferred between the carpet and your socks and 
between your socks and your body. Some of the charge you have accumulated may 
be unintentionally transferred from your fingertips to a doorknob or to a friend—
accompanied by the sensation of a shock.

Types of Charge

Electric charge is not created by these processes; it is just transferred from one object 
to another. The law of conservation of charge is one of the fundamental laws of 
physics; no exceptions to it have ever been found.

Conservation of Charge

The net charge of a closed system never changes.

Experiments with amber and other materials that can be charged reveal that elec-
tric forces can be either attractive or repulsive. (You can do similar experiments using 
ordinary transparent tape—see Section 16.2.) To explain these experiments, we con-
clude that there are two types of charge. Benjamin Franklin (1706–1790) was the first 
to call them positive (+) and negative (−). The net charge of a system is the algebraic 
sum—taking care to include the positive and negative signs—of the charges of the 
constituent particles in the system. When a piece of glass is rubbed by silk, the glass 
acquires a positive charge and the silk a negative charge; the net charge of the system 
of glass and silk does not change. An object that is electrically neutral has equal 
amounts of positive and negative charge and thus a net charge of zero. The symbols 
used for quantity of charge are q or Q.

CONNECTION:

Conservation of charge is a 
fundamental conservation 
law. Charge is a conserved 
scalar quantity, like energy. 
Momentum and angular 
momentum are conserved 
vector quantities.
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Ordinary matter consists of atoms, which in turn consist of electrons, protons, 
and neutrons. The protons and neutrons are called nucleons because they are found 
in the nucleus. The neutron is electrically neutral (thus the name neutron). The charges 
on the proton and the electron are of equal magnitude but of opposite sign. The charge 
on the proton is arbitrarily chosen to be positive; that on the electron is therefore 
negative. A neutral atom has equal numbers of protons and electrons, a balance of 
positive and negative charge. If the number of electrons and protons is not equal, then 
the atom is called an ion and has a nonzero net charge. If the ion has more electrons 
than protons, its net charge is negative; if the ion has fewer electrons than protons, 
its net charge is positive.

If we consider the forces acting on the microscopic building blocks of matter 
(e.g., atoms, molecules, ions, and electrons), we find that the electric forces between 
them are much stronger than the gravitational forces between them. The gravitational 
force between two massive objects can be larger than the electric force only when 
there is an almost perfect balance between positive and negative charges in them.

Elementary Charge

The magnitude of charge on the proton and electron is the same (Table 16.1). That 
amount of charge is called the elementary charge (symbol e). In terms of the SI unit 
of charge, the coulomb (C), the value of e is

Elementary charge

 e = 1.602 × 10−19 C (16-1)

Since ordinary objects have only slight imbalances between positive and negative 
charge, the coulomb is often an inconveniently large unit. For this reason, charges are 
often given in millicoulombs (mC), microcoulombs (μC), nanocoulombs (nC), or 
picocoulombs (pC). The coulomb is named after the French physicist Charles  Coulomb 
(1736–1806), who developed the expression for the electric force between two charged 
particles.

The net charge of any object is an integral multiple of the elementary charge. 
Even in the extraordinary matter found in exotic places such as the interior of stars, 
the upper atmosphere, or in particle accelerators, the observable charge is always an 
integer times e.

CHECKPOINT 16.1

A	glass	rod	and	piece	of	silk	are	both	electrically	neutral.	Then	the	rod	is	rubbed	
with	 the	 silk.	 If	 4.0	×	 109	 electrons	 are	 transferred	 from	 the	 glass	 to	 the	 silk	
and	no	 ions	are	 transferred,	what	are	 the	net	charges	of	both	objects?

Table 16.1 Masses and Electric Charges of the Proton, Electron, 
and Neutron

Particle Mass Electric Charge

Proton mp = 1.673 × 10–27 kg qp = +e = +1.602 × 10–19 C
Electron me = 9.109 × 10–31 kg qe = −e = −1.602 × 10–19 C
Neutron mn = 1.675 × 10–27 kg qn = 0
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One of the important differences between the gravitational force and the electric 
force is that the gravitational force between two massive bodies is always an attractive 
force, but the electric force between two charged particles can be attractive or repul-
sive depending on the signs of the charges. Two particles with charges of the same 
sign repel one another, but two particles with charges of opposite sign attract one 
another. More briefly,

Like charges repel one another; unlike charges attract one another.

A common shorthand is to say “a charge” instead of saying “a particle with charge.”

Polarization

An electrically neutral object may have regions of positive and negative charge within 
it, separated from one another. Such an object is polarized. A polarized object can 
experience an electric force even though its net charge is zero. A rubber rod charged 
negatively after being rubbed with fur attracts small bits of paper. So does a glass rod 
that is positively charged after being rubbed with silk (Fig. 16.2a,b). The bits of paper 
are electrically neutral, but a charged rod polarizes the paper—it attracts the unlike 

number of nucleons =
mass of body

mass per nucleon
=

70 kg
1.7 × 10−27 kg

= 4 × 1028 nucleons

Assuming that roughly half of the nucleons are protons,

number of protons =
1
2

× 4 × 1028 = 2 × 1028 protons

In an electrically neutral object, the number of electrons is 
equal to the number of protons. With a net charge of −1 nC, 
the body has 6 × 109 extra electrons. The percentage of ex-
cess electrons is then

6 × 109

2 × 1028 × 100% = (3 × 10−17)%

Discussion As shown in this example, charged macro-
scopic objects have tiny differences between the magnitude 
of the positive charge and the magnitude of the negative 
charge. For this reason, electric forces between macroscopic 
bodies are often negligible.

Practice Problem 16.1 Excess Electrons on a 
Balloon

How many excess electrons are found on a balloon with a net 
charge of −12 nC?

Example 16.1

An Unintentional Shock

The magnitude of charge transferred when you walk across a 
carpet, reach out to shake hands, and unintentionally give a 
shock to a friend might be typically about 1 nC. (a) If the 
charge is transferred by electrons only, how many electrons are 
transferred? (b) If your body has a net charge of −1 nC, esti-
mate the percentage of excess electrons. [Hint: See Table 16.1. 
The mass of the electron is only about 1/2000 that of a nucleon, 
so most of the mass of the body is in the nucleons. For an order-
of-magnitude calculation, we can just assume that half of the 
nucleons are protons and half are neutrons.]

Strategy Since the coulomb (C) is the SI unit of charge, 
the “n” must be the prefix “nano-” (= 10−9). We know the 
value of the elementary charge in coulombs. For part (b), we 
first make an order-of-magnitude estimate of the number of 
electrons in the human body.

Solution (a) The number of electrons transferred is the 
quantity of charge transferred divided by the charge of each 
electron:

−1 × 10−9 C
−1.6 × 10−19 C per electron

= 6 × 109 electrons

Notice that the magnitude of the charge transferred is 1 nC, 
but since it is transferred by electrons, the sign of the charge 
transferred is negative.

(b) We estimate a typical body mass of around 70 kg. Most 
of the mass of the body is in the nucleons, so
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charge in the paper a bit closer and pushes the like charge in the paper a bit farther 
away (Fig. 16.2c). The attraction between the rod and the unlike charge then becomes 
a little stronger than the repulsion between the rod and the like charge, since the 
electric force gets weaker as the separation increases and the like charge is farther 
away. Thus, the net force on the paper is always attractive, regardless of the sign of 
charge on the rod. In this case, we say that the paper is polarized by induction; the 
polarization of the paper is induced by the charge on the nearby rod. When the rod 
is moved away, the paper is no longer polarized.

Some molecules are intrinsically polarized. An important example is water. An 
electrically neutral water molecule has equal amounts of positive and negative charge 
(10 protons and 10 electrons), but the oxygen nucleus holds on to the shared electrons 
much more tightly than the hydrogen nuclei, so the centers of positive and negative 
charge do not coincide (Fig. 16.3).

Application: Hydrogen Bonds in Water Due to the strongly polar nature of the 
water molecule, the negative (oxygen) side of one molecule is attracted to the positive 
(hydrogen) side of another. These forces are strong compared with the forces between 
uncharged molecules in most substances, so neighboring water molecules are said to 
be held together by hydrogen bonds (Fig. 16.4). Hydrogen bonding is responsible for 

Figure 16.2 (a) Negatively 
charged rubber rod attracting 
bits of paper. (b) Positively 
charged glass rod attracting bits 
of paper. (c) Magnified view of 
polarized molecules within a 
bit of paper.
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Figure 16.3 (a) A model of 
the water molecule showing the 
charge distribution. Red and 
blue represent net positive and 
negative charge, respectively. 
The shared electrons spend 
more time near the oxygen 
nucleus and less near the 
hydrogen nuclei, so the average 
charge is negative near oxygen 
and positive near hydrogen. 
(b) Simplified model of the 
water molecule. The atoms are 
represented as small spheres 
with charges of −0.7e for oxygen 
and +0.35e for hydrogen.

Figure 16.4 Hydrogen bonding in water. The negatively charged oxygen side of 
one molecule is attracted to the positively charged hydrogen of another molecule. 
These bonds are weak compared with the covalent bonds that hold the atoms together 
in a molecule, but strong compared with the forces between uncharged molecules in 
most substances. Recent studies have shown that the hydrogen bond has some covalent 
character—in other words there is some sharing of electrons between the two mole-
cules—but for the most part we can think of the hydrogen bond as a consequence of 
electric forces between polar molecules. Hydrogen bonding is responsible for many 
unusual properties of water.
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many unusual and important properties of water that make life on Earth possible. 
Due  largely to hydrogen bonding, water:

∙ is a liquid rather than a gas at room temperature;
∙ has a large specific heat;
∙ has a large heat of vaporization;
∙ is less dense as a solid (ice) than as a liquid;
∙ has a large surface tension;
∙ exhibits strong adhesive forces with some surfaces;
∙ is a powerful solvent of polar molecules.

Application: Hydrogen Bonds in DNA, RNA, and Proteins Hydrogen bonds 
between different parts of the same molecule play an important role in determining 
the shape of the biological macromolecules such as nucleic acids and proteins. Most 
commonly, the bonds form between a hydrogen atom and either oxygen or nitrogen. 
The double-helix shape of DNA is largely due to hydrogen bonds. The two strands 
of the DNA molecule are held together by hydrogen bonds between base pairs 
(Fig. 16.5). When an enzyme unzips the molecule to separate the two strands, it has 
to break these hydrogen bonds. In proteins, hydrogen bonds play an important role in 
determining the three-dimensional structure of the molecule, which in turn helps 
determine the molecule’s chemical properties and biological function.

EVERYDAY PHYSICS DEMO

On a dry day, run a plastic comb through your hair (this works best if your 
hair is clean and dry and you have not used conditioner) or rub the comb on 
a wool sweater. When you are sure the comb is charged (by observing the 
behavior of your hair, listening for crackling sounds, etc.), hold it near some 
small pieces of a torn paper napkin or tissue. Charge the comb again, go to 
a sink, and turn the water on so that a thin stream of water comes out. It 
does not matter if the stream breaks up into droplets near the bottom. Hold 
the charged comb near the stream of water. You should see that the water 
experiences a force due to the charge on the comb (Fig. 16.6). Is the force 
attractive or repulsive? Does this mean that the water coming from the tap 
has a net charge? Explain why holding the comb near the top of the stream 
is more effective than holding it farther down (at the same horizontal distance 
from the stream).

16.2 ELECTRIC CONDUCTORS AND INSULATORS

Ordinary matter consists of atoms containing electrons and nuclei. The electrons dif-
fer greatly in how tightly they are bound to the nucleus. In atoms with many electrons, 
most of the electrons are tightly bound—under ordinary circumstances nothing can 

Figure 16.5 Two hydrogen 
bonds hold a base pair (adenine 
and thymine) together in a DNA 
molecule. The other base pair, 
guanine and cytosine, is held 
together by three hydrogen 
bonds. Hydrogen bonds between 
base pairs hold the two strands 
together and are largely 
responsible for the double-helix 
shape of the molecule. Adenine Thymine
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Figure 16.6 A stream of 
water is deflected by a 
charged comb.
©Joe Franek/McGraw-Hill Education
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tear them away from the nucleus. Some of the electrons are much more weakly bound 
and can be removed from the nucleus in one way or another.

Materials vary dramatically in how easy or difficult it is for charge to move within 
them. Materials in which some charge can move easily are called electric conductors, 
whereas materials in which charge does not move easily are called electrical insulators.

Metals are materials in which some of the electrons are so weakly bound that 
they are not tied to any one particular nucleus; they are free to wander about within 
the metal. The free electrons in metals make them good conductors. Some metals are 
better conductors than others, with copper being one of the best. Glass, plastics, rub-
ber, wood, paper, and many other familiar materials are insulators. Insulators do not 
have free electrons; each electron is bound to a particular nucleus.

The terms conductor and insulator are applied frequently to electric wires, which 
are omnipresent in today’s society (Fig. 16.7). The copper wires allow free electrons to 
flow. The plastic or rubber insulator surrounding the wires keeps the electric current—
the flow of charge—from leaving the wires (and entering your hand, for instance).

Water is usually thought of as an electric conductor. It is wise to assume so and 
take precautions such as not handling electric devices with wet hands. Actually, pure 
water is an electrical insulator. Pure water consists mostly of complete water mole-
cules (H2O), which carry no net charge as they move about; there is only a tiny 
concentration of ions (H+ and OH−). But tap water is by no means pure—it contains 
dissolved minerals. The mineral ions make tap water an electrical conductor. The 
human body contains many ions and therefore is a conductor.

Similarly, air is a good insulator, because most of the molecules in air are electri-
cally neutral, carrying no charge as they move about. However, air does contain some 
ions; air molecules are ionized by radioactive decays or by cosmic rays.

Intermediate between conductors and insulators are the semiconductors. The part 
of the computer industry clustered in northern California is referred to as “Silicon 
Valley” because silicon is a common semiconductor used in making computer chips 
and other electronic devices. Pure semiconductors are good insulators, but by doping 
them—adding tiny amounts of impurities in a controlled way—their electrical proper-
ties can be fine-tuned.

Charging Insulators by Rubbing When different insulating objects are rubbed 
against one another, both electrons and ions (charged atoms) can be transferred from 
one object to the other. If both objects had zero net charge before they were rubbed 
together, they now have net charges of equal magnitudes and opposite signs, since 
charge is conserved. Charging by rubbing works best in dry air. When the humidity 
is high, a film of moisture condenses on the surfaces of objects; charge can then leak 
off more easily, so it is difficult to build up charge.

Notice that we rub two insulators together to separate charge. A piece of metal 
can be rubbed all day with fur or silk without charging the metal; it is too easy for 
charge in the metal to move around and avoid getting transferred. Once an insulator 
is charged, the charge remains where it is.

Charging a Conductor by Contact How can a conductor be charged? First rub 
two insulators together to separate charge; then touch one of the charged insulators to 
the conductor (Fig. 16.8). Since the charge transferred to the conductor spreads out, 
the process can be repeated to build up more and more charge on the conductor.

Grounding a Conductor How can a conductor be discharged? One way is to 
ground it. Earth is a conductor because of the presence of ions and moisture and is 
large enough that for many purposes it can be thought of as a limitless reservoir of 
charge. To ground a conductor means to provide a conducting path between it and 
Earth (or to another charge reservoir). A charged conductor that is grounded dis-
charges because the charge spreads out by moving off the conductor and onto Earth.

Figure 16.7 Some electric 
wires. The metallic conductors 
are surrounded by insulating 
material. The insulation must 
be stripped away where the 
wire makes an electric connec-
tion with another conductor.
©PeterHermesFurian/Getty Images

CONNECTION:

The word reservoir may 
remind you of heat reservoirs. 
A heat reservoir has such a 
large heat capacity that it is 
possible to exchange heat with 
it without changing its 
temperature appreciably. Once 
we study electric potential in 
Chapter 17, we can describe a 
charge reservoir as something 
that can transfer charge of 
either sign without changing 
its potential.
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A buildup of even a relatively small amount of charge on a truck that delivers 
gasoline could be dangerous—a spark could trigger an explosion. To prevent such a 
charge buildup, the truck grounds its tank before starting to deliver gasoline to the 
service station.

The round opening of modern electric outlets is called ground. It is literally con-
nected by a conducting wire to the ground, either through a metal rod driven into 
Earth or through underground metal water pipes. The purpose of the ground connec-
tion is more fully discussed in Chapter 18, but you can understand one purpose 
already: it prevents static charges from building up on the conductor that is grounded.

Charging a Conductor by Induction A conductor is not necessarily discharged 
when it is grounded if there are other charges nearby. It is even possible to charge an 
initially neutral conductor by grounding it. In the process shown in Fig. 16.9, the 

Figure 16.8 Charging a conductor. (a) After rubbing a glass rod with a silk cloth, the glass rod is left with a net pos-
itive charge and the silk is left with a net negative charge. (b) Touching the glass rod to a metal sphere. The positively 
charged glass attracts some of the free electrons from the metal onto the glass. (c) The glass rod is removed. The metal 
sphere now has fewer electrons than protons, so it has a net positive charge. Even though negative charge is actually 
transferred ( electrons), it is often said that “positive charge is transferred to the metal” since the net effect is the same.
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Figure 16.9 Charging by induction. (a) A glass rod is charged by rubbing it with silk. (b) The positively charged 
glass rod is held near a metal sphere, but does not touch it. The sphere is polarized as free electrons within the sphere 
are attracted toward the glass rod. (c) When the sphere is grounded, electrons from the ground move onto the sphere, 
attracted there by positive charges on the sphere. The symbol  represents a connection to ground. (d) The ground con-
nection is broken without moving the glass rod. (e) Now the glass rod is removed with the ground wire still discon-
nected. Charge spreads over the metal surface as the like charges repel one another. The sphere is left with a net 
negative charge because of the excess electrons.
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charged insulator never touches the conducting sphere. The positively charged rod first 
polarizes the sphere, attracting the negative charges on the sphere while repelling the 
positive charges. Then the sphere is grounded. The resulting separation of charge on 
the conducting sphere causes negative charges from Earth to be attracted along the 
grounding wire and onto the sphere by the nearby positive charges.

charge (Fig. 16.12). The leaves hang 
apart due to the mutual repulsion of the 
net positive charges on them. (c) When 
the positively charged rod touches the 
bulb, some negative charge is trans-
ferred from the bulb to the rod. The 
electroscope now has a positive net 
charge. The glass rod still has a posi-
tive net charge that repels the positive 
charge on the electroscope, pushing it 
as far away as possible—toward the 
foil leaves. The leaves hang farther 
apart, since they now have more posi-
tive charge on them than before.

Conceptual Practice Problem 16.2 Removing the 
Glass Rod

What happens to the leaves as the glass rod is moved away?

Conceptual Example 16.2

The Electroscope

An electroscope is charged negatively and the gold foil 
leaves hang apart as in Fig. 16.10. What happens to the 
leaves as the following operations are carried out in the order 
listed? Explain what you see after each step. (a) You touch 
the metal bulb at the top of the electroscope with your hand. 
(b) You bring a glass rod that has been rubbed with silk near 
the bulb without touching it. [Hint: A glass rod rubbed with 
silk is positively charged.] (c) The glass rod touches the 
metal bulb.

Solution and Discussion (a) By touching the electroscope 
bulb with your hand, you ground it. Charge is transferred be-
tween your hand and the bulb until the bulb’s net charge is 
zero. Since the electroscope is now discharged, the foil leaves 
hang down as in Fig. 16.11. (b) When the positively charged 
rod is held near the bulb, the electroscope becomes polarized 
by induction. Negatively charged free electrons are drawn 
toward the bulb, leaving the foil leaves with a positive net 

Figure 16.10
An electroscope is a device used 
to demonstrate the presence of 
charge. A conducting pole has a 
metallic bulb at the top and a 
pair of flexible leaves of gold 
foil at the bottom. The leaves are 
pushed apart due to the repul-
sion of the negative charges.
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Figure 16.11
With no net charge, 
the leaves hang 
straight down.

Figure 16.12
With a positively charged rod near the 
bulb, the electroscope has no net 
charge but it is polarized: the bulb is 
negative and the leaves are positive. 
Repulsion between the positive charges 
on the leaves pushes them apart.
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EVERYDAY PHYSICS DEMO

Ordinary	transparent	tape	has	an	adhesive	that	allows	it	to	stick	to	paper	and	
many	 other	materials.	 Since	 the	 sticking	 force	 is	 electric	 in	 nature,	 it	 is	 not	
too	surprising	that	adhesive	can	be	used	to	separate	charge.	If	you	have	ever	
peeled	a	roll	of	tape	too	quickly	and	noticed	that	the	strip	of	tape	curls	around	
and	behaves	 strangely,	 you	have	 seen	effects	of	 this	 charge	 separation—the	
strip	 of	 tape	 has	 a	 net	 charge	 (and	 so	 does	 the	 tape	 left	 behind,	 but	 of	
opposite	 sign).	 Tape	pulled	slowly	 off	 a	 surface	does	not	 tend	 to	 have	a	 net	
charge.	There	are	some	 instructive	experiments	 you	can	perform:

•	 Pull	a	strip	of	tape	quickly	 from	the	roll.	How	can	you	tell	 if	 the	tape	has	
a	net	charge?

continued on next page
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•	 Take	 the	 roll	 of	 tape	 into	a	dark	 closet.	What	do	 you	 see	when	 you	pull	
a	strip	quickly	 from	 the	 roll?

•	 See	if	the	strip	is	attracted	or	repelled	when	you	hold	it	near	a	paper	clip.	
Explain	what	 you	see.

•	 Rub	 the	 tape	on	both	sides	between	your	 thumb	and	 forefinger.	Now	 try	
the	paper	clip	again.	What	has	happened?	Explain.

•	 Pull	a	second	strip	of	 tape	slowly	 from	 the	 roll.	 Is	 the	 force	between	 the	
two	strips	attractive	or	 repulsive?	What	does	 that	 tell	 you?

•	 Hold	the	second	strip	near	the	paper	clip.	Is	there	a	net	force?	What	can	
you	conclude?

•	 Can	 you	 think	 of	 a	 way	 of	 reliably	 making	 two	 strips	 of	 tape	 with	 like	
charges?	With	unlike	charges?

•	 Enough	suggestions—have	some	 fun	and	see	what	 you	can	discover!

Application: Photocopiers and Laser Printers

The operation of photocopiers and laser printers is based on the separation of charge 
and the attraction between unlike electric charges (Fig. 16.13). Positive charge is 
applied to a selenium-coated aluminum drum by rotating the drum under an electrode. 
The drum is then illuminated with a projected image of the document to be copied 
(or by a laser).

Figure 16.13 The operation of a photocopier is based on the attraction of negatively charged toner particles to 
regions on the drum that are positively charged.
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Selenium is a photoconductor—a light-sensitive semiconductor. When no light 
shines on the selenium, it is a good insulator; but when light shines on it, it becomes 
a good conductor. The selenium coating on the drum is initially in the dark. Behaving 
as an insulator, it can be electrically charged. When the selenium is illuminated, it 
becomes conducting wherever light falls on it. Electrons from the aluminum—a good 
conductor—pass into the illuminated regions of selenium and neutralize the positive 
charge. Regions of the selenium coating that remain dark do not allow electrons from 
the aluminum to flow in, so those regions remain positively charged.

Next, the drum is allowed to come into contact with a black powder called toner. 
The toner particles have been given a negative charge so they will be attracted to 
positively charged regions of the drum. Toner adheres to the drum where there is 
positive charge, but no toner adheres to the uncharged regions. A sheet of paper is 
now rotated onto the drum, and positive charge is applied to the back surface of the 
paper. The charge on the paper is larger than that on the drum, so the paper attracts 
the negatively charged toner away from the drum, forming an image of the original 
document on the paper. The final step is to fuse the toner to the paper by passing the 
paper between hot rollers. With the ink sealed into the fibers of the paper, the copy 
is finished.

16.3 COULOMB’S LAW

Let’s now begin a quantitative treatment of electrical forces among charged objects. 
Coulomb’s law gives the electric force acting between two point charges. A point 
charge is a pointlike object with a nonzero electric charge. Recall that a pointlike 
object is small enough that its internal structure is of no importance. The electron can 
be treated as a point charge, since there is no experimental evidence for any internal 
structure. The proton does have internal structure—it contains three particles called 
quarks bound together—but, since its size is only about 10−15 m, it too can be treated 
as a point charge for most purposes. A charged metal sphere of radius 10 cm can be 
treated as a point charge if it interacts with another such sphere 100 m away, but not 
if the two spheres are only a few centimeters apart. Context is everything!

Like gravity, the electric force is an inverse square law force. That is, the strength 
of the force decreases as the separation increases such that the force is proportional 
to the inverse square of the separation r between the two point charges (F ∝ 1/r2). 
The strength of the force is also proportional to the magnitude of each of the two 
charges (∣q

1
∣ and ∣q

2
∣) just as the gravitational force is proportional to the mass of 

each of two interacting objects.

Magnitude of Electric Force The magnitude of the electric force that each of two 
charges exerts on the other is given by

Coulomb’s law

 F =
k∣q1∣ ∣q2∣

r2  (16-2)

Since we use the magnitudes of q1 and q2, F—the magnitude of a vector—is always 
a positive quantity. The proportionality constant k is experimentally found to have 
the value

Coulomb constant

 k = 8.99 × 109 
N·m2

C2  (16-3)

CONNECTION:

Coulomb’s law is in 
agreement with Newton’s 
third law: The forces on the 
two charges are equal in 
magnitude and opposite in 
direction (Fig. 16.14).
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Direction of Electric Force The direction of the electric force exerted on one 
point charge due to another point charge is always along the line that joins the 
two point charges. Remember that, unlike the gravitational force, the electric force 
can either be attractive or repulsive, depending on the signs of the charges 
(Fig.  16.14).

CHECKPOINT 16.3

(a)	 List	 some	 similarities	 between	 gravity	 and	 the	 electric	 force.	 (b)	What	 is	 a	
major	difference	between	 them?

Problem-Solving Tips for Coulomb’s Law

 1. Use consistent units; since we know k in standard SI units (N·m2/C2), dis-
tances should be in meters and charges in coulombs. When the charge is 
given in μC or nC, be sure to change the units to coulombs: 1 μC = 10−6 C 
and 1 nC = 10−9 C.

 2. When finding the electric force on a single charge due to two or more 
other charges, find the force due to each of the other charges separately. 
The net force on a particular charge is the vector sum of the forces acting 
on that charge due to each of the other charges. Often it helps to separate 
the forces into x- and y-components, add the components separately, then 
find the magnitude and direction of the net force from its x- and 
y-components.

 3. If several charges lie along the same line, do not worry about an intermedi-
ate charge “shielding” the charge located on one side from the charge on 
the other side. The electric force is long-range just as is gravity; the gravi-
tational force on the Moon due to the Sun does not stop during a lunar 
eclipse, when Earth is between the Sun and the Moon.

CONNECTION:

Electric forces are added the 
same way any other kind of 
forces are added—as vector 
quantities. When applying 
Newton’s second law 
(ΣF

→
= ma→) to an object, all 

forces acting on the object—
and no forces acting on other 
objects—are included in the 
FBD and all are added (as 
vectors) to find the net force.

Figure 16.14 The electric force 
on (a) two opposite charges; 
(b) and (c) two like charges. Vec-
tors are drawn showing the force 
on each of the two interacting 
charges. (F

→
12 is the force exerted 

on charge 1 due to charge 2. F
→

21 
is the force exerted on charge 2 
due to charge 1.)
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Example 16.3

Electric Force on a Point Charge

Suppose three point charges are arranged as shown in 
Fig. 16.15. A charge q1 = +1.2 μC is located at the origin of 
an (x, y) coordinate system; a second charge q2 = −0.60 μC 
is located at (1.20 m, 0.50 m) and the third charge 
q3 = +0.20 μC is located at (1.20 m, 0). What is the force on 
q2 due to the other two charges?

Strategy The force on q2 due to q1 and the force on q2 due 
to q3 are determined separately. After sketching a free-body 
diagram, we add the two forces as vectors. Let the distance 
between charges 1 and 2 be r12 and the distance between 
charges 2 and 3 be r23.

Solution Charges 1 and 3 are both positive, but charge 2 
is negative. The forces acting on charge 2 due to charges 1 
and 3 are both attractive. Figure 16.16a shows an FBD for 
charge 2 with force vectors pointing toward each of the 
other charges.

Now we find the magnitude of force F
→

21 on q2 due to q1 
from Coulomb’s law and then repeat the same process to 
find the magnitude of force F

→
32 on q2 due to q3.

continued on next page

Figure 16.15
Location of point charges in Example 16.3.
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The distance between charges 1 and 2 is, from the 
Pythagorean theorem,

r12 = √r2
13 + r2

23 = 1.30 m
From Coulomb’s law,

F21 =
k∣q1∣∣q2∣

r2
12

= 8.99 × 109 
N·m2

C2 ×
(1.2 × 10−6 C) × (0.60 × 10−6 C)

(1.30 m)2

= 3.83 × 10−3 N = 3.83 mN
Now for the force due to charge 3.

F23 =
k∣q2∣∣q3∣

r2
23

= 8.99 × 109 
N·m2

C2 ×
(0.20 × 10−6 C) × (0.60 × 10−6 C)

(0.50 m)2

= 4.32 × 10−3 N = 4.32 mN
Adding the two force vectors gives the total force F

→
2. 

The x- and y-components are:

F21x = −F21 sin θ = −3.83 mN ×
1.20 m
1.30 m

= −3.53 mN

F21y = −F21 cos θ = −3.83 mN ×
0.50 m
1.30 m

= −1.47 mN

F
→

23 is in the −y-direction, so F23x = 0 and F23y = −4.32 mN. 
Adding components, we find F2x = −3.53 mN and

F2y = (−1.47 mN) + (−4.32 mN) = −5.79 mN

The magnitude of F
→

2 is

F2 = √F2
2x + F2

2y = 6.8 mN

From Fig. 16.16c, F
→

2 is clockwise from the −y-axis by an 
angle

ϕ = tan−1 
3.53 mN
5.79 mN

= 31°

Discussion The net force has a direction compatible with 
the graphical addition in Fig. 16.16b—it has components in 
the −x- and −y-directions.

Practice Problem 16.3 Electric Force on Charge 3

Find the magnitude and direction of the electric force on 
charge 3 due to charges 1 and 2 in Fig. 16.15.

Figure 16.16
(a) Free-body diagram showing the 
directions of forces F

→
21 and F

→
23. (b) Vectors 

F
→

21 and F
→

23 and their sum F
→

2. (c) Finding 
the direction of F

→
2 from its x- and 

y-components.
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Example 16.3 continued

Each ball exerts an electric force on the other since both are 
charged. The gravitational forces that the balls exert on one 
another are negligibly small, but the gravitational forces that 
Earth exerts on the balls are not negligible. The third force 
acting on each of the balls is due to the tension in a thread. We 
analyze the forces acting on a ball using an FBD. The sum of 
the three forces must be zero since the ball is in equilibrium.

Solution Each ball experiences three forces: the electric 
force, the gravitational force, and the pull of the thread, which is 
under tension. Figure 16.18 shows an FBD for one of the balls.

(a) The electric force is clearly repulsive—the balls are pushed 
apart—so the charges must have the same sign. There is no 
way to tell whether they are both positive or both negative.

Example 16.4

Two Charged Balls, Hanging in Equilibrium

Two Styrofoam balls of mass 10.0 g are suspended by threads 
of length 25 cm. The balls are charged, after which they hang 
apart, each at θ = 15.0° to the vertical (Fig. 16.17). (a) Are 
the signs of the charges 
the  same or opposite? 
(b)  Are the magnitudes of 
the charges necessarily the 
same? Explain. (c) Find 
the net charge on each ball, 
assuming that the charges 
are equal.

Strategy The situation is 
similar to the charged elec-
troscope (see Fig. 16.10). 

continued on next page

Figure 16.17
Sketch of the situation.
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(b) At first glance it might appear that 
the charges must be the same; the balls 
are hanging at the same angle, so there 
is no clue as to which charge is larger. 
But look again at Coulomb’s law: the 
force on either of the balls is propor-
tional to the product of the two charge 
magnitudes; F ∝ ∣q

1
∣ ∣q

2
∣. In accor-

dance with Newton’s third law, 
Coulomb’s law says that the two 
forces that make up the interaction are 
equal in magnitude and opposite in 
direction. The charges are not neces-
sarily equal.

(c) Let us choose the x- and y-axes in the horizontal and verti-
cal directions, respectively. Of the three forces acting on a 
ball, only one, that due to the tension in the thread, has both 
x- and y-components. From Fig. 16.18, the tension in the 
thread has a y-component equal in magnitude to the weight of 
the ball, and an x-component equal in magnitude to the elec-
tric force on the ball. The ball is in equilibrium, so the x- and 
y-components of the net force acting on it are both zero:

∑Fx = FE − T sin θ = 0

∑Fy = T cos θ − mg = 0

Eliminating the unknown tension yields

 FE = T sin θ = (
mg

cos θ) sin θ = mg tan θ (1)

From Coulomb’s law [Eq. (16-2)],

FE =
k∣q∣2

r2

where ∣q∣ is the magnitude of the charge on each of the two 
balls (now assumed to be equal). The separation of the balls 
(Fig. 16.19) is

 r = 2(d sin θ)  (2)

where d = 25 cm is the length of the thread.

Example 16.4 continued

Some algebra now enables us to solve for ∣q∣. From 
Coulomb’s law,

 ∣q∣2 =
FEr2

k
 (3)

We can substitute expressions (1) and (2) into Eq. (3) for FE 
and r:

∣q∣2 =
(mg tan θ) (2d sin θ)2

k

 =
4d2 mg tan θ sin2 θ

k

∣q∣ = √
4 × (0.25 m)2 × 0.0100 kg × 9.8 N/kg ×  tan  15.0° × sin2 15.0°

8.99 × 109 N·m2/C2

= 0.22 μC

The charges can either be both positive or both negative, so 
the charges are either both +0.22 μC or both −0.22 μC.

Discussion We can check the units in the final expression 
for q:

√
m2 × kg × N/kg

N·m2/C2 = √
N·m2

N·m2/C2 = √C2 = C (OK!)

Another check: if the balls were uncharged, they would hang 
straight down (θ = 0). Substituting θ = 0 into the final alge-
braic expression does give q = 0.

How large a charge would make the threads horizontal 
(assuming they don’t break first)? As the charge on the balls 
is increased, the angle of the threads approach 90° but can 
never reach 90° because the tension in the thread must al-
ways have an upward component to balance gravity. In the 
algebraic answer, as θ → 90°, tan θ → ∞ and sin θ → 1, 
which would yield a charge q approaching ∞. The threads 
cannot be horizontal for any finite amount of charge.

Practice Problem 16.4 Three Point Charges

Three identical point charges q = −2.0 nC are at the vertices 
of an equilateral triangle with sides of length L = 1.0 cm 
(Fig. 16.20). What is the magnitude of the electric force act-
ing on any one of them?

Figure 16.19
Finding the separation between the 
two balls.

sind

sin2d

sind

d d

Figure 16.20
Practice Problem 16.4

60°

L

qq

q

L

L

Figure 16.18
An FBD for the ball 
on the right in 
Figure 16.17. (The 
tension force has been 
replaced by its x- and 
y-components.)
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16.4 THE ELECTRIC FIELD

Recall that the gravitational field at a point is defined to be the gravitational force per 
unit mass on an object placed at that point. If the gravitational force on an apple of 
mass m due to Earth is F

→
g, then Earth’s gravitational field g→ at the location of the 

apple is given by

 g→ =
F
→

g

m
 (16-4)

The directions of F
→

g and g→ are the same since m is positive. The gravitational field 
we encounter most often is that due to Earth, but the gravitational field could be due 
to any astronomical body, or to more than one body. For instance, an astronaut may 
be concerned with the gravitational field at the location of her spacecraft due to the 
Sun, Earth, and Moon combined. Since gravitational forces add as  vectors—as do all 
forces—the gravitational field at the location of the spacecraft is the vector sum of 
the separate gravitational fields due to the Sun, Earth, and Moon.

Similarly, if a point charge q is in the vicinity of other charges, it experiences an 
electric force F

→
E. The electric field (symbol E

→
) at any point is defined to be the 

electric force per unit charge at that point (Fig. 16.21):

Definition of electric field

 E
→

=
F
→

E

q
 (16-5)

The SI units of the electric field are N/C.
In contrast to the gravitational force, which is always in the same direction as the 

gravitational field, the electric force can either be parallel or antiparallel to the electric 
field depending on the sign of the charge q that is sampling the field. If q is positive, 
the direction of the electric force F

→
E is the same as the direction of the electric field 

E
→

; if q is negative, the two vectors have opposite directions. To probe the electric 
field in some region, imagine placing a point charge q at various points. At each point 
you calculate the electric force on this test charge and divide the force by q to find 
the electric field at that point. It is usually easiest to imagine a positive test charge so 
that the field direction is the same as the force direction, but the field comes out the 
same regardless of the sign or magnitude of q, unless its magnitude is large enough 
to disturb the other charges and thereby change the electric field.

Why is E
→

 defined as the force per unit charge instead of per unit mass as done 
for gravitational field? The gravitational force on an object is proportional to its mass, 
so it makes sense to talk about the force per unit mass (the SI units of g→ are N/kg). 
In contrast to the gravitational force, the electrical force on a point charge is instead 
proportional to its charge.

Why is the electric field a useful concept? One reason is that once we know the 
electric field at some point, then it is easy to calculate the electric force F

→
E on any 

point charge q placed there:

Electric force on a point charge

 F
→

E = qE
→

 (16-6)

Note that E
→

 is the electric field at the location of point charge q due to all the other 
charges in the vicinity.

–
–

–

–
–

–

q

Q

P
FE

E = FE/q

Figure 16.21 The electric 
field E

→
 that exists at a point P 

due to a charged object with 
charge Q is equal to the elec-
tric force F

→
E experienced by a 

small test charge q placed at 
that point divided by q.

CONNECTION:

The definition of electric 
field is similar to the defini-
tion of gravitational field. 
Gravitational field is gravita-
tional force per unit mass; 
electric field is electric force 
per unit charge.
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Figure 16.23
(a) FBD 
showing forces 
acting on the 
sphere. (b) FBD 
in which the 
force due to the 
cord is replaced 
by its vertical 
and horizontal 
components.

θ

∣q∣E

–mg

(b)

FE

Fg

FT

(a)

T cos θ
x

y

–T sin θ
θ

E

m, q
6.00 cm

12.0 cm

Figure 16.22
A charged sphere hanging in a uniform 
electric field E

→
 (to the right) and a uni-

form gravitational field g→ (downward).

Example 16.5

Charged Sphere Hanging in a Uniform E
→

 Field

A small sphere of mass 5.10 g is hanging vertically from 
an insulating thread that is 12.0 cm long. By charging 
some nearby flat metal plates, the sphere is subjected to a 
horizontal electric field of magnitude 7.20 × 105 N/C. As 
a result, the sphere is displaced 6.00 cm horizontally in the 
direction of the electric field (Fig. 16.22). (a) What is the 
angle θ that the thread makes with the vertical? (b) What 
is the tension in the thread? (c) What is the charge on the 
sphere?

Strategy We assume that the sphere is small enough to 
be treated as a point charge. Then the electric force on the 
sphere is given by F

→
E = qE

→
. Figure 16.22 shows that the 

sphere is pushed to the right by the field; therefore, F
→

E is to 
the right. Since F

→
E and E

→
 have the same direction, the 

charge on the sphere is positive. After drawing an FBD 
showing all the forces acting on the sphere, we set the net 
force on the sphere equal to zero since it hangs in 
equilibrium.

Solution (a) The angle θ can be found from the geometry 
of Fig. 16.22. The thread’s length (12.0 cm) is the hypote-
nuse of a right triangle. The side of the triangle opposite 
angle θ is the horizontal displacement (6.00 cm). Thus,

sin θ =
6.00 cm
12.0 cm

= 0.500 and θ = 30.0°

(b) We start by drawing an FBD (Fig. 16.23a). The gravita-
tional force must balance the vertical component of the 
thread’s pull on the sphere (F

→
T). The electric force must bal-

ance the horizontal component of the same force. In 
Fig. 16.23b, we show the forces as x- and y-components. The 
magnitude of F

→
T is the tension in the thread T.

The sphere is in equilibrium, so the x- and y-components of 
the net force acting on it are both zero. From the y-components, 

we can find the tension:

∑Fy = T cos θ − mg = 0

T =
mg

cos θ
=

5.10 × 10−3 kg × 9.80 N/kg
cos 30.0°

= 0.0577 N

This is the magnitude of F
→

T. The direction is along the thread 
toward the support point, at an angle of 30.0° from the 
 vertical.

(c) The horizontal force components also add to zero. 
Because FE =∣q∣E,

∑Fx = ∣q∣E − T sin θ = 0

We can now solve for ∣q∣.

∣q∣ =
T sin θ

E
=

(5.77 × 10−2 N)  sin  30.0°
7.20 × 105 N/C

= 40.1 nC

We have determined the magnitude of the charge. The sign 
of the charge is positive because the electric force on the 
sphere is in the direction of the electric field. Therefore,

q = 40.1 nC

Discussion This problem has many steps, but, taken one by 
one, each step helps to solve for one of the unknowns and 
leads the way to find the next unknown. At first glance, it may 
appear that not enough information is given, but after a figure 
is drawn to aid in the visualization of the forces and their com-
ponents, the steps to follow are more easily determined.

Practice Problem 16.5 Effect of Doubling the 
Charge on the Hanging Mass

If the charge on the sphere were doubled in Example 16.5, 
what angle would the thread make with the vertical?
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Electric Field due to a Point Charge

The electric field due to a single point charge Q can be found using Coulomb’s law. 
Imagine a positive test charge q placed at various locations. Coulomb’s law says that 
the force acting on the test charge is

 F =
k∣q∣∣Q∣

r2  (16-2)

where r is the distance from charge Q. The electric field strength is E = F/∣q∣:

Electric field at a distance r from a point charge Q

 E =
k∣Q∣
r2  (16-7)

The field is proportional to 1/r2, following the same inverse square law as the 
gravitational force (Fig. 16.24).

What is the direction of the field? If Q is positive, then a positive test charge 
would be repelled, so the field vector points away from Q (or radially outward). If Q 
is negative, then the field vector points toward Q (radially inward).

Principle of Superposition

The electric field due to more than one point charge can be found using the principle 
of superposition:

 The electric field at any point is the vector sum of the field vectors at that 
point caused by each charge separately.

The uniform electric field in Example 16.5, for instance, could be produced by a 
positively charged vertical plate on the left and a negatively charged vertical plate on 
the right. The electric field due to a single point charge is not uniform, but the super-
position of the fields produced by many charges can be (very nearly) uniform.

CONNECTION:

The principle of superposition 
for electric fields is a direct 
consequence of adding 
electric forces as vector 
quantities.

Figure 16.24 Vector arrows 
representing the electric field at 
a few points near a positive 
point charge. The length of the 
arrow is proportional to the 
magnitude of the field. The 
direction of the electric field is 
radially outward. For a negative 
point charge, the direction 
would be radially inward.

+

between charge 1 and point P be r1 = 1.20 m and the distance 
between charge 2 and point P be r2 = 0.80 m.

Solution Charge 1 is positive. We imagine a tiny positive 
test charge q0 located at point P. Since charge 1 repels the 
positive test charge, the force F

→
1 on the test charge due to q1 is 

in the positive x-direction (Fig. 16.26). The direction of the 
electric field due to charge 1 is also in the +x-direction since 

Example 16.6

Electric Field due to Two Point Charges

Two point charges are located on the x-axis (Fig. 16.25). One 
charge, q1 = +0.60 μC, is located at x = 0; the other, 
q2 = −0.50 μC, is located at x = 0.40 m. Point P is located at 
x = 1.20 m. What are the magnitude and direction of the 
electric field at point P due to the two charges?

Strategy We can determine the field at P due to q1 and the 
field at P due to q2 separately using Coulomb’s law and the 
definition of the electric field. In each case, the electric field 
points in the direction of the electric force on a positive test 
charge at point P. The sum of these two fields is the electric 
field at P. We sketch a vector diagram to help add the fields 
correctly. Since there are two different distances in the prob-
lem, subscripts help to distinguish them. Let the distance 

Figure 16.25
Two point charges 
on the x-axis, one at 
x = 0 and one at 
x = +0.40 m.

+ –

0.80 m0.40 m

q1 q2

P +x

x = 0

continued on next page
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E
→

1 = F
→

1/q0 and q0 > 0. Charge q2 is negative so it attracts the 
imaginary test charge along the line joining the two charges; 
the force F

→
2 on the test charge due to q2 is in the negative x-

direction. Therefore E
→

2 = F
→

2/q0 is in the −x-direction.
We first find the magnitude of the field E

→
1 at P due to q1 

and then repeat the same process to find the magnitude of 
field E

→
2 at P due to q2. From the given information,

E1 =
k∣q1∣

r2
1

= 8.99 × 109 
N·m2

C2 ×
0.60 × 10−6 C

(1.20 m)2

= 3.75 × 103 N/C

Now for the magnitude of field E
→

2 at P due to charge 2.

E2 =
k∣q2∣

r2
2

= 8.99 × 109 
N · m2

C2 ×
0.50 × 10−6 C

(0.80 m)2

= 7.02 × 103 N/C

Figure 16.27 shows the vector addition E
→

1 + E
→

2 = E
→

, which 
points in the −x-direction since E2 > E1. The magnitude of E 
at point P is

Example 16.6 continued

E = 7.02 × 103 N/C − 3.75 × 103 N/C = 3.3 × 103 N/C

The electric field at P is 3.3 × 103 N/C in the −x-direction.

Discussion This same method is used to find the electric 
field at a point due to any number of point charges. The di-
rection of the electric field due to each charge alone is the 
direction of the electric force on an imaginary positive test 
charge at that point. The magnitude of each electric field is 
found from Eq. (16-7). Then the electric field vectors are 
added. If the charges and the point do not all lie on the same 
line, then the fields can be added by resolving them into x- 
and y-components and summing the components.

Even when electric fields are not due to a small num-
ber of point charges, the principle of superposition still 
applies: the electric field at any point is the vector sum of 
the fields at that point caused by each charge or set of 
charges separately.

Practice Problem 16.6 Electric Field at Point P 
due to Two Charges

Find the magnitude and direction of the electric field at 
point P due to charges 1 and 2 located on the x-axis. The 
charges are q1 = +0.040 μC and q2 = +0.010 μC. Charge q1 
is at the origin, charge q2 is at x = 0.30 m, and point P is at 
x = 1.50 m.

Figure 16.26
Directions of electric field vectors at point P due to charges q1 and q2.

+ –

1.20 m
0.80 m0.40 m

q1

q2
PE2

E1

E2
E1

E

Figure 16.27
Vector addition of E

→
1 and E

→
2.

Solution (a) The electric field due to a single point charge 
is directed away from the point charge if it is positive and 
toward it if it is negative. The directions of the three electric 
fields are shown in Fig. 16.29. Equation (16-7) gives the 
magnitudes:

E1 =
k∣q1∣

r2
1

=
8.99 × 109 N·m2·C−2 × 4.0 × 10−6 C

(0.50 m)2

= 1.44 × 105 N/C

A similar calculation with ∣q3∣ = 1.0 × 10−6 C and r3 = 
0.20 m yields E3 = 2.25 × 105 N/C. Using the Pythagorean 

Example 16.7

Electric Field due to Three Point Charges

Three point charges are placed at the corners of a rectangle, 
as shown in Fig. 16.28. (a) What is the electric field due to 
these three charges at the fourth corner, point P? (b) What is 
the acceleration of an electron located at point P? Assume 
that no forces other than that due to the electric field act on it.

Strategy (a) After determining the magnitude and direc-
tion of the electric field at point P due to each point charge 
individually, we use the principle of superposition to add 
them as vectors.

(b) Since we have already calculated E
→

 at point P, the force 
on the electron is F

→
= qE

→
, where q = −e is the charge of the 

electron.
continued on next page
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theorem to find r2 = √(0.50 m)2 + (0.20 m)2, we have

E2 =
kq2

r2
2

=
8.99 × 109 N·m2·C−2 × 6.0 × 10−6 C

(0.50  m)2 + (0.20 m)2

= 1.86 × 105 N/C
Now we find the x- and y-components of E

→
 due to all three. 

Using the angle θ in Fig. 16.29, we have cos θ = r1/r2 = 0.928 
and sin θ = 0.371. Then

∑Ex = (−E1) + (−E2 cos θ) + 0 = −3.17 × 105 N/C

∑Ey = 0 + E2 sin θ − E3 = −1.56 × 105 N/C

The magnitude of the electric field is then E = √E2
x + E2

y  = 
3.5 × 105 N/C and the direction is at angle ϕ = tan−1 ∣Ey 

/Ex∣ = 
26° below the −x-axis (Fig. 16.30).

Example 16.7 continued

(b) The force on the electron is F
→

= qeE
→

. Its acceleration is 
then a→ = qeE

→
/me. The electron charge qe = −e and mass me 

are given in Table 16.1. The acceleration has magnitude a = 
eE/me = 6.2 × 1016 m/s2. The direction of the acceleration is 
the direction of the electric force, which is opposite the di-
rection of E

→
 since the electron’s charge is negative.

Discussion Figure 16.29 is reminiscent of an FBD, ex-
cept that it shows electric field vectors at a point P rather 
than forces acting on some object. However, the electric 
field at P is the electric force per unit charge on a test charge 
placed at point P, so the underlying principle is the vector 
addition of forces.

Practice Problem 16.7 Electric Field due to Two 
Point Charges

If the point charge q1 = 4.0 μC is removed, what is the 
electric field at point P due to the remaining two point 
charges?

Figure 16.29
Directions of the electric 
field vectors at point P due 
to each of the point 
charges individually. 
(Lengths of vector arrows 
are not to scale.)

y

x

0.50 m

0.20 m

q1

q2q3 –

E1

E2

E3

+

+

θ

Figure 16.30
Finding the direction of E→ 
from its components.

y

xϕ

Ex

Ey

E

Electric Field Lines

It is often difficult to make a visual representation of an electric field using vector 
arrows; the vectors drawn at different points may overlap and become impossible to 
distinguish. Another visual representation of the electric field is a sketch of the 
 electric field lines, a set of continuous lines that represent both the magnitude and 
the direction of the electric field vector as follows:

Figure 16.28
Three point 
charges at the 
corners of a 
rectangle.

P

y

x

0.50 m

0.20 m

q1 = 4.0 μC

q3 =
–1.0 μC q2 = 6.0 μC– +

+

Interpretation of Electric Field Lines

•  The direction of the electric field vector at any point is tangent to the field 
line passing through that point and in the direction indicated by arrows on the 
field line (Fig. 16.31a).

•  The electric field is strong where field lines are close together and weak where 
they are far apart (Fig. 16.31b). (More specifically, if you imagine a small 
surface perpendicular to the field lines, the magnitude of the field is propor-
tional to the number of lines that cross the surface divided by the area.)
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To help sketch the field lines, these three additional rules are useful:

Rules for Sketching Field Lines

• Electric field lines start on positive charges and end on negative charges.
•  The number of lines starting on a positive charge (or ending on a negative 

charge) is proportional to the magnitude of the charge (Fig. 16.31c). (The total 
number of lines you draw is arbitrary; the more lines you draw, the better the 
representation of the field.)

•	  Field lines never cross. The electric field at any point has a unique direction; 
if field lines crossed, the field would have two directions at the same point 
(Fig. 16.31d).

Field Lines for a Point Charge

Figure 16.32 shows sketches of the field lines due to single point charges. The field 
lines show that the direction of the field is radial (away from a positive charge or 
toward a negative charge). The lines are close together near the point charge, where 
the field is strong, and are more spread out farther from the point charge, showing 
that the field strength diminishes with distance. No other nearby charges are shown 
in these sketches, so the lines go out to infinity as if the point charge were the only 
thing in the universe. If the field of view is enlarged, so that other charges are shown, 
the lines starting on the positive point charge would end on some faraway negative 
charges, and those that end on the negative charge would start on some faraway 
positive charges.

Electric Field due to a Dipole

A pair of point charges with equal and opposite charges that are near one another is 
called a dipole (literally two poles). To find the electric field due to the dipole at 
various points by using Coulomb’s law would be extremely tedious, but sketching 
some field lines gives an approximate idea of the electric field (Fig. 16.33).

Because the charges in the dipole have equal charge magnitudes, the same num-
ber of lines that start on the positive charge end on the negative charge. Close to either 
of the charges, the field lines are evenly spaced in all directions, just as if the other 
charge were not present. As we approach one of the charges, the field due to that 
charge gets so large (F ∝ 1/r2, r → 0) that the field due to the other charge is negli-
gible in comparison and we are left with the spherically symmetrical field due to a 
single point charge.

The field at other points has contributions from both charges. Figure 16.33 shows, 
for one point P, how the field vectors (E

→
−  and E

→
+ ) due to the two separate charges 

add, following vector addition rules, to give the total field E
→

 at point P. Note that the 
total field E

→
 is tangent to the field line through point P.

The principles of superposition and symmetry are two powerful tools for 
determining electric fields. The use of symmetry is illustrated in Conceptual 
Example 16.8.

CHECKPOINT 16.4

(a)	 What	 is	 the	 direction	 of	 the	 electric	 field	 at	 point	 A	 in	 Fig.	 16.33?	 (b)	 At	
which	point,	A	or	P,	 is	 the	magnitude	of	 the	 field	weaker?

Figure 16.31 Field line rules 
illustrated. (a) The electric field 
direction at points P and R.  
(b) The magnitude of the 
 electric field at point P is 
larger than the magnitude at R. 
(c) If 12 lines are drawn 
starting on a point charge 
+3 μC, then 8 lines must be 
drawn ending on a −2 μC point 
charge. (d) If field lines were 
to cross, the direction at the 
intersection would be 
undetermined.

(b)

P R

(d)

Impossible

E = ?

(a)

P

R

E (at P)

E (at R)

(c)

+3 μC
–2 μC

–+

P R

E

E
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Figure 16.32 Electric field lines due to isolated point charges. (a) Field of negative point charge; (b) field of positive 
point charge. These sketches show only field lines that lie in a two-dimensional plane. (c) A three-dimensional illustra-
tion of electric field lines due to a positive charge. The electric field is strong where the field lines are close together 
and weak where they are far apart. Compare the lengths of the electric field vector arrows in Fig. 16.24.

(a)

–Q

(b)

+Q

(c)

+

Field line

P

A

E– E+

E

+

–

y

x

Figure 16.33 Electric field 
lines for a dipole. The electric 
field vector E

→
 at a point P is 

tangent to the field line through 
that point and is the sum of the 
fields ( E

→
−  and E

→
+ ) due to each 

of the two point charges.

Conceptual Example 16.8

Field Lines for a Thin Spherical Shell

A thin metallic spherical shell of radius R carries a total 
charge Q, which is positive. The charge is spread out evenly 
over the shell’s outside surface. Sketch the electric field 
lines in two different views of the situation: (a) the 

spherical shell is tiny, and you are looking at it from distant 
points; (b) you are looking at the field inside the shell’s 
cavity. In (a), also sketch E

→
 field vectors at two different 

points outside the shell.
continued on next page
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Strategy Since the charge on the shell is positive, field 
lines begin on the shell. A sphere is a highly symmetrical 
shape: standing at the center, it looks the same in any chosen 
direction. This symmetry helps in sketching the field lines.

Solution (a) A tiny spherical shell located far away cannot 
be distinguished from a point charge. The sphere looks like a 
point when seen from a great distance and the field lines 
look just like those emanating from a positive point charge 
(Fig. 16.34). The field lines show that the electric field is 
directed radially away from the center of the shell and that its 
magnitude decreases with increasing distance, as illustrated 
by the two E

→
 vectors in Fig. 16.34.

(b) Field lines begin on the positive charges on the shell sur-
face. Some go outward, representing the electric field out-
side the shell, whereas others may perhaps go inward, 
representing the field inside the shell. Any field lines inside 
must start evenly spaced on the shell and point directly 
toward the center of the shell (Fig. 16.35); the lines cannot 

deviate from the radial direction 
due to the symmetry of the 
sphere. But what would happen 
to the field lines when they reach 
the center? The lines can only 
end at the center if a negative 
point charge is found there—but 
there is no point charge. If the 
lines do not end, they would 
cross at the center. That cannot 
be right since the field must have 
a unique direction at every 
point—field lines never cross. 
The inescapable conclusion: 
there are no field lines inside the 
shell (Fig. 16.36), so E

→
= 0 

everywhere inside the shell.

Conceptual Example 16.8 continued

Discussion We conclude that the electric field inside a 
spherical shell of charge is zero. This conclusion, which we 
reached using field lines and symmetry considerations, can 
also be proved using Coulomb’s law, the principle of super-
position, and some calculus—a much more difficult method!

The field line picture also shows that the electric field 
pattern outside a spherical shell is the same as if the charge 
were all condensed into a point charge at the center of the 
sphere.

Conceptual Practice Problem 16.8 Field Lines 
After a Negative Point Charge Is Inserted

Suppose the spherical shell of evenly distributed positive 
charge Q has a point charge −Q placed at its center. (a) 
Sketch the field lines. [Hint: Since the charges are equal in 
magnitude, the number of lines starting on the shell is equal 
to the number ending on the point charge.] (b) Defend your 
sketch using the principle of superposition (total field = 
field due to shell + field due to point charge).

Figure 16.35
If there are field lines inside 
the shell, they must start on 
the shell and point radially 
inward. Then what?

?

Figure 16.36
There can be no field 
lines—and therefore no 
electric field—inside the 
shell.
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+

+

++ +

+

+ +

+

+

E = 0

Figure 16.34
Field lines outside the 
shell are directed radially 
outward.

+Q

E

E

Figure 16.37 The electric 
field generated by Gymnarchus. 
The field is approximately that 
of a dipole. The head of the 
fish is positively charged and 
the tail is negatively charged.

Application of Electric Fields: Electrolocation

Long before scientists learned how to detect and measure electric fields, certain 
animals and fish evolved organs to produce and detect electric fields. Gymnarchus 
niloticus (see the Chapter Opener) has electrical organs running along the length 
of its body; these organs set up an electric field around the fish (Fig. 16.37). When 
a nearby object distorts the field lines, Gymnarchus detects the change through 
sensory receptors, mostly near the head, and responds accordingly. This extra sense 
enables the fish to detect prey or predators in muddy streams where eyes are 
less useful.

Since Gymnarchus relies primarily on electrolocation, where slight changes in the 
electric field are interpreted as the presence of nearby objects, it is important that it 
be able to create the same electric field over and over. For this reason, Gymnarchus 
swims by undulating its long dorsal fin while holding its body rigid. Keeping the 
backbone straight keeps the negative and positive charge centers aligned and at a fixed 
distance apart. A swishing tail would cause variation in the electric field and that 
would make electrolocation much less accurate.
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16.5 MOTION OF A POINT CHARGE IN A UNIFORM 
ELECTRIC FIELD

The simplest example of how a charged object responds to an electric field is when 
the electric field (due to other charges) is uniform—that is, has the same magnitude 
and direction at every point. The field due to a single point charge is not uniform; it 
is radially directed and its magnitude follows the inverse square law. To create a 
uniform field requires a large number of charges. The most common way to create a 
(nearly) uniform electric field is to put equal and opposite charges on two parallel 
metal plates (Fig. 16.38). If the charges are ±Q and the plates have area A, the mag-
nitude of the field equation box between the plates is

Electric field between oppositely charged metal plates

 E =
Q

ϵ0 A
 (16-8)

The constant ϵ0, called the permittivity of vacuum, is related to the Coulomb constant:

Permittivity of vacuum

 ϵ0 =
1

4πk
= 8.85 × 10−12 

C2

N·m2 (16-9)

The direction of the field is perpendicular to the plates, from the positively charged 
plate toward the negatively charged plate.

Assuming the uniform field E
→

 is known, a point charge q experiences an electric force

 F
→

= qE
→

 (16-6)

If this is the only force acting on the point charge, then the net force is constant and 
therefore so is the acceleration:

 a→ =
F
→

m
=

qE
→

m
 (16-10)

With a constant acceleration, the motion can take one of two forms. If the initial 
velocity of the point charge is zero or is parallel or antiparallel to the field, then the 
motion is along a straight line. If the point charge has an initial velocity component 
perpendicular to the field, then the trajectory is parabolic (just like a projectile in a 
uniform gravitational field if other forces are negligible). All the tools developed in 
Chapters 2 and 3 to analyze motion with constant acceleration can be used here. The 
direction of the acceleration is either parallel to E

→
 (for a positive charge) or antiparal-

lel to E
→

 (for a negative charge).

CONNECTION:

If no forces act on a point 
charge other than the force 
due to a uniform electric 
field, then the acceleration is 
constant. All the principles 
we learned for motion with 
constant acceleration in a uni-
form gravitational field apply. 
However, the acceleration 
does not have the same mag-
nitude and direction for all 
point charges in the same 
field—see Eq. (16-10).

Figure 16.38 (a) Uniform 
electric field between two par-
allel metal plates with opposite 
charges +Q and −Q. The field 
has magnitude E = Q/(ϵ0 A) 
where A is the area of each 
plate. The direction of the field 
is perpendicular to the plates, 
pointing away from the positive 
plate and toward the negative 
plate. (b) Side view of the 
field  lines.
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CHECKPOINT 16.5

An	electron	moves	 in	a	 region	of	uniform	electric	 field	 in	 the	+x-direction.	 The	
electric	field	 is	also	in	the	+x-direction.	Describe	the	subsequent	motion	of	the	
electron.

Figure 16.39
In a cathode ray tube (CRT), electrons are accelerated to high speeds by an electric field in the –z-direction between the cathode and anode. 
This CRT, used in an oscilloscope, also has two pairs of parallel plates labeled (A) and (B) that deflect the electron beam horizontally and ver-
tically by applying electric fields in the ±x- and ±y-directions, respectively. Between either set of plates, the force on an electron is constant so 
it moves along a parabolic path. Once an electron leaves the plates, the electric field is essentially zero so it travels in a straight line path with 
constant velocity. Note that most of the deflection of the beam occurs as it travels through the region between the plates (B) and the screen.

z

xy

–

+

+

–

Heated filament
(source of electrons)

Cathode

Electron
gun

Anode

Uniform E field
seen from side

Side view

Electron beam

(A)
Plates for

horizontal deflection

Conductive coating

Fluorescent screen

(B)
Plates for

vertical deflection

Cathode

Anode

(–)
(+)

Electron beam

+–
–
–
–
–
–
–
–

+
+
+
+
+
+
+

z

y

Example 16.9

Electron Beam

A cathode ray tube (CRT) is used to accelerate electrons in 
some oscilloscopes and x-ray tubes, as well as in older 
 televisions and computer monitors. Electrons from a heated 
filament pass through a hole in the cathode; they are then 
accelerated by an electric field between the cathode and 
the anode (Fig. 16.39). Suppose an electron passes through 
the hole in the cathode at a velocity of 1.0 × 105 m/s toward the 
anode. The electric field is uniform and in the –z-direction 
between the anode and cathode and has a magnitude of 

1.0 × 104 N/C. (a) What is the acceleration of the electron? 
(b) If the anode and cathode are separated by 2.0 cm, what is 
the final velocity of the electron?

Strategy We can apply Newton’s second law to find the 
acceleration. We can then solve for the final velocity in ei-
ther of two ways: using the kinematics equations for constant 
acceleration, or using work and energy.

continued on next page
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Example 16.9 continued

Given: initial speed vi = 1.0 × 105 m/s;
  separation between plates d = 0.020 m;
  electric field magnitude E = 1.0 × 104 N/C
Look up: electron mass me = 9.109 × 10−31 kg;
  electron charge q = −e = −1.602 × 10−19 C
Find: (a) acceleration; (b) final velocity

Solution (a) First, check that gravity is negligible. The 
gravitational force on the electron is

Fg = mg = 9.109 × 10−31 kg × 9.8 m/s2 = 8.9 × 10−30 N

The magnitude of the electric force is

FE = eE = 1.602 × 10−19 C × 1.0 × 104 N/C
= 1.6 × 10−15 N

which is about 14 orders of magnitude larger. Gravity is 
completely negligible. While between the plates, the elec-
tron’s acceleration is therefore

a =
F

me
=

eE

me
=

1.602 × 10−19 C × 1.0 × 104 N/C
9.109 × 10−31 kg

= 1.76 × 1015 m/s2

To two significant figures, a = 1.8 × 1015 m/s2. Since the 
charge on the electron is negative, the direction of the accelera-
tion is opposite to the electric field, or to the right in the figure.

(b) The force is constant and in the same direction as the 
initial velocity. Then the work done by the electric force is 
equal to the change in kinetic energy [Eqs. (6-3) and (6-15)]:

W = Fx Δx =
1
2

 mv2
f −

1
2

 mv2
i

We now solve for vf.

vf = √
2Fx Δx

m
+ v2

i = √
2(eE) d

me
+ v2

i

= 8.4 × 106 m/s to the right

Discussion The acceleration of the electrons seems large. 
This large value might cause some concern, but there is no 
law of physics against such large accelerations. Note that the 
final speed is less than the speed of light (3 × 108 m/s), the 
universe’s ultimate speed limit.

Practice Problem 16.9 Slowing Some Protons

If a beam of protons were projected horizontally to the right 
through the hole in the cathode (see Fig. 16.39) with an ini-
tial speed of vi = 3.0 × 105 m/s, with what speed would the 
protons reach the anode (if they do reach it)?

leaves, the electron just misses the upper plate. What is the 
magnitude of the electric field?

Strategy Using the x- and y-axes in the figure, the electric 
field is in the −y-direction and the initial velocity of the 
electron is in the +x-direction. The electric force on the elec-
tron is upward (in the +y-direction) since it has a negative 
charge and is constant because the field is uniform. Thus, the 
acceleration of the electron is constant and directed upward. 
Since the acceleration is in the +y-direction, the x-component 
of the velocity is constant. The problem is similar to a 
projectile problem, but the constant acceleration is due to a 
uniform electric field instead of a uniform gravitational 
field. If the electron just misses the upper plate, its displace-
ment is +1.00 cm in the y-direction and +4.00 cm in the 
x-direction. From vx and Δx, we can find the time the electron 
spends between the plates. From Δy and the time, we can 
find ay. From the acceleration we find the electric field using 
Newton’s second law, ΣF

→
= ma→.

Example 16.10

Deflection of an Electron Projected into a 
Uniform E

→
 Field

An electron is projected horizontally into the uniform 
 electric field directed vertically downward between two 
 parallel plates (Fig. 16.40). The plates are 2.00 cm apart and 
are of length 4.00 cm. The initial speed of the electron is  
vi = 8.00 × 106 m/s. As it enters the region between the 
plates, the electron is midway between the two plates; as it 

Figure 16.40
An electron deflected by an electric field. The trajectory is 
parabolic between the plates because the electric field exerts a 
constant force on the electron. After exiting the plates, it moves 
at constant velocity because the net force is zero.

4.00 cm

2.00 cm
y

x

vi
e–

E

continued on next page
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Example 16.10 continued

We ignore the gravitational force on the electron because 
we assume it to be negligible. We can test this assumption later.

Given: Δx = 4.00 cm; Δy = 1.00 cm; vx = 8.00 × 106 m/s
Find: electric field strength, E

Solution We start by finding the time the electron spends 
between the plates from Δx and vx.

Δt =
Δx

vx
=

4.00 × 10−2 m
8.00 × 106 m/s

= 5.00 × 10−9 s

From the time spent between the plates and Δy, we find the 
component of the acceleration in the y-direction.

Δy =
1
2

ay(Δt)2

ay =
2 Δy

(Δt)2 =
2 × 1.00 × 10−2 m

(5.00 × 10−9 s)2 = 8.00 × 1014 m/s2

This acceleration is produced by the electric force acting on 
the electron since we assume that no other forces act. From 
Newton’s second law,

Fy = qEy = meay

Solving for Ey, we have

Ey =
meay

q
=

9.109 × 10−31 kg × 8.00 × 1014 m/s2

− 1.602 × 10−19 C
= −4.55 × 103 N/C

Since the field has no x-component, its magnitude is 
4.55 × 103 N/C.

Discussion We have ignored the gravitational force on 
the electron because we suspect that it is negligible in com-
parison with the electric force. This should be checked to be 
sure it is a valid assumption.

F
→

= meg
→ = 9.109 × 10−31 kg × (9.80 N/kg downward)

= 8.93 × 10−30 N downward

F
→

E = qE
→

= −1.602 × 10−19 C × (4.55 × 103 N/C downward)

= 7.29 × 10−16 N upward

The electric force is stronger than the gravitational force 
by a factor of approximately 1014, so the assumption is 
valid.

Practice Problem 16.10 Deflection of a Proton 
Projected into a Uniform E

→
 Field

If the electron is replaced by a proton projected with the 
same initial velocity, will the proton exit the region between 
the plates or will it hit one of the plates? If it does not strike 
one of the plates, by how much is it deflected by the time it 
leaves the region of electric field?

Figure 16.41 An apparatus 
used to perform gel electropho-
resis. The molecules to be 
sorted are placed in wells in 
the gel. Then the power supply 
is turned on, subjecting the 
molecules to a large electric 
field and making them migrate 
through the gel.
©BSIP/Photoshot

Application: Gel Electrophoresis Gel electrophoresis is a technique that uses an 
applied electric field to sort biological macromolecules (e.g., proteins or nucleic acids) 
based on size. The molecules to be sorted are chemically treated so they unfold into 
rodlike shapes and so they carry a net charge in solution. The molecules are deposited 
into a gel matrix and an electric field is applied (Fig. 16.41).
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The electric force pulls the molecules toward one of the electrodes, depending on the 
sign of its charge.

If no other forces acted, the molecules would move with constant acceleration, 
but a force due to the gel opposes their motion. This force is similar to viscous drag 
(see Section 9.10)—it is proportional to the speed of the molecule, where the constant 
of proportionality depends on the size and shape of the molecule. Each molecule 
reaches a terminal speed at which the electric and drag forces balance; smaller mol-
ecules move faster and large molecules move more slowly, so after a while, the mol-
ecules are sorted by size. The molecules can then be stained to make them visible 
(Fig. 16.42).

Force and Torque on a Dipole in an Electric Field The electric force on a dipole 
in a uniform electric field is zero, because the forces on the two charges are equal in 
magnitude and opposite in direction (Fig. 16.43a). However, the torque on the dipole 
is not zero unless θ = 0 or θ = 180°. As shown in Problem 110, the magnitude of 
the torque for any angle θ (as defined in Fig. 16.43a) is

Torque on a dipole

 τ = qEd sin θ (16-11)

The direction of the torque tends to rotate the dipole toward the stable equilibrium 
position (Fig. 16.43b) and away from the unstable equilibrium position (Fig. 16.43c). 
If the electric field were nonuniform, the electric forces on the positive and negative 
charge would not be equal; then the electric force on the dipole would be nonzero.

16.6 CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

In Section 16.1, we described how a piece of paper can be polarized by nearby 
charges. The polarization is the paper’s response to an applied electric field. By 
applied we mean a field due to charges outside the paper. The separation of charge 
in the paper produces an electric field of its own. The net electric field at any point—
whether inside or outside the paper—is the sum of the applied field and the field due 
to the separated charges in the paper.

How much charge separation occurs depends on both the strength of the applied 
field and properties of the atoms and molecules that make up the paper. Some mate-
rials are more easily polarized than others. The most easily polarized materials are 
conductors because they contain highly mobile charges that can move freely through 
the entire volume of the material.

It is useful to examine the distribution of charge in a conductor, whether the 
conductor has a net charge or lies in an externally applied field, or both. We restrict 
our attention to a conductor in which the mobile charges are at rest in equilibrium, a 
situation called electrostatic equilibrium. If charge is put on a conductor, mobile 
charges move about until a stable distribution is attained. The same thing happens 
when an external field is applied or changed—charges move in response to the exter-
nal field, but they soon reach an equilibrium distribution.

Figure 16.42 DNA gel elec-
trophoresis separates DNA frag-
ments according to size. After 
electrophoresis is performed, the 
fragments stained with ethidium 
bromide and can then be viewed 
under ultraviolet light. Frag-
ments of a given size form a 
distinct band in the gel.
©Lisa Burgess, photographer/ 
McGraw-Hill Education

Figure 16.43 A dipole consists of two point charges +q and −q separated by a 
fixed distance d. (a) The force on a dipole due to a uniform electric field is zero. 
The torque depends on the angle θ that the dipole makes with the electric field. In 
the orientation shown (0 < θ < 180°), the torque is clockwise. (b) Stable equilib-
rium (θ = 0). (c) Unstable equilibrium (θ = 180°). (d) For 180° < θ < 360°, the 
torque is counterclockwise. The torque for any nonequilibrium orientation tends to 
rotate the dipole away from unstable equilibrium and toward stable equilibrium.
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If the electric field within a conducting material is nonzero, it exerts a force on 
each of the mobile charges (usually electrons) and makes them move preferentially in 
a certain direction. With mobile charge in motion, the conductor cannot be in elec-
trostatic equilibrium. Therefore, we can draw this conclusion:

1.  The electric field is zero at any point within a conducting material in elec-
trostatic equilibrium.

The electric field is zero within the conducting material, but is not necessarily zero 
outside. If there are field lines outside but none inside, field lines must either start or 
end at charges on the surface of the conductor. Field lines start or end on charges, so

2.  When a conductor is in electrostatic equilibrium, only its surface(s) can have 
net charge.

At any point within the conductor, there are equal amounts of positive and nega-
tive charge. Imbalance between positive and negative charge can occur only on the 
surface(s) of the conductor.

It is also true that, in electrostatic equilibrium,

3.  The electric field at the surface of the conductor is perpendicular to the surface.

How do we know that? If the field had a component parallel to the surface, any free 
charges at the surface would feel a force parallel to the surface and would move in 
response. Thus, if there is a parallel component at the surface, the conductor cannot 
be in electrostatic equilibrium.

If a conductor has an irregular shape, the excess charge on its surface(s) is con-
centrated more at sharp points. Think of the charges as being constrained to move 
along the surfaces of the conductor. On flat surfaces, repulsive forces between neigh-
boring charges push parallel to the surface, making the charges spread apart evenly. 
On a curved surface, only the components of the repulsive forces parallel to the 
surface, F‖, are effective at making the charges spread apart (Fig. 16.44a). If charges 
were spread evenly over an irregular surface, the parallel components of the repulsive 
forces would be smaller for charges on the more sharply curved regions and charge 
would tend to move toward these regions. Therefore,

4.  The surface charge density (charge per unit area) on a conductor in electro-
static equilibrium is highest at sharp points (Fig. 16.44b).

The electric field lines just outside a conductor are densely packed at sharp points 
because each line starts or ends on a surface charge. Since the density of field lines 
reflects the magnitude of the electric field, the electric field outside the conductor is 
largest near the sharpest points of the conducting surface.

The conclusions we have reached about conductors in electrostatic equilibrium 
can be restated in terms of field line rules:

For a conductor in electrostatic equilibrium,
5.  There are no field lines within the conducting material.
6.  Field lines that start or stop on the surface of a conductor are perpendicular 

to the surface where they intersect it.
7.  The electric field just outside the surface of a conductor is strongest near 

sharp points.

Figure 16.44 (a) Repulsive 
forces on a charge constrained 
to move along a curved surface 
due to two of its neighbors. 
The parallel components of the 
forces (F‖) determine the 
spacing between the charges. 
(b) For a conductor in electro-
static equilibrium, the surface 
charge density is largest where 
the radius of curvature of the 
surface is smallest and the 
electric field just outside the 
surface is strongest there.

(b)
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Application: Electrostatic Shielding Electronic circuits and cables are often 
shielded from stray electric fields produced by other devices by placing them inside 
metal enclosures (see Conceptual Question 6). Free charges in the metal enclosure 
rearrange themselves as the external electric field changes. As long as the charges in 
the enclosure can keep up with changes in the external field, the external field is 
canceled inside the enclosure.

equal in magnitude but opposite in sign. Then we can find the 
total charge on the outer surface of the hollow conductor be-
cause all of the net charge must be found on the surfaces.

Practice Problem 16.11 Point Charge Inside a 
Hollow Conductor

A point charge is inside the cavity of a hollow conductor. 
The inner and outer surfaces of the conductor have charges 
of +5 μC and +8 μC, respectively. What is the charge of the 
point charge?

Example 16.11

Equilibrium Charge Distribution on Two 
Conductors

A solid conducting sphere that carries a total charge of −16 μC 
is placed at the center of a hollow conducting spherical shell 
that carries a total charge of +8 μC. The conductors are in 
electrostatic equilibrium. Determine the charge on the outer 
and inner surfaces of the shell and sketch a field line diagram.

Strategy We can apply any of the conclusions we just 
reached about conductors in electrostatic equilibrium as well 
as the properties of electric field lines.

Solution Starting with the inner sphere, from conclusion 2, 
all the charge is on the outer surface. The inner sphere and 
outer shell are concentric, so by symmetry, charge is evenly 
spread on the surface of the inner sphere. Field lines end on 
negative charges, so the field lines just outside the inner 
sphere must look like Fig. 16.45a.

Where do these field lines start? They must start on the 
inner surface of the shell, because there are no field lines 
within a conductor in equilibrium (conclusion 5). The field 
lines inside the shell are shown in Fig. 16.45b. The charge on 
the inner surface of the shell is +16 μC because the same 
number of field lines start there as end on the inner sphere, 
which has charge −16 μC.

All the net charge is found on the surfaces of the shell 
(conclusion 2), and its net charge is +8 μC, so the charge on 
the outer shell is −8 μC (Qnet = Qinner + Qouter). Now we can 
draw the remaining field lines. The outer surface is nega-
tively charged so, due to symmetry, field lines outside the 
shell point radially inward. We draw half the number of field 
lines as are inside the shell because the magnitude of charge 
on the surface is half (8 μC instead of 16 μC). The complete 
field line sketch is shown in Fig. 16.46.

Discussion Suppose the spheres were not concentric, or 
the conductors were not even spherically symmetrical. Then 
the charge on each surface would not be evenly distributed, 
and we wouldn’t know in detail how to sketch the field lines, 
but we would still arrive at the same conclusions about the net 
charges on each surfaces. Even if we don’t know exactly how 
to draw the field lines, we still know that every field line that 
starts on the inner surface of the hollow conductor ends on the 
surface of the solid inner conductor, so those charges must be 

Figure 16.45
(a) Field lines outside the solid sphere. (b) Field lines 
inside the shell. Field lines outside the shell are not shown.

(a) (b)

Figure 16.46
Complete field line sketch.



612 CHAPTER	16 Electric Forces and Fields

Application: Lightning Rods Lightning rods (invented by Franklin) are often found 
on the roofs of tall buildings and old farmhouses (Fig. 16.47). The rod comes to a 
sharp point at the top. When a passing thunderstorm attracts charge to the top of the 
rod, the strong electric field at the point ionizes nearby air molecules. Neutral air 
molecules do not transfer net charge when they move, but ionized molecules do, so 
ionization allows charge to leak gently off the building through the air instead of 
building up to a dangerously large value. If the rod did not come to a sharp point, 
the electric field might not be large enough to ionize the air.

Application: Electrostatic Precipitator One direct application of electric fields 
is the electrostatic precipitator—a device that reduces the air pollution emitted from 
industrial smokestacks (Fig. 16.48). Many industrial processes, such as the burning 
of fossil fuels in electrical generating plants, release flue gases containing particulates 
into the air. To reduce the quantity of particulates released, the gases are sent through 
a precipitator chamber before leaving the smokestack. Many air purifiers sold for use 
in the home are electrostatic precipitators.

16.7 GAUSS’S LAW FOR ELECTRIC FIELDS

Gauss’s law, named after German mathematician Karl Friedrich Gauss (1777–1855), 
is a powerful statement of properties of the electric field. It relates the electric field 
on a closed surface—any closed surface—to the net charge inside the surface. A 
closed surface encloses a volume of space, so that there is an inside and an outside. 
The surface of a sphere, for instance, is a closed surface, whereas the interior of a 
circle is not. Gauss’s law says: I can tell you how much charge you have inside that 
“box” without looking inside; I’ll just look at the field lines that enter or exit the box.

If a box has no charge inside of it, then the same number of field lines that go 
into the box must come back out; there is nowhere for field lines to end or to begin. 
Even if there is charge inside, but the net charge is zero, the same number of field 
lines that start on the positive charge must end on the negative charge, so again the 
same number of field lines that go in must come out. If there is net positive charge 
inside, then there will be field lines starting on the positive charge that leave the box; 

Figure 16.47 An elaborate 
lightning rod protects a Victorian 
house in Mt. Horeb, Wisconsin.
©Paul McMahon/Heartland Images

Figure 16.48 An electrostatic precipitator. Inside the precipitator chamber is a 
set of oppositely charged metal plates. The positively charged plates are fitted with 
needle-like wire projections that serve as discharge points. The electric field is 
strong enough at these points to ionize air molecules. The particulates are positively 
charged by contact with the ions. The electric field between the plates then attracts 
the particulates to the negatively charged collection plates. After enough particulate 
matter has built up on these plates, it falls to the bottom of the precipitator chamber 
from where it is easily removed.

Airflow

Dust collects on
negative plates

Needle-like
projections on
positive plates
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then more field lines come out than go in. If there is net negative charge inside, some 
field lines that go in end on the negative charge; more field lines go in than come out.

Field lines are a useful device for visualization, but they are not quantifiable in 
any standard way. In order for Gauss’s law to be useful, we formulate it mathemati-
cally so that numbers of field lines are not involved. To reformulate the law, there are 
two conditions to satisfy. First, a mathematical quantity must be found that is propor-
tional to the number of field lines leaving a closed surface. Second, a proportionality 
must be turned into an equation by solving for the constant of proportionality.

Recall from Section 16.4 that the magnitude of the electric field is proportional 
to the number of field lines per unit cross-sectional area:

 E ∝
number of lines

area  (16-12)

If a surface of area A is everywhere perpendicular to an electric field of uniform 
magnitude E, then the number of field lines that cross the surface is proportional to 
EA, since

 number of lines =
number of lines

area × area ∝ EA (16-13)

This is only true if the surface is perpendicular to the electric field everywhere. As 
an analogy, think of rain falling straight down into a bucket. Less rainwater enters 
the bucket when it is tilted to one side than if the bucket rests with its opening 
perpendicular to the direction of rainfall. In general, the number of field lines 
crossing a surface is proportional to the perpendicular component of the field times 
the area:
 number of lines ∝ E⊥A = EA cos θ (16-14)

where, as shown in Fig. 16.49a, θ is the angle that the field lines make with the 
normal (a line perpendicular to the surface). Equivalently, Fig. 16.49b shows that the 
number of lines crossing the surface is the same as the number crossing a surface of 
area A cos θ, which is the area perpendicular to the field.

The mathematical quantity that is proportional to the number of field lines cross-
ing a surface is called the flux of the electric field (symbol ΦE; Φ is the Greek 
capital phi).

Definition of flux

 ΦE = E⊥A = EA⊥ = EA cos θ (16-15)

For a closed surface, flux is defined to be positive if more field lines leave the surface 
than enter, or negative if more lines enter than leave. Flux is then positive if the net 
enclosed charge is positive and it is negative if the net enclosed charge is negative.

Since the net number of field lines is proportional to the net charge inside a closed 
surface, Gauss’s law takes the form

 ΦE = constant × q (16-16)

where q stands for the net charge enclosed by the surface. In Example 16.12 (and 
Problem 74), you can show that the constant of proportionality is 4πk = 1/ϵ0. Therefore,

Gauss’s law

 ΦE = 4πkq = q/ϵ0 (16-17)

Figure 16.49 (a) Electric 
field lines crossing through a 
rectangular surface (side view). 
The angle between the field 
lines and the normal (a line per-
pendicular to the surface) is θ.  
(b) The number of field lines 
that cross the surface of area A 
is the same as the number that 
cross the perpendicular surface 
of area A cos θ.

Normal to
surface

Area
A cos θ

E

θ

θArea A

(a)

(b)

E

Surface of area A
(side view)
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Example 16.12

Flux Through a Sphere

What is the flux through a sphere of radius r = 5.0 cm that 
has a point charge q = −2.0 μC at its center?

Strategy In this case, there are two ways to find the flux. 
The electric field is known from Coulomb’s law and can be 
used to find the flux, or we can use Gauss’s law.

Solution The electric field at a separation r from a point 
charge is

E =
kq

r2

For a negative point charge, the field is radially inward. The 
field has the same strength everywhere on the sphere, since 
the separation from the point charge is constant. Also, the 
field is always perpendicular to the surface of the sphere 
(θ = 0 everywhere). Therefore,

ΦE = EA =
kq

r2 × 4πr2 = 4πkq

This is exactly what Gauss’s law tells us. The flux is inde-
pendent of the radius of the sphere, since all the field lines 
cross the sphere regardless of its radius. A negative value of 

q gives a negative flux, which is correct since the field lines 
go inward. Then

ΦE = 4πkq

= 4π × 9.0 × 109 
N·m2

C2 × (−2.0 × 10−6 C)

= −2.3 × 105 
N·m2

C2

Discussion In this case, we can find the flux directly be-
cause the field at every point on the sphere is constant in 
magnitude and perpendicular to the sphere. However, 
Gauss’s law tells us that the flux through any surface that 
encloses this charge, no matter what shape or size, must be 
the same.

Practice Problem 16.12 Flux Through a Side of a 
Cube

What is the flux through one side of a cube that has a point 
charge −2.0 μC at its center? [Hint: Of the total number of 
field lines, what fraction passes through one side of the 
cube?]

Using Gauss’s Law to Find the Electric Field

As presented so far, Gauss’s law is a way to determine how much charge is inside a 
closed surface given the electric field on the surface, but it is more offen used to find 
the electric field due to a distribution of charges. Why not just use Coulomb’s law? 
In many cases there are such a large number of charges that the charge can be viewed 
as being continuously spread along a line, or over a surface, or throughout a volume. 
Microscopically, charge is still limited to multiples of the electronic charge, but when 
there are large numbers of charges, it is simpler to view the charge as a continuous 
distribution.

For a continuous distribution, the charge density is usually the most convenient 
way to describe how much charge is present. There are three kinds of charge densities:

∙ If the charge is spread throughout a volume, the relevant charge density is the 
charge per unit volume (symbol ρ).

∙ If the charge is spread over a two-dimensional surface, then the charge density is 
the charge per unit area (symbol σ).

∙ If the charge is spread over a one-dimensional line or curve, the appropriate 
charge density is the charge per unit length (symbol λ).

Gauss’s law can be used to calculate the electric field in cases where there is 
enough symmetry to tell us something about the field lines. Example 16.13 illustrates 
this technique.
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Once we recognize that the field lines are radial, the next 
step is to choose a surface. Gauss’s law is easiest to handle if 
the electric field is constant in magnitude and either perpen-
dicular or parallel to the surface. A cylinder with a radius r 
with the wire as its axis has the field perpendicular to the 
surface everywhere, since the lines are radial (Fig. 16.51). The 
magnitude of the field must also be constant on the surface of 
the cylinder because every point on the cylinder is located an 
equal distance from the wire. Since a closed surface is neces-
sary, the two circular ends of the cylinder are included. The 
flux through the ends is zero since no field lines pass through; 
equivalently, the perpendicular component of the field is zero.

Since the field is constant in magnitude and perpendicu-
lar to the surface, the flux is

ΦE = Er 
 

A

where Er is the radial component of the field. Er is positive if 
the field is radially outward and negative if the field is radi-
ally inward. A is the area of a cylinder of radius r and . . . 
what length? Since the cylinder is imaginary, we can con-
sider an arbitrary length denoted by L. The area of the cylin-
der is (Appendix A.6)

A = 2πrL

How much charge is enclosed by this cylinder? The charge 
per unit length is λ and a length L of the wire is inside the 
cylinder, so the enclosed charge is

q = λL

which can be either positive or negative. Gauss’s law and the 
definition of flux yield

4πkq = ΦE = Er   

A

Example 16.13

Electric Field at a Distance from a Long Thin Wire

Charge is spread uniformly along a long thin wire. The 
charge per unit length on the wire is λ and is constant. Find 
the electric field at a distance r from the wire, far from either 
end of the wire.

Strategy The electric field at any point is the sum of the 
electric field contributions from the charge all along the 
wire. Coulomb’s law tells us that the strongest contributions 
come from the charge on nearby parts of the wire, with con-
tributions falling off as 1/r2 for faraway points. When con-
cerned only with points near the wire, and far from either 
end, an approximately correct answer is obtained by 
assuming the wire is infinitely long.

How is it a simplification to add more charges? When 
using Gauss’s law, a symmetrical situation is far simpler than 
a situation that lacks symmetry. An infinitely long wire with 
a uniform linear charge density has axial symmetry. Sketch-
ing the field lines first helps show what symmetry tells us 
about the electric field.

Solution We start by sketching field lines for an infinitely 
long wire. The field lines either start or stop on the wire 
(depending on whether the charge is positive or negative). 
Then what do the field lines do? The only possibility is 
that  they point radially outward (or inward) from the wire. 
Figure 16.50a shows sketches of the field lines for positive 
and negative charges, respectively. The wire looks the same 
from all sides, so a field line could not start to curl around as 
in Fig. 16.50b: how would it determine which way to go? 
Also, the field lines cannot go along the wire as in Fig. 16.50c: 
again, how could the lines decide whether to go right or left? 
The wire looks exactly the same in both directions.

Figure 16.50
(a) Electric field lines emanating from a long wire, radially out-
ward and radially inward; (b) hypothetical lines circling a wire; 
(c) hypothetical lines parallel to the wire.

(a)

Correct

Incorrect

(b) (c) Figure 16.51
(a) Electric field lines from a wire located along the axis of a cyl-
inder are perpendicular to the surrounding imaginary cylindrical 
surface. (b) Top view of the cylinder and the field lines; the field 
lines are perpendicular to the  cylindrical surface area but parallel 
to the planes of the top and bottom circular areas.

Imaginary
cylindrical
surface

Imaginary
cylindrical
surface

Top view

r

r

(a) (b)

continued on next page
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Substituting the expressions for A and q into Gauss’s law 
yields

Er(2πrL) = 4πkλL

Solving for Er, we find

Er =
2kλ

r

The field direction is radially outward for λ > 0 and radially 
inward for λ < 0.

Discussion The final expression for the electric field does 
not depend on the arbitrary length L of the cylinder. If L ap-
peared in the answer, we would know to look for a mistake.

We should check the units of the answer: λ is the charge 
per unit length, so it has SI units

[λ] =
C
m

The constant k has SI units

[k] =
N·m2

C2

The factor of 2π is dimensionless and r is a distance. Then

[
2kλ

r ] =
C
m ×

N·m2

C2 ×
1
m =

N
C

which is the SI unit of electric field.
The electric field falls off as the inverse of the separa-

tion (E ∝ 1/r). Wait a minute—does this violate Coulomb’s 
law, which says E ∝ 1/r2? No, because that is the field at a 
separation r from a point charge. Here the charge is spread 
out in a line. The different geometry changes the field lines 
(they come radially outward from a line rather than from a 
point) and this changes how the field depends on distance.

Conceptual Practice Problem 16.13 Which Area 
to Use?

In Example 16.13, we wrote the area of a cylinder as A = 
2πrL, which is only the area of the curved surface of the 
cylinder. The total area of a cylinder includes the area of the 
circles on each end (top and base): Atotal = 2πrL + 2πr2. Why 
did we not include the area of the ends of the cylinder when 
calculating flux?

Example 16.13 continued

 ∙ The electric field (symbol E
→

) is the electric force per 
unit charge. It is a vector quantity.

 ∙ If a point charge q is located where the electric field due 
to all other charges is E

→
, then the electric force on the 

point charge is
 F

→
E = qE

→
 (16-6)

 ∙ The SI units of the electric field are N/C.
 ∙ Electric field lines are useful for representing an electric 

field.
 ∙ The direction of the 

electric field at any 
point is tangent to the 
field line passing 
through that point and 
in the direction indicated by the arrows on the field line.

 ∙ The electric field is strong where field lines are close 
together and weak where they are far apart.

 ∙ Field lines never cross.
 ∙ Field lines start on positive charges and end on negative 

charges.
 ∙ The number of field lines starting on a positive charge 

(or ending on a negative charge) is proportional to the 
magnitude of the charge.

P

R

E (at P)

E (at R)

Master the Concepts

 ∙ Coulomb’s law gives the electric force exerted on one 
point charge due to another. The magnitude of the force is

 F =
k∣q1∣∣q2∣

r2  (16-2)

  where the Coulomb constant is

 k =
1

4πϵ0
= 8.99 × 109 

N·m2

C2  (16-3)

 ∙ The direction of the force on one point charge due to 
another is either directly toward the other charge (if the 
charges have opposite signs) or directly away (if the 
charges have the same sign).

+ +

–

– –

+

(a)

(b)

(c)

F12

F12

F12

F21

F21

F21

q1

q1

q1

q2

q2

q2

r

continued on next page
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 ∙ The principle of superposition says that the electric 
field due to a collection of charges at any point is the 
vector sum of the electric fields caused by each charge 
separately.

 ∙ The uniform electric field between two parallel metal 
plates with charges ±Q and area A has magnitude

 E =
Q

ϵ0 A
 (16-8)

  The direction of the field is perpendicular to the plates 
and away from the positively charged plate.

E

– – – – – – – – –

+ + + + + + + + +

 ∙ Electric flux:
 ΦE = E⊥A = EA⊥ = EA cos θ (16-15)

 ∙ Gauss’s law:
 ΦE = 4πkq = q/ϵ0 (16-17)

Master the Concepts continued

Conceptual Questions

 1. Due to the similarity between Newton’s law of gravity 
and Coulomb’s law, a friend proposes this hypothesis: 
perhaps there is no gravitational interaction at all. Instead, 
what we call gravity might be electric forces acting 
between objects that are almost, but not quite, electrically 
neutral. Think up as many counterarguments as you can.

 2. What makes clothes cling together—or to your body—
after they’ve been through the dryer? Why do they not 
cling as much if they are taken out of the dryer while 
slightly damp? In which case would you expect your 
clothes to cling more, all other things being equal: when 
the clothes in the dryer are all made of the same material, 
or when they are made of several different materials?

 3. Explain why any net charge on a solid metal conductor 
in electrostatic equilibrium is found on the outside sur-
face of the conductor instead of being distributed uni-
formly throughout the solid.

 4. Explain why electric field lines begin on positive charges 
and end on negative charges. [Hint: What is the direction 
of the electric field near positive and negative charges?]

 5. A metal sphere is initially uncharged. After being 
touched by a charged rod, the metal sphere is positively 
charged. (a) Is the mass of the sphere larger, smaller, or 
the same as before it was charged? Explain. (b) What 
sign of charge is on the rod?

 6. Electronic devices are usually enclosed in metal boxes. 
One function of the box is to shield the inside components 
from external electric fields. (a) How does this shielding 
work? (b) Why is the degree of shielding better for constant 
or slowly varying fields than for rapidly varying fields? 
(c)  Explain the reasons why it is not possible to shield 
something from gravitational fields in a similar way.

 7. Your laboratory partner hands you a glass rod and asks 
if it has negative charge on it. There is an electroscope 
in the laboratory. How can you tell if the rod is charged? 
Can you determine the sign of the charge? If the rod is 

charged to begin with, will its charge be the same after 
you have made your determination? Explain.

 8. A lightweight plastic rod is rubbed with a piece of fur. A 
second plastic rod, hanging from a string, is attracted to 
the first rod and swings toward it. When the second rod 
touches the first, it is suddenly repelled and swings 
away. Explain what has happened.

 9. The following hypothetical reaction shows a neutron (n) 
decaying into a proton (p+), an electron (e−), and an 
uncharged particle called an antineutrino (v) :

n → p+ + e− + v

  At first there is no charge, but then charge seems to be 
“created.” Does this reaction violate the law of charge 
conservation? Explain.

 10. A fellow student says that there is never an electric field 
inside a conductor. Do you agree? Explain.

 11. Explain why electric field lines never cross.
 12. A truck carrying explosive gases either has chains or 

straps that drag along the ground, or else it has special 
tires that conduct electricity (ordinary tires are good 
insulators). Explain why the chains, straps, or conducting 
tires are necessary.

 13. An electroscope consists of a conducting sphere, con-
ducting pole, and two metal foils (see Fig. 16.10). The 
electroscope is initially uncharged. (a) A positively 
charged rod is allowed to touch the conducting sphere 
and then is removed. What happens to the foils and what 
is their charge? (b) Next, another positively charged rod 
is brought near to the conducting sphere without touch-
ing it. What happens? (c) The positively charged rod is 
removed, and a negatively charged rod is brought near 
the sphere. What happens?

 14. A rod is negatively charged by rubbing it with fur. It is 
brought near another rod of unknown composition and 
charge. There is a repulsive force on each. (a) Is the first 
rod an insulator or a conductor? Explain. (b) What can 
you tell about the charge of the second rod?
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 15. A negatively charged rod is brought near a grounded 
conductor. After the ground connection is broken, the 
rod is removed. Is the charge on the conductor positive, 
negative, or zero? Explain.

 16. In some textbooks, the electric field is called the flux 
density. Explain the meaning of this term. Does flux 
density mean the flux per unit volume? If not, then what 
does it mean?

 17. The word flux comes from the Latin “to flow.” What 
does the quantity ΦE = E⊥ A have to do with flow? The 
figure shows some streamlines for the flow of water in a 
pipe. The streamlines are actually field lines for the 
velocity field. What is the physical significance of the 
quantity v⊥A? Sometimes physicists call positive charges 
sources of the electric field and negative charges 
sinks. Why?

 18. The flux through a closed surface is zero. Is the electric 
field necessarily zero? Is the net charge inside the sur-
face necessarily zero? Explain your answers.

 19. Consider a closed surface that surrounds Q1 and Q2 but 
not Q3 or Q4. (a) Which charges contribute to the elec-
tric field at point P? (b) Would the value obtained for 
the net flux through the surface, calculated using only 
the electric field due to Q1 and Q2, be greater than, less 
than, or equal to that obtained using the total field?

Q1

Q2

Q3
Q4

P Imaginary closed surface

Multiple-Choice Questions

 1. An alpha particle (charge +2e and mass 4mp) is on a 
collision course with a proton (charge +e and mass mp). 
Assume that no forces act other than the electrical repul-
sion. Which one of these statements about the accelera-
tions of the two particles is true?

 (a) a→α = a→p (b) a→α = 2a→p (c) a→α = 4a→p
 (d) 2a→α = a→p (e) 4a→α = a→p (f) a→α = −a→p

 (g) a→α = −2a→p (h) a→α = −4a→p (i) −2a→α = a→p

 (j) −4a→α = a→p

A1

v
A2

 2. In electrostatic equilibrium, the excess electric charge 
on an irregularly shaped conductor is

 (a) uniformly distributed throughout the volume.
 (b) confined to the surfaces and is uniformly distributed.
 (c)  entirely on the surfaces, but is not uniformly 

distributed.
 (d)  dispersed throughout the volume of the object, but is 

not uniformly distributed.
 3. The electric field at a point in space is a measure of
 (a) the total charge on an object at that point.
 (b) the electric force on any charged object at that point.
 (c) the charge-to-mass ratio of an object at that point.
 (d)  the electric force per unit mass on a point charge at 

that point.
 (e)  the electric force per unit charge on a point charge at 

that point.
 4. Two charged particles attract each other with a force of 

magnitude F acting on each. If the charge of one is dou-
bled and the distance separating the particles is also 
doubled, the force acting on each of the two particles 
has magnitude

 (a) F/2  (b) F/4  (c) F  (d) 2F  (e) 4F
 (f) None of the above.
 5. A charged insulator and an uncharged metal object near 

each other
 (a) exert no electric force on each other.
 (b) repel each other electrically.
 (c) attract each other electrically.
 (d)  attract or repel, depending on whether the charge is 

positive or negative.
 6. A tiny charged pellet of 

mass m is suspended at rest 
by the electric field between 
two horizontal, charged 
metallic plates. The lower 
plate has a positive charge and the upper plate has a 
negative charge. Which statement in the answers here is 
not true?

 (a)  The electric field between the plates points vertically 
upward.

 (b) The pellet is negatively charged.
 (c)  The magnitude of the electric force on the pellet is 

equal to mg.
 (d)  If the magnitude of charge on the plates is increased, 

the pellet begins to move upward.
 7. Which of these statements comparing electric and grav-

itational forces is correct?
 (a)  The direction of the electric force exerted by one 

point particle on another is always the same as the 
direction of the gravitational force exerted by that 
particle on the other.

 (b)  The electric and gravitational forces exerted by two 
particles on each other are inversely proportional to 
the separation of the particles.

+ + + + + + +

– – –––––

Pellet
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 (c)  The electric force exerted by one planet on another is 
typically stronger than the gravitational force exerted 
by that same planet on the other.

 (d) none of the above
 8. In the figure, which best represents the field lines due to 

two point charges with opposite charges?

–+

–+ –+

–+

(b)(a)

(c) (d)

 9. In the figure, rank points 1–4 in order of increasing field 
strength.

 (a) 2, 3, 4, 1
 (b) 2, 1, 3, 4
 (c) 1, 4, 3, 2
 (d) 4, 3, 1, 2
 (e) 2, 4, 1, 3

1

2

3

4

E

 10. Two point charges q and 2q lie on the x-axis. Which 
region(s) on the x-axis include a point where the electric 
field due to the two point charges is zero?

 (a) to the right of 2q
 (b) between 2q and point P
 (c) between point P and q
 (d) to the left of q
 (e) both (a) and (c)
 (f) both (b) and (d)

+ +

2dd

q
P

2q

x

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

16.1 Electric Charge; 16.2 Electric Conductors 
and Insulators
 1. Find the total positive charge of all the protons in 

1.0 mol of water.
 2. Suppose a 1.0 g nugget of pure gold has zero net charge. 

What would be its net charge after it has 1.0% of its 
electrons removed?

 3.  A balloon, initially neutral, is rubbed with fur until 
it acquires a net charge of −0.60 nC. (a) Assuming that 
only electrons are transferred, were electrons removed 
from the balloon or added to it? (b) How many electrons 
were transferred?

 4.  A metallic sphere has a charge of +4.0 nC. A nega-
tively charged rod has a charge of −6.0 nC. When the rod 
touches the sphere, 8.2 × 109 electrons are transferred. 
What are the charges of the sphere and the rod now?

 5. A hollow metal sphere carries a charge of 6.0 μC. An 
identical sphere carries a charge of 18.0 μC. The two 
spheres are brought into contact with each other, then 
separated. How much charge is on each?

 6.  A positively charged rod is brought near two un-
charged conducting spheres of the same size that are 
initially touching each other (diagram a). The spheres 
are moved apart, and then the charged rod is removed 
(diagram b). (a) What is the sign of the net charge on 
sphere 1 in diagram b? (b) In comparison with the 
charge on sphere 1, how much and what sign of charge 
is on sphere 2?

+
+

+
+

(a)

1 1 22

(b)

 7. A metal sphere A has charge Q. Two other spheres, B 
and C, are identical to A except they have zero net 
charge. A touches B, then the two spheres are separated. 
B touches C, then those spheres are separated. Finally, C 
touches A and those two spheres are separated. How 
much charge is on each sphere?

 8. Repeat Problem 7 with a slight change. The difference 
this time is that sphere C is grounded while it is touch-
ing B, but C is not grounded at any other time. What is 
the final charge on each sphere?

 9. Five conducting spheres are charged as shown. All have 
the same magnitude net charge except E, whose net charge 
is zero. Which pairs are attracted to each other and which 
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are repelled by each other when they are brought near each 
other, but well away from the other spheres?

+ – + –

A B C D E

16.3 Coulomb’s Law
 10. In each of five situations, two point charges (Q1, Q2) are 

separated by a distance d. Rank them in order of the mag-
nitude of the electric force on Q1, from largest to smallest.

 (a) Q1 = 1 μC, Q2 = 2 μC, d = 1 m
 (b) Q1 = 2 μC, Q2 = −1 μC, d = 1 m
 (c) Q1 = 2 μC, Q2 = −4 μC, d = 4 m
 (d) Q1 = −2 μC, Q2 = 2 μC, d = 2 m
 (e) Q1 = 4 μC, Q2 = −2 μC, d = 4 m
 11. If the electric forces of repulsion between two 1.0 C 

charges have magnitude 10 N, how far apart are they?
 12. Two small metal spheres are 25.0 cm apart. The spheres 

have equal amounts of negative charge and repel each 
other with forces of magnitude 0.036 N. What is the 
charge on each sphere?

 13. What is the ratio of the electric force to the gravitational 
force due to a proton on an electron separated by 
5.3 × 10−11 m (the radius of a hydrogen atom)?

 14. How many electrons must be removed from each of two 
5.0 kg copper spheres to make the electric forces of re-
pulsion between them equal in magnitude to the gravita-
tional forces of attraction between them? Assume the 
distance between the spheres is large compared with 
their diameters.

 15. A +2.0 nC point charge is 3.0 cm away from a −3.0 nC 
point charge. (a) What are the magnitude and direction 
of the electric force acting on the +2.0 nC charge? 
(b) What are the magnitude and direction of the electric 
force acting on the −3.0 nC charge?

 16. Two metal spheres separated by a distance much greater 
than either sphere’s radius have equal mass m and equal 
electric charge q. What is the ratio of charge to mass q/m 
in C/kg if the electrical and gravitational forces balance?

 17. In the figure, a third point charge −q is placed at point 
P. What is the electric force on −q due to the other two 
point charges?

+ +

2dd

q
P

2q

x

 18. Two point charges are separated by a distance r and 
repel each other with forces of magnitude F. If their 
separation is reduced to 0.25 times the original value, 
what is the magnitude of the forces of repulsion?

 19.  A K+ ion and a Cl− ion are directly across from each 
other on opposite sides of a cell membrane 9.0 nm thick. 
What is the electric force on the K+ ion due to the Cl− 
ion? Ignore the presence of other charges.

 20.  In a DNA molecule, the base pair adenine and thy-
mine is held together by two hydrogen bonds (see 
Fig. 16.5). Let’s model one of these hydrogen bonds as 
four point charges arranged along a straight line. Using 
the information in the figure, calculate the magnitude of 
the net electric force exerted by one base on the other.

+– +–

0.12 nm

N

Adenine Thymine

H O C
–0.3e +0.3e –0.4e +0.4e

0.12 nm
0.18 nm

 21. Three point charges are fixed in place in a right triangle, 
as shown in the figure. What is the electric force on the 
−0.60 μC charge due to the other two charges?

+

+–

10.0 cm

+0.80 C

8.0 cm y

x

μ

–0.60 Cμ +1.0 Cμ

Problems	21	and	22

 22. Three point charges are fixed in place in a right triangle, 
as shown in the figure. What is the electric force on the 
+1.0 μC charge due to the other two charges?

 23.  A total charge of 7.50 × 10−6 C is distributed on two 
different small metal spheres. When the spheres are 
6.00 cm apart, they each feel a repulsive force of 20.0 N. 
How much charge is on each sphere?

 24. Two Styrofoam balls with the same mass 
m = 9.0 × 10−8 kg and the same positive 
charge Q are suspended from the same 
point by insulating threads of length  
L = 0.98 m. The separation of the balls is 
d = 0.020 m. What is the charge Q?

 25.  Using the three point charges of 
Example 16.3, find the magnitude of the 
force on q1 due to the other two charges, 
q2 and q3. [Hint: After finding the force on q1 due to q2, 
separate that force into x- and y-components.]

 26.  An equilateral triangle has a 
point charge +q at each of the 
three vertices (A, B, C). Another 
point charge Q is placed at D, the 
midpoint of the side BC. Solve 
for Q if the total electric force on 
the charge at A due to the charges 
at B, C, and D is zero.

16.4 The Electric Field
 27. A small sphere with a charge of −0.60 μC is placed in a 

uniform electric field of magnitude 1.2 × 106 N/C 

+ +

d

L L

Q Q

θ

A

D

Q

a a

q q

q

B C
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pointing to the west. What is the magnitude and direc-
tion of the electric force on the sphere?

 28.  The electric field across a cell membrane is 1.0  × 
107 N/C directed into the cell. (a) If a pore opens, which 
way do sodium ions (Na+) flow—into the cell or out of 
the cell? (b) What is the magnitude of the electric force 
on the sodium ion? The charge on the sodium ion is +e.

 29. What are the magnitude and direction of the accelera-
tion of a proton at a point where the electric field has 
magnitude 33 kN/C and is directed straight up?

 30. What are the magnitude and direction of the accelera-
tion of an electron at a point where the electric field has 
magnitude 6100 N/C and is directed due north?

 31. What are the magnitude and direction of the electric 
field midway between two point charges, −15 μC and 
+12 μC, that are 8.0 cm apart?

 32. An electron traveling horizontally from west to east 
enters a region where a uniform electric field is di-
rected upward. What is the direction of the electric 
force exerted on the electron once it has entered the 
field?

 33. Rank points A–E in order of the magnitude of the 
electric field, from largest to smallest.

A

B

C

D

E

+ –

Problems 34–38. Positive point charges q and 2q are located 
at x = 0 and x = 3d, respectively.

+ +

d dd

q
P S

2q

+x

x = 0

Problems	34–38

 34. What is the electric field at x = d (point P)?
 35. What is the electric field at x = 2d (point S)?
 36.  Are there any points not on the x-axis where E

→
 = 0? 

Explain.
 37.  On the x-axis, in which of the three regions x < 0, 

0 < x < 3d, and x > 3d is there a point where E
→

= 0? 
Explain.

 38. (a) Find the x-coordinates of the point(s) on the x-axis 
where E

→
= 0. (b) Sketch a graph of Ex vs. x for points on 

the x-axis.
 39.  Sketch the electric field lines 

in the plane of the page due to the 
charges shown in the diagram.

Q Q–2Q

 40.  Sketch the electric field lines near two isolated and 
equal negative point charges. Include arrowheads to 
show the field directions.

Problems 41–44.  Two tiny objects with equal charges of 
7.00 μC are placed at the two lower corners of a square with 
sides of 0.300 m, as shown.
 41. Find the electric field at point B, 

midway between the upper left 
and right corners.

 42. Find the electric field at point C, 
the center of the square.

 43. Find the electric field at point A, 
the upper left corner.

 44.  Where would you place a third small object with the 
same charge so that the electric field is zero at the cor-
ner of the square labeled A?

 45. Three point charges are placed on the x-axis. A charge 
of 3.00 μC is at the origin. A charge of −5.00 μC is at 
20.0 cm, and a charge of 8.00 μC is at 35.0 cm. What is 
the force on the charge at the origin?

 46. Two equal charges (Q = +1.00 nC) 
are situated at the diagonal corners 
A and B of a square of side 1.0 m. 
What is the magnitude of the elec-
tric field at point D?

 47. Suppose a charge q is placed at 
point x = 0, y = 0. A second charge 
q is placed at point x = 8.0 m, y = 0. What charge must 
be placed at the point x = 4.0 m, y = 0 in order that the 
field at the point x = 4.0 m, y = 3.0 m be zero?

 48. Two point charges, q1 = +20.0 nC and q2 = +10.0 nC, 
are located on the x-axis at x = 0 and x = 1.00 m, respec-
tively. Where on the x-axis is the electric field equal to 
zero?

 49.  Two electric charges, q1 = +20.0 nC and q2 = +10.0 nC, 
are located on the x-axis at x = 0 m and x = 1.00 m, respec-
tively. What is the magnitude of the electric field at the 
point x = 0.50 m, y = 0.50 m?

16.5 Motion of a Point Charge in a Uniform 
Electric Field
 50. In each of six situations, a particle (mass m, charge q) is 

located at a point where the electric field has magnitude 
E. No other forces act on the particles. Rank them in 
order of the magnitude of the particle’s acceleration, 
from largest to smallest.

 (a) m = 6 pg, q = 5 nC, E = 40 N/C
 (b) m = 3 pg, q = −5 nC, E = 40 N/C
 (c) m = 3 pg, q = −10 nC, E = 80 N/C
 (d) m = 6 pg, q = −1 nC, E = 200 N/C
 (e) m = 1 pg, q = 3 nC, E = 300 N/C
 (f) m = 3 pg, q = −1 nC, E = 100 N/C

Problems	41–44

A B

C

D B

A C
Q

Q

1.0 m
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 51. An electron is placed in a uniform electric field of 
strength 232 N/C. If the electron is at rest at the origin 
of a coordinate system at t = 0 and the electric field is in 
the positive x-direction, what are the x- and y-coordinates 
of the electron at t = 2.30 ns?

 52. An electron is projected horizontally into the space 
between two oppositely charged metal plates. The elec-
tric field between the plates is 500.0 N/C, directed up. 
(a) While in the field, what is the force on the electron? 
(b) If the vertical deflection of the electron as it leaves 
the plates is 3.00 mm, how much has its kinetic energy 
increased due to the electric field?

 53. A horizontal beam of electrons initially moving at 
4.0 × 107 m/s is deflected vertically by the vertical elec-
tric field between oppositely charged parallel plates. 
The magnitude of the field is 2.00 × 104 N/C. (a) What 
is the direction of the field between the plates? (b) What 
is the charge per unit area on the plates? (c) What is the 
vertical deflection d of the electrons as they leave the 
plates?

d

vi = 4.0 × 107 m/s

2.0 cm

 54. A particle with mass 2.30 g and charge +10.0 μC enters 
through a small hole in a metal plate with a speed of 
8.50 m/s at an angle of 55.0°. The uniform E

→
 field in the 

region above the plate has magnitude 6.50 × 103 N/C 
and is directed downward. The region above the metal 
plate is essentially a vacuum, so there is no air resis-
tance. (a) Can you ignore the force of gravity when 
 solving for the horizontal 
distance traveled by the 
particle? Why or why 
not? (b) How far will the 
particle travel, Δx, before 
it hits the metal plate?

 55. Consider the same situation as in Problem 54, but with 
a proton entering through the small hole at the same 
angle with a speed of v = 8.50 × 105 m/s. (a) Can you 
ignore the force of gravity when solving this problem 
for the horizontal distance traveled by the proton? Why 
or why not? (b) How far will the proton travel, Δx, 
before it hits the metal plate?

 56.   Some forms of cancer can be treated using proton 
therapy in which proton beams are accelerated to high 
energies, then directed to collide into a tumor, killing 
the malignant cells. Suppose a proton accelerator is 
4.0 m long and must accelerate protons from rest to a 
speed of 1.0 × 107 m/s. Ignore any relativistic effects 
(Chapter 26) and determine the magnitude of the aver-
age electric field that could accelerate these protons.

Problems	54	and	55

xΔ

55.0° E

Problems 57–59. After the electrons in Example 16.9 pass 
through the anode, they are moving in the z-direction at a 
speed of 8.4 × 106 m/s. They then pass between a pair of 
vertical parallel plates (A) (see Fig. 16.39) and then between 
a pair of horizontal parallel plates (B). All four of these 
plates are squares 2.50 cm on a side. The plates of each pair 
are separated by 1.50 cm.
57. If the electric field between plates (A) is 1.0 × 103 N/C in 

the +x-direction, what is the horizontal deflection (Δx) of 
the beam as it exits the region between plates (A)?

58. The electric field between plates (A) is zero. As the 
beam exits the space between plates (B), it has been 
deflected 2.0 mm downward (Δy = −2.0 mm). What is 
the electric field between plates (B)?

59. The electric field between plates (A) is zero. As the 
beam exits the space between plates (B), it has been 
deflected 2.0 mm downward (Δy = −2.0 mm). In what 
direction is the beam moving now?

16.6 Conductors in Electrostatic Equilibrium
Problems 60–62. A conducting sphere (radius a) is placed at 
the center of a conducting spherical shell (inner radius b and 
outer radius c). The conductors are in electrostatic equilib-
rium. For the given charges: (a) Sketch a field line diagram. 
(b) Determine the charge on the inner and outer surfaces of 
the shell. (c) Sketch a graph of Er, the radial component of 
the field, as a function of r. (Er > 0 if the field is radially 
outward and Er < 0 if the field is radially inward.)
 60. The inner sphere has a net charge of +6 μC and the shell 

has a net charge of +6 μC.
 61. The inner sphere has a net charge of +6 μC and the shell 

has a net charge of −6 μC.
 62. The inner sphere has a net charge of −6 μC and the shell 

has a net charge of +2 μC.
Conducting sphere

Conducting
spherical shell

Problems	60–62

 63. A negative point charge −Q is situated near a large 
metal plate that has a total charge of +Q. Sketch the 
electric field lines.

–Q

 64.  A conductor in electrostatic equilibrium has a cavity 
that contains a point charge q1 = +5 μC. Outside the 
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conductor is another point charge q2 = −12 μC. The 
conductor itself carries a net charge −4 μC. Find the net 
charge on (a) the inner surface of the conductor and 
(b) the outer surface of the conductor.

 65.  A conductor in electrostatic equilibrium has a cavity 
that contains two point charges: q1 = +5 μC and q2 = 
−12 μC. The conductor itself carries a net charge −4 μC. 
Find the net charge on (a) the inner surface of the con-
ductor and (b) the outer surface of the conductor.

 66. Two oppositely charged parallel plates produce a uni-
form electric field between them. An uncharged metal 
sphere is placed between the plates. Assume that the 
sphere is small enough that it does not affect the charge 
distribution on the plates. Sketch the electric field lines 
between the plates once electrostatic equilibrium is 
reached.

 67. Two metal spheres of the same radius R are given 
charges of equal magnitude and opposite sign. No other 
charges are nearby. Sketch the electric field lines when 
the center-to-center distance between the spheres is ap-
proximately 3R.

 68. A hollow conducting sphere of radius R carries a nega-
tive charge −q. (a) Write expressions for the electric 
field E

→
 inside (r < R) and outside (r > R) the sphere. 

Also indicate the direction of the field. (b) Sketch a 
graph of the field strength as a function of r. [Hint: See 
Conceptual Example 16.8.]

 69.  A conducting sphere 
is placed within a con-
ducting spherical shell. 
The conductors are in 
electrostatic equilib-
rium. The inner sphere 
has a radius of 1.50 cm, 
the inner radius of the spherical shell is 2.25 cm, and the 
outer radius of the shell is 2.75 cm. If the inner sphere 
has a charge of 230 nC and the spherical shell has zero 
net charge, (a) what is the magnitude of the electric field 
at a point 1.75 cm from the center? (b) What is the elec-
tric field at a point 2.50 cm from the center? (c) What is 
the electric field at a point 3.00 cm from the center? 
[Hint: What must be true about the electric field inside 
a conductor in electrostatic equilibrium?]

 70.  In fair weather, over flat ground, there is a downward 
electric field of about 150 N/C. Assume that Earth is a 
conducting sphere with charge on its surface. If the elec-
tric field just outside is 150 N/C pointing radially in-
ward, calculate the total charge on Earth and the charge 
per unit area.

16.7 Gauss’s Law for Electric Fields
 71. (a) Find the electric flux through each side of a cube of 

edge length a in a uniform electric field of magnitude E. 

Conducting sphere
Conducting
spherical shell

2.75 cm

2.25 cm

1.50 cm

The field direction is perpendicular to two of the faces. 
(b) What is the total flux through the cube?

 72. In a uniform electric field of magnitude E, the field lines 
cross through a rectangle of area A at an angle of 60.0° 
with respect to the plane of the rectangle. What is the 
flux through the rectangle?

 73. An object with a charge of 0.890 μC is placed at the 
center of a cube. What is the electric flux through one 
surface of the cube?

 74.  In this problem, you can show from Coulomb’s law 
that the constant of proportionality in Gauss’s law must 
be 1/ϵ0. Imagine a sphere with its center at a point charge 
q. (a) Write an expression for the electric flux in terms 
of the field strength E and the radius r of the sphere. 
[Hint: The field strength E is the same everywhere on 
the sphere and the field lines cross the sphere perpen-
dicular to its surface.] (b) Use Gauss’s law in the form 
ΦE = cq (where c is the constant of proportionality) and 
the electric field strength given by Coulomb’s law to 
show that c = 1/ϵ0.

 75.  (a) Use Gauss’s law to prove that the electric field 
outside any spherically symmetrical charge distribution 
is the same as if all of the charge were concentrated into 
a point charge. (b) Now use Gauss’s law to prove that 
the electric field inside a spherically symmetrical charge 
distribution is zero if none of the charge is at a distance 
from the center less than that of the point where we 
determine the field.

 76.  Using the results of Problem 75, we can find the 
electric field at any radius for any spherically symmetri-
cal charge distribution. A solid sphere of charge of 
radius R has a total charge of q uniformly spread 
throughout the sphere. (a) Find the magnitude of the 
electric field for r ≥ R. (b) Find the magnitude of the 
electric field for r ≤ R. (c) Sketch a graph of E(r) for 
0 ≤ r ≤ 3R.

 77.  An electron is suspended at a distance of 1.20 cm 
above a uniform line of charge. What is the linear charge 
density of the line of charge? Ignore end effects.

 78.  A thin, flat sheet of charge has a uniform surface 
charge density σ (σ/2 on each side). (a) Sketch the field 
lines due to the sheet. (b) Sketch the field lines for an 
infinitely large sheet with the same charge density. 
(c)  For the infinite sheet, how does the field strength 
depend on the distance from the sheet? [Hint: Refer to 
your field line sketch.] (d) For points close to the finite 
sheet and far from its edges, can the sheet be approxi-
mated by an infinitely large sheet? [Hint: Again, refer to 
the field line sketches.] (e) Use Gauss’s law to show that 
the magnitude of the electric field near a sheet of uni-
form charge density σ is E = σ/(2ϵ0).

 79.  A flat conducting plate of area A has a charge q on 
each surface. (a) What is the electric field within the 
material of the plate? (b) Use Gauss’s law to show that 
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the electric field just outside the plate is E = q/(ϵ0A) = 
σ/ϵ0. (c) Does this contradict the result of Problem 78? 
Compare the field line diagrams for the two situations.

 80.  A parallel-plate capacitor consists of two flat metal 
plates of area A separated by a small distance d. The 
plates are given equal and opposite net charges ±q. 
(a) Sketch the field lines and use your sketch to explain 
why almost all of the charge is on the inner surfaces of 
the plates. (b) Use Gauss’s law to show that the electric 
field between the plates and away from the edges is E = 
q/(ϵ0A) = σ/ϵ0. (c) Does this agree with or contradict the 
result of Problem 79? Explain. (d) Use the principle of 
superposition and the result of Problem 78 to arrive at 
this same answer. [Hint: The inner surfaces of the two 
plates are thin, flat sheets of charge.]

 81.  A coaxial cable consists of a wire of radius a sur-
rounded by a thin metal cylindrical shell of radius b. 
The wire has a uniform linear charge density λ > 0 and 
the outer shell has a uniform linear charge density −λ. 
(a) Sketch the field lines for this cable. (b) Find expres-
sions for the magnitude of the electric field in the 
regions r ≤ a, a < r < b, and b ≤ r.

b
a a

b

 82. Use Gauss’s law to derive an expression for the electric 
field outside the thin spherical shell of Conceptual 
Example 16.8.

Collaborative Problems

 83. In a thunderstorm, 
charge is separated 
through a compli-
cated mechanism 
that is ultimately 
powered by the Sun. 
A simplified model 
of the charge in a 
thundercloud repre-
sents the positive 
charge accumulated 
at the top and the 
negative charge at the bottom as a pair of point charges. 
(a) What is the magnitude and direction of the electric 
field produced by the two point charges at point P, 
which is just above Earth’s surface? (b) Treating Earth 
as a conductor, what sign of charge would accumulate 
on the surface near point P? (This accumulated charge 
increases the magnitude of the electric field near 
point P.)

 84.  Two otherwise identical conducting spheres carry 
charges of +5.0 μC and −1.0 μC. They are initially a 
distance L apart. The distance L is much larger than the 
radii of the spheres. The spheres are brought together, 
touched together, and then returned to their original 
separation L. What is the ratio of the magnitude of the 
force on either sphere after they are touched to that 
before they were touched?

 85.  Two metal spheres of radius 5.0 cm carry net 
charges of +1.0 μC and +0.2 μC. (a) What (approxi-
mately) is the magnitude of the electrical repulsion on 
either sphere when their centers are 1.00 m apart? 
(b) Why cannot Coulomb’s law be used to find the force 
of repulsion when their centers are 12 cm apart? 
(c) Would the actual force be larger or smaller than the 
result of using Coulomb’s law with r = 12 cm? Explain.

 86.  In the diagram, regions A and C extend far to the 
left and right, respectively. The electric field due to the 
two point charges is zero at some point in which region 
or regions? Explain.

B CA

+2.0 μC –4.0 μC +x

 87. In Problem 86, the +2.0 μC charge is at x = 0 and the 
−4.0 μC charge is at x = d. Find the x-coordinates of the 
point(s) where the electric field is zero.

 88.   (a) What would the net charges on the Sun and 
Earth have to be if the electric force instead of the 
gravitational force were responsible for keeping Earth 
in its orbit? There are many possible answers, so 
restrict yourself to the case where the magnitude of the 
charges is proportional to the masses. (b) If the magni-
tude of the charges of the proton and electron were not 
exactly equal, astronomical bodies would have net 
charges that are approximately proportional to their 
masses. Could this possibly be an explanation for 
Earth’s orbit?

 89.  What is the electric force on the chloride ion in the 
lower right-hand corner in the diagram? Since the ions 
are in water, the “effective charge” on the chloride ions 
(Cl−) is −2 × 10−21 C and that of the sodium ions (Na+) 
is +2 × 10−21 C. (The effective charge is a way to 
account for the partial shielding due to nearby water 
molecules.) Assume that all four ions are coplanar.

0.5 nm

0.8 nm
30°

45°

Cl–

Cl–

Na+

Na+
0.3 nm

y

x

+50 C

–20 C

10 km

P

2.0 km
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Comprehensive Problems

 90. Consider two protons (charge +e), separated by a dis-
tance of 2.0 × 10−15 m (as in a typical atomic nucleus). 
The electric force between these protons is equal in 
magnitude to the gravitational force on an object of 
what mass near Earth’s surface?

 91.  In lab tests it was found that rats can detect electric 
fields of about 5.0 kN/C or more. If a point charge of 
1.0 μC is sitting in a maze, how close must the rat come 
to the charge in order to detect it?

 92. A raindrop inside a thundercloud has charge −8e. What 
is the electric force on the raindrop if the electric field at 
its location (due to other charges in the cloud) has mag-
nitude 2.0 × 106 N/C and is directed upward?

 93. An electron beam in an oscilloscope is deflected by the 
electric field produced by oppositely charged metal 
plates. If the electric field between the plates is 2.00 × 
105 N/C directed downward, what is the force on each 
electron when it passes between the plates?

 94. A point charge q1 = +5.0 μC is fixed in place at x = 0, 
and a point charge q2 = −3.0 μC is fixed at x = −20.0 cm. 
Where can we place a point charge q3 = −8.0 μC so that 
the net electric force on q1 due to q2 and q3 is zero?

 95. Two point charges are located on a coordinate system as 
follows: Q1 = −4.5 μC at x = 1.00 cm and y = 1.00 cm 
and Q2 = 6.0 μC at x = 3.00 cm and y = 1.00 cm. 
(a) What is the electric field at point P located at x = 
1.00 cm and y = 4.00 cm? (b) When a tiny 5.0 g particle 
with a charge of −2.0 μC is placed at point P and re-
leased, what is its initial acceleration?

y (cm)

Q2

P

Q1

1

1

4

3
x (cm)

 96. Object A has mass 90.0 g and hangs from an insulated 
thread. When object B, which has a charge of +130 nC, 
is held nearby, A is attracted 
to it. In equilibrium, A 
hangs at an angle θ = 7.20° 
with respect to the vertical 
and is 5.00 cm to the left of 
B. (a) What is the charge on 
A? (b) What is the tension 
in the thread?

 97. An electron with a velocity of 10.0 m/s in the positive 
y-direction enters a region where there is a uniform 
electric field of 200 N/C in the positive x-direction. 
What are the x- and y-components of the electron’s dis-
placement 2.40 μs after entering the electric-field region 
if no other forces act on it?

130 nC

5.00 cm

A B

θ

 98. Two point charges are located on the x-axis: a charge of 
+6.0 nC at x = 0 and an unknown charge q at x = 0.50 m.

  No other charges are nearby. If the electric field is zero 
at the point x = 1.0 m, what is q?

 99. Three equal charges are placed on 
three corners of a square. If the 
force that Qa exerts on Qb has mag-
nitude Fba and the force that Qa ex-
erts on Qc has magnitude Fca, what 
is the ratio of Fca to Fba?

 100. A charge of 63.0 nC is located at a distance of 3.40 cm 
from a charge of −47.0 nC. What are the x- and  
y-components of the electric field at a point P that is 
directly above the 63.0 nC charge at a distance of 
1.40 cm? Point P and the two charges are on the verti-
ces of a right triangle.

3.40 cm

1.40 cm

63.0 nC

P

–47.0 nC

 101. In a cathode ray tube, electrons initially at rest are ac-
celerated by a uniform electric field of magnitude 
4.0  × 105 N/C during the first 5.0 cm of the tube’s 
length; then they move at essentially constant velocity 
another 45 cm before hitting the screen. (a) Find the 
speed of the electrons when they hit the screen. (b) How 
long does it take them to travel the length of the tube?

 102.   A thin wire with positive charge Q evenly spread 
along its length is shaped into a semicircle of radius R. 
(a). What is the direction of the electric field at the 
center of curvature of the semicircle? Explain. (b) Is 
the magnitude of the field at the center less than, equal 
to, or greater than kQ/R2? Explain.

Problems 103–104. A dipole consists of two equal and oppo-
site point charges (±q) on the y-axis at positions y = ±d/2.
 103.   (a) Write an ex-

pression for the electric 
field at a point (0, y) on 
the dipole axis for y > d/2. 
What is the direction of 
the field? (b)  Show that 
when y ≫ d, E ≈ 2kqd/y3. 
[Hint: Use the binomial 
approximation from Ap-
pendix A.9.] (c) The field 
is inversely proportional to the distance cubed. Does 
this conflict with Coulomb’s law? Explain.

 104.   (a) Write an expression for the magnitude of the 
electric field at a point (x, 0) on a line perpendicular to 
the dipole axis. State the direction of the field for x > 0 
and for x < 0. (b) Show that when x ≫ d, E ≈ kqd/x3. 
(c)  The field is inversely proportional to the distance 
cubed. Does this conflict with Coulomb’s law? Explain.

Qa Qb

Qc

Problems	103	and	104

–q

+q

y

d /2

d /2
x
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Problems 110–112. The axis of a dipole (charges ±q = ±3.0 μC 
at the ends of a uniform rod of length d = 7.0 cm) makes an 
angle θ with a uniform electric field E = 2.0 × 104 N/C, as 
shown in Fig. 16.43. The charges each have mass 5.0 g and 
the rod has mass 20.0 g.
 110. (a) Calculate the net electric force acting on the dipole. 

(b) Show that the magnitude of the torque on the di-
pole is τ = qEd sin θ. (c) Calculate the torque acting on 
the dipole for θ = 0, 36.9°, and 90.0°.

 111. What is the angular acceleration of the dipole at 
θ = 135°?

 112.  The dipole is released from rest at θ = 90.0°. What 
is its angular speed when it reaches θ = 0? [Hint: First 
find the work done on each point charge.]

Problems 113–114. An isolated water molecule is modeled 
as two point charges ±0.80e separated by 0.048 nm. Its rota-
tional inertia is 2.93 × 10−47 kg·m2 about the axis shown in 
Fig.16.43a. The molecule is in a uniform electric field of 
magnitude 420 N/C.
 113. What is the maximum possible torque on the molecule 

due to the electric field?
 114.  If the molecule is initially at rest at θ = 90.0°, what 

is its angular speed when it reaches θ = 0, assuming no 
other forces or torques? [Hint: First find the work done 
on each point charge.]

 115.  This problem illustrates the ideas behind the Mil-
likan oil drop experiment—the first measurement of 
the electron charge. Millikan examined a fine spray of 
spherical oil droplets falling through air; the drops had 
picked up an electric charge as they were sprayed 
through an atomizer. He measured the terminal speed 
vt of a drop when there was no electric field and then 
the electric field E that kept the drop motionless be-
tween parallel, oppositely charged plates. (a) With no 
electric field, the forces acting on the oil droplet were 
the gravitational force, the buoyant force, and viscous 
drag. The droplets used were so tiny (a radius of about 
1 μm) that they rapidly reached terminal velocity. Find 
the radius R of a drop in terms of vt, g, the densities of 
the oil and of air ρoil and ρair, and the viscosity of air η. 
(b) Find the charge q of a drop in terms of g, E, R, ρoil, 
and ρair. [Hint: The drag force is now zero because the 
drop is at rest.]

Answers to Practice Problems

16.1 7.5 × 1010 electrons
16.2 As the positively charged rod is moved away, the free 
electrons of the electroscope spread out more evenly. Since 
there is less net positive charge on the leaves, they do not 
hang as far apart.

Review and Synthesis

 105.  A very small charged block with a mass of 2.35 g is 
placed on an insulated, frictionless plane inclined at an 
angle of 17.0° with respect to the horizontal. The block 
does not slide down the plane because of a 465 N/C 
uniform electric field that points parallel to the surface 
downward along the plane. What is the sign and mag-
nitude of the charge on the block?

17.0°

E

 106. The Bohr model of the hydrogen atom proposed that 
the electron orbits around the proton in a circle of ra-
dius 5.3 × 10−11 m. The electric force is responsible for 
the radial acceleration of the electron. What is the 
speed of the electron in this model?

 107.  In gel electrophoresis, the mobility μ of a molecule 
in a particular gel matrix is defined as μ = vt/E, where 
vt is the terminal speed of the molecule and E is the 
applied electric field strength. In one case, a molecule 
has mobility 3.0 × 10−8 C·m/(N·s) and charge −12e. 
(a) Estimate the electric field that should be applied to 
give this molecule a terminal speed of 2.0 × 10−5 m/s. 
(b) How long does it take the molecule to move 2.0 cm 
through the gel? (c) Suppose the same molecule had a 
charge of −8e instead of −12e. Considering the forces 
exerted on the molecule, would its terminal speed be 
smaller or larger (for the same applied field)? Would 
its mobility be smaller or larger?

 108.  In an experiment to 
measure the Coulomb 
constant, a tiny sphere 
with charge +7.0 nC is 
suspended from a spring. 
When two other tiny 
charged spheres, each with 
a charge of −4.0 μC, are 
placed in the positions 
shown in the figure, the 
spring stretches 0.50 mm 
from its previous equilib-
rium position. Calculate the spring constant.

 109.  A spherical rain drop of radius 1.0 mm has a charge 
of +2.0 nC. The electric field in the vicinity is 2.0 kN/C 
downward. The terminal speed of an identical but 
uncharged drop is 6.5 m/s. The drag force is related to 
the drop’s speed by Fd = bv2 (turbulent drag rather than 
viscous drag). Calculate the terminal speed of the 
charged rain drop.

8.0 cm

7.0 nC

–4.0 Cμ –4.0 Cμ

2.0 cm 2.0 cm
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16.3 4.6 mN, 71° CCW from the +x-axis
16.4 6.2 × 10−4 N
16.5 θ = 49.1°
16.6 220 N/C to the right
16.7 2.3 × 105 N/C, 42° below the −x-axis
16.8

–Q

+
+

+

+

+

+
++

+

+

+

+

 (a) Inside the shell, field lines run from the positive charge 
spread over the surface to the negative charge located at the 
center of the shell.
 (b) Outside the shell, we can imagine the charge +Q all con-
centrated at the center of the sphere where it cancels the −Q 
of the point charge. Therefore, E = 0 outside. Inside, the 
shell produces no electric field (as we found in the Example), 
so the field is just that due to the point charge −Q.
16.9 2.3 × 105 m/s to the right
16.10 The proton is deflected downward, but it has a 
much smaller acceleration because it has a much larger 
mass than the electron (mp = 1.673 × 10−27 kg). The pro-
ton’s acceleration vertically downward is 4.36 × 1011 m/s2. 
The y-displacement, after spending 5.00 × 10−9 s between 
the plates, is 5.44 × 10−6 m, or 5.44 × 10−4 cm. The proton 
is barely deflected at all before leaving the region between 
the plates.
16.11 −5 μC

16.12 −3.8 × 104 N·m2/C
16.13 On the ends, E

→
 is parallel to the surface, so the com-

ponent of E
→

 perpendicular to the ends is zero and the flux 
through the ends is zero. No field lines pass through the ends 
of the cylinder.

Answers to Checkpoints

16.1 The glass and silk are left with opposite charges of 
equal magnitude because charge is conserved. Electrons 
have negative charge, so the silk’s charge is negative and the 
rod’s is positive. 4.0 × 109 electrons have a total charge of 
4.0 × 109 × (−1.6 × 10−19 C) = −0.64 nC (nanocoulombs). 
Therefore, Qsilk = −0.64 nC and Qrod = +0.64 nC.
16.3 (a) Gravity and the electric force are long-range forces. 
The magnitude of the force exerted on one point particle due 
to another has the same distance dependence in both cases 
(F ∝ 1/r2). Gravity and the electric force are proportional to 
the product of the masses or charges, respectively. The direc-
tion of the force on particle 2 is always along the line passing 
through both particle 2 and the particle 1 that causes the force. 
(b) Gravity is always an attractive force, but the electric force 
can be attractive or repulsive. (In other words, mass cannot 
be negative, but electric charge can be positive or negative.)
16.4 (a) The electric field vector at any point is tangent to a 
field line through that point. At A, the field is downward 
(−y-direction). (b) The field is weaker where the field lines 
are spaced farther apart. The field is weaker at P.
16.5 The electron’s charge is negative, so the electric force on 
it is in the direction opposite to the electric field (−x). The 
electron moves with constant acceleration in the −x-direction. 
While moving in the +x-direction, it slows down; then it turns 
around and moves in the −x-direction with increasing speed.



C H A P T E R

17
Electric Potential

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Electrocardiographs, 
electroencephalographs, 
and electroretinographs 
(Section 17.2)

∙ Transmission of nerve 
impulses (Section 17.2; 
Problems 107, 108)

∙ Energy of hydrogen bonds 
in water and in DNA 
(Problems 91, 122)

∙ Potential differences 
across cell membranes 
(Section 17.2; Example 
17.11; Practice Problem 
17.11; Problems 102–108)

∙ Defibrillator (Example 
17.12; Problems 88, 89)

Concepts & Skills to Review

•	 gravitational	forces	
	(Section	4.5)

•	 potential	energy	
	(Sections	6.4	and	6.5)

•	 Coulomb’s	law		
(Section	16.3)

•	 electric	field	inside	a	
	conductor	(Section	16.6)

•	 polarization	(Section	16.1)

©APHP-PSL-GARO/PHANIE

A	tool	widely	used	in	medicine	to	diagnose	the	condition	of	the	heart	
is	 the	 electrocardiograph	 (ECG).	 The	 ECG	 data	 are	 displayed	 on	 a	
graph	 that	 shows	 a	 pattern	 repeated	 with	 each	 beat	 of	 the	 heart.	
What	physical	quantity	 is	measured	 in	an	ECG?
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17.1 ELECTRIC POTENTIAL ENERGY

In Chapter 6, we learned about gravitational potential energy—energy stored in a 
gravitational field. Electric potential energy is the energy stored in an electric field 
(Fig. 17.1). For both gravitational and electric potential energy, the change in poten-
tial energy when objects move around is equal in magnitude but opposite in sign to 
the work done by the field.

Change in potential energy

 ΔU = −Wfield (17-1)

Equation (17-1) is a generalization of Eq. (6-17) that applies to both gravitational and 
electric fields. Correct interpretation of the minus sign in Eq. (17-1) requires a clear 
distinction between the work done by the electric field and the work done by an exter-
nal force. Suppose some external force takes two positive charges that are far apart and 
pushes them closer together such that their initial and final kinetic energies are zero. 
The external force does positive work (forces and displacements in the same direction), 
while the field does negative work (forces and displacements in opposite directions):

 Wext = ΔU = −Wfield (17-2)

If two opposite charges are moved closer together, with their initial and final kinetic 
energies equal to zero, the external force does negative work and the field does pos-
itive work; again Eq. (17-2) gives the correct relationship between the three quantities.

CONNECTION:

Some of the many similarities between gravitational and electric potential energy 
include:

∙ In both cases, the potential energy depends on only the positions of various 
objects, not on the path they took to get to those positions.

∙ Only changes in potential energy are physically significant, so we are free 
to assign the potential energy to be zero at any one convenient point. The 
potential energy in a given situation depends on the choice of the point 
where U = 0, but changes in potential energy are not affected by this choice.

∙ For two point particles, we usually choose U = 0 when the particles are 
infinitely far apart.

∙ Both the gravitational and electrical forces exerted by one point particle on 
another are inversely proportional to the square of the distance between 
them (F ∝ 1/r2), and the gravitational and electric potential energies are 
inversely proportional to the distance between them (U ∝ 1/r, with U = 0 
at r = ∞).

∙ The gravitational force and the gravitational potential energy for a pair of 
point particles are proportional to the product of the masses of the particles:

 Fg =
Gm1m2

r2  (4-9)   Ug = − 

Gm1m2

r
 (Ug = 0 at r = ∞)  (6-27)

 The electric force and the electric potential energy for a pair of point par-
ticles are proportional to the product of the charges of the particles:

 FE =
k∣q1∣∣q2∣

r2  (16-2)    UE =
kq1q2

r
 (UE = 0 at r = ∞) (17-3)

CONNECTION:

Potential energy is energy 
stored in a field. Now, instead 
of energy stored in a gravita-
tional field, we study energy 
stored in an electric field.

Region of higher gravitational
potential energy

(a)

Region of lower gravitational
potential energy

Direction
of motion

+

+ + + + + + + + + + +
Region of higher electric

potential energy

(b)

Region of lower electric
potential energy

Direction
of motion

Positive
charge

– –
– – – –

––
–––

Figure 17.1 (a) An object 
moving through a gravitational 
field; the gravitational potential 
energy decreases when the 
object moves in the direction of 
the gravitational force. (b) A 
charged particle moving 
through an electric field; the 
electric potential energy 
decreases when the particle 
moves in the direction of the 
electric force.
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Positive and Negative Potential Energy The negative sign in Eq. (6-27) indicates 
that gravity is always an attractive force: if two particles move closer together (r 
decreases), gravity does positive work and ΔU is negative—some gravitational poten-
tial energy is converted to other forms of energy. If the two particles move farther 
apart, the gravitational potential energy increases.

Why is there no negative sign in Eq. (17-3)? If the two charges have opposite 
signs,  the force is an attractive one. The potential energy should be negative, as it is 
for the  attractive force of gravity. With opposite signs, the product q1q2 is negative 
and the  potential energy has the correct sign (Fig. 17.2). If the two charges instead 
have the same sign—both positive or both negative—the product q1q2 is positive. The 
electric force between two like charges is repulsive; the potential energy increases as 
they move closer together. Thus, Eq. (17-3) automatically gives the correct sign in 
every case.

Coulomb’s law is written in terms of the magnitudes of the charges (∣q1∣∣q2∣) since 
it gives the magnitude of a vector quantity—the force. In the potential energy expres-
sion [Eq. (17-3)], we do not write the absolute value bars. The signs of the two charges 
determine the sign of the potential energy, a scalar quantity that can be positive, 
negative, or zero.

(a) Gravitational
attraction

(b) Electrical
attraction
(q1q2 < 0)

(c) Electrical
repulsion
(q1q2 > 0)

r

Ug

r

UE

r

UE

Figure 17.2 Potential energies for pairs of point particles as a function of separa-
tion distance r. In each case, we choose U = 0 at r = ∞. For an attractive force, 
(a) and (b),  the potential energy is negative. If two particles start far apart where  
U = 0, they “fall” spontaneously toward each other as the potential energy decreases. 
For a repulsive force (c), the potential energy is positive. If two particles start far 
apart, they have to be pushed together by an external agent that does work to increase 
the potential energy.

Example 17.1

Electric Potential Energy in a Thundercloud

In a thunderstorm, charge is separated through a complicated 
mechanism that is ultimately powered by the Sun. A simpli-
fied model of the charge in a thundercloud represents the 
positive charge accumulated at the top and the negative 

charge at the bottom as a pair of point charges (Fig. 17.3). 
(a) What is the electric potential energy of the pair of point 
charges,  assuming that U = 0 when the two charges are infi-
nitely far apart?

continued on next page
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Example 17.1 continued

(b) Explain the sign of the potential energy in light of 
the fact that positive work must be done by external forces in 
the thundercloud to separate the charges.

Strategy (a) The electric potential energy for a pair of 
point charges is given by Eq. (17-3), where U = 0 at infi-
nite separation is assumed. The algebraic signs of the 
charges are included when finding the potential energy. 
(b)  The work done by an external force to separate the 
charges is equal to the change in the electric potential 
 energy as the charges are moved apart by forces acting 
within the thundercloud.

Solution and Discussion (a) The general expression for 
electric potential energy for two point charges is

UE =
kq1q2

r

We substitute the known values into the equation for elec-
tric potential energy.

 UE = 8.99 × 109 
N·m2

C2 ×
(+50 C) × (−20 C)

8000 m

 = −1 × 109 J

(b) Recall that we chose U = 0 at infinite separation. Neg-
ative potential energy therefore means that, if the two point 
charges started infinitely far apart, their electric potential 
energy would decrease as they are brought together—in 
the absence of other forces they would “fall” spontane-
ously toward each other. However, in the thundercloud, the 
unlike charges start close together and are moved farther 
apart by an external force; the external agent must do pos-
itive work to increase the potential energy and move the 
charges apart. Initially, when the charges are close to-
gether, the potential energy is less than −1 × 109 J; the 
change in potential energy as the charges are moved apart 
is positive.

Practice Problem 17.1 Two Point Charges with 
Like Signs

Two point charges, Q = +6.0 μC and q = +5.0 μC, are 
separated by 15.0 m. (a) What is the electric potential en-
ergy? (b) Charge q is free to move—no other forces act on 
it—whereas Q is fixed in place. Both are initially at rest. 
Does q move toward or away from charge Q? (c) How does 
the motion of q affect the electric potential energy? Explain 
how energy is conserved.

+50 C

–20 C

8 km

Figure 17.3
Charge separation in a  
thundercloud.

Potential Energy due to Several Point Charges

To find the potential energy due to more than two point charges, we add the potential 
energies of each pair of charges. For three point charges, there are three pairs, so the 
potential energy is

 UE = k(
q1q2

r12
+

q1q3

r13
+

q2q3

r23 ) (17-4)

where, for instance, r12 is the distance between q1 and q2. The potential energy in 
Eq.  (17-4) is the negative of the work done by the electric field as the three charges 
are put into their positions, starting from infinite separation. If there are more than 
three charges, the potential energy is a sum just like Eq. (17-4), which includes one 
term for each pair of charges. Be sure not to count the potential energy of the same 
pair twice. If the potential energy expression has a term (q1q2)/r12, it must not also 
have a term (q2q1)/r21.
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CHECKPOINT 17.1

When	 finding	 the	 potential	 energy	 due	 to	 four	 point	 charges,	 how	many	 pairs	
of	charges	are	 there?	How	many	 terms	 in	 the	potential	energy?

Example 17.2

Electric Potential Energy due  
to Three Point Charges

Find the electric potential energy for the array of charges 
shown in Fig. 17.4. Charge q1 = +4.0 μC is located at 
(0.0, 0.0) m; charge q2 = +2.0 μC is located at (3.0, 4.0) m; 
and charge q3 = −3.0 μC is located at (3.0, 0.0) m.

Strategy With three charges, there are three pairs to in-
clude in the potential energy sum [Eq. (17-4)]. The charges 
are given; we need only find the distance between each pair. 
Subscripts are useful to identify the three distances; r12, for 
example, means the distance between q1 and q2.

Solution From Fig. 17.4, r13 = 3.0 m and r23 = 4.0 m. The 
Pythagorean theorem enables us to find r12:

r12 = √3.02 + 4.02 m = √25 m = 5.0 m

The potential energy has one term for each pair:

UE = k(
q1q2

r12
+

q1q3

r13
+

q2q3

r23 )

We now substitute numerical values:

 UE = 8.99 × 109 
N·m2

C2 × [
(+4.0)(+2.0)

5.0
+

(+4.0)(−3.0)
3.0

+
(+2.0)(−3.0)

4.0 ] × 10−12 
C2

m
 = −0.035 J

Discussion To interpret the answer, assume that the 
three charges start far apart from one another. As the 
charges are brought together and put into place, the electric 
fields do a total work of +0.035 J. Once the charges are in 
place, an external agent would have to supply 0.035 J of 
energy to separate them again.

Conceptual Practice Problem 17.2 Three Positive 
Charges

What would the potential energy be if q3 = +3.0 μC instead?

y

x

q2

q3

r23

r12

r13
q1

–+

+

Figure 17.4
Three point charges.

17.2 ELECTRIC POTENTIAL

Imagine that a collection of point charges is somehow fixed in place while another 
charge q can move. Moving q may involve changes in electric potential energy since 
the distances between it and the fixed charges may change. Just as the electric field 
is defined as the electric force per unit charge, the electric potential V is defined as 
the electric potential energy per unit charge (Fig. 17.5).

Definition of electric potential

 V =
UE

q
 (17-5)

In Eq. (17-5), UE is the electric potential energy as a function of the position of the 
moveable charge (q). Then the electric potential V is also a function of the position 
of charge q.
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The SI unit of electric potential is the joule per coulomb, which is named the 
volt (symbol V) after the Italian scientist Alessandro Volta (1745–1827).

1 V = 1 J/C

Volta invented the voltaic pile, an early form of battery. Electric potential is often 
shortened to potential. It is also informally called “voltage,” especially in connection 
with electric circuits, just as weight is sometimes called “tonnage.” Be careful to 
distinguish electric potential from electric potential energy. It is all too easy to con-
fuse the two, but they are not interchangeable.

Since potential energy and charge are scalars, potential is also a scalar. The prin-
ciple of superposition is easier to apply to potentials than to fields since fields must 
be added as vectors. Given the potential at various points, it is easy to calculate the 
potential energy change when a charge moves from one point to another. Potentials 
do not have direction in space; they are added just as any other scalar. Potentials can 
be either positive or negative and so must be added with their algebraic signs.

Since only changes in potential energy are significant, only changes in potential are 
significant. We are free to choose the potential arbitrarily at any one point. Equation (17-5) 
assumes that the potential is zero infinitely far away from the collection of fixed charges.

If the potential at a point due to a collection of fixed charges is V, then when a 
charge q is placed at that point, the electric potential energy is

 UE = qV  (17-6)

Potential Difference

When a point charge q moves from point A to point B, it moves through a potential 
difference
 ΔV = Vf − Vi = VB − VA (17-7)

The potential difference is the change in electric potential energy per unit charge:

 ΔUE = q  Δ V  (17-8)

Electric Field and Potential Difference The electric force on a charge is always 
directed toward regions of lower electric potential energy, just as the gravitational force 
on an object is directed toward regions of lower gravitational potential energy (i.e., 
downward). For a positive charge, lower potential energy means lower potential 
(Fig. 17.5a), but for a negative charge, lower potential energy means higher potential 
(Fig. 17.5b). This shouldn’t be surprising, since the force on a negative charge is 
opposite to the direction of E

→
, whereas the force on a positive charge is in the direction 

of E
→

. Since the electric field points toward lower potential energy for positive charges, 

E
→

 points in the direction of decreasing V.

In a region where the electric field is zero, the potential is constant.

––

High
potential

Low
potential

Low PE High PE

–+

–+

–+

–+

–+

FE

E

High
potential

Low
potential

High PE Low PE

+ +

–+

–+

–+

–+

–+

FE

E

Figure 17.5 The electric 
force on a charge is always in 
the direction of lower electric 
potential energy. The electric 
field is always in the direction 
of lower potential.
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CHECKPOINT 17.2

If	 the	potential	 increases	as	you	move	 from	point	P	 in	 the	+x-direction	but	 the	
potential	 does	 not	 change	 as	 you	move	 from	P	 in	 the	 y-	 or	 z-directions,	 what	
is	 the	direction	of	 the	electric	 field	at	P?

Example 17.3

A Battery-Powered Lantern

A battery-powered lantern is switched on for 5.0 min. Dur-
ing this time, electrons with total charge −8.0 × 102 C flow 
through the lamp; 9600 J of electric potential energy is con-
verted to light and heat. Through what potential difference 
do the electrons move?

Strategy Equation (17-8) relates the change in electric 
potential energy to the potential difference. We could apply 
Eq. (17-8) to a single electron, but since all of the electrons 
move through the same potential difference, we can let q be 
the total charge of the electrons and ΔUE be the total change 
in electric potential energy.

Solution The total charge moving through the lamp is  
q = −800 C. The change in electric potential energy is nega-
tive since it is converted into other forms of energy. Therefore,

ΔV =
ΔUE

q
=

−9600 J
−8.0 × 102 C

= +12 V

Discussion The sign of the potential difference is posi-
tive: negative charges decrease the electric potential energy 
when they move through a potential increase.

Conceptual Practice Problem 17.3 An Electron 
Beam

A beam of electrons is deflected as it moves between oppo-
sitely charged parallel plates (Fig. 17.6). Which plate is at 
the higher potential?

Figure 17.6
An electron beam deflected by a pair of oppositely charged plates.

Electron beam

Potential due to a Point Charge

If q is in the vicinity of one other point charge Q, the electric potential energy is

 U =
kQq

r
 (17-3)

when Q and q are separated by a distance r. Therefore, the electric potential at a 
distance r from a point charge Q is

Potential at a distance r from a point charge

 V =
kQ

r
 (V = 0 at r = ∞) (17-9)

Superposition of Potentials The potential at a point P due to N point charges is 
the sum of the potentials due to each charge:

 V = ∑Vn = ∑ 
kQn

rn
 for n = 1, 2, 3, . . . , N  (17-10)

where rn is the distance from the nth point charge Qn to point P.



 17.2 ELECTRIC	POTENTIAL 635

Example 17.4

Potential Due to Three Point Charges

Charge Q1 = +4.0 μC is located at (0.0, 3.0) cm; charge 
Q2 = +2.0 μC is located at (1.0, 0.0) cm; and charge q3 = 
−3.0 μC is located at (2.0, 2.0) cm (Fig. 17.7). (a) Find the 
electric potential at point A 
(x = 0.0, y = 1.0 cm) due to 
the three charges. (b) A point 
charge q = −5.0 nC moves 
from a great distance to 
point A. What is the change 
in electric potential energy?

Strategy The potential at 
A is the sum of the potentials 
due to each point charge. 
The first step is to find the 
distance from each charge to point A. We call these distances 
r1, r2, and r3 to avoid using the wrong one by mistake. Then 
we add the potentials due to each of the three charges at A.

Solution (a) From the grid, r1 = 2.0 cm. The distance 
from q2 to point A is the diagonal of a square that is 1.0 cm 
on a side. Thus, r2 = √2.0 cm = 1.414 cm. The third charge 
is located at a distance equal to the hypotenuse of a right 
triangle with sides of 2.0 cm and 1.0 cm. From the Pythago-
rean theorem,

r3 = √1.02 + 2.02 cm = √5.0 cm = 2.236 cm

The potential at A is the sum of the potentials due to each 
point charge:

V = k∑Qn

rn

We now substitute numerical values:

VA = 8.99 × 109 
N·m2

C2 ×

(
+4.0 × 10−6 C

0.020 m
+

+2.0 × 10−6 C
0.01414 m

+
−3.0 × 10−6 C

0.02236 m )

= +1.863 × 106 V

To two significant figures, the potential at point A is  
+1.9 × 106 V.

(b) The change in potential energy is

ΔUE = q  Δ V

Here ΔV is the potential difference through which charge q 
moves. If we assume that q starts from an infinite distance, 
then Vi = 0. Therefore,

ΔUE = q(VA − 0) = (−5.0 × 10−9 C)(+1.863 × 106 J/C − 0)

= −9.3 × 10−3 J

Discussion The positive sign of the potential indicates 
that a positive charge at point A would have positive poten-
tial energy. To bring in a positive charge from far away, the 
potential energy must be increased and therefore positive 
work must be done by the agent bringing in the charge. A 
negative charge at that point, on the other hand, has negative 
potential energy. When q moves from a potential of zero to a 
positive potential, the potential increase causes a potential 
energy decrease (q < 0).

In Practice Problem 17.4, you are asked to find the work 
done by the field as q moves from A to B. The force is not 
constant in magnitude or direction, so we cannot just multi-
ply force component times distance. In principle, the prob-
lem could be solved this way using calculus; but using the 
potential difference gives the same result without vector 
components or calculus.

Practice Problem 17.4 Potential at Point B

Find the potential due to the same array of charges at point B 
(x = 2.0 cm, y = 1.0 cm) and the work done by the electric 
field if q = −5.0 nC moves from A to B.

Figure 17.7
An array of three point charges.
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Conceptual Example 17.5

Field and Potential at the Center of a Square

Four equal positive point charges q are fixed at the corners of 
a square of side s (Fig. 17.8). (a) Is the electric field zero at 
the center of the square? (b) Is the potential zero at the center 
of the square?

Strategy and Solution (a) The electric field at the center 
is the vector sum of the fields due to each of the point 
charges. Figure 17.9 shows the field vectors at the center of 
the square due to each charge. Each of these vectors has the 

continued on next page
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Potential due to a Spherical Conductor

In Section 16.4, we saw that the field outside a charged conducting sphere is the same 
as if all of the charge were concentrated into a point charge located at the center of 
the sphere. As a result, the electric potential due to a conducting sphere is similar to 
the potential due to a point charge.

Figure 17.11 shows graphs of the electric field strength and the potential as func-
tions of the distance r from the center of a solid or hollow conducting sphere of radius 
R and charge Q. The electric field inside the conducting sphere (from r = 0 to r = R) 
is zero. The magnitude of the electric field is greatest at the surface of the conductor 
and then drops off as 1/r2. Outside the sphere, the electric field is the same as for a 
charge Q located at r = 0.

Conceptual Example 17.5 continued

same magnitude since the center is 
equidistant from each corner and the 
four charges are the same. From sym-
metry, the vector sum of the electric 
fields is zero.

(b) Since potential is a scalar rather 
than a vector, the potential at the center 
of the square is the scalar sum of the 
potentials due to each charge. These po-
tentials are all equal since the distances 
and charges are the same. Each is positive since q > 0. The 
total potential at the center of the square is

V = 4 
kq

r

where r = s/√2 is the distance from a corner of the square to 
the center.

Discussion In this example, the electric field is zero at a 
point where the potential is not zero. In other cases, there 
may be points where the potential is zero while the electric 
field at the same points is not zero. Never assume that the 
potential at a point is zero because the electric field is zero or 
vice versa. If the electric field is zero at a point, it means that 
a point charge placed at that point would feel no net electric 
force. If the potential is zero at a point, it means zero total 
work would be done by the electric field as a point charge 
moves from infinity to that point.

Practice Problem 17.5 Field and Potential  
for a Different Set of Charges

Find the electric field and the potential at the center of a 
square of side 2.0 cm with a charge of +9.0 μC at one cor-
ner and with charges of −3.0 μC at the other three corners 
(Fig. 17.10).

q

q

s

s q

q

Figure 17.8
Four equal point 
charges at the cor-
ners of a square.

Figure 17.9
Electric field vectors due to each of the 
point charges at the center of the square.

a

d c

b
Ec Ed

Eb Ea

Figure 17.10
Charges for Practice Problem 17.5.

2.0 cm

2.0 cm

+9.0 μC –3.0 μC

–3.0 μC –3.0 μC

r

E

V

kQ/R2

R

r

kQ/R

R

Figure 17.11 The electric 
field and the potential due to a 
solid or hollow conducting 
sphere of radius R and charge 
Q as a function of r, the dis-
tance from the center. For r ≥ R, 
the field and potential are the 
same as if there were a point 
charge Q at the origin instead. 
For r < R, the electric field is 
zero and the potential is 
 constant.
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The potential is chosen to be zero for r = ∞. The electric field outside the sphere 
(r ≥ R) is the same as the field at a distance r from a point charge Q. Therefore, for 
any point at a distance r ≥ R from the center of the sphere, the potential is the same 
as the potential at a distance r from a point charge Q:

 V =
kQ

r
 (r ≥ R)  (17-9)

For a positive charge Q, the potential is positive, and it is negative for a negative charge. 
At the surface of the sphere, the potential is

 V =
kQ

R
 (17-11)

Since the electric field inside the cavity or the material of the conductor is zero, no 
work would be done by the electric field if a test charge were moved around within 
the sphere. Therefore, the potential anywhere inside the sphere is the same as the 
potential at the surface of the sphere. Thus, for r < R, the potential is not the same 
as for a point charge. (The magnitude of the potential due to a point charge continues 
to increase as r → 0.)

Application: van de Graaff Generator

An apparatus designed to charge a conductor to a high potential difference is the van 
de Graaff generator (Fig. 17.12). A large conducting sphere is supported on an insu-
lating cylinder. In the cylinder, a motor-driven conveyor belt collects negative charge 
either by rubbing or from some other source of charge at the base of the cylinder. 
The charge is carried by the conveyor belt to the top of the cylinder, where it is col-
lected by small metal rods and spontaneously transfers to the conducting sphere. As 
more and more charge is deposited onto the conducting sphere, the charges repel one 
another and move as far away from one another as possible, ending up on the outer 
surface of the conducting sphere.

Inside the conducting sphere, the electric field is zero, so no repulsion from 
charges already on the sphere is felt by the charge near the top of the conveyor 
belt. Thus, a large quantity of charge can build up on the conducting sphere so that 
an extremely high potential difference can be established. Potential differences of 
millions of volts can be attained with a large sphere. Commercial van de Graaff 
generators supply the large potential differences required to produce intense beams 
of high-energy x-rays. The x-rays are used in medicine for cancer therapy; indus-
trial uses include radiography (to detect tiny defects in machine parts) and the 
polymerization of plastics. Old science fiction movies often show sparks jumping 
from generators of this sort.
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Figure 17.12 The van de 
Graaff generator.

Figure 17.13 A hair-raising 
experience. A person touching 
the dome of a van de Graaff 
while electrically isolated from 
ground reaches the same poten-
tial as the dome. Although the 
effects are quite noticeable, 
there is no danger to the person 
since the whole body is at the 
same potential. A large potential 
difference between two parts of 
the person’s body would be dan-
gerous or even lethal.
©Andrew Rich/Getty Images 
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Potential Differences in Biological Systems

In general, the inside and outside of a biological cell are not at the same potential. 
The potential difference across a cell membrane is due to different concentrations of 
ions in the fluids inside and outside the cell. These potential differences are particu-
larly noteworthy in nerve and muscle cells.

Application: Transmission of Nerve Impulses A nerve cell or neuron con-
sists of a cell body and a long extension, called an axon (Fig. 17.14a). Human 

Example 17.6

Minimum Radius Required for a van de Graaff

You wish to charge a van de Graaff to a potential of 240 kV. 
On a day with average humidity, an electric field of 8.0 ×  
105 N/C or greater ionizes air molecules, allowing charge to 
leak off the van de Graaff. Find the minimum radius of the 
conducting sphere under these conditions.

Strategy We set the potential of a conducting sphere equal to 
Vmax = 240 kV and require the electric field strength just outside 
the sphere to be less than Emax = 8.0 × 105 N/C. Since both E

→
 

and V depend on the charge on the sphere and its  radius, we 
should be able to eliminate the charge and solve for the radius.

Solution The potential of a conducting sphere with charge 
Q and radius R is

V =
kQ

R

The electric field strength just outside the sphere is

E =
kQ

R2

Comparing the two expressions, we see that E = V/R just 
outside the sphere. Now let V = Vmax and require E < Emax:

E =
Vmax

R
< Emax

Now we solve for R,

R >
Vmax

Emax
 =

2.4 × 105 V
8.0 × 105 N/C

R > 0.30 m

The minimum radius is 30 cm.

Discussion To achieve a large potential difference, a large 
conducting sphere is required. A small sphere—or a conduc-
tor with a sharp point, which is like part of a sphere with a 
small radius of curvature—cannot be charged to a high po-
tential. Even a relatively small potential on a conductor with 
a sharp point, such as a lightning rod, enables charge to leak 
off into the air since the strong electric field ionizes the 
nearby air.

The equation E = V/R derived in this example is not a 
general relationship between field and potential. The general 
relationship is discussed in Section 17.3.

Practice Problem 17.6 A Small Conducting Sphere

What is the largest potential that can be achieved on a conduct-
ing sphere of radius 0.5 cm? Assume Emax = 8.0 × 105 N/C.

t (ms)
10 0.5 1.5

Δ
V

 (m
V
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Figure 17.14 (a) The structure of a neuron. (b) The action potential. The graph shows the potential difference 
between the inside and outside of the cell membrane at a point along the axon as a function of time.
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axons are 10 to 20 μm in diameter. When the axon is in its resting state, negative 
ions on the inner surface of the membrane and positive ions on the outer surface 
cause the fluid inside to be at a potential of about −85 mV relative to the fluid 
outside.

A nerve impulse is a change in the potential difference across the membrane that 
gets propagated along the axon. The cell membrane at the end stimulated suddenly 
becomes permeable to positive sodium ions for about 0.2 ms. Sodium ions flow into 
the cell, changing the polarity of the charge on the inner surface of the membrane. 
The potential difference across the cell membrane changes from about −85 mV to 
+60 mV. The reversal of polarity of the potential difference across the membrane is 
called the action potential (Fig.  17.14b). The action potential propagates down the 
axon at a speed of about 30 m/s.

Restoration of the resting potential involves both the diffusion of potassium and 
the pumping of sodium ions out of the cell—a process called active transport. As 
much as 20% of the resting energy requirements of the body are used for the active 
transport of sodium ions.

Similar polarity changes occur across the membranes of muscle cells. When a 
nerve impulse reaches a muscle fiber, it causes a change in potential, which propagates 
along the muscle fiber and signals the muscle to contract.

Muscle cells, including those in the heart, have a layer of negative ions on 
the inside of the membrane and positive ions on the outside. Just before each 
heartbeat, positive ions are pumped into the cells, neutralizing the potential dif-
ference. Just as for the action potential in neurons, the depolarization of muscle 
cells begins at one end of the cell and proceeds toward the other end. Depolariza-
tion of various cells occurs at different times. When the heart relaxes, the cells 
are polarized again.

Application: Electrocardiographs, Electroencephalographs, and Electroretinographs  
An electrocardiograph (ECG) measures the potential difference between points on the chest 
as a function of time (Fig. 17.15). The depolarization and polarization of the cells in the 
heart causes potential differences that can be measured using electrodes connected to the 
skin. The potential difference measured by the electrodes is amplified and recorded on a 
chart recorder or a computer (Fig. 17.16).

Potential differences other than those due to the heart are used for diagnostic 
purposes. In an electroencephalograph (EEG), the electrodes are placed on the head. 
The EEG measures potential differences caused by electrical activity in the brain. In 
an electroretinograph (ERG), the electrodes are placed near the eye to measure the 
potential differences due to electrical activity in the retina when stimulated by a flash 
of light.

ΔV
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ΔV
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0 0.5 t (s)
(a) (b)

1.0
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0

–1
0 0.5 t (s)

0

Figure 17.16 (a) A normal ECG indicates that the heart is healthy. (b) An 
abnormal or irregular ECG indicates a problem. This ECG indicates ventricular 
fibrillation, a potentially life-threatening condition.

Figure 17.15 A stress test. 
The ECG graphs the potential 
difference measured between 
two electrodes as a function of 
time. These potential differences 
reveal whether the heart func-
tions normally during exercise.
©andresr/Getty Images
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Figure 17.17 A topographic 
map showing lines of constant 
elevation in feet.
©pongpinun traisrisilp/Shutterstock

17.3 THE RELATIONSHIP BETWEEN ELECTRIC FIELD  
AND POTENTIAL

In this section, we explore the relationship between electric field and electric potential 
in detail, starting with visual representations of each.

Equipotential Surfaces

A field line sketch is a useful visual representation of the electric field. To represent 
the electric potential, we can create something analogous to a contour map. An 
 equipotential surface has the same potential at every point on the surface. The idea 
is similar to the lines of constant elevation on a topographic map, which show where 
the elevation is the same (Fig. 17.17). Since the potential difference between any two 
points on such an equipotential surface is zero, no work is done by the field when a 
charge moves from one point on the surface to another.

Equipotential surfaces and field lines are closely related. Suppose you want to 
move a charge in a direction so that the potential stays constant. In order for the field 
to do no work on the charge, the displacement must be perpendicular to the electric 
force (and therefore perpendicular to the field). As long as you always move the charge 
in a direction perpendicular to the field, the work done by the field is zero and the 
potential stays the same.

An equipotential surface is perpendicular to the electric field lines at all points.

Conversely, if you want to move a charge in a direction that maximizes the change 
in potential, you would move parallel or antiparallel to the electric field. Only the com-
ponent of displacement perpendicular to an equipotential surface changes the potential. 
Think of a contour map: the steepest slope—the quickest change of elevation—is per-
pendicular to the lines of constant elevation. The electric field is the negative gradient 
of the potential (Fig. 17.18). The gradient points in the direction of maximum increase 
in potential, so the negative gradient—the electric field—points in the direction of max-
imum decrease in potential. On a contour map, a hill is steepest where the lines of 
constant elevation are close together; a diagram of equipotential surfaces is similar.

If equipotential surfaces are drawn such that the potential difference between 
adjacent surfaces is constant, then the surfaces are closer together where the 
field is stronger.

The electric field always points in the direction of maximum potential decrease.

CONNECTION:

On a contour map, lines of 
constant elevation are lines of 
constant gravitational poten-
tial (gravitational P.E. per 
unit mass).
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Properties of a charge q at a point
in space due to its interaction
with charges at other points

Properties of a point in
space due to charges at
other points

Vector
quantities

Is the negative
gradient of the

Is the negative
gradient of the

Per unit
charge =

Electric force
(FE = qE)

Electric field
(E)

Scalar
quantities Per unit

charge =

Electric potential
energy
(UE = qV)

Electric potential
(V)

Figure 17.18 Relationships 
between force, field, potential 
energy, and potential.

Conceptual Example 17.7

Equipotential Surfaces for Two Point Charges

Sketch some equipotential surfaces for two point charges  
+Q and −Q.

Strategy and Solution One way to draw a set of equipo-
tential surfaces is to first draw the field lines. Then we con-
struct the equipotential surfaces by sketching lines that are 
perpendicular to the field lines at all points. Close to either 
point charge, the field is primarily due to the nearby charge, 
so the surfaces are nearly spherical.

Figure 17.20 shows a sketch of the field lines and equi-
potential surfaces for the two charges.

Discussion This two-dimensional sketch shows only the 
intersection of the equipotential surfaces with the plane of 
the page. Except for the plane midway between the two 
charges, the equipotentials are closed surfaces that enclose 
one of the charges. Equipotential surfaces very close to 
 either charge are approximately spherical.

Conceptual Practice Problem 17.7 Equipotential 
Surfaces for Two Positive Charges

Sketch some equipotential surfaces for two equal positive 
point charges.

–

+
Equipotential
surface

Field line

Figure 17.20
A sketch of some equipotential surfaces (purple) and electric field 
lines (green) for two point charges of the same magnitude but  
opposite in sign.

The simplest equipotential surfaces are those for a single point charge. The potential 
due to a point charge depends only on the distance from the charge, so the  equipotential 
surfaces are spheres with the charge at the center (Fig. 17.19). There are an infinite num-
ber of equipotential surfaces, so we customarily draw a few surfaces equally spaced in 
potential—just like a contour map that shows places of equal elevation in 10 ft increments. 200 V

300 V

400 V

500 V
600 V

+

100 V

Figure 17.19 Equipotential surfaces near a positive point charge. The circles rep-
resent the intersection of the spherical surfaces with the plane of the page. The 
potential decreases as we move away from a positive charge. The electric field lines 
are perpendicular to the spherical surfaces and point toward lower potentials. The 
spacing between equipotential surfaces increases with increasing distance since the 
electric field gets weaker.
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Potential in a Uniform Electric Field

As we will see in Section 17.5, a uniform electric field can be produced by a pair of 
parallel, oppositely-charged metal plates. In a uniform electric field, the field lines are 
equally spaced parallel lines. Since equipotential surfaces are perpendicular to field 
lines, the equipotential surfaces are a set of parallel planes (Fig. 17.21). The potential 
decreases from one plane to the next in the direction of E

→
. Since the spacing of 

equipotential planes depends on the magnitude of E
→

, in a uniform field planes at equal 
potential increments are equal distances apart.

To find a quantitative relationship between the field strength and the spacing of 
the equipotential planes, imagine moving a point charge +q a distance d in the direc-
tion of an electric field of magnitude E. The work done by the electric field is

 WE = FEd = qEd  (17-12)

The change in electric potential energy is

 ΔUE = −WE = −qEd (17-13)

From the definition of potential, the potential change is

Potential difference in a uniform electric field

 ΔV =
ΔUE

q
= −Ed (17-14)

(for a displacement d in the direction of the field)

The negative sign in Eq. (17-14) is correct because potential decreases in the direction 
of the electric field.

Equation (17-14) implies that the SI unit of the electric field (N/C) can also be 
written volts per meter (V/m):
 1 N/C = 1 V/m (17-15)

Where the field is strong, the equipotential surfaces are close together: with a large 
number of volts per meter, it doesn’t take many meters to change the potential a given 
number of volts.

CHECKPOINT 17.3

In	Fig.	17.21,	the	equipotential	planes	differ	in	potential	by	1.0	V.	If	the	electric	
field	magnitude	is	25	N/C	=	25	V/m,	what	is	the	distance	between	the	planes?

Potential Inside a Conductor

In Section 16.6, we learned that E = 0 at every point inside a conductor in electrostatic 
equilibrium (when no charges are moving). If the field is zero at every point, then the 
potential does not change as we move from one point to another. If there were poten-
tial differences within the conductor, then charges would move in response. Positive 
charge would be accelerated by the field toward regions of lower potential, and neg-
ative charge would be accelerated toward higher potential. If there are no moving 
charges, then the field is zero everywhere and no potential differences exist within 
the conductor. Therefore:

In electrostatic equilibrium, every point within a conducting material must be 
at the same potential.

Figure 17.21 Field lines and 
equipotential surfaces (at 1 V 
intervals) in a uniform field. 
The equipotential surfaces are 
equally spaced planes perpen-
dicular to the field lines.

3 V 2 V 1 V 0 V –1 V

E
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17.4 CONSERVATION OF ENERGY FOR MOVING CHARGES

When a charge moves from one position to another in an electric field, the change in 
electric potential energy must be accompanied by a change in other forms of energy 
so that the total energy is constant. Energy conservation simplifies problem solving 
just as it does with gravitational or elastic potential energy.

If no other forces act on a point charge, then as it moves in an electric field, the 
sum of the kinetic and electric potential energy is constant:

Ki + Ui = Kf + Uf

Changes in gravitational potential energy are negligible compared with changes in elec-
tric potential energy when the gravitational force is much weaker than the electric force.

CONNECTION:

This is the same principle of 
energy conservation; we’re 
just applying it to another 
form of energy—electric 
 potential energy.

Example 17.8

Electron Gun in a CRT

In an electron gun, electrons are accelerated from the cathode 
toward the anode, which is at a potential higher than the cath-
ode (see Fig. 16.39). If the potential difference between the 
cathode and anode is 12 kV, at what speed do the electrons 
move as they reach the anode? Assume that the initial kinetic 
energy of the electrons as they leave the cathode is negligible.

Strategy Using energy conservation, we set the sum of 
the initial kinetic and potential energies equal to the sum of 
the final kinetic and potential energies. The initial kinetic 
energy is taken to be zero. Once we find the final kinetic 
energy, we can solve for the speed.

Known: Ki = 0; ΔV = +12 kV
Find: v

Solution The change in electric potential energy is

ΔU = Uf − Ui = q  Δ V

From conservation of energy,

Ki + Ui = Kf + Uf

Let us now solve for the final kinetic energy:

 Kf = Ki + (Ui − Uf) = Ki − ΔU

 = 0 − q Δ V

To find the speed, we set Kf = 1
2mv2.

1
2

mv2 = −q Δ V

v = √
−2q ΔV

m

For an electron,

q = −e = −1.602 × 10−19 C
m = 9.109 × 10−31 kg

Substituting numerical values yields

v = √
−2 × (−1.602 × 10−19 C) × (12 000 V)

9.109 × 10−31 kg

= 6.5 × 107 m/s

Discussion The answer is more than 20% of the speed of 
light (3 × 108 m/s). A more accurate calculation of the speed, 
accounting for Einstein’s theory of relativity, is 6.4 × 107 m/s.

Using conservation of energy to solve this problem makes 
it clear that the final speed depends only on the potential dif-
ference between the cathode and anode, not on the distance 
between them. To solve the problem using Newton’s second 
law, even if the electric field is uniform, we have to assume 
some distance d between the cathode and anode. Using d, we 
can find the magnitude of the electric field

E =
Δ V

d

The acceleration of the electron is

a =
FE

m
=

eE

m
=

e ΔV

md

Now we can find the final speed. Since the acceleration is 
constant,

v = √v2
i + 2ad = √0 + 2 ×

e Δ V

md
× d

The distance d cancels and gives the same result as the en-
ergy calculation.

Practice Problem 17.8 Proton Accelerated

A proton is accelerated from rest through a potential differ-
ence. Its final speed is 2.00 × 106 m/s. What is the potential 
difference? The mass of the proton is 1.673 × 10−27 kg.
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17.5 CAPACITORS

Can a useful device be built to store electric potential energy? Yes. Many such devices, 
called capacitors, are found in every piece of electronic equipment (Fig. 17.22).

A capacitor is a device that stores electric potential energy by storing sepa-
rated positive and negative charges. It consists of two conductors separated by 
either vacuum or an insulating material. Charge is separated, with positive charge 
put on one of the conductors and an equal amount of negative charge on the other 
conductor. Work must be done to separate positive charge from negative charge, 
since there is an attractive force between the two. The work done to separate the 
charge ends up as electric potential energy. An electric field arises between the 
two conductors, with field lines beginning on the conductor with positive charge 
and ending on the conductor with negative charge (Fig. 17.23). The stored poten-
tial energy is associated with this electric field. We can recover the stored energy—
that is, convert it into some other form of energy—by letting the charges come 
together again.

The simplest form of capacitor is a parallel plate capacitor, consisting of two 
parallel metal plates, each of the same area A, separated by a distance d. A charge +Q 
is put on one plate and a charge −Q on the other. For now, assume there is air between 
the plates. One way to charge the plates is to connect the positive terminal of a battery 
to one and the negative terminal to the other. The battery removes electrons from one 
plate, leaving it positively charged, and puts them on the other plate, leaving it with 
an equal magnitude of negative charge. In order to do this, the battery has to do 
work—some of the battery’s chemical energy is converted into electric potential energy. 
An ideal battery moves charge between the capacitor plates as needed to maintain a 
constant potential difference between the plates. For example, a 9 volt battery con-
nected to a capacitor maintains a 9 V potential difference between the plates.

In general, the field between two such plates does not have to be uniform (see 
Fig. 17.23). However, if the plates are close together, then a good approximation is 
to say that the charge is evenly spread on the inner surfaces of the plates and none is 
found on the outer surfaces. The plates in a real capacitor are almost always close 
enough that this approximation is valid.

With charge evenly spread on the inner surfaces, a uniform electric field exists 
between the two plates. We can neglect the nonuniformity of the field near the edges 
as long as the plates are close together. The electric field lines start on positive charges 
and end on negative ch arges. If charge of magnitude Q is evenly spread over each 
plate with surface of area A, then the surface charge density (the charge per unit area) 
is denoted by σ, the Greek letter sigma:
 σ = Q/A (17-16)

Gauss’s law (Section 16.7), can be used to show that the magnitude of the elec-
tric field just outside a conductor is

Figure 17.22 The arrows 
indicate a few of the many 
capacitors on a circuit board 
from a computer.
©Piotr Adamowicz/Getty Images
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Figure 17.23 Side view of 
two parallel metal plates with 
charges of equal magnitude and 
opposite sign. There is a poten-
tial difference between the two 
plates; the positive plate is at 
the higher potential. The field 
lines are straight, parallel, 
 uniformly spaced, and well 
described by Eq. (17-17) in the 
region between the plates.

Electric field just outside a conductor
 E = 4πkσ = σ/ϵ0 (17-17)

Recall that the constant ϵ0 = 1/(4πk) = 8.85 × 10−12 C2/(N·m2) is called the permit-
tivity of vacuum [Eq. (16-9)]. Since the field between the plates of the capacitor 
is uniform, Eq. (17-17) gives the magnitude of the field everywhere between the 
plates.

What is the potential difference between the plates? Since the field is uniform, 
the magnitude of the potential difference between the plates is

 ΔV = Ed (17-14)
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The field is proportional to the charge and the potential difference is proportional to 
the field; therefore, the charge is proportional to the potential difference. That turns 
out to be true for any capacitor, not just a parallel plate capacitor. The constant of 
proportionality of charge to potential difference depends only on geometric factors 
(sizes and shapes of the plates) and the material between the plates. Conventionally, 
this proportionality is written

Definition of capacitance

 Q = C Δ V  (17-18)

Capacitance of parallel plate capacitor

 C =
ϵ0 

A

d
=

A

4πkd
 (17-22)

where Q is the magnitude of the charge on each plate and ΔV is the magnitude of 
the potential difference between the plates. The constant of proportionality C is 
called the capacitance. Think of capacitance as the capacity to hold charge for a 
given potential difference. The SI units of capacitance are coulombs per volt, which 
is called the farad (symbol F). Capacitances are commonly measured in μF (micro-
farads), nF (nanofarads), or pF (picofarads) because the farad is a rather large unit; 
a pair of plates with area 1 m2 spaced 1 mm apart has a capacitance of only about 
10−8 F = 10 nF.

We can now find the capacitance of a parallel plate capacitor. The electric field is

 E =
σ

ϵ0
=

Q

ϵ0 
A

 (17-19)

where A is the inner surface area of each plate. If the plates are a distance d apart, 
then the magnitude of the potential difference is

 ΔV = Ed =
Qd

ϵ0 
A

 (17-20)

By rearranging, this can be rewritten in the form Q = constant × ΔV:

 Q =
ϵ0 

A

d
 ΔV  (17-21)

Comparing with the definition of capacitance, the capacitance of a parallel plate 
capacitor with air or vacuum between its plates is

To produce a large capacitance, we make the plate area large and the plate 
spacing small. To get large areas while still keeping the physical size of the 
capacitor reasonable, the plates are often made of thin conducting foil that is 
rolled, with the insulating material sandwiched in between, into a cylinder 
(Fig. 17.24). The effect of using an insulator other than air or vacuum is discussed 
in Section 17.6.

CHECKPOINT 17.5

A	 capacitor	 is	 connected	 to	 a	 6.0	 V	 battery.	 When	 fully	 charged,	 the	 plates	
have	 net	 charges	 +0.48	 C	 and	 −0.48	 C.	 What	 are	 the	 net	 charges	 on	 the	
plates	 if	 the	same	capacitor	 is	connected	 to	a	1.5	V	battery?

Figure 17.24 A disassembled 
capacitor, showing the foil 
 conducting plates and the thin 
sheet of insulating material.
©Tom Pantages
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Example 17.9

Computer Keyboard

In one kind of computer keyboard, each key is attached to 
one plate of a parallel plate capacitor; the other plate is 
fixed in position (Fig. 17.25). The capacitor is maintained 
at a constant potential difference of 5.0 V by an external 
circuit. When the key is pressed down, the top plate moves 
closer to the bottom plate, changing the capacitance and 
causing charge to flow through the circuit. If each plate is 
a square of side 6.0 mm and the plate separation changes 
from 4.0 mm to 1.2 mm when a key is pressed, how much 
charge flows through the circuit? Does the charge on the 
capacitor increase or decrease? Assume that there is air 
between the plates instead of a flexible insulator.

Strategy Since we are given the area and separation of the 
plates, we can find the capacitance from Eq. (17-22). The 
charge is then found from the product of the capacitance and 
the potential difference across the plates: Q = CΔV.

Solution The capacitance of a parallel plate capacitor is 
given by Eq. (17-22):

C =
A

4πkd

The area is A = (6.0 mm)2. Since the potential difference ΔV 
is kept constant, the change in the magnitude of the charge 
on the plates is

 Qf − Qi = Cf Δ
 
V − Ci Δ

 
V

 = (
A

4πkdf
−

A

4πkdi)
Δ V =

A Δ V

4πk (
1
df

−
1
di)

Substituting numerical values, we find

 Qf − Qi =
(0.0060 m)2 × 5.0 V

4π × 8.99 × 109 N·m2/C2 × (
1

0.0012 m
−

1
0.0040 m)

 = +9.3 × 10−13 C = +0.93 pC

Since ΔQ is positive, the magnitude of charge on the plates 
increases.

Discussion If the plates move closer together, the capaci-
tance increases. A greater capacitance means that more 
charge can be stored for a given potential difference. There-
fore, the magnitude of the charge increases.

Practice Problem 17.9 Capacitance and the 
Charge Stored

A parallel plate capacitor has plates of area 1.0 m2 and a 
separation of 1.0 mm. The potential difference between the 
plates is 2.0 kV. Find the capacitance and the magnitude of 
the charge on each plate. Which of these quantities depends 
on the potential difference?

Key

Movable
metal plate

Fixed
metal plate

Flexible
insulator

Figure 17.25
This kind of computer key is merely a capacitor with a variable plate 
spacing. A circuit detects the change in the plate spacing as charge 
flows from one plate through an external circuit to the other plate.

Applications of Capacitors

Several devices are based on a capacitor with one moveable plate, like the computer 
keyboard in Example 17.9. In a condenser microphone (Fig. 17.26), one plate moves 
in and out in response to a sound wave. (Condenser is a synonym for capacitor.) The 
capacitor is maintained at a constant potential difference; as the plate spacing changes, 
charge flows onto and off the plates. The moving charge—an electric current—is 
amplified to generate an electrical signal. The design of many tweeters (speakers for 
high-frequency sounds) is just the reverse; in response to an electrical signal, one plate 
moves in and out, generating a sound wave.

Capacitors have many other uses. Each RAM (random-access memory) chip in a 
computer contains millions of microscopic capacitors. Each of the capacitors stores 
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one bit (binary digit). To store a 1, the capacitor is charged; to store a 0, it is dis-
charged. The insulation of the capacitors from their surroundings is not perfect, so 
charge would leak off if it were not periodically refreshed—which is why the contents 
of RAM are lost when the computer’s power is turned off.

Besides storing charge and electric energy, capacitors are also useful for the 
uniform electric field between the plates. This field can be used to accelerate or deflect 
charges in a controlled way. The oscilloscope—a device used to display time-dependent 
potential differences in electric circuits—is a cathode ray tube that sends electrons 
between the plates of two capacitors (see Fig. 16.39). One of the capacitors deflects 
the electrons vertically; the other deflects them horizontally.

EVERYDAY PHYSICS DEMO

The	 next	 time	 you	 are	 taking	 flash	 pictures	 with	 a	 camera,	 try	 to	 take	 two	
pictures	one	right	after	the	other.	Unless	you	have	a	professional-quality	cam-
era,	 the	 flash	 does	 not	 work	 the	 second	 time.	 There	 is	 a	 minimum	 time	
interval	of	a	few	seconds	between	successive	flashes.	Many	cameras	have	an	
indicator	 light	 to	show	when	 the	 flash	 is	 ready.

Did	you	ever	wonder	how	the	small	battery	 in	a	camera	produces	such	a	
bright	 flash?	 Compare	 the	 brightness	 of	 a	 flashlight	 with	 the	 same	 type	 of	
battery.	By	itself,	a	small	battery	cannot	pump	charge	fast	enough	to	produce	
the	 bright	 flash	 needed.	 During	 the	 time	 when	 the	 flash	 is	 inoperative,	 the	
battery	 charges	 a	 capacitor.	 Once	 the	 capacitor	 is	 fully	 charged,	 the	 flash	 is	
ready.	When	the	picture	is	taken,	the	capacitor	is	discharged	through	the	bulb,	
producing	a	bright	 flash	of	 light.

17.6 DIELECTRICS

There is a problem inherent in trying to store a large charge in a capacitor. To store 
a large charge without making the potential difference excessively large, we need a 
large capacitance. Capacitance is inversely proportional to the spacing d between the 
plates. One problem with making the spacing small is that the air between the plates 
of the capacitor breaks down at an electric field of about 3000 V/mm with dry air 
(less for humid air). The breakdown allows a spark to jump across the gap so the 
stored charge is lost.

Fixed plate
forms a capacitor

with the diaphragm.

Moving plate
(diaphragm)

vibrates in response
to sound wave.

Battery
maintains a

constant potential
difference between

the plates.

Processing circuit
converts current into

a varying output voltage.

Figure 17.26 This microphone uses a capacitor with one moving plate to create 
 an electrical signal.
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One way to overcome this difficulty is to put a better insulator than air between 
the plates. Some insulating materials, which are also called dielectrics, can withstand 
electric fields larger than those that cause air to break down and act as a conductor 
rather than as an insulator. Other advantages of placing a dielectric between the plates 
are that the capacitance itself is increased and that the plates are mechanically kept 
at a fixed distance apart.

For a parallel plate capacitor in which a dielectric fills the entire space between 
the plates, the capacitance is

Capacitance of parallel plate capacitor with dielectric

 C = κ 
ϵ0A

d
= κ 

A

4πkd
 (17-23)

The effect of the dielectric is to increase the capacitance by a factor κ (Greek letter 
kappa), which is called the dielectric constant. The dielectric constant is a dimen-
sionless number: the ratio of the capacitance with the dielectric to the capacitance 
without the dielectric. The value of κ varies from one dielectric material to another. 
Equation (17-23) is more general than Eq. (17-22), which applies only when κ = 1. 
When there is vacuum between the plates, κ = 1 by definition. Air has a dielectric 
constant that is only slightly larger than 1; for most practical purposes we can take 
κ = 1 for air also. The flexible insulator in a computer key (see Example 17.9) 
increases the capacitance by a factor of κ. Thus, the amount of charge that flows 
when the key is pressed is larger than the value we calculated.

The dielectric constant depends on the insulating material used. Table 17.1 gives 
dielectric constants and the breakdown limit, or dielectric strength, for several mate-
rials. The dielectric strength is the electric field strength at which dielectric break-
down occurs and the material becomes a conductor. Since ΔV = Ed for a uniform 
field, the dielectric strength determines the maximum potential difference that can be 
applied across a capacitor per meter of plate spacing.

Material Dielectric Constant κ Dielectric Strength (kV/mm)

Vacuum 1 (exact) —
Air (dry, 1 atm) 1.000 54 3
Paraffined paper 2.0–3.5 40–60
Teflon 2.1 60
Rubber (vulcanized) 3.0–4.0 16–50
Paper (bond) 3.0 8
Mica 4.5–8.0 150–220
Bakelite 4.4–5.8 12
Glass 5–10 8–13
Diamond 5.7 100
Porcelain 5.1–7.5 10
Rubber (neoprene) 6.7 12
Titanium dioxide ceramic 70–90 4
Water 80 —
Strontium titanate 310 8
Nylon 11 410 27
Barium titanate 6000 —

Table 17.1 Dielectric Constants and Dielectric Strengths for  
Materials at 20°C (in Order of Increasing Dielectric  
Constant)
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Do not confuse dielectric constant and dielectric strength; they are not related. 
The dielectric constant determines how much charge can be stored for a given poten-
tial difference, whereas dielectric strength determines how large a potential difference 
can be applied to a capacitor before dielectric breakdown occurs.

Polarization in a Dielectric

What is happening microscopically to a dielectric between the plates of a capacitor? 
Recall that polarization is a separation of the charge in an atom or molecule (Sec-
tion 16.1). The atom or molecule remains neutral, but the center of positive charge 
no longer coincides with the center of negative charge.

Figure 17.27 is a simplified diagram to indicate polarization of an atom. The unpolar-
ized atom with a central positive charge is encircled by a cloud of electrons, so that the 
center of the negative charge coincides with the center of the positive charge. When a 
positively charged rod is brought near the atom, it repels the positive charge in the atoms 
and attracts the negative. This separation of the charges means the centers of positive and 
negative charge no longer coincide; they are distorted by the influence of the charged rod.

In Fig. 17.28a, a slab of dielectric material has been placed between the plates 
of a capacitor. The charges on the capacitor plates induce a polarization of the dielec-
tric. The polarization occurs throughout the material, so the positive charge is slightly 
displaced relative to the negative charge.

Throughout the bulk of the dielectric, there are still equal amounts of positive 
and negative charge. The net effect of the polarization of the dielectric is a layer of 
positive charge on one face and negative charge on the other (Fig. 17.28b). Each 
conducting plate faces a layer of opposing charge.

The layer of opposing charge induced on the surface of the dielectric helps attract 
more charge to the conducting plate, for the same potential difference, than would be 
there without the dielectric. Since capacitance is charge per unit potential difference, 
the capacitance must have increased. The dielectric constant of a material is a measure 
of the ease with which the insulating material can be polarized. A larger dielectric 
constant indicates a more easily polarized material. Thus, neoprene rubber (κ = 6.7) 
is more easily polarized than Teflon (κ = 2.1).

The induced charge on the faces of the dielectric reduces the strength of the 
electric field in the dielectric compared to the field outside. Some of the electric field 
lines end on the surface of the insulating dielectric material; fewer lines penetrate the 
dielectric and thus the field is weaker. With a weaker field, there is a smaller poten-
tial difference between the plates (recall that for a uniform field, ΔV = Ed). A smaller 
potential difference makes it easier to put more charge on the capacitor. We have 
succeeded in having the capacitor store more charge with a smaller potential differ-
ence. Since there is a limiting potential difference before breakdown occurs, this is 
an important factor for reaching maximum charge storage capability.
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Figure 17.28 (a) Polariza-
tion of molecules in a dielectric 
material. (b) A dielectric with 
κ = 2 between the plates of a 
parallel plate capacitor. The 
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Figure 17.27 A positively 
charged rod induces polariza-
tion in a nearby atom.
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Dielectric Constant Suppose a dielectric is immersed in an external electric field 
E0. The definition of the dielectric constant is the ratio of the electric field in vacuum 
E0 to the electric field E inside the dielectric material:

Definition of dielectric constant

 κ =
E0

E
 (17-24)

Polarization weakens the field, so κ > 1. The electric field inside the dielectric (E) is
 E = E0/κ (17-25)
In a capacitor, the dielectric is immersed in an applied field E0 due to the charges on 
the plates. By reducing the field between the plates to E0/κ, the dielectric reduces the 
potential difference between the plates by the same factor 1/κ. Since Q = C ΔV, 
 multiplying ΔV by 1/κ for a given charge Q means the capacitance is multiplied by 
a factor of κ due to the dielectric [see Eq. (17-23)].

CHECKPOINT 17.6

A	parallel	plate	capacitor	with	air	between	 the	plates	 is	charged	and	 then	dis-
connected	from	the	battery.	Describe	quantitatively	how	the	following	quantities	
change	when	a	dielectric	slab	(κ	=	3)	 is	 inserted	to	fill	 the	region	between	the	
plates:	the	capacitance,	the	potential	difference,	the	charge	on	the	plates,	and	
the	electric	 field.	 	 [Hint:	 First	 figure	out	which	quantities	 remain	constant.]

Example 17.10

Parallel Plate Capacitor with Dielectric

A parallel plate capacitor has plates of area 1.00 m2 and 
spacing of 0.500 mm. The insulator has dielectric constant 
4.9 and dielectric strength 18 kV/mm. (a) What is the ca-
pacitance? (b) What is the maximum charge that can be 
stored on this capacitor?

Strategy Finding the capacitance is a straightforward 
application of Eq. (17-23). The dielectric strength and the 
plate spacing determine the maximum potential differ-
ence; using the capacitance we can find the maximum 
charge.

Solution (a) The capacitance is

 C = κ 
A

4πkd

 = 4.9 ×
1.00 m2

4π × 8.99 × 109 N·m2/C2 × 5.00 × 10−4 m
 = 8.67 × 10−8 F = 86.7 nF

(b) The maximum potential difference is

ΔV = 18 kV/mm × 0.500 mm = 9.0 kV

Using the definition of capacitance, the maximum charge is

Q = C Δ V = 8.67 × 10−8 F × 9.0 × 103 V = 7.8 × 10−4 C

Discussion Check: Each plate has a surface charge  density 
of magnitude σ = Q/A [Eq. (17-16)]. If the capacitor plates had 
this same charge density with no dielectric  between them, the 
electric field between the plates would be [Eq. (17-17)]:

E0 = 4πkσ =
4πkQ

A
= 8.8 × 107 V/m

From Eq. (17-24), the dielectric reduces the field strength by 
a factor of 4.9:

E =
E0

κ
=

8.8 × 107 V/m
4.9

= 1.8 × 107 V/m = 18 kV/mm

Thus, with the charge found in (b), the electric field has its 
maximum possible value.

Practice Problem 17.10 Changing the Dielectric

If the dielectric were replaced with one having twice the 
 dielectric constant and half the dielectric strength, what 
would happen to the capacitance and the maximum charge?
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Example 17.11

Neuron Capacitance

A neuron can be modeled as a 
parallel plate capacitor, where 
the membrane serves as the 
 dielectric and the oppositely 
charged ions are the charges 
on the “plates” (Fig. 17.29). 
Find the capacitance of a neu-
ron and the number of ions 
(assumed to be singly charged) 
required to establish a potential difference of 85 mV. As-
sume that the membrane has a dielectric constant of κ = 3.0, 
a thickness of 10.0 nm, and an area of 1.0 × 10−10 m2.

Strategy Since we know κ, A, and d, we can find the ca-
pacitance. Then, from the potential difference and the ca-
pacitance, we can find the magnitude of charge Q on each 
side of the membrane. A singly charged ion has a charge of 
magnitude e, so Q/e is the number of ions on each side.

Solution From Eq. (17-23),

C = κ 
A

4πkd

We substitute numerical values to find

 C = 3.0 ×
1.0 × 10−10 m2

4π × 8.99 × 109 N·m2/C2 × 10.0 × 10−9 m
 = 2.66 × 10−13 F = 0.27 pF

From the definition of capacitance,

 Q = C Δ V = 2.66 × 10−13 F × 0.085 V
 = 2.26 × 10−14 C = 0.023 pC

Each ion has a charge of magnitude e = +1.602 × 10−19 C. 
The number of ions on each side is therefore,

number of ions =
2.26 × 10−14 C

1.602 × 10−19 C/ion
= 1.4 × 105 ions

Discussion To see if the answer is reasonable, we 
can estimate the average distance between the ions. If 105 
ions are evenly spread over a surface of area 10−10 m2, 
then  the area per ion is 10−15 m2. Assuming each ion to 
 occupy a square of area 10−15 m2, the distance from one 
ion  to its nearest neighbor is the side of the square 
s = √10−15 m2 ≈ 30 nm. The size of a typical atom or ion 
is 0.2 nm. Since the distance between ions is much larger 
than the size of an ion, the answer is plausible; if the dis-
tance between ions came out to be less than the size of an 
ion, the answer would not be plausible.

Practice Problem 17.11  Action Potential

How many ions must cross the membrane to change the po-
tential difference from −0.085 V (with negative charge in-
side and positive outside) to +0.060 V (with negative charge 
outside and positive charge inside)?

–
–
–
–
– +

+
+
+

+

Inside
of cell

Outside
of cell

Cell membrane

Figure 17.29
Cell membrane as a dielectric.

Application: Thunderclouds and Lightning

Lightning (Fig. 17.30) involves the dielectric breakdown of air. Charge separation 
occurs within a thundercloud; the top of the cloud becomes positive and the lower 
part becomes negative (Fig. 17.31a). How this charge separation occurs is not com-
pletely understood, but one leading hypothesis is that collisions between ice particles 
or between an ice particle and a droplet of water tend to transfer electrons from the 
smaller particle to the larger. Updrafts in the thundercloud lift the smaller, positively 
charged particles to the top of the cloud, while the larger, negatively charged particles 
settle nearer the bottom of the cloud.

The negative charge at the bottom of the thundercloud induces positive charge on 
Earth just underneath the cloud. When the electric field between the cloud and Earth 
reaches the breakdown limit for moist air (about 3.3 × 105 V/m), negative charge 
jumps from the cloud, moving in branching steps of about 50 m each. This stepwise 
progression of negative charges from the cloud is called a stepped leader (Fig. 17.31b).

Since the average electric field strength is ΔV/d, the largest field occurs where d 
is the smallest—between tall objects and the stepped leader. Positive streamers— 
stepwise progressions of positive charge from the surface—reach up into the air from 
the tallest objects. If a positive streamer connects with one of the stepped leaders, a 
lightning channel is completed; electrons rush to the ground, lighting up the bottom 
of the channel. The rest of the channel then glows as more electrons rush down. The 
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other stepped leaders also glow, but less brightly than the main channel because they 
contain fewer electrons. The flash of light starts at the ground and moves upward so 
it is called a return stroke (Fig. 17.31c). A total of about −20 to −25 C of charge is 
transferred from the thundercloud to the surface.

How can you protect yourself during a thunderstorm? Stay indoors or in an auto-
mobile if possible. If you are caught out in the open, keep low to prevent yourself 
from being the source of positive streamers. Do not stand under a tall tree; if lightning 
strikes the tree, charge traveling down the tree and then along the surface puts you in 
grave danger. Do not lie flat on the ground, or you risk the possibility of a large 
potential difference developing between your feet and head when a lightning strike 
travels through the ground. Go to a nearby ditch or low spot if there is one. Crouch 
with your head low and your feet as close together as possible to minimize the poten-
tial difference between your feet.

Figure 17.30 Lightning over 
the city of Chongqing, China.
©VIEW STOCK/age fotostock

(c)(b)(a)

+++
++
+
+

+++ + +
+ +

++
++ +++

++
+
+ +++

––
––––– ––

– –– – –– – –
–– – –

–––
––– ––– –––– –– ––––– –– – ––

––––
–

–––– –––––––––– – – –– –– ––
–––––––––––––––

– –– – –– – –
–– – –

–– ––– ––– –––– –– ––––– –– – ––
––––

–
–––– ––––––––––––––––

–– – – – –
––––––––––––––––

–– ––––––

+
+ + + +

++
+ +

++
+

++ +
+

+
+

+ + + +
+ +

+ ++
+

+
+ + + +

++
+ +

++
+

++ +
+

+
+

+ + + +
+ +

+ ++
+

+
+ + + +

++
+ +

++
+

++ +
+

+
+

+ + + +
+ +

+ ++
+

–––

+++

+++
+++

+ Positive
streamer

Positive charge induced under cloud

Stepped leader Light flash
++

++

Figure 17.31 (a) Charge separation in a thundercloud. A thunderstorm acts as a giant heat engine; work is done by 
the engine to separate positive charge from negative charge. (b) A stepped leader extends from the bottom of the cloud 
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Δqi

ΔV

ΔVi

qiQ

ΔVi =
qi
C

Figure 17.33 The total 
energy transferred is the area 
under the curve ΔVi = qi/C.

17.7 ENERGY STORED IN A CAPACITOR

A capacitor not only stores charge; it also stores energy. Figure 17.32 shows what 
happens when a battery is connected to an initially uncharged capacitor. Electrons are 
pumped off the upper plate and onto the lower plate until the potential difference 
between the capacitor plates is equal to the potential difference ΔV maintained by the 
battery.

The energy stored in the capacitor can be found by summing the work done by 
the battery to separate the charge. As the amount of charge on the plates increases, 
the potential difference ΔV through which charge must be moved also increases. Sup-
pose we look at this process at some instant of time when one plate has charge +qi, 
the other has charge −qi, and the potential difference between the plates is ΔVi.

To avoid writing a collection of minus signs, we imagine transferring positive 
charge instead of the negative charge; the result is the same whether we move nega-
tive or positive charges. From the definition of capacitance,

 ΔVi =
qi

C
 (17-26)

Now the battery transfers a little more charge Δqi from one plate to the other, increas-
ing the electric potential energy. If Δqi is small, the potential difference is approxi-
mately constant during the transfer. The increase in energy is

 ΔUi = Δqi × ΔVi (17-27)

The total energy U stored in the capacitor is the sum of all the electric potential energy 
increases, ΔUi:

 U = ∑ΔUi = ∑ (qi × ΔVi)  (17-28)

We can find this sum using a graph of the potential difference ΔVi as a function 
of the charge qi (Fig. 17.33). The graph is a straight line since ΔVi = qi/C. The energy 
increase ΔUi = Δqi × ΔVi when a small amount of charge is transferred is represented 
on the graph by the area of a rectangle of height ΔVi and width Δqi.

Summing the energy increases means summing the areas of a series of rectangles 
of increasing height. Thus, the total energy stored in the capacitor is represented by 
the triangular area under the graph. If the final values of the charge and potential 
difference are Q and ΔV, then the area is 1

2 base × hight = 1
2 Q Δ V .

Energy stored in a capacitor

 U =
1
2

 Q Δ V  (17-29)

The factor of 1
2 reflects the fact that the potential difference through which the charge 

was moved increases from zero to ΔV; the average potential difference through which 
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–Q

–Q Figure 17.32 A parallel plate 
capacitor charged by a battery. 
Electrons with total charge −Q 
are moved from the upper plate 
to the lower, leaving the plates 
with charges of equal magni-
tude and opposite sign.
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the charge was moved is ΔV/2. To move charge Q through an average potential dif-
ference of ΔV/2 requires Q(ΔV/2) of work.

Equation (17-29) can be written in other useful forms, using the definition of 
capacitance to eliminate either Q or ΔV.

 U =
1
2

  Q  Δ V =
1
2

 (C  Δ V) × ΔV =
1
2

 C(ΔV)2 (17-30)

 U =
1
2

  Q  Δ V =
1
2

 Q ×
Q

C
=

Q2

2C
 (17-31)

CONNECTION:

We’ve used this kind of aver-
aging before. For example, if 
an object starts from rest and 
reaches velocity vx in a time 
Δt with constant acceleration, 
then Δx = 1

2vx  
Δt .

Example 17.12

A Defibrillator

 Fibrillation is a chaotic pattern of heart activity that is 
ineffective at pumping blood and is therefore life-threaten-
ing. A device known as a defibrillator is used to shock the 
heart back to a normal beat pattern. The defibrillator dis-
charges a capacitor through paddles on the skin, so that some 
of the charge flows through the heart (Fig. 17.34). (a) If an 
11.0 μF capacitor is charged to 6.00 kV and then discharged 
through paddles into a patient’s body, how much energy is 
stored in the capacitor? (b) How much charge flows through 
the patient’s body if the capacitor discharges completely?

Strategy There are three equivalent expressions for energy 
stored in a capacitor. Since the capacitance and the potential 
difference are given, Eq. (17-30) is the most direct. Since the 
capacitor is completely discharged, all of the charge initially 
on the capacitor flows through the patient’s body.

Solution (a) The energy stored in the capacitor is

U =
1
2

 C(ΔV)2 =
1
2

 (11.0 × 10−6 F)(6.00 × 103 V)2 = 198 J

(b) The charge initially on the capacitor is

Q = C ΔV = 11.0 × 10−6 F × 6.00 × 103 V = 0.0660 C

Discussion To test our result, we make a quick check:

U =
Q2

2C
=

(0.0660 C)2

2 × 11.0 × 10−6 F
= 198 J

Practice Problem 17.12 Charge and Stored 
 Energy for a Parallel Plate Capacitor

A parallel plate capacitor of area 0.24 m2 has a plate separa-
tion, in air, of 8.00 mm. The potential difference between the 
plates is 0.800 kV. Find (a) the charge on the plates and 
(b) the stored energy.

Figure 17.34
A paramedic uses a defibrillator to resuscitate a patient.
©Bruce Ayres/Getty images

Energy Stored in an Electric Field

Potential energy is energy of interaction or field energy. The energy stored in a capac-
itor is stored in the electric field between the plates. We can use the energy stored in 
a capacitor to calculate how much energy per unit volume is stored in an electric field 
E. Why energy per unit volume? Two capacitors can have the same electric field but 
store different amounts of energy. The larger capacitor stores more energy, propor-
tional to the volume of space between the plates.

In a parallel plate capacitor, the energy stored is

 U =
1
2

 C(ΔV)2 =
1
2

 κ 
A

4πkd
 (ΔV)2 (17-32)
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Assuming the field is uniform between the plates, the potential difference is

 ΔV = Ed (17-14)
Substituting Ed for ΔV, we find

 U =
1
2

 κ 
A

4πkd
 (Ed)2 =

1
2

 κ 
Ad

4πk
 E2 (17-33)

We recognize Ad as the volume of space between the plates of the capacitor. This is the 
volume in which the energy is stored—E = 0 outside an ideal parallel plate capacitor. 
Then the energy density u—the electric potential energy per unit volume—is

 u =
U

Ad
=

1
2

 κ 
1

4πk
 E2 =

1
2

 κϵ0E
2 (17-34)

The energy density is proportional to the square of the field strength. This is true in 
general, not just for a capacitor; there is energy associated with any electric field.

Master the Concepts

 ∙ Electric potential energy can be stored in an electric 
field. The electric potential energy of two point charges 
separated by a distance r is

 UE =
kq1q2

r
  (UE = 0 at r = ∞) (17-3)

 ∙ The signs of q1 and q2 determine whether the electric 
potential energy is positive or negative.

 ∙ For more than two charges, the electric potential energy 
is the scalar sum of the individual potential energies for 
each pair of charges.

 ∙ The electric potential V at a point is the electric potential 
energy per unit charge:

 V =
UE

q
 (17-5)

  In Eq. (17-5), UE is the electric potential energy due to 
the interaction of a moveable charge q with a collection 
of fixed charges and V is the electric potential due to 
that collection of fixed charges. Both UE and V are func-
tions of position, but V is independent of the moveable 
charge q. Potential and potential energy are different 
quantities and have different units.

––
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potential

Low
potential

Low PE High PE

–+

–+

–+

–+

–+

FE

E
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potential

Low
potential

High PE Low PE

+ +

–+

–+

–+

–+

–+

FE

E

 ∙ Electric potential, like electric potential energy, is a scalar 
quantity; it can be positive, negative, or zero, but does not 
have a direction. 

 ∙ The SI unit for potential is the volt (1 V = 1 J/C).
 ∙ If a point charge q moves through a potential difference 

ΔV, then the change in electric potential energy is

 ΔUE = q Δ V  (17-8)

 ∙ The electric potential at a distance r from a single point 
charge Q is

 V =
kQ

r
  (V = 0 at r = ∞) (17-9)

  V is positive if Q is positive and negative if Q is negative.

200 V

300 V

400 V

500 V
600 V

+

100 V

 ∙ The potential at a point P due to N point charges is the 
sum of the potentials due to each charge.

 ∙ An equipotential surface has the same potential at every 
point on the surface. An equipotential surface is perpen-
dicular to the electric field at all points. No change in 
electric potential energy occurs when a charge moves 
from one position to another on an equipotential surface. 
If equipotential surfaces are drawn such that the potential 
difference between adjacent surfaces is constant, then the 
surfaces are closer together where the field is stronger.

 ∙ The electric field always points in the direction of max-
imum potential decrease. The electric force points in the 
direction of maximum potential energy decrease. For a 

continued on next page
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Conceptual Questions

 1. A negatively charged particle with charge −q is far away 
from a positive charge +Q that is fixed in place. As −q 
moves closer to +Q, (a) does the electric field do positive 
or negative work? (b) Does −q move through a potential 
increase or a potential decrease? (c) Does the electric po-
tential energy increase or decrease? (d) Repeat questions 
(a)–(c) if the fixed charge is instead negative (−Q).

 2. Dry air breaks down for an electric field of about 
3000  V/mm. Is it possible to build a parallel plate 
 capacitor with a plate spacing of 1 mm that can be 
charged to a potential difference greater than 3000 V? 
If so, explain how.

 3. A bird is perched on a high-voltage power line whose 
potential varies between −100 kV and +100 kV. Why is 
the bird not electrocuted?

 4. A positive charge is initially at rest in an electric field 
and is free to move. Does the charge start to move to-
ward a position of higher or lower potential? What hap-
pens to a negative charge in the same situation?

 5. Points A and B are at the same potential. What is the 
total work that must be done by an external agent to 
move a charge from A to B? Does your answer mean that 
no external force need be applied? Explain.

 6. A point charge moves to a region of higher potential and 
yet the electric potential energy decreases. How is this 
possible?

 7. Why are all parts of a conductor at the same potential in 
electrostatic equilibrium?

 8. If E = 0 at a single point, then a point charge placed at 
that point will feel no electric force. What does it mean 
if the potential is zero at a point? Are there any assump-
tions behind your answer?

Master the Concepts continued

negative point charge, increasing potential means de-
creasing potential energy.

 ∙ The potential difference that occurs when you move a 
distance d in the direction of a uniform electric field of 
magnitude E is
 ΔV = −Ed (17-14)

 ∙ The electric field has units of
 N/C = V/m (17-15)

 ∙ In electrostatic equilibrium, every point in a conductor 
must be at the same potential.

 ∙ A capacitor consists of two conductors (the plates) that 
are given opposite charges. A capacitor stores charge 
and electric potential energy. Capacitance is the ratio of 
the magnitude of charge on each plate (Q) to the electric 
potential difference between the plates (ΔV). Capaci-
tance is measured in farads (F).
 Q = C ΔV  (17-18)
 1 F = 1 C/V

 ∙ The capacitance of a parallel plate capacitor is

 C = κ 
A

4πkd
= κ 

ϵ0 A

d
 (17-23)

  where A is the area of each plate, d is their separation, 
and ϵ0 is the permittivity of vacuum: 
 ϵ0 = 1/(4πk) = 8.854 × 10−12 C2/(N·m2) 

  If vacuum separates the plates, κ = 1; otherwise, κ > 1 is 
the dielectric constant of the dielectric (the insulating 
material).

 ∙ If a dielectric is immersed in an external electric 
field, the dielectric constant is the ratio of the 

 external electric field E0 to the electric field E in the 
 dielectric.

 κ =
E0

E
 (17-24)

 ∙ The dielectric constant is a measure of the ease with 
which the insulating material can be polarized.

+Q –Q

+

+

+
+
+
+
+

–
–
–
––

–

–

E0 E

 ∙ The dielectric strength is the electric field strength at 
which dielectric breakdown occurs and the material be-
comes a conductor.

 ∙ The energy stored in a capacitor is

 U =
1
2

 Q Δ V  (17-29)

  Don’t confuse this with Eq. (17-8), which looks similar 
except for the factor of 1/2. Equation (17-8) gives the po-
tential energy change of a point charge q that moves from 
a point at potential Vi to a point at potential Vf = Vi + ΔV. 
Equation (17-29) applies to a capacitor that has been 
charged with total charges ±Q on its plates; ΔV is the 
 potential difference between its plates.

 ∙ The energy density u—the electric potential energy per 
unit volume—associated with an electric field is

 u =
1
2

 κϵ0E
2 (17-34)
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 9. If E = 0 everywhere throughout a region of space, what do 
we know is true about the potential at points in that region?

 10. A positive charge +2 μC and a negative charge −5 μC lie 
on a line. In which region or regions (A, B, C) is there a 
point on the line a finite distance away where the potential 
is zero? Explain your reasoning. Are there any points 
where both the electric field and the potential are zero?

 11. If the potential is 
the same at every 
point throughout a 
region of space, is the electric field the same at every 
point in that region? What can you say about the magni-
tude of E

→
 in the region? Explain.

 12. If a uniform electric field exists in a region of space, is the 
potential the same at all points in the region? Explain.

 13. When we talk about the potential difference between the 
plates of a capacitor, shouldn’t we really specify two 
points, one on each plate, and talk about the potential 
difference between those points? Or doesn’t it matter 
which points we choose? Explain.

 14. An above-ground swimming pool is filled with water 
(total mass M) to a height h. Explain why the gravita-
tional potential energy of the water (taking U = 0 at 
ground level) is 1

2Mgh. Where does the factor of 1
2 come 

from? How much work must be done to fill the pool, if 
there is a ready supply of water at ground level? What 
does this have to do with capacitors? [Hint: Make an 
analogy between the capacitor and the pool. What is 
analogous to the water? What quantity is analogous to 
M? What quantity is analogous to gh?]

 15. The charge on a capacitor doubles. What happens to its 
capacitance?

 16.  During a thunderstorm, some cows gather under a 
large tree. One cow stands facing directly toward the 
tree. Another cow stands at about the same distance 
from the tree, but it faces sideways (tangent to a circle 
centered on the tree). Which cow do you think is more 
likely to be killed if lightning strikes the tree? [Hint: 
Think about the potential difference between the cows’ 
front and hind legs in the two positions.]

200 kV

400 kV

600 kV
800 kV

Tree

Cow A

Cow B

Conceptual	Question	16	and	Problem	70

 17. If we know the potential at a single point, what (if any-
thing) can we say about the magnitude of the electric 
field at that same point?

 18. In Fig. 17.13, why is the person touching the dome of 
the van de Graaff generator not electrocuted even though 
there may be a potential difference of hundreds of thou-
sands of volts between him and the ground?

 19. The electric field just above Earth’s surface on a clear 
day in an open field is about 150 V/m downward. Which 
is at a higher potential: Earth or the upper  atmosphere?

 20. A parallel plate capacitor has the space between the 
plates filled with a slab of dielectric with κ = 3. While 
the capacitor is connected to a battery, the dielectric 
slab is removed. Describe quantitatively what happens 
to the capacitance, the potential difference, the charge 
on the plates, the electric field, and the energy stored in 
the capacitor as the slab is removed. [Hint: First figure 
out which quantities remain constant.]

 21. A charged parallel plate capacitor has the space between 
the plates filled with air. The capacitor has been discon-
nected from the battery that charged it. Describe quanti-
tatively what happens to the capacitance, the potential 
difference, the charge on the plates, the electric field, 
and the energy stored in the capacitor as the plates are 
moved closer together, reducing their separation dis-
tance by a factor of 4. [Hint: First figure out which 
quantities remain constant.]

Multiple-Choice Questions

Unless stated otherwise, we assign the potential due to a 
point charge to be zero at an infinite distance from the 
charge.
 1. Among these choices, which is/are correct units for 

electric field?
 (a) N/kg only (b) N/C only
 (c) N only (d) N·m/C only
 (e) V/m only (f) both N/C and V/m
 2. Two charges are located at opposite corners (A and C) of 

a square. We do not know the mag-
nitude or sign of these charges. 
What can be said about the poten-
tial at corner B relative to the po-
tential at corner D?

 (a) It is the same as that at D.
 (b) It is different from that at D.
 (c)  It is the same as that at D only if the charges at A and 

C are equal.
 (d)  It is the same as that at D only if the charges at A and 

C are equal in magnitude and opposite in sign.
 3. Which of these units can be used to measure electric 

potential?

 (a) N/C  (b) J  (c) V·m  (d) V/m  (e) N·m
C

B CA

+2 Cμ –5 Cμ

A B

D C

s

s

q2

q1
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 4.  In the diagram, the potential 
is zero at which of the points 
A–E?

 (a) B, D, and E
 (b) B only
 (c) A, B, and C
 (d) all five points
 (e) all except B
 5. A parallel plate capacitor is attached to a battery that 

supplies a constant potential difference. While the 
battery is still attached, the parallel plates are sepa-
rated a little more. Which statement describes what 
happens?

 (a)  The electric field increases and the charge on the 
plates decreases.

 (b)  The electric field remains constant and the charge on 
the plates increases.

 (c)  The electric field remains constant and the charge on 
the plates decreases.

 (d)  Both the electric field and the charge on the plates 
decrease.

 6. A capacitor has been charged with +Q on one plate and 
−Q on the other plate. Which of these statements is true?

 (a) The potential difference between the plates is QC.
 (b) The energy stored is 1

2 Q Δ V .
 (c) The energy stored is 1

2 Q
2C.

 (d) The potential difference across the plates is Q2/(2C).
 (e) None of the previous statements is true.
 7. Two solid metal spheres of different radii are far apart. 

The spheres are connected by a fine metal wire. Some 
charge is placed on one of the spheres. After electro-
static equilibrium is reached, the wire is removed. 
Which of these quantities will be the same for the two 
spheres?

 (a) the charge on each sphere
 (b)  the electric field inside each sphere, at the same dis-

tance from the center of the spheres
 (c)  the electric field just outside the surface of each 

sphere
 (d) the electric potential at the surface of each sphere
 (e) both (b) and (c)
 (f) both (b) and (d)
 (g) both (a) and (c)
 8. A large negative charge −Q 

is located in the vicinity of 
points A and B. Suppose a 
positive charge +q is moved 
at constant speed from A to B 
by an external agent. Along 
which of the paths shown in 
the figure will the work done 
by the field be the greatest?

 (a) path 1 (b) path 2 (c) path 3 (d) path 4
 (e) Work is the same along all four paths.

 9. A tiny charged pellet of mass m is suspended at rest be-
tween two horizontal, charged metallic plates. The 
lower plate has a positive charge and the upper plate has 
a negative charge. Which statement in the answers here 
is not true?

m

+ + + + + + + + + + + + + + + + +

– – – – – – – – – – – – – – – – –

 (a)  The electric field between the plates points vertically 
upward.

 (b) The pellet is negatively charged.
 (c)  The magnitude of the electric force on the pellet is 

equal to mg.
 (d) The plates are at different potentials.
 10. Two positive 2.0 μC point charges are placed as shown 

in part (a) of the figure. The distance from each charge 
to the point P is 0.040 m. Then the charges are rear-
ranged as shown in part (b) of the figure. Which state-
ment is now true concerning E

→
 and V at point P?

(a) (b)
P

0.040 m

0.040 m
P2.0 μC2.0 μC

2.0 μC

2.0 μC
0.040 m0.040 m

 (a)  The electric field and the electric potential are both 
zero.

 (b)  E
→

= 0 but V is the same as before the charges were 
moved.

 (c)  V = 0, but E
→

 is the same as before the charges were 
moved.

 (d)  E
→

 is the same as before the charges were moved, but 
V is less than before.

 (e) Both E
→

 and V have changed and neither is zero.
 11. In the diagram, which two points are closest to being at 

the same potential?
 (a) A and D (b) B and C
 (c) B and D (d) A and C
 12. In the diagram, which point is at the lowest  potential?
 (a) A (b) B (c) C (d) D

B

A

D

C

E

Multiple-Choice	Questions	
11	and	12
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Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

17.1 Electric Potential Energy
 1. In each of five situations, two point charges (Q1, Q2) are 

separated by a distance d. Rank them in order of the 
electric potential energy, from highest to lowest.

 (a) Q1 = 1 μC, Q2 = 2 μC, d = 1 m
 (b) Q1 = 2 μC, Q2 = −1 μC, d = 1 m
 (c) Q1 = 2 μC, Q2 = −4 μC, d = 2 m
 (d) Q1 = −2 μC, Q2 = −2 μC, d = 2 m
 (e) Q1 = 4 μC, Q2 = −2 μC, d = 4 m
 2. Two point charges, +5.0 μC 

and −2.0 μC, are separated 
by 5.0 m. What is the elec-
tric potential energy?

 3.  A hydrogen atom has a single proton at its center 
and a single electron at a distance of approximately 
0.0529 nm from the proton. (a) What is the electric 
 potential energy in joules? (b) What is the significance 
of the sign of the answer?

 4. How much work is done by an applied force that moves 
two charges of 6.5 μC that are initially very far apart to 
a distance of 4.5 cm apart?

 5. The nucleus of a helium atom contains two protons that 
are approximately 1 fm apart. How much work must be 
done by an external agent to bring the two protons from 
an infinite separation to a separation of 1.0 fm?

 6. Three point charges are 
 located at the corners of a 
right triangle as shown in 
the figure. How much work 
does it take for an external 
force to move the charges 
apart until they are very far away from one  another?

Problems 7–10. Two point charges (+10.0 nC and −10.0 nC) 
are located 8.00 cm apart. For each problem, let U = 0 when 
all of the charges are separated by infinite distances.
 7. What is the potential energy for these two charges?
 8. What is the potential energy if a 

third point charge q = −4.2 nC 
is placed at point a?

 9. What is the potential energy if a 
third point charge q = −4.2 nC 
is placed at point b?

 10. What is the potential energy if a 
third point charge q = −4.2 nC 
is placed at point c?

 11. Find the electric potential energy for the following array 
of charges: charge q1 = +4.0 μC is located at (x, y) = 
(0.0, 0.0) m; charge q2 = +3.0 μC is located at (4.0, 3.0) m; 
and charge q3 = −1.0 μC is located at (0.0, 3.0) m.

 12. In the diagram, how much work 
is done by the electric field as a 
third charge q3 = +2.00 nC is 
moved from infinity to point a?

 13. In the diagram, how much work 
is done by the electric field as a 
third charge q3 = +2.00 nC is 
moved from infinity to point b?

 14. In the diagram, how much work is 
done by the electric field as a third 
charge q3 = +2.00 nC is moved from point a to point b?

 15. In the diagram, how much work is done by the electric 
field as a third charge q3 = +2.00 nC is moved from 
point b to point c?

17.2 Electric Potential

Unless stated otherwise, we assign the potential due to a 
point charge to be zero at an infinite distance from the charge.
 16. A point charge q = +3.0 nC moves through a potential 

difference ΔV = Vf − Vi = +25 V. What is the change in 
the electric potential energy?

 17. An electron is moved from point A, where the electric 
potential is VA = −240 V, to point B, where the electric 
potential is VB = −360 V. What is the change in the 
electric potential energy?

 18. Find the electric field and the potential at the center of a 
square of side 2.0 cm with charges of +9.0 μC at each 
corner.

2.0 cm

2.0 cm

a b

d c

+9.0 μC +9.0 μC

+9.0 μC +9.0 μC

 19. Find the electric field and the potential at the center of a 
square of side 2.0 cm with two +9.0 μC charges at adja-
cent corners of the square and two −3.0 μC charges at 
the other corners.

2.0 cm

2.0 cm

a
b

d
c

+9.0 μC +9.0 μC

–3.0 μC–3.0 μC

r = 5.0 m

Q = +5.0 Cμ q = –2.0 Cμ
+ –

12 cm

16 cm 2.5 μC–6.5 μC

5.5 μC +

+–

ba

c

+ –

8.00 cm 8.00 cm

4.00
cm

4.00
cm

4.00
cm

Problems	7–10

ba

c

+ –

12.0 cm

4.00 cm4.00 cm
8.00
cm

q1

q1 = +8.00 nC
q2 = –8.00 nC

q2

12.0 cm

Problems	12–15
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 20. A charge of +2.0 mC is located at x = 0, y = 0 and a 
charge of −4.0 mC is located at x = 0, y = 3.0 m. What 
is the electric potential due to these charges at a point 
with coordinates x = 4.0 m, y = 0?

 21. The electric potential at a distance of 20.0 cm from a 
point charge is +1.0 kV (assuming V = 0 at infinity). 
(a) Is the point charge positive or negative? (b) At what 
distance is the potential +2.0 kV?

 22. A spherical conductor with a radius of 75.0 cm has an 
electric field of magnitude 8.40 × 105 V/m just outside 
its surface. What is the electric potential just outside the 
surface, assuming the potential is zero far away from the 
conductor?

 23. A hollow metal sphere carries a charge of 6.0 μC. A 
second hollow metal sphere with a radius that is double 
the size of the first carries a charge of 18.0 μC. The two 
spheres are brought into contact with each other, then 
separated. How much charge is on each? [Hint: In elec-
trostatic equilibrium, the spheres must be at the same 
electric potential when in contact.]

 24. An array of four charges is arranged along the x-axis at 
intervals of 1.0 m. (a) If two of the charges are +1.0 μC 
and two are −1.0 μC, draw a configuration of these charges 
that minimizes the potential at x = 0. (b) If three of the 
charges are the same, q = +1.0 μC, and the charge at 
the far right is −1.0 μC, what is the potential at the origin?

1.0 m 1.0 m1.0 m

y

x

 25. At a point P, a distance R0 from a positive charge Q0, the 
electric field has a magnitude E0 = 100 N/C and the 
electric potential is V0 = 10 V. The charge is now in-
creased by a factor of three, becoming 3Q0. (a) At what 
distance, RE, from the charge 3Q0 will the electric field 
have the same value, E = E0; and (b) at what distance, 
RV, from the charge 3Q0 will the electric potential have 
the same value, V = V0?

P
+
Q0

R0

 26. Charges of +2.0 nC and −1.0 nC 
are located at opposite corners, 
A and C, respectively, of a square 
which is 1.0 m on a side. What is 
the electric potential at a third 
corner, B, of the square (where 
there is no charge)?

 27. (a) Find the electric potential at points a and b for charges 
of +4.2 nC and −6.4 nC located as shown in the following 
figure. (b) What is the potential difference ΔV for a trip 
from b to a? (c) How much work must be done by an exter-
nal agent to move a point charge of +1.50 nC from b to a?

Problem	27

a b+

–

15.9 cm
12.0 cm 12.0 cm

12.0 cm

6.0 cm

 28. (a) Find the potential at points a and b in the following 
diagram for charges Q1 = +2.50 nC and Q2 = −2.50 nC. 
(b) How much work must be done by an external agent 
to bring a point charge q from infinity to point b?

a b+ –
5.0 cm5.0 cm5.0 cm

Q1 Q2

 29. (a) In the diagram, what are the potentials at points a 
and b? Let V = 0 at infinity. (b) What is the change in 
electric potential energy if a third charge q3 = +2.00 nC 
is moved from point a to point b? 
(If you have done Problem 14, 
compare your answers.)

 30. (a) In the diagram, what are the 
potentials at points b and c? Let 
V = 0 at infinity. (b) What is the 
change in electric potential energy 
if a third charge q3 = +2.00 nC is 
moved from point b to point c? 
(If you have done Problem 15, 
compare your answers.)

 31. A 35.0 nC charge is placed at the origin and a 55.0 nC 
charge is placed on the +x-axis, 2.20 cm from the origin. 
(a) What is the electric potential at a point halfway be-
tween these two objects? (b) What is the electric potential 
at a point on the +x-axis 3.40 cm from the origin? (c) How 
much work does it take for an external agent to move a 
45.0 nC charge from the point in (b) to the point in (a)?

17.3 The Relationship Between Electric Field 
and Potential
 32. By rewriting each unit in terms of kilograms, meters, 

seconds, and coulombs, show that 1 N/C = 1 V/m.
 33. Rank points A–E in order of the potential, from highest 

to lowest.

A

B

C

D

E

+ –

B1.0 m

1.0 m

C

A

D

+

–

ba

c

+ –

12.0 cm

4.00 cm4.00 cm
8.00
cm

q1

q1 = +8.00 nC
q2 = –8.00 nC

q2

12.0 cm

Problems	29	and	30
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Problems 44–45.  A positively charged oil drop is injected 
into a region of uniform electric field between two oppositely 
charged, horizontally oriented plates spaced 16 cm apart.
 44. If the electric force on the drop is found to be  

9.6 × 10−16 N and the potential difference between the 
plates is 480 V, what is the magnitude of the charge on 
the drop in terms of the elementary charge e? Ignore the 
small buoyant force on the drop.

 45. If the mass of the drop is 1.0 × 10−15 kg and it remains 
stationary when the potential difference between the 
plates is 9.76 kV, what is the magnitude of the charge on 
the drop? (Ignore the small buoyant force on the drop.)

17.4 Conservation of Energy for Moving Charges
 46. Point P is at a potential of 500.0 kV, and point S is at a 

potential of 200.0 kV. The space between these points is 
evacuated. When a charge of +2e moves from P to S, by 
how much does its kinetic energy change?

 47. An electron is accelerated from rest through a potential 
difference ΔV. If the electron reaches a speed of 7.26 × 
106 m/s, what is the potential difference? Be sure to in-
clude the correct sign. (Does the electron move through 
an increase or a decrease in potential?)

 48. As an electron moves through a region of space, its 
speed decreases from 8.50 × 106 m/s to 2.50 × 106 m/s. 
The electric force is the only force acting on the elec-
tron. (a) Did the electron move to a higher potential or a 
lower potential? (b) Across what potential difference 
did the electron travel?

 49. In each of six situations, a particle (mass m, charge q) 
moves from a point where the potential is Vi to a point 
where the potential is Vf. Apart from the electric force, 
no forces act on the particles. Rank them in order of the 
particle’s change in kinetic energy, from largest to 
smallest. Rank increases (positive changes) higher than 
decreases (negative changes).

 (a) m = 5 × 10−15 g, q = −5 nC, Vi = 100 V, Vf = −50 V
 (b) m = 1 × 10−15 g, q = −5 nC, Vi = −50 V, Vf = 50 V
 (c) m = 1 × 10−15 g, q = 25 nC, Vi = 50 V, Vf = 20 V
 (d) m = 5 × 10−15 g, q = −1 nC, Vi = 400 V, Vf = −100 V
 (e) m = 25 × 10−15 g, q = 1 nC, Vi = −100 V, Vf = −250 V
 (f) m = 1 × 10−15 g, q = 5 nC, Vi = 100 V, Vf = 250 V
 50. An electron beam is deflected upward through 3.0 mm 

while traveling in a vacuum between two deflection 
plates 12.0 mm apart. The potential difference between 
the deflecting plates is 100.0 kV, and the kinetic energy 
of each electron as it enters the space between the plates 
is 2.0 × 10−15 J. What is the kinetic energy of each elec-
tron when it leaves the space between the plates?

Electron beam Deflection: 3.0 mm

–

+

Problems 34–36.  A uniform electric field has magnitude 
240 N/C and is directed to the right. A particle with charge 
+4.2 nC moves in this field. For the given motion of the 
particle, find (a) the electric force that acts on the particle; 
(b) the potential difference through which the particle moves; 
(c) the change in the particle’s potential energy; and (d) the 
work done on the particle by the electric field.
 34. The particle moves along 

a straight line from a to b.
 35. The particle moves along 

a straight line from b to a.
 36. The particle moves along 

the path shown from b 
to a.

 37. An electron is suspended in a vacuum between two op-
positely charged horizontal parallel plates. The separa-
tion between the plates is 3.00 mm. (a) What are the 
signs of the charge on the upper and on the lower plates? 
(b) What is the voltage across the plates?

 38. In a region where there is an electric field, the electric 
forces do +8.0 × 10−19 J of work on an electron as it 
moves from point X to point Y. (a) Which point, X or Y, 
is at a higher potential? (b) What is the potential differ-
ence, VY − VX, between point Y and point X?

 39. Suppose a uniform electric field of magnitude 
100.0 N/C exists in a region of space. How far apart 
are a pair of equipotential surfaces whose potentials 
differ by 1.0 V?

 40. Draw some electric field lines and a few equipotential 
surfaces outside a negatively charged hollow conduct-
ing sphere. What shape are the equipotential surfaces?

 41. Draw some electric field lines and a few equipotential 
surfaces outside a positively charged conducting cylin-
der. What shape are the equipotential surfaces?

 42. A positive point charge is located at the center of a  hollow 
spherical metal shell with zero net charge. (a) Draw some 
electric field lines and sketch some equipotential surfaces 
for this arrangement. (b) Sketch graphs of the electric 
field magnitude and the potential as functions of r.

r2

r1

+q
+

 43.  It is believed that a large electric fish known as Tor-
pedo occidentalis uses electricity to shock its victims. A 
typical fish can deliver a potential difference of 0.20 kV 
for a duration of 1.5 ms. This pulse delivers charge at a 
rate of 18 C/s. (a) What is the rate at which work is done 
by the electric organs during a pulse? (b) What is the 
total amount of work done during one pulse?

0.25 m

 a   b
∣E∣ = 240 N/C 

Problems	34–36
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 51. In the electron gun of Example 17.8, if the potential differ-
ence between the cathode and anode is reduced to 6.0 kV, 
with what speed will the electrons reach the anode?

 52. In the electron gun of Example 17.8, if the electrons 
reach the anode with a speed of 3.0 × 107 m/s, what is the 
potential difference between the cathode and the anode?

 53. An electron (charge −e) is projected horizontally into 
the space between two oppositely charged parallel 
plates. The electric field between the plates is 500.0 N/C 
upward. If the vertical deflection of the electron as it 
leaves the plates has magnitude 3.0 mm, how much has 
its kinetic energy increased due to the electric field? 
[Hint: First find the potential difference through which 
the electron moves.]

 54. An alpha particle (charge +2e) moves through a poten-
tial difference ΔV = −0.50 kV. Its initial kinetic energy 
is 1.20 × 10−16 J. What is its final kinetic energy?

 55. In 1911, Ernest Rutherford discovered the nucleus of 
the atom by observing the scattering of helium nuclei 
from gold nuclei. If a helium nucleus with a mass of 
6.68 × 10−27 kg, a charge of +2e, and an initial velocity 
of 1.50 × 107 m/s is projected head-on toward a gold 
nucleus with a charge of +79e, how close will the he-
lium atom come to the gold nucleus before it stops and 
turns around? (Assume the gold nucleus is held in place 
by other gold atoms and does not move.)

 56.  The figure shows a graph of electric potential  versus 
position along the x-axis. A proton is originally at 
point A, moving in the positive x-direction. How much 
kinetic energy does it need to have at point A in order 
to be able to reach point E (with no forces acting on the 
proton other than those due to the indicated potential)? 
Points B, C, and D have to be passed on the way.

 57.  Repeat Problem 56 for an electron rather than a 
 proton.

V

x

  A (100.0 V)
  E (55.0 V)

D (150.0 V)

  C (–60.0 V)

  B (0 V)

Problems	56	and	57

17.5 Capacitors
 58. A 2.0 μF capacitor is connected to a 9.0 V battery. What 

is the magnitude of the charge on each plate?
 59. The plates of a 15.0 μF capacitor have net charges of 

+0.75 μC and −0.75 μC, respectively. (a) What is the 
potential difference between the plates? (b) Which plate 
is at the higher potential?

 60. If a capacitor has a capacitance of 10.2 μF and we wish 
to lower the potential difference across the plates by 

60.0 V, what magnitude of charge will we have to 
 remove from each plate?

 61. A parallel plate capacitor has a capacitance of 2.0 μF 
and plate separation of 1.0 mm. (a) How much potential 
difference can be placed across the capacitor before di-
electric breakdown of air occurs (Emax = 3 × 106 V/m)? 
(b) What is the magnitude of the greatest charge the ca-
pacitor can store before breakdown?

 62. A parallel plate capacitor has plates of area 1.00 cm2 
separated by 0.250 mm. There is a charge of magnitude 
4.00 pC on each plate. (a) Find the potential difference 
and the electric field between the plates. (b) If the plate 
separation is doubled while the charge is kept constant, 
what will happen to the potential difference and to the 
electric field?

 63. A parallel plate capacitor has plates of area 36.0 cm2 
separated by 0.0500 mm. The capacitor is connected to 
a 1.2 V battery. (a) Find the electric field between the 
plates and the magnitude of the charge on each plate. 
(b)  If the plate separation is doubled while the plates 
remain connected to the battery, what happens to the 
electric field and the charge on each plate?

 64. A variable capacitor is made of two parallel semicircu-
lar plates with air between them. One plate is fixed in 
place and the other can be rotated. The electric field is 
zero everywhere except in the region where the plates 
overlap. When the plates are directly across from one 
another, the capacitance is 0.694 pF. (a) What is the ca-
pacitance when the movable plate is rotated so that only 
one half its area is across from the stationary plate? 
(b) What is the capacitance when the movable plate is 
rotated so that two thirds of its area is across from the 
stationary plate?

(a) (b)

 65.  A shark is able to detect the presence of electric 
fields as small as 1.0 μV/m. To get an idea of the mag-
nitude of this field, suppose you have a parallel plate 
capacitor connected to a 1.5 V battery. How far apart 
must the parallel plates be to have an electric field of 
1.0 μV/m between the plates?

 66. Two metal spheres have charges of equal magnitude, 
3.2 × 10−14 C, but opposite sign. If the potential differ-
ence between the two spheres is 4.0 mV, what is the 
capacitance? [Hint: The “plates” are not parallel, but the 
definition of capacitance holds.]

 67.  A tiny hole is made in the center of the negatively 
and positively charged plates of a capacitor, allowing a 
beam of electrons to pass through and emerge from the 
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far side. If 40.0 V are applied across the capacitor plates 
and the electrons enter through the hole in the nega-
tively charged plate with a speed of 2.50 × 106 m/s, what 
is the speed of the electrons as they emerge from the 
hole in the positive plate?

17.6 Dielectrics
 68. A 6.2 cm by 2.2 cm parallel plate capacitor has the 

plates separated by a distance of 2.0 mm. (a) When 
4.0 × 10−11 C of charge is placed on this capacitor, what 
is the electric field between the plates? (b) If a dielectric 
with dielectric constant of 5.5 is placed between the 
plates while the charge on the capacitor stays the same, 
what is the electric field in the dielectric?

 69. Before a lightning strike can occur, the breakdown limit 
for damp air must be reached. If this occurs for an electric 
field of 3.33 × 105 V/m, what is the maximum possible 
height above Earth for the bottom of a thundercloud, 
which is at a potential 1.00 × 108 V below Earth’s surface 
potential, if there is to be a lightning strike?

 70.  Two cows, with approximately 1.8 m between their 
front and hind legs, are standing under a tree during a 
thunderstorm. See the diagram with Conceptual Ques-
tion 16. (a) If the equipotential surfaces about the tree 
just after a lightning strike are as shown, what is the aver-
age electric field between Cow A’s front and hind legs? 
(b) Which cow is more likely to be killed? Explain.

 71. A parallel plate capacitor has a charge of 0.020 μC on 
each plate with a potential difference of 240 V. The par-
allel plates are separated by 0.40 mm of bakelite. What 
is the capacitance of this capacitor?

 72. Two metal spheres are separated by a distance of 1.0 cm, 
and a power supply maintains a constant potential differ-
ence of 900 V between them. The spheres are brought 
closer to each other until a spark flies between them. If 
the dielectric strength of dry air is 3.0 × 106 V/m, what 
is the distance between the spheres at this time?

 73.  To make a parallel plate capacitor, you have avail-
able two flat plates of aluminum (area 120 cm2), a sheet 
of paper (thickness = 0.10 mm, κ = 3.5), a sheet of glass 
(thickness = 2.0 mm, κ = 7.0), and a slab of paraffin 
(thickness = 10.0 mm, κ = 2.0). (a) What is the largest 
capacitance possible using one of these dielectrics? 
(b) What is the smallest?

 74. A capacitor can be made from two sheets of aluminum 
foil separated by a sheet of waxed paper. If the sheets of 
aluminum are 0.30 m by 0.40 m and the waxed paper, of 
slightly larger dimensions, is of thickness 0.030 mm and 
dielectric constant κ = 2.5, what is the capacitance of 
this capacitor?

 75.  In capacitive electrostimulation, electrodes are 
placed on opposite sides of a limb. A potential differ-
ence is applied to the electrodes, which is believed to be 
beneficial in treating bone defects and breaks. If the 

capacitance is measured to be 0.59 pF, the electrodes 
are 4.0 cm2 in area, and the limb is 3.0 cm in diameter, 
what is the (average) dielectric constant of the tissue in 
the limb?

 76. A parallel plate capacitor has 10.0 cm diameter circular 
plates that are separated by 2.00 mm of dry air. (a) What 
is the maximum charge that can be on this capacitor? 
(b) A neoprene dielectric is placed between the plates, fill-
ing the entire region between the plates. What is the new 
maximum charge that can be placed on this capacitor?

17.7 Energy Stored in a Capacitor
 77. A certain capacitor stores 450 J of energy when it holds 

8.0 × 10−2 C of charge. What is (a) the capacitance of 
this capacitor and (b) the potential difference across the 
plates?

 78. What is the maximum electric energy density possible 
in dry air without dielectric breakdown occurring?

 79. A parallel plate capacitor has a charge of 5.5 × 10−7 C 
on one plate and −5.5 × 10−7 C on the other. The dis-
tance between the plates is increased by 50% while the 
charge on each plate stays the same. What happens to 
the energy stored in the capacitor?

 80. A large parallel plate capacitor with air between the plates 
has plate separation 1.00 cm and plate area 314 cm2. The 
capacitor is connected to a 20.0 V battery and then dis-
connected. How much work is done on the capacitor as 
the plate separation is increased to 2.00 cm?

 81. Figure 17.31b shows a thundercloud before a lightning 
strike has occurred. The bottom of the thundercloud and 
Earth’s surface might be modeled as a charged parallel 
plate capacitor. The base of the cloud, which is roughly 
parallel to Earth’s surface, serves as the negative plate, 
and the region of Earth’s surface under the cloud serves 
as the positive plate. The separation between the cloud 
base and Earth’s surface is small compared with the 
length of the cloud. (a) Find the capacitance for a thun-
dercloud of base dimensions 4.5 km by 2.5 km located 
550 m above Earth’s surface. (b) Find the energy stored 
in this capacitor if the charge magnitude is 18 C.

 82.  A parallel plate capacitor of capacitance 6.0 μF has 
the space between the plates filled with a slab of glass 
with κ = 3.0. The capacitor is charged by connecting it 
to a 1.5 V battery. After the capacitor is disconnected from 
the battery, the dielectric slab is removed. (a) Find the 
charge on the plates and the energy stored in the capacitor 
before the glass is removed. (b) Find the charge on the 
plates, the potential difference, and the energy stored in 
the capacitor after the glass is removed.

1.5 V

(1)

+ + + +

– – – –

(2)

+ + + +

– – – –

(3)
Glass

+ + + +

– – – –
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 83.  A large parallel plate capacitor has plate separation 
1.00  cm and plate area 314 cm2 with air between the 
plates. The capacitor is connected to a 20.0 V battery. 
With the battery still connected, a slab of strontium tita-
nate is inserted so that it completely fills the gap between 
the plates. (a) Find the charge on the plates, the electric 
field between the plates, and the energy stored in the ca-
pacitor before the slab is inserted. (b) Find the charge on 
the plates, the electric field, the potential difference, and 
the energy stored in the capacitor after the slab is inserted.

 84. A parallel plate capacitor is composed of two square 
plates, 10.0 cm on a side, separated by an air gap of 
0.75 mm. (a) What is the charge on this capacitor when 
there is a potential difference of 150 V between the 
plates? (b) What energy is stored in this capacitor?

 85. Capacitors are used in many applications where you 
need to supply a short burst of energy. A 100.0 μF ca-
pacitor in an electronic flash lamp supplies an average 
power of 10.0 kW to the lamp for 2.0 ms. (a) To what 
potential difference must the capacitor initially be 
charged? (b) What is its initial charge?

 86. A parallel plate capacitor has a charge of 0.020 μC on 
each plate with a potential difference of 240 V. The par-
allel plates are separated by 0.40 mm of air. What en-
ergy is stored in this capacitor?

 87. A parallel plate capacitor has a capacitance of 1.20 nF. 
There is a charge of 0.80 μC on each plate. How much 
work must be done by an external agent to double the 
plate separation while keeping the charge constant?

 88.  A defibrillator is used to restart a person’s heart af-
ter it stops beating. Energy is delivered to the heart by 
discharging a capacitor through the body tissues near 
the heart. If the capacitance of the defibrillator is 9 μF 
and the energy delivered is to be 300 J, to what potential 
difference must the capacitor be charged?

 89.  A defibrillator consists of a 15 μF capacitor that is 
charged to 9.0 kV. (a) If the capacitor is discharged in 
2.0 ms, how much charge passes through the body tissues? 
(b) What is the average power delivered to the tissues?

 90. The bottom of a thundercloud is at a potential of 
−1.00 × 108 V with respect to Earth’s surface. If a charge 
of −25.0 C is transferred to Earth during a lightning strike, 
find the electric potential energy released. (Assume that 
the system acts like a capacitor—as charge flows, the 
 potential difference decreases to zero.)

Collaborative Problems

 91.  The two strands of the DNA molecule are held to-
gether by hydrogen bonds between base pairs (Sec. 16.1). 
When an enzyme unzips the molecule to separate the two 
strands, it has to break these hydrogen bonds. A simplified 
model represents a hydrogen bond as the electrostatic inter-
action of four point charges arranged along a straight line. 

The figure shows the arrangement of charges for one of the 
hydrogen bonds between adenine and thymine. Estimate 
the energy that must be supplied to break this bond.

N

Hydrogen bond

0.12 nm

Adenine Thymine

0.12 nm0.18 nm

H C
–0.3e –0.4e+0.3e

O
+0.4e

– –+ +

 92. A charge Q = −50.0 nC 
is located 0.30 m from 
point A and 0.50 m from 
point B. (a) What is the 
potential at A? (b) What 
is the potential at B? 
(c) If a point charge q is 
moved from A to B while Q is fixed in place, through 
what potential difference does it move? Does its poten-
tial increase or decrease? (d) If q = −1.0 nC, what is the 
change in electric potential energy as it moves from A to 
B? Does the potential energy increase or decrease? 
(e) How much work is done by the electric field due to 
charge Q as q moves from A to B?

 93.  A beam of electrons of mass me is deflected vertically 
by the uniform electric field between two oppositely 
charged, parallel metal plates. The plates are a distance d 
apart, and the potential difference between the plates is 
ΔV. (a) What is the direction of the electric field between 
the plates? (b) If the y-component of the electrons’ veloc-
ity as they leave the region between the plates is vy, find 
an expression for the time it takes each electron to travel 
through the region between the plates in terms of ΔV, vy, 
me, d, and e. (c) Does the electric potential energy of an 
electron increase, decrease, or stay constant while it 
moves between the plates?  Explain.

Electron beam

 94. Two point charges (+10.0 nC 
and −10.0 nC) are located 
8.00  cm apart. (a) What is the 
change in electric potential 
 energy when a third point charge 
of −4.2 nC is moved from point 
c to point b? (b) How much 
work would an external force have to do to move the 
point charge from a to b?

–50.0 nC 

A

B

0.50 m
0.30 m

ba

c

+ –

8.00 cm 8.00 cm

4.00
cm

4.00
cm

4.00
cm
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 95.  It has only been fairly recently that 1.0 F capacitors 
have been readily available. A typical 1.0 F capacitor 
can withstand up to 5.00 V. To get an idea why it isn’t 
easy to make a 1.0 F capacitor, imagine making a 1.0 F 
parallel plate capacitor using titanium dioxide (κ = 90.0, 
breakdown strength 4.00 kV/mm) as the dielectric. 
(a) Find the minimum thickness of the titanium dioxide 
such that the capacitor can withstand 5.00 V. (b) Find 
the area of the plates so that the capacitance is 1.0 F.

Comprehensive Problems

 96. Charges of −12.0 nC and −22.0 nC are separated by 
0.700 m. What is the potential midway between the 
two charges?

 97. If an electron moves from one point at a potential of 
−100.0 V to another point at a potential of +100.0 V, 
how much work is done by the electric field?

 98. A van de Graaff generator has a metal sphere of ra-
dius 15 cm. To what potential can it be charged be-
fore the electric field at its surface exceeds 3.0 × 
106 N/C (which is sufficient to break down dry air 
and initiate a spark)?

 99. Find the potential at the sodium ion, Na+, which is sur-
rounded by two chloride ions, Cl−, and a calcium ion, 
Ca2+, in water as shown in the diagram. The effective 
charge of the positive sodium ion in water is 2.0 × 
10−21 C, of the negative chlorine ion is −2.0 × 10−21 C, 
and of the positive calcium ion is 4.0 × 10−21 C.

1.0 nm
60°

100°Cl–

Cl–
Ca2+

Na+

2.0 nm
1.0 nm

 100. An infinitely long conducting cylinder sits near an in-
finite conducting sheet (side view in the diagram). The 
cylinder and sheet have equal and opposite charges; the 
cylinder is positive. (a) Sketch some electric field 
lines. (b) Sketch some equipotential surfaces.

 101. Two parallel plates are 4.0 cm apart. The bottom plate 
is charged positively and the top plate is charged nega-
tively, producing a uniform electric field of 5.0 × 
104 N/C in the region between the plates. What is the 
time required for an electron, which starts at rest at the 
upper plate, to reach the lower plate? (Assume a 
 vacuum exists between the plates.)

 102.  The potential difference across a cell membrane is 
−90 mV. If the membrane’s thickness is 10 nm, what is 
the magnitude of the electric field in the membrane? 
Assume the field is uniform.

 103.  A cell membrane has a surface area of 1.1 × 10−7 m2, 
a dielectric constant of 5.2, and a thickness of 7.2 nm. 
The potential difference across the membrane is 
70  mV. (a) What is the magnitude of the charge on 
each surface of the membrane? (b) How many ions are 
on each surface of the membrane, assuming they are 
singly charged (∣q∣ = e)?

 104.  A cell membrane has a surface area of 1.0 × 10−7 m2, 
a dielectric constant of 5.2, and a thickness of 7.5 nm. 
The membrane acts like the dielectric in a parallel 
plate capacitor; a layer of positive ions on the outer 
surface and a layer of negative ions on the inner sur-
face act as the capacitor plates. The potential differ-
ence between the “plates” is 90.0 mV. (a) How much 
energy is stored in this capacitor? (b) How many posi-
tive ions are there on the outside of the membrane? 
Assume that all the ions are singly charged (charge +e).

 105.  The inside of a cell membrane is at a potential of 
90.0 mV lower than the outside. How much work does 
the electric field do when a sodium ion (Na+) with a 
charge of +e moves through the membrane from out-
side to inside?

 106.   The potential difference across a cell membrane 
from outside to inside is initially at −90 mV (when in 
its resting phase). When a stimulus is applied, Na+ ions 
are allowed to move into the cell such that the potential 
changes to +20 mV for a short interval of time. (a) If 
the membrane capacitance per unit area is 1 μF/cm2, 
how much charge moves through a membrane of area 
0.05 cm2? (b) The charge on Na+ is +e. How many 
ions move through the membrane?

 107.  An axon has the outer part of its membrane 
 positively charged and the inner part negatively 
charged. The membrane has a thickness of 4.4 nm and 
a dielectric constant κ = 5. If we model the axon as a 
parallel plate capacitor whose area is 5 μm2, what is its 
capacitance?

 108.   (a) Calculate the capacitance per unit length of 
an axon of radius 5.0 μm (see Fig. 17.14). The mem-
brane acts as an insulator between the conducting flu-
ids inside and outside the neuron. The membrane is 
6.0  nm thick and has a dielectric constant of 7.0. 
(Note: The membrane is thin compared with the ra-
dius of the axon, so the axon can be treated as a paral-
lel plate capacitor.) (b) In its resting state (no signal 
being transmitted), the potential of the fluid inside is 
about 85 mV lower than the outside. Therefore, there 
must be small net charges ±Q on either side of the 
membrane. Which side has positive charge? What is 
the magnitude of the charge density on the surfaces of 
the membrane?
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 109. A beam of electrons traveling with a speed of 3.0 × 
107 m/s enters a uniform, downward electric field of 
magnitude 2.0 × 104 N/C between the deflection plates 
of an oscilloscovpe. The initial velocity of the electrons 
is perpendicular to the field. The plates are 6.0 cm long. 
(a) What is the direction and magnitude of the change 
in velocity of the electrons while they are between the 
plates? (b) How far are the electrons deflected in the 
±y-direction while between the plates?

6.0 cm

y

x

Electric fielde–

 110. A negatively charged particle of mass 5.00 × 10−19 kg 
is moving with a speed of 35.0 m/s when it enters the 
region between two parallel capacitor plates. The ini-
tial velocity of the charge is parallel to the plate sur-
faces and in the positive x-direction. The plates are 
square with a side of 1.00 cm, and the voltage across 
the plates is 3.00 V. If the particle is initially 1.00 mm 
from both plates and it just barely clears the positive 
plate after traveling 1.00 cm through the region be-
tween the plates, how many excess electrons are on the 
particle? Ignore gravitational and edge effects.

1.00 cm

2.00 mm35.0 m/s

y

x –

Problems	110–112

 111. (a) Show that it was valid to ignore the gravitational 
force in Problem 110. (b) What are the components of 
velocity of the particle when it emerges from the plates?

 112. Refer to Problem 110. One capacitor plate has an ex-
cess of electrons and the other has a matching deficit 
of electrons. What is the number of excess electrons?

 113. A parallel plate capacitor has a charge of 0.020 μC on 
each plate with a potential difference of 240 V. The 
parallel plates are separated by 0.40 mm of air. 
(a) What is the capacitance for this capacitor? (b) What 
is the area of a single plate? (c) At what voltage will 
the air between the plates become ionized? Assume a 
dielectric strength of 3.0 kV/mm for air.

 114.  In the movie The Matrix, humans are used to gen-
erate electricity. Estimate the total amount of stored 
electrical energy in the brain’s 1011 nerve cells. As-
sume that the average nerve cell has a membrane with 
surface area 1 × 10−7 m2, thickness 8 nm, dielectric 
constant 5, and potential difference (from one surface 
to the other) 70 mV.

 115. A point charge q = −2.5 nC is initially at rest adjacent 
to the negative plate of a capacitor. The charge per unit 
area on the plates is 4.0 μC/m2 and the space between 
the plates is 6.0 mm. (a) What is the potential differ-
ence between the plates? (b) What is the kinetic energy 
of the point charge just before it hits the positive plate, 
assuming no other forces act on it?

 116. An alpha particle (helium nucleus, charge +2e) starts 
from rest and travels a distance of 1.0 cm under the 
influence of a uniform electric field of magnitude 
10.0  kV/m. What is the final kinetic energy of the 
 alpha particle?
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 117. Three point charges are 
placed at the corners of an 
equilateral triangle having 
sides of 0.150 m. (a) What 
is the total electric force 
on the 2.50 μC charge? 
(b) What is the electric potential energy of the three 
charges?

 118. Electrons in a cathode ray tube start from rest and are 
accelerated through a potential difference of 12.0 kV. 
They are moving in the +x-direction when they enter 
the space between the plates of a parallel plate capaci-
tor. There is a potential difference of 320 V between 
the plates. The plates have length 8.50 cm and are sep-
arated by 1.10 cm. The electron beam is deflected in 
the negative y-direction by the electric field between 
the plates. (a) Find Δy, the vertical deflection. 
(b) Through what potential difference do the electrons 
move while between the plates? (c) What is the kinetic 
energy of the electrons as they leave the plates?

320 V
Power
Supply

8.50 cm

1.10 cm Δy

–

+

y

x

 119.  A proton (mass 1.67 × 10−27 kg, charge +e) is fired 
directly at a lithium nucleus (mass 1.16 × 10−26 kg, 
charge +3e). If the proton’s velocity is 5.24 × 105 m/s 
when it is far from the nucleus, how far apart will the 
two particles be when the proton is at rest, just before 
it turns around? Assume the nucleus is free to recoil. 
[Hint: Apply conservation of energy and momentum. 
This distance is not the distance of closest approach.)

 120. A parallel plate capacitor used in a flash for a camera 
must be able to store 32 J of energy when connected to 
300 V. (Most electronic flashes actually use a 1.5 to 
6.0 V battery, but increase the effective voltage using a 
dc-dc inverter.) (a) What should be the capacitance of 

y

x

2.50 μC

5.00 μC –7.00 μC
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this capacitor? (b) If this capacitor has an area of 9.0 m2, 
and a distance between the plates of 1.1 × 10−6 m, 
what is the dielectric constant of the material between 
the plates? (The large effective area can be put into a 
small volume by rolling the capacitor tightly in a cylin-
der.) (c) Assuming the capacitor completely discharges 
to produce a flash in 4.0 × 10−3 s, what average power 
is dissipated in the flashbulb during this time?

 121.  (a) If the bottom of a thundercloud has a potential 
of −1.00 × 109 V with respect to Earth and a charge of 
−20.0 C is discharged from the cloud to Earth during a 
lightning strike, how much electric potential energy is 
released? (Assume that the system acts like a capacitor—
as charge flows, the potential difference decreases to 
zero.) (b) If a tree is struck by the lightning bolt and 
10% of the energy released vaporizes sap in the tree, 
how much sap is vaporized? (Assume the sap to be 
water initially at 20°C.) (c) If 10% of the energy re-
leased from the lightning strike could be stored and 
used by a homeowner who uses 400 kW·hr of electric-
ity per month, for how long could the lightning bolt 
supply electricity to the home?

 122.   Hydrogen bonding is responsible for many of 
the unusual properties of water (see Sec. 16.1). A sim-
plified model represents a hydrogen bond as the electro-
static interaction of four point charges arranged along a 
straight line, as shown in the figure. (a) Using this 
model, estimate the energy that must be supplied to 
break a single hydrogen bond. (b) Estimate the energy 
that must be supplied to break the hydrogen bonds in 
1 kg of liquid water and compare it with the heat of va-
porization of water. Assume that the number of hydrogen 
bonds is equal to the number of molecules. Is it coinci-
dence that these two quantities are similar? Explain.

OH

Hydrogen bond

0.1 nm 0.1 nm0.17 nm

H H
–0.35e –0.35e+0.35e

OH
+0.35e

– –+ +

 123. A 200.0 μF capacitor is placed across a 12.0 V battery. 
When a switch is thrown, the battery is removed from 
the capacitor and the capacitor is connected across a 
heater that is immersed in 1.00 cm3 of water. Assum-
ing that all the energy from the capacitor is delivered to 
the water, what is the temperature change of the water?

 124.   Deuterium (2D) is an isotope of hydrogen with 
a nucleus containing one proton and one neutron. In a 
2D-2D fusion reaction, two deuterium nuclei combine 
to form a helium-3 nucleus plus a neutron, releasing 
energy in the process. The two 2D nuclei must over-
come the electrical repulsion of the positively charged 
nuclei (q = +e) to get close enough for the reaction to 

occur. The radius of a deuterium nucleus is about 1 fm, 
so the centers of the nuclei must get within about 2 fm 
of one another. To estimate the temperature that a gas 
of deuterium atoms must have for this fusion reaction 
to occur, find the temperature at which the average ki-
netic energy of the deuterium atoms is 5% of the re-
quired activation energy for the reaction.

 125.   An air ionizer filters particles of dust, pollen, and 
other allergens from the air using electric forces. In one 
type of ionizer (see diagram), a stream of air is drawn in 
with a speed of 3.0 m/s. The air passes through a fine, 
highly charged wire mesh that transfers electric charge to 
the particles. Then the air passes through parallel “col-
lector” plates that attract the charged particles and trap 
them in a filter. Consider a dust particle of radius 6.0 μm, 
mass 2.0 × 10−13 kg, and charge 1000e. The plates are 
10 cm long and are separated by a distance of 1.0 cm. 
(a) Ignoring drag forces, what would be the minimum 
potential difference between the plates to ensure that the 
particle gets trapped by the filter? (b) At what speed 
would the particle be moving relative to the stream of air 
just before hitting the filter? (c) Calculate the viscous 
drag force on the particle when moving at the speed 
found in (b). (d) Is it realistic to ignore drag? Taking drag 
into consideration, is the minimum potential difference 
larger or smaller than the answer to (a)?

+

10 cm

1 cm

Charged
dust particle

Airflow
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 126.  In the Bohr model of the hydrogen atom, an elec-
tron moves in a circular orbit around a stationary pro-
ton. In its lowest-energy state (the ground state), the 
orbital radius is 0.0529 nm. (a) What are the electric 
forces on the electron and on the proton? (b) What are 
the electron’s acceleration and speed? (c) What mini-
mum amount of energy must be supplied to ionize the 
atom (that is, to separate the two particles by a large 
distance) if it starts in the ground state?

Problems 127–129. A ball with a net charge of +450 nC and 
mass 0.75 g is suspended from a thread of length 12 cm in a 
uniform electric field of 8.0 kV/m downward. Do not ignore 
gravity. The system acts like a pendulum but with a down-
ward electric force added to the gravitational force.
 127. What is the tension in the string when the ball hangs 

straight down at rest?
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 128.  The ball is released from rest when the thread 
makes an angle of 32° with the vertical. How fast is it 
moving when the thread is vertical?

 129.  What is the period of oscillation for small amplitudes?

Answers to Practice Problems

17.1 (a) +0.018 J; (b) away from Q; (c) U decreases as the 
separation increases. The potential energy decrease accompa-
nies an increase in kinetic energy as q moves faster and faster.
17.2 +0.064 J
17.3 the lower plate
17.4 VB = −1.5 × 105 V; work (done by E

→
) = −ΔUE = −0.010 J

17.5 E
→

 = 5.4 × 108 N/C away from the +9.0 μC charge; V = 0
17.6 4 kV
17.7

+Q+Q

Equipotential
surface

E

17.8 −20.9 kV (Note that a positive charge gains kinetic 
energy when it moves through a potential decrease; a nega-
tive charge gains kinetic energy when it moves through a 
potential increase.)
17.9 8.9 nF; 18 μC; charge (capacitance is independent of 
potential difference)
17.10 C doubles; maximum charge is unchanged
17.11 2.4 × 105 ions
17.12 (a) 0.21 μC; (b) 85 μJ

Answers to Checkpoints

17.1 Six pairs and therefore six terms in the potential energy 
(with subscripts 12, 13, 14, 23, 24, and 34).
17.2 E

→
 points in the direction of decreasing potential, so the 

electric field is in the −x-direction.
17.3 The electric field magnitude is 25 V/m, so the potential 
decreases 25 V for each meter moved in the direction of the 
field. To move from one plane to another, the potential 
changes by 1.0 V and the distance must be

1.0 V
25 V/m

= 0.040 m

17.5 The magnitude of the charge on each plate is propor-
tional to the potential difference between them. With one 
quarter the potential difference, the plates have one quarter 
as much charge: +0.12 C and −0.12 C. (The capacitance of 
the capacitor is C = Q/ΔV = 0.080 F.)
17.6 C′ = 3C, ΔV′ = ΔV/3, Q′ = Q, and E′ = E/3. With the 
capacitor disconnected, the charge on the plates has nowhere 
to go; Q stays the same as the dielectric is inserted. The elec-
tric field is reduced by a factor of 1/κ from what it was with-
out the dielectric. The distance between plates does not 
change so the potential difference ΔV = Ed is proportional to 
the field. The same charge causes a smaller potential differ-
ence, so from C = Q/(ΔV), the capacitance increases by a 
factor of κ. 



Concepts & Skills to Review

•	 conductors	and	insulators	
(Section	16.2)

•	 electric	potential	
(Section 17.2)

•	 capacitors	(Section	17.5)
•	 math skill:	solving	

simultaneous	equations	
(Appendix	A.3)

•	 power	(Section	6.8)
•	 math skill:	exponents	and	

logarithms	(Appendix	A.4)

C H A P T E R

18
Electric Current and Circuits

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Propagation of nerve 
impulses (Section 18.10; 
Problem 105)

∙ Effects of current  
on the human body 
(Section 18.11; 
Conceptual Questions 
11–13; Problems 27, 
100–102)

∙ Defibrillators 
(Problems 86, 90)

©Richard Hutchings/Science Source

Graham’s	 car	 won’t	 start;	 the	 battery	 is	 dead.	 Usually,	 a	 car	 with	 a	
dead	battery	can	be	jump-started	using	the	battery	in	another	car,	as	
shown	 in	 the	 photo.	However,	Graham	 is	 in	 a	 hurry,	 so	 he	 considers	
an	alternative.	 In	a	kitchen	drawer	are	several	1.5	V	 flashlight	batter-
ies.	Graham	decides	to	connect	eight	of	them	together,	being	careful	
to	 connect	 the	 positive	 terminal	 of	 one	 to	 the	 negative	 terminal	 of	
the	 next.	 Eight	 1.5	 V	 batteries	 should	 provide	 12	 V,	 the	 same	 as	 a	
car	 battery,	 he	 reasons,	 so	 he	 should	 be	 able	 to	 jump-start	 his	 car.	
Why	won’t	 this	 scheme	work?
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CONNECTION:

When a conductor is in 
electrostatic equilibrium, 
there are no currents; the 
electric field within the 
conducting material is zero, 
and the entire conductor is at 
the same potential. If we can 
keep a conductor from 
reaching electrostatic 
equilibrium by maintaining a 
potential difference between 
two points of a conductor, 
then the electric field within 
the conducting material is not 
zero and a sustained current 
exists in the conductor.

Figure 18.1 Simplified dia-
gram of a wire that carries an 
electric current. The current is 
the rate of flow of charge 
through an area perpendicular 
to the direction of flow.

Current direction Area A

e– e–
e–

e–
e–

e–

e–
e–

e–

e–

Conducting
wire

E inside
the wire

18.1 ELECTRIC CURRENT

A net flow of charge is called an electric current. The current (symbol I) is defined 
as the net amount of charge passing per unit time through an area perpendicular to 
the flow direction (Fig. 18.1). The magnitude of the current tells us the rate of the 
net flow of charge. If Δq is the net charge that passes through the shaded surface in 
Fig. 18.1 during a time interval Δt, then the current in the wire is defined as

Definition of current

 I =
Δq

Δt
 (18-1)

Currents are not necessarily steady. In order for Eq. (18-1) to define the instantaneous 
current, we must use a sufficiently small time interval Δt.

The SI unit of current, equal to one coulomb per second, is the ampere (A), 
named for the French scientist André Marie Ampère (1775–1836). The ampere is one 
of the SI base units; the coulomb is a derived unit defined as one ampere-second:

 1 C = 1 A·s (18-2)

Small currents are more conveniently measured in milliamperes (mA = 10−3 A) or in 
microamperes (μA = 10−6 A). The word amperes is often shortened to amps; for 
smaller currents, we speak of milliamps or microamps.

Conventional Current According to convention, the direction of an electric current 
is defined as the direction in which positive charge is transported or would be trans-
ported to produce an equivalent movement of net charge. Benjamin Franklin estab-
lished this convention (and decided which kind of charge would be called positive) 
long before scientists understood that the mobile charges (or charge carriers) in met-
als are electrons. If electrons move to the left in a metal wire, the direction of the 
current is to the right; negative charge moving to the left has the same effect on the 
net distribution of charge as positive charge moving to the right.

In most situations, the motion of positive charge in one direction causes the same 
macroscopic effects as the motion of negative charge in the opposite direction. In 
circuit analysis, we always draw currents in the conventional direction regardless of 
the sign of the charge carriers.

CHECKPOINT 18.1

In	 a	water	 pipe,	 there	 is	 an	enormous	amount	 of	moving	 charge—the	protons	
(charge	+e)	and	electrons	 (charge	−e)	 in	 the	neutral	water	molecules	all	move	
with	the	same	average	velocity.	Does	the	water	carry	an	electric	current?	Explain.

Example 18.1

Current in a Clock

Two wires of cross-sectional area 1.6 mm2 connect the ter-
minals of a battery to the circuitry in a clock. During a time 
interval of 0.040 s, 5.0 × 1014 electrons move to the right 
through a cross section of one of the wires. (Actually, 
electrons pass through the cross section in both directions; 
the number that cross to the right is 5.0 × 1014 more than the 

number that cross to the left.) What is the magnitude and 
direction of the current in the wire?

Strategy Current is the rate of flow of charge. We are 
given the number N of electrons; multiplying by the elemen-
tary charge e gives the magnitude of moving charge Δq.

continued on next page
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Electric Current in Liquids and Gases

Electric currents can exist in liquids and gases as well as in solid conductors. In an 
ionic solution, both positive and negative charges contribute to the current by moving 
in opposite directions (Fig. 18.2). The electric field is to the right, away from the 
positive electrode and toward the negative electrode. In response, positive ions move 
in the direction of the electric field (to the right) and negative ions move in the oppo-
site direction (to the left). Since positive and negative charges are moving in opposite 
directions, they both contribute to current in the same direction. Thus, we can find 
the magnitudes of the currents separately due to the motion of the negative charges 
and the positive charges and add them to find the total current. The direction of the 
current in Fig. 18.2 is to the right. If positive and negative charges were moving in 
the same direction, they would represent currents in opposite directions and the indi-
vidual currents would be subtracted to find the net current. (See Checkpoint 18.1.)

Application: Current in Neon Signs and Fluorescent Lights

Currents also exist in gases. Figure 18.3 shows a neon sign. A large potential differ-
ence is applied to the metal electrodes inside a glass container of neon gas. Some 
positive ions are always present in a gas due to bombardment by cosmic rays and to 
natural radioactivity. The positive ions are accelerated by the electric field toward the 
cathode; if they have sufficient energy, they can knock electrons loose when they 
collide with the cathode. These electrons are accelerated toward the anode; they ion-
ize more gas molecules as they pass through the container. Collisions between elec-
trons and ions produce the characteristic red light of a neon sign. Fluorescent lights 
are similar, but the collisions produce ultraviolet radiation; a coating on the inside of 
the glass absorbs the ultraviolet and emits visible light.

18.2 EMF AND CIRCUITS

To maintain a current in a conducting wire, we need to maintain a potential difference 
between the ends of the wire. One way to do that is to connect the ends of the wire 
to the terminals of a battery (one end to each of the two terminals). An ideal battery 
maintains a constant potential difference between its terminals, regardless of how fast 
it must pump charge to do so. An ideal battery is analogous to an ideal water pump 

Solution The magnitude of the charge of 5.0 × 1014 
electrons is

Δq = Ne = 5.0 × 1014 × 1.60 × 10−19 C = 8.0 × 10−5 C
The magnitude of the current is therefore,

I =
Δq

Δt
=

8.0 × 10−5 C
0.040 s

= 0.0020 A = 2.0 mA

Negatively charged electrons moving to the right means that 
the direction of conventional current—the direction in which 
positive charge is effectively being transported—is to 
the left.

Discussion To find the magnitude of the current, we use 
the magnitude of the charge on the electron. We do treat 

current as a signed quantity when analyzing circuits. We ar-
bitrarily choose a direction for current when the actual direc-
tion is not known. If the calculations result in a negative 
current, the negative sign reveals that the actual direction of 
the current is opposite the chosen direction. The negative 
sign merely means the current flows in the direction oppo-
site to the one we assumed.

In this problem, the cross-sectional area of the wire was 
extraneous information. To find the current, we need only 
the quantity of charge and the time for the charge to pass.

Practice Problem 18.1 Current in a Calculator

(a) If 0.320 mA of current flow through a calculator, how 
many electrons pass through per second? (b) How long does 
it take for 1.0 C of charge to pass through the calculator?

Example 18.1 continued

Figure 18.2 A current in a 
solution of potassium chloride 
consists of positive ions (K+) 
and negative ions (Cl−) moving 
in opposite directions. The 
direction of the current is the 
direction in which the positive 
ions move.
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Figure 18.3 Simplified dia-
gram of a neon sign. The neon 
gas inside the glass tube is ion-
ized by a large potential differ-
ence between the electrodes.
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that maintains a constant pressure difference between intake and output regardless of 
the volume flow rate.

Circuit Symbols

The circuit symbol for a battery is + – . Two parallel lines represent the bat-
tery’s terminals. The plus and minus signs are optional because the longer line 
always represents the terminal at higher potential (+) and the shorter line always 
represents the terminal at lower potential (−). Since many batteries consist of 
more than one chemical cell, an alternative symbol is . Don’t confuse 
the battery symbol with the symbol for a capacitor, which has parallel lines that 
are equal in length and thickness: .

The potential difference maintained by an ideal battery is called the battery’s emf 
(symbol ℰ). Emf originally stood for electromotive force, but emf is not a measure 
of the force applied to a charge or to a collection of charges; emf cannot be expressed 
in newtons. Rather, emf is measured in units of potential (volts) and is a measure of 
the work done by the battery per unit charge. To avoid this confusion, we just write 
“emf” (pronounced ee-em-ef). If the amount of charge pumped by an ideal battery of 
emf ℰ is q, then the work done by the battery is

Work done by an ideal battery
 W = ℰq (18-3)

Any device that pumps charge is called a source of emf (or just an emf ). Gen-
erators, solar cells, and fuel cells are other sources of emf. Fuel cells are similar to 
batteries, but their reactants are supplied externally. Many living organisms also 
contain sources of emf (Fig. 18.4). The signals transmitted by the human nervous 
system are electrical in nature, so our bodies contain sources of emf. The same circuit 
symbol is used for any source of constant emf ( + – ). All emfs are energy conver-
sion devices; they convert some other form of energy into electric energy. The energy 
sources used by emfs include chemical energy (batteries, fuel cells, biological sources 
of emf), sunlight (solar cells), and mechanical energy (generators).

Emf in an Electric Circuit In Fig. 18.5, imagine that the flow of water represents 
electric current (the flow of charge) in a circuit. The people act as a pump, taking 

  Figure 18.4  The South  
American electric eel (Electro-
phorous electricus) has hundreds 
of thousands of cells (called 
electroplaques) that supply emf. 
The current supplied by the 
electroplaques is used to stun its 
enemies and to kill its prey.
©Tom McHugh/Science Source

Figure 18.5 Using the flow of water as an analogy to what happens in an electric circuit.
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water from the place where its potential energy is lowest and doing the work neces-
sary to carry it uphill to the place where its potential energy is highest. The water 
then runs downhill, encountering resistance to its flow (the sluice gate) along the way. 
A battery (or other source of emf) plays a role something like that of the people who 
carry buckets of water. Thinking of current as the movement of positive charge, a 
battery takes positive charge from the place where its electric potential is lowest (the 
negative terminal of the battery) and does the work necessary to move it to the place 
where the electric potential is highest (the positive terminal). Then the charge flows 
through some device that offers resistance to the flow of current—perhaps a lamp or 
a heater—before returning to the negative terminal of the battery.

Batteries A 9 V battery maintains its positive terminal 9 V higher than its negative 
terminal—as long as conditions permit the battery to be treated as ideal. Since a volt 
is a joule per coulomb, the battery does 9 J of work for every coulomb of charge that 
it pumps. The battery does work by converting some of its stored chemical energy 
into electric energy. When a battery is dead, its supply of chemical energy has been 
depleted and it can no longer pump charge. Some batteries can be recharged by forc-
ing charge to flow through them in the opposite direction, reversing the direction of 
the electrochemical reaction and converting electric energy into chemical energy.

Batteries come with various emfs (12 V, 9 V, 1.5 V, etc.) as well as in various sizes. 
The size of a battery does not determine its emf. Common battery sizes AAA, AA, A, 
C, and D all provide the same emf (1.5 V). However, the larger batteries have a larger 
quantity of the chemicals and thus store more chemical energy. A larger battery can 
supply more energy by pumping more charge than a smaller one, even though the two 
do the same amount of work per unit charge. The amount of charge that a battery can 
pump is often measured in ampere-hours (A·h). Another difference is that larger batter-
ies can generally pump charge faster—in other words, they can supply larger currents.

Circuits

For currents to continue to flow, a complete circuit is required. That is, there must 
be a continuous conducting path from one terminal of the emf to one or more devices 
and then back to the other terminal. In Fig. 18.6a,b there is one complete circuit for 

+

–
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battery

(c)

Car engine
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Hose

Hose
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I
I

Base
(negative
terminal)

Knob
(positive
terminal)
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Figure 18.6 (a) Connecting a battery to an incandescent lightbulb. The bulb lights up only when current flows through its 
filament. (b) To maintain current flow, a complete circuit must exist. Note the use of the arrows to indicate the direction of 
current flow in the wires, lightbulb, and battery. (c) An analogous circuit dealing with the flow of water rather than of charge.
©Charles D. Winters/Science Source
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the current to travel from the positive terminal of the battery, through a wire, through 
the lightbulb filament, through another wire, into the battery at the negative terminal, 
and through the battery to return to the positive terminal. Since this circuit has only 
a single loop for current to flow, the current must be the same everywhere. Think of 
the battery as a water pump, the wires as hoses, and the lightbulb as the engine block 
and radiator of an automobile (Fig. 18.6c). Water must flow from the pump, through 
a hose, through the engine and radiator, through another hose, and back to the pump. 
The volume flow rate in this single-loop “water circuit” is the same everywhere. 
Current does not get “used up” in the lightbulb any more than water gets used up in 
the radiator.

In this chapter, we consider only circuits in which the current in any branch 
always moves in the same direction—a direct current (dc) circuit. In Chapter 21, we 
study alternating current (ac) circuits, in which the currents periodically reverse 
direction.

18.3 MICROSCOPIC VIEW OF CURRENT IN A METAL: THE 
FREE-ELECTRON MODEL

Figure 18.1 showed a simplified picture of the conduction electrons in a metal, all 
moving with the same constant velocity due to an electric field. Why do the electrons 
not move with a constant acceleration due to a constant electric force? To answer this 
question and to understand the relationship between electric field and current in a 
metal, we need a more accurate picture of the motion of the electrons.

In the absence of an applied electric field, the conduction electrons in a metal are 
in constant random motion at high speed—about 106 m/s in copper. The electrons suffer 
frequent collisions with one another and with ions (the atomic nuclei with their bound 
electrons). In copper, a given conduction electron collides 4 × 1013 times per second, 
traveling on average about 40 nm between collisions. A collision can change the direction 
of the electron’s motion, so each electron moves in a random path similar to that of a 
gas molecule (Fig. 18.7a). The average velocity of the conduction electrons in a metal is 
zero in the absence of an electric field, so there is no net transport of charge.

If a uniform electric field exists within the metal, the electric force on the con-
duction electrons gives them a uniform acceleration between collisions (when the net 
force due to nearby ions and other conduction electrons is small). The electrons still 
move about in random directions like gas molecules, but the electric force makes them 
move on average a little faster in the direction of the force than in the opposite 
direction—much like air molecules in a gentle breeze. As a result, the electrons slowly 
drift in the direction of the electric force (Fig. 18.7b). The electrons now have a 
nonzero average velocity called the drift velocity v→D (which corresponds to the wind 
velocity for air molecules). The magnitude of the drift velocity (the drift speed) is 
much smaller than the instantaneous speeds of the electrons—typically less than 
1 mm/s—but since it is nonzero, there is a net transport of charge.

It might seem that a uniform acceleration should make the electrons move faster and 
faster. If there were no collisions, they would. An electron has a uniform acceleration 
between collisions, but every collision sends it off in some new direction with a different 

– –
––

(a) (b)

Current direction

Average velocity
of electrons

+x

No current

E

Figure 18.7 (a) Random 
paths followed by two conduc-
tion electrons in a metal wire 
in the absence of an electric 
field. (b) An electric field in 
the +x-direction gives the 
electrons a constant accelera-
tion in the −x-direction 
between collisions. On average, 
the electrons drift in the 
−x-direction. The current in the 
wire is in the +x-direction.

CONNECTION:

The random motion of con-
duction electrons in a metal is 
reminiscent of the random 
motion of atoms or molecules 
in a gas. One difference is 
that the distribution of 
electron speeds is quite dif-
ferent from the Maxwell-
Boltzmann distribution (see 
Section 13.6).
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speed. Each collision between an electron and an ion is an opportunity for the electron 
to transfer some of its kinetic energy to the ion. The net result is that the drift velocity 
is constant, and energy is transferred from the electrons to the ions at a constant rate.

Relationship Between Current and Drift Velocity

To find out how current depends on drift velocity, we use a simplified model in which 
all the electrons move at a constant velocity v→D (Fig. 18.8). The number of conduction 
electrons per unit volume (n) is a characteristic of a particular metal. Suppose we 
calculate the current by finding how much charge moves through the shaded area in 
a time Δt. During that time, every electron moves a distance vD Δt to the left. Thus, 
every conduction electron in a volume AvD Δt moves through the shaded area. The 
number of electrons in this volume is N = nAvD Δt; the magnitude of the charge is

 ΔQ = Ne = neAvD  
Δt (18-4)

Therefore, the magnitude of the current in the wire is

Current and drift velocity

 I =
ΔQ

Δt
= neAvD (18-5)

Remember that, since electrons carry negative charge, the direction of current 
flow is opposite the direction of motion of the electrons. The electric force on the 
electrons is opposite the electric field, so the current is in the direction of the electric 
field in the wire.

Equation (18-5) can be generalized to systems in which the current carriers are 
not necessarily electrons, simply by replacing e with the charge of the carriers. In 
materials called semiconductors, there may be both positive and negative carriers. The 
negative carriers are electrons; the positive carriers are “missing” electrons (called 
holes) that act as particles with charge +e. The electrons and holes drift in opposite 
directions; both contribute to the current. Since the concentrations of electrons and 
holes may be different and they may have different drift speeds, the current is

 I = n+eAv+ + n−eAv− (18-6)

In Eq. (18-6), v+ and v− are drift speeds—both are positive.

CHECKPOINT 18.3

Two	copper	wires	with	different	diameters	carry	the	same	current.	Compare	the	
drift	 speeds	of	 the	conduction	electrons	 in	 the	 two	wires.

When we turn on a light by flipping a wall switch, current flows through the 
lightbulb almost instantaneously. We do not have to wait for electrons to move from 
the switch to the lightbulb—which is a good thing, since it would be a long wait (see 

CONNECTION:

Another situation in which an 
applied force results in mo-
tion at constant velocity 
(rather than constant accel-
eration) is an object falling 
through a viscous fluid (see 
Section 9.10). When falling 
at terminal velocity, the vis-
cous drag force opposes the 
constant downward force of 
gravity so the net force is 
zero. To make an analogy, the 
electric field in a metal acts 
like gravity for the falling ob-
ject (constant applied force), 
and collisions of electrons 
with ions act like the drag 
force.

I

vD Δt

vD
FE

e–

e–

e–

e–

e–

e–

e–

e–e–
e–

E
Area A

vD Δt

Figure 18.8 Simplified pic-
ture of the conduction electrons 
moving at a uniform velocity 
v→D. In a time Δt, each electron 
moves a distance vD Δt. The 
black vector arrows show the 
displacement of each electron 
during Δt. All of the conduction 
electrons within a distance vD Δt 
pass through the shaded cross-
sectional area in a time Δt.
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Example 18.2). Conduction electrons are present all along the wires that form the 
circuit. When the switch is closed; the electric field extends into the entire circuit 
very quickly. The electrons start to drift as soon as the electric field is nonzero.

Example 18.2

Drift Speed in Household Wiring

A #12 gauge copper wire, commonly used in household 
wiring, has a diameter of 2.05 mm. There are 8.5 × 1028 
conduction electrons per cubic meter in copper. If the wire 
carries a constant dc current of 5.0 A, what is the drift speed 
of the electrons?

Strategy From the diameter, we can find the cross- 
sectional area A of the wire. The number of conduction 
electrons per cubic meter is n in Eq. (18-5). Then Eq. (18-5) 
enables us to solve for the drift speed.

Solution The cross-sectional area of the wire is

A = πr2 = 1
4πd2

The drift speed is given by

vD =
I

neA
=

5.0 A
8.5 × 1028 m−3 × 1.602 × 10−19 C × 1

4π × (2.05 × 10−3m)2

= 1.1 × 10−4 m · s−1 = 0.11 mm/s

Discussion The drift speed may seem surprisingly small: 
at an average speed of 0.11 mm/s, it takes an electron over  
2 h to move one meter along the wire! How can 5 C/s—a 

respectable amount of current—be carried by electrons with 
such small average velocities? Because there are so many of 
them. As a check: the number of conduction electrons per 
unit length of wire is

nA = 8.5 × 1028 m−3 × 1
4π × (2.05 × 10−3 m)2

= 2.8 × 1023 electrons/m

Then the number of conduction electrons in a 0.11 mm 
length of wire is

2.8 × 1023 electrons/m × 0.11 × 10−3 m

= 3.1 × 1019 electrons

The magnitude of the total charge of these electrons is

3.1 × 1019 electrons × 1.602 × 10−19 C/electron = 5.0 C

Practice Problem 18.2 Current and Drift Speed in 
a Silver Wire

A silver wire has a diameter of 2.588 mm and contains 
5.80 × 1028 conduction electrons per cubic meter. A battery 
of 1.50 V pushes 880 C through the wire in 45 min. Find 
(a) the current and (b) the drift speed in the wire.

18.4 RESISTANCE AND RESISTIVITY

Resistance and Ohm's Law

Suppose we maintain a potential difference across the ends of a conductor. How does 
the current I that flows through the conductor depend on the potential difference ΔV 
across the conductor? For many conductors, the I is proportional to ΔV. Georg Ohm 
(1789–1854) first observed this relationship, which is now called Ohm’s law:

Ohm’s law

 I ∝ ΔV  (18-7)

Ohm’s law is not a universal law of physics like the conservation laws. It does 
not apply at all to some materials, whereas even materials that obey Ohm’s law for a 
wide range of potential differences fail to do so when ΔV becomes too large. Hooke’s 
law (F ∝ Δx or stress ∝ strain) is similar; it applies to many materials under many 
circumstances but is not a fundamental law of physics. Any homogeneous material 
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follows Ohm’s law for some range of potential differences; metals that are good con-
ductors follow Ohm’s law over a wide range of potential differences.

The electrical resistance R is defined to be the ratio of the potential difference 
(or voltage) ΔV across a conductor to the current I through the material:

Definition of resistance

 R =
ΔV

I
 (18-8)

In SI units, electrical resistance is measured in ohms (symbol Ω, the Greek capital 
omega), defined as
 1 Ω = 1 V/A (18-9)

For a given potential difference, a large current flows through a conductor with a 
small resistance, whereas a small current flows through a conductor with a large 
resistance.

An ohmic conductor—one that follows Ohm’s law—has a resistance that is con-
stant, regardless of the potential difference applied. Equation (18-8) is not a statement 
of Ohm’s law, since it does not require that the resistance be constant; it is the 
definition of resistance for nonohmic conductors as well as for ohmic conductors. For 
an ohmic conductor, a graph of current versus potential difference is a straight line 
through the origin with slope 1/R (Fig. 18.9a). For some nonohmic systems, the graph 
of I versus ΔV is dramatically nonlinear (Fig. 18.9b,c).

Microscopic Origin of Ohm’s Law In the free-electron model of the motion of 
electrons in a metal, we can think of the averaged effect of collisions between electrons 
and ions as analogous to a viscous drag force on the electrons: F

→
drag = −bv→D, where 

b is a constant. The electrons move at a constant average velocity v→D because the 
average net force on them is zero:

 F
→

E + F
→

drag = −eE
→

− bv→D = 0 (18-10)

Therefore, the drift speed is proportional to the electric field (vD = eE/b). In a wire 
of constant cross section, the electric field is uniform and proportional to the potential 
difference (E = ΔV/L). In Eq. (18-5), we found that the drift speed is proportional to 

CONNECTION:

Ohm was inspired to look at 
the relationship between cur-
rent and potential difference 
by Fourier’s observation that 
the rate of heat flow through 
a conductor of heat is propor-
tional to the temperature 
difference across it (see 
Section 14.6). Another analo-
gous situation is the flow of 
oil (or any viscous fluid) 
through a pipe. Poiseuille’s 
law says that the rate of flow 
of the fluid is proportional to 
the pressure difference 
between the ends of the pipe 
(see Section 9.9).

Figure 18.9 (a) Current as a function of potential difference for a tungsten wire at constant temperature. The resis-
tance is the same for any value of ΔV on the graph, so the wire is an ohmic conductor. Similar graphs for (b) the gas in 
a fluorescent light and (c) a diode (a semiconductor device) are far from linear; these systems are nonohmic.
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Fluorescent light
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(nonohmic)
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the current (I = neAvD). Putting these ideas together, we have

 I = neAvD = neA(
eE

b ) = neA(
e

b)(
ΔV

L ) (18-11)

Then I ∝ ΔV, which is Ohm’s law. The resistance of the wire is

 R =
ΔV

I
= (

b

ne2)
L

A
 (18-12)

Resistivity

Resistance depends on size and shape. We expect a long wire to have higher resistance 
than a short one (everything else being the same) and a thicker wire to have a lower 
resistance than a thin one. From Eq. (18-12), the electrical resistance of a conductor 
is proportional to length and inversely proportional to cross-sectional area:

Resistance and resistivity

 R = ρ 

L

A
 (18-13)

The constant of proportionality ρ (Greek letter rho), which is an intrinsic charac-
teristic of a particular material at a particular temperature, is called the resistivity of 
the material. From Eq. (18-12), the resistivity of a material depends on the strength of 
the effective drag force resulting from collisions and on the density of conduction elec-
trons. The SI unit for resistivity is Ω·m. Table 18.1 lists resistivities for various substances 
at 20°C. The resistivities of good conductors are small. The resistivities of pure semi-
conductors are significantly larger. By doping semiconductors (introducing controlled 
amounts of impurities), their resistivities can be changed dramatically, which is one 
reason that semiconductors are used to make computer chips and other electronic devices 
(Fig. 18.10). Insulators have very large resistivities (about a factor of 1020 larger than 
for conductors). The inverse of resistivity is called conductivity [SI units (Ω·m)−1].

Resistivity of Water The resistivity of water depends strongly on the concentration 
of ions. Pure water contains only the ions produced by self-ionization 
(H2O ⇌ H+ + OH−). As a result, pure water is an insulator; the theoretical maximum 

ρ (Ω·m) α (°C–1) ρ (Ω·m) α (°C–1)

Conductors Semiconductors (pure)
Silver 1.59 × 10–8 3.8 × 10–3 Carbon 3.5 × 10–5 −0.5 × 10–3

Copper 1.67 × 10–8 4.05 × 10–3 Germanium 0.6 −50 × 10–3

Gold 2.35 × 10–8 3.4 × 10–3 Silicon 2300 −70 × 10–3

Aluminum 2.65 × 10–8 3.9 × 10–3

Tungsten 5.40 × 10–8 4.50 × 10–3

Iron 9.71 × 10–8 5.0 × 10–3 Insulators
Platinum 10.6 × 10–8 3.64 × 10–3 Wood 108 − 1011

Lead 21 × 10–8 3.9 × 10–3 Glass 1010 − 1014

Manganin 44 × 10–8 0.002 × 10–3 Rubber (hard) 1013 − 1016

Constantan 49 × 10–8 0.002 × 10–3 Lucite > 1013

Mercury 96 × 10–8 0.89 × 10–3 Teflon > 1013

Nichrome 108 × 10–8 0.4 × 10–3 Quartz (fused) > 1016

Table 18.1 Resistivities and Temperature Coefficients at 20°C

CONNECTION:

Returning to the analogy with 
fluid flow: a longer pipe 
offers more resistance to fluid 
flow than does a short pipe, 
and a wider pipe offers less 
resistance than a narrow one.
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resistivity at 20°C is about 2.5 × 105 Ω·m. Water is an excellent solvent, and even a 
small amount of dissolved minerals dramatically lowers the resistivity. The resistivity 
is so sensitive to the concentration of impurities that resistivity measurements are used 
to determine water purity. The resistivity of tap water is typically in the range 10−1 Ω·m 
to 10+2 Ω·m, depending on mineral content.

CHECKPOINT 18.4

Why	can	 you	 look	up	 in	a	 table	 the	 resistivity	of	a	 substance	 (at	a	given	 tem-
perature),	but	not	 the	 resistance?

Figure 18.10 A scanning 
electron microscope view of a 
microprocessor chip. Much of 
the chip is made of silicon. By 
introducing impurities into the 
silicon in a controlled way, 
some regions act as insulating 
material, others as conducting 
wires, and others as the 
transistors—circuit elements that 
act as switches. Contemporary 
microprocessors contain billions 
of transistors on a chip with an 
area of a few square 
centimeters.

Example 18.3

Resistance of an Extension Cord

(a) A 30.0 m long extension cord is made from two #19 
gauge copper wires. (The wires carry currents of equal mag-
nitude in opposite directions.) What is the resistance of each 
wire at 20.0°C? The diameter of #19 gauge wire is 0.912 mm. 
(b) If the copper wire is to be replaced by an aluminum wire 
of the same length, what is the minimum diameter so that the 
new wire has a resistance no greater than the old?

Strategy After calculating the cross-sectional area of the 
copper wire from its diameter, we find the resistance of the 
copper wire from Eq. (18-13). The resistivities of copper and 
aluminum are found in Table 18.1.

Solution (a) From Table 18.1, the resistivity of copper is

ρ = 1.67 × 10−8 Ω·m
The wire’s cross-sectional area is

A = 1
4πd2 = 1

4π(9.12 × 10−4 m)2 = 6.533 × 10−7 m2

Resistance is resistivity times length over area:

R = ρ 

L

A

=
1.67 × 10−8 Ω · m × 30.0 m

6.533 × 10−7 m2

= 0.767 Ω

(b) We want the resistance of the aluminum wire to be less 
than or equal to the resistance of the copper wire (Ra ≤ Rc):

ρaL
1
4πd2

a
≤

ρcL
1
4πd2

c

which simplifies to ρad
2
c ≤ ρcd

2
a . Solving for da yields

da ≥ dc√
ρa

ρc
= 0.912 mm × √

2.65 × 10−8 Ω·m
1.67 × 10−8 Ω·m = 1.149 mm

To three significant figures, the minimum diameter is 1.15 mm.

continued on next page
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Discussion Check: the resistance of an aluminum wire of 
diameter 1.149 mm is

R =
ρL

A
=

2.65 × 10−8 Ω·m × 30.0 m
1
4π(1.149 × 10−3 m)2 = 0.767 Ω

Aluminum has a higher resistivity, so the wire must be 
thicker to have the same resistance.

Extension cords are rated according to the maximum 
safe current they can carry. For an appliance that draws 

Example 18.3 continued

a  larger current, a thicker extension cord must be used; 
 otherwise, the potential difference across the wires would 
be too large (ΔV = IR).

Practice Problem 18.3 Resistance of a Lightbulb 
Filament

Find the resistance at 20°C of a tungsten lightbulb filament 
of length 4.0 cm and diameter 0.020 mm.

Resistivity Depends on Temperature

Resistivity does not depend on the size or shape of the material, but it does depend 
on temperature. Two factors primarily determine the resistivity of a metal: the number 
of conduction electrons per unit volume and the rate of collisions between an electron 
and an ion. The second of these factors is sensitive to changes in temperature. At a 
higher temperature, the internal energy is greater; the ions vibrate with larger ampli-
tudes. As a result, the electrons collide more frequently with the ions. With less time 
to accelerate between collisions, they acquire a smaller drift speed; thus, the current 
is smaller for a given electric field. Therefore, as the temperature of a metal is raised, 
its resistivity increases. The metal filament in a glowing incandescent lightbulb reaches 
a temperature of about 3000 K; its resistance is significantly higher than at room 
temperature.

For many materials, the relation between resistivity and temperature is linear over 
a fairly wide range of temperatures:

Temperature dependence of resistivity

 ρ = ρ0(1 + α  ΔT)  (18-14)

Here ρ0 is the resistivity at temperature T0 and ρ is the resistivity at temperature 
T = T0 + ΔT. The quantity α is called the temperature coefficient of resistivity and 
has SI units °C−1 or K−1. Temperature coefficients for some materials are listed in 
Table 18.1.

Application: Resistance Thermometer The relationship between resistivity and 
temperature is the basis of the resistance thermometer. The resistance of a conductor 
is measured at a reference temperature and at the temperature to be measured; the 
change in the resistance is then used to calculate the unknown temperature. For 
measurements over limited temperature ranges, the linear relationship of Eq. (18-14) 
can be used in the calculation; over larger temperature ranges, the resistance thermom-
eter must be calibrated to account for the nonlinear variation of resistivity with 
temperature. Materials with high melting points (e.g., tungsten) can be used to measure 
high temperatures.

Semiconductors For semiconductors, α < 0. A negative temperature coefficient 
means that the resistivity decreases with increasing temperature. It is still true, as for 
metals that are good conductors, that the collision rate increases with temperature. 
However, in semiconductors the number of carriers (conduction electrons and/or 
holes) per unit volume increases dramatically with increasing temperature; with more 
carriers, the resistivity is smaller.
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Water Pure water at room temperature also has a negative temperature coefficient 
of resistivity (α ≈ −0.05 °C−1) because the self-ionization reaction (H2O ⇌ H+ + OH−) 
is temperature-dependent. As temperature increases, the concentration of ions 
increases. As with semiconductors, more charge carriers lowers the resistivity.

Superconductors Some materials become superconductors (ρ = 0) at low tem-
peratures. Once a current is started in a superconducting loop, it continues to flow 
indefinitely without a source of emf. Experiments with superconducting currents have 
lasted more than 2 years without any measurable change in the current. Mercury was 
the first superconductor discovered (by Dutch scientist Kammerlingh Onnes in 1911). 
As the temperature of mercury is decreased, its resistivity gradually decreases—as for 
any metal—but at mercury’s critical temperature (TC = 4.15 K) its resistivity suddenly 
becomes zero. Many other superconductors have since been discovered. In the past 
two decades, scientists have created ceramic materials with much higher critical tem-
peratures than those previously known. Above their critical temperatures, the ceramics 
are insulators.

Resistors

A resistor is a circuit element designed to have a known resistance. Resistors are 
found in virtually all electronic devices (Fig. 18.11). In circuit analysis, it is custom-
ary to write the relationship between voltage and current for a resistor as V = IR. 
Remember that V actually stands for the potential difference between the ends of the 
resistor even though the symbol Δ is omitted. Sometimes V is called the voltage drop. 

Example 18.4

Change in Resistance with Temperature

The nichrome heating element of a toaster has a resistance of 
12.0 Ω when it is red-hot (1200°C). What is the resistance of 
the element at room temperature (20°C)? Ignore changes in 
the length or diameter of the element due to temperature.

Strategy Since we assume the length and cross-sectional 
area to be the same, the resistances at the two temperatures 
are proportional to the resistivities at those temperatures:

R

R0
=

ρL/A
ρ0L/A

=
ρ

ρ0

Thus, we do not need the length or cross-sectional area of the 
heating element.
Given: T0 = 20°C; R = 12.0 Ω at T = 1200°C.
To find: R0

Solution From Eq. (18-14),

R

R0
=

ρL/A
ρ0L/A

=
ρ

ρ0
= 1 + α  ΔT

The change in temperature is

ΔT = T − T0 = 1200°C − 20°C = 1180°C

For nichrome, Table 18.1 gives

α = 0.4 × 10−3 °C−1

Solving for R0 yields

R0 =
R

1 + α  ΔT
=

12.0 Ω
1 + 0.4 × 10−3 °C−1 × 1180°C

= 8 Ω

Discussion Why do we write only one significant figure? 
Since the temperature change is so large (1180°C), the result 
must be considered an estimate. The relationship between 
resistivity and temperature may not be linear over such a large 
temperature range.

Practice Problem 18.4 Using a Resistance 
Thermometer

A platinum resistance thermometer has a resistance of 225 Ω 
at 20.0°C. When the thermometer is placed in a furnace, its 
resistance rises to 448 Ω. What is the temperature of the fur-
nace? Assume the temperature coefficient of resistivity is 
constant over the temperature range in this problem.
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Figure 18.11 The little 
cylinders on this computer 
circuit board are resistors. 
The colored bands specify the 
resistance of the resistor.
©Artit Thongchuea/Shutterstock

Current in a resistor flows in the direction of the electric field, which points from 
higher to lower potential. Therefore, if you move across a resistor in the direction of 
current flow, the voltage drops by an amount IR. Remember a useful analogy: water 
flows downhill (toward lower potential energy); electric current in a resistor flows 
toward lower potential.

Circuit Symbols

In a circuit diagram, the symbol  represents a resistor or any other 
device in a circuit that dissipates electric energy. A straight line ________ 
 represents a conducting wire with negligible resistance. (If a wire’s resistance 
is appreciable, then we draw it as a resistor.)

Internal Resistance of a Battery

Figure 18.12a shows a circuit we’ve seen before. Figure 18.12b is a circuit diagram 
of the circuit. The lightbulb is represented by the symbol for a resistor (R). The bat-
tery is represented by two symbols surrounded by a dashed line. The battery symbol 
represents an ideal emf and the resistor (r) represents the internal resistance of the 
battery. If the internal resistance of a source of emf is negligible, then we just draw 
the symbol for an ideal emf.

When the current through a source of emf is zero, the terminal voltage—the 
potential difference between its terminals—is equal to the emf. When the source 
supplies current to a load (a lightbulb, a toaster, or any other device that uses 
electric energy), its terminal voltage is less than the emf; there is a voltage drop 
due to the internal resistance of the source. If the current is I and the internal 
resistance is r, then the voltage drop across the internal resistance is Ir and the 
terminal voltage is

Terminal voltage of a source of emf

 ΔV = ℰ − Ir (18-15)

When the current is small enough, the voltage drop Ir due to the internal resistance 
is negligible compared with ℰ; then we can treat the emf as ideal (ΔV ≈ ℰ). A flash-
light that is left on for a long time gradually dims because, as the chemicals in a 
battery are depleted, the internal resistance increases. As the internal resistance 
increases, the terminal voltage ΔV = ℰ − Ir decreases; thus, the voltage across the 
lightbulb decreases and the light gets dimmer.

Figure 18.12 (a) A lightbulb connected to a battery by conducting wires. (b) A 
circuit diagram for the same circuit. The emf and the internal resistance of the battery 
are enclosed by a dashed line as a reminder that in reality the two are not separate; 
we can’t make a connection to the “wire” between the two!

(a) (b)

I

I

 = 1.5 Vr

R

+ –

+ –
1.5 V battery Battery terminals
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Conceptual Example 18.5

Starting a Car Using Flashlight Batteries

Discuss the merits of Graham’s scheme to start his car using 
eight D-cell flashlight batteries, each of which provides an 
emf of 1.50 V and has an internal resistance of 0.10 Ω. (A 
current of several hundred amps is required to turn the starter 
motor in a car, but the current through the bulb in a flashlight 
is typically less than 1 A.)

Strategy We consider not only the values of the emfs, but 
also whether the batteries can supply the required current.

Solution and Discussion Connecting eight 1.5 V batter-
ies as in a flashlight—with the positive terminal of one con-
nected to the negative terminal of the next—does provide an 
emf of 12 V. Each battery does 1.5 J of work per coulomb of 
charge; if the charge must pass through all eight batteries in 
turn, the total work done is 12 J per coulomb of charge.

When the batteries are used to power a device that draws 
a small current (because the resistance of the load R is large 
compared with the internal resistance r of each battery), the 
terminal voltage of each battery is nearly 1.5 V and the ter-
minal voltage of the combination is nearly 12 V. For instance, 

in a flashlight that draws 0.50 A of current, the terminal 
voltage of a D-cell is

ΔV = ℰ − Ir = 1.50 V − 0.50 A × 0.10 Ω = 1.45 V

However, the current required to start the car is large. As 
the current increases, the terminal voltage decreases. We can 
estimate the maximum current that a battery can supply by set-
ting its terminal voltage to zero (the smallest possible value):

ΔV = ℰ − Imaxr = 0
Imax = ℰ/r = (1.5 V)/(0.10 Ω) = 15 A

(This estimate is optimistic since the battery’s chemical en-
ergy would be rapidly depleted and the internal resistance 
would increase dramatically.) The flashlight batteries cannot 
supply a current large enough to start the car.

Practice Problem 18.5 Terminal Voltage of a 
Battery in a Clock

The current supplied by an alkaline D-cell (1.500 V emf, 
0.100 Ω internal resistance) in a clock is 50.0 mA. What is 
the terminal voltage of the battery?

18.5 KIRCHHOFF’S RULES

Two rules, developed by Gustav Kirchhoff (1824–1887), are essential in circuit anal-
ysis. Kirchhoff’s junction rule states that the sum of the currents that flow into a 
junction—any electric connection—must equal the sum of the currents that flow out 
of the same junction. The junction rule is a consequence of the law of conservation 
of charge. Since charge does not continually build up at a junction and is not created 
there, the net rate of flow of charge into the junction must be zero.

Kirchhoff’s junction rule

 ∑Iin − ∑Iout = 0 (18-16)

Figure 18.13a shows two streams joining to form a larger stream. Figure 18.13b 
shows an analogous junction (point A) in an electric circuit. Applying the junction 
rule to point A results in the equation I1 + I2 − I3 = 0.

Kirchhoff’s loop rule is an expression of energy conservation applied to 
changes in potential in a circuit. Recall that the electric potential must have a unique 
value at any point; the potential at a point cannot depend on the path one takes to 
arrive at that point. Therefore, if a closed path is followed in a circuit, beginning 
and ending at the same point, the algebraic sum of the potential changes must be 
zero (Fig.  18.14). Think of taking a hike in the mountains, starting and returning 
at the same spot. No matter what path you take, the algebraic sum of all your 
elevation changes must equal zero.

CONNECTION:

The junction rule is just the 
conservation of charge 
written in a convenient form 
for circuits.

(b)

I2

I3I1

(a)

A

Figure 18.13 (a) The rate at 
which water flows into the 
junction from the two streams is 
equal to the rate at which water 
flows out of the junction into 
the larger stream. Equivalently, 
we can say that the net rate of 
flow of water into the junction 
is zero. (b) An analogous 
junction in an electric circuit.
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Kirchhoff’s loop rule

 ∑ΔV = 0 (18-17)

for any path in a circuit that starts and ends at the same point. (Potential rises 
are positive; potential drops are negative.)

Be careful to get the signs right when applying the loop rule. If you follow a path 
through a resistor going in the same direction as the current, the potential drops 
(ΔV = −IR). If your path takes you through a resistor in a direction opposite to the 
current (“upstream”), the potential rises (ΔV = +IR). For an emf, the potential drops 
if you move from the positive terminal to the negative (ΔV = −ℰ); it rises if you 
move from the negative to the positive (ΔV = +ℰ).

Using Kirchhoff’s Rules In Section 18.6, we will use Kirchhoff’s rules to learn 
how to replace series or parallel circuit elements with a single equivalent element. 
Doing so is usually much easier than applying Kirchhoff’s rules directly. However, 
not all circuits can be reduced using only series or parallel equivalents; Section 18.7 
discusses how to analyze these circuits using Kirchhoff’s rules.

18.6 SERIES AND PARALLEL CIRCUITS

Resistors in Series

When one or more electric devices are wired so that the same current flows through 
each one, the devices are said to be wired in series (Figs. 18.15 and 18.16). The 
circuit of Fig. 18.16a shows two resistors in series. The straight lines represent wires, 
which we assume to have negligible resistance. Negligible resistance means negligible 
voltage drop (ΔV = IR), so points connected by wires of negligible resistance are at 
the same potential. The junction rule, applied to any of the points A–D, tells us that 
the same current flows through the emf and the two resistors.

Let’s apply the loop rule to a clockwise loop DABCD. From D to A we move 
from the negative terminal to the positive terminal of the emf, so ΔV = +1.5 V. Since 

CONNECTION:

The loop rule is just energy 
conservation written in a 
convenient form for circuits.

Figure 18.14 Applying the 
loop rule. If we start at point A 
and walk around the loop in the 
direction shown (clockwise), the 
loop rule gives 

Σ ΔV = −IR1 − IR2 + ℰ = 0

(Starting at B and walking coun-
terclockwise gives 

Σ ΔV = +IR2 + IR1 − ℰ = 0

which is equivalent.)

I

I

I

+ –

R2

R1

A

B

ℰ

Loop
direction

Figure 18.15 Just as water flows at the same mass flow rate through each of the two sluice gates, the same current 
flows through two resistors in series. Just as Δy1 + Δy2 = Δy, the potential difference ΔV across a series pair is the 
sum of the two potential differences. In this circuit, ΔV1 + ΔV2 = ℰ, the emf of the battery. If R1 ≠ R2, the potential 
differences across the resistors (ΔV1 and ΔV2) are not equal, but the current through them (I) is still the same.

People = batteryΔy1

Δy2

Low
potential energy

Sluice gates =
resistors

High
potential
energyHigh potential

Low potential

+

–

I

R1

R2

I

ℰ

ΔV1

ΔV2
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Figure 18.16 (a) A circuit 
with two resistors in series. 
(b) Replacing the two resistors 
with an equivalent resistor.

+ –
1.5 V

R2

R1 I

D

C

Loop

A

B

(a)

I I

+ –
1.5 V

Req = R1 + R2

D

C

A

B

(b)

we move around the loop with the current, the potential drops as we move across each 
resistor. Therefore,

1.5 V − IR1 − IR2 = 0
The same current I flows through the two resistors in series. Factoring out the com-
mon current I,

I(R1 + R2) = 1.5 V
The current I would be the same if a single equivalent resistor Req = R1 + R2 replaced 
the two resistors in series:

IReq = I(R1 + R2) = 1.5 V
Figure 18.16b shows how the circuit diagram can be redrawn to indicate the simplified, 
equivalent circuit.

We can generalize this result to any number of resistors in series:

For any number N of resistors connected in series,

 Req = ∑Rn = R1 + R2 + · · · + RN  (18-18)

Note that the equivalent resistance for two or more resistors in series is larger than 
any of the resistances.

Emfs in Series

In many devices, batteries are connected in series with the positive terminal of one con-
nected to the negative terminal of the next. This provides a larger emf than a single battery 
can (Fig. 18.17). The emfs of batteries connected in this way are added just as series 
resistances are added. However, there is a disadvantage in connecting batteries in series: 
the internal resistance is larger because the internal resistances are in series as well.

Figure 18.17 (a) Two 1.5 V batteries connected in series in a flashlight to supply 
3.0 V. (b) Circuit diagram, including the internal resistances of the batteries. 
(c) Simplified circuit diagram, where the two batteries are combined into a single 
source of emf 2ℰ with internal resistance 2r. The symbol  represents an 
open switch (no electric connection). The symbol  represents a closed switch.

(a)

Metal strip

Spring

+ –
1.5 V battery 1.5 V battery

+ –

Switch

+ –
2r 2ℰ

R

(c)

Switch

Switch

ℰℰ rr

(b)
R

+ –+ –
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Sources can be connected in series with the emfs in opposition. A common use for 
such a circuit is in a battery charger. In Fig. 18.18, as we move from point C to B to 
A, the potential decreases by ℰ2 and then increases by ℰ1, so the net emf is ℰ1 − ℰ2.

Capacitors in Series

Figure 18.19a shows a circuit diagram in which two capacitors are connected in series. 
Although no charges can move through the dielectric of a capacitor from one plate to 
the other, the instantaneous currents I that flow onto one plate and from the other must 
be equal. Why? The two plates of a capacitor always have charges of equal magnitudes 
and opposite signs. Therefore, the magnitudes of the charges on the two plates must 
change at the same rate. The rate of change of the charge is equal to the current. 
Viewed from the outside, the capacitor behaves as if a current I flows through it.

The instantaneous currents “through” series capacitors C1 and C2 must be equal 
because no charge is created or destroyed and there is no junction between them to 
another branch of the circuit. Because their charges always change at the same rate, 
the instantaneous charges on series capacitors are equal.

We want to find the equivalent capacitance Ceq that would store the same amount 
of charge as each of the series capacitors for the same applied voltage. With the switch 
closed, the emf pumps charge so that the potential difference between points A and 
B is equal to the emf. The capacitors are fully charged and the current goes to zero. 
From Kirchhoff’s loop rule,
 ℰ − ΔV1 − ΔV2 = 0 (18-19)
The magnitude Q of the charges on series capacitors is the same, so

 ΔV1 =
Q

C1
 and ΔV2 =

Q

C2
 (18-20)

The equivalent capacitance (Fig. 18.19b) is defined by ℰ = Q/Ceq. Substituting into 
Eq. (18-19) yields

 
Q

Ceq
−

Q

C1
−

Q

C2
= 0 (18-21)

The equivalent capacitance is given by

 
1

Ceq
=

1
C1

+
1
C2

 (18-22)

This reasoning can be extended to the general case for any number of capacitors con-
nected in series.

For N capacitors connected in series,

 
1

Ceq
= ∑ 1

Cn

=
1
C1

+
1
C2

+ · · · +
1

CN

 (18-23)

Note that the equivalent capacitor stores the same magnitude of charge as each of the 
capacitors it replaces.

Resistors in Parallel

When one or more electrical devices are wired so that the potential difference across them 
is the same, the devices are said to be wired in parallel (Fig. 18.20). In Fig.  18.21, an 
emf is connected to three resistors in parallel with one another. The left side of each resis-
tor is at the same potential since they are all connected by wires of negligible resistance. 
Likewise, the right side of each resistor is at the same potential. Thus, there is a common 
potential difference across the three resistors. Applying the junction rule to point A yields
 +I − I1 − I2 − I3 = 0 or I = I1 + I2 + I3 (18-24)

Figure 18.19 (a) Two 
capacitors connected in series. 
(b) Equivalent circuit.

(b)

ℰ

S

Ceq

A B

(a)

ℰ

S

A

C1 C2

B

I

I I I

Figure 18.18 Circuit for 
charging a rechargeable battery 
(shown as emf ℰ2). The source 
supplying the energy to charge 
the battery must have a larger 
emf (ℰ1 > ℰ2). The net emf in 
the circuit is ℰ1 − ℰ2; the 
current is I = (ℰ1 − ℰ2)/R 
(where R includes the internal 
resistances of the sources).

+ – +–
ℰ2ℰ1

R

B CA

I



 18.6 SERIES	AND	PARALLEL	CIRCUITS 687

Figure 18.20 Some water flows through one branch and some through the other. The mass flow rate before the 
water channels divide and after they come back together is equal to the sum of the flow rates in the two branches. The 
elevation change Δy for the two branches is equal since they start and end at the same elevations. For two resistors in 
parallel, the currents add (I = I1 + I2); the potential differences are equal (ΔV1 = ΔV2 = ℰ). If R1 ≠ R2, the currents I1 
and I2 are not equal, but the potential differences are still equal.

m
t

Δ

Δ
Δ

Δ

m1

m2
t

m
t

Δ

Δ Δ
Δ

t

People = battery

Low
potential energy

High
potential
energy

High potential

Low potential

I

I
I1 I2

R1 R2 +
–
ℰ

How much of the current I from the emf flows through each resistor? The current 
divides such that the potential difference VA − VB must be the same along each of the 
three paths—and it must equal the emf ℰ. From the definition of resistance,
 ℰ = I1R1 = I2R2 = I3R3 (18-25)
Therefore, the currents are

 I1 =
ℰ

R1
,  I2 =

ℰ

R2
,  I3 =

ℰ

R3
 (18-26)

Substituting the currents into Eq. (18-19) yields

 I =
ℰ

R1
+

ℰ

R2
+

ℰ

R3
 (18-27)

Dividing by ℰ yields

 
I

ℰ
=

1
R1

+
1
R2

+
1
R3

 (18-28)

The three parallel resistors can be replaced by a single equivalent resistor Req. In order 
for the same current to flow, Req must be chosen so that ℰ = IReq. Then I/ℰ = 1/Req and

 
1

Req
=

1
R1

+
1
R2

+
1
R3

 (18-29)

Figure 18.21 (a) Three 
resistors connected in parallel. 
(b) The equivalent circuit.
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Although we examined three resistors in parallel, the result applies to any number 
of resistors in parallel:

For N resistors connected in parallel,

 
1

Req
= ∑ 1

Rn

=
1
R1

+
1
R2

+ · · · +
1

RN

 (18-30)

Note that the equivalent resistance for two or more resistors in parallel is smaller than 
any of the resistances (1/Req > 1/Ri, so Req < Ri). Note also that the equivalent resistance 
for resistors in parallel is found in the same way as the equivalent capacitance for 
capacitors in series. The reason is that resistance is defined as R = ΔV/I and capacitance 
as C = Q/ΔV. One has ΔV in the numerator, the other in the denominator.

CHECKPOINT 18.6

What	 is	 the	equivalent	 resistance	 for	 two	equal	 resistors	 (R)	 in	parallel?

CONNECTION:

The same results for series 
and parallel resistors, 
Eqs. (18-18) and (18-30), are 
valid for thermal resistances 
(Section 14.6) and to the 
resistance of pipes to viscous 
fluid flow (Section 9.9).

Example 18.6

Current for Two Parallel Resistors

(a) Find the equivalent resistance for the two resistors in 
Fig. 18.22 if R1 = 20.0 Ω and R2 = 40.0 Ω. (b) What is the 
ratio of the current through R1 to the current through R2?

Strategy Points A and B are at the same potential; points 
C and D are at the same potential. Therefore, the voltage 
drops across the two resistors are equal; the two resistors are 
in parallel. The ratio of the currents can be found by equating 
the potential differences in the two branches in terms of the 
current and resistance.

Solution (a) The equivalent resistance for two parallel 
 resistors is

1
Req

=
1
R1

+
1
R2

=
1

20.0 Ω
+

1
40.0 Ω

= 0.0750 Ω−1

Req =
1

0.0750 Ω−1 = 13.3 Ω

(b) The potential differences across the resistors are equal
I1R1 = I2R2

Therefore,

I1

I2
=

R2

R1
=

40.0 Ω
20.0 Ω

= 2.00

Discussion Note that the current in each branch of the 
circuit is inversely proportional to the resistance of that 
branch. Since R2 is twice R1, it has half as much current 
flowing through it. At the junction of two or more parallel 
branches, the current does not all flow through the “path of 
least resistance,” but more current flows through the branch 
of least resistance than through the branches with larger 
resistances.

Practice Problem 18.6 Three Resistors in Parallel

Find the equivalent resistance from point A to point B for the 
three resistors in Fig. 18.23.

Figure 18.22
Circuit with parallel resistors for Example 18.6.

C

D

B

A

II

+ –

R2

R1

ℰ

I2

I1

Figure 18.23
Three parallel resistors.
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A B
4.0 Ω

2.0 Ω 

4.0 Ω
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Example 18.7

Equivalent Resistance for Network in Series 
and Parallel

(a) Find the equivalent resistance for the network of resistors 
in Fig. 18.24. (b) Find the current through the resistor R2 if 
ℰ = 0.60 V.

Strategy We simplify the network of resistors in a 
 sequence of steps. At first, the only series or parallel combi-
nation is the two resistors (R3 and R4) in parallel between 
points B and C. No other pair of resistors has either the same 
current (for series) or the same voltage drop (for parallel). We 
replace those two with an equivalent resistor, redraw the cir-
cuit, and look for new series or parallel combinations, con-
tinuing until the entire network reduces to a single resistor.

Solution (a) For the two resistors in parallel between 
points B and C,

Req = (
1
R3

+
1
R4)

−1

= (
1

6.0 Ω
+

1
3.0 Ω)

−1

= 2.0 Ω

We redraw the circuit, replacing the two parallel resistors 
with an equivalent 2.0 Ω resistor.

C

D

B

A

(1)

R2 = 4.0 Ω 2.0 Ω

R1 = 9.0 Ω

I

I3 + I4

I1

I2

+ –
ℰ

The 4.0 Ω and 2.0 Ω resistors are in series since the same 
current must flow through them. They can be replaced with 
a single resistor,

Req = 4.0 Ω + 2.0 Ω = 6.0 Ω

The network of resistors now becomes

C

DA

(2)

R1 = 9.0 Ω

6.0 Ω

I

I2

I1

+ –
ℰ

The two resistors in parallel have an equivalent resistance of

Req = (
1

6.0 Ω
+

1
9.0 Ω)

−1

= 3.6 Ω

The network of resistors reduces to a single equivalent 3.6 Ω 
resistor.

C, DA

(3)

3.6 Ω

I
+ –
ℰ

(b) The current through R2 is I2 (see Fig. 18.24). From circuit 
diagram (2), when I2 flows through an equivalent resistance 
of 6.0 Ω, the voltage drop is 0.60 V. Therefore,

I2 =
0.60 V
6.0 Ω

= 0.10 A

Discussion To reduce complicated arrangements of resis-
tors to an equivalent resistance, look for resistors in parallel 
(resistors connected so that they must have the same poten-
tial difference) and resistors in series (connected so that they 
must have the same current). Replace all parallel and series 
combinations of resistors with their equivalents. Then look 
for new parallel and series combinations in the simplified 
circuit. Repeat until there is only one resistor remaining. 
 After that, work backward through the circuit diagrams to 
find the current in each resistor, equivalent or real, and the 
potential difference across each.

Practice Problem 18.7 Three Resistors Connected

Find the equivalent resistance that can be placed between points 
A and B to replace the three equal resistors shown in Fig. 18.25. 
First try to decide whether these resistors are in series or 
parallel. Label the black dots with A or B by tracing the straight 
lines from A or B to their connections at one side or another of 
the resistors. Redraw the diagram if that helps you decide.

Figure 18.24
Network of resistors for Example 18.7.
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A

R2 = 4.0 Ω

R3 = 6.0 Ω

R4 = 3.0 Ω
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+ –
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Figure 18.25
Three connected 
resistors.A B
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Emfs in Parallel

Two or more sources of equal emf are often connected in parallel with all the positive 
terminals connected together and all the negative terminals connected together 
(Fig. 18.26a). The equivalent emf for any number of equal sources in parallel is the 
same as the emf of each source. The advantage of connecting sources in this way is 
not to achieve a larger emf, but rather to lower the internal resistance and thus supply 
more current. In Fig. 18.26a, the two internal resistances (r) are equal. Since they are 
in parallel—note that points A and B are at the same potential—the equivalent inter-
nal resistance for the parallel combination is 1

2r. To jump-start a car, one connects the 
two batteries in parallel, positive to positive and negative to negative.

Never connect unequal emfs in parallel or connect emfs in parallel with opposite 
polarities (Fig. 18.26b). In such cases the two batteries quickly drain each other and 
supply little or no current to the rest of the circuit.

Capacitors in Parallel

Capacitors in series have the same charge but may have different potential differences. 
Capacitors in parallel share a common potential difference but may have different 
charges. Suppose three capacitors are in parallel (Fig. 18.27). After the switch is 
closed, the source of emf pumps charge onto the plates of the capacitors until the 
potential difference across each capacitor is equal to the emf ℰ. Suppose that the total 
magnitude of charge pumped by the battery is Q. If the magnitude of charge on the 
three capacitors is q1, q2, and q3, respectively, conservation of charge requires that

 Q = q1 + q2 + q3 (18-31)

The relation between the potential difference across a capacitor and the charge on 
either plate of the capacitor is q = C ΔV. For each capacitor, ΔV = ℰ. Therefore,

 Q = q1 + q2 + q3 = C1ℰ + C2ℰ + C3ℰ = (C1 + C2 + C3)ℰ (18-32)

We can replace the three capacitors with a single equivalent capacitor. In order for it 
to store charge of magnitude Q for a potential difference ℰ, Q = Ceqℰ. Therefore, 
Ceq = C1 + C2 + C3. Once again, this result can be extended to the general case for 
any number of capacitors connected in parallel.

For N capacitors connected in parallel,

 Ceq = ∑Cn = C1 + C2 + · · · + CN  (18-33)

18.7 CIRCUIT ANALYSIS USING KIRCHHOFF’S RULES

Sometimes a circuit cannot be simplified by replacing parallel and series combinations 
alone. In such cases, we apply Kirchhoff’s rules directly and solve the resulting equa-
tions simultaneously (see Appendix A.3).

Figure 18.27 (a) Three 
capacitors in parallel. (b) When 
the switch is closed, each 
capacitor is charged until the 
potential difference between its 
plates is equal to ℰ. If the 
capacitances are unequal, the 
charges on the capacitors are 
unequal.
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Figure 18.26 (a) Two identical batteries (with internal resistances r) in parallel. 
The combination provides an emf ℰ and can supply twice as much current as one 
battery since the equivalent internal resistance is 1

2r. (b) Never connect batteries in 
parallel with opposite polarities. In the case shown, the emfs are equal in magnitude, 
so points C and D are at the same potential. The batteries supply no emf to the rest 
of the circuit; they just drain each other. If two car batteries were connected in this 
way, a dangerously large current would flow through the batteries, possibly causing 
an explosion.
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Problem-Solving Strategy: Using Kirchhoff’s Rules to Analyze 
a Circuit

 1. Replace any series or parallel combinations with their equivalents.
 2. Assign variables to the currents in each branch of the circuit (I1, I2, . . .) 

and choose directions for each current. Draw the circuit with the current 
directions indicated by arrows. It does not matter whether or not you choose 
the correct direction.

 3. Apply Kirchhoff’s junction rule to all but one of the junctions in the circuit. 
(Applying it to every junction produces one redundant equation.) Remember 
that current into a junction is positive; current out of a junction is negative.

 4. Apply Kirchhoff’s loop rule to enough loops so that, together with the 
junction equations, you have the same number of equations as unknown 
quantities. For each loop, choose a starting point and a direction to go 
around the loop. Be careful with signs. For a resistor, if your path through 
a resistor goes with the current (“downstream”), there is a potential drop; 
if your path goes against the current (“upstream”), the potential rises. For 
an emf, the potential drops or rises depending on whether you move from 
the positive terminal to the negative or vice versa; the direction of the cur-
rent is irrelevant. A helpful method is to write “+” and “−” signs on the 
ends of each resistor and emf to indicate which end is at the higher poten-
tial and which is at the lower potential.

 5. Solve the loop and junction equations simultaneously. If a current comes out 
negative, the direction of the current is opposite to the direction you chose.

 6. Check your result using one or more loops or junctions. A good choice is 
a loop that you did not use in the solution.

Example 18.8

A Two-Loop Circuit

Find the currents through each branch of the circuit of 
Fig. 18.28.

Strategy First we look for series and parallel combinations. 
R1 and ℰ1 are in series, but since one is a resistor and one an 
emf we cannot replace them with a single equivalent circuit 
element. No pair of resistors is either in series or in parallel. R1 
and R2 might look like they’re in parallel, but the emf ℰ1 keeps 
points A and F at different potentials, so they are not. The two 
emfs might look like they’re in series, but the junction at point 

F means that the current through the two is not the same. 
Since there are no series or parallel combinations to simplify, 
we proceed to apply Kirchhoff’s rules directly.

Solution First we assign the currents variable names and 
directions on the circuit diagram: Points C and F are junc-
tions between the three branches of the circuit. We choose 
current I1 for branch FABC, current I3 for branch FEDC, and 
current I2 for branch CF.

+

– +

–
–

+
+–+

–

ℰ1 ℰ2

R3R2R1
Loop

ABCFA I2 I3I1

B C D

A EF

Loop
FCDEF

Now we can apply the junction rule. There are two 
junctions; we can choose either one. For point C, I1 and I3 

Figure 18.28
Circuit to be analyzed using Kirchhoff’s rules.

ℰ1 = 1.5 V ℰ2 = 3.0 V

R3

R1 = 4.0 Ω
R2 = 6.0 Ω
R3 = 3.0 Ω

R2R1

B C D

A EF

continued on next page
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flow into the junction and I2 flows out of the junction. The 
resulting equation is

 I1 + I3 − I2 = 0 (1)

Before applying the loop rule, we write “+” and “−” 
signs on each resistor and emf to show which side is at the 
higher potential and which at the lower, given the directions 
assumed for the currents. In a resistor, current flows from 
higher to lower potential. The emf symbol uses the longer 
line for the positive terminal and the shorter line for the 
negative terminal.

Now we choose a closed loop and add up the potential 
rises and drops as we travel around the loop. Suppose we 
start at point A and travel around loop ABCFA. The starting 
point and direction to go around the loop are arbitrary 
choices, but once made, we stick with it regardless of the 
directions of the currents. From A to B, we move in the same 
direction as the current I1. The current through a resistor 
travels from higher to lower potential, so going from A to B 
is a potential drop: ΔVA→B = −I1R1.

From B to C, since the wire is assumed to have negligi-
ble resistance, there is no potential rise or drop. From C to F, 
we move with current I2, so there is another potential drop: 
ΔVC→F = −I2R2.

Finally, from F to A, we move from the negative termi-
nal of an emf to the positive terminal. The potential rises: 
ΔVF→A = +ℰ1. A was the starting point, so the loop is com-
plete. The loop rule says that the sum of the potential changes 
is equal to zero:

 −I1R1 − I2R2 + ℰ1 = 0 (2)

We must choose another loop since we have not yet 
gone through resistor R3 or emf ℰ2. There are two choices 
possible: the right-hand loop (such as FCDEF) or the outer 
loop (ABCDEFA). Let’s choose FCDEF.

From F to C, we move against the current I2 
(“upstream”). The potential rises: ΔVF→C = +I2R2. From C 
to D, the potential does not change. From D to E, we again 
move upstream, so ΔVD→E = +I3R3. From E to F, we move 
through a source of emf from the negative to the positive 
terminal. The potential increases: ΔVE→F = +ℰ2. Then the 
loop rule gives

 +I2R2 + I3R3 + ℰ2 = 0 (3)

Now we have three equations and three unknowns (the 
three currents). To solve them simultaneously, we first sub-
stitute known numerical values:

 I1 + I3 − I2 = 0  (1)
 −(4.0 Ω)I1 − (6.0 Ω)I2 + 1.5 V = 0 (2)  
 (6.0 Ω)I2 + (3.0 Ω)I3 + 3.0 V = 0 (3)

continued on next page

Example 18.8 continued

To solve simultaneous equations, we can solve one 
equation for one variable and substitute into the other 
equations, thus eliminating one variable. Solving Eq. (1) for 
I1 yields I1 = −I3 + I2. Now we substitute this expression for 
I1 in Eq. (2):

−(4.0 Ω)(−I3 + I2) − (6.0 Ω)I2 + 1.5 V = 0

This can be simplified to

 4.0I3 − 10.0I2 = −1.5 V/Ω = −1.5 A (4)

Equations (3) and (4) now have only two unknowns. We 
can eliminate I3 if we multiply Eq. (4) by 3 and Eq. (3) by 4 
so that I3 has the same coefficient.

 12.0I3 − 30.0I2 = −4.5 A  3 × Eq. (4)

 12.0I3 + 24.0I2 = −12.0 A  4 × Eq. (3)

Subtracting one equation from the other yields

54.0I2 = −7.5 A

Now we can solve for I2:

I2 = − 

7.5
54.0

 A = −0.139 A

Substituting the value of I2 into Eq. (4) enables us to solve 
for I3:

4I3 + 10 × 0.139 A = −1.5 A

I3 =
−1.5 − 1.39

4
 A = −0.723 A

Equation (1) now gives I1:

I1 = −I3 + I2 = + 0.723 A − 0.139 A = + 0.584 A

Rounded to two significant figures, the currents are 
I1 = +0.58 A, I3 = −0.72 A, and I2 = −0.14 A. Since I3 and 
I2 came out negative, the actual directions of the currents in 
those branches are opposite to the ones we arbitrarily chose.

+

–

+

–

–+–+

+

–
0.14 A0.58 A 0.72 A

ℰ1 ℰ2

R3R2R1

B C D

A EF

Discussion Note that it did not matter that we chose some 
of the current directions wrong. It also doesn’t matter which 
loops we choose (as long as we cover every branch of the 
circuit), which starting point we use for a loop, or which di-
rection we go around a loop.
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The hardest thing about applying Kirchhoff’s rules is 
getting the signs correct. It is also easy to make an algebraic 
mistake when solving simultaneous equations. Therefore, it 
is a good idea to check the answer. A good way to check is to 
write down a loop equation for a loop that was not used in 
the solution (see Practice Problem 18.8).

Practice Problem 18.8 Verifying the Solution with 
the Loop Rule

Apply Kirchhoff’s loop rule to loop CBAFEDC to verify the 
solution of Example 18.8.

Example 18.8 continued

18.8 POWER AND ENERGY IN CIRCUITS

From the definition of electric potential, if a charge q moves through a potential 
difference ΔV, the change in electric potential energy is
 ΔUE = q ΔV  (17-8)
From energy conservation, a change in electric potential energy means that conversion 
between two forms of energy takes place. For example, a battery converts stored 
chemical energy into electric potential energy. A resistor converts electric potential 
energy into internal energy. The rate at which the energy conversion takes place is 
the power P. Since current is the rate of flow of charge, I = q/Δt and

Power for any circuit element

 P =
ΔUE

Δt
=

q

Δt
 ΔV = I ΔV  (18-34)

Thus, the power for any circuit element is the product of current and potential differ-
ence. We can verify that current times voltage comes out in the correct units for power 
by substituting coulombs per second for amperes and joules per coulomb for volts:

 A × V =
C
s ×

J
C

=
J
s = W (18-35)

Power Supplied by an Emf According to the definition of emf, if the amount of charge 
pumped by an ideal source of constant emf ℰ is q, then the work done by the battery is

 W = ℰq (18-3)

The power supplied by the emf is the rate at which it does work:

 P =
ΔW

Δt
= ℰ 

q

Δt
= ℰI  (18-36)

Since ΔV = ℰ for an ideal emf, Eqs. (18-34) and (18-36) are equivalent.

Power Dissipated by a Resistor

If an emf causes current to flow through a resistor, what happens to the energy supplied 
by the emf? Why must the emf continue supplying energy to maintain the current?

Current flows in a metal wire when an emf gives rise to a potential difference 
between one end and the other. The electric field makes the conduction electrons drift 
in the direction of lower electric potential energy (higher potential). If there were no 
collisions between electrons and atoms in the metal, the average kinetic energy of the 
electrons would continually increase. However, the electrons frequently collide with 
atoms; each such collision is an opportunity for an electron to give away some of its 
kinetic energy. For a steady current, the average kinetic energy of the conduction 
electrons does not increase; the rate at which the electrons gain kinetic energy (due 
to the electric field) is equal to the rate at which they lose kinetic energy (due to 
collisions). The net effect is that the energy supplied by the emf increases the 
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vibrational energy of the atoms. The vibrational energy of the atoms is part of the 
internal energy of the metal, so the temperature of the metal rises.

From the definition of resistance, the potential drop across a resistor is
 ΔV = IR (18-8)
Then the rate at which energy is dissipated (converted from an organized form to a 
disorganized form) in a resistor can be written
 P = I ΔV = I(IR) = I2R (18-37)
or

 P = I ΔV = (
ΔV

R )ΔV =
(ΔV)2

R
 (18-38)

Is the power dissipated in a resistor directly proportional to the resistance 
[Eq. (18-37)] or inversely proportional to the resistance [Eq. (18-38)]? It depends on 
the situation. For two resistors with the same current (such as two resistors in series), 
the power is directly proportional to resistance—the voltage drops are not the same. 
For two resistors with the same voltage drop (such as two resistors in parallel), the 
power is inversely proportional to resistance; this time the currents are not the same.

Dissipation in a resistor is not necessarily undesirable. In any kind of electric 
heater—in portable or baseboard heaters, electric stoves and ovens, toasters, hair dry-
ers, and electric clothes dryers—and in incandescent lights, the dissipation of energy 
and the resulting temperature increase of a resistor are put to good use.

Power Supplied by an Emf with Internal Resistance

If the source has internal resistance, then the net power supplied is less than ℰI. Some 
of the energy supplied by the emf is dissipated by the internal resistance. The net 
useful power supplied to the rest of the circuit is
 P = ℰI − I2r (18-39)
where r is the internal resistance of the source. Equation (18-39) agrees with 
Eq. (18-34); remember that the potential difference is not equal to the emf when there 
is internal resistance (see Problem 76).

Example 18.9

Two Flashlights

A flashlight is powered by two batteries in series. Each has 
an emf of 1.50 V and an internal resistance of 0.10 Ω. The 
batteries are connected to the lightbulb by wires of total 
resistance 0.40 Ω. At normal operating temperature, the re-
sistance of the filament is 9.70 Ω. (a) Calculate the power 
dissipated by the bulb—that is, the rate at which energy in 
the form of heat and light flows away from it. (b) Calculate 
the power dissipated by the wires and the net power supplied 
by the batteries. (c) A second flashlight uses four such 
batteries in series and the same resistance wires. A bulb of 
resistance 42.1 Ω (at operating temperature) dissipates 
approximately the same power as the bulb in the first flash-
light. Verify that the power dissipated is nearly the same and 
calculate the power dissipated by the wires and the net power 
supplied by the batteries.

Strategy All the circuit elements are in series. We can 
simplify the circuit by replacing all the resistors (including 
the internal resistances of the batteries) with one series 

equivalent and the two emfs with one equivalent emf. Doing 
so enables us to find the current. Then we can use Eq. (18-37) 
to find the power in the wires and in the filament. Equation 
(18-38) could be used, but would require an extra step: find-
ing the voltage drops across the resistors. Equation (18-39) 
gives the net power supplied by the batteries.

Solution (a) Figure 18.29 is a sketch of the circuit for the 
first flashlight. To find the power dissipated in the lightbulb, 
we need either the current through it or the voltage drop 

Figure 18.29
Circuit for the  
first flashlight.0.10 Ω

9.70 Ω0.40 Ω

0.10 Ω1.50 V 1.50 V

continued on next page
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across it. We can find the current in this single-loop circuit 
by replacing the two ideal emfs with a series equivalent emf 
of ℰeq = 3.00 V and all the resistors by a series equivalent 
resistance of

Req = 9.70 Ω + 0.40 Ω + 2 × 0.10 Ω = 10.30 Ω

Then the current is

I =
ℰeq

Req
=

3.00 V
10.30 Ω

= 0.2913 A

The power dissipated by the filament is

Pf = I2R = (0.2913 A)2 × 9.70 Ω = 0.823 W

(b) The power dissipated by the wires is

Pw = I2R = (0.2913 A)2 × 0.40 Ω = 0.034 W

The net power supplied by the batteries is

Pb = ℰeqI − I2req

where req = 0.20 Ω is the series equivalent for the two 
internal resistances. Then

Pb = 3.00 V × 0.2913 A − (0.2913 A)2 × 0.20 Ω = 0.857 W

(c) In the second circuit, ℰeq = 6.00 V and

Req = 42.1 Ω + 0.40 Ω + 4 × 0.10 Ω = 42.90 Ω

The current is

I =
ℰeq

Req
=

6.00 V
42.90 Ω

= 0.139 86 A

The power dissipated by the filament is

Pf = I2R = (0.139 86 A)2 × 42.1 Ω = 0.824 W

which is only 0.1% more than the filament in the first flash-
light. The power dissipated by the wires is

Pw = I2R = (0.139 86 A)2 × 0.40 Ω = 0.0078 W

The series equivalent for the four internal resistances is 
req = 0.40 Ω, so the net power supplied by the batteries is

Pb = ℰeqI − I2req

 = 6.00 V × 0.139 86 A − 0.0078 W = 0.831 W

Discussion Note that in each case, the net power supplied 
by the batteries is equal to the total power dissipated in the 
wires and the filament. Since there is nowhere else for the 
energy to go, the wires and filament must dissipate energy—
convert electric energy to light and heat—at the same rate 
that the battery supplies electric energy.

The power supplied to the two filaments is about the 
same in the two cases. However, the power dissipated by the 
wires in the second flashlight is a bit less than one-fourth as 
much as in the first. By using a larger emf, the current 
required to supply a given amount of power is smaller. The 
current is smaller because the load resistance (the resistance 
of the filament) is larger. A smaller current means the power 
dissipated in the wires is smaller. Utility companies distrib-
ute power over long distances using high-voltage wires for 
exactly this reason: the smaller the current, the smaller the 
power dissipated in the wires.

Practice Problem 18.9 A Simplified Flashlight 
Circuit

A flashlight takes two 1.5 V batteries connected in series. If 
the current that flows to the bulb in the flashlight is 0.35 A, 
find the power delivered to the lightbulb and the amount of 
energy dissipated after the light has been in the “on position” 
for 3 min. Treat the batteries as ideal and ignore the resis-
tance of the wires. [Hint: It is not necessary to calculate the 
resistance of the filament since in this case the voltage drop 
across it is equal to the emf.]

Example 18.9 continued

18.9 MEASURING CURRENTS AND VOLTAGES

Current and potential difference in a circuit can be measured with instruments called 
ammeters and voltmeters, respectively. A multimeter (Fig. 18.30) functions as an 
ammeter or a voltmeter, depending on the setting of a switch and which of its termi-
nals are connected. Meters can be either digital or analog; the latter uses a rotating 
pointer to indicate the value of current or voltage on a calibrated scale.

In order to give accurate measurements, an ammeter must have a small resistance 
so its presence in the circuit does not change the current significantly from its value 
in the absence of the ammeter. An ideal ammeter has zero resistance.

A voltmeter measures the potential difference between its terminals. To measure 
the potential difference across a resistor, for example, the voltmeter is connected in 
parallel with the resistor, with one terminal connected to each side of the resistor. So 
as not to affect the circuit too much, a good voltmeter must have a large resistance; 
then when measurements are taken, the current through the voltmeter (Im) is small 
compared with I and the potential difference across the parallel combination is nearly 

Figure 18.30 A digital 
multimeter being used to test a 
circuit board. A multimeter can 
function as an ammeter, as a 
voltmeter, or as an ohmmeter 
(to measure resistance). Most 
multimeters can measure both 
dc and ac currents and voltages.
©Oleksiy Maksymenko/Alamy
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the same as when the voltmeter is disconnected. An ideal voltmeter has infinite 
resistance.

To measure a resistance in a circuit, we can use a voltmeter to measure the 
potential difference across the resistor and an ammeter to measure the current through 
the resistor (Fig. 18.31). By definition, the ratio of the voltage to the current is the 
resistance.

18.10 RC CIRCUITS

Circuits containing both resistors and capacitors have many important applications. 
RC circuits are commonly used to control timing. When windshield wipers are set to 
operate intermittently, the charging of a capacitor to a certain voltage is the trigger 
that turns them on. The time delay between wipes is determined by the resistance and 
capacitance in the circuit; adjusting a variable resistor changes the duration of the 
time delay. Similarly, an RC circuit controls the time delay in strobe lights. We can 
also use the RC circuit as a simplified model of the transmission of nerve impulses.

Charging RC Circuit

In Fig. 18.32, switch S is initially open and the capacitor is uncharged. When the 
switch is closed, current begins to flow and charge starts to build up on the plates of 
the capacitor. At any instant, Kirchhoff’s loop law requires that

 ℰ − ΔVR − ΔVC = 0 (18-40)

where ΔVR = IR and ΔVC = Q/C are the voltage drops across the resistor and capacitor, 
respectively. As charge accumulates on the capacitor plates, it becomes increasingly 
difficult to push more charge onto them.

Just after the switch is closed, the potential difference across the resistor is equal 
to the emf since the capacitor is uncharged. Initially, a relatively large current 
I0 = ℰ/R flows. As the voltage drop across the capacitor increases, the voltage drop 
across the resistor decreases, and thus the current decreases. Long after the switch 
is closed, the potential difference across the capacitor is nearly equal to the emf and 
the current is small.

Using calculus, it can be shown that the charge on the capacitor involves an 
exponential function (Fig. 18.33):

 Q(t) = Qf(1 − e−t/τ)  (18-41)

where Qf = C ℰ is the final charge on the capacitor, e ≈ 2.718 is the base of the 
natural logarithm, and the quantity τ = RC is called the time constant for the 
RC circuit. (See Appendix A.4 for a review of exponents and logarithms.)

Time constant for an RC circuit

 τ = RC (18-42)

Figure 18.31 Two ways to 
arrange meters to measure a 
resistance R. If the meters were 
ideal (an ammeter with zero 
resistance and a voltmeter with 
infinite resistance), the two 
arrangements would give the 
same measurement. Note the 
symbols used for the meters.

R

V

A
R

V

A

ℰℰ

Figure 18.32 An RC circuit.

C

R

+
S

ℰ
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Figure 18.33 (a) The charge 
on the capacitor as a function 
of time as the capacitor is 
charged. (b) The current 
through the resistor as a  
function of time.

Charging

τ 2τ

(b)

τ = RC

τ = RC

I

t

0.368I0

0.135I0

I0

τ 2τ0
0 0

0
(a)

Q

t

Qf
0.865Qf

0.632Qf

Q(t) = Qf (1 – e–t/ τ)

I(t) = I0 e–t/ τ

The product RC has time units:

 [R] =
volts
amps and [C] =

coulombs
volts

 so [RC] =
C
A

= s (18-43)

The time constant is a measure of how fast the capacitor charges. At t = τ, the charge 
on the capacitor is

 Q = Qf(1 − e−1) ≈ 0.632Qf  (18-44)

When one time constant has elapsed, the capacitor has 63.2% of its final charge.
From Eq. (18-41), we can use the loop rule to find the current.

 ℰ − IR −
Q

C
= ℰ − IR − ℰ(1 − e−t/τ) = 0 (18-45)

We can solve this equation for I.

 I(t) =
ℰ

R
 e−t/τ = I0e

−t/τ (18-46)

At t = τ, the current is

 I(t = τ) = I0e
−1 ≈ 0.368I0 (18-47)

When one time constant has elapsed, the current is reduced to 36.8% of its initial 
value. The voltage drops across the resistor and capacitor as functions of time can be 
found from ΔVR = IR and Q = C ΔVC, respectively.

Power For a charging capacitor, the power P = I  ΔVC [Eq. (18-34)] is the rate at 
which energy is being stored in the capacitor. While a capacitor is charging, the emf 
supplies energy at a rate P = Iℰ; this is equal to the sum of the rate that energy is 
dissipated in the resistor (I  ΔVR) and the rate that energy is stored in the capacitor 
(I  ΔVC), as expected because energy must be conserved.

continued on next page

Example 18.10

An RC Circuit with Two Capacitors in Series

Two 0.500 μF capacitors in series are connected to a 50.0 V 
battery through a 4.00 MΩ resistor at t = 0 (Fig. 18.34). The 
capacitors are initially uncharged. (a) Find the charge on the 
capacitors at t = 1.00 s and t = 3.00 s. (b) Find the current in 
the circuit at the same two times.

Figure 18.34
The circuit for 
Example 18.10.

0.500 μF

4.00 MΩ

0.500 μF

50.0 V
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Strategy First we find the equivalent capacitance of two 
0.500 μF capacitors in series. Then we can find the time 
constant using the equivalent capacitance. Equation (18-41) 
gives the charge on the equivalent capacitor at any time t. 
The charge on each of the two capacitors is equal to the 
charge on the equivalent capacitor. The current decreases 
exponentially according to Eq. (18-46).

Solution (a) For two equal capacitors C in series,

1
Ceq

=
1
C

+
1
C

=
2
C

Then Ceq = 1
2C = 0.250 μF. The time constant is

τ = RCeq = 4.00 × 106 Ω × 0.250 × 10−6 F = 1.00 s

The final charge on the capacitor is

Qf = Ceqℰ = 0.250 × 10−6 F × 50.0 V = 12.5 × 10−6 C
= 12.5 μC

At any time t, the charge on each capacitor is

Q(t) = Qf(1 − e−t/τ)

At t = 1.00 s, t/τ = 1.00; the charge on each capacitor is

Q = Qf(1 − e−1.00) = 12.5 μC × (1 − e−1.00) = 7.90 μC

At t = 3.00 s, t/τ = 3.00; the charge on each capacitor is

Q = Qf(1 − e−3.00) = 12.5 μC × (1 − e−3.00) = 11.9 μC

(b) The initial current is

I0 =
ℰ

R
=

50.0 V
4.00 × 106 Ω

= 12.5 μA

At a time t,

I = I0e
−t/τ

At t = 1.00 s,

I = I0e
−1.00 = 12.5 μA × e−1.00 = 4.60 μA

At t = 3.00 s,

I = I0e
−3.00 = 12.5 μA × e−3.00 = 0.622 μA

Discussion The solution can be checked using the loop 
rule. At t = τ, we found that Q = 7.90 μC and I = 4.60 μA. 
Then at t = τ,

ΔVC =
Q

Ceq
=

7.90 μC
0.250 μF

= 31.6 V

and
ΔVR = IR = 4.60 μA × 4.00 MΩ = 18.4 V

Since 31.6 V + 18.4 V = 50.0 V = ℰ, the loop rule is 
satisfied.

Notice the pattern: the current is multiplied by 1/e 
during a time interval equal to the time constant. Thus, for 
a current of 4.60 μA at t = τ, we expect a current of 
4.60  μA  ×  1/e  =  1.69  μA at t = 2τ and a current of 
1.69 μA × 1/e = 0.622 μA at t = 3τ.

Practice Problem 18.10 Another RC Circuit

At t = 0 a capacitor of 0.050 μF is connected through a 
5.0 MΩ resistor to a 12 V battery. Initially the capacitor is 
uncharged. Find the initial current, the charge on the capaci-
tor at t = 0.25 s, the current at t = 1.00 s, and the final charge 
on the capacitor.

Example 18.10 continued

Discharging RC Circuit

In Fig. 18.35, the capacitor is first charged to a voltage ℰ by closing switch S1 with switch 
S2 open. Once the capacitor is fully charged, S1 is opened and then S2 is closed at t = 0. 
Now the capacitor acts like a battery in the sense that it supplies energy in the circuit, 
though not at a constant potential difference. As the potential difference between the plates 
causes current to flow, the capacitor discharges from its initial charge Q0 = C ℰ.

The loop rule requires that the voltages across the capacitor and resistor be equal 
in magnitude. As the capacitor discharges, the voltage across it decreases. A decreasing 
voltage across the resistor means that the current must be decreasing. The charge on 
the capacitor begins at its maximum value Q0 and decreases exponentially (Fig. 18.36):

 Q(t) = Q0e
−t/τ = Cℰe−t/τ (18-48)

The current as a function of time is the same as in the charging circuit [Eq. (18-46)]. 
The initial voltage across the resistor is ℰ, so the initial current is I0 = ℰ/R.

Application: Camera Flash The bulb in a camera flash needs a quick burst of 
current much larger than a small battery can supply (due to the battery’s internal 

Figure 18.35 A capacitor is 
discharged through a resistor R.

C

R

I

I

I

S1

S2ℰ
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τ 2τ0
0

0
0

τ = RC

t

0.368Q0

0.135Q0

Q0 Q(t) =    Q0e–t/  τ

Discharging

(a)
τ 2τ

(b)

τ = RC

I

t

0.368I0

0.135I0

I0

I(t) = I0 e
–t/  τ

Q

Figure 18.36 (a) Decreasing 
charge on a capacitor as it  
discharges through a resistor. 
(b) Current as a function of 
time.

resistance). Therefore, the battery charges a capacitor (Fig. 18.37). When the capacitor 
is fully charged, the flash is ready; when the picture is taken, the capacitor is dis-
charged quickly. After taking a picture, there is a delay of a second or two while the 
capacitor recharges. The time constant is longer for the charging circuit due to the 
internal resistance of the battery.

Power For a discharging capacitor, the energy stored in the capacitor decreases at 
a rate IVC and energy is dissipated in the resistor at an equal rate IVR = IVC, as 
expected from energy conservation.

Application of RC Circuits in Neurons

An RC time constant also determines the speed at which nerve impulses travel. 
 Figure 18.38a is a simplified model of a myelinated axon. Inside the axon is a fluid called 
the axoplasm, which is a conductor due to the presence of ions. Outside is the interstitial 
fluid, a conducting fluid with a much lower resistivity. Between the nodes of Ranvier, 
the cell membrane is covered with a myelin sheath—an insulator that reduces the capac-
itance of the section of axon (by increasing the distance between the conducting fluids) 
and reduces the leakage current that flows through the membrane.

A section of axon between nodes is modeled as an RC circuit in Fig. 18.38b. The 
interstitial fluid has little resistance, so it is modeled as a conducting wire. Current I 
travels inside the axon through the axoplasm (resistor R). The capacitor consists of the 
two conducting fluids as the plates, with the membrane and myelin sheath acting as 
insulator. For a section of axon 1 mm long with radius 5 μm, the resistance and capac-
itance are approximately R = 13 MΩ and C = 1.6 pF. The time constant is therefore,

τ = RC = 13 MΩ × 1.6 pF ≈ 20 μs
An estimate of how fast the electric impulse travels is

v ≈
length of section

τ
=

1 mm
20 μs

= 50 m/s

Figure 18.37 A flash attach-
ment for a camera. The large 
black cylinder is the capacitor.
© GIPhotoStock/Science Source

Figure 18.38 (a) A simplified picture of two sections of myelinated axon. (b) A simplified RC circuit model of a 
section of axon between nodes of Ranvier. The myelin sheath acts as a dielectric between two conductors—the 
axoplasm and the interstitial fluid.

R
C

(a)

Interstitial fluid
Axoplasm (resistor)

Interstitial fluid
(conductor with
small resistance)

Membrane and
myelin sheath
(dielectric)

Node of Ranvier

Myelin sheath

Semipermeable membrane

(b)

Axoplasm
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This simple estimate is remarkably accurate; nerve impulses in a human myelinated 
axon of radius 5 μm travel at speeds ranging from 60 to 90 m/s.

Both R and C depend on the radius r of the axon. In humans, r ranges from less 
than 2 μm to more than 10 μm. The capacitance is proportional to r due to the larger 
plate area, but the resistance is inversely proportional to r2 due to the larger cross-sectional 
area of the “wire.” Thus, RC ∝ 1/r and v ∝ r. The largest radius axons—those with the 
largest signal speeds—are those that must carry signals over relatively long distances.

18.11 ELECTRICAL SAFETY

Effects of Current on the Human Body

Electric currents passing through the body interfere with the operation of the muscles 
and the nervous system. Large currents also cause burns due to the energy dissipated 
in the tissues. A current of around 1 mA or less causes an unpleasant sensation but 
usually has no other effect. The maximum current that can pass through the body 
without causing harm is about 5 mA. A current of 10 to 20 mA results in muscle 
contractions or paralysis; paralysis may prevent the person from letting go of the 
source of the current.

Currents of 100 to 300 mA may cause ventricular fibrillation (uncontrolled, 
arrhythmic contractions of the heart) if they pass through or near the heart. In this 
condition, the person will die unless treated with a defibrillator to shock the heart 
back into a normal rhythm. Through the defibrillator paddles, a brief spurt of current 
of several amps is sent into the body near the heart (see Example 17.12). The shocked 
heart suffers a sudden muscular contraction, after which it may return to a normal 
state with regular contractions.

Most of the electrical resistance of the body is due to the skin. The fluids inside 
the body are good conductors due to the presence of ions. The total resistance of the 
body between distant points when the skin is dry ranges from around 10 kΩ to 1 MΩ. 
The resistance is much lower when the skin is wet—around 1 kΩ or even less.

A short circuit (a low-resistance path) may occur between the circuitry inside an 
appliance and metal on the outside of the appliance. A person touching the appliance 
would then have one hand at 120 V with respect to ground. (To simplify the discus-
sion, we treat the emf as if it were dc rather than ac.) If his feet are in a wet tub, 
which makes good electric contact to the grounded water pipes, he might have a 
resistance as low as 500 Ω. Then a current of magnitude (120 V)/(500 Ω) = 
0.24  A  = 240  mA flows through the body past the heart. Ventricular fibrillation is 
likely to occur. If the person were not standing in the tub, but had one hand on the 
hair dryer and another hand on a metal faucet, which is also grounded through the 
household plumbing, he is still in trouble. The electrical resistance of a person from 
one damp hand to the other might be around 1600 Ω, resulting in a current of 75 mA, 
which could still be lethal.

An electrified fence (Fig. 18.39) keeps farm animals in a pasture or wild animals 
out of a garden. One terminal of an emf is connected to the wire; the wire is insulated 
from the fence posts by ceramic insulators. The other terminal of the emf is connected 
to ground by a metal rod driven into the ground. When an animal or person touches 
the metal wire, the circuit is completed from the wire through the body and back to 
the ground. The current flowing through the body is limited so that it produces an 
unpleasant sensation without being dangerous.

Grounding of Appliances

A two-pronged plug does not provide much protection against a short circuit. The 
case of the appliance is supposed to be insulated from the wiring inside. If, by acci-
dent, a wire breaks loose or its insulation becomes frayed, a short circuit might occur, 
providing a low-resistance path directly to the metal case of the appliance. If a person 

Figure 18.39 An electric 
fence. The circuit is completed 
when a person or animal 
touches the wire. The symbol 

 represents a connection to 
ground.

I

Grounding
rod

Emf source

Insulators

I

I
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Figure 18.40 (a) If a refrig-
erator were connected with a 
two-pronged plug to a wall 
outlet, a short circuit to the 
case of the refrigerator allows 
the circuit to be completed 
through the body of a person 
touching the refrigerator. (b) If 
a short circuit occurs with a 
three-pronged plug, the person 
is safe.

Magnified

Short circuit
to case

Motor

Motor

Refrigerator

Circuit completed through ground

Wall
outlet

Two-
pronged

plug

Ground

Emf

Magnified

Short circuit
to case

Refrigerator

Current travels along case through
third prong directly to ground

Wall
outlet

Three-
pronged

plug

Ground

Emf

(a)

(b)

touches the case, which could now be at a high potential, a dangerous amount of 
current could travel through the person and back to the ground (Fig. 18.40a).

With a three-pronged plug, the case of the appliance is connected directly to 
ground through the third prong (Fig. 18.40b). Then, if a short circuit occurs, most of 
the current to ground flows through low-resistance wiring via the third prong in the 
wall outlet. For safety reasons, the metal cases of many electric appliances are grounded.

Hospitals must take care that patients, connected to various monitors and IVs, 
are protected from a possible short circuit. For this reason the patient’s bed, as well 
as anything else that the patient might touch, is insulated from the ground. Then if 
the patient touches something at a high potential, there is no ground connection to 
complete the circuit through the patient’s body.

Fuses and Circuit Breakers

A simple fuse is made from an alloy of lead and tin that melts at a low temperature. 
The fuse is put in series with the circuit and is designed to melt—due to I2R heating—
if the current to the circuit exceeds a given value. The melted fuse is an open switch, 
interrupting the circuit and stopping the current. Many appliances are protected by 
fuses. Replacing a fuse with one of a higher current rating is dangerous because too 
much current may go through the appliance, damaging it or causing a fire.

Most household wiring is protected from overheating by circuit breakers instead 
of fuses. When too much current flows, perhaps because too many appliances are 
connected to the same circuit, a bimetallic strip or an electromagnet “trips” the circuit 
breaker, making it an open switch. After the problem causing the overload is cor-
rected, the circuit breaker can be reset by flipping it back into the closed position.

Household wiring is arranged so that several appliances can be connected in 
parallel to a single circuit with one side of the circuit (the neutral side) grounded and 
the other side (the hot side) at a potential of 120 V with respect to ground (in our 
simplified dc model). Within one house or apartment, there are many such circuits; 
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each one is protected by a circuit breaker (or fuse) placed in the hot side of the circuit. 
If a short circuit occurs, the large current that results trips the circuit breaker. If the 
breaker were placed on the grounded side, a blown circuit breaker would leave the 
hot side hot, possibly allowing a hazardous condition to continue. For the same reason, 
wall switches for overhead lights and for wall outlets are placed on the hot side.

 ∙ The electrical resistance of a wire is directly proportional 
to its length and inversely proportional to its cross- 
sectional area:

 R = ρ 

L

A
 (18-13)

 ∙ The resistivity ρ is an intrinsic characteristic of a par-
ticular material at a particular temperature and is mea-
sured in Ω·m. For many materials, resistivity varies 
linearly with temperature:

 ρ = ρ0(1 + α  ΔT)  (18-14)

 ∙ A device that pumps charge is called a source of emf. 
An ideal emf maintains a constant potential difference 
ℰ between its terminals. The terminal voltage of a real 
emf may differ from the emf due to the internal resis-
tance r of the source:
 ΔV = ℰ − Ir (18-15)

 ∙ Kirchhoff’s junction rule: Σ Iin − Σ Iout = 0 at any junc-
tion [Eq. (18-16)]. Kirchhoff’s loop rule: Σ ΔV = 0 for 
any path in a circuit that starts and ends at the same 
point [Eq. (18-17)]. Potential rises are positive; poten-
tial drops are negative.

 ∙ These symbols are used in circuit diagrams.∙ These symbols are used in circuit diagrams.

Ideal battery or emf

VoltmeterCapacitor

Battery or emf with
internal resistance

or+ –
+ –

Switch

   
Resistor

  
Wire with negligibly

small resistance

A

Ammeter Connection to ground

V

 ∙ Circuit elements wired in series have the same current 
through them. Circuit elements wired in parallel have 
the same potential difference across them.

 ∙ The power—the rate of conversion between electric en-
ergy and another form of energy—for any circuit ele-
ment is
 P = I ΔV  (18-34)

  The SI unit for power is the watt (W). Electric energy is 
dissipated (transformed into internal energy) in a resistor.

Master the Concepts

 ∙ Electric current is the rate of net flow of charge:

 I =
Δq

Δt
 (18-1)

  The SI unit of current is the ampere (1 A = 1 C/s), one of 
the base units of the SI. By convention, the direction of 
current is the direction of flow of positive charge. If the 
carriers are negative, the direction of the current is 
opposite the direction of motion of the carriers.

Current direction Area A

e– e–
e–

e–
e–

e–

e–
e–

e–

e–

Conducting
wire

E inside
the wire

 ∙ A complete circuit is required for a continuous flow of 
charge.

 ∙ The current in a metal is proportional to the drift speed 
(vD) of the conduction electrons, the number of elec-
trons per unit volume (n), and the cross-sectional area of 
the metal (A):

 I =
ΔQ

Δt
= neAvD (18-5)

I

vD Δt

vD
FE

e–

e–

e–

e–

e–

e–

e–

e–e–
e–

E
Area A

vD Δt

 ∙ Electrical resistance is the ratio of the potential differ-
ence across a conducting material to the current through 
the material. It is measured in ohms: 1 Ω = 1 V/A.

 R =
ΔV

I
 (18-8)

  For an ohmic conductor, R is independent of ΔV and I; 
then ΔV is proportional to I.

continued on next page
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 ∙ The quantity τ = RC is called the time constant for an RC 
circuit. The charges and currents as functions of time are

 Q(t) = Qf(1 − e−t/τ) (charging)  (18-41)

τ 2τ

τ = RC

I

t

0.368I0

0.135I0

I0

t

τ 2τ

τ = RC

t

0.368Q0

0.135Q0

Q(t) = Q0e–t/ τ

Charging Discharging

Q (t) = Qf (1 – e–t/ τ)

τ 2τ0
0

00 00

τ = RC

0.865Qf

0.632Qf I(t) = I0 e–t/ τ

Q
Qf

Q0

Q

 Q(t) = Q0e
−t/τ (discharging)  (18-48)

 I(t) = I0e
−t/τ (both)  (18-46)

Master the Concepts continued

Conceptual Questions

 1. Is the electric field inside a conductor always zero? If 
not, when is it not zero? Explain.

 2. Why does the resistivity of a metallic conductor increase 
with increasing temperature?

 3. Draw a circuit diagram for automobile headlights, con-
necting two separate bulbs and a switch to a single 
battery so that: (1) one switch turns both bulbs on and 
off and (2) one bulb still lights up even if the other bulb 
burns out.

 4. Ammeters often contain fuses that protect them from 
large currents, whereas voltmeters seldom do. Explain.

 5. Jeff needs a 100 Ω resistor for a circuit, but he only has 
a box of 300 Ω resistors. What can he do?

 6. A friend says that electric current “follows the path of 
least resistance.” Is that true? Explain.

 7. Compare the resistance of an ideal ammeter with that of 
an ideal voltmeter. Which has the larger resistance? 
Why?

 8. Suppose a battery is connected to a network of resistors 
and capacitors. What happens to the energy supplied by 
the battery?

 9. Why are electric stoves and clothes dryers supplied with 
240 V, but lights, radios, and clocks are supplied with 
120 V?

 10. Why are ammeters connected in series with a circuit 
element in which the current is to be measured and volt-
meters connected in parallel across the element for 
which the potential difference is to be measured?

 11.  Is it more dangerous to touch a “live” electric wire 
when your hands are dry or wet, everything else being 
equal? Explain.

 12.  An electrician working on “live” circuits wears 
insulated shoes and keeps one hand behind his or her 
back. Why?

 13.  A bird perched on a power line is not harmed, but if 
you are pruning a tree and your metal pole saw comes in 
contact with the same wire, you risk being electrocuted. 
Explain.

 14. Some batteries can be “recharged.” Does that mean that 
the battery has a supply of charge that is depleted as the 
battery is used? If “recharging” does not literally mean 
to put charge back into the battery, what does it mean?

 15. A battery is connected to a 
clock by copper wires as 
shown. What is the direction 
of current through the clock 
(B to C or C to B)? What is the 
direction of current through 
the battery (D to A or A to D)? Which terminal of the 
battery is at the higher potential (A or D)? Which side of 
the clock is at the higher potential (B or C)? Does current 
always flow from higher to lower potential? Explain.

 16. Think of a wire of length L as two wires of length L/2 in 
series. Construct an argument for why the resistance of 
a wire must be proportional to its length.

 17. Think of a wire of cross-sectional area A as two wires of 
area A/2 in parallel. Construct an argument for why the 
resistance of a wire must be inversely proportional to its 
cross-sectional area.

 18. A 15 A circuit breaker trips repeatedly. Explain why it 
would be dangerous to replace it with a 20 A circuit 
breaker.

 19. When batteries are connected in parallel, they should 
have the same emf. However, batteries connected in 
series need not have the same 
emf. Explain.

 20. (a) If the resistance R1 
decreases, what happens to 
the voltage drop across R3? 
The switch S is still open, as in 
the figure. (b) If the resistance 

+ –
1.5 V battery

Clock
B C

A D

R2R3

R1

S
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R1 decreases, what happens to the voltage drop across R2? 
The switch S is still open, as in the figure. (c) In the circuit 
shown, if the switch S is closed, what happens to the cur-
rent through R1?

 21. Four identical incandescent lightbulbs 
are placed in two different circuits 
with identical batteries. Bulbs A and B 
are connected in series with the 
battery. Bulbs C and D are connected 
in parallel across the battery. (a) Rank 
the brightness of the bulbs. (b) What 
happens to the brightness of bulb B if 
bulb A is replaced by a wire? (c) What 
happens to the brightness of bulb C if bulb D is removed 
from the circuit?

 22. Three identical incandescent light-
bulbs are connected in a circuit as 
shown in the diagram. (a) What 
happens to the brightness of the 
remaining bulbs if bulb A is removed 
from the circuit and replaced by a wire? (b) What 
happens to the brightness of the remaining bulbs if bulb 
B is removed from the circuit? (c) What happens to the 
brightness of the remaining bulbs if bulb B is replaced 
by a wire?

 23.  Several possibilities 
are listed for what might 
or might not happen if 
the insulation in the 
current-carrying wires 
of the figure breaks 
down and point b makes 
electrical contact with point c. Discuss each possibility. 
(1) The person touching the microwave oven gets a shock; 
(2) the cord begins to smoke; (3) a fuse blows out; (4) an 
electrical fire breaks out inside the kitchen wall.

Multiple-Choice Questions

 1. In an ionic solution, sodium ions (Na+) are moving to 
the right and chloride ions (Cl−) are moving to the left. 
In which direction is the current due to the motion of 
(1) the sodium ions and (2) the chloride ions?

 (a) Both are to the right.
 (b)  Current due to Na+ is to the left; current due to Cl− is 

to the right.
 (c)  Current due to Na+ is to the right; current due to Cl− 

is to the left.
 (d) Both are to the left.
 2. A capacitor and a resistor are connected through a 

switch to an emf. At the instant just after the switch is 
closed,

 (a) the current in the circuit is zero.

C D

A

B

Microwave oven

Ground
Hot

Neutral
ba

c

 (b)  the voltage across the capacitor 
is ℰ.

 (c)  the voltage across the resistor is 
zero.

 (d)  the voltage across the resistor 
is ℰ.

 (e)  Both (a) and (c) are true.
 3. Which is a unit of energy?
 (a) A2·Ω (b) V·A

 (c) Ω·m (d) 
N · m

V
 (e) 

A
C

 (f) V·C

 4. How does the resistance of a piece of conducting wire 
change if both its length and diameter are doubled?

 (a) Remains the same
 (b) 2 times as much
 (c) 4 times as much
 (d) 1/2 as much
 (e) 1/4 as much

Questions 5 and 6.  Each of the graphs shows a relation 
between the potential drop across (V) and the current through 
(I) a circuit element.

Multiple-Choice	Questions	5	and	6

(a)

V

I

(b)

V

I

(c)

V

I

(d)

V

I

 5. Which depicts a circuit element whose resistance 
increases with increasing current?

 6. Which depicts an ohmic circuit element?
 7. The electrical properties of copper and rubber are dif-

ferent because
 (a)  the positive charges are free to move in copper and 

stationary in rubber.
 (b)  many electrons are free to move in copper but nearly 

all are bound to molecules in rubber.
 (c)  the positive charges are free to move in rubber but 

are stationary in copper.
 (d)  many electrons are free to move in rubber but nearly 

all are bound to molecules in copper.
 8. Consider these four statements. Choose true or false for 

each one in turn and then find the answer that matches 
your choices for all four together.

B C

A

C

R S

ℰ
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 (1)  An ammeter should draw very little current com-
pared with that in the rest of the circuit.

 (2)  An ammeter should have a high resistance compared 
with the resistances of the other elements in the 
circuit.

 (3)  To measure the current in a circuit element, the 
ammeter should be connected in series with that 
element.

 (4)  Connecting the ammeter in series with a circuit ele-
ment causes at least a small reduction of the current 
in that element.

  (a) (1) true, (2) true, (3) false, (4) false
  (b) (1) true, (2) false, (3) true, (4) true
  (c) (1) false, (2) false, (3) true, (4) false
  (d) (1) false, (2) false, (3) true, (4) true
  (e) (1) false, (2) true, (3) true, (4) true
  (f) (1) false, (2) false, (3) false, (4) true
 9. Which of these is equal to the emf of a battery?
 (a) the chemical energy stored in the battery
 (b)  the terminal voltage of the battery when no 

current flows
 (c) the maximum current that the battery can supply
 (d) the amount of charge the battery can pump
 (e)  the chemical energy stored in the battery divided 

by the net charge of the battery
 10. A 12 V battery with internal resistance 0.5 Ω has ini-

tially no load connected across its terminals. Then the 
switches S1 and S2 are closed successively. The voltme-
ter (assumed ideal) has which set of successive readings?

 (a) 12 V, 11 V, 10 V
 (b) 12 V, 12 V, 12 V
 (c) 12 V, 9.6 V, 7.2 V
 (d) 12 V, 9.6 V, 8 V
 (e) 12 V, 8 V, 4 V
 (f) 12 V, zero, zero

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

18.1 Electric Current
 1. A battery charger delivers a current of 3.0 A for 4.0 h to 

a 12 V storage battery. What is the total charge that 
passes through the battery in that time?

 2. The current in a wire is 0.500 A. (a) How much charge 
flows through a cross section of the wire in 10.0 s? 
(b) How many electrons move through the same cross 
section in 10.0 s?

 3. (a) What is the direction of the current in the vacuum 
tube shown in the figure? (b) Electrons hit the anode at 
a rate of 6.0 × 1012 per second. What is the current in 
the tube?

+

+
– e–

e–
e–e– e–

Filament

Filament
heater

Glass bulb

Vacuum

Anode

 4. In an ion accelerator, 3.0 × 1013 helium-4 nuclei 
(charge  +2e) per second strike a target. What is the 
beam current?

 5. The current in the electron beam of a computer monitor is 
320 μA. How many electrons per second hit the screen?

 6. A potential difference is applied between the electrodes 
in a gas discharge tube. In 1.0 s, 3.8 × 1016 electrons and 
1.2 × 1016 singly charged positive ions move in opposite 
directions through a surface perpendicular to the length 
of the tube. What is the current in the tube?

 7. Two electrodes are placed in a calcium chloride solu-
tion, and a potential difference is maintained between 
them. If 3.8 × 1016 Ca2+ ions and 6.2 × 1016 Cl− ions per 
second move in opposite directions through an 
imaginary area between the electrodes, what is the 
current in the solution?

18.2 Emf and Circuits
 8. A Vespa scooter and a Toyota automobile might both 

use a 12 V battery, but the two batteries are of different 
sizes and can pump different amounts of charge. Sup-
pose the scooter battery can pump 4.0 kC of charge and 
the automobile battery can pump 30.0 kC of charge. 
How much energy can each battery deliver, assuming 
the batteries are ideal?

 9. What is the energy stored in a small battery if it can 
move 675 C through a potential difference of 1.20 V?

 10. The label on a 12.0 V truck battery states that it is rated 
at 180.0 A·h (ampere-hours). Treat the battery as ideal. 
(a) How much charge in coulombs can be pumped by 
the battery? [Hint: Convert A·h to A·s.] (b) How much 
electric energy can the battery supply? (c) Suppose the 
radio in the truck is left on when the engine is not run-
ning. The radio draws a current of 3.30 A. How long 
does it take to drain the battery if it starts out fully 
charged?

 11. The starter motor in a car draws 220.0 A of current from 
the 12.0 V battery for 1.20 s. (a) How much charge is 
pumped by the battery? (b) How much electric energy is 
supplied by the battery?

 12. A solar cell provides an emf of 0.45 V. (a) If the cell 
supplies a constant current of 18.0 mA for 9.0 h, how 
much electric energy does it supply? (b) What is the 
power—the rate at which it supplies electric energy?

12 V
2.0 Ω

0.5 Ω

2.0 Ω

S1 S2

V
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18.3 Microscopic View of Current in a Metal: 
The Free-Electron Model
 13. Six copper wires are characterized by their dimensions 

and by the current they carry. Rank the wires in order of 
decreasing drift velocity.

 (a) diameter 2 mm, length 2 m, current 80 mA
 (b) diameter 1 mm, length 1 m, current 80 mA
 (c) diameter 4 mm, length 16 m, current 40 mA
 (d) diameter 2 mm, length 2 m, current 160 mA
 (e) diameter 1 mm, length 4 m, current 20 mA
 (f) diameter 2 mm, length 1 m, current 40 mA
 14. Two copper wires, one double the diameter of the other, 

have the same current flowing through them. If the thin-
ner wire has a drift speed v1 and the thicker wire has a 
drift speed v2, how do the drift speeds of the charge 
carriers compare?

 15. A current of 2.50 A is carried by a copper wire of radius 
1.00 mm. If the density of the conduction electrons is 
8.47 × 1028 m−3, what is the drift speed of the conduc-
tion electrons?

 16. A current of 10.0 A is carried by a copper wire of 
diameter 1.00 mm. If the density of the conduction elec-
trons is 8.47 × 1028 m−3, how long does it take for a 
conduction electron to move 1.00 m along the wire?

 17. A silver wire of diameter 1.0 mm carries a current of 
150 mA. The density of conduction electrons in silver is 
5.8 × 1028 m−3. How long (on average) does it take for a 
conduction electron to move 1.0 cm along the wire?

 18. A strip of doped silicon 260 μm wide contains 8.8 × 1022 
conduction electrons per cubic meter and an insignifi-
cant number of holes. When the strip carries a current of 
130 μA, the drift speed of the electrons is 44 cm/s. What 
is the thickness of the strip?

 19. A gold wire of 0.50 mm diameter has 5.90 × 1028 con-
duction electrons per cubic meter. If the drift speed is 
6.5 μm/s, what is the current in the wire?

 20.  A copper wire of cross-sectional area 1.00 mm2 has a 
current of 2.0 A flowing along its length. What is the 
drift speed of the conduction electrons? Assume 1.3 
conduction electrons per copper atom. The mass density 
of copper is 9.0 g/cm3 and its molar mass is 64 g/mol.

 21.  An aluminum wire of diameter 2.6 mm carries a 
current of 12 A. How long on average does it take an elec-
tron to move 12 m along the wire? Assume 3.5 conduction 
electrons per aluminum atom. The mass density of alumi-
num is 2.7 g/cm3, and its molar mass is 27 g/mol.

18.4 Resistance and Resistivity
 22. Six wires are characterized by their dimensions and by 

the metal they are made from. Assume the tungsten 
alloy has exactly twice the resistivity of aluminum. 
Rank the wires in order of decreasing resistance.

 (a) diameter 2 mm, length 1 m, tungsten alloy
 (b) diameter 4 mm, length 2 m, tungsten alloy

 (c) diameter 2 mm, length 1 m, aluminum
 (d) diameter 1 mm, length 1 m, aluminum
 (e) diameter 2 mm, length 2 m, tungsten alloy
 (f) diameter 4 mm, length 4 m, aluminum
 23. A 12 Ω resistor has a potential difference of 16 V across 

it. What current flows through the resistor?
 24. Current of 83 mA flows through the 

resistor in the diagram. (a) What is the 
resistance of the resistor? (b) In what 
direction does the current flow through 
the resistor?

  25. A copper wire and an aluminum wire of the same length 
have the same resistance. What is the ratio of the diam-
eter of the copper wire to that of the aluminum wire?

 26. A bird sits on a high-voltage power line with its feet 
2.0  cm apart. The wire is made from aluminum, is 
2.0 cm in diameter, and carries a current of 150 A. What 
is the potential difference between the bird’s feet?

 27.   A person can be killed if a current as small as 
50 mA passes near the heart. An electrician is working 
on a humid day with hands damp from perspiration. 
Suppose his resistance from one hand to the other is 
1 kΩ and he is touching two wires, one with each hand. 
(a)  What potential difference between the two wires 
would cause a 50 mA current from one hand to the 
other? (b) An electrician working on a “live” circuit 
keeps one hand behind his or her back. Why?

 28.  Some digital thermometers measure the current 
through a semiconductor to determine a patient’s 
temperature. If a thermometer uses a germanium wire 
that has a resistance of R at 37.0°C (normal body 
temperature), what is its resistance at 40.0°C?

 29.  Pure water has very few ions (about 1.2 × 1014 
ions per cubic centimeter), giving it a high resistivity, 
about 1 × 105 Ω·m at 37°C. Blood plasma has a 
much lower resistivity of roughly 0.6 Ω·m at 37°C due 
to the ions dissolved in the plasma. Assuming the 
 resistivity depends only on the concentration of 
ions,  how many ions per cubic centimeter are in 
blood plasma?

 30. An electric device has the current-voltage (I-V) graph 
shown. What is its resistance at (a) point 1 and 
(b) point 2? [Hint: Use the definition of resistance.]

Problems	30	and	114
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 31. If 46 m of nichrome wire is to have a resistance of 
10.0 Ω at 20°C, what diameter wire should be used?

 32. The resistance of a conductor is 19.8 Ω at 15.0°C and 
25.0 Ω at 85.0°C. What is the temperature coefficient of 
resistance of the material?

 33. A common flashlight bulb is rated at 0.300 A and 2.90 V 
(the values of current and voltage under operating 
conditions). If the resistance of the bulb’s tungsten fila-
ment at room temperature (20.0°C) is 1.10 Ω, estimate 
the temperature of the tungsten filament when the bulb 
is turned on.

 34. Find the maximum current that a fully charged D-cell 
can supply—if only briefly—such that its terminal volt-
age is at least 1.0 V. Assume an emf of 1.5 V and an 
internal resistance of 0.10 Ω.

 35. A battery has a terminal voltage of 12.0 V when no 
current flows. Its internal resistance is 2.0 Ω. If a 1.0 Ω 
resistor is connected across the battery terminals, what 
is the terminal voltage and what is the current through 
the 1.0 Ω resistor?

 36. (a) What are the ratios of the resistances of (a) silver 
and (b) aluminum wire to the resistance of copper 
wire (RAg/RCu and RAl/RCu) for wires of the same 
length and the same diameter? (c) Which material is 
the best conductor, for wires of equal length and 
 diameter?

 37.  What are the ratios of the resistances of (a) silver 
and (b) aluminum wire to the resistance of copper 
wire (RAg/RCu and RAl/RCu) for wires of the same 
length and the same mass (not the same diameter)? 
(c) Which material is the best conductor, for wires of 
equal length and equal mass? The densities are: silver 
10.1 × 103 kg/m3; copper 8.9 × 103 kg/m3; aluminum 
2.7 × 103 kg/m3.

 38.  A wire with cross-sectional area A carries a current 
I. Assuming the wire is ohmic, show that the electric 
field strength E in the wire is proportional to the cur-
rent per unit area (I/A) and identify the constant of 
proportionality.

 39. A copper wire is connected to an ideal battery at room 
temperature. The current increases by a factor of 78 
when the wire is immersed in liquid nitrogen (tempera-
ture 77 K). Ignoring changes in the wire’s dimensions, 
and assuming that the number of conduction electrons 
per unit volume (n) does not change, find the change in 
each of the following quantities: the resistance, the re-
sistivity, the electric field in the wire, the drift speed, 
and the power dissipated.

18.6 Series and Parallel Circuits
 40. Suppose a collection of five batteries is connected as 

shown below. (a) What is the equivalent emf of the col-
lection? Treat them as ideal sources of emf. (b) What is 
the current through the resistor if its value is 3.2 Ω?

5.0 V2.0 V1.5 V4.5 V3.0 V

R

+ + + + +

 41. Suppose four batteries are connected in series as shown 
below. (a) What is the equivalent emf of the set of four 
batteries? Treat them as ideal sources of emf. (b) If the 
current in the circuit is 0.40 A, what is the value of the 
resistor R?

1.5 V2.5 V3.0 V3.0 V

+ + + +

R

 42. (a) Find the equivalent capacitance between points A 
and B for the three capacitors. (b) What is the charge on 
the 6.0 μF capacitor if 
a 44.0 V emf is 
connected to the ter-
minals A and B for a 
long time?

  43. (a) Find the equivalent capacitance between points 
A and B for the five capacitors. (b) If a 16.0 V emf is 
connected to the terminals A and B, what is the charge 
on a single equivalent capacitor that replaces all five? 
(c) What is the charge on the 3.0 μF capacitor?

16.0 V
4.0 μF 2.0 μF 3.0 μF 9.0 μF 5.0 μF

A

B

 44. (a) What is the equivalent resistance between points 
A and B? (b) A 276 V emf is connected to the terminals 
A and B. What is the current in the 12 Ω resistor?

Problems	44,	77,	and	78

276 V

15 Ω

12 Ω 24 Ω

A

B

 45. (a) What is the equivalent resistance between points 
A and B if R = 1.0 Ω? (b) If a 20 V emf is connected to 
the terminals A and B, what is the current in the 2.0 Ω 
resistor?

Problems	45	and	46

R

1.0 Ω

4.0 Ω

2.0 Ω

A

B

ℰ

2.0 μF 6.0 μF 3.0 μF
A

B

44.0 V
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 46. If a 93.5 V emf is connected to the terminals A and B 
and the current in the 4.0 Ω resistor is 17 A, what is the 
value of the unknown resistor R?

 47. (a) What is the equivalent capacitance between points 
A and B if C = 1.0 μF? (b) What is the charge on the 
4.0 μF capacitor when it is fully charged?

Problems	47	and	48

24 V

1.0 μF

C

4.0 μF

2.0 μF

A

B

 48. The equivalent capacitance between points A and B is 
1.63 μF. (a) What is the capacitance of the unknown 
capacitor C? (b) What is the charge on the 4.0 μF 
capacitor when it is fully charged?

 49. (a) Find the value of a 
single capacitor to replace 
the three capacitors in the 
diagram. (b) What is the 
potential difference across 
the 12 μF capacitor at the 
left side of the diagram? (c) What is the charge on the 
12 μF capacitor to the far right side of the circuit?

 50. A 6.0 pF capacitor is needed to construct a circuit. The 
only capacitors available are rated as 9.0 pF. How can a 
combination of three 9.0 pF capacitors be assembled so 
that the equivalent capacitance of the combination 
is 6.0 pF?

 51. A 24 V emf is connected to terminals A and B in 
the following circuit. Find the current in each of the 
resistors.

1.0 Ω 8.0 Ω

3.0 Ω
12.0 Ω 16.0 Ω

A

B

 52.  (a) Find the equivalent resistance between points A 
and B for the combination of resistors shown. (b) An 
18 V emf is connected to the terminals A and B. What 
is the current through the 1.0 Ω resistor connected 
directly to point A? (c) What is the current in the 8.0 Ω 
resistor?

2.0 Ω

3.3 Ω

1.0 Ω

1.0 Ω
4.0 Ω

8.0 Ω

BA

 53.  (a) What is the equivalent 
resistance between points A 
and B? Each resistor has the 
same resistance R. (b) What 
is the equivalent resistance 
between points B and C? 
(c) If a 32 V emf is con-
nected to terminals A and B 
and if R  =  2.0 Ω, what is the current in one of the 
resistors?

 54.  (a) Find the equivalent resistance between points 
A and B for the combination of resistors shown. 
(b) What is the potential difference across each of the 
4.0 Ω resistors? (c) What is the current in the 3.0 Ω 
resistor?

12 V

2.0 Ω 1.0 Ω

3.0 Ω 1.0 Ω

4.0 Ω4.0 Ω
6.0 Ω

A

B

 55.  (a) Find the equivalent 
resistance between terminals 
A and B to replace all of the 
resistors in the diagram. 
(b)  What current flows 
through the emf? (c) What is 
the current through the 4.00 Ω 
resistor at the bottom?

18.7 Circuit Analysis Using Kirchhoff’s Rules
 56. Find the unknown emf and the current in each branch of 

the circuit.

22 Ω

56 Ω56 mA

1.00 V 75 Ω

ℰ

 57. Find the unknown resistances in this circuit.

122 Ω8.00 V
A

E

F

R1

R2

B

D

C

5.00 V

47.0 mA

48.0 mA

4.00 Ω

4.00 Ω

4.00 Ω

4.00 Ω

2.00 Ω

2.00 Ω

6.00 V
A

B

25 V

12 μF

12 μF 12 μF

A

B

B C

A
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 58. Find the unknown emfs in the circuit.

2.00 Ω 50.0
mA

1.00 Ω

5.00 Ω

1.00 V

195 mA

4.00 Ω

ℰ1

ℰ2

 59. Find the unknown emf and the unknown resistor in the 
circuit.

125 V

A

B C D

F E

10.00 A1.00 A 6.00 Ω 4.00 Ω

ℰ

 60. Consider the circuit in the diagram. Given: I1 = 2.50 A, 
ℰ1 = 30.0 V, ℰ2 = 9.00 V, R1 = 8.00 Ω, and R2 = 5.00 Ω. 
Find the values of I2, I3, and R3.

ℰ2 ℰ1

I2R2 R1 I1I3R3

 61.  The figure shows a simplified circuit diagram for an 
automobile. The equivalent resistor R represents the total 
electrical load due to spark plugs, lights, radio, fans, 
starter, rear window defroster, and the like in parallel. If 
R = 0.850 Ω, find the current in each branch. What is the 
terminal voltage of the battery? Is the battery charging or 
discharging?

14.0 V 12.0 V
R

15.0 mΩ

BatteryAlternator

85.0 mΩ

18.8 Power and Energy in Circuits
 62. What is the power dissipated by the resistor in the cir-

cuit if the emf is 2.00 V?
 63. What is the power dissipated by the resistor in the cir-

cuit if R = 5.00 Ω?

Problems	62	and	63

ℰ
R

2.0 A

 64. What is the current in a 60.0 W bulb when connected to 
a 120 V emf?

 65. What is the resistance of a 40.0 W, 120 V incandescent 
lightbulb?

 66. If a chandelier has a label stating 120 V, 5.0 A, can its 
power rating be determined? If so, what is it?

 67. An automatic cat feeder does not have a power rating listed, 
but it has a label stating that it draws a maximum current of 
250.0 mA. The feeder uses three 1.50 V batteries con-
nected in series. What is the maximum power consumed?

 68. How much work are the batteries in the circuit doing in 
every 10.0 s time interval?

2.00 V
2.00 V 2.00 Ω

 69. Show that A2 × Ω = W (amperes squared times 
ohms = watts).

 70. Consider the circuit in the diagram. (a) What current 
flows from the battery? (b) What is the potential differ-
ence between points A and B? (c) What current flows 
through each branch between points A and B? (d) Deter-
mine the power dissipated in the 40.0 Ω resistor.

20.0 Ω

BA

20.0 Ω

70.0 Ω

40.0 Ω

20.0 Ω 120 V

50.0 Ω

 71. (a) What is the equivalent resistance of this circuit if 
R1 = 10.0 Ω and R2 = 15.0 Ω? (b) What current flows 
through R1? (c) What is the voltage drop across R2? 
(d)  What current flows through R2? (e) How much 
power is dissipated in R2?

30.0 Ω

20.0 Ω15.0 Ω

24.0 V

R1

R2

 72. At what rate is energy dissipated in the 4.00 Ω and 
5.00 Ω resistors in the circuit shown?

9.00 V

A B

C

E F

D

4.00 Ω
+

5.00 Ω

8.00 Ω

+
ℰ

0.576 A
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 73. In the circuit shown, R1 = 15.0 Ω, R2 = R4 = 40.0 Ω,  
R3 = 20.0 Ω, and R5 = 10.0 Ω. (a) What is the equivalent 
resistance of this circuit? (b) What current flows through 
resistor R1? (c) What is the total power dissipated by this 
circuit? (d) What is the poten-
tial difference across R3? (e) 
What current flows through 
R3? (f) What is the power dis-
sipated in R3?

 74. A battery has a 6.00 V emf and an internal resistance of 
0.600 Ω. (a) What is the voltage across its terminals 
when the current drawn from the battery is 1.20 A? 
(b) What is the power supplied by the battery?

 75.  During a “brownout,” which occurs when the 
power companies cannot keep up with high demand, 
the voltage of the household circuits drops below its 
normal 120 V. (a) If the voltage drops to 108 V, what 
would be the power consumed by a “100 W” incandes-
cent lightbulb (i.e., a lightbulb that consumes 100.0 W 
when connected to 120 V)? Ignore (for now) changes 
in the resistance of the lightbulb filament. (b) More 
realistically, the lightbulb filament will not be as hot as 
usual during the brownout. Does this make the power 
drop more or less than that you calculated in part (a)? 
Explain.

 76.  A source of emf ℰ has internal resistance r. (a) What 
is the terminal voltage when the source supplies a 
current I? (b) The net power supplied is the terminal 
voltage times the current. Starting with P = I ΔV, derive 
Eq. (18-39) for the net power supplied by the source. 
Interpret each of the two terms. (c) Suppose that a 
battery of emf ℰ and internal resistance r is being 
recharged: another emf sends a current I through the 
battery in the reverse direction (from positive terminal 
to negative). At what rate is electric energy converted to 
chemical energy in the recharging battery? (d) What is 
the power supplied by the recharging circuit to the 
battery?

18.9 Measuring Currents and Voltages
 77. Redraw the circuit in Problem 44 to show how an 

ammeter would be connected to measure (a) the current 
through the 15 Ω resistor and (b) the current through the 
24 Ω resistor.

 78. Redraw the circuit in Problem 44 to show how a voltme-
ter would be connected to measure (a) the potential drop 
across the 15 Ω resistor and (b) the potential drop across 
the 24 Ω resistor.

 79. (a) Redraw the following circuit to show how an 
ammeter would be connected to measure the current 
through the 1.40 kΩ resistor. (b) Assuming the ammeter 
to be ideal, what is its reading? (c) If the ammeter has a 
resistance of 120 Ω, what is its reading?

Problems	79,	80,	and	127

9.00 V 83.0 kΩ

1.40 kΩ

16.0 kΩ

35 Ω

 80. (a) Redraw the circuit to show how a voltmeter would be 
connected to measure the voltage across the 83.0 kΩ 
resistor. (b) Assuming the voltmeter to be ideal, what is 
its reading? (c) If the voltmeter has a resistance of 
1.00 MΩ, what is its reading?

 81. An ammeter with a full-scale deflection for I = 10.0 A 
has an internal resistance of 24 Ω. We need to use this 
ammeter to measure currents up to 12.0 A. The lab 
instructor advises that we get a resistor and use it to pro-
tect the ammeter. (a) What size resistor do we need and 
how should it be connected to the ammeter, in series or in 
parallel? (b) How do we interpret the ammeter readings?

18.10 RC Circuits
 82. In the circuit shown, assume 

the battery emf is 20.0 V, R = 
1.00  MΩ, and C = 2.00 μF. 
The switch is closed at t = 0. 
At what time t will the voltage 
across the capacitor be 15.0 V?

 83. In the circuit, R = 30.0 kΩ 
and C = 0.10 μF. The 
capacitor is allowed to 
charge fully, and then the 
switch is changed from 
position a to position b. 
What will the voltage 
across the resistor be 8.4 ms later?

 84. A capacitor is charged to an initial voltage V0 = 9.0 V. 
The capacitor is then discharged by connecting its termi-
nals through a resis-
tor. The current I(t) 
through this resistor, 
determined by mea-
suring the voltage 
ΔVR(t) = I(t)R with 
an oscilloscope, is 
shown in the graph. 
(a) Find the capaci-
tance C, the resis-
tance R, and the total 
energy dissipated in 
the resistor. (b) At what time is the energy in the capacitor 
half its initial value? (c) Graph the voltage across the ca-
pacitor, ΔVC(t), as a function of time.

R1
24.0 V

R5

R2
R3 R4

R

Cℰ

S

R

C90.0 V

b

a

100 20 30 40 50
t (ms)

I 
(m

A
)

40

60

80

100

20

0
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  85. A charging RC circuit controls the intermittent wind-
shield wipers in a car. The emf is 12.0 V. The wipers are 
triggered when the voltage across the 125 μF capacitor 
reaches 10.0 V; then the capacitor is quickly discharged 
(through a much smaller resistor) and the cycle repeats. 
What resistance should be used in the charging circuit if 
the wipers are to operate once every 1.80 s?

 86.   A defibrillator passes a brief burst of current 
through the heart to restore normal beating. In one such 
defibrillator, a 50.0 μF capacitor is charged to 6.0 kV. 
Paddles are used to make an electric connection to the 
patient’s chest. A pulse of current lasting 1.0 ms partially 
discharges the capacitor through the patient. The electri-
cal resistance of the patient (from paddle to paddle) is 
240 Ω. (a) What is the initial energy stored in the ca-
pacitor? (b) What is the initial current through the pa-
tient? (c) How much energy is dissipated in the patient 
during the 1.0 ms? (d) If it takes 2.0 s to recharge the 
capacitor, compare the average power supplied by the 
power source with the average power delivered to the 
patient. (e) Referring to your answer to part (d), explain 
one reason a capacitor is used in a defibrillator.

 87. Capacitors are used in many applications where one 
needs to supply a short burst of relatively large current. 
A 100.0 μF capacitor in an electronic flash lamp sup-
plies a burst of current that dissipates 20.0 J of energy 
(as light and heat) in the lamp. (a) To what potential 
difference must the capacitor initially be charged? 
(b) What is its initial charge? (c) Approximately what is 
the resistance of the lamp if the current reaches 5.0% of 
its original value in 2.0 ms?

 88. Consider the circuit shown with R1 = 25 Ω, R2 = 33 Ω, 
C1 = 12 μF, C2 = 23 μF, C3 = 46 μF, and V = 6.0 V. 
(a) Draw an equivalent circuit with one resistor and one 
capacitor and label it 
with the values of the 
equivalent resistor and 
capacitor. (b) A long 
time after switch S is 
closed, what are the 
charge on capacitor C1 
and the current in resis-
tor R1? (c) What is the 
time constant of the circuit?

 89. In the circuit of Problem 88, at what time after switch S 
is closed is the voltage across the combination of three 
capacitors 50% of its final value?

 90.   In a defibrillator (see Example 17.12), a charged 
capacitor is connected to paddles that make electrical 
contact with the patient’s skin. If gel is applied to the pa-
tient’s chest to make a good connection between the pad-
dles and the skin, the effective resistance through which 
the capacitor discharges is 52.0 Ω. (a) To what voltage 
must the capacitor be charged to generate a maximum 
current of 40.0 A? (b) If the current 1.00 ms later is 

10.0 A, what is the capacitance? (c) Why does a para-
medic shout “Clear!” before administering the shock?

 91. In the circuit, the capacitor is 
initially uncharged. At t = 0, 
switch S is closed. Find the 
currents I1 and I2 and voltages 
V1 and V2 (assuming V3 = 0) 
at points 1 and 2 at (a) t = 0 
(i.e., just after the switch is 
closed) and at (b) t = 1.0 ms.

 92. In the circuit, the initial 
energy stored in the capac-
itor is 25 J. At t = 0 the 
switch is closed. (a) Sketch 
a graph of the voltage 
across the resistor (VR) as a function of t. Label the ver-
tical axis with key numerical value(s) and units. (b) At 
what time is the energy stored in the capacitor 1.25 J?

 93. (a) In a charging RC circuit, how many time constants 
have elapsed when the capacitor has 99.0% of its final 
charge? (b) How many time constants have elapsed 
when the capacitor has 99.90% of its final charge? 
(c)  How many time constants have elapsed when the 
current has 1.0% of its initial value?

 94. A 20 μF capacitor is discharged through a 5.0 kΩ 
resistor. The initial charge on the capacitor is 200 μC. 
(a) Sketch a graph of the current through the resistor as 
a function of time. Label both axes with numbers and 
units. (b) What is the initial power dissipated in the 
resistor? (c) What is the total energy dissipated?

 95. Consider the circuit in the dia-
gram. After the switch S has 
been closed for a long time, what 
are the current through the 12 Ω 
resistor and the voltage across 
the capacitor?

 96. A parallel plate capacitor used in a flash for a camera 
must be able to store 32 J of energy when connected to 
300 V. (Most electronic flashes actually use a 1.5 to 
6.0 V battery, but increase the effective voltage using a 
dc-dc inverter.) (a) What should be the capacitance of 
this capacitor? (b) If this capacitor has an area of 9.0 m2, 
and a distance between the plates of 1.1 × 10−6 m, what 
is the dielectric constant of the material between the 
plates? (The large effective area can be put into a small 
volume by rolling the capacitor tightly in a cylinder.) 
(c)  Assuming the capacitor completely discharges to 
produce a flash in 4.0 × 10−3 s, what average power is 
dissipated in the flashbulb during this time? (d) If the 
distance between the plates of the capacitor could be 
reduced to half its value, how much energy would the 
capacitor store if charged to the same voltage?

 97. Consider the camera flash in Problem 96. If the flash really 
discharges according to Eq. (18-48), then it takes an infi-
nite amount of time to discharge. When Problem  96

R2R1

S

V
C2C1

C3

Problems	88	and	89

12 V

0.050 μF

I1

I2
S

21

3
40.0 kΩ

0.50 F++++
–– ––

0.40 kΩ
S

S12 V

15 Ω
12 Ω
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    assumes that the capacitor discharges in 4.0 × 10−3 s, we 
mean that the capacitor has almost no charge stored on it 
after that amount of time. Suppose that after 4.0 × 10−3 s 
the capacitor has only 1.0% of the original charge still on 
it. (a) What is the time constant of this RC circuit? (b) What 
is the resistance of the flashbulb in this case? (c) What is 
the maximum power dissipated in the flashbulb?

  98.  A capacitor is charged by a 9.0 V battery. The 
charging current I(t) is shown. (a) Find the capacitance 
C of the capacitor and the total resistance R in the 
circuit. (b) At what time is the stored energy in the 
capacitor half of its maximum value?

500 100 150 200 250
t (ms)

I 
(m

A
)

40

60

80

20

0

  99.  A charged capacitor is discharged through a resistor. 
The current I(t) through this resistor, determined by mea-
suring the voltage ΔVR(t) = I(t)R with an oscilloscope, is 
shown in the graph. The total energy dissipated in the re-
sistor is 2.0 × 10−4 J. (a) Find the capacitance C, the resis-
tance R, and the initial charge on the capacitor. (b) At what 
time is the stored energy in the capacitor 5.0 × 10−5 J?

20 4 6 8 10
t (ms)

I 
(m

A
)

40

60

80

100

20

0

18.11 Electrical Safety
 100.  A person in bare feet is standing under a tree dur-

ing a thunderstorm, seeking shelter from the rain. A 
lightning strike hits the tree. A burst of current lasting 
40 μs passes through the ground; during this time the 
potential difference between his feet is 20 kV. If the 
resistance between one foot and the other is 500 Ω, (a) 
what is the current through his body and (b) how much 
energy is dissipated in his body by the lightning?

 101.  In the physics laboratory, Oscar measured the 
resistance between his hands to be 2.0 kΩ. Being curi-
ous by nature, he then took hold of two conducting 
wires that were connected to the terminals of an emf 
with a terminal voltage of 100.0 V. (a) What current 
passes through Oscar? (b) If one of the conducting 
wires is grounded and the other has an alternative path 

to ground through a 15 Ω resistor (so that Oscar and 
the resistor are in parallel), how much current would 
pass through Oscar if the maximum current that can be 
drawn from the emf is 1.00 A?

 102.  Chelsea inadvertently bumps into a set of batteries 
with an emf of 100.0 V that can supply a maximum 
power of 5.0 W. If the resistance between the points 
where she contacts the batteries is 1.0 kΩ, how much 
current passes through her?

Collaborative Problems

 103. In her bathroom, Mindy has an overhead heater that 
consists of a coiled wire made of nichrome that gets hot 
when turned on. The wire has a length of 3.0 m when it 
is uncoiled. The heating element is attached to the nor-
mal 120 V wiring, and when the wire is glowing red 
hot, it has a temperature of about 420°C and dissipates 
2200 W of power. Nichrome has a resistivity of 108 × 
10−8 Ω·m at 20°C and a temperature coefficient of re-
sistivity of 0.000 40°C−1. (a) What is the resistance of 
the heater when it is turned on? (b) What current does 
the wire carry? (c) If the wire has a circular cross sec-
tion, what is its diameter? Ignore the small changes in 
the wire’s diameter and length due to changes in tem-
perature. (d) When the heater is first turned on, it has 
not yet heated up, so it is operating at 20°C. What is the 
current through the wire when it is first turned on?

 104.  The wiring circuit for a typical room is shown sche-
matically. (a) Of the six locations for a circuit breaker 
indicated by A, B, C, D, E, and F, which one would best 
protect the wiring against a short circuit in any one of 
the three appliances? Explain. (b) The potential differ-
ence between hot and neutral is 120 V. Suppose the 
heater draws 1500 W, the lamp draws 300 W, and the 
microwave draws 1200 W. The circuit breaker is rated at 
20.0 A. Can all three devices be operated simultaneously 
without tripping the breaker? Explain.

ℰ

Hot

Neutral

Heater

Lamp

Microwave
oven

D E F

A
CB

 105.  We can model some of the electrical properties of 
an unmyelinated axon as an electric cable covered with 
defective insulation so that current leaks out of the axon 
to the surrounding fluid. We assume the axon consists 
of a cylindrical membrane filled with conducting fluid. 
A current of ions can travel along the axon in this fluid 
and can also leak out through the membrane. The inner 
radius of the cylinder is 5.0 μm; the membrane thick-
ness is 8.0 nm. (a) If the resistivity of the axon fluid is 
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2.0 Ω·m, calculate the resistance of a 1.0 cm length of 
axon to current flow along its length. (b) If the resistiv-
ity of the porous membrane is 2.5 × 107 Ω·m, calculate 
the resistance of the wall of a 1.0 cm length of axon to 
current flow across the membrane. (c) Find the length 
of axon for which the two resistances are equal. This 
length is a rough measure of the distance a signal can 
travel without amplification.

 106.  (a) Given two identical, ideal batteries (emf = ℰ) 
and two identical incandescent lightbulbs 
(resistance = R assumed constant), design a circuit to 
make both bulbs glow as brightly as possible. (b) What 
is the power dissipated by each bulb? (c) Design a cir-
cuit to make both bulbs glow, but one more brightly 
than the other. Identify the brighter bulb.

 107. Copper and aluminum are being considered for the cables 
in a high-voltage transmission line where each must carry 
a current of 50 A. The resistance of each cable is to be 
0.15 Ω per kilometer. (a) If this line carries power from 
Niagara Falls to New York City (approximately 500 km), 
how much power is lost along the way in the cable? Com-
pute for each choice of cable material (b) the necessary 
cable diameter and (c) the mass per meter of the cable. 
The electrical resistivities for copper and aluminum 
are given in Table 18.1; the mass density of copper is 
8920 kg/m3 and that of aluminum is 2702 kg/m3.

 108.  About 5.0 × 104 m above Earth’s surface, the 
atmosphere is sufficiently ionized that it behaves as a 
conductor. Earth and the ionosphere form a giant spheri-
cal capacitor, with the lower atmosphere acting as a 
leaky dielectric. (a) Find the capacitance C of the Earth-
ionosphere system by treating it as a parallel plate ca-
pacitor. Why is it OK to do that? [Hint: Compare Earth’s 
radius to the distance between the “plates.”] (b)  The 
 fair-weather electric field is about 150 V/m, downward. 
How much energy is stored in this capacitor? (c) Due to 
radioactivity and cosmic rays, some air molecules are 
ionized even in fair weather. The resistivity of air is 
roughly 3.0 × 1014 Ω·m. Find the resistance of the lower 
atmosphere and the total current that flows between 
Earth’s surface and the ionosphere. [Hint: Since we treat 
the system as a parallel plate capacitor, treat the atmo-
sphere as a dielectric of uniform thickness between the 
plates.] (d) If there were no lightning, the capacitor 
would discharge. In this model, how much time would 
elapse before Earth’s charge were reduced to 1% of its 
normal value? (Thunderstorms are the sources of emf 
that maintain the charge on this leaky capacitor.)

Comprehensive Problems

 109. A 1.5 V flashlight battery can maintain a current of 
0.30  A for 4.0 h before it is exhausted. How much 
chemical energy is converted to electrical energy in this 
process? (Assume zero internal resistance of the battery.)

 110. In the diagram, the positive 
terminal of the 12 V battery 
is grounded—it is at zero 
potential. At what potential 
is point X?

 111. A1 and A2 represent ammeters with negligible resistance. 
What are the values of the currents (a) in A1 and (b) in A2?

Problems	111	and	112

2.00 Ω

2.00 Ω

2.00 Ω

A1 A2

6.00 Ω3.00 Ω10.0 V

 112. Repeat Problem 111 if each of the ammeters has resis-
tance 0.200 Ω.

 113. A 1.5 hp motor operates on 120 V. Ignoring I2R losses, 
how much current does it draw?

 114. A certain electric device has the current-voltage (I-V) 
graph shown with Problem 30. What is the power dis-
sipated at points 1 and 2?

 115. Given two identical, ideal 
batteries of emf ℰ and 
two identical incandescent 
lightbulbs of resistance R 
(assumed constant), find 
the total power dissipated 
in the circuit in terms of ℰ and R.

 116. Two circuits are constructed using identical, ideal bat-
teries (emf = ℰ) and identical incandescent lightbulbs 
(resistance = R). If each bulb in circuit 1 dissipates 
5.0 W of power, how much power does each bulb in 
circuit 2 dissipate? Ignore changes in the resistance of 
the bulbs due to temperature changes.

Circuit 1 Circuit 2

R

R
ℰ ℰ RR

 117. A 500 W electric heater unit is designed to operate 
with an applied potential difference of 120 V. (a) If the 
local power company imposes a voltage reduction to 
lighten its load, dropping the voltage to 110 V, by what 
percentage does the heat output of the heater drop? 
(Assume the resistance does not change.) (b) If you 
took the variation of resistance with temperature into 
account, would the actual drop in heat output be larger 
or smaller than calculated in part (a)?

 118.  Consider a 60.0 W incandescent lightbulb and a 
100.0 W incandescent lightbulb designed for use in a 
household lamp socket at 120 V. (a) What are the re-
sistances of these two bulbs? (b) If they are wired 
together in a series circuit, which bulb shines brighter 

12 V X4 V
Ground

++ ––

R

R
ℰℰ
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(dissipates more power)? Explain. (c) If they are con-
nected in parallel in a circuit, which bulb shines 
brighter? Explain.

 119.  The Wheatstone bridge is 
a circuit used to measure un-
known resistances. The bridge 
in the figure is balanced—no 
current flows through the gal-
vanometer G (a sensitive 
detector of current whose op-
eration is based on magnetic 
forces). (a) What is the 
unknown resistance Rx? [Hint: 
What is the potential differ-
ence between points A and B?] (b) Do the resistance of 
the galvanometer or the internal resistance of the emf 
affect the measurement? Explain.

 120.  The filament of an incandescent lightbulb is made 
of tungsten. At room temperature of 20.0°C the fila-
ment has a resistance of 10.0 Ω. (a) What is the power 
dissipated in the lightbulb immediately after it is con-
nected to a 120 V emf (when the filament is still at 
20.0°C)? (b) After a brief time, the lightbulb filament 
has changed temperature and it glows brightly. The cur-
rent is now 0.833 A. What is the resistance of the light-
bulb now? (c)  What is the power dissipated in the 
lightbulb when it is glowing brightly as in part (b)? 
(d) What is the temperature of the filament when it is 
glowing brightly? (e) Explain why incandescent light-
bulbs usually burn out when they are first turned on 
rather than after they have been glowing for a long time.

 121. (a) What is the resistance of the heater element in a 
1500 W hair dryer that plugs into a 120 V outlet? 
(b) What is the current through the hair dryer when it 
is turned on? (c) At a cost of $0.10 per kW· h, how 
much does it cost to run the hair dryer for 5.00 min? 
(d) If you were to take the hair dryer to Europe where 
the voltage is 240 V, how much power would your hair 
dryer be using in the brief time before it is ruined? 
(e)  What current would be flowing through the hair 
dryer during this time?

 122. In the circuit shown, an emf of 150 V is connected 
across a resistance network. What is the current 
through R2? Each of the resistors has a value of 10 Ω.

R4

R1

R2

R3

 123.  A 2.00 μF capacitor is charged using a 5.00 V bat-
tery, and a 3.00 μF capacitor is charged using a 10.0 V 
battery. (a) What is the total energy stored in the two 

capacitors? (b) The batteries are disconnected, and the 
two capacitors are connected together (+ to + and − 
to −). Find the charge on each capacitor and the total 
energy in the two capacitors after they are connected. 
(c) Explain what happened to the “missing” energy. 
[Hint: The wires that connect the two have some 
resistance.]

 124. A string of 25 decorative lights has bulbs rated at 
9.0  W, and the bulbs are connected in parallel. The 
string is connected to a 120 V power supply. (a) What 
is the resistance of each of these lights? (b) What is the 
current through each bulb? (c) What is the total current 
coming from the power supply? (d) The string of bulbs 
has a fuse that will blow if the current is greater than 
2.0 A. How many of the bulbs can you replace with 
10.4 W bulbs without blowing the fuse?

 125.  A portable radio requires an emf of 4.5 V. Olivia 
has only two nonrechargeable 1.5 V batteries, but she 
finds a larger 6.0 V battery. (a) How can she arrange 
the batteries to produce an emf of 4.5 V? Draw a cir-
cuit diagram. (b) Is it advisable to use this combination 
with her radio? Explain.

 126.  Three identical incandescent lightbulbs are con-
nected with wires to an ideal battery. The two termi-
nals on each socket connect to the two terminals of its 
lightbulb. Wires do not connect with one another 
where they appear to cross in the picture. Ignore the 
change of the resistances of the filaments due to tem-
perature changes. (a) Which of the schematic circuit 
diagrams correctly represent(s) the circuit? (List more 
than one choice if more than one diagram is correct.) 
(b) Which bulb(s) is/are the brightest? Which is/are the 
dimmest? Or are they all the same? Explain. (c) Find 
the current through each bulb if the filament resis-
tances are each 24.0 Ω and the emf is 6.0 V.

(a)

+

1 2 3

Socket Socket

1 2

3

(b)

+

1 23

(c)

+
1

2

3

(d)

+
1 2

3

(e)

+

1 2

3

1 2
+

3

(f)

Socket

Battery
+–

45 Ω 234 Ω

67 Ω

B

A

Rx

G
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 127. A voltmeter with a resistance of 670 kΩ is used to mea-
sure the voltage across the 83.0 kΩ resistor in the figure 
with Problems 79 and 80. What is the voltmeter  reading?

 128. A piece of gold wire of length L has a resistance R0. 
Suppose the wire is drawn out so that its length in-
creases by a factor of 3. What is the new resistance R 
in terms of the original resistance?

 129. The circuit is used to study the charging of a capacitor. 
(a) At t = 0, the switch is closed. What initial charging 
current is measured by the ammeter? (b) After the cur-
rent has decayed to zero, what are the voltages at points 
A, B, and C?

0.10 MΩ3.0 V
A

S

A

B

C

C1 = 2.0 μF

C2 = 5.0 μF

V = 0

 130. A gold wire and an aluminum wire have the same 
dimensions and carry the same current. The electron 
density (in electrons/cm3) in aluminum is three times 
larger than the density in gold. How do the drift speeds 
of the electrons in the two wires, vAu and vAl, compare?

 131.   Problems 131 and 132. A potentiometer is a 
resistor with a sliding 
contact. It can be used to 
measure emfs accurately 
(Problem 131) or to sup-
ply a variable voltage to a 
circuit (Problem 132). In 
the diagram with switch 
S1 closed and S2 open, 
there is no current through 
the galvanometer G (a 
sensitive detector of cur-
rent whose operation is 
based on magnetic forces) for R1  = 20.0 Ω with a 
standard cell ℰs of 2.00 V. With switch S2 closed and 
S1 open, there is no current through the galvanometer 
G for R2 = 80.0 Ω. (a) What is the unknown emf ℰx? 
(b)  Explain why the potentiometer accurately mea-
sures the emf even for a 
source with substantial 
internal  resistance.

 132. In the circuit, ℰ = 45.0 V 
and R = 100.0 Ω. Assume 
the emf is ideal. If a voltage 
Vx = 30.0 V is needed for a 
circuit, what should resis-
tance Rx be?

 133.  Near Earth’s surface the air contains both negative 
and positive ions due to radioactivity in the soil and 

cosmic rays from space. As a simplified model, assume 
there are 600.0 singly charged positive ions per cubic 
centimeter and 500.0 singly charged negative ions per 
cubic centimeter. Ignore the presence of multiply-
charged ions. The electric field is 100.0 V/m, directed 
downward. (a) In which direction do the positive ions 
move? The negative ions? (b) What is the direction of 
the current due to these ions? (c) The measured resistiv-
ity of the air in the region is 4.0 × 1013 Ω·m. Calculate 
the drift speed of the ions, assuming it to be the same for 
positive and negative ions. [Hint: Consider a vertical 
tube of air of length L and cross-sectional area A. How 
is the potential difference across the tube related to the 
electric field strength?] (d) If these conditions existed 
simultaneously over the entire surface, what would be 
the total current due to the movement of ions in the air?

 134. A parallel plate capacitor is constructed from two square 
conducting plates of length L = 0.10 m on a side. There is 
air between the plates, which are separated by a distance 
d = 89 μm. The capacitor is connected to a 10.0 V battery. 
(a) After the capacitor is fully charged, what is the charge 
on the upper plate? (b) The battery is disconnected from 
the plates, and the capacitor is discharged through a resis-
tor R = 0.100 MΩ. Sketch the current through the resistor 
as a function of time t (t = 0 corresponds to the time when 
R is connected to the capacitor). (c) How much energy is 
dissipated in R over the whole discharging process?

R10.0 V
d

L

Review and Synthesis

 135. A coffee maker can be modeled as a heating element 
(resistance R) connected to the outlet voltage of 120 V 
(assumed to be dc). The heating element boils small 
amounts of water at a time as it brews the coffee. When 
bubbles of water vapor form, they carry liquid water up 
through the tubing. Because of this, the coffee maker 
boils 5.0% of the water that passes through it; the rest 
is heated to 100°C but remains liquid. Starting with 
water at 10°C, the coffee maker can brew 1.0 L of cof-
fee in 8.0 min. Find the resistance R.

 136. Two immersion heaters, A and B, are both connected to a 
120 V supply. Heater A can raise the temperature of 
1.0 L of water from 20.0°C to 90.0°C in 2.0 min, whereas 
heater B can raise the temperature of 5.0 L of water from 
20.0°C to 90.0°C in 5.0 min. What is the ratio of the re-
sistance of heater A to the resistance of heater B?

 137.   A copper wire has a resistance of 24 Ω at 20°C. 
An aluminum wire has 3.0 times the length and 
2.0 times the radius of the copper wire. (a) What is the 
resistance of the aluminum wire at 20°C? (b) The 

ℰx

ℰs

S2
S1

R1

R2

20.0 V

G

ℰ

+
R

Rx

Vx
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graph shows a V-I plot for the copper wire. What is the 
resistance of the wire when operating steadily at a 
current of 10 A? (c) What was the temperature of the 
copper wire when the current was 10 A? Ignore 
changes in the wire’s dimensions. (d) Would your an-
swer to (c) change significantly if you took into ac-
count the thermal expansion of the wire? Explain.

0 5 10
I (A)

V
 (v

ol
ts

)

100

200

300

0

 138. The field between the plates of a parallel plate capaci-
tor, E = Q/(ϵ0 A), is due to the superposition of equal 
contributions from the charges on the two plates. 
Therefore, each plate exerts an electric force on the 
other. (a) Find the magnitude of this force in terms of 
Q, ϵ0, and A. (b)  Suppose the plates have no other 
forces acting on them and they start a distance d apart. 
Find the kinetic energy of each plate when they col-
lide. [Hint: Two different methods are possible.]

 139.  Many home heating systems operate by pumping hot 
water through radiator pipes. The flow of the water to 
different “zones” in the house is controlled by zone 
valves that open in response to thermostats. The opening 
and closing of a zone valve is commonly performed by a 
wax actuator, as shown in the diagram. When the ther-
mostat signals the valve to open, a dc voltage of 24 V is 
applied across a heating element (resistance R = 200 Ω) 
in the actuator. As the wax melts, it expands and pushes 
a cylindrical rod (radius 2.0 mm) out a distance 1.0 cm to 
open the zone switch. The actuator contains 2.0 mL of 
solid wax of density 0.90 g/cm3 at room temperature 
(20°C). The specific heat of the wax is 0.80 J/(g·°C), its 
latent heat of fusion is 60 J/g, and its melting point is 
90°C. When the wax melts its volume expands by 15%. 
How long does it take until the valve is fully open?

Cylindrical rod

R

Wax

Heating
element

To thermostat
Rubber
diaphragm

Wax	actuator

 140.   Poiseuille’s law [Eq. (9-41)] gives the volume 
flow rate of a viscous fluid through a pipe. (a) Show that 
Poiseuille’s law can be written in the form ΔP = IR, 
where I = ΔV/Δt represents the volume flow rate and R 
is a constant of proportionality called the fluid flow 
resistance. (b) Find R in terms of the viscosity of the fluid 
and the length and radius of the pipe. (c) If two or more 
pipes are connected in series so that the volume flow rate 
through them is the same, do the resistances of the pipes 
add as for electrical resistors (Req = R1 + R2 + ⋯)? 
Explain. (d) If two or more pipes are connected in paral-
lel, so the pressure drop across them is the same, do the 
reciprocals of the resistances add as for electrical resistors 
(1/Req = 1/R1 + 1/R2 + ⋯)? Explain.

Answers to Practice Problems

18.1 (a) 2.00 × 1015 electrons; (b) 52 min
18.2 (a) 0.33 A; (b) 6.7 μm/s
18.3 6.9 Ω
18.4 292°C
18.5 1.495 V
18.6 1.0 Ω
18.7  1

3R (the resistors are in parallel)
18.8 (0.58 A)(4.0 Ω) − 1.5 V − 3.0 V + (0.72 A)(3.0 Ω) = 0.0
18.9 1.1 W; 190 J
18.10 2.4 μA; 0.38 μC; 44 nA; 0.60 μC

Answers to Checkpoints

18.1 No. Equal quantities of positive and negative charge 
are being transported in the same direction at the same rate. 
There is no net transport of charge, so the electric current in 
the pipe is zero.
18.3 The thinner wire has fewer conduction electrons in a 
given length—the number per unit volume is the same, but 
the thinner wire has a smaller cross-sectional area. To pro-
duce the same current using fewer electrons, the electrons 
must move faster (on average). The thinner wire has a larger 
drift speed. This reasoning is confirmed by Eq. (18-5). Since 
I, n, and e are the same for both wires, the wire with smaller 
A has a larger vD.
18.4 Resistivity is a property of the material that is indepen-
dent of size or shape. Resistance depends on the size and 
shape of the sample.
18.6 1/Req = 1/R + 1/R = 2/R  ⇒  Req = R/2
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Magnetic Forces and Fields

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Magnetotactic bacteria 
(Section 19.1)

∙ Mass spectrometry 
(Section 19.3;  
Problems 30–34, 94, 
124–128)

∙ Medical uses of 
cyclotrons (Section 19.3; 
Problems 25–28, 93)

∙ Electromagnetic blood 
flowmeter (Section 19.5; 
Problems 43, 96, 105)

∙ Magnetic resonance 
imaging (Section 19.8; 
Problem 81)

Concepts & Skills to Review

•	 sketching	and	interpreting	
electric	field	lines	
(Section	16.4)

•	 uniform	circular	motion;	
radial	acceleration	
(Sections	5.1	and	5.2)

•	 torque;	lever	arm	
(Section 8.2)

•	 relation	between	current	
and	drift	velocity	
(Section	18.3)

1 µm

Colorized transmission electron micrograph of Magnetospirillum magnetotacticum. 
©Dennis Kunkel Microscopy/Science Source

Some	bacteria	 live	 in	 the	 layer	 of	 sediment	 at	 the	bottom	of	 bodies	
of	 water.	 When	 the	 sediment	 gets	 stirred	 up,	 the	 bacteria	 cannot	
survive	long	in	higher	oxygen	concentration	of	the	water,	so	it	is	imper-
ative	 that	 they	 swim	 back	 down	 to	 the	 sediment	 as	 quickly	 as	 pos-
sible.	 The	 problem	 is	 knowing	 which	 direction	 is	 down!	 The	 mass	
density	 of	 the	 bacteria	 is	 almost	 identical	 to	 that	 of	 water,	 so	 the	
buoyant	force	prevents	them	from	“feeling”	the	downward	pull	of	grav-
ity.	Nevertheless,	the	bacteria	are	somehow	able	to	swim	in	the	correct	
direction	 to	get	back	home.	How	do	 they	do	 it?
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19.1 MAGNETIC FIELDS

Permanent Magnets and Magnetic Dipoles

Permanent magnets have been known at least since the time of the ancient Greeks, 
about 2500 years ago. A naturally occurring iron ore called lodestone (now called 
magnetite) was mined in various places, including the region of modern-day Turkey 
called Magnesia. Some of the chunks of lodestone were permanent magnets; they 
exerted magnetic forces on one another and on iron and could be used to turn a piece 
of iron into a permanent magnet. In China, the magnetic compass was used as a 
navigational aid at least a thousand years ago—possibly much earlier. Not until 1820 
was a connection between electricity and magnetism established, when Danish scien-
tist Hans Christian Oersted (1777–1851) discovered that a compass needle is deflected 
by a nearby electric current.

Figure 19.1a shows a plate of glass lying on top of a bar magnet. Iron filings 
have been sprinkled on the glass and then the glass has been tapped to shake the fil-
ings a bit and allow them to move around. The filings have lined up with the magnetic 
field (symbol: B

→
) due to the bar magnet. Figure 19.1b shows a sketch of the magnetic 

field lines representing this magnetic field. As is true for electric field lines, the 
magnetic field lines represent both the magnitude and direction of the magnetic field 
vector. The magnetic field vector at any point is tangent to the field line, and the 
magnitude of the field is proportional to the number of lines per unit area perpen-
dicular to the lines.

Figure 19.1b may strike you as being similar to a sketch of the electric field lines 
for an electric dipole (see Fig. 16.33). The similarity is not a coincidence; the bar 
magnet is one instance of a magnetic dipole. By dipole we mean two opposite poles. 
In an electric dipole, the electric poles are positive and negative electric charges. A 
magnetic dipole consists of two opposite magnetic poles. The end of the bar magnet 
where the field lines emerge is called the north pole, and the end where the lines go 
back in is called the south pole. If two magnets are near each other, opposite poles 
(the north pole of one magnet and the south pole of the other) exert attractive forces 
on each other; like poles (two north poles or two south poles) repel each other.

The names north pole and south pole are derived from magnetic compasses. A 
compass is simply a small bar magnet that is free to rotate. Any magnetic dipole, 
including a compass needle, feels a torque that tends to line it up with an external 

Working model of a spoon-
shaped compass from the Han 
Dynasty (202 b.c.e. to 220 c.e.). 
The spoon, made of lodestone 
(magnetite ore) rests on a bronze 
plate called a “heaven-plate” 
or diviner’s board. The earliest 
Chinese compasses were used 
for prognostication; only much 
later were they used as 
navigation aids.
©richcano/Getty Images

CONNECTION:

Electric dipole: one positive 
charge and one negative 
charge. Magnetic dipole: one 
north pole and one south pole.

Figure 19.1 (a) Photo of a bar magnet. Nearby iron filings line up with the mag-
netic field. (b) Sketch of the magnetic field lines due to the bar magnet. The field 
lines emerge from the north pole of the magnet and re-enter at the south pole. 
Note, however, that the field lines are closed loops. Inside the magnet, the field 
lines go from the south pole to the north pole.
©Alchemy/Alamy

BMagnetic
field lines

S

N

(a) (b)
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magnetic field (Fig. 19.2). The north pole of the compass needle is the end that points 
in the direction of the magnetic field. In a compass, the bar magnet needle is mounted 
to minimize frictional and other torques so it can swing freely in response to a mag-
netic field.

Permanent magnets come in many shapes other than the bar magnet. Figure 19.3 
shows some others, with the magnetic field lines sketched. Notice in Fig. 19.3a that 
if the pole faces are parallel and close together, the magnetic field between them is 
nearly uniform. A magnet need not have only two poles; it must have at least one 
north pole and at least one south pole. Some magnets are designed to have a large 
number of north and south poles. The flexible magnetic card (Fig. 19.3b), commonly 
found on refrigerator doors, is designed to have many poles, both north and south, on 
one side and no poles on the other. The magnetic field is strong near the side with 
the poles and weak near the other side; the card sticks to an iron surface (e.g., a 
refrigerator door) on one side but not on the other.

EVERYDAY PHYSICS DEMO

Obtain	two	refrigerator	magnets	(the	thin,	flexible	kind),	or	cut	one	in	half.	Rub	
the	back	of	 one	across	 the	back	of	 the	other	 in	 the	 four	orientations	 shown	
in	Fig.	19.4.	Determine	the	orientation	of	the	magnetized	strips	and	estimate	
their	width.

No Magnetic Monopoles Coulomb’s law for electric forces gives the force acting 
between two point charges—two electric monopoles. However, as far as we know, there 
are no magnetic monopoles—that is, there is no such thing as an isolated north pole or 
an isolated south pole. If you take a bar magnet and cut it in half, you do not obtain 
one piece with a north pole and another piece with a south pole. Both pieces are mag-
netic dipoles (Fig. 19.5). There have been theoretical predictions of the existence of 
magnetic monopoles, but years of experiments have yet to turn up a single one.

Magnetic Field Lines

Figure 19.1 shows that magnetic field lines do not begin on north poles and end on 
south poles: magnetic field lines are always closed loops. If there are no magnetic 
monopoles, there is no place for the field lines to begin or end, so they must be closed 
loops. Contrast Fig. 19.1b with Fig. 16.33—the field lines for an electric dipole. The 
field line patterns are similar away from the dipole, but nearby and between the poles 
they are quite different. The electric field lines are not closed loops; they start on the 
positive charge and end on the negative charge.

Figure 19.2 Each compass 
needle is aligned with the 
magnetic field due to the bar 
magnet. The “north” (red) end 
of each needle points in the 
direction of the magnetic field.
©GIPhotoStock/Science Source

(a) (b)

Back (brown)

Side view

Front (printed)

SN

NS

Figure 19.3 Two permanent magnets and their magnetic field lines. The field 
lines outside the magnet go from the north pole to the south pole. (a) The magnetic 
field between the pole faces of a C-shaped magnet is nearly uniform. (b) A refrig-
erator magnet (shown here in a side view) has alternating strips of north and south 
poles on the back surface.

Figure 19.4 Determining the 
orientation and width of the 
magnetized strips on a 
 refrigerator magnet.
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Despite these differences between electric and magnetic field lines, the interpre-
tation of magnetic field lines is the same as for electric field lines:

Interpretation of Magnetic Field Lines

•  The direction of the magnetic field vector at any point is tangent to the field 
line passing through that point and is in the direction indicated by arrows on 
the field line (as in Fig. 19.1b).

•  The magnetic field is strong where field lines are close together and weak 
where they are far apart. More specifically, if you imagine a small surface 
perpendicular to the field lines, the magnitude of the magnetic field is pro-
portional to the number of lines that cross the surface, divided by the area.

Earth’s Magnetic Field

Figure 19.6 shows field lines for Earth’s magnetic field. Near Earth’s surface, the 
magnetic field is approximately that of a dipole, as if a bar magnet were buried at 
the center of Earth. Farther away from Earth’s surface, the dipole field is distorted by 
the solar wind—charged particles streaming from the Sun toward Earth. As discussed 
in Section 19.8, moving charged particles create their own magnetic fields, so the 
solar wind has a magnetic field associated with it.

In most places on the surface, Earth’s magnetic field is not horizontal; it has a 
significant vertical component. The vertical component can be measured directly using 
a dip meter, which is just a compass mounted so that it can rotate in a vertical plane. 
In the northern hemisphere, the vertical component is downward, while in the south-
ern hemisphere it is upward. In other words, magnetic field lines emerge from Earth’s 
surface in the southern hemisphere and reenter in the northern hemisphere. A mag-
netic dipole that is free to rotate aligns itself with the magnetic field such that the 
north end of the dipole points in the direction of the field. Figure 19.2 shows a bar 
magnet with several compasses in the vicinity. Each compass needle points in the 
direction of the local magnetic field, which in this case is due to the magnet. A com-
pass is normally used to detect Earth’s magnetic field. In a horizontally mounted 
compass, the needle is free to rotate only in a horizontal plane, so its north end points 
in the direction of the horizontal component of Earth’s field. Note the orientation of 
the fictitious bar magnet in Fig. 19.6: the south pole of the magnet faces roughly 

Magnetic
pole

Magnetic
pole

BEquator

Antarctic

Arctic

S

N

Figure 19.6 Earth’s magnetic 
field. The diagram shows the 
magnetic field lines in one 
plane. In general, the magnetic 
field at the surface has both 
horizontal and vertical compo-
nents. The magnetic poles are 
the points where the magnetic 
field at the surface is purely 
vertical. The magnetic poles do 
not coincide with the geo-
graphic poles, which are the 
points at which the axis of rota-
tion intersects the surface. Near 
the surface, the field is approxi-
mately that of a dipole, like that 
of the fictitious bar magnet 
shown. Note that the south pole 
of this bar magnet points toward 
the Arctic and the north pole 
points toward the Antarctic.

S

When cut
here yields

N

S N S N

Figure 19.5 Sketch of a bar 
magnet that is subsequently cut 
in half. Each piece has both a 
north and a south pole.

CONNECTION:

Magnetic field lines help us 
visualize the magnitude and 
direction of the magnetic 
field vectors, just as electric 
field lines do for the magni-
tude and direction of E

→
.
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toward geographic north and the north pole of the magnet faces roughly toward geo-
graphic south. 

Origin of Earth’s Magnetic Field The origin of Earth’s magnetic field is still under 
investigation. According to a leading theory, the field is created by electric currents 
in the molten iron and nickel of Earth’s outer core, more than 3000 km below the 
surface. Earth’s magnetic field is slowly changing. The magnetic poles move about 
40–60 km per year. The magnetic poles have undergone a complete reversal in polarity 
(north becomes south and south becomes north) roughly 100 times in the past 5 million 
years. The most recent Geological Survey of Canada, completed in May 2001, located 
the north magnetic pole—the point on Earth’s surface where the magnetic field points 
straight down—at 81°N latitude and 111°W longitude, about 1600 km south of the 
geographic north pole (the point where Earth’s rotation axis intersects the surface, at 
90°N latitude). The location of the north magnetic pole in 2018 is estimated to be at 
86.5°N 179°W, about 900 km from its location in 2001.

Application: Magnetotactic Bacteria

In the electron micrograph of the bacterium shown with the chapter opener, a line of 
crystals (stained yellow) stands out. They are crystals of magnetite, the same iron 
oxide (Fe3O4) that was known to the ancient Greeks. The crystals are tiny permanent 
magnets that function essentially as compass needles. When the bacteria get stirred 
up into the water, their compass needles automatically rotate to line up with the mag-
netic field. As the bacteria swim along, they follow a magnetic field line. In the 
northern hemisphere, the north end of the “compass needle” faces forward. The bac-
teria swim in the direction of the magnetic field, which has a downward component, 
so they return to their home in the mud. Bacteria in the southern hemisphere have 
the south pole forward; they must swim opposite to the magnetic field since the field 
has an upward component. If some of these magnetotactic (-tactic = feeling or sens-
ing) bacteria are brought from the southern hemisphere to the northern, or vice versa, 
they swim up instead of down!

There is evidence of magnetic navigation in several species of bacteria and also 
in some higher organisms. Experiments with homing pigeons, robins, and bees have 
shown that these organisms have some magnetic sense. On sunny days, they primar-
ily use the Sun’s location for navigation, but on overcast days they use Earth’s mag-
netic field. Permanently magnetized crystals, similar to those found in the mud 
bacteria, have been found in the brains of these organisms, but the mechanism by 
which they can sense Earth’s field and use it to navigate is not understood. Some 
experiments have shown that even humans may have some sense of Earth’s magnetic 
field, which is not out of the realm of possibility since tiny magnetite crystals have 
been found in the brain.

19.2 MAGNETIC FORCE ON A POINT CHARGE

Before we go into more detail on the magnetic forces and torques on a magnetic 
dipole, we need to start with the simpler case of the magnetic force on a moving point 
charge. Recall that in Chapter 16 we defined the electric field as the electric force 
per unit charge. The electric force is either in the same direction as E

→
 or in the oppo-

site direction, depending on the sign of the point charge.
The magnetic force on a point charge is more complicated—it is not the charge 

times the magnetic field. The magnetic force depends on the point charge’s velocity as 
well as on the magnetic field. If the point charge is at rest, there is no magnetic force. 
The magnitude and direction of the magnetic force depend on the direction and speed 
of the charge’s motion. We have learned about other velocity-dependent forces, such 
as the drag force on an object moving through a fluid. Like drag forces, the magnetic 
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force increases in magnitude with increasing velocity. However, the direction of the 
drag force is always opposite to the object’s velocity, whereas the direction of the 
magnetic force on a charged particle is perpendicular to the velocity of the particle.

Imagine that a positive point charge q moves at velocity v→ at a point where the 
magnetic field is B

→
 and the angle between v→ and B

→
 is θ (Fig. 19.7a). The magnitude 

of the magnetic force acting on the point charge is the product of

∙ the magnitude of the charge ∣q∣,
∙ the magnitude of the field B, and
∙ sin θ.

Magnitude of the magnetic force on a moving point charge

 FB = ∣q∣vB sin θ (19-1)

Note that if the point charge is at rest (v = 0) or if its motion is along the same line 
as the magnetic field (sin θ = 0), then the magnetic force is zero.

Depending on the particular application, other ways to write the magnitude of the 
magnetic force can be more convenient than Eq. (19-1). Note that the component of 
v→ perpendicular to B

→
 is v⊥ = v sin θ (Fig. 19.7b). Then the magnitude of the force 

can be written FB = ∣q∣v⊥B. The component of B
→

 perpendicular to v→ is B⊥ = B sin θ 
(Fig. 19.7c), so the magnitude of the force can also be written FB = ∣q∣vB⊥.

Magnitude of the magnetic force on a moving point charge

 FB = ∣q∣v⊥B = ∣q∣vB⊥ (19-2)

SI Unit of Magnetic Field From Eq. (19-1), the SI unit of magnetic field is

 
force

charge × velocity
=

N
C·m/s

=
N

A·m (19-3)

This combination of units is given the name tesla (symbol T) after Nikola Tesla 
(1856–1943), an American engineer who was born in Croatia.

 1 T = 1 
N

A·m (19-4)

CHECKPOINT 19.2

An	 electron	 is	 moving	 with	 speed	 v	 in	 a	 uniform	 downward	magnetic	 field	 B
→
.	

(a)	 In	 what	 direction(s)	 can	 it	 be	 moving	 if	 the	 magnetic	 force	 on	 it	 is	 zero?	
(b)  In	 what	 direction(s)	 can	 it	 be	 moving	 if	 the	 magnetic	 force	 on	 it	 has	 the	
largest	possible	magnitude?

Cross Product of Two Vectors

The direction and magnitude of the magnetic force depend on the vectors v→ and B
→

 
in a special way that occurs often in physics and mathematics. The magnetic force 
can be written in terms of the cross product (or vector product) of v→ and B

→
. The 

cross product of two vectors a→ and b
→

 is written a→ × b
→

. The magnitude of the cross 
product is the magnitude of one vector times the perpendicular component of the 
other; it doesn’t matter which is which.

 ∣a→ × b
→

∣ = ∣b
→

× a→∣ = a⊥b = ab⊥ =  ab sin θ (19-5)

CONNECTION:

The cross product of two vec-
tors is a vector quantity. The 
cross product is a different 
mathematical operation than 
the dot product of two vec-
tors, which is a scalar (see 
Appendix A.10). The cross 
product has its maximum 
magnitude when the two vec-
tors are perpendicular; the dot 
product is maximum when 
the two vectors are parallel.

The cross product arises 
in other contexts in physics. 
For example, Section 8.2 
presented three equivalent 
ways to write the magnitude 
of a torque: 
τ = rF sin θ = r⊥F = rF⊥. 
The torque vector is a cross 
product: τ→ = r→ × F

→
.

(b)

(a)

(c)

v

v sin θ

B sin θ

q

θ

θ

θ

v

B

B

Figure 19.7 Finding the 
magnitude of the magnetic 
force on a point charge. (a) The 
particle’s velocity vector v→ and 
the magnetic field vector B

→
 are 

drawn starting at the same 
point. The angle between them 
is θ. The magnitude of the 
force is FB = ∣q∣vB sin θ. 
(b) The component of v→ 
perpendicular to B

→
 is  

v⊥ = v sin θ. (c) The component 
of B

→
 perpendicular to v→ is  

B⊥ = B sin θ.
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However, the order of the vectors does matter in determining the direction of the 
result. Switching the order reverses the direction of the product:

 b
→

× a→ = −(a→ × b
→) (19-6)

The cross product of two vectors a→ and b
→

 is a vector that is perpendicular to 
both a→ and b

→
. Note that a→ and b

→
 do not have to be perpendicular to each other. For 

any two vectors that are neither in the same direction nor in opposite directions, there 
are two directions perpendicular to both vectors. To choose between the two, we use 
a right-hand rule.

Using a Right-Hand Rule to Find the Direction  
of a Cross Product a→ × b

→

1.  Draw the vectors a→ and b
→

 starting from the same origin. If a→ and b
→

 are not 
perpendicular, it’s best to draw them in the plane of the diagram, as in 
(Fig.  19.8a). If they are perpendicular, it may be convenient to choose one 
to be perpendicular to the plane of the drawing.

2.  The cross product is in one of the two directions that are perpendicular to 
both a→ and b

→
. Determine these two directions.

3.  Choose one of these two perpendicular directions to test. Place your right 
hand in a “karate chop” position with your palm at the origin, your fingertips 
pointing in the direction of a→, and your thumb in the direction you are test-
ing (Fig. 19.8b).

4.  Keeping the thumb and palm stationary, curl your fingers inward toward your 
palm until your fingertips point in the direction of b

→
 (Fig. 19.8c). If you can 

do it, sweeping your fingers through an angle less than 180°, then your thumb 
points in the direction of the cross product a→ × b

→
. If you can’t do it because 

your fingers would have to sweep through an angle greater than 180°, then 
your thumb points in the direction opposite to a→ × b

→
 (Fig. 19.8d).

An alternative to the right-hand rule is the wrench rule: Start with the first two 
steps of the right-hand rule. Then imagine a bolt aligned with the two possible direc-
tions. Imagine using a wrench on the bolt with its handle initially lined up with a→. 

a

b

(b)

a

b

a

(d)(c)

b

(a)
a b×

b

a

Figure 19.8 Using a right-hand rule to find the direction of the cross product a→ × b
→

. (a) First draw the two vector 
arrows, a→ and b

→
 starting from the same point. In this case the vectors both lie in the plane of the paper. The cross 

product a→ × b
→

 must be perpendicular to both a→ and b
→

 so the two possible directions for a→ × b
→

 are up (out of the page) 
and down (into the page). The right-hand rule is used to test the two possibilities. (b) To test whether a→ × b

→
 is up, 

align the right hand with the thumb pointing up and the outstretched fingers pointing along a→. (c) The fingers can be 
curled in through an angle less than 180° until they point along b

→
, confirming that a→ × b

→
 is up. (d) To test whether 

a→ × b
→

 is down, align the right hand with the thumb pointing down and the outstretched fingers pointing along a→.  
Now the fingers curl the wrong way, so this is not the correct direction of a→ × b

→
.
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Turn the handle until it is lined up with b
→

, making sure you turn through an angle 
less than 180° (don’t go the long way around). Are you tightening or loosening the 
bolt? The direction of a→ × b

→
 is the direction that the bolt moves.

Since magnetism is inherently three-dimensional, we often need to draw vectors 
that are perpendicular to the page. The symbol • (or ⊙) represents a vector arrow 
pointing perpendicularly out of the page; think of the tip of an arrow coming toward 
you. The symbol × (or ⊗) represents a vector pointing perpendicularly into the page; 
it suggests the tail feathers of an arrow moving away from you.

Vector symbols: •  or ⊙ = out of the page; × or ⊗ = into the page

Direction of the Magnetic Force

The magnetic force on a charged particle can be written as the charge times the cross 
product of v→ and B

→
:

Magnetic force on a moving point charge

 F
→  

B = qv→ × B
→

 (19-7)

 Magnitude: FB = ∣q∣vB sin θ (19-1)

Direction: perpendicular to both v→ and B
→

; use the right-hand rule to find 
v→ × B

→
, then reverse the direction if q is negative.

The direction of the magnetic force is not along the same line as the field (as is the case 
for the electric field); instead it is perpendicular. The force is also perpendicular to the 
charged particle’s velocity. Therefore, if v→ and B

→
 lie in a plane, the magnetic force is 

always perpendicular to that plane; magnetism is inherently three-dimensional. A nega-
tively charged particle feels a magnetic force in the direction opposite to v→ × B

→
; multi-

plying a negative scalar (q) by v→ × B
→

 reverses the direction of the magnetic force.

Problem-Solving Technique: Finding the Magnetic  
Force on a Point Charge

 1. The magnetic force is zero if (a) the particle is not moving (v→ = 0), (b) its 
velocity has no component perpendicular to the magnetic field (v⊥ = 0), or 
(c) the magnetic field is zero.

 2. Otherwise, determine the angle θ between the velocity and magnetic field 
vectors when the two are drawn starting at the same point.

 3. Find the magnitude of the force from FB = ∣q∣vB sin θ [Eq. (19-1)], using 
the magnitude of the charge (since magnitudes of vectors are nonnegative).

 4. Determine the direction of v→ × B
→

 using the right-hand rule. The magnetic 
force is in the direction of v→ × B

→
 if the charge is positive. If the charge is 

negative, the force is in the direction opposite to v→ × B
→

.

Work Done by the Magnetic Field on a Point Charge Because the magnetic 
force on a point charge is always perpendicular to the velocity, the magnetic force 
does no work. If no other forces act on the point charge, then its kinetic energy does 
not change. The magnetic force, acting alone, changes the direction of the velocity 
but not the speed (the magnitude of the velocity).
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Conceptual Example 19.1

Deflection of Cosmic Rays

Cosmic rays are charged particles moving toward Earth at 
high speeds. The origin of the particles is not fully under-
stood, but explosions of supernovae may produce a signifi-
cant fraction of them. About seven eighths of the particles 
are protons that move toward Earth with an average speed of 
about two thirds the speed of light. Suppose that a proton is 
moving straight down, directly toward the equator. (a) What 
is the direction of the magnetic force on the proton due to 
Earth’s magnetic field? (b) Explain how Earth’s magnetic 
field shields us from bombardment by cosmic rays. (c) Where 
on Earth’s surface is this shielding least effective?

Strategy and Solution (a) First we sketch Earth’s 
magnetic field lines and the velocity vector for the proton 
(Fig. 19.9). The field lines run from southern hemisphere to 
northern; high above the equator, the field is approximately 
horizontal (due north). To find the direction of the magnetic 
force, first we determine the two directions that are perpen-
dicular to both v→ and B

→
; then we use the right-hand rule to 

determine which is the direction of v→ × B
→

. Figure 19.10 is a 
sketch of v→ and B

→
 in the xy-plane. The x-axis points away 

from the equator (up) and the y-axis points north. The two 
directions that are perpendicular to both vectors are 
perpendicular to the xy-plane: into the page and out of the 
page. Using the right-hand rule, if the thumb points out of 
the page, the fingers of the right hand would have to curl 
from v→ to B

→
 through an angle of 270°. Therefore, v→ × B

→
 is 

into the page (Fig. 19.11). Since F
→

B = qv→ × B
→

 and q is posi-
tive, the magnetic force is into the page or east.

(b) Without Earth’s magnetic field, the proton would move 
straight down toward Earth’s surface. The magnetic field 

deflects the particle sideways and keeps it from reaching the 
surface. Many fewer cosmic ray particles reach the surface 
than would do so if there were no magnetic field.

(c) Near the poles, the component of v→ perpendicular to the 
field (v⊥) is a small fraction of v. Since the magnetic force is 
proportional to v⊥, the deflecting force is much less effective 
near the poles.

Discussion When finding the direction of the magnetic 
force (or any cross product), a good sketch is essential. Since 
all three dimensions come into play, we must choose the two 
axes that lie in the plane of the sketch.

Label the axes with directions to avoid making mistakes 
such as confusing up with north. The plane of the page can 
represent either a horizontal or a vertical plane. If a horizon-
tal plane, the most common choice is to label the axes north, 
south, east, and west as on a map; then the vertical directions 
up and down are perpendicular to the page. If a vertical 
plane, one axis is labeled up-down and the other is labeled 
with horizontal directions such as north-south or east-west; 
then the directions into and out of the page are horizontal 
directions perpendicular to the axes of the sketch.

In Example 19.1, we chose axes so the directions of v→ 
and B

→
 would be similar to Fig. 19.9. In this case, the page 

represents a vertical plane. The directions perpendicular to 
the drawing are east and west (the only directions perpen-
dicular to both up-down and north-south). Looking at 
Fig. 19.9, we can see that east is into the page and west is out 
of the page.

Practice Problem 19.1 Acceleration of Cosmic 
Ray Particle

If v = 6.0 × 107 m/s and B = 6.0 μT, what is the magnitude 
of the magnetic force on the proton and the magnitude of the 
proton’s acceleration?

Figure 19.10
The vectors v→ and B

→
. The 

y-axis points north; the x-
axis points away from the 
equator.

y

x

South

North

UpDown
B

v

Proton
B

v
Equator

Figure 19.9
A sketch of Earth, its magnetic field lines, and the velocity vector 
v→ of the proton.

x

B

v

y

FB

Figure 19.11
The right-hand rule shows 
that v→ × B

→
 is into the 

page. With the thumb 
pointing into the page, the 
fingers sweep from v→ × B

→
 

through an angle of 90°.
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and B
→

 lies along a reference direction (such as a point of the 
compass, up or down, or along one of the xyz-axes) and the 
other does not, a good choice is to sketch axes in a plane 
perpendicular to that reference direction. In this case, v→ is in 
a reference direction (east) but B

→
 is not, so we sketch axes in 

a plane perpendicular to east.

Practice Problem 19.2 Magnetic Force on an 
Electron

Find the magnetic force on an electron moving straight up at 
3.0 × 106 m/s in the same magnetic field. [Hint: The angle 
between v→ and B

→
 is not 90°.]

Example 19.2

Magnetic Force on an Ion in the Air

At a certain place, Earth’s magnetic field has magnitude 
0.050 mT. The field direction is 70.0° below the horizontal; 
its horizontal component points due north. (a) Find the 
magnetic force on an oxygen ion (O2

−) moving due east at 
250 m/s. (b) Compare the magnitude of the magnetic force 
with the ion’s weight, 5.2 × 10−25 N, and to the electric force 
on it due to Earth’s fair-weather electric field (150 N/C 
downward).

Strategy Since there are two equivalent ways to find the 
magnitude of the magnetic force [Eqs. (19-1) and (19-2)], 
we choose whichever seems most convenient. To find the 
direction of the force, first we determine the two directions 
that are perpendicular to both v→ and B

→
; then we use the 

right-hand rule to determine which one is the direction of 
v→ × B

→
. Since we are finding the force on a negatively 

charged particle, the direction of the magnetic force is 
opposite to the direction of v→ × B

→
. Note that the magnitude 

of the field is specified in milliteslas (1 mT = 10−3 T).

Solution (a) The ion is moving east; the field has north-
ward and downward components, but no east-west compo-
nent. Therefore, v→ and B

→
 are perpendicular; θ = 90° and 

sin θ = 1. The magnitude of the magnetic force is then

F = ∣q∣vB = (1.6 × 10−19 C) × 250 m/s × (5.0 × 10−5 T)

= 2.0 × 10−21 N

Since v→ is east and the force must be perpendicular to v→, the 
force must lie in a plane perpendicular to the east-west axis. 
We draw the velocity and magnetic field vectors in this 
plane, using axes that run north-south and up-down 
(Fig. 19.12a, where east is out of the page). Since north is to 
the right in this sketch, the viewer looks westward; west is 
into the page and east is out of the page. The force F

→
 must lie 

in this plane and be perpendicular to B
→

. There are two pos-
sible directions, shown with a dashed line in Fig. 19.12a. 
Now we try these two directions with the right-hand rule; the 
correct direction for v→ × B

→
 is shown in Fig. 19.12b. Since 

the ion is negatively charged, the magnetic force is in the 
direction opposite to v→ × B

→
; it is 20.0° below the horizontal, 

with its horizontal component pointing south.

(b) The electric force has magnitude

FE = ∣q∣E = (1.6 × 10−19 C) × 150 N/C = 2.4 × 10−17 N

The magnetic force on the ion is much stronger than the 
gravitational force and much weaker than the electric force.

Discussion Again, a key to solving this sort of problem is 
drawing a convenient set of axes. If one of the two vectors v→ 

(a)
Down

Up

70.0°
N
20.0°

S

20.0°

B

v

(b)
Down

Up

20.0°
S

v × B

N
20.0°

F = qv × B

Figure 19.12
(a) The vectors v→ and B

→
, with v→ out of the page. West is into the 

page and east is out of the page. Since F
→

 is perpendicular to both 
v→ and B

→
, it must lie along the dashed line. (b) The direction for 

v→ × B
→

 given by the right-hand rule. Since the ion is negatively 
charged, the magnetic force direction is opposite v→ × B

→
.
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Example 19.3

Electron in a Magnetic Field

An electron moves with speed 2.0 × 106 m/s in a uniform 
magnetic field of 1.4 T directed due north. At one instant, 
the electron experiences an upward magnetic force of 
1.6 × 10−13 N. In what direction is the electron moving at 
that instant? [Hint: If there is more than one possible answer, 
find all the possibilities.]

Strategy This example is more complicated than Exam-
ples 19.1 and 19.2. We need to apply the magnetic force law 
again, but this time we must deduce the direction of the ve-
locity from the directions of the force and field.

Solution The magnetic force is always perpendicular to 
both the magnetic field and the particle’s velocity. The force 
is upward, therefore the velocity must lie in a horizontal 
plane.

Figure 19.13 shows the magnetic field pointing north 
and a variety of possibilities for the velocity (all in the hori-
zontal plane). The direction of the magnetic force is up, so 
the direction of v→ × B

→
 must be down since the charge is 

negative. Pointing the thumb of the right hand downward, 
the fingers curl in the clockwise sense. Since we curl from 
v→ to B

→
, the velocity must be somewhere in the left half of the 

plane; in other words, it must have a west component in ad-
dition to a north or south component.

The westward component is the component of v→ that is 
perpendicular to the field. Using the magnitude of the force, 
we can find the perpendicular component of the velocity:

FB = ∣q∣v⊥B

v⊥ =
FB

∣q∣B
=

1.6 × 10−13 N
1.6 × 10−19 C × 1.4 T

= 7.14 × 105 m/s

The velocity also has a component in 
the direction of the field that can be 
found using the Pythagorean theorem:

v2 = v2
⊥ + v2

||

v|| = ±√v2 − v2
⊥ = ±1.87 × 106 m/s

The ± sign would seem to imply that 
v|| could either be a north or a south 
component. The two possibilities are 
shown in Fig. 19.14. Use of the right-
hand rule confirms that either gives 
v→ × B

→
 in the correct direction.

Now we need to find the direction 
of v→ given its components. From Fig. 19.14,

sin θ =
v⊥

v
=

7.14 × 105 m/s
2.0 × 106 m/s

= 0.357

θ = 21° W of N or 159° W of N

Since 159° W of N is the same as 21° W of S, the direction 
of the velocity is either 21° W of N or 21° W of S.

Discussion We cannot assume that v→ is perpendicular 
to B

→
. The magnetic force is always perpendicular to both v→ 

and B
→

, but there can be any angle between v→ and B
→

.

Practice Problem 19.3 Velocity Component 
Parallel to the Field

Suppose the electron moves with the same speed in the same 
magnetic field. If the magnetic force on the electron has 
magnitude 2.0 × 10−13 N, what is the component of the 
electron’s velocity parallel to the magnetic field?

Figure 19.14
Two possibilities for 
the direction of v→.

W
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S

θ

θ

E

Bv

v

Horizontal plane
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F
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v ?
v ?
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v ?

Figure 19.13
The velocity must be perpendicular to 
the force and thus in the plane shown. 
Various possibilities for the direction of 
v→ are considered. Only those in the 
west half of the plane give the correct 
direction for v→ × B

→
.

19.3 CHARGED PARTICLE MOVING PERPENDICULARLY 
TO A UNIFORM MAGNETIC FIELD

Using the magnetic force law and Newton’s second law of motion, we can deduce the 
trajectory of a charged particle moving in a uniform magnetic field with no other 
forces acting. In this section, we discuss a case of particular interest: when the par-
ticle is initially moving perpendicularly to the magnetic field.
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Figure 19.15a shows the magnetic force on a positively charged particle moving 
perpendicularly to a magnetic field. Since v⊥ = v, the magnitude of the force is

 F = ∣q∣vB (19-8)

Since the force is perpendicular to the velocity, the particle changes direction but not 
speed. The force is also perpendicular to the field, so there is no acceleration com-
ponent in the direction of B

→
. Thus, the particle’s velocity remains perpendicular to 

B
→

. As the velocity changes direction, the magnetic force changes direction to stay 
perpendicular to both v→ and B

→
. The magnetic force acts as a steering force, curving 

the particle around in a trajectory of radius r at constant speed. The particle undergoes 
uniform circular motion, so its acceleration is directed radially inward and has mag-
nitude v2/r [Eq. (5-17)]. From Newton’s second law,

 ar =
v2

r
=
∑Fr

m
=

∣q∣vB

m
 (19-9)

where m is the mass of the particle. Since the radius of the trajectory depends only 
on q, v, B, and m, which are all constant, the particle moves in a circle at constant 
speed (Fig. 19.15b). Negative charges move in the opposite sense from positive 
charges in the same field (Fig. 19.15c).

Application: Bubble Chamber

The circular motion of charged particles in uniform magnetic fields has many 
applications. The bubble chamber, invented by American physicist Donald Glaser 
(1926–2013), is a particle detector that was used in high-energy physics experiments 
from the 1950s into the 1970s. The chamber is filled with liquid hydrogen and is 
immersed in a magnetic field. When a charged particle moves through the liquid, it 
leaves a trail of bubbles. Figure 19.16a shows tracks made by particles in a bubble 
chamber. The magnetic field is out of the page. The magnetic force on any particle 
points toward the center of curvature of the particle’s trajectory. Figure 19.16b shows 
the directions of v→ and B→ for one particle. Using the right-hand rule, v→ × B

→
 is in the 

direction shown in Fig. 19.16b. Since v→ × B
→

 points away from the center of curvature,  
the particle must have a negative charge. The magnetic force law lets us determine 
the sign of the charge on the particle.

Application: Mass Spectrometer

The basic purpose of a mass spectrometer is to separate ions (charged atoms or mole-
cules) by mass and measure the mass of each type of ion. Although originally devised 
to measure the masses of the products of nuclear reactions, mass spectrometers are now 
used by researchers in many different scientific fields and in medicine to identify what 
atoms or molecules are present in a sample and in what concentrations. Even ions pres-
ent in minute concentrations can be isolated, making the mass spectrometer an essential 
tool in toxicology and in monitoring the environment for trace pollutants. Mass spec-
trometers are used in food production, petrochemical production, the electronics indus-
try, and in the international monitoring of nuclear facilities. They are also an important 
tool for investigations of crime scenes, as several popular TV shows demonstrate weekly.

CONNECTION:

The expression for the radi-
ally inward acceleration of a 
particle in uniform circular 
motion, ar = v2/r, is the same 
one used for other kinds of 
circular motion.

B v
v
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v

v

v
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F

Figure 19.15 (a) Force on a 
positive charge moving to the 
right in a magnetic field that is 
into the page. (b) As the veloc-
ity changes direction, the mag-
netic force changes direction to 
stay perpendicular to both v→ 
and B

→
. The force is constant in 

magnitude, so the particle 
moves along the arc of a circle. 
(c) Motion of a negative charge 
in the same magnetic field.

Figure 19.16  (a) Tracks left 
by electrons and positrons 
moving through a hydrogen-
neon bubble chamber at 
Fermilab. (A positron is the 
positively charged antiparticle 
of the electron.) The tracks are 
curved due to an applied 
magnetic field out of the page. 
(b) Analysis of the magnetic 
force on an electron. 
©Goronwy Tudor Jones, University of 
Birmingham/Science Source
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Today, many different types of mass spectrometer are in use. The oldest type, 
now called a magnetic-sector mass spectrometer, is based on the circular motion of a 
charged particle in a magnetic field. The atoms or molecules are first ionized so that 
they have a known electric charge. They are then accelerated by an electric field that 
can be varied to adjust their speeds. The particles then enter a region of uniform 
magnetic field B

→
 oriented perpendicular to their velocities v→ so that they move in 

circular arcs. From the charge, speed, magnetic field, and radius of the circular arc, 
we can determine the mass of the particle.

In some magnetic-sector spectrometers, the ions start at rest or at low speed and 
are accelerated through a fixed potential difference. If the ions all have the same 
charge, then they all have the same kinetic energy when they enter the magnetic field 
but, if they have different masses, their speeds are not all the same. Another possibil-
ity is to use a velocity selector (Section 19.5) to make sure that all the ions, regardless 
of mass or charge, have the same speed when they enter the magnetic field. In the 
spectrometer of Example 19.4, ions of different masses travel in circular paths of dif-
ferent radii (Fig. 19.17a). In other spectrometers, only ions that travel along a path of 
fixed radius reach the detector; either the speed of the ions or the magnetic field is 
varied to select which ions move with the correct radius (Fig. 19.17b).

Figure 19.17 (a) A simplified diagram of a magnetic-sector mass spectrometer that accelerates ions through a fixed 
potential difference so that they all enter the magnetic field with the same kinetic energy. (b) A mass spectrometer in 
which ions travel around a path of fixed radius.
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Example 19.4

Separation of Lithium Ions in a Mass 
Spectrometer

In a mass spectrometer, a beam of 6Li+ and 7Li+ ions passes 
through a velocity selector so that the ions all have the same 
velocity. The beam then enters a region of uniform magnetic 
field. If the radius of the orbit of the 6Li+ ions is 8.4 cm, what 
is the radius of the orbit of the 7Li+ ions?

Strategy Much of the information in this problem is im-
plicit. The charge of the 6Li+ ions is the same as the charge 
of the 7Li+ ions. The ions enter the magnetic field with the 
same speed. We do not know the magnitudes of the charge, 
velocity, or magnetic field, but they are the same for the two 
types of ion. With so many common quantities, a good 

strategy is to try to find the ratio between the radii for the 
two types of ions so that the common quantities cancel out.

Solution From Appendix B we find the masses of 6Li+ 
and 7Li+:

m6 = 6.015 u
m7 = 7.016 u

where 1 u = 1.66 × 10−27 kg. We now apply Newton’s sec-
ond law to an ion moving in a circle. The acceleration is that 
of uniform circular motion:

 a⊥ =
v2

r
=

F

m
=

∣q∣vB

m
 (1)

continued on next page
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Application: Cyclotrons

Another device that was originally used in experimental physics but is now used fre-
quently in the life sciences and medicine is the cyclotron, invented in 1929 by American 
physicist Ernest O. Lawrence (1901–1958). Figure 19.18 shows a schematic diagram of 

Example 19.4 continued

Since the charge q, the speed v, and the field B are the same 
for both types of ion, the radius must be directly proportional 
to the mass.

r ∝ m

r7

r6
=

m7

m6
=

7.016 u
6.015 u

= 1.166

r7 = 8.4 cm × 1.166 = 9.8 cm

Discussion To solve this sort of problem, there aren’t any 
new formulas to learn. We apply Newton’s second law with the 
net force given by the magnetic force law (F

→
B = qv→ × B

→
) and 

the magnitude of the radial acceleration being what it always is 
for uniform circular motion (v2/r).

If the direct proportion between r and m is not apparent, 
we could proceed by solving (1) for the radius:

r =
mv2

∣q∣vB

Now, if we set up a ratio between r7 and r6, all the quantities 
except the masses cancel, yielding

r7

r6
=

m7

m6

Practice Problem 19.4 Ion Speed

The magnetic field used in the mass spectrometer of 
Example 19.4 is 0.50 T. At what speed do the Li+ ions move 
through the magnetic field? (Each ion has charge q = +e and 
moves perpendicular to the field.)

Figure 19.18 Schematic view of a cyclotron. Two hollow metal shells are called 
dees after their shape (like the letter “D”). The dees are placed between the poles of a 
large electromagnet, and the protons inside the dees move along a circular path due to 
the applied magnetic field. There is no electric field inside the dees, but an alternating 
voltage applied to the dees creates an electric field in the gap between the dees. The 
frequency of this applied voltage is chosen so that every time the protons cross the 
gap, they move in the direction of the electric field and, therefore, gain kinetic energy. 
With a larger kinetic energy, the radius of the proton trajectory is larger. After many 
cycles, when the protons reach the maximum radius of the dees, they are taken out of 
the cyclotron and the high-energy proton beam is used to bombard some target.
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a proton cyclotron. In a cyclotron, the protons move through a decrease in potential over 
and over, gaining kinetic energy each time. An applied magnetic field makes the protons 
move along circular paths, so instead of leaving the apparatus they return to gain more 
kinetic energy. The key idea that makes the cyclotron work is that the time it takes the 
protons to move around one complete circle stays the same even as their speed increases 
(see Problem 35). When the speed increases, the radius of the circular path increases 
in proportion, so the time for one revolution is unchanged. Therefore, an alternating 
voltage with a constant frequency can be applied to the “dees” to ensure that the protons 
gain kinetic energy every time they move across the gap.

 Medical Uses of Cyclotrons In hospitals, cyclotrons produce some of the 
radioisotopes used in nuclear medicine. Although nuclear reactors also produce med-
ical radioisotopes, cyclotrons offer certain advantages. For one thing, a cyclotron is 
much easier to operate and is much smaller—typically 1 m or less in radius. A cyclo-
tron can be located in or adjacent to a hospital so that short-lived radioisotopes can 
be produced as they are needed. It would be difficult to try to produce short-lived 
isotopes in a nuclear reactor and transport them to the hospital fast enough for them 
to be useful. Cyclotrons also tend to produce different kinds of isotopes than do 
nuclear reactors.

Another medical use of the cyclotron is proton beam radiosurgery, in which the 
cyclotron’s proton beam is used as a surgical tool (Fig. 19.19). Proton beam radiosur-
gery offers advantages over surgical and other radiological methods in the treatment 
of unusually shaped brain tumors. For one thing, doses to the surrounding tissue are 
much lower than with other forms of radiosurgery.

Figure 19.19 A patient is 
prepared for proton beam 
radiosurgery at the Rinecker 
Proton Therapy Center in 
Munich, Germany. The protons 
are accelerated by a cyclotron 
(not shown).
©BSIP/Universal Images Group/Getty 
images

Example 19.5

Maximum Kinetic Energy in a Proton Cyclotron

A proton cyclotron uses a magnet that produces a 0.60 T 
field between its poles. The radius of the dees is 24 cm. What 
is the maximum possible kinetic energy of the protons ac-
celerated by this cyclotron?

Strategy As a proton’s kinetic energy increases, so does 
the radius of its path in the dees. The maximum kinetic en-
ergy is therefore determined by the maximum radius.

Solution While in the dees, the only force acting on the 
proton is magnetic. First we apply Newton’s second law to a 
circular path.

F = ∣q∣vB =
mv2

r

We can solve for v:

v =
∣q∣Br

m

From v, we calculate the kinetic energy:

K =
1
2

 mv2 =
1
2

 m(
∣q∣Br

m )
2

For a proton, q = +e. The magnetic field is B = 0.60 T. For 
the maximum kinetic energy, we set the radius to its maxi-
mum value r = 0.24 m.

K =
(qBr)2

2m
=

(1.6 × 10−19 C × 0.60 T × 0.24 m)2

2 × 1.67 × 10−27 kg

= 1.6 × 10−13 J

Discussion Just as in Example 19.4 (the mass spectrom-
eter), this cyclotron problem is solved using Newton’s sec-
ond law. Once again the net force on the moving charge is 
given by the magnetic force law and the radial acceleration 
has magnitude v2/r for motion at constant speed along the arc 
of a circle.

Practice Problem 19.5 Increasing Kinetic Energy 
in a Proton Cyclotron

Using the same magnetic field, what would the radius of the 
dees have to be to accelerate the protons to a kinetic energy 
of 1.6 × 10−12 J (ten times the previous value)?
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19.4 MOTION OF A CHARGED PARTICLE IN A UNIFORM 
MAGNETIC FIELD: GENERAL

What is the trajectory of a charged particle moving in a uniform magnetic field with 
no other forces acting? In Section 19.3, we saw that the trajectory is a circle if the 
velocity is perpendicular to the magnetic field. If v→ has no perpendicular component, 
the magnetic force is zero and the particle moves at constant velocity.

In general, the velocity may have components both perpendicular to and parallel 
to the magnetic field. The component parallel to the field is constant, since the mag-
netic force is always perpendicular to the field. The particle therefore moves along a 
helical path. The helix is formed by circular motion of the charge in a plane perpen-
dicular to the field superimposed onto motion of the charge at constant speed along 
a field line (Fig. 19.20a).

CHECKPOINT 19.4

A	particle’s	helical	motion	 is	 shown	 in	Fig.	19.20a.	 Is	 the	particle	positively	or	
negatively	charged?	Explain.

Application: Aurorae on Earth, Jupiter, and Saturn Even in nonuniform fields, 
charged particles tend to spiral around magnetic field lines. Above Earth’s surface, 
charged particles from cosmic rays and the solar wind (charged particles streaming 
toward Earth from the Sun) are trapped by Earth’s magnetic field. The particles spiral 
back and forth along magnetic field lines (Fig. 19.20b). Near the poles, the field lines 
are closer together, so the field is stronger. As the field increases in magnitude, the 
radius of a spiraling particle’s path gets smaller and smaller. As a result, there is a 
concentration of these particles near the poles. The particles collide with and ionize 
air molecules. When the ions recombine with electrons to form neutral atoms, visible 
light is emitted—the aurora borealis in the northern hemisphere and the aurora aus-
tralis in the southern hemisphere. Aurorae also occur on Jupiter and Saturn, which 
have much stronger magnetic fields than does Earth.

v

(a) (b)

B

Spiral path
of charged       
particle            

v

v⊥

Figure 19.20 (a) Helical motion of a charged particle in a uniform magnetic field. (b) Charged particles spiral back 
and forth along field lines high above the atmosphere.

Long exposure view of the 
aurora borealis from  
Yellowknife, Ontario, Canada. 
©Shin Okamoto/Getty Images



19.5 A CHARGED PARTICLE IN CROSSED E
→

 AND B
→

 FIELDS

If a charged particle moves in a region of space where both electric and magnetic 
fields are present, then the electromagnetic force on the particle is the vector sum of 
the electric and magnetic forces:

 F
→

= F
→

E + F
→

B (19-10)

A particularly important and useful case is when the electric and magnetic fields are 
perpendicular to each other and the velocity of a charged particle is perpendicular to 
both fields. Since the magnetic force is always perpendicular to both v→ and B

→
, it must 

be either in the same direction as the electric force or in the opposite direction. If the 
magnitudes of the two forces are the same and the directions are opposite, then there 
is zero net force on the charged particle (Fig. 19.21). For any particular combination 
of electric and magnetic fields, this balance of forces occurs only for one particular 
particle speed, since the magnetic force is velocity-dependent, but the electric force 
is not. The velocity that gives zero net force can be found from

 F
→

= F
→

E + F
→

B = 0 (19-11)

 qE
→

+ qv→ × B
→

= 0 (19-12)

Dividing out the common factor of q,

 E
→

+ v→ × B
→

= 0 (19-13)

There is zero net force on the particle only if

 v =
E

B
 (19-14)

and if the direction of v→ is correct. Since E
→

= −v→ × B
→

, it can be shown (see Con-
ceptual Question 7) that the correct direction of v→ is the direction of E

→
× B

→
.

CHECKPOINT 19.5

An	 electron	moves	 straight	 up	 in	 a	 region	where	 the	 electric	 field	 is	 east	 and	
the	magnetic	field	is	north.	(a)	What	is	the	direction	of	the	electric	force	on	the	
electron?	 (b)	What	 is	 the	direction	of	 the	magnetic	 force	on	 the	electron?

Application: Velocity Selector

A velocity selector uses crossed electric and magnetic fields to select a single velocity 
out of a beam of charged particles. Suppose a beam of ions is produced in the first stage 
of a mass spectrometer. The beam may contain ions moving at a range of different 
speeds. If the second stage of the mass spectrometer is a velocity selector (Fig. 19.22), 

Figure 19.22 This mass 
spectrometer uses a velocity 
selector to ensure that only ions 
moving with speed v = E1/B1 
pass straight through to enter 
the second magnetic field. If 
v < E1/B1, the electric force on 
the ion in the velocity selector 
region is greater than the mag-
netic force, and the ion is 
deflected out of the beam. If 
v > E1/B1, then the electric 
force is less than the magnetic 
force, and the ion is deflected 
out of the beam on the other 
side. If v = E1/B1, the electric 
and magnetic forces add to 
zero, so the ion passes straight 
through.
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Figure 19.21 Positive point 
charge moving in crossed E

→
 

and B
→

 fields. For the velocity 
direction shown, F

→
E + F

→
B = 0 

if v = E/B.
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only ions moving at a single speed v = E1/B1 pass through the velocity selector and into 
the third stage. The speed can be selected by adjusting the magnitudes of the electric 
and magnetic fields. For particles moving faster than the selected speed, the magnetic 
force is stronger than the electric force; fast particles curve out of the beam in the direc-
tion of the magnetic force. For particles moving slower than the selected speed, the 
magnetic force is weaker than the electric force; slow particles curve out of the beam 
in the direction of the electric force. The velocity selector ensures that only ions with 
speeds very near v = E1/B1 enter the magnetic sector of the mass spectrometer.

The magnitudes of the forces must also be equal:

∣q∣E = ∣q∣vB

B =
E

v
=

300.0 V/m
6000 m/s

= 0.050 T

Discussion Let’s check the units; is a tesla really equal to 
(V/m)/(m/s)? From F

→
= qv→ × B

→
, we can reconstruct the 

tesla:

[B] = T = [
F

qv] =
N

C·m/s

Recall that two equivalent units for electric field are N/C = 
V/m. By substitution,

T =
V

m2/s
=

V/m
m/s

so the units check out.
Another check: for a velocity selector the correct 

direction of v→ is the direction of E
→

× B
→

. The velocity is to 
the right. Using the right-hand rule, E

→
× B

→
 is to the right if 

B
→

 is up.

Practice Problem 19.6 Deflection of a Particle 
Moving Too Fast

If a particle enters this velocity selector with a speed greater 
than 6.0 km/s, in what direction is it deflected out of the 
beam?

Example 19.6

Velocity Selector

A velocity selector is to be constructed to select ions moving 
to the right at 6.0 km/s. The electric field is 300.0 V/m into 
the page. What should be the magnitude and direction of the 
magnetic field?

Strategy First, in a velocity selector, E
→

, B
→

, and v→ are 
mutually perpendicular. That allows only two possibilities 
for the direction of B

→
. Setting the magnetic force equal and 

opposite to the electric force determines which of the two 
directions is correct and gives the magnitude of B

→
. The mag-

nitude of the magnetic field is chosen so that the electric and 
magnetic forces on a particle moving at the given speed are 
equal in magnitude and opposite in direction.

Solution Since v→ is to the right and E
→

 is into the page, the 
magnetic field must either be up or down. The sign of the 
ions’ charge is irrelevant—changing the charge from posi-
tive to negative would change the directions of both forces, 
leaving them still opposite to each other. For simplicity, 
then, we assume the charge to be positive.

The direction of the electric force on 
a positive charge is the same as the direc-
tion of the field, which here is into the 
page. Then we need a magnetic force that 
is out of the page. Using the right-hand 
rule to evaluate both possibilities for B

→
 

(up and down), we find that v→ × B
→

 is out 
of the page if B

→
 is up (Fig. 19.23).

Figure 19.23
Directions of E

→
, 

v→, and B
→

.

v
E

B

Discovery of the Electron The velocity selector can be used to determine the charge-
to-mass ratio q/m of a charged particle. First, the particle is accelerated from rest through 
a potential difference ΔV, converting electric potential energy into kinetic energy. The 
change in its electric potential energy is ΔU = q ΔV, so the charge acquires a kinetic 
energy

 K = 1
2mv2 = −q ΔV  (19-15)

(K is positive regardless of the sign of q: a positive charge is accelerated by decreas-
ing its potential, whereas a negative charge is accelerated by increasing its potential.) 
Now a velocity selector is used to determine the speed v = E/B, by adjusting the 
electric and magnetic fields until the particles pass straight through. The charge-to-
mass ratio q/m can now be determined (see Problem 44).
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In 1897, British physicist Joseph John Thomson (1856–1940) used this technique 
to show that “cathode rays” are charged particles. In a vacuum tube, he maintained two 
electrodes at a potential difference of a few thousand volts (Fig. 19.24) so that cathode 
rays were emitted by the negative electrode (the cathode). By measuring the charge-to-
mass ratio, Thomson established that cathode rays are streams of negatively charged 
particles that all have the same charge-to-mass ratio—particles we now call electrons.

Application: Electromagnetic Blood Flowmeter

The principle of the velocity selector finds another application in the electromagnetic 
flowmeters used to measure the speed of blood flow through a major artery during 
cardiovascular surgery. Blood contains ions; the motion of the ions can be affected 
by a magnetic field. In an electromagnetic flowmeter, a magnetic field is applied 
perpendicular to the flow direction. The magnetic force on positive ions is toward one 
side of the artery, while the magnetic force on negative ions is toward the opposite 
side (Fig. 19.25a). This separation of charge, with positive charge on one side and 
negative charge on the other, produces an electric field across the artery (Fig. 19.25b). 

Figure 19.24 Modern apparatus, similar in principle to the one used by 
Thomson, to find the charge-to-mass ratio of the electron. Electrons emitted from 
the cathode are accelerated toward the anode by the electric field between the two. 
Some of the electrons pass through the anode and then enter a velocity selector. 
The deflection of the electrons is viewed on the screen. The electric and magnetic 
fields in the velocity selector are adjusted until the electrons are not deflected.
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Figure 19.25 Principles behind the electromagnetic blood flowmeter. (a) When a 
magnetic field is applied perpendicular to the direction of blood flow, positive and 
negative ions are deflected toward opposite sides of the artery. (b) As the ions are 
deflected, an electric field develops across the artery. In equilibrium, the electric 
force on an ion due to this field is equal and opposite to the magnetic force; the 
ions move straight down the artery with an average velocity of magnitude v = E/B.
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As the electric field builds up, it exerts a force on moving ions in a direction opposite 
to that of the magnetic field. In equilibrium, the two forces are equal in magnitude:

 FE = ∣q∣E = FB = ∣q∣vB  ⇒  E = vB (19-16)

where v is the average speed of an ion, equal to the average speed of the blood flow. 
Thus, the flowmeter is just like a velocity selector, except that the ion speed deter-
mines the electric field instead of the other way around.

A voltmeter is attached to opposite sides of the artery to measure the potential 
difference. From the potential difference, we can calculate the electric field; from the 
electric field and magnetic field magnitudes, we can determine the speed of blood 
flow. A great advantage of the electromagnetic flowmeter is that it does not involve 
inserting anything into the artery.

Application: The Hall Effect

The Hall effect (named after the American physicist Edwin Herbert Hall, 1855–1938) 
in a solid conductor is similar in principle to the electromagnetic flowmeter. A 
magnetic field perpendicular to a current-carrying wire causes the moving charges to 
be deflected to one side. This charge separation causes an electric field across the 
wire. The potential difference (or Hall voltage) across the wire is measured and used 
to calculate the electric field (or Hall field) across the wire. The drift velocity of the 
charges is then given by vD = E/B. The Hall effect enables the measurement of the 
drift velocity and the determination of the sign of the charges. (The carriers in metals 
are generally electrons, but semiconductors may have positive or negative carriers 
or both.)

The Hall effect is also the principle behind the Hall probe, a common device 
used to measure magnetic fields. As shown in Example 19.7, the Hall voltage across 
a conducting strip is proportional to the magnetic field magnitude. A circuit causes a 
fixed current flow through the strip. The probe is then calibrated by measuring the 
Hall voltage caused by magnetic fields of known magnitudes. Once calibrated, mea-
surement of the Hall voltage enables a quick and accurate determination of magnetic 
field magnitudes.

Example 19.7

Hall Effect

A flat slab of semiconductor has thickness t = 0.50 mm, width 
w = 1.0 cm, and length L = 30.0 cm. A current I = 2.0 A flows 
along its length to the right (Fig. 19.26). A magnetic field 
B = 0.25 T is directed into the page, perpendicular to the flat 
surface of the slab. Assume that the carriers are electrons. 
There are 7.0 × 1024 mobile electrons per cubic meter. 
(a) What is the magnitude of the Hall voltage across the slab? 
(b) Which edge (top or bottom) is at the higher potential?

Strategy We need to find the drift velocity of the elec-
trons from the relation between current and drift velocity. 
Since the Hall field is uniform, the Hall voltage is the Hall 
field times the width of the slab.
Given:  current I = 2.0 A, magnetic field B = 0.25 T, 

thickness t = 0.50 × 10−3 m, width w = 0.010 m, 
n = 7.0 × 1024 m−3

Solution (a) The drift velocity is related to the current:

 I = neAvD (18-5)

The area is the width times the thickness of the slab:

A = wt

Figure 19.26
Measuring the Hall voltage.
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continued on next page
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Now we can solve for the drift velocity:

vD =
I

newt

We find the Hall field by setting the magnitude of the 
magnetic force equal to the magnitude of the electric force 
caused by the Hall field across the slab:

FE = eEH = FB = evDB

EH = vDB

The Hall voltage is

VH = EHw = BvDw

Substituting the expression for drift velocity, we find

VH =
BIw

newt
=

BI

net

=
0.25 T × 2.0 A

7.0 × 1024 m−3 × 1.6 × 10−19 C × 0.50 × 10−3 m
= 0.89 mV

(b) Since the current flows to the right, the electrons actually 
move to the left. Figure 19.27a shows that the magnetic force 
on an electron moving to the left is upward. The magnetic 
force deflects electrons toward the top of the slab, leaving 
the bottom with a positive charge. An upward electric field 
is set up across the slab (Fig. 19.27b). Therefore, the bottom 
edge is at the higher potential.

Discussion The width of the slab w does not appear in 
the final expression for the Hall voltage VH = BI/(net). Is it 
possible that the Hall voltage is independent of the width? 
If the slab were twice as wide, for instance, the same current 
means half the drift velocity vD since the number of carriers 
per unit volume n and their charge magnitude e cannot 

Example 19.7 continued

change. With the carriers moving half as fast on average, the 
average magnetic force is half. Then in equilibrium, the 
electric force is half, which means the field is half. An elec-
tric field half as strong times a width twice as wide gives the 
same Hall voltage.

Practice Problem 19.7 Holes as Carriers

If the carriers had been particles with charge +e instead of 
electrons, with everything else the same, would the Hall 
voltage have been any different? Explain.

Figure 19.27
(a) Magnetic force on an electron moving to the left. (b) With 
electrons deflected toward the top of the slab, the top is negatively 
charged and the bottom is positively charged. The Hall field in this 
case is directed upward, from the positive charges to the negative 
charges.
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19.6 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

A wire carrying electric current has many moving charges in it. In a magnetic field, 
the magnetic forces on the individual moving charges add up to produce a net mag-
netic force on the wire. Although the average force on one of the charges may be 
small, there are so many charges that the net magnetic force on the wire can be 
appreciable.

Say a straight wire segment of length L in a uniform magnetic field B
→

 carries a 
current I. The mobile carriers have charge q. The magnetic force on any one charge is

 F
→

= qv→ × B
→

 (19-7)

where v→ is the instantaneous velocity of that charge. The net magnetic force on the 
wire is the vector sum of these forces. The sum isn’t easy to carry out, since we don’t 
know the instantaneous velocity of each of the charges. The charges move about in 
random directions at high speeds; their velocities suffer large changes when they col-
lide with other particles. Instead of summing the instantaneous magnetic force on each 
charge, we can instead multiply the average magnetic force on each charge by the 
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number of charges. Since each charge has the same average velocity—the drift 
velocity—each experiences the same average magnetic force F

→
av.

 F
→

av = qv→D × B
→

 (19-17)

Then, if N is the total number of carriers in the wire, the total magnetic force on the 
wire is

 F
→

= Nqv→D × B
→

 (19-18)

Equation (19-18) can be rewritten in a more convenient way. Instead of having 
to figure out the number of carriers and the drift velocity, it is more convenient to 
have an expression that gives the magnetic force in terms of the current I. The current 
I is related to the drift velocity:

 I = nqAvD (18-5)

Here n is the number of carriers per unit volume. If the length of the wire is L and 
the cross-sectional area is A, then

 N = number per unit volume × volume = nLA (19-19)

By substitution, the magnetic force on the wire can be written

 F
→

= Nqv→D × B
→

= nqALv→D × B
→

 (19-20)

Almost there! Since current is not a vector, we cannot substitute I
→

= nqAv→D. Therefore, 
we define a length vector L

→
 to be a vector in the direction of the current with mag-

nitude equal to the length of the wire (Fig. 19.28). Then nqALv→D = IL
→

 and

Magnetic force on a straight segment of current-carrying wire

 F
→

= I L
→

× B
→

 (19-21)

The current I times the cross product L
→

× B
→

 gives the magnitude and direction of the 
force. The magnitude of the force is

 F = IL⊥B = ILB⊥ = ILB sin θ (19-22)

The direction of the force is perpendicular to both L
→

 and B
→

. The same right-hand 
rule used for any cross product is used to choose between the two possibilities.

Problem-Solving Technique: Finding the Magnetic Force on a 
Straight Segment of Current-Carrying Wire

 1. The magnetic force is zero if (a) the current in the wire is zero, (b) the wire 
is parallel to the magnetic field, or (c) the magnetic field is zero.

 2. Otherwise, determine the angle θ between L
→

 and B
→

 when the two are drawn 
starting at the same point.

 3. Find the magnitude of the force from Eq. (19-22).
 4. Determine the direction of L

→
× B

→
 using the right-hand rule.

CHECKPOINT 19.6

Suppose	the	magnetic	field	 in	Fig.	19.28	were	to	the	right	(in	the	plane	of	the	
page)	 instead	 of	 into	 the	 page.	What	 would	 be	 the	 direction	 of	 the	magnetic	
force	on	 the	wire?

CONNECTION:

The magnetic force on a 
 current-carrying wire is the 
sum of the magnetic forces 
on the charge carriers in  
the wire.

Figure 19.28 A current-
carrying wire in an externally 
applied magnetic field experi-
ences a magnetic force.

FB

L
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The second form is more convenient here, since L
→

 is south-
ward. The perpendicular component of B

→
 is the vertical 

component, which is B sin 62° (Fig. 19.30). Then

F = ILB sin 62° = 2500 A × 125 m × 5.2 × 10−5 T × sin 62°
= 14 N

Figure 19.30 shows the vectors L
→

 and B
→

 sketched in the 
north/south–up/down plane. Since north is to the right, this 
is a view looking toward the west. The cross product L

→
× B

→
 

is out of the page by the right-hand rule. Therefore, the di-
rection of the force is east.

Discussion The hardest thing in this sort of problem is 
choosing a plane in which to sketch the vectors. Here we 
chose a plane in which we could draw both L

→
 and B

→
; then 

the cross product has to be perpendicular to this plane.

Practice Problem 19.8 Magnetic Force on a 
Current-Carrying Wire

A vertical wire carries 10.0 A of current upward. What is the 
direction of the magnetic force on the wire if the magnetic 
field is the same as in Example 19.8?

Example 19.8

Magnetic Force on a Power Line

A 125 m long power line is horizontal and carries a current 
of 2500 A toward the south. Earth’s magnetic field at that 
location is 0.052 mT toward the north and inclined 62° 
 below the horizontal (Fig. 19.29). What is the magnetic 
force on the power line? (Ignore any sagging of the wire; as-
sume it’s straight.)

Strategy We are given all the quantities necessary to cal-
culate the force:

I = 2500 A;
L
→

 has magnitude 125 m and direction south;
B
→

 has  magnitude 0.052 mT. It has a downward component 
and a northward component.

We find the cross product L
→

× B
→

 and then multiply by I.

Solution The magnitude of the force is given by

F = IL⊥B = ILB⊥

Figure 19.29
The wire and the 
magnetic field 
vector.
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I
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B

Figure 19.30
The vectors L

→
 and B

→
 sketched in a 

vertical plane. The cross product of 
the two must then be perpendicular 
to this plane—either east (out of the 
page) or west (into the page). The 
right-hand rule enables us to choose 
between the two possibilities.Down
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19.7 TORQUE ON A CURRENT LOOP

Consider a rectangular loop of wire carrying current I in a uniform magnetic field B
→

. 
In Fig. 19.31a, the field is parallel to sides 1 and 3 of the loop. There is no magnetic 
force on sides 1 and 3 since L

→
× B

→
= 0 for each. The forces on sides 2 and 4 are equal 

in magnitude and opposite in direction. There is no net magnetic force on the loop, but 
the lines of action of the two forces are offset by a distance b, so there is a nonzero net 
torque. The torque tends to make the loop rotate about a central axis in the direction 
indicated in Fig. 19.31a. The magnitude of the magnetic force on sides 2 and 4 is

 F = ILB = IaB (19-23)

The lever arm for each of the two forces is 1
2b, so the torque due to each is

 magnitude of force × lever arm = F × 1
2b = 1

2IabB (19-24)

Then the total torque on the loop is τ = IabB. The area of the rectangular loop is 
A = ab, so

 τ = IAB (19-25)
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If, instead of a single turn, there are N turns forming a coil, then the magnetic torque 
on the coil is
 τ = NIAB (19-26)
This result holds for a planar loop or coil of any shape (see Problem 62).

What if the field is not parallel to the plane of the coil? In Fig. 19.31b, the same 
loop has been rotated about the axis shown. The angle θ is the angle between the 
magnetic field and a line perpendicular (normal) to the current loop. Which perpen-
dicular direction is determined by a right-hand rule: curl the fingers of your right hand 
in toward your palm, following the current in the loop, and your thumb indicates the 
direction of θ = 0 (Fig. 19.31c). Before, when the field was in the plane of the loop, 
θ was 90°. For θ ≠ 90°, the magnetic forces on sides 1 and 3 are no longer zero, but 
they are equal and opposite and act along the same line of action, so they contribute 
neither to the net force nor to the net torque. The magnetic forces on sides 2 and 4 
are the same as before, but now the lever arms are smaller by a factor of sin θ: instead 
of 1

2b, the lever arms are now 1
2b sin θ. Therefore,

Torque on a current loop
 τ = NIAB sin θ (19-27)

(θ is the angle between the magnetic field and a line perpendicular to the 
current loop)

Equation (19-27) holds for a planar loop or coil of any shape.
The torque has maximum magnitude if the field is in the plane of the coil (θ = 90° 

or 270°). If θ = 0° or 180°, the field is perpendicular to the plane of the loop and 
the torque is zero. There are two positions of rotational equilibrium, but they are not 
equivalent. The position at θ = 180° is an unstable equilibrium because at angles near 
180° the torque tends to rotate the coil away from 180°. The position at θ = 0° is a 
stable equilibrium; the torque for angles near 0° makes the coil rotate back toward 
θ = 0° and thus tends to restore the equilibrium.

CHECKPOINT 19.7

Suppose	the	coil	of	wire	in	Fig.	19.31	is	in	a	vertical	plane	with	wire	2	on	top	and	
wire	4	on	 the	bottom.	The	current	still	 flows	around	 the	coil	 in	 the	direction	 indi-
cated	in	the	figure.	(a)	What	are	the	directions	of	the	magnetic	forces	on	the	two	
wires?	 (b)	Explain	why	 the	torque	about	 the	axis	of	 rotation	 is	zero.	 (c)	 Is	 the	coil	
in	stable	or	unstable	equilibrium?	(d)	What	is	the	angle	θ	as	defined	in	Fig.	19.31?

Figure 19.31 (a) A rectangular coil of wire in a uniform magnetic field. The current in the coil (counterclockwise as 
viewed from the top) causes a magnetic torque, which is clockwise as viewed from the front. (b) Side view of the same 
coil after it has been rotated in the field. The current in side 4 comes out of the page, and continues along side 1 (diag-
onally down the page) and back into the page in side 2. The lever arms of the forces on sides 2 and 4 are now smaller: 
1
2b sin θ instead of 1

2b. The torque is then smaller by the same factor (sin θ). (c) Using a right-hand rule to choose the 
perpendicular direction from which θ is measured.
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Torque on a Magnetic Dipole

The torque on a current loop in a uniform magnetic field is analogous to the torque 
on an electric dipole in a uniform electric field. This similarity is our first hint that

A current loop is a magnetic dipole.

The direction perpendicular to the loop chosen by a right-hand rule is the direction 
of the magnetic dipole moment vector μ→. The dipole moment vector points from 
the dipole’s south pole toward its north pole. (Similarly, the electric dipole moment 
vector points from the electric dipole’s negative charge toward its positive charge.) 
The direction of the dipole moment of a current loop is found using the right-hand 
rule of Fig. 19.31c. The magnitude of the dipole moment is

Magnetic dipole moment
 μ = NIA (19-28)

The torque due to a magnetic field on any magnetic dipole, including compass needles 
and current loops, tends to make the dipole moment vector line up with the magnetic 
field; the magnitude of the torque is τ = μB sin θ.

Torque on a magnetic dipole
 τ = μB sin θ (19-29)

Application: Electric Motor

In a simple dc motor, a coil of wire is free to rotate between the poles of a permanent 
magnet (Fig. 19.32). When current flows through the loop, the magnetic field exerts a 
torque on the loop. If the direction of the current in the coil doesn’t change, then the 
coil just oscillates about the stable equilibrium orientation (θ = 0°). To make a motor, 
we need the coil to keep turning in the same direction. The trick used to make a dc 
motor is to automatically reverse the direction of the current as soon as the coil passes 
θ = 0°. In effect, just as the coil goes through the stable equilibrium orientation, we 
reverse the current to make the coil’s orientation an unstable equilibrium. Then, instead 
of pulling the coil backward toward the (stable) equilibrium, the torque keeps turning 
the coil in the same direction by pushing it away from (unstable) equilibrium.

Figure 19.32 A simple dc motor. (a) The commutator is a rotary switch that reverses the direction of the current in the 
motor’s windings every 180° of rotation. The electrical connections from the power supply to the motor’s windings are made 
between two conducting brushes and two conducting pads on the axle. (b) In this position, the counterclockwise torque on the coil 
pushes it away from unstable equilibrium and toward stable equilibrium. (c) As the coil approaches what would be stable equilib-
rium, the brushes pass over the split in the commutator, interrupting the flow of current. The torque on the coil is zero. (d) When 
its rotational inertia has made the coil rotate a little more, the brushes reconnect but the direction of the current in the windings is 
reversed, so the torque on the coil is again counterclockwise, away from unstable equilibrium and toward stable equilibrium.
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To reverse the current, the source of current is connected to the coil windings by 
means of a rotary switch called a commutator. The commutator is a split ring with 
each side connected to one end of the coil. Every time the brushes pass over the split 
(Fig. 19.32b), the current to the coil is reversed.

Application: Galvanometer

The magnetic torque on a current loop is also the principle behind the operation of a 
galvanometer—a sensitive device used to measure current. A rectangular coil of wire 
is placed between the poles of a magnet (Fig. 19.33). The shape of the magnet’s pole 
faces keeps the field perpendicular to the wires and constant in magnitude regardless 
of the angle of the coil, so the torque does not depend on the angle of the coil. A 
hairspring provides a restoring torque that is proportional to the angular displacement 
of the coil. When a current passes through the coil, the magnetic torque is proportional 
to the current. The coil rotates until the restoring torque due to the spring is equal in 
magnitude to the magnetic torque. Thus, the angular displacement of the coil is pro-
portional to the current in the coil.

Figure 19.33 A galvanometer.
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where N stands for the number of turns of wire in the coil. 
The force vectors are shown on Fig. 19.33.

(a) Since the B
→

 vectors are the same and the L
→

 vectors 
are equal and opposite (same length but opposite direction), 
the forces are equal in magnitude and opposite. Then the net 
magnetic force on the coil is zero. (b) The net torque is not 
zero because the lines of action of the forces are separated. 
(c) The forces make the pointer rotate counterclockwise in the 
plane of the page. (d) Since the meter shows positive current 
by rotating clockwise, we have chosen the wrong direction for 
the current. The leads of the galvanometer should be attached 
so that positive current makes the current in the coil flow in 
the direction opposite to the one we chose initially.
Discussion The galvanometer works because the torque 
is proportional to the current but independent of the orienta-
tion of the coil. In Eq. (19-27), θ is the angle between the 
magnetic field and a line perpendicular to the coil. In the 
galvanometer, the magnetic field acting on the coil is always 
in the plane of the coil; in essence θ is a constant 90° even 
while the coil swings about the pivot.

Practice Problem 19.9 Torque on a Coil

Starting with the magnetic forces on the sides of the coil, 
show that the torque on the coil is τ = NIAB, where A is the 
area of the coil.

Conceptual Example 19.9

Force and Torque on a Galvanometer Coil

Show that (a) there is zero net magnetic force on the pivoted 
coil in the galvanometer of Fig. 19.33; (b) there is a net torque; 
and (c) the torque is in the correct direction to swing the 
pointer in the plane of the page. (d) Determine which direction 
the current in the coil must flow to swing the pointer to the 
right. Assume that the magnetic field is radial and has uniform 
magnitude in the space between the magnet pole faces and the 
iron core and that the field is zero in the vicinity of the two 
sides of the coil that cross above and below the iron core.

Strategy Since we do not know the direction of the 
current, we pick one arbitrarily; in part (d) we will find out 
whether the choice was correct. Only the two sides of the 
coil near the magnet pole faces experience magnetic forces, 
since the other two sides are in zero field.

Solution We choose the current in the side near the north 
pole to flow into the page. The current must then flow out of 
the page in the side of the coil near the south pole. In Fig. 19.33, 
the current directions are marked with symbols ⊙ and ×, which 
also represent the directions of the L

→
 vectors used to find the 

magnetic force. The magnetic field vectors are also shown. 
Note that, since the direction of the field is radial, the two mag-
netic vectors are the same (same direction and magnitude). 
The direction of the magnetic force on either side is given by

F
→

= NI L
→

× B
→

Application: Audio Speakers

A current-carrying coil in a uniform magnetic field experiences a net torque but no net 
force. In contrast, a coil in a nonuniform magnetic field may experience a nonzero net 
force; this is the principle behind the operation of many audio speakers (Fig. 19.34). A 
permanent magnet is shaped so that its poles are a cylinder and a cylindrical shell with 
the same axis. The magnetic field between the poles is radially toward or away from 
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the axis. The cylindrical coil fits between the poles of the magnet. Even though the coil 
is not a straight wire, the radial magnetic field everywhere perpendicular to the coil and 
the magnetic force on every part of the coil is in the same direction. The magnetic force 
is proportional to the current in the coil. A spring exerts a linear restoring force on the 
coil so that the displacement of the coil is proportional to the magnetic force, which in 
turn is proportional to the current. Thus, the motion of the coil—and the motion of the 
attached cone—mirrors the current sent through the speaker by the amplifier.

19.8 MAGNETIC FIELD DUE TO AN ELECTRIC CURRENT

So far we have explored the magnetic forces acting on charged particles and current-
carrying wires. We have not yet looked at sources of magnetic fields other than 
permanent magnets. It turns out that any moving charged particle creates a magnetic 
field. There is a certain symmetry about the situation:

∙ Moving charges experience magnetic forces and moving charges create magnetic 
fields;

∙ Charges at rest feel no magnetic forces and create no magnetic fields;
∙ Charges feel electric forces and create electric fields, whether moving or not.

Today we know that electricity and magnetism are closely intertwined. It may be 
surprising to learn that they were not known to be related until the nineteenth century. 
Hans Christian Oersted discovered in 1820 by happy accident that electric currents 
flowing in wires made nearby compass needles swing around. Oersted’s discovery 
was the first evidence of a connection between electricity and magnetism.
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Figure 19.34 (a) Simplified sketch of a loudspeaker. A varying current from the amplifier flows through a coil. The 
magnetic force on the coil makes it and the attached cone move in and out. The motion of the cone displaces air in the 
vicinity and creates a sound wave. (b) A front view of the coil. The coil is sandwiched between cylindrically shaped 
poles of a magnet. The magnetic field is directed radially outward. (Compare with Fig. 19.33 to see how the radial 
magnetic fields and the coil orientations differ.) Applying F

→
= I L

→
× B

→
 to any short length of the coil shows that, for 

the clockwise current shown here, the magnetic force is out of the page.
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The magnetic field due to a single moving charged particle is negligibly small in 
most situations. However, when an electric current flows in a wire, there are enormous 
numbers of moving charges. The magnetic field due to the wire is the sum of the 
magnetic fields due to each charge, because the principle of superposition applies to 
magnetic fields just as it does to electric fields.

Principle of Superposition

The magnetic field at any point due to more than source (individual moving 
charges and/or currents) is the vector sum of the field vectors at that point 
caused by each source separately.

Magnetic Field due to a Long Straight Wire

Let us first consider the magnetic field due to a long, straight wire carrying a current I. 
What is the magnetic field at a distance r from the wire and far from its ends? 
Figure 19.35a is a photo of such a wire, passing through a glass plate on which iron 
filings have been sprinkled. The iron bits line up with the magnetic field due to the 
current in the wire. The photo suggests that the magnetic field lines are circles centered 
on the wire. Circular field lines are indeed the only possibility, given the symmetry 
of the situation. If the lines were any other shape, they would be farther from the wire 
in some directions than in others.

The iron filings do not tell us the direction of the field. By using compasses instead 
of iron filings (Fig. 19.35b), the direction of the field is revealed—it is the direction 
indicated by the north end of each compass. The field lines due to the wire are shown 
in Fig. 19.35c, where the current in the wire flows upward. A right-hand rule relates 
the current direction in the wire to the direction of the field around the wire:

Using a Right-Hand Rule to Find the Direction of  
the Magnetic Field due to a Long Straight Wire

1.  Point the thumb of your right hand in the direction of the current in the wire.
2.  Curl the fingers inward toward the palm; the direction that the fingers curl 

is the direction of the magnetic field lines around the wire (Fig. 19.35c).
3.  As always, the magnetic field at any point is tangent to a field line through 

that point. For a long straight wire, the magnetic field is tangent to a circular 
field line and, therefore, perpendicular to a radial line from the wire.

Figure 19.35 Magnetic field due to a long straight wire. (a) Photo of a long wire, with iron filings lining up with 
the magnetic field. (b) Compasses show the direction of the field. (c) Sketch illustrating how to use the right-hand rule 
to determine the direction of the field lines. At any point, the magnetic field is tangent to one of the circular field lines 
and, therefore, perpendicular to a radial line from the wire.
©Science Source; ©GIPhotoStock/Science Source
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CHECKPOINT 19.8

What	 is	 the	 direction	 of	 the	magnetic	 field	 at	 a	 point	 directly	 behind	 the	wire	
in	Fig.	19.35c?

The magnitude of the magnetic field at a distance r from the wire can be found 
using Ampère’s law (Section 19.9; see Example 19.11):

Magnetic field due to a long straight wire

 B =
μ0I

2πr
 (19-30)

where I is the current in the wire and μ0 is a universal constant known as the perme-
ability of vacuum. The permeability plays a role in magnetism similar to the role of 
the permittivity (ϵ0) in electricity. In SI units, the value of μ0 is

 μ0 = 4π × 10−7 
T·m
A
 (exact, by definition)  (19-31)

Two parallel current-carrying wires that are close together exert magnetic forces 
on each other. The magnetic field of wire 1 causes a magnetic force on wire 2; the 
magnetic field of wire 2 causes a magnetic force on wire 1 (Fig. 19.36). From Newton’s 
third law, we expect the forces on the wires to be equal and opposite. If the currents 
flow in the same direction, the force is attractive; if they flow in opposite directions, 
the force is repulsive (see Problem 79). Note that for current-carrying wires, “likes” 
(currents in the same direction) attract one another and “unlikes” (currents in opposite 
directions) repel one another.

Figure 19.36 Two parallel 
wires exert magnetic forces on 
each other. The force on wire 1 
due to wire 2’s magnetic field 
is F

→
12 = I1L

→
1 × B

→
2. Even if the 

currents are unequal, F
→

21 = −F
→

12 
(Newton’s third law).

F21

I2

F12

I1

Direction of
magnetic field
due to wire 2

Direction of
magnetic field
due to wire 1

B2 B1

Solution (a) Since r ≫ d, the distance from either wire to 
P is approximately r (Fig. 19.38). Then the magnitude of the 
field at P due to either wire is

B1 = B2 ≈
μ0I

2πr

In Fig. 19.38, we draw radial lines from each wire to point P. 
The direction of the magnetic field due to a long wire is 
tangent to a circle and therefore perpendicular to a radius. 
Using the right-hand rule, the field directions are as shown 

Example 19.10

Magnetic Field due to Household Wiring

In household wiring, two long parallel wires are separated 
and surrounded by an insulator. The wires are a distance d 
apart and carry currents of magnitude I in opposite direc-
tions. (a) Find the magnetic field at a distance r ≫ d from 
the center of the wires (point P in Fig. 19.37). (b) Find the 
numerical value of B if I = 5 A, d = 5 mm, and r = 1 m and 
compare with Earth’s magnetic field at the surface 
(≈ 5 × 10−5 T).

Strategy The magnetic field is the vector sum of the 
fields due to each of the wires. The fields due to the wires 
at P are equal in magnitude (since the currents and dis-
tances are the same), but the directions are not the same. 
Equation (19-30) gives the magnitude of the field due to 
either wire. Since the field lines due to a single long wire 
are circular, the direction of the field is tangent to a circle 
that passes through P and whose center is on the wire. The 
right-hand rule determines which of the two tangent direc-
tions is correct.

continued on next page

Figure 19.37
The two wires are perpendicular to the plane of the page. They are 
marked to show that the current in the upper wire flows out of the 
page and the current in the lower wire flows into the page.

d
r P

B = ?
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in Fig. 19.38. The y-components of the two field vectors add 
to zero; the x-components are the same:

B1x = B2x =
μ0I

2πr
 sin θ

Since r ≫ d,

sin θ =
opposite

hypotenuse
≈

1
2d

r

The total magnetic field due to the two wires is in the 
+x-direction and has magnitude

B = B1x + B2x =
μ0Id

2πr2

(b) By substitution,

B = 2 × 10−7 
T·m
A

×
5A × 0.005 m

(1 m)2 = 5 × 10−9 T

The field due to the wires is 10−4 times Earth’s field.

Discussion The field due to the two wires decreases with 
distance proportional to 1/r2. It falls off much faster with 
distance than does the field due to a single wire, which is 
proportional to 1/r. With equal currents flowing in opposite 
directions, we have a net current of zero. The only reason the 
field isn’t zero is the small distance between the two wires.

Example 19.10 continued

Since the current in household wiring actually alter-
nates at 60 Hz, so does the field. If 5 A is the maximum cur-
rent, then 5 × 10−9 T is the maximum field magnitude.

Practice Problem 19.10 Field Midway Between 
Two Wires

Find the magnetic field at a point halfway between the two 
wires in terms of I and d.

Figure 19.38
Field vectors due to each wire.

d

B1x

B2x

B1y

B2y

r

≈ r

≈ r

θ

θ

θ
θ

y

xP

1–2

d1–2

B2

B1

Magnetic Field due to a Circular Current Loop

In Section 19.7, we saw the first clue that a loop of wire that carries current around 
in a complete circuit is a magnetic dipole. A second clue comes from the magnetic 
field produced by a circular loop of current. As for a straight wire, the magnetic field 
lines circulate around the wire, but for a circular current loop, the field lines are not 
circular. The field lines are more concentrated inside the current loop and less con-
centrated outside (Fig. 19.39a). The field lines emerge from one side of the current 
loop (the north pole) and reenter the other side (the south pole). Thus, the field due 
to a current loop is similar to the field of a short bar magnet.

The direction of the field lines is given by a right-hand rule.

Using a Right-Hand Rule to Find the Direction of the  
Magnetic Field due to a Circular Loop of Current

Curl the fingers of your right hand inward toward the palm, following the cur-
rent around the loop (Fig. 19.39b). Your thumb points in the direction of the 
magnetic field through the interior of the loop, which is also the direction of 
the dipole moment vector.

The magnitude of the magnetic field at the center of a circular loop (or coil) is 
given by

 B =
μ0NI

2r
 (19-32)

where N is the number of turns, I is the current, and r is the radius.

Figure 19.39 (a) Magnetic 
field lines due to a circular 
current loop. (b) Using the 
right-hand rule to determine the 
direction of the field inside 
the  loop.

I

(a)

Direction of B
inside the loop

I

(b)

S N
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The magnetic fields due to coils of current-carrying wire are used in televisions 
and computer monitors to deflect the electron beam so that it lands on the screen in 
the desired spot.

Magnetic Field due to a Solenoid

An important source of magnetic field is that due to a solenoid because the field 
inside a solenoid is nearly uniform. In magnetic resonance imaging (MRI), the patient 
is immersed in a strong magnetic field inside a solenoid.

To construct a solenoid with a circular cross section, wire is tightly wrapped in 
a cylindrical shape, forming a helix (Fig. 19.40a). We can think of the field as the 
superposition of the fields due to a large number of circular loops. If the loops 
are sufficiently close together, then the field lines go straight through one loop to the 
next, all the way down the solenoid. Having a large number of loops, one next to 
the other, straightens out the field lines. Figure 19.40b shows the magnetic field lines 
due to a solenoid. Inside the solenoid and away from the ends, the field is nearly 
uniform and parallel to the solenoid’s axis as long as the solenoid is long relative to 
its radius. To find in which direction the field points along the axis, use the right-hand 
rule exactly as for the circular loop of current.

If a long solenoid has N turns of wire and length L, then the magnetic field inside 
is given by (see Problem 90):

Magnetic field inside an ideal solenoid

 B =
μ0NI

L
= μ0nI  (19-33)

(direction is given by the right-hand rule)

In Eq. (19-33), I is the current in the wire and n = N/L is the number of turns per 
unit length. Note that the field does not depend on the radius of the solenoid. The 
magnetic field near the ends is weaker and starts to bend outward; the field outside 
the solenoid is quite small—look how spread out the field lines are outside. A solenoid 
is one way to produce a nearly uniform magnetic field.

The similarity in the magnetic field lines due to a solenoid compared with those 
due to a bar magnet (see Fig. 19.1b) suggested to André-Marie Ampère that the 
magnetic field of a permanent magnet might also be due to electric currents. The 
nature of these currents is explored in Section 19.10.

Figure 19.40 (a) A solenoid. (b) Magnetic field lines due to a solenoid. Each dot represents the wire crossing the 
plane of the page with current out of the page; each cross represents the wire crossing the plane of the page with 
current into the page.
©GIPhotoStock/Science Source

(a)

Current flows
into the page

Current flows
out of the page

(b)

Right-hand rule
gives direction
of B inside

Nearly uniform B

(b)
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Application: Magnetic Resonance Imaging

In magnetic resonance imaging (Fig. 19.41), the main solenoid is usually made with 
superconducting wire, which must be kept at low temperature (see Section 18.4). The 
main solenoid produces a strong, uniform magnetic field (typically 0.5–2 T). The 
nuclei of hydrogen atoms (protons) in the body act like tiny permanent magnets; a 
magnetic torque tends to make them line up with the magnetic field. A radio-frequency 
coil emits pulses of radio waves (rapidly varying electric and magnetic fields). If the 
radio wave has just the right frequency (the resonant frequency), the protons can 
absorb energy from the wave, which disturbs their magnetic alignment. When the 
protons flip back into alignment with the field, they emit radio wave signals of their 
own that can be detected by the radio-frequency coil.

The resonant frequency of the pulse that makes the protons flip depends on the 
total magnetic field due to the MRI machine and due to the neighboring atoms. Protons 
in different chemical environments have slightly different resonant frequencies. In order 
to image a slice of the body, three other coils create small (15–30 mT) magnetic fields 
that vary in the x-, y-, and z-directions. The magnetic fields of these coils are adjusted 
so that the protons are in resonance with the radio-frequency signal only in a single 
slice, a few millimeters thick, in any desired direction through the body.

19.9 AMPÈRE’S LAW

Ampère’s law plays a role in magnetism similar to that of Gauss’s law in electricity 
(Sec.  16.7). Both relate the field to the source of the field. For the electric field, the 
source is charge. Gauss’s law relates the net charge inside a closed surface to the flux of 
the electric field through that surface. The source of magnetic fields is current. Ampère’s 
law must take a different form from Gauss’s law: since magnetic field lines are always 
closed loops, the magnetic flux through a closed surface is always zero. (This fact is 
called Gauss’s law for magnetism and is itself a fundamental law of electromagnetism.)

Instead of a closed surface, Ampère’s law concerns any closed path or loop. For 
Gauss’s law we would find the flux: the perpendicular component of the electric field 
times the surface area. If E⊥ is not the same everywhere, then we break the surface 
into pieces and sum up E⊥ ΔA. For Ampère’s law, we multiply the component of the 
magnetic field parallel to the path (or the tangential component at points along a 

Figure 19.41 MRI apparatus.
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closed curve) times the length of the path. Just as for flux, if the magnetic field 
component is not constant then we take parts of the path (each of length Δl) and sum 
up the product. This quantity is called the circulation.

 circulation =∑ B|| Δl (19-34)

Ampère’s law relates the circulation of the field to the net current I that crosses 
the interior of the path.

Ampère’s law

 ∑ B|| Δl = μ0I (19-35)

There is a symmetry between Gauss’s law and Ampère’s law (Table 19.1).

Table 19.1 Comparison of Gauss’s and Ampère’s Laws

Gauss’s Law Ampère’s Law

Electric field Magnetic field (static only)
Applies to any closed surface Applies to any closed path
Relates the electric field on the surface to  
 the net electric charge inside the surface

Relates the magnetic field on the path to the net 
 current cutting through interior of the path

Component of the electric field 
  perpendicular to the surface (E⊥)

Component of the magnetic field parallel  
 to the path (B||)

Flux = perpendicular field component ×  
 area of surface

Circulation = parallel field component ×  
 length of path

 = Σ E⊥ ΔA  = Σ B|| Δl

Flux = 1/ϵ0 × net charge Circulation = μ0 × net current

 ΣE⊥ ΔA =
1
ϵ0

 q  Σ B|| Δl = μ0I

that follows a circular field line (Fig. 19.42). The field is 
everywhere tangent to the field line and therefore tangent to the 
path; there is no perpendicular component. The field must also 
have the same magnitude at a uniform distance r from the wire.

Solution Since the field has no component perpendicular 
to the path, B‖ = B. Going around the circular path, B is con-
stant, so

circulation = B × 2πr = μ0I

where I is the current in the wire. Solving for B yields

B =
μ0I

2πr

Discussion Ampère’s law shows why the magnetic field 
of a long wire varies inversely as the distance from the wire. 
A circle of any radius r around the wire has a length that is 

Example 19.11

Magnetic Field due to a Long Straight Wire

Use Ampère’s law to show that the magnetic field due to a 
long straight wire is B = μ0I/(2πr).

Strategy As with Gauss’s law, the key is to exploit the sym-
metry of the situation. The field lines have to be circles around 
the wire, assuming the ends are far away. Choose a closed path 

Figure 19.42
Applying Ampère’s law to a long 
straight wire. A closed path is 
chosen to follow a circular magnetic 
field line; the magnetic field is then 
calculated from Ampère’s law.

Wire with
current I 

Closed path
around the wire

r

B

continued on next page
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proportional to r, while the current that cuts through the 
interior of the circle is always the same (I). So the field must 
be proportional to 1/r.

Practice Problem 19.11 Circulation due to Three 
Wires

What is the circulation of the magnetic field for the path in 
Fig. 19.43?

Figure 19.43
Six wires perpendicular to 
the page carry currents as 
indicated. A path is chosen 
to enclose three of the 
wires.

+2I

+7I

+3I
–2I

–5I–I

19.10 MAGNETIC MATERIALS

Imagine holding a bar magnet near a piece of wood or aluminum or plastic. The mag-
netic force on the object is imperceptibly weak. In everyday language, these materials 
might be called “nonmagnetic.” In reality, all materials experience some force when 
near a bar magnet, because all materials contain enormous numbers of tiny magnets: 
electrons. The electrons are like little magnets in two ways. First, an electron’s orbital 
motion around the nucleus can make it a tiny current loop and thus a magnetic dipole. 
Second, an electron has an intrinsic magnetic dipole moment independent of its motion. 
The intrinsic magnetism of the electron is one of its fundamental properties, just like 
its electric charge and mass. (Protons and neutrons also have intrinsic magnetic dipole 
moments, but they are much smaller than the electron’s so they are negligible in the 
discussion that follows.) The net magnetic dipole moment of an atom or molecule is 
the vector sum of the dipole moments of its electrons. Depending on the electronic 
configuration of the atom or molecule, it may have a permanent nonzero dipole moment 
or its dipole moment in the absence of an external magnetic field may be zero.

Paramagnetism

Most materials whose atoms or molecules have permanent dipole moments are para-
magnetic. In these materials, the interaction between dipoles is insignificant; in the 
absence of an external magnetic field, the dipoles are randomly oriented and the total 
dipole moment is zero. When an external magnetic field is applied, the magnetic 
torque on each dipole tends to make it line up with the field. However, the random 
thermal motion of the dipoles keeps the average degree of alignment very small. Two 
consequences of this weak alignment are that the magnetic field inside the material 
is slightly larger than the external field, and the material is weakly attracted toward 
a region of stronger external field. The magnetization—the net dipole moment per 
unit volume—for a given applied field is larger at lower temperatures; less thermal 
energy allows a greater degree of alignment of the dipoles.

Ferromagnetism

The atoms or molecules of ferromagnetic materials such as iron, nickel, cobalt, and chro-
mium dioxide also have permanent dipole moments, but they have much stronger magnetic 
properties because there is an interaction—the explanation of which requires quantum 
physics—that keeps the magnetic dipoles aligned with each other, even in the absence of 
an external magnetic field. A ferromagnetic material is divided up into regions called 
domains in which the atomic or molecular dipoles line up with each other. Even though 
each atom is a weak magnet by itself, when enormous numbers of them have their dipoles 
aligned in the same direction within a domain, the domain can have a large dipole moment.

The dipole moments of different domains are not necessarily aligned with one 
another, however. Some may point one way and some another (Fig. 19.44a). When 
the net dipole moment of all the domains is zero, the material is unmagnetized. If the 
material is placed in an external magnetic field, two things happen. Atomic dipoles 

Figure 19.44 Domains 
within a ferromagnetic material 
are indicated by arrows indicat-
ing the direction of each 
domain’s magnetic field. In 
(a),  the domains are randomly 
oriented; the material is unmag-
netized. In (b), the material is 
magnetized; the domains show 
a high degree of alignment to 
the right.

(b)

(a)

No net magnetization

Net magnetization

Example 19.11 continued
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at domain boundaries can “defect” from one domain to an adjacent one by flipping 
their dipole moments. Thus, domains with their dipole moments aligned or nearly 
aligned with the external field grow in size and the others shrink. The other thing that 
happens is that domains can change their direction of orientation, with all the atomic 
dipoles flipping to a new direction. When the net dipole moment of all the domains 
is nonzero, the material is magnetized (Fig. 19.44b).

Once a ferromagnet is magnetized, it does not necessarily lose its magnetization 
when the external field is removed. It takes some energy to align the domains with 
the field; there is a kind of internal friction that must be overcome, so the domains 
stay aligned even after the external field is removed. The material is then a permanent 
magnet; to demagnetize it requires application of an external field in the opposite 
direction. Unlike paramagnets, ferromagnet exhibits hysteresis—its magnetization 
depends on its previous history of applied magnetic fields, not only on the present 
value of the applied field.

Some ferromagnets have relatively little of this internal friction. This kind of 
ferromagnet does not make a good permanent magnet; when the external field is 
removed, it retains only a small fraction of its previous magnetization.

At high temperature, the interaction that keeps the dipoles aligned within a 
domain is no longer able to do so. Without the alignment of dipoles, there are no 
longer any domains; the material becomes paramagnetic. The temperature at which 
this occurs for a particular ferromagnetic material is called the Curie temperature of 
that material, after French physicist Pierre Curie (1859–1906). For iron, the Curie 
temperature is about 770°C.

EVERYDAY PHYSICS DEMO

If	 a	 paper	 clip	 is	 placed	 in	 contact	 with	 a	magnet,	 the	 paper	 clip	 becomes	
magnetized	 and	 can	 attract	 other	 paper	 clips.	 This	 phenomenon	 is	 easily	
observed	 in	 paper-clip	 containers	 with	 magnets	 that	 hold	 the	 paper	 clips	
upright	for	ease	in	pulling	one	out.	The	magnetized	paper	clips	often	drag	out	
other	paper	clips	as	well	 (Fig.	19.45).	Try	 it.

Diamagnetism

The atoms or molecules of a diamagnetic material have no permanent dipole moments. 
However, in an applied magnetic field the motion of the electrons is altered and the 
atoms acquire induced dipole moments. The induced dipole moments are aligned 
opposite to the external field (in accordance with Faraday’s law, which we study in 
Chapter 20). Diamagnetic materials have weak magnetic properties that are opposite to 
those of paramagnets: the magnetic field inside the material is slightly smaller than the 
applied field, and the material is weakly repelled from regions of stronger applied field.

Application: Electromagnets

An electromagnet is made by inserting a soft iron core into the interior of a solenoid. 
Soft iron does not retain a significant permanent magnetization when the solenoid’s 
field is turned off—it does not make a good permanent magnet. When current flows 
in the solenoid, magnetic dipoles in the iron tend to line up with the field due to the 
solenoid. The net effect is that the field inside the iron is intensified by a factor known 
as the relative permeability κB. The relative permeability is analogous in magnetism 
to the dielectric constant in electricity. However, the dielectric constant is the factor 
by which the electric field is weakened, whereas the relative permeability is the factor 
by which the magnetic field is strengthened. The relative permeability of a ferromag-
net can be in the hundreds or even thousands—the intensification of the magnetic 
field is significant. Not only that, but in an electromagnet the magnitude and even 
direction of the magnetic field can be changed by changing the current in the solenoid. 
Figure 19.46 shows the field lines in an electromagnet. Notice that the iron core 

Figure 19.45 Each magne-
tized paper clip is capable of 
magnetizing another paper clip.
©Tom Pantages

Figure 19.46 An electro-
magnet with field lines 
sketched.
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I I

Soft iron
core
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channels the field lines; the windings of the solenoid need not be at the business end 
of the electromagnet.

Application: Magnetic Storage

In a computer’s hard disk drive, an electromagnet called a head is used to magnetize 
ferromagnetic particles in a coating on the platter surface (Fig. 19.47). The ferromag-
netic particles retain their magnetization even after the head has moved away, so the 
data persists until it is erased or written over. Data can be accidentally erased if a 
disk is brought close to a strong magnet.

Master the Concepts

 ∙ Magnetic field lines are interpreted just like electric field 
lines. The magnetic field at any point is tangent to the 
field line; the magnitude of the field is proportional to the 
number of lines per unit area perpendicular to the lines.

 ∙ Magnetic field lines are always closed loops because 
there are no magnetic monopoles.

 ∙ Field lines emerge from the north pole of a magnet and 
reenter at the south pole; inside the magnet they go from 
the south pole to the north pole. A magnet can have 
more than two poles, but it must have at least one north 
pole and at least one south pole.

B

S

N

 ∙ The magnitude of the cross product of two vectors is the 
magnitude of one vector times the perpendicular com-
ponent of the other:

∣a→ × b
→

∣ = ∣b
→

× a→∣ = a⊥b = ab⊥ = ab sin θ (19-5)

 ∙ The direction of the cross product is the direction per-
pendicular to both vectors that is chosen using a right-
hand rule (Fig. 19.8).

a × b

a

b

 ∙ The magnetic force on a charged particle is

 F
→

B = qv→ × B
→

 (19-7)

  If the charge is at rest (v = 0) or if its velocity has no 
component perpendicular to the magnetic field (v⊥ = 0), 
then the magnetic force is zero. The force is always per-
pendicular to the magnetic field and to the velocity of 
the particle. The magnitude is

 FB = ∣q∣vB sin θ = ∣q∣v ⊥ 
B = ∣q∣vB⊥ (19-1)

  To find the direction: use the right-hand rule to find 
v→ × B

→
 then reverse it if q is negative.

 ∙ The SI unit of magnetic field is the tesla:

 1 T = 1 
N

A·m (19-4)

Figure 19.47 A computer 
hard drive. Each platter has a 
magnetizable coating on each 
side. The spindle motor turns 
the platters at several thousand 
 revolutions per minute. There is 
one read-write head on each 
 surface of each platter.

Platter

Read-write head

Spindle motor

continued on next page
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 ∙ If a charged particle moves at right angles to a uniform 
magnetic field, then its trajectory is a circle. If the ve-
locity has a component parallel to the field as well as a 
component perpendicular to the field, then its trajectory 
is a helix.

v

v

v

B

F

F

F

 ∙ The magnetic force on a straight wire carrying current I is

 F
→

= I L
→

× B
→

 (19-21)
  where L

→
 is a vector whose magnitude is the length of 

the wire and whose direction is along the wire in the 
direction of the current.

 ∙ The magnetic torque on a dipole in a magnetic field is
 τ = μB sin θ (19-29)

  where μ→ is the dipole moment vector and θ is the angle 
between μ→ and B

→
. The direction of μ→ is from the south 

pole to the north. For a planar loop of area A with N 
turns carrying current I, the magnitude of μ→ is
 μ = NIA (19-28)

  The direction of μ→ for a current loop is perpendicular to 
the loop as chosen using a right-hand rule (Fig. 19.31c): 
curl the fingers of your right hand in toward your palm, 
following the current in the loop, and your thumb indi-
cates the direction of the dipole moment.

 ∙ The magnetic field at a distance r from a long straight 
wire has magnitude

 B =
μ0I

2πr
 (19-30)

  The field lines are circles around the wire with the 
direction given by a right-hand rule.

I

B

 ∙ The permeability of vacuum is

 μ0 = 4π × 10−7 
T·m
A

 (19-31)

 ∙ The magnetic field inside a long tightly wound solenoid 
is uniform:

 B =
μ0NI

L
= μ0nI  (19-33)

  Its direction is parallel to the axis of the solenoid, as 
given by the right-hand rule.

 ∙ Ampère’s law relates the circulation of the magnetic 
field around a closed path to the net current I that crosses 
the interior of the path.

 ∑ B|| Δl = μ0I (19-35)

 ∙ The magnetic properties of ferromagnetic materials are 
due to an interaction that keeps the magnetic dipoles 
aligned within regions called domains, even in the 
absence of an external magnetic field.

Master the Concepts continued

Conceptual Questions

 1. The electric field is defined as the electric force per unit 
charge. Explain why the magnetic field cannot be 
defined as the magnetic force per unit charge.

 2. A charged particle moves through a region of space at 
constant velocity. Ignore gravity. In the region, is it pos-
sible that there is (a) a magnetic field but no electric 
field? (b) an electric field but no magnetic field? (c) a 
magnetic field and an electric field? For each possibility, 
what must be true about the direction(s) of the field(s)?

 3. Suppose that a horizontal electron beam is deflected to 
the right by a uniform magnetic field. What is the 
direction of the magnetic field? If there is more than one 

possibility, what can you say about the direction of 
the field?

 4. A circular metal loop carries a current I as shown. The 
points are all in the plane of the page and the loop is 
perpendicular to the page. Sketch the loop, and draw 
vector arrows at the points A, B, C, D, and E to show the 
direction of the magnetic field at those points.

B EA
C

D

I

I

 5. In a CRT (see Section 16.5), a constant electric field ac-
celerates the electrons to high speed; then a magnetic field 
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is used to deflect the electrons to the side. Why can’t a 
constant magnetic field be used to speed up the electrons?

 6. A uniform magnetic field directed upward exists in 
some region of space. In what direction(s) could an 
electron be moving if its trajectory is (a) a straight line? 
(b) a circle? Assume that the electron is subject only to 
magnetic forces.

 7. In a velocity selector, the electric and magnetic forces 
cancel if E

→
+ v→ × B

→
= 0. Show that v→ must be in the 

same direction as E
→

× B
→

. [Hint: Since v→ is perpendicu-
lar to both E

→
 and B

→
 in a velocity selector, there are only 

two possibilities for the direction of v→: the direction of 
E
→

× B
→

 or the direction of −E
→

× B
→

.]
 8. Two ions with the same velocity and mass but different 

charges enter the magnetic field of a mass spectrometer. 
One is singly charged (q = +e) and the other is doubly 
charged (q = +2e). Is the radius of their circular paths 
the same? If not, which is larger? By what factor?

 9. The mayor of a city proposes a new law to require that 
magnetic fields generated by the power lines running 
through the city be zero outside of the electric company’s 
right of way. What would you say at a public discussion 
of the proposed law?

 10. A horizontal wire that runs east-west carries a steady 
current to the east. A C-shaped magnet (see Fig. 19.3a) 
is placed so that the wire runs between the poles, with 
the north pole above the wire and the south pole below. 
What is the direction of the magnetic force on the wire 
between the poles?

 11. The magnetic field due to a 
long straight wire carrying 
steady current is measured at 
two points, P and Q. Where is 
the wire and in what direction does the current flow?

 12. A circular loop of current carries a steady current. 
(a) Sketch the magnetic field lines in a plane perpen-
dicular to the plane of the loop. (b) Which side of the 
loop is the north pole of the magnetic dipole and which 
is the south pole?

 13. Computer speakers that are intended to be placed near a 
CRT computer monitor are magnetically shielded— 
either they don’t use magnets or they are designed so 
that their magnets produce only a small magnetic field 
nearby. Why is the shielding important? What might 
happen if an ordinary speaker (not intended for use near 
a monitor) is placed next to a computer monitor?

 14. One iron nail does not necessarily attract another iron 
nail, although both are attracted by a magnet. Explain.

 15. Two wires at right angles in a plane carry 
equal currents. At what points in the plane 
is the magnetic field zero?

 16. If a magnet is held near the screen of a CRT 
(see Sec. 16.5), the picture is distorted. [Don’t try this—
see part (b).] (a) Why is the picture distorted? (b) With 

P Q

y

x

B
B

I

I

a color CRT, the distortion remains even after the mag-
net is removed. Explain. (A color CRT has a metal mask 
just behind the screen with holes to line up the electrons 
from different guns with the red, green, and blue phos-
phors. Of what kind of metal is the mask made?)

 17. A metal bar is shown at two different times. The arrows 
represent the alignment of the dipoles within each mag-
netic domain. (a) What happened between t1 and t2 to 
cause the change? (b) Is the metal a paramagnet, 
diamagnet, or ferromagnet? Explain.

Time t2 > t1Time t1

 18. Explain why a constant magnetic field does no work on 
a point charge moving through the field. Since the field 
does no work, what can we say about the speed of a 
point charge acted on only by a magnetic field?

 19. Refer to the bubble chamber tracks in Fig. 19.16a. 
Suppose that particle 2 moves in a smaller circle than 
particle 1. Can we conclude that ∣q2∣ > ∣q1∣? Explain.

 20. The trajectory of a charged particle in a uniform mag-
netic field is a helix if v→ has components both parallel to 
and perpendicular to the field. Explain how the two 
other cases (circular motion for v‖ = 0 and straight line 
motion for v⊥ = 0) can each be considered to be special 
cases of helical motion.

 21. Sketch the magnetic field as it would appear inside the 
coil of wire to an observer, looking into the coil from the 
position shown.

Observer’s eye

I

 22. A strip of copper carries current in the +x-direction. 
There is an external magnetic field directed out of the 
page. What is the direction of the Hall electric field?

 23. A bar magnet is held near the electron beam in an oscil-
loscope. The beam passes directly below the south pole of 
the magnet. In what direction will the beam move on the 
screen? (Don’t try this with the CRT in a color TV. There 
is a metal mask just behind the screen that separates the 
pixels for red, green, and blue. If you succeed in magnetiz-
ing the mask, the picture will be permanently distorted.)

S

N

Screen

Electron gun
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 (a) the charges have the same sign and ∣q1∣ > ∣q4∣.
 (b) the charges have opposite signs and ∣q1∣ > ∣q4∣.
 (c) the charges have the same sign and ∣q1∣ < ∣q4∣.
 (d) the charges have opposite signs and ∣q1∣ < ∣q4∣.
 (e) q1 = q4.   (f) q1 = −q4.

 10. The magnetic field lines inside a bar magnet run in what 
direction?

 (a) from north pole to south pole
 (b) from south pole to north pole
 (c) from side to side
 (d)  None of the above—there are no magnetic field lines 

inside a bar magnet.
 11. The magnetic forces that two parallel wires with unequal 

currents flowing in opposite directions exert on each 
other are

 (a) attractive and unequal in magnitude.
 (b) repulsive and unequal in magnitude.
 (c) attractive and equal in magnitude.
 (d) repulsive and equal in magnitude.
 (e) both zero.
 (f) in the same direction and unequal in magnitude.
 (g) in the same direction and equal in magnitude.
 12. What is the direction of the magnetic field at point P in 

the figure? (P is on the axis of the coil.)

Axis
P

I I

 (a) ↑    (b) ↓   (c) ←   (d) →
 (e) × (into page)    (f) • (out of page)

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

19.1 Magnetic Fields
 1.  At which point in the 

diagram is the magnetic 
field magnitude (a) the 
smallest and (b) the larg-
est? Explain.

 2. Draw vector arrows to indicate the direction and relative 
magnitude of the magnetic field at each of the 
points A–F.

Problems	1	and	2

B

C

D
E

F

A

Multiple-Choice	
Questions	6–9

1

2

3

4

I

Multiple-Choice Questions

Multiple-Choice Questions 1–4.  In the figure, four point 
charges move in the directions indicated in the vicinity of a 
bar magnet. The magnet, charge positions, and velocity vec-
tors all lie in the plane of this page. Answer choices:
 (a) ↑  (b) ↓  (c) ←  (d) →
 (e) × (into page) (f) • (out of page) (g) the force is zero

SN
1

2

3

4

Multiple-Choice	Questions	1–4

 1. What is the direction of the magnetic force on charge 1 
if q1 < 0?

 2. What is the direction of the magnetic force on charge 2 
if q2 > 0?

 3. What is the direction of the magnetic force on charge 3 
if q3 < 0?

 4. What is the direction of the magnetic force on charge 4 
if q4 < 0?

 5. The magnetic force on a point charge in a magnetic field 
B
→

 is largest, for a given speed, when it
 (a) moves in the direction of the magnetic field.
 (b)  moves in the direction opposite to the magnetic 

field.
 (c) moves perpendicular to the magnetic field.
 (d)  has velocity components both parallel to and per-

pendicular to the field.

Multiple-Choice Questions 6–9. A wire carries current as 
shown in the figure. Charged particles 1, 2, 3, and 4 move in 
the directions indicated. Answer choices for Questions 6–8:
 (a) ↑ (b) ↓
 (c) ← (d) →
 (e) × (into page)
 (f) ⊙ (out of page)
 (g) the force is zero
 6. What is the direction of the 

magnetic force on charge 1 if 
q1 < 0?

 7. What is the direction of the 
magnetic force on charge 2 if 
q2 > 0?

 8. What is the direction of the magnetic force on charge 3 
if q3 < 0?

 9. If the magnetic forces on charges 1 and 4 are equal and 
their velocities are equal,
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Problems 3–6.  Sketch some magnetic field lines for two 
identical bar magnets in the given configuration. Be sure to 
show field lines inside the magnets as well as outside.

 3. 
N S

N S
      4. 

NS

N S

 5. S N N S  6. N S N S

19.2 Magnetic Force on a Point Charge
 7. Find the magnetic force exerted on an electron moving 

vertically upward at a speed of 2.0 × 107 m/s by a hori-
zontal magnetic field of 0.50 T directed north.

 8. Find the magnetic force exerted on a proton moving east 
at a speed of 6.0 × 106 m/s by a horizontal magnetic 
field of 2.50 T directed north.

 9. A uniform magnetic field points north; its magnitude is 
1.5 T. A proton with kinetic energy 8.0 × 10−13 J is 
moving vertically downward in this field. What is the 
magnetic force acting on it?

 10. A uniform magnetic field points vertically upward; its 
magnitude is 0.800 T. An electron with kinetic energy 
7.2 × 10−18 J is moving horizontally eastward in this 
field. What is the magnetic force acting on it?

Problems 11–14.  Several electrons move at speed 
8.0 × 105 m/s in a uniform magnetic field with magnitude 
B = 0.40 T directed downward.
 11. Rank the electrons in order of the magnitude of the 

magnetic force on them, from greatest to least.
 12. Find the magnetic force on the electron at point a.

a

e

d 20.0°
20.0°

30.0°

b

c

B

Problems	11–14

 13. Find the magnetic force on the electron at point b.
 14. Find the magnetic force on the electron at point c.
 15. A magnet produces a 0.30 T field between its poles, 

directed to the east. A dust particle with charge 
q = −8.0 × 10−18 C is moving straight down at 0.30 cm/s 
in this field. What is the magnitude and direction of the 
magnetic force on the dust particle?

 16. At a certain point on Earth’s surface in the southern 
hemisphere, the magnetic field has a magnitude of 
5.0 × 10−5 T and points upward and toward the north at 
an angle of 55° above the horizontal. A cosmic ray 
muon with the same charge as an electron and a mass of 
1.9 × 10−28 kg is moving directly down toward Earth’s 

surface with a speed of 4.5 × 107 m/s. What is the 
magnitude and direction of the force on the muon?

 17. A cosmic ray muon with the same charge as an electron 
and a mass of 1.9 × 10−28 kg is moving toward the 
ground at an angle of 25° from the vertical with a speed 
of 7.0 × 107 m/s. As it crosses point P, the muon is at a 
horizontal distance of 85.0 cm from a high-voltage 
power line. At that moment, the power line has a current 
of 16.0 A. What is the magnitude and direction of the 
force on the muon at the point P in the diagram?

End on view from left

85.0 cm

Power line
current out
of page

Muon at
point P

Muon path

Power lineI

P

Side view

25°

 18.  In a CRT, electrons moving at 1.8 × 107 m/s pass 
between the poles of an electromagnet where the mag-
netic field is 2.0 mT directed upward. (a) What is the 
radius of their circular path while in the magnetic field? 
(b) The time the electrons spend in the magnetic field is 
0.41 ns. By what angle does the direction of the beam 
change while it passes through the magnetic field? (c) In 
what direction is the beam deflected, as viewed by an 
observer looking at the screen?

Electron beam

Screen

N

S

 19.  A positron (q = +e) moves at 5.0 × 107 m/s in a mag-
netic field of magnitude 0.47 T. The magnetic force on 
the positron has magnitude 2.3 × 10−12 N. (a) What is 
the component of the positron’s velocity perpendicular 
to the magnetic field? (b) What is the component of the 
positron’s velocity parallel to the magnetic field? 
(c) What is the angle between the velocity and the field?

 20.  An electron moves with speed 2.0 × 105 m/s in a 
1.2 T uniform magnetic field. At one instant, the elec-
tron is moving due west and experiences an upward 
magnetic force of 3.2 × 10−14 N. What is the direction of 
the magnetic field? Be specific: give the angle(s) with 
respect to N, S, E, W, up, down. (If there is more than 
one possible answer, find all the possibilities.)

 21.  An electron moves with speed 2.0 × 105 m/s in a 
uniform magnetic field of 1.4 T, pointing south. At one 
instant, the electron experiences an upward magnetic 
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force of 1.6 × 10−14 N. In what direction is the electron 
moving at that instant? Be specific: give the angle(s) 
with respect to N, S, E, W, up, down. (If there is more 
than one possible answer, find all the possibilities.)

19.3 Charged Particle Moving Perpendicularly to 
a Uniform Magnetic Field
 22. When two particles travel through 

a region of uniform magnetic 
field pointing out of the plane of 
the paper, they follow the trajec-
tories shown. What are the signs 
of the charges of each particle?

 23. Six protons move (at speed v) in magnetic fields (mag-
nitude B) along circular paths. Rank them in order of the 
radius of their paths, greatest to smallest.

 (a) v = 6 × 106 m/s, B = 0.3 T
 (b) v = 3 × 106 m/s, B = 0.6 T
 (c) v = 3 × 106 m/s, B = 0.1 T
 (d) v = 1.5 × 106 m/s, B = 0.15 T
 (e) v = 2 × 106 m/s, B = 0.1 T
 (f) v = 1 × 106 m/s, B = 0.3 T
 24. An electron moves at speed 8.0 × 105 m/s in a plane per-

pendicular to a cyclotron’s magnetic field. The magnitude 
of the magnetic force on the electron is 1.0 × 10−13 N. 
What is the magnitude of the magnetic field?

 25.  The magnetic field in a hospital’s cyclotron is 
0.50 T. Find the magnitude of the magnetic force on a 
proton with speed 1.0 × 107 m/s moving in a plane 
perpendicular to the field.

 26.  The magnetic field in a cyclotron used in proton 
beam cancer therapy is 0.360 T. The dees have radius 
82.0 cm. What maximum speed can a proton achieve in 
this cyclotron?

 27.  The magnetic field in a cyclotron used to produce 
radioactive tracers is 0.50 T. What must be the mini-
mum radius of the dees if the maximum proton speed 
desired is 1.0 × 107 m/s?

 28.  A beam of α particles (helium nuclei) is used to 
treat a tumor located 10.0 cm inside a patient. To pene-
trate to the tumor, the α particles must be accelerated to 
a speed of 0.458c, where c is the speed of light. (Ignore 
relativistic effects.) The mass of an α particle is 4.003 u 
and its charge is +2e. The cyclotron used to accelerate 
the beam has radius 1.00 m. What is the magnitude of 
the magnetic field?

 29. A singly charged ion of unknown mass moves in a circle 
of radius 12.5 cm in a magnetic field of 1.2 T. The ion was 
accelerated through a potential difference of 7.0 kV before 
it entered the magnetic field. What is the mass of the ion?

Problems 30–34. In each of these problems, the ions entering 
the mass spectrometer have the same charges. Except in 
Problem 30, the ions enter the magnetic field with equal kinetic 

1

2

B

energies (not equal speeds). Use these atomic mass values: 12C, 
12.00 u; 14C, 14.00 u; 16O, 15.99 u. The conversion between 
atomic mass units and kilograms is 1 u = 1.66 × 10−27 kg.
 30.  In one type of mass spectrometer, ions having the 

same velocity move through a uniform magnetic field. 
The spectrometer is being used to distinguish 12C+ and 
14C+ ions. The 12C+ ions move in a circle of diameter  
25 cm. (a) What is the diameter of the orbit of 14C+ ions? 
(b) What is the ratio of the frequencies of revolution for 
the two types of ions?

 31.  Naturally occurring carbon consists of two different 
isotopes (excluding 14C, which is present in only trace 
amounts). The most abundant isotope is 12C. When car-
bon is placed in a mass spectrometer, 12C+ ions moved 
in a circle of radius 15.0 cm, whereas ions of the other 
isotope moved in a circle of radius 15.6 cm. What is the 
atomic mass of the rarer isotope?

 32.  After being accelerated through a potential differ-
ence of 5.0 kV, a singly charged 12C+ ion moves in a 
circle of radius 21 cm in the magnetic field of a mass 
spectrometer. What is the magnitude of the field?

 33.   A sample containing 12C, 16O, and an unknown 
isotope is analyzed in a mass spectrometer. As in 
Fig. 19.17(a), the ions move around a semicircle before 
striking a photographic plate. The 12C+ and 16O+ ions 
are separated by 2.250 cm on the plate, and the unknown 
isotope strikes the plate 1.160 cm from the 12C+ ions. 
What is the mass of the unknown element?

 34.   A sample containing sulfur (atomic mass 32 u), 
manganese (55 u), and an unknown element is analyzed 
in a mass spectrometer. As in Fig. 19.17(a), the ions 
move around half a circle before striking a photographic 
plate. The sulfur and manganese ions are separated by 
3.20 cm on the plate, and the unknown element strikes 
the plate 1.07 cm from the sulfur line. (a) What is the 
mass of the unknown element? (b) Identify the element.

 35.  Show that the time for one revolution of a charged 
particle moving perpendicular to a uniform magnetic 
field is independent of its speed. (This is the principle 
on which the cyclotron operates.) In doing so, write an 
expression that gives the period T (the time for one revo-
lution) in terms of the mass of the particle, the charge of 
the particle, and the magnetic field magnitude.

19.5 A Charged Particle in Crossed E
→

 and B
→

 
Fields
 36. Crossed electric and magnetic fields are established 

over a certain region. The magnetic field is 0.635 T ver-
tically downward. The electric field is 2.68 × 106 V/m 
horizontally east. An electron, traveling horizontally 
northward, experiences zero net force from these fields 
and so continues moving in a straight line. What is the 
electron’s speed?
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 37.  A current I = 40.0 A flows through a strip of metal. 
An electromagnet is switched on so that there is a 
uniform magnetic field of magnitude 0.30 T directed 
into the page. How would you hook up a voltmeter to 
measure the Hall voltage? Show how the voltmeter is 
connected on a sketch of the strip. Assuming the carri-
ers are electrons, which lead of your voltmeter is at the 
higher potential? Mark it with a “+” sign in your sketch. 
Explain briefly.

Metal strip

I I

B

Problems	37–41

 38. In Problem 37, if the width of the strip is 3.5 cm, the 
magnetic field is 0.43 T, and the Hall voltage is measured 
to be 7.2 μV, what is the drift velocity of the carriers in 
the strip?

 39. In Problem 37, the width of the strip is 3.5 cm, the 
magnetic field is 0.43 T, the Hall voltage is measured to 
be 7.2 μV, the thickness of the strip is 0.24 mm, and the 
current in the wire is 54 A. What is the density of carri-
ers (number of carriers per unit volume) in the strip?

 40.  The strip in the diagram is used as a Hall probe to 
measure magnetic fields. (a) What happens if the strip is 
not perpendicular to the field? Does the Hall probe still 
read the correct field magnitude? Explain. (b) What 
happens if the field is in the plane of the strip?

 41. A strip of copper 2.0 cm wide carries a current I = 30.0 A 
to the right. The strip is in a magnetic field B = 5.0 T into 
the page. (a) What is the direction of the average magnetic 
force on the conduction electrons? (b) The Hall voltage is 
20.0 μV. What is the drift velocity?

 42. A proton is initially at rest and moves through three dif-
ferent regions as shown in the figure. In region 1, the 
proton accelerates across a potential difference of 
3330 V. In region 2, there is a magnetic field of 1.20 T 
pointing out of the page and an electric field (not shown) 
pointing perpendicular to the magnetic field and per-
pendicular to the proton’s velocity. Finally, in region 3, 
there is no electric field, but just a 1.20 T magnetic field 
pointing out of the page. (a) What is the speed of the 
proton as it leaves region 1 and enters region 2? (b) If 
the proton travels in a straight line through region 2, 
what is the magnitude and direction of the electric field? 
(c) In region 3, does the proton follow path 1 or 2? 
(d) What is the radius of the circular path in region 3?

Region 2Region 1

3330 V

1

2
Proton

Region 3

B

N

S

EW

 43.  An electromagnetic flowmeter is used to measure 
blood flow rates during surgery. Blood containing ions 
(primarily Na+) flows through an artery with a diameter 
of 0.50 cm. The artery is in a magnetic field of 0.35 T 
and develops a Hall voltage of 0.60 mV across its diam-
eter. (a) What is the blood speed (in m/s)? (b) What is 
the flow rate (in m3/s)? (c) If the magnetic field points 
west and the blood flow is north, is the top or bottom of 
the artery at the higher potential?

 44.  A charged particle is accelerated from rest through a 
potential difference ΔV. The particle then passes straight 
through a velocity selector (field magnitudes E and B). 
Derive an expression for the charge-to-mass ratio (q/m) 
of the particle in terms of ΔV, E, and B.

19.6 Magnetic Force on a Current-Carrying Wire
 45.  A straight wire segment of length 0.60 m carries a 

current of 18.0 A and is immersed in a uniform external 
magnetic field of magnitude 0.20 T. (a) What is the 
magnitude of the maximum possible magnetic force on 
the wire segment? (b) Explain why the given informa-
tion enables you to calculate only the maximum possible 
force.

 46.  A straight wire segment of length 25 cm carries a 
current of 33.0 A and is immersed in a uniform external 
magnetic field. The magnetic force on the wire segment 
has magnitude 4.12 N. (a) What is the minimum possi-
ble magnitude of the magnetic field? (b) Explain why 
the given information enables you to calculate only the 
minimum possible field magnitude.

 47. Parallel conducting tracks, separated by 2.0 cm, run 
north and south. There is a uniform magnetic field of 
1.2 T pointing upward (out of the page). A 0.040 kg 
cylindrical metal rod is 
placed across the tracks 
and a battery is con-
nected between the 
tracks, with its positive 
terminal connected to 
the east track. If the 
current through the rod 
is 3.0 A, find the mag-
nitude and direction of the magnetic force on the rod.

 48. An electromagnetic rail gun can fire a projectile using 
a magnetic field and an electric current. Consider two 
conducting rails that are 0.500 m apart with a 50.0 g 
conducting rod connecting the two rails as in the figure 
with Problem 47. A magnetic field of magnitude 
0.750 T is directed perpendicular to the plane of the 
rails and rod. A current of 2.00 A passes through the 
rod. (a) What direction is the force on the rod? (b) If 
there is no friction between the rails and the rod, how 
fast is the rod moving after it has traveled 8.00 m down 
the rails?

Problems	47	and	48

Cylindrical
metal rod

+

B

N

S

EW
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 49. A straight, stiff wire 
of length 1.00 m and 
mass 25 g is sus-
pended in a magnetic 
field B = 0.75 T. The 
wire is connected to 
an emf. How much 
current must flow in the wire and in what direction so 
that the wire is suspended and the tension in the sup-
porting wires is zero?

 50. A 20.0 cm × 30.0 cm 
rectangular loop of wire 
carries 1.0 A of current 
clockwise around the 
loop. (a) Find the mag-
netic force on each side 
of the loop if the magnetic field is 2.5 T out of the page. 
(b) What is the net magnetic force on the loop?

 51. Repeat Problem 50 if the magnetic field is 2.5 T to the 
left (in the −x-direction).

 52.  Repeat Problem 50 if the magnetic field is 2.5 T in 
the plane of the loop, 60.0° below the +x-axis.

 53.  A straight wire is aligned east-west in a region where 
Earth’s magnetic field has magnitude 0.048 mT and 
direction 72° below the horizontal, with the horizontal 
component directed due north. The wire carries a cur-
rent I toward the west. The magnetic force on the wire 
per unit length of wire has magnitude 0.020 N/m. 
(a) What is the direction of the magnetic force on the 
wire? (b) What is the current I?

 54.  A straight wire is aligned north-south in a region 
where Earth’s magnetic field B

→
 is directed 58.0° above 

the horizontal, with the horizontal component directed 
due north. The wire carries a current of 8.00 A toward 
the south. The magnetic force on the wire per unit length 
of wire has magnitude 2.80 × 10−3 N/m. (a) What is the 
direction of the magnetic force on the wire? (b) What is 
the magnitude of B

→
?

19.7 Torque on a Current Loop
 55. In each of six electric motors, a cylindrical coil with N 

turns and radius r is immersed in a magnetic field of 
magnitude B. The current in the coil is I. Rank the 
motors in order of the maximum torque on the coil, 
greatest to smallest.

 (a) N = 100, r = 2 cm, B = 0.4 T, I = 0.5 A
 (b) N = 100, r = 4 cm, B = 0.2 T, I = 0.5 A
 (c) N = 75, r = 2 cm, B = 0.4 T, I = 0.5 A
 (d) N = 50, r = 2 cm, B = 0.8 T, I = 0.5 A
 (e) N = 100, r = 3 cm, B = 0.4 T, I = 0.5 A
 (f) N = 50, r = 2 cm, B = 0.8 T, I = 1 A
 56. In an electric motor, a circular coil with 100 turns of 

radius 2.0 cm can rotate between the poles of a magnet. 
When the current through the coil is 75 mA, the maximum 

Problems	50–52

y

x30.0 cm

20.0 cm

I = 1.0 A

torque that the motor can deliver is 0.0020 N⋅m. (a) What 
is the magnitude of the magnetic field? (b) Is the torque 
on the coil clockwise or counterclockwise as viewed from 
the front at the instant shown in the figure?

NNN

SSS

2.0 cm

I

I

I

 57. In an electric motor, a coil with 100 turns of radius 
2.0 cm can rotate between the poles of a magnet. The 
magnetic field magnitude is 0.20 T. When the current 
through the coil is 50.0 mA, what is the maximum 
torque that the motor can deliver?

 58. A square loop of wire of side 3.0 cm carries 3.0 A of 
current. A uniform magnetic field of magnitude 0.67 T 
makes an angle of 37° with the plane of the loop.

 (a) What is the magnitude of the torque on the loop?
 (b) What is the net magnetic force on the loop?
 59. The intrinsic magnetic dipole moment of the electron 

has magnitude 9.3 × 10−24 A⋅m2. What is the maximum 
torque on an electron due to its intrinsic dipole moment 
in a 1.0 T magnetic field?

 60.  In a simple model, the electron in a hydrogen atom 
orbits the proton at a radius of 53 pm and at a constant 
speed of 2.2 × 106 m/s. The orbital motion of the 
electron gives it an orbital magnetic dipole moment. 
(a) What is the current I in this current loop? [Hint: How 
long does it take the electron to make one revolution?] 
(b) What is the orbital dipole moment IA? (c) Compare 
the orbital dipole moment with the intrinsic magnetic 
dipole moment of the electron (9.3 × 10−24 A·m2).

 61.  A certain fixed length L of wire carries a current I. 
(a) Show that if the wire is formed into a square coil, 
then the maximum torque in a given magnetic field B is 
developed when the coil has just one turn. (b) Show that 
the magnitude of this torque is τ = 1

16L
2IB.

 62.   Use the following method to show that the torque 
on an irregularly shaped planar loop due to a perpen-
dicular magnetic field is τ = NIAB. The irregular loop 
of current in part (a) of the figure carries current I. 
There is a perpendicular magnetic field B. To find the 
torque on the irregular loop, sum up the torques on each 
of the smaller loops shown in part (b) of the figure. The 
pairs of imaginary currents flowing across carry equal 
currents in opposite directions, so the magnetic forces 
on them would be equal and opposite; they would there-
fore contribute nothing to the net torque. Now general-
ize this argument to a loop of any shape. [Hint: Think of 

1.00 m

T = 0 T = 0

B
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a curved loop as a series of tiny, straight, perpendicular 
segments.]

(a)
4a

4a

Ia

a

a
2a

2a

3a

3a

3a

(b)
4a

4a

5a

7a a

a

a

2a

19.8 Magnetic Field due to an Electric Current
 63.  Estimate the magnetic field at distances of 1 μm and 

1 mm produced by a current of 3 μA along the medial 
nerve of the human arm. Model the nerve as a straight 
current-carrying wire. Compare with the magnitude of 
Earth’s magnetic field near the surface, about 0.05 mT.

 64. Imagine a long straight wire perpendicular to the page 
and carrying a current I into the page. Sketch some B

→
 

field lines with arrowheads to indicate directions.
 65. Kieran measures the magnetic field of an electron beam. 

The beam strength is such that 1.40 × 1011 electrons pass 
a point every 1.30 μs. What magnetic field does Kieran 
measure at a distance of 2.00 cm from the beam center?

 66.  Some animals are capable of detecting magnetic 
fields and use this sense to help them navigate. Suppose 
a high-voltage direct-current power line carries a cur-
rent of 5.0 kA. (a) How far from the wire would a hom-
ing pigeon have to be so the field due to the wire has 
magnitude 45 μT, which is comparable to Earth’s mag-
netic field at the surface? (b) On a long-distance flight, 
the pigeon is flying at an altitude of 700 m. What would 
the magnetic field be at that distance from the power 
line? If the homing pigeon navigates by sensing the 
magnetic field, might the power line disrupt its ability to 
navigate on a long-distance flight?

 67. Two wires each carry 10.0 A of current (in opposite 
directions) and are 3.0 mm apart. Calculate the magnetic 
field 25 cm away at point P, in the plane of the wires.

25 cm

3.0 mm

P

Problems	67–69

 68. In Problem 67, what is the magnetic field at a point 
midway between the wires in the plane of the wires?

 69. What is the magnetic field at point P if the currents 
instead both run to the left in Problem 67?

 70. Point P is midway between two long, straight, parallel 
wires that run north-south in a horizontal plane. The 
distance between the wires is 1.0 cm. Each wire carries 
a current of 1.0 A toward the north. Find the magnitude 
and direction of the magnetic field at point P.

 71. Repeat Problem 70 if the current in the wire on the east 
side runs toward the south instead.

 72. A long straight 
wire carries a cur-
rent of 50.0 A. An 
electron, traveling 
at 1.0 × 107 m/s, is 
5.0 cm from the 
wire. What force (magnitude and direction) acts on the 
electron if the electron’s velocity is directed toward the 
wire?

 73. A long straight wire carries a current of 3.2 A in the 
positive x-direction. An electron, traveling at 6.8 × 106 m/s 
in the positive x-
direction, is 4.6 cm 
from the wire.
What force acts 
on the electron?

 74.  Two long straight wires carry the same amount of 
current in the directions in-
dicated. The wires cross 
each other in the plane of 
the paper. Rank points A, 
B, C, and D in order of de-
creasing field magnitude.

 75. In Problem 74, find the 
magnetic field at points C 
and D when d = 3.3 cm and 
I = 6.50 A.

 76. In Problem 74, find the magnetic field at points A and B 
when d = 6.75 cm and I = 57.0 mA.

 77. A solenoid of length 0.256 m and radius 2.0 cm has 
244 turns of wire. What is the magnitude of the magnetic 
field well inside the solenoid when there is a current of 
4.5 A in the wire?

 78. Two long straight parallel wires separated by 8.0 cm 
carry currents of equal magnitude but heading in oppo-
site directions. The wires are shown perpendicular to 
the plane of this page. Point P is 2.0 cm from wire 1, 
and the magnetic field at point P is 1.0 × 10−2 T directed 
in the −y-direction. Calculate the current in wire 1 and 
its direction.

2.0 cm
8.0 cm

Wire 1 Wire 2P

+y

+x

–y

–x

Problems	72–73	and	102

Electron

Wire with current I y

x

v

Electron

Wire with current I y

xv

Problems	74–76

A C

B D

dd

dd

d

d
I

I
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 79.  Two parallel wires in a horizontal plane carry cur-
rents I1 and I2 to the right. The wires each have length L 
and are separated by a distance d. Find the magnitudes 
and directions of the (a) the magnetic field due to wire 1 
at the location of wire 2, (b) the magnetic force on wire 
2, (c) the magnetic field due to wire 2 at the location of 
wire 1, and (d) the magnetic force on wire 1. (e) Do 
parallel currents in the same direction attract or repel? 
What about parallel currents in opposite directions? 
(f)  Are the magnitudes and directions of the forces 
consistent with Newton’s third law?

 80. Two concentric circular wire loops in the same plane 
each carry a current. The larger loop has a current of 
8.46 A circulating clockwise and has a radius of 6.20 cm. 
The smaller loop has a radius of 4.42 cm. What is the 
current in the smaller loop if the total magnetic field at 
the center of the system is zero? [See Eq. (19-32).]

 81.  You are designing the main solenoid for an MRI 
machine. The solenoid should be 1.5 m long. When the 
current is 80 A, the magnetic field inside should be 
1.5 T. How many turns should your solenoid have?

 82. A solenoid has 4850 turns per meter and radius 3.3 cm. 
The magnetic field inside has magnitude 0.24 T. What 
is the current in the solenoid?

Problems 83–85. Four long parallel wires pass through the 
corners of a square with 
side 0.10 m. All four wires 
carry the same magnitude 
of current I = 10.0 A in 
the directions indicated.
 83.  Find the magnetic 

field at the center of 
the square.

 84.  Find the magnetic 
field at point P, the midpoint of the top side of the 
square.

 85.  Find the magnetic field at point R, the midpoint of 
the left side of the square.

 86. Four long straight wires, each 
with current I, overlap to form 
a square with side 2r. (a) Find 
the magnetic field at the center 
of the square. (b) Compare 
your answer with the magnetic 
field at the center of a circular 
loop of radius r carrying cur-
rent I [see Eq. (19-32)].

 87.   Two parallel long straight wires are suspended by 
strings of length L = 1.2 m. Each wire has mass per unit 
length 0.050 kg/m. When one wire carries 25.0 A of 
current and the other carries 100.0 A, the wires swing 
apart. (a) How far apart are the wires in equilibrium? 
Assume that this distance is small compared with L. 

[Hint: Use a small angle 
approximation from 
Appendix A.9.] (b) Are 
the wires carrying cur-
rent in the same or op-
posite directions? (c) 
Are the forces on the 
wires consistent with Newton’s third law?

19.9 Ampère’s Law
 88.  An infinitely long, thick cylindrical shell of inner 

radius a and outer radius b carries a current I uniformly 
distributed across a cross section of the shell. (a) On a 
sketch of a cross section of the shell, draw some mag-
netic field lines. The current flows out of the page. 
Consider all regions (r ≤ a, a ≤ r ≤ b, b ≤ r). (b) Sketch 
a graph of the magnetic field magnitude as a function 
of r. (c) Find the magnetic field for r > b.

(a)

a
b

I

(b)

a

b

 89. A number of wires carry currents into or out of the page 
as indicated in the figure. (a) Using loop 1 for Ampère’s 
law, what is the net current through the interior of the 
loop? (b) Repeat for loop 2.

2I

3I

6I

16I

14I

18I

Loop 2
Loop 1

 90.  In this problem, use 
Ampère’s law to show 
that the magnetic field 
inside a long solenoid is 
B = μ0nI. Assume that 
the field inside the sole-
noid is uniform and parallel to the axis and that the field 
outside is zero. Choose a rectangular path for Ampère’s 
law. (a) Write down B‖ Δl for each of the four sides of 
the path, in terms of B, a (the short side), and b (the long 
side). (b) Sum these to form the circulation. (c) Now, to 
find the current cutting through the path: each loop car-
ries the same current I, and some number N of loops cut 
through the path, so the total current is NI. Rewrite N in 
terms of the number of turns per unit length (n) and the 
physical dimensions of the path. (d) Solve for B.

I

II

I

r

I I

I I

P

R

Problems	83–85

Rectangular
path

a

b

L
L

L
L
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 91.    A toroid is like a solenoid that has been bent 
around in a circle until its ends meet. The field lines are 
circular, as shown in the figure. What is the magnitude 
of the magnetic field inside a toroid of N turns carrying 
current I? Apply Ampère’s law, following a field line at 
a distance r from the center of the toroid. Work in terms 
of the total number of turns N, rather than the number of 
turns per unit length (why?). Is the field uniform, as it is 
for a long solenoid? Explain.

I

R2 R1

I

19.10 Magnetic Materials
 92. An electromagnet is made by inserting a soft iron core into 

a solenoid. The solenoid has 1800 turns, radius 2.0 cm, 
and length 15 cm. When 2.0 A of current flows through 
the solenoid, the magnetic field inside the iron core has 
magnitude 0.42 T. What is the relative permeability κB of 
the iron core? (See Section 19.10 for the definition of κB.)

Collaborative Problems

 93.  You want to build a cyclotron to accelerate protons 
to a speed of 3.0 × 107 m/s for use in proton beam ther-
apy. The largest magnetic field you can attain is 1.5 T. 
What must be the minimum radius of the dees in your 
cyclotron? Show how your answer comes from Newton’s 
second law.

 94.   In a carbon-dating experiment, a particular type 
of mass spectrometer is used to separate 14C from 12C. 
Carbon ions from a sample are first accelerated through 
a potential difference ΔV1 between the charged acceler-
ating plates. Then the ions enter a region of uniform 
vertical magnetic field B = 0.200 T. The ions pass be-
tween deflection plates spaced 1.00 cm apart. By adjust-
ing the potential difference ΔV2 between these plates, 
only one of the two isotopes (12C or 14C) is allowed to 
pass through to the next stage of the mass spectrometer. 
The distance from the entrance to the ion detector is a 
fixed 0.200 m. By suitably adjusting ΔV1 and ΔV2, the 
detector counts only one type of ion, so the relative 

abundances can be determined. (a) Are the ions posi-
tively or negatively charged? (b) Which of the accelerat-
ing plates (east or west) is positively charged? (c) Which 
of the deflection plates (north or south) is positively 
charged? (d) Find the correct values of ΔV1 and ΔV2 in 
order to count 12C+ ions (mass 1.993 × 10−26 kg). 
(e) Find the correct values of ΔV1 and ΔV2 in order to 
count 14C+ ions (mass 2.325 × 10−26 kg).

Ions

Accelerating plates

Deflecting plates

Detector

0.20 m

B

N

S

EW

 95.  A proton moves in a helical path at speed 
v  =  4.0  ×  107  m/s high above the atmosphere, where 
Earth’s magnetic field has magnitude B = 1.0 × 10−6 T. 
The proton’s velocity makes an angle of 25° with the 
magnetic field. (a) Find the radius of the helix. [Hint: 
Use the perpendicular component of the velocity.] 
(b)  Find the pitch of the helix—the distance between 
adjacent “coils.” [Hint: Find the time for one revolution; 
then find how far the proton moves along a field line 
during that time interval.]

 96.  An electromagnetic flowmeter is used to measure 
blood flow rates during surgery. Blood containing Na+ 
ions flows due south through an artery with a diameter 
of 0.40 cm. The artery is in a downward magnetic field 
of 0.25 T and develops a Hall voltage of 0.35 mV across 
its diameter. (a) What is the blood speed (in m/s)? 
(b) What is the flow rate (in m3/s)? (c) The leads of a 
voltmeter are attached to diametrically opposed points 
on the artery to measure the Hall voltage. Which of the 
two leads is at the higher potential?

 97.  The figure shows hysteresis curves for three different 
materials. A hysteresis curve is a plot of the magnetic field 
magnitude inside the material (B) as a function of the 
externally applied field (B0). (a) Which material would 
make the best permanent magnet? Explain. (b) Which 
would make the best core for an electromagnet? Explain.

(I)

B0

B

(II)

B0

B

(III)

B0

B
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Comprehensive Problems

Problems 98–100. A sodium ion (Na+) moves along with the 
blood in an artery of diameter 1.0 cm. The ion has mass 
22.99 u and charge +e. The maximum blood speed in the 
artery is 4.25 m/s. Earth’s magnetic field in the location of 
the patient has magnitude 30 μT.
  98.  What is the greatest possible magnetic force on the 

sodium ion due to Earth’s field?
  99.  If the magnetic force due to Earth’s field were the 

only force on the ion, what would the smallest possible 
radius of its trajectory be?

 100.  Magnetic forces cause an excess of positive ions to 
flow along one side of the artery and negative ions on 
the opposite side. What is the greatest possible poten-
tial difference across the artery?

 101.  A compass is placed 
directly on top of a wire 
(needle not shown). The 
current in the wire flows to 
the right. Which way does the north end of the needle 
point? Explain. (Ignore Earth’s magnetic field.)

 102. A long straight wire carries a 4.70 A current in the 
positive x-direction. At a particular instant, an 
 electron moving at 1.00 × 107 m/s in the positive  
y-direction is 0.120 m from the wire. Determine the 
magnetic force on the electron at this instant. See 
the figure with Problem 72.

 103. A uniform magnetic field of 0.50 T is directed to the 
north. At some instant, a particle with charge 
+0.020 μC is moving with velocity 2.0 m/s in a direc-
tion 30° north of east. (a) What is the magnitude of the 
magnetic force on the charged particle? (b) What is the 
direction of the magnetic force?

 104. (a) A proton moves with uniform circular motion in a 
magnetic field of magnitude 0.80 T. At what frequency 
f does it circulate? (b) Repeat for an electron.

 105.  An electromagnetic flowmeter is to be used to 
measure blood speed. A magnetic field of 0.115 T is 
applied across an artery of inner diameter 3.80 mm. 
The Hall voltage is measured to be 88.0 μV. What is 
the average speed of the blood flowing in the artery?

 106. Two conducting wires perpendicular 
to the page are shown in cross section 
as gray dots in the figure. They each 
carry 10.0 A out of the page. What is 
the magnetic field at point P?

 107. A tangent galvanometer is an instrument, 
developed in the nineteenth century, 
designed to measure current based on the deflection of a 
compass needle. A coil of wire in a vertical plane is aligned 
in the magnetic north-south direction. As illustrated, a 
compass is placed in a horizontal plane at the center of the 
coil. When no current flows, the compass needle points 

N

S
EW

I

I

directly toward the north side of the coil. When a current 
is sent through the coil, the compass needle rotates through 
an angle θ. Derive an equation for θ in terms of the number 
of coil turns N, the coil radius r, the coil current I, and the 
horizontal component of Earth’s field BH. [Hint: The name 
of the instrument is a clue to the result.]

©Richard Paselk

 108. A rectangular loop of wire, carrying current 
I1 = 2.0 mA, is next to a very long wire carrying a cur-
rent I2 = 8.0 A. (a) What is the direction of the mag-
netic force on each of the four sides of the rectangle 
due to the long wire’s magnetic field? (b) Calculate the 
net magnetic force on the rectangular loop due to 
the  long wire’s magnetic field. [Hint: The long wire 
does not produce a uniform magnetic field.] (c) What 
is the magnetic force on the long wire due to the loop?

2.0 mA

8.0 A

5.0 cm

9.0 cm

2.0 cm

 109. Two long, straight wires, 
each with a current of 
5.0 A, are placed on two 
corners of an equilateral 
triangle with sides of 
length 3.2 cm as shown. One of the wires has a current 
into the page and one has a current out of the page. 
(a) What is the magnetic field at the third corner of the 
triangle? (b) A proton has a velocity of 1.8 × 107 m/s out 
of the page when it crosses the plane of the page at the 
third corner of the triangle. What is the magnetic force 
on the proton at that point due to the two wires?

 110. A solenoid with 8500 turns per meter has radius 65 cm. 
The current in the solenoid is 25.0 A. A circular loop 
of wire with 100 turns and radius 8.00 cm is put inside 
the solenoid. The current in the circular loop is 2.20 A. 
What is the maximum possible magnetic torque on the 
loop? What orientation does the loop have if the 
magnetic torque has its maximum value?

Wire

Wire

10.0 m

10.0 m
10.0 m

P

y

x

3.2 cm 3.2 cm

3.2 cm
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 111.  Two long, straight wires, each with a current of 
12.0 A, are placed on two corners of an equilateral tri-
angle with sides of length 2.50 cm as shown. Both of the 
wires have a current into the page. (a) What is the mag-
netic field at the third corner of the triangle? (b) Another 
wire is placed at the third corner, parallel to the other 
two wires. In which direction should current flow in the 
third wire so that the force on it is in the +y-direction? 

y

x

2.50 cm 2.50 cm

2.50 cm
Problems	111	and	116

 112. A current balance is a device to measure magnetic 
forces. It is constructed from two parallel coils, each 
with an average radius of 12.5 cm. The lower coil rests 
on a balance; it has 20 turns and carries a constant cur-
rent of 4.0 A. The upper coil, suspended 0.314 cm 
above the lower coil, has 50 turns and a current that can 
be varied. The reading of the balance changes as the 
magnetic force on the lower coil changes. What current 
is needed in the upper coil to exert a force of 1.0 N on 
the bottom coil? [Hint: Since the distance between the 
coils is small relative to the radius of the coils, approxi-
mate the setup as two long parallel straight wires.]

Wire wrapped
around disk
circumference

Ammeter

50 turns
20 turns

Variable dc
power supply

dc power
supply

Triple beam balance
to weigh lower coilStand with clamp

to support upper coil

Plate on which 
lower coil rests

0.314 cm

 113.  In a certain region of space, there is a uniform elec-
tric field E

→
= 3.0 × 104 V/m directed due east and a 

uniform magnetic field B
→

= 0.080 T also directed due 
east. What is the electromagnetic force on an electron 
moving due south at 5.0 × 106 m/s?

 114. An early cyclotron at Cornell University was used 
from the 1930s to the 1950s to accelerate protons, 
which would then bombard various nuclei. The cyclo-
tron used a large electromagnet with an iron yoke to 
produce a uniform magnetic field of 1.3 T over a  region 
in the shape of a flat cylinder. Two hollow copper dees 

of inside radius 16 cm were located in a vacuum cham-
ber in this region. (a) What is the frequency of oscilla-
tion necessary for the alternating voltage difference 
between the dees? (b) What is the kinetic energy of a 
proton by the time it reaches the outside of the dees? 
(c) What would be the equivalent voltage necessary to 
accelerate protons to this energy from rest in one step 
(say between parallel plates)? (d) If the potential dif-
ference between the dees has a magnitude of 10.0 kV 
each time the protons cross the gap, what is the mini-
mum number of revolutions each proton has to make in 
the cyclotron?

 115.  Two long insulated wires lie in the same horizontal 
plane. A current of 20.0 A flows toward the north in 
wire A and a current of 10.0 A flows toward the east in 
wire B. What are the magnitude and direction of the 
magnetic field at a point that is 5.00 cm above the 
point where the wires cross?

Wire A

20.0 A
Wire B

10.0 A

5.00 cm

EW
N

S

 116. In Problem 111, the wire that goes through the 
top corner of the triangle has a linear mass density 
of 0.150 g/m.  What current in this wire would make 
it “hover” above the other two? [Hint: The sum of 
the  magnetic and gravitational forces on the wire 
is zero.]

 117.   In a certain region of space, there is a uniform 
electric field E

→
= 2.0 × 104 V/m to the east and a uni-

form magnetic field B
→

= 0.0050 T to the west. 
(a) What is the electromagnetic force on an electron 
moving north at 1.0 × 107 m/s? (b) With the electric 
and magnetic fields as specified, is there some veloc-
ity such that the net electromagnetic force on the 
electron would be zero? If so, give the magnitude 
and direction of that velocity. If not, explain briefly 
why not.

 118.  Electrons in an old television’s CRT (see Sec. 16.5) 
are accelerated from rest by an electric field through a 
potential difference of 2.5 kV. In contrast to an oscillo-
scope, where the electron beam is deflected by an elec-
tric field, the beam is deflected by a magnetic field. 
(a) What is the speed of the electrons? (b) The beam is 
deflected by a perpendicular magnetic field of magni-
tude 0.80 T. What is the magnitude of the acceleration 
of the electrons while in the field? (c) What is the speed 
of the electrons after they travel 4.0 mm through the 
magnetic field? (d) What magnitude electric field would 
give the electrons the same magnitude acceleration as 
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in (b)? (e) Why do we have to use an electric field in the 
first place to get the electrons up to speed? Why not use 
a magnetic field for that purpose?

Review and Synthesis

 119.  A square loop of wire with 
side 0.60 m carries a current of 
9.0 A as shown in the side-view 
diagram. When there is no ap-
plied magnetic field, the plane 
of the loop is horizontal and the 
nonconducting, nonmagnetic 
spring (k = 550 N/m) is unstretched. A horizontal 
magnetic field of magnitude 1.3 T is now applied. At 
what angle θ is the wire loop’s new equilibrium posi-
tion? Assume the spring remains vertical because θ is 
small. [Hint: Set the sum of the torques from the spring 
and the magnetic field equal to 0.]

 120. Two identical long straight conducting wires with a 
mass per unit length of 25.0 g/m are resting parallel to 
each other on a table. The wires are separated by 
2.5  mm and are carrying currents in opposite direc-
tions. (a) If the coefficient of static friction between 
the wires and the table is 0.035, what minimum current 
is necessary to make the wires start to move? (b) Do 
the wires move closer together or farther apart?

 121. The number density of free electrons in silver is 
5.85 × 1028 m−3. A strip of silver of thickness 0.050 mm 
and width 20.0 mm is placed in a magnetic field of 
0.80  T. A current of 10.0 A is sent down the strip. 
(a) What is the drift velocity of the electrons? (b) What 
is the Hall voltage measured by the meter? (c) Which 
side of the voltmeter is at the higher potential?

I = 10.0 A
B

Strip of silver

V

I

 122.  An electromagnetic rail gun can fire a projectile using 
a magnetic field and an electric current. Consider two 
horizontal conducting rails that are 0.500 m apart with a 
50.0  g conducting projectile that slides along the two 
rails. A magnetic field of 0.750 T is directed upward. 
A  constant current of 
2.00 A passes through 
the projectile. (a) What 
direction is the force on 
the projectile? (b) If the 
coefficient of kinetic 

9.0 A

Axis of
rotation

θ

B

¥

friction between the rails and the projectile is 0.350, how 
fast is the projectile moving after it has moved 8.00 m 
along the rails?

 123.  An engineer wants to design a toy racetrack using an 
electromagnetic rail gun (see Problem 122) to accelerate 
a car of mass 40 g starting from rest. The horizontal rails 
are to be 1.0 m long and 2.0 cm apart. The magnetic field 
in the rail gun is to be 0.10 T upward. Leaving the rail 
gun, the car slides onto a horizontal track and then around 
a vertical loop-the-loop of radius 15 cm. Ignore friction 
everywhere. What minimum current must flow in the 
rails to give the car enough kinetic energy to make it 
around the loop without losing contact with the track? Is 
the required current reasonable? 

Problems 124–128. A mass spectrometer (see the figure) is 
designed to measure the mass m of the 238U+ ion. A source of 
238U+ ions (not shown) sends ions into the device with negli-
gibly small initial kinetic energies. The ions pass between 
parallel accelerating plates and then through a velocity 
selector designed to allow only ions moving at speed v to 
pass straight through. The ions that emerge from the velocity 
selector move in a semicircle of diameter D in a uniform 
magnetic field of magnitude B, which is the same as the 
magnetic field in the velocity selector. (Express your answers 
in terms of quantities given in the problems and universal 
constants as necessary.)
 124. The accelerating plates have area A and are a distance d 

apart. (a) What should the charges on the plates be so the 
ions emerge at speed v, ignoring their initial kinetic ener-
gies? Indicate which plate is positive and which negative. 
(b) Sketch the electric field lines between the plates.

Ions

Accelerating plates

Plate area A d

D

Velocity selector

Detector

W
S

E
N

B

Problems	124–128

 125. The uniform magnetic field in the velocity selector is 
 directed out of the page and has magnitude B. (a) What 
should the magnitude and direction of the electric field in 
the selector be to allow ions with speed v to pass straight 
through? (b) Sketch the trajectory inside the velocity 
 selector for ions that enter with speeds slightly less than v.

 126. Suppose some 235U+ ions are present in the beam. They 
have the same charge as the 238U+ ions but a smaller 

B
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mass (approximately 0.987 37m). (a) With what speed 
do the 235U+ ions emerge from the accelerating plates, 
assuming 238U+ ions emerge with speed v? (b) Sketch 
the trajectory of 235U+ ions inside the velocity selector. 
(c) Now the velocity selector is removed. 238U+ ions 
move in a circular path of diameter D in the uniform 
magnetic field. What is the diameter of the path of the 
235U+ ions?

 127. Find the mass of the 238U+ ions in terms of v, B, D, and 
universal constants.

 128. Suppose some 238U2+ ions are present in the beam. They 
have the same mass m as the 238U+ ions but twice the 
charge (+2e). (a) With what speed do the 238U2+ ions 
emerge from the accelerating plates, assuming 238U+ 
ions emerge with speed v? (b) Sketch the trajectory of 
238U2+ ions inside the velocity selector. (c) Now the 
velocity selector is removed. 238U+ ions move in a circu-
lar path of diameter D in the uniform magnetic field. 
What is the diameter of the path of the 238U2+ ions?

Answers to Practice Problems

19.1 5.8 × 10−17 N; 3.4 × 1010 m/s2

19.2 magnitude = 8.2 × 10−18 N, direction = east
19.3 ±1.8 × 106 m/s
19.4 6.7 × 105 m/s
19.5 76 cm
19.6 out of the page (if the speed is too great, the magnetic 
force is larger than the electric force)
19.7 same magnitude Hall voltage, but opposite polarity: 
the top edge would be at the higher potential
19.8 west
19.9 (proof)

19.10 B
→

=
2μ0I

πd
 in the +x-direction

19.11 +4μ0I

Answers to Checkpoints

19.2 (a)  The magnetic force is zero if the velocity v→ is 
along the same line as the magnetic field B

→
. Therefore, the 

magnetic force on the electron is zero if it is moving straight 
down or straight up. (b) For a given v and B

→
, the magnetic 

force is largest when v→ is perpendicular to B
→

. Therefore, the 
magnetic force on the electron is largest if it is moving in any 
horizontal direction.
19.4 At the point where the velocity vector is shown in 
Fig. 19.20a, v→ × B

→
 is out of the page. The magnetic force 

F
→

= qv→ × B
→

 on the particle must be into the page, toward 
the central axis of the helix. The particle is negatively 
charged.
19.5 (a) F

→
E = qE

→
, E

→
 points east, and q is negative, so F

→
E 

points west. (b) From the right-hand rule, v→ × B
→

 points west. 
F
→

B = qv→ × B
→

 and q is negative, so F
→

B points east.
19.6 The magnetic force is in the direction of L

→
× B

→
. L

→
 is 

the same as before, but now B
→

 is to the right. The two direc-
tions perpendicular to both L

→
 and B

→
 are into the page and out 

of the page. Using the right-hand rule, the direction of the 
magnetic force is into the page.
19.7 (a) L

→
2, L

→
4, and B

→
 are all in the same directions as in 

Fig. 19.31, so the directions of F
→

2 and F
→

4 are the same: down 
and up, respectively. (b) The torque due to each of these 
forces is zero because the lever arm is zero. That is, the 
forces act along the line from the axis of rotation to the point 
of application of the force. (c) The equilibrium is unstable. 
Imagine the coil rotated slightly away from equilibrium. The 
forces on wires 2 and 4 make the coil rotate away from equi-
librium, not toward equilibrium. (d) θ = 180°.
19.8 To the left.
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SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Magnetoencephalography 
(Section 20.3)

∙ Magnetic resonance 
 imaging (Example 20.9; 
Conceptual Question 8; 
Problems 50, 69)

Concepts & Skills to Review

•	 emf	(Section	18.2)
•	 microscopic	view	of		current	

in	a	metal		(Section	18.3)
•	 magnetic	fields	and	forces	

(Sections	19.1,	19.2,	19.8)
•	 electric	potential		

(Section	17.2)
•	 angular	velocity	and		

angular	frequency		
(Sections	5.1,	10.6)

•	 math skill: sinusoidal		
functions	of	time		
(Appendix	A.8)

•	 right-hand	rules	(Sections	
19.2,	19.8)

•	 math skill:	exponential		
function;	time	constant	
	(Appendix	A.4;		
Section	18.10)

©Myrleen Pearson/Alamy

A	 conventional	 electric	 stovetop	 has	 coiled	 heating	 elements.	 When	
electric	current	passes	through	the	element,	energy	 is	dissipated	and	
the	element	gets	hot.	Heat	 is	 then	conducted	from	the	element	to	a	
pot	 or	 pan.	 This	 process	 isn’t	 very	 efficient—because	 heat	 can	 also	
flow	(via	radiation	and	convection)	from	the	element	into	the	surround-
ings,	 less	 than	half	of	 it	 gets	used	 to	cook	 food.
	 A	 different	 kind	 of	 electric	 stove—the	 induction	 stove—has	 several	
advantages	over	stoves	with	resistance	heating	elements.	In	these	stoves,	
the	energy	is	dissipated	in	the	metal	of	the	pot	or	pan	itself	rather	than	
in	 a	 heating	 element,	making	 them	 about	 twice	 as	 efficient	 as	 a	 con-
ventional	stove.	A	potholder	carelessly	left	on	an	induction	stovetop	does	
not	 get	 hot	 even	 if	 the	 stovetop	 is	 turned	on.	 Even	when	 cooking,	 the	
stovetop	surface	gets	warm	only	due	to	heat	conducted	from	the	bottom	
of	the	pan.	How	does	an	induction	stove	cause	electric	currents	to	flow	
in	 the	pot	or	pan	without	making	any	electrical	connection	to	 it?



768 CHAPTER	20 Electromagnetic Induction

20.1 MOTIONAL EMF

The only sources of electric energy (and of emf) we’ve discussed so far are batteries. 
The amount of electric energy that can be supplied by a battery before it needs to be 
recharged or replaced is limited. Most of the world’s electric energy is produced by 
generators. In this section we study motional emf—the emf induced when a conduc-
tor is moved in a magnetic field. Motional emf is the principle behind the electric 
generator.

Imagine a metal rod of length L in a uniform magnetic field B
→

. When the rod is 
at rest, the conduction electrons move in random directions at high speeds, but their 
average velocity is zero. Since their average velocity is zero, the average magnetic 
force on the electrons is zero; therefore, the total magnetic force on the rod is zero. 
The magnetic field affects the motion of individual electrons, but the rod as a whole 
feels no net magnetic force.

Now consider a rod that is moving instead of being at rest. Figure 20.1a shows 
a uniform magnetic field into the page, the velocity v→ of the rod is to the right, and 
the rod is vertical—the field, velocity, and axis of the rod are mutually perpendicular. 
Now the electrons have a nonzero average velocity: it is v→, since the electrons are 
being carried to the right along with the rod. Then the average magnetic force on each 
conduction electron is

 F
→

B = −ev→ × B
→

 (19-7)

By the right-hand rule (Sec. 19.2), the direction of this force is down (toward the 
lower end of the rod). The magnetic force causes electrons to accumulate at the lower 
end, giving it a negative charge and leaving positive charge at the upper end 
(Fig.  20.1b). This separation of charge by the magnetic field is similar to the Hall 
effect, but here the charges are moving due to the motion of the rod itself rather than 
due to a current flowing in a stationary rod.

As charge accumulates at the ends, an electric field develops in the rod, with field 
lines running from the positive to the negative charge. Eventually an equilibrium is 
reached: the electric field builds up until it causes a force equal and opposite to the 
magnetic force on electrons in the middle of the rod (Fig. 20.1c). Then there is no 
further accumulation of charge at the ends. Thus, in equilibrium,

 F
→

E = qE
→

= −F
→

B = −(qv→ × B
→

) (20-1)

or
 E

→
= −v→ × B

→
 (20-2)

just as for the Hall effect. Since v→ and B
→

 are perpendicular, E = vB. The potential 
difference between the ends is

 ΔV = EL = vBL (20-3)

In this case, the direction of E
→

 is parallel to the rod. If it were not, then the potential 
difference between the ends is found using only the component of E

→
 parallel (‖) to 

the rod:

 ΔV = E||L (20-4)

CHECKPOINT 20.1

If	the	rod	in	Fig.	20.1	were	moving	out	of	the	page	instead	of	to	the	right,	what	
would	be	 the	 induced	emf?

As long as the rod keeps moving at constant speed, the separation of charge is 
maintained. The moving rod acts like a battery that is not connected to a circuit; 

CONNECTION:

Potential energy is energy 
stored in a field. Now, instead 
of energy stored in a gravita-
tional field, we study energy 
stored in an electric field.

+

L

(velocity
of rod)

(average velocity
of electron)

(average magnetic
force on electron)

e–

(b)

v
E

B

(a)

B

FB

v

v

e–

(c)

FB

FE

Up

Down

–

Figure 20.1 (a) An electron 
in a metal rod that is moving to 
the right with velocity v→. The 
magnetic field is into the page. 
The average magnetic force on 
the electron is F

→
B = −ev→ × B

→
. 

(b) The magnetic force pushes 
electrons toward the bottom of 
the rod, leaving the top end 
positively charged. This separa-
tion of charge gives rise to an 
electric field in the rod. (c) In 
equilibrium, the sum of the 
electric and magnetic forces on 
the electron is zero.
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positive charge accumulates at one terminal and negative charge at the other, maintain-
ing a constant potential difference. Now the important question: if we connect this 
rod to a circuit, does it act like a battery and cause current to flow?

Figure 20.2 shows the rod connected to a circuit. The rod slides on metal rails 
so that the circuit stays complete even as the rod continues to move. We assume the 
resistance R is large relative to the resistances of the rod and rails—in other words, 
the internal resistance of our source of emf (the moving rod) is negligibly small. The 
resistor R sees a potential difference ΔV across it, so current flows. The current tends 
to deplete the accumulated charge at the ends of the rod, but the magnetic force pumps 
more charge to maintain a constant potential difference. So the moving rod does act 
like a battery with an emf given by

v
R

I

I

BL

x

Figure 20.2 A metal rod 
slides along two metal rails. A 
magnetic field is perpendicular 
to the plane of the rod and 
rails. The rails are connected to 
a resistor R, forming a com-
plete circuit. The induced emf 
ℰ in the moving rod causes 
current to flow around the cir-
cuit in the direction indicated. 
If the resistances of the rod and 
rails are negligible compared to 
R, then the current in the cir-
cuit is I = ℰ/R.

Motional emf
 ℰ = vBL (20-5)

More generally, if E
→

 is not parallel to the rod, then

 ℰ = (v→ × B
→

)||
   L (20-6)

A sliding rod would be a clumsy way to make a generator. No matter how long 
the rails are, the rod will eventually reach the end. In Section 20.2, we see that the 
principle of the motional emf can be applied to a rotating coil of wire instead of a 
sliding rod.

Where does the electric energy come from? The rod is acting like a battery, sup-
plying electric energy that is dissipated in the resistor. How can energy be conserved? 
The key is to recognize that as soon as current flows through the rod, a magnetic 
force acts on the rod in the direction opposite to the velocity (Fig. 20.3). Left on its 
own, the rod would slow down as its kinetic energy gets transformed into electric 
energy. To maintain a constant emf, the rod must maintain a constant velocity, which 
can only happen if some other force pulls the rod. The work done by the force  pulling 
the rod is the source of the electric energy (Problem 9).

e–

vrod

I

vrod

vav
vD

Frod

Figure 20.3 The magnetic force on the 
rod is F

→
rod = IL

→
× B

→
 and is directed to the 

left, opposite the velocity of the rod (v→rod). 
The average velocity of an electron in the 
rod is v→av = v→rod + v→D; the electrons drift 
downward relative to the rod as the rod 
carries them to the right. The average 
magnetic force on an electron has two per-
pendicular components. One is −ev→rod × B

→
, 

which is directed downward and causes the 
electron to drift relative to the rod. The 
other is −ev→D × B

→
, which pulls the elec-

tron to the left side of the rod and, because 
each electron in turn pulls on the rest of 
the rod, contributes to the leftward mag-
netic force on the rod.
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Example 20.1

Loop Moving Through a Magnetic Field

A square metal loop made of four rods of length L moves at 
constant velocity v→ (Fig. 20.4). The magnetic field in the 
central region has magnitude B; elsewhere the magnetic 
field is zero. The loop has resistance R. At each position 1–5, 
state the direction (CW or CCW) and the magnitude of the 
current in the loop.

Strategy If current flows in the loop, it is due to the mo-
tional emf that pumps charge around. The vertical sides (a, c) 
have motional emfs as they move through the magnetic field, 
just as in Fig. 20.2. We need to look at the horizontal sides 
(b, d) to see whether they also give rise to motional emfs. Once 
we figure out the emf in each side, then we can determine 
whether they cooperate with each other—pumping charge 
around in the same direction—or tend to cancel each other.

Solution The vertical sides (a, c) have motional emfs as 
they move through the region of magnetic field. The emf 
acts to pump current upward (toward the top end). The mag-
nitude of the emf is

ℰ = vBL

For the horizontal sides (b, d), the average magnetic force 
on a current-carrying electron is F

→
av = −ev→ × B

→
. Since the 

velocity is to the right and the field is into the page, the right-
hand rule shows that the direction of the force is down, just as 
in sides a and c. However, now the magnetic force does not 
move charge along the length of the rod; the magnetic force 
instead moves charge across the diameter of the rod. An elec-
tric field then develops across the rod. In equilibrium, the 
magnetic and electric forces cancel, exactly as in the Hall ef-
fect. The magnetic force does not push charge along the length 
of the rod, so there is no motional emf in sides b and d.

In positions 1 and 5, the loop is completely out of the 
region of magnetic field. There is no motional emf in any of 
the sides; no current flows.

In position 2, there is a motional emf in side c only; side 
a is still outside the region of B

→
 field. The emf makes current 

flow upward in side c, and therefore counterclockwise in the 
loop. The magnitude of the current is

I =
ℰ

R
=

vBL

R

In position 3, there are motional emfs in both sides a 
and c. Since the emfs in both sides push current toward the 
top of the loop, the net emf around the loop is zero—as if 
two identical batteries were connected as in Fig. 20.5. No 
current flows around the loop.

1

R

a

b

d

c

2 3 4 5

v

B

v v v v

Figure 20.4
Loop moving  
into, through, and 
then out of a  
region of uniform 
magnetic field B

→
  

perpendicular to  
the loop.

ℰ = vBL

I = 0

ℰ = vBL

Figure 20.5
At position 3, the emfs 
 induced in sides a and c can 
be represented with battery 
symbols in a circuit diagram.

In position 4, there is a motional emf only in side a, 
since side c has left the region of the B

→
 field. The emf makes 

current flow upward in side a, and therefore clockwise in the 
loop. The magnitude of the current is again

I =
ℰ

R
=

vBL

R

Discussion Figure 20.5 illustrates a useful technique: it 
often helps to draw battery symbols to represent the direc-
tions of the induced emfs.

Note that if the loop were at rest instead of moving to 
the right at constant velocity, there would be no motional 
emf at any of the positions 1–5. The motional emf does not 
arise simply because one of the vertical sides of the loop is 
immersed in magnetic field while the other is not; it arises 
because one side moves through a magnetic field while the 
other does not.

Conceptual Practice Problem 20.1 Loop of 
 Different Metal

Suppose a loop made of a different metal but with identi-
cal size, shape, and velocity moved through the same 
magnetic field. Of these quantities, which would be dif-
ferent: the magnitudes of the emfs, the directions of the 
emfs, the magnitudes of the currents, or the directions of 
the currents?
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20.2 ELECTRIC GENERATORS

For practical reasons, electric generators use coils of wire that rotate in a magnetic field 
rather than rods that slide on rails. The rotating coil is called an armature. A simple ac 
electric generator is shown in Fig. 20.6. The rectangular coil is mounted on a shaft that 
is turned by some external power source such as the turbine of a steam engine.

Let us begin with a single turn of wire—a rectangular loop—that rotates at a 
constant angular speed ω. The loop rotates in the space between the poles of a per-
manent magnet or an electromagnet that produces a nearly uniform field of magnitude 
B. Sides 2 and 4 are each of length L and are a distance r from the axis of rotation; 
the length of sides 1 and 3 is therefore 2r each.

None of the four sides of the loop moves perpendicularly to the magnetic field at 
all times, so we must generalize the results of Section 20.1. In Problem 72, you can 
verify that there is zero induced emf in sides 1 and 3, so we concentrate on sides 2 and 
4. Since these two sides do not, in general, move perpendicularly to B

→
, the magnitude 

of the average magnetic force on the electrons is reduced by a factor of sin θ, where θ 
is the angle between the velocity of the wire and the magnetic field (Fig. 20.7):

 Fav = evB sin θ (20-7)

The induced emf is then reduced by the same factor:

 ℰ = vBL sin θ (20-8)

Note that the induced emf is proportional to the component of the velocity perpen-
dicular to B

→
 (v⊥ = v sin θ). For a visual image, think of the induced emf as propor-

tional to the rate at which the wire cuts through magnetic field lines. The component 
of the velocity parallel to B

→
 moves the wire along the magnetic field lines, so it does 

not contribute to the rate at which the wire cuts through the field lines.
The loop turns at constant angular speed ω, so the speed of sides 2 and 4 is

 v = ωr (5-9)

Generators at Little Goose Dam 
in the state of Washington.
Courtesy of US Army Corps of 
 Engineers

Side 2 Side 3

Side 4

L 2rN   Side 1         S

Axis of rotation

Figure 20.6 An ac generator, in which a rectangular loop or coil of wire rotates at 
constant angular speed between the poles of a permanent magnet or electromagnet. 
Emfs are induced in sides 2 and 4 of the loop due to their motion through the mag-
netic field as the loop rotates. (Sides 1 and 3 have zero induced emf.) A magnetic 
torque opposes the rotation of the coil, so an external torque must be applied to keep 
the loop rotating at constant angular velocity.
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The angle θ changes at a constant rate ω. For simplicity, we choose θ = 0 at t = 0, 
so that θ = ωt and the emf ℰ as a function of time t in each of sides 2 and 4 is

 ℰ(t) = vBL sin θ = (ωr)BL sin ωt (20-9)

The total emf in the loop is the sum of the two (Fig. 20.8):

 ℰ(t) = 2ωrBL sin ωt (20-10)

The rectangular loop has sides L and 2r, so the area of the loop is A = 2rL. Therefore, 
the total emf ℰ as a function of time t is

 ℰ(t) = ωBA sin ωt (20-11)

When written in terms of the area of the loop, Eq. (20-11) is true for a planar loop 
of any shape. If the coil consists of N turns of wire (N identical loops), the emf is 
N times as great:

Side 4

Side 2

Side view

Axis of
rotation

B

v

v
θ

θ

Side 4

Side 2

Axis of
rotation

B

v

v
Axis of
rotation

B

Side 2v

Side 4 v

(b)

(a)

(c)

Figure 20.7 (a) Side view of the rectangular loop, looking along the axis of rota-
tion. The velocity vectors of sides 2 and 4 make an angle θ with the magnetic field. 
(b) In this position (θ = 0), sides 2 and 4 of the loop are moving parallel to the 
magnetic field, so the magnetic force on the electrons is zero and the induced emf 
is zero. (c) In this position (θ = 90°), sides 2 and 4 of the loop are moving perpen-
dicular to the magnetic field, so the magnetic force on the electrons is maximum. 
The induced emf in each side has its maximum value ℰ = vBL. In any position, the 
emf induced in each of sides 2 and 4 is ℰ = vBL sin θ.

B

2+

+ 4

Figure 20.8 Battery symbols 
indicate the direction of the 
emfs induced in sides 2 and 4 
of the loop for a position 
between θ = 0 and θ = 90°. 
Notice that the positive end of 
“battery” 2 is connected to the 
negative side of “battery” 4. 
Think about using Kirchhoff’s 
loop rule: the two emfs add. 
(When the loop passes θ = 90°, 
both emfs reverse direction.)

T

ωNBA

–ωNBA

0
t

ℰ

Figure 20.9 Generator- 
produced emf is a sinusoidal 
function of time.

Emf produced by an ac generator

 ℰ(t) = ωNBA sin ωt (20-12)

The emf produced by a generator is not constant; it is a sinusoidal function of time 
(see Fig. 20.9). The maximum emf (ℰm = ωNBA)  is called the amplitude of the emf 
(just as in simple harmonic motion, where the maximum displacement is called the 
amplitude). Note that the amplitude of the emf is the angular frequency (ω) times the 
maximum flux (NBA). Sinusoidal emfs are used in ac (alternating current) circuits. 
Household electric outlets in the United States and Canada provide an emf with an 
amplitude of approximately 170 V and a frequency f = ω/(2π) = 60 Hz. In much of 
the rest of the world, the amplitude is about 310–340 V and the frequency is 50 Hz.
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The energy supplied by a generator does not come for free; work must be done 
to turn the generator shaft. As current flows in the coil, the magnetic force on sides 
2 and 4 cause a torque in the direction opposing the coil’s rotation (Problem 74). To 
keep the coil rotating at constant angular speed, an equal and oppositely directed 
torque must be applied to the shaft. In an ideal generator, this external torque would 
do work at the same rate as electric energy is generated. In reality, some energy is 
dissipated by friction and by the electrical resistance of the coil, among other things. 
Then the external torque does more work than the amount of electric energy gener-
ated. Since the rate at which electric energy is generated is

 P = ℰI  (18-34)

the external torque required to keep the generator rotating depends not only on the 
emf but also on the current it supplies. The current supplied depends on the load—the 
external circuit through which the current must flow.

In most power stations that supply our electricity, the work to turn the generator 
shaft is supplied by a steam engine. The steam engine is powered by burning coal, 
natural gas, or oil, or by a nuclear reactor. In a hydroelectric power plant, the gravi-
tational potential energy of water is the energy source used to turn the generator shaft.  
Wind turbines tap into the kinetic energy of moving air.

Application: Hybrid Cars In electric and hybrid gas-electric cars, the drive train 
of the vehicle is connected to an electric generator when brakes are applied, which 
charges the batteries. Thus, instead of the kinetic energy of the vehicle being com-
pletely dissipated, much of it is stored in the batteries. This energy is used to propel 
the car after braking is finished.

Application: The DC Generator

Note that the induced emf produced in an ac generator reverses direction twice per period. 
Mathematically, the sine functions in Eqs. (20-11) and (20-12) are positive half the time 
and negative half the time. When the generator is connected to a load, the current also 
reverses direction twice per period—which is why we call it alternating current.

What if the load requires a direct current (dc) instead? Then we need a dc gen-
erator, one in which the emf does not reverse direction. One way to make a dc gen-
erator is to equip the ac generator with a split-ring commutator and brushes, exactly 
as for the dc motor (see Section 19.7). Just as the emf is about to change direction, 
the connections to the rotating loop are switched as the brushes pass over the gap in 
the split ring. The commutator effectively reverses the connections to the outside load 
so that the emf and current supplied maintain the same direction. The emf and current 
are not constant, though. The emf is described by

 ℰ(t) = ωNBA ∣sin ωt∣ (20-13)

which is graphed in Fig. 20.10.
A simple dc motor can be used as a dc generator, and vice versa. When config-

ured as a motor, an external source of electric energy such as a battery causes current 
to flow through the loop. The magnetic torque makes the motor rotate. In other words, 
the current is the input and the torque is the output. When configured as a generator, 
an external torque makes the loop rotate, the magnetic field induces an emf in the 
loop, and the emf makes current flow. Now the torque is the input and the current is 
the output. The conversion between mechanical energy and electric energy can pro-
ceed in either direction.

More sophisticated dc generators have many coils distributed evenly around the 
axis of rotation. The emf in each coil still varies sinusoidally, but each coil reaches 
its peak emf at a different time. As the commutator rotates, the brushes connect 
selectively to the coil that is nearest its peak emf. The output emf has only small 
fluctuations, which can be smoothed out by a circuit called a voltage regulator if 
necessary.

CONNECTION:

A dc generator is a dc motor 
with its input and output 
 reversed.

0
tπ—ω

2π—ω

ℰ

Figure 20.10 The emf in a dc 
generator as a function of time.
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20.3 FARADAY’S LAW

In 1820, Hans Christian Oersted accidentally discovered that an electric current pro-
duces a magnetic field (see Section 19.1). Soon after hearing the news of that discov-
ery, the English scientist Michael Faraday (1791–1867) started experimenting with 
magnets and electric circuits in an attempt to do the reverse—use a magnetic field to 
produce an electric current. Faraday’s brilliant experiments led to the development of 
the electric motor, the generator, and the transformer.

A Changing B
→

 Field Can Cause an Induced Emf In 1831, Faraday discovered 
two ways to produce an induced emf. One is to move a conductor in a magnetic field 
(motional emf). The other does not involve movement of the conductor. Instead, 
Faraday found that a changing magnetic field induces an emf in a conductor even if 
the conductor is stationary. The induced emf due to a changing B

→
 field cannot be 

understood in terms of the magnetic force on the conduction electrons: if the conduc-
tor is stationary, the average velocity of the electrons is zero, and the average  magnetic 
force is zero.

Consider a circular loop of wire between the poles of an electromagnet 
(Fig. 20.11). The loop is perpendicular to the magnetic field; field lines cross the 
interior of the loop. Since the magnitude of the magnetic field is related to the spac-
ing of the field lines, if the magnitude of the field varies (by changing the current 
in the electromagnet), the number of field lines passing through the conducting 
loop changes. Faraday found that the emf induced in the loop is proportional to 
the rate of change of the number of field lines that cut through the interior of the 
loop.

We can formulate Faraday’s law mathematically so that numbers of field lines 
are not involved. The magnitude of the magnetic field is proportional to the number 
of field lines per unit cross-sectional area:

 B ∝
number of lines

area  (20-14)

Example 20.2

AC Generator

The armature of an ac generator is a 3.2 cm by 4.6 cm rect-
angular coil of wire with 120 turns. If the generator is to 
supply an emf of amplitude 2.4 V when the coil rotates at 
240 rev/min, what magnetic field is required?

Strategy The emf produced by the generator is given by 
Eq. (20-12). The amplitude is the maximum value, which 
occurs when sin ωt = 1. The given information can then be 
used to solve for B.

Solution The amplitude of the emf is

ℰm = ωNBA

We can find the angular frequency ω in radians per second:

ω = (24  

rev
min)(2π  

rad
rev)(

1
60

  
min

s ) = 8.0π  
rad
s

The area is the product of the length and width. We solve for 
B to find

B =
ℰm

ωNA
=

2.4 V
(8.0π rad/s)(120)(0.032 m)(0.046 m)

= 0.54 T

Discussion Note that it would be incorrect to use 
240 rev/min as the angular frequency. In Eqs. (20-9) through 
(20-12), ω must be expressed in radians per unit time.

Practice Problem 20.2 Changing the Frequency

A generator produces an emf of amplitude 18 V when rotat-
ing with a frequency of 12 Hz. How will the frequency and 
amplitude of the emf change if the frequency of rotation 
drops to 10 Hz?

Earlier time

B

Later time

B

Figure 20.11 Circular loop 
in a magnetic field of increas-
ing magnitude.



 20.3 FARADAY’S	LAW 775

If a flat, open surface of area A is perpendicular to a uniform magnetic field of 
 magnitude B, then the number of field lines that cross the surface is proportional to 
BA, since

 number of lines =
number of lines

area × area ∝ BA (20-15)

Equation (20-15) is correct only if the surface is perpendicular to the field. In 
general, the number of field lines crossing a surface is proportional to the perpen-
dicular component of the field times the area:

 number of lines ∝ B⊥A = BA cos θ (20-16)

where θ is the angle between the magnetic field and the normal (a line perpendicular 
to the surface). The component of the magnetic field parallel to the surface B∥ doesn’t 
contribute to the number of lines crossing the surface; only B⊥ does (Fig. 20.12a). 
Equivalently, Fig. 20.12b shows that the number of lines crossing the surface area A 
is the same as the number crossing a surface of area A cos θ, which is perpendicular 
to the field.

Magnetic Flux The mathematical quantity that is proportional to the number of 
field lines cutting through a surface is called the magnetic flux. The symbol Φ (Greek 
capital phi) is used for flux; in ΦB the subscript B indicates magnetic flux.

B‖ = B sin θ

B⊥ = B cos θ

(a)

A cos θ
Aθ

θ

A

θ

(b)

B B

B

Figure 20.12 (a) The com-
ponent of B

→
 perpendicular to 

the surface of area A is B cos θ. 
(b) The projection of the area A 
onto a plane perpendicular to B

→
 

is A cos θ, showing that the 
magnetic flux is BA cos θ.

CONNECTION:

Magnetic flux is analogous to 
electric flux (see Section 16.7). 
In both cases, the flux 
through a surface is equal to 
the area of the surface times 
the perpendicular component 
of the field. Also, in both 
cases, the flux can be visual-
ized as the number of field 
lines that cut through the 
 surface.

Magnetic flux through a flat surface of area A

 ΦB = B⊥ A = BA⊥ = BA cos θ (20-17)

(θ is the angle between B
→

 and the normal to the surface)

Faraday’s law

 ℰ = − 

ΔΦB

Δt
 (20-18)

The SI unit of magnetic flux is the weber (1 Wb = 1 T·m2).

Faraday’s Law

Faraday’s law says that the magnitude of the induced emf around a loop is equal to 
the rate of change of the magnetic flux through the loop.

Faraday’s law, if it is to give the instantaneous emf, must be taken in the limit of a 
very small time interval Δt. However, Faraday’s law can be applied just as well to 
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longer time intervals; then ΔΦB/Δt represents the average rate of change of the flux, 
and ℰ represents the average emf during that time interval.

The negative sign in Eq. (20-18) concerns the sense of the induced emf around 
the loop (clockwise or counterclockwise). The interpretation of the sign depends on 
a formal definition of the emf direction that we do not use. Instead, in Section 20.4, 
we introduce Lenz’s law, which gives the direction of the induced emf.

If, instead of a single loop of wire, we have a coil of N turns, then Eq. (20-18) 
gives the emf induced in each turn; the total emf in the coil is then N times as 
great:

Faraday’s law for a coil with N turns

 ℰ = −N  

ΔΦB

Δt
 (20-19)

The quantity NΦB is called the total flux linkage through the coil.

Example 20.3

Induced Emf due to Changing Magnetic Field

A 40.0 turn coil of wire of radius 3.0 cm is placed between 
the poles of an electromagnet. The field increases from 0 to 
0.75 T at a constant rate in a time interval of 225 s. What is 
the magnitude of the induced emf in the coil if (a) the field 
is perpendicular to the plane of the coil? (b) the field makes 
an angle of 30.0° with the plane of the coil?

Strategy First we write an expression for the flux through 
the coil in terms of the field. The only thing changing is the 
magnitude of the field, so the rate of flux change is propor-
tional to the rate of change of the field. Faraday’s law gives 
the induced emf.

Solution (a) The magnetic field is perpendicular to the 
coil, so the flux through one turn is

ΦB = BA

where B is the field magnitude and A is the area of the loop. 
Since the field increases at a constant rate, so does the flux. 
The rate of change of flux is then equal to the change in flux 
divided by the time interval. The flux changes at a constant 
rate, so the emf induced in the loop is constant.

By Faraday’s law,

ℰ = −N  

ΔΦB

Δt
= −N  

Bf A − 0
Δt

∣ℰ∣ = 40.0 ×
0.75 T × π × (0.030 m)2

225 s
= 3.77 × 10−4 V

= 0.38 mV

(b) In Eq. (20-17), θ is the angle between B
→

 and the direction 
normal to the coil. If the field makes an angle of 30.0° with 
the plane of the coil, then it makes an angle

θ = 90.0° − 30.0° = 60.0°

with the normal to the coil. The magnetic flux through one 
turn is

ΦB = BA cos θ

The induced emf is therefore,

 ∣ℰ∣ = N  

ΔΦB

Δt
= N  

Bf 
A cos θ − 0

Δt

 = 3.77 × 10−4 V × cos 60.0°

 = 0.19 mV

Discussion If the rate of change of the field were not con-
stant, then from the given information we could calculate 
only the average emf during the time interval. The instanta-
neous emf would be sometimes higher and sometimes lower.

Practice Problem 20.3 Using the Perpendicular 
Component of B

→
 

Draw a sketch that shows the coil, the direction normal to the 
coil, and the magnetic field lines. Find the component of B

→
 

in the normal direction. Now use ΦB = B⊥A to verify the 
answer to part (b).
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Faraday’s Law and Motional Emfs

Earlier in this section, we wrote Faraday’s law to give the magnitude of the induced 
emf due to a changing magnetic field. But that’s only part of the story. Faraday’s law 
gives the induced emf due to a changing magnetic flux, no matter what the reason 
for the flux change. The flux change can occur for reasons other than a changing 
magnetic field. A conducting loop might be moving through regions where the field 
is not constant, or it can be rotating, or changing size or shape. In all of these cases, 
Faraday’s law as already stated gives the correct emf, regardless of why the flux is 
changing. Recall that flux can be written

 ΦB = BA cos θ (20-17)

Then the flux changes if the magnetic field magnitude (B) changes, or if the area of 
the loop (A) changes, or if the angle between the field and the normal changes.

Faraday’s law says that, no matter what the reason for the change in flux, the 
induced emf is

 ℰ = −N  

ΔΦB

Δt
 (20-19)

For example, the moving rod of Fig. 20.2 is one side of a conducting loop. The mag-
netic flux through the loop is increasing as the rod slides to the right because the 
loop’s area is increasing. Faraday’s law gives the same induced emf in the loop that 
we found in Eq. (20-5)—see Problem 71.

The mobile charges in a moving conductor are pumped around due to the mag-
netic force on the charges. Since the conductor as a whole is moving, the mobile 
charges have a nonzero average velocity and therefore a nonzero average magnetic 
force. In the case of a changing magnetic field and a stationary conductor, the mobile 
charges aren’t set into motion by the magnetic force—they have zero average veloc-
ity before current starts to flow. What does make current flow is considered in 
 Section 20.8.

Sinusoidal Emfs

Emfs that are sinusoidal (sine or cosine) functions of time are common in ac gen-
erators, motors, and circuits. Sometimes the flux is sinusoidal because a coil is 
rotating at constant angular velocity, as for the ac generator in Section 20.2. There 
we found that the amplitude of the sinusoidal emf (ℰm)  is the angular frequency 
(ω) times the maximum flux linkage (NBA). In other situations, the coil is station-
ary and the magnetic field is sinusoidal: B(t) = Bm cos ωt. Regardless of the reason 
that the flux is sinusoidal, the same mathematical relationship between flux and 
emf holds (Fig. 20.13). If the maximum flux through one turn is BA and there are 
N turns:

CONNECTION:

Faraday’s law gives the 
 induced emf due to a changing 
magnetic flux, including the 
motional emfs of Sections 20.1 
and 20.2.

Sinusoidal emfs

 ℰm = ωNBA (20-20)

  If ΦB(t) = BA cos ωt, then  ℰ(t) = −N  

ΔΦ
Δt

= ωNBA sin ωt       (20-21)

  If ΦB(t) = BA sin ωt, then  ℰ(t) = −N  

ΔΦ
Δt

= −ωNBA cos ωt    (20-22)
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Example 20.4

Applying Faraday’s Law to a Generator

The magnetic field between the poles of an electromagnet 
has constant magnitude B. A circular coil of wire im-
mersed in this magnetic field has N turns and area A. An 
externally applied torque causes the coil to rotate with 
constant angular velocity ω about an axis perpendicular to 
the field (as in Fig. 20.6). Use Faraday’s law to find the 
emf induced in the coil.

Strategy The magnetic field does not vary, but the orien-
tation of the coil does. The number of field lines crossing 
through the coil depends on the angle that the field makes 
with the normal (the direction perpendicular to the coil). The 
changing magnetic flux induces an emf in the coil, accord-
ing to Faraday’s law.

Solution Let us choose t = 0 to be an instant when the 
field is perpendicular to the coil. At this instant, B

→
 is parallel 

to the normal, so θ = 0. At a later time t > 0, the coil has 
rotated through an angle Δθ = ωt. Thus, the angle that the 
field makes with the normal as a function of t is

θ = ωt

The flux through the coil is

Φ = BA cos θ = BA cos ωt

Now that we have the flux as a function of time, Faraday’s 
law gives the instantaneous emf:

 ℰ(t) = −N  

ΔΦB

Δt
 (20-19)

Using Eq. (20-21), we obtain

ℰ(t) = ωNBA sin ωt

which is what we found in Section 20.2 [Eq. (20-12)].

Discussion Equation (20-12) was obtained using the 
magnetic force on the electrons in a rectangular loop to find 
the motional emfs in each side. It would be difficult to do the 
same for a circular loop or coil. Faraday’s law is easier to use 
and shows clearly that the induced emf doesn’t depend on 
the particular shape of the loop or coil, as long as it is flat. 
Only the area and number of turns are relevant.

Practice Problem 20.4 Rotating Coil Generator

In a rotating coil generator, the magnetic field between the 
poles of an electromagnet has magnitude 0.40 T. A circular 
coil between the poles has 120 turns and radius 4.0 cm. The 
coil rotates with frequency 5.0 Hz. Find the maximum emf 
induced in the coil.

–BA
T/4 T/2 3T/4 T

t

ΦB

ωNBA

–ωNBA

t

(a)

(b)

BA

ℰ

Figure 20.13 (a) A graph of ΦB(t) = BA cos ωt, representing magnetic flux that 
is a sinusoidal function of time. (b) A graph of the corresponding induced emf in 
one turn, ℰ(t) = ωNBA sin ωt. At any time t, the value of the emf is N  times the 
negative slope of the graph of Φ vs. t. The magnitude of the emf is greatest when 
the flux is changing most rapidly, which happens when Φ = 0. When the flux is 
at its maximum or minimum, its rate of change is zero and the induced emf is 
zero. The flux and emf are 90° (1/4 of a cycle) out of phase, and the amplitude 
of  the emf is ℰm = ωNBA.
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Technology Based on Electromagnetic Induction

An enormous amount of our technology depends on electromagnetic induction. Almost 
all of the electricity we use is produced by generators—either moving coil or moving 
field—that operate according to Faraday’s law. Our entire system for distributing elec-
tricity is based on transformers, devices that use magnetic induction to change ac 
voltages (Section 20.6). Transformers raise voltages for transmission over long dis-
tances across power lines; transformers then reduce the voltages for safe use in homes 
and businesses. So our entire system for generating and distributing electricity depends 
on Faraday’s law of induction.

Ground Fault Interrupter A ground fault interrupter (GFI) is a device commonly 
used in ac electric outlets in bathrooms and other places where the risk of electric 
shock is great. In Fig. 20.14, the two wires that supply the outlet normally carry equal 
currents in opposite directions at all times. These ac currents reverse direction 
120 times per second. If a person with wet hands accidentally comes into contact with 
part of the circuit, a current may flow to ground through the person instead of through 
the return wiring. Then the currents in the two wires are unequal. The magnetic field 
lines due to the unequal currents are channeled by a ferromagnetic ring through a coil. 
The flux through the coil reverses direction 120 times per second, so there is an 
induced emf in the coil, which trips a circuit breaker that disconnects the circuit from 
the power lines. GFIs are sensitive and fast, so they are a significant safety improve-
ment over a simple circuit breaker.

Moving Coil Microphone Figure 20.15 is a simplified sketch of a moving coil 
microphone. The coil of wire is attached to a diaphragm that moves back and forth 
in response to sound waves in the air. The magnet is fixed in place. An induced emf 
appears in the coil due to the changing magnetic flux. In another common type of 
microphone, the magnet is attached to the diaphragm and the coil is fixed in place. 
Reading a computer’s hard disk drive is also based on induction. As the disk spins, 
whenever the magnetization of the platter surface (see Section 19.10) changes, the 
flux through the head changes, inducing an emf.

Magnetoencephalography Faraday’s law provides a way to detect currents that 
flow in the human body. Instead of measuring potential differences between points 
on the skin, we can measure the magnetic fields generated by these currents. Since 
the currents are small, the magnetic fields are weak, so sensitive detectors called 
SQUIDs (superconducting quantum interference devices) are used. When the currents 
change, changes in the magnetic field induce emfs in the SQUIDs. In a magnetoen-
cephalogram, the induced emfs are measured at many points just outside the cranium 
(Fig. 20.16); then a computer calculates the location, magnitude, and direction of the 
currents in the brain that produce the field. Similarly, a magnetocardiogram detects 
the electric currents in the heart and surrounding nerves.

20.4 LENZ’S LAW

The directions of the induced emfs and currents caused by a changing magnetic flux 
can be determined using Lenz’s law, named for the Baltic German physicist Heinrich 
Friedrich Emil Lenz (1804–1865):

I

Ferromagnetic
ring

To
circuit
breaker

I

Figure 20.14 A ground fault 
interrupter.

Stationary
magnet

Sound
waves

Moving
coil

Induced
current

Diaphragm

Figure 20.15 A moving coil 
microphone.

Figure 20.16 In magnetoen-
cephalography, brain function 
can be observed in real time 
through noninvasive means. The 
two white cryostats seen here 
on either side of the man’s head 
contain sensitive magnetic field 
detectors cooled by liquid 
helium.
©Dr. Jurgen Scriba/Science Source

Lenz’s Law

When a changing magnetic flux causes an induced current to flow, the 
induced current generates its own magnetic field in a direction that opposes 
the change in flux.
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Note that induced emfs and currents do not necessarily oppose the magnetic field or 
the magnetic flux; they oppose the change in the magnetic flux.

One way to apply Lenz’s law is to look at the direction of the magnetic field 
produced by the induced current. The induced current around a loop produces its own 
magnetic field. This field may be weak compared with the external magnetic field. It 
cannot prevent the magnetic flux through the loop from changing, but its direction is 
always such that it “tries” to prevent the flux from changing. The magnetic field direc-
tion is related to the direction of the current by the right-hand rule (see Section 19.8).

CHECKPOINT 20.4

In	Fig.	20.11,	the	magnetic	field	is	increasing	in	magnitude	(a)	In	what	direction	
does	 induced	 current	 flow	 in	 the	 circular	 loop	 of	 wire?	 (b)	 In	 what	 direction	
would	current	 flow	 if	 the	 field	were	decreasing	 in	magnitude	 instead?

CONNECTION:

Lenz’s law is really an 
 expression of energy conser-
vation. (See Conceptual 
 Example 20.5.)

Conceptual Example 20.5

Faraday’s and Lenz’s Laws for the Moving Loop

Verify the emfs and currents calculated in Example 20.1 us-
ing Faraday’s and Lenz’s laws—that is, find the directions 
and magnitudes of the emfs and currents by looking at the 
changing magnetic flux through the loop.

Strategy To apply Faraday’s law, look for the reason why 
the flux is changing. In Example 20.1, a loop moves to the 
right at constant velocity into, through, and then out of a re-
gion of magnetic field. The magnitude and direction of the 
magnetic field within the region are not changing, nor is the 
area of the loop. What does change is the portion of that area 
that is immersed in the region of magnetic field.

Solution At positions 1, 3, and 5, the flux is not changing 
even though the loop is moving. In each case, a small displace-
ment of the loop causes no flux change. The flux is zero at posi-
tions 1 and 5, and nonzero but constant at position 3. For these 
three positions, the induced emf is zero and so is the current.

If the loop were at rest at position 2, the magnetic flux 
would be constant. However, since the loop is moving into 
the region of field, the area of the loop through which mag-
netic field lines cross is increasing. Thus, the flux is increas-
ing. According to Lenz’s law, the direction of the induced 
current opposes the change in flux. Since the field is into the 
page, and the flux is increasing, the induced current flows in 

the direction that produces a magnetic field out of the page. 
By the right-hand rule, the current is counterclockwise.

At position 2, a length x of the loop is in the region of 
magnetic field. The area of the loop that is immersed in the 
field is Lx. The flux is then

ΦB = BA = BLx

Only x is changing. The rate of change of flux is

ΔΦB

Δt
= BL  

Δx

Δt
= BLv

Therefore,
∣ℰ∣ = BLv

and

I =
∣ℰ∣
R

=
BLv

R

At position 4, the flux is decreasing as the loop leaves 
the region of magnetic field. Once again, let a length x of the 
loop be immersed in the field. Just as at position 2,

ΦB = BLx

∣ℰ∣ = ⎸
ΔΦB

Δt⎹ = BL ⎸
Δx

Δt⎹ = BLv

continued on next page
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Conceptual Example 20.5 continued

and

I =
∣ℰ∣
R

=
BLv

R

This time the flux is decreasing. To oppose a decrease, the 
induced current makes a magnetic field in the same direction 
as the external field—into the page. Then the current must 
be clockwise.

The magnitudes and directions of the emfs and currents 
are the same as found in Example 20.1.

Discussion Another way to use Lenz’s law to find the di-
rection of the current is by looking at the magnetic force on 
the loop. The changing flux is due to the motion of the loop 
to the right. In order to oppose the change in flux, current 
flows in the loop in whatever direction gives a magnetic 
force to the left, to try to bring the loop to rest and stop the 
flux from changing. At position 2, the magnetic forces on 
sides b and d are equal and opposite; there is no magnetic 
force on side a since B = 0 there. Then there must be a mag-
netic force on side c to the left. From F

→
= IL

→
× B

→
, the cur-

rent in side c is up and thus flows counterclockwise in the 

loop. Similarly, at position 4, the current in side a is upward 
to give a magnetic force to the left.

The connection between Lenz’s law and energy conser-
vation is more apparent when looking at the force on the loop. 
When current flows in the loop, electric energy is dissipated 
at a rate P = I2R. Where does this energy come from? If there 
is no external force pulling the loop to the right, the magnetic 
force slows down the loop; the dissipated energy comes from 
the kinetic energy of the loop. To keep the loop moving to the 
right at constant velocity while current is flowing, an external 
force must pull it to the right. The work done by the external 
force replenishes the loop’s kinetic energy.

Practice Problem 20.5 The Magnetic Force on  
the Loop

(a) Find the magnetic force on the loop at positions 2 and 4 
in terms of B, L, v, and R. (b) Verify that the rate at which an 
external force does work (P = Fv) to keep the loop moving 
at constant velocity is equal to the rate at which energy is 
dissipated in the loop (P = I2R).

Conceptual Example 20.6

Lenz’s Law for a Conducting Loop in a Changing 
Magnetic Field

A circular loop of wire moves toward a bar magnet at con-
stant velocity (Fig. 20.17). The loop passes around the mag-
net and continues away from it on the other side. Use Lenz’s 
law to find the direction of the current in the loop at posi-
tions 1 and 2.

Strategy The magnetic flux through the loop is changing 
because the loop moves from weaker to stronger field (at 
position 1), and vice versa (at position 2). We can specify 
current directions as counterclockwise or clockwise as 
viewed from the left (with the loop moving away).

Solution At position 1, the magnetic field lines enter the 
magnet at the south pole, so the field lines cross the loop 

from left to right (Fig. 20.18a). Since the loop is moving 
closer to the magnet, the field is getting stronger; the number 
of field lines crossing the loop increases (Fig. 20.18b). The 
flux is therefore increasing. To oppose the increase, the cur-
rent makes a magnetic field to the left (Fig. 20.18c). The 
right-hand rule gives the current direction to be counter-
clockwise as viewed from the left.

At position 2, the field lines still cross the loop from left 
to right (Fig. 20.19a), but now the field is getting weaker 
(Fig. 20.19b). The current must flow in the opposite 
 direction—clockwise as viewed from the left (Fig. 20.19c).

Discussion There’s almost always more than one way to 
apply Lenz’s law. An alternative way to think about the 
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1
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B
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v

B

vv Figure 20.17
Conducting loop 
passing over a bar 
magnet.

Figure 20.18
Loop moving toward magnet 
from position (a) to (b);  
(c) current induced in loop  
to produce a B

→
 field opposing 

the increasing magnitude of 
the field due to the approach-
ing bar magnet.

continued on next page
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20.5 BACK EMF IN A MOTOR

If a generator and a motor are essentially the same device, is there an induced emf 
in the coil (or windings) of a motor? There must be, according to Faraday’s law, since 
the magnetic flux through the coil changes as the coil rotates. By Lenz’s law, this 
induced emf—called a back emf—opposes the flow of current in the coil, since it is 
the current that makes the coil rotate and thus causes the flux change. The magnitude 
of the back emf depends on the rate of change of the flux, so the back emf increases 
as the rotational speed of the coil increases.

Figure 20.22 shows a simplified circuit model of the back emf in a dc motor. We 
assume that this motor has many coils (also called windings) at all different angles 
so that the torques, emfs, and currents are all constant. When the external emf is first 
applied, there is no back emf because the windings are not rotating. Then the current 
has a maximum value I = ℰext/R. The faster the motor turns, the greater the back emf, 
and the smaller the current: I = (ℰext − ℰback)/R.

You may have noticed that when a large motor—as in a refrigerator or washing 
machine—first starts up, the room lights dim a bit. The motor draws a large current 
when it starts up because there is no back emf. The voltage drop across the wiring in 
the walls is proportional to the current flowing in them, so the voltage across lightbulbs 
and other loads on the circuit is reduced, causing a momentary “brownout.” As the 
motor comes up to speed, the current drawn is much smaller, so the brownout ends.

If a motor is overloaded, so that it turns slowly or not at all, the current through 
the windings is large. Motors are designed to withstand such a large current only 
momentarily, as they start up; if the current is sustained at too high a level, the motor 
“burns out”—the windings heat up enough to do damage to the motor.

Conceptual Example 20.6 continued

 situation is to remember the current loop is a magnetic di-
pole and we can think of it as a little bar magnet. At position 
1, the current loop is repelled by the (real) bar magnet. The 
flux change is due to the motion of the loop toward the mag-
net; to oppose the change there should be a force pushing 
away. Then the poles of the current loop must be as in 

Fig.  20.20a; like poles repel. Point the thumb of the right 
hand in the direction of the north pole, and curl the fingers to 
find the current direction.

The same procedure can be used at position 2. Now the 
flux change is due to the loop moving away from the magnet, 
so to oppose the change in flux there must be a force attract-
ing the loop toward the magnet (Fig. 20.20b).

Conceptual Practice Problem 20.6 Direction of 
Induced Emf in Coil

(a) In Fig. 20.21, just after the switch is closed, what is the 
direction of the magnetic field in the iron core? (b) In what 
direction does current flow through the resistor connected to 
coil 2? (c) If the switch remains closed, does current con-
tinue to flow in coil 2? Why or why not? (d) Make a drawing 
in which coils 1 and 2, just after the switch is closed, are re-
placed by equivalent little bar magnets.

I

I

I

I
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Figure 20.19
Loop moving away from 
magnet from position  
(a) to (b); (c) current 
 induced in loop to produce 
a B

→
 field opposing the 

 decreasing magnitude of 
the field due to the retreat-
ing bar magnet.

(b)(a)

I
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Figure 20.20
Current loops can be 
 represented by small bar 
magnets.

Coil 1 Coil 2

BA

Figure 20.21
Two coils wrapped about a 
common soft iron core.

Motor

ℰback ℰext

I

R

Figure 20.22 An external 
emf (ℰext)  is connected to a dc 
motor. The back emf (ℰback)  is 
due to the changing flux through 
the windings. As the motor’s 
rotational speed increases, the 
back emf increases and the 
 current decreases.
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20.6 TRANSFORMERS

In the late nineteenth century, there were ferocious battles over what form of current 
should be used to supply electric power to homes and businesses. Thomas Edison was 
a proponent of direct current, whereas George Westinghouse, who owned the patents 
for the ac motor and generator invented by Nikola Tesla, was in favor of alternating 
current. Westinghouse won mainly because ac permits the use of transformers to 
change voltages and to transmit over long distances with less power loss than dc, as 
we see in this section.

Figure 20.23 shows two transformers. In each, two separate strands of insulated 
wire are wound around an iron core. The magnetic field lines are guided through the 
iron, so the two coils enclose the same magnetic field lines. An alternating voltage is 
applied to the primary coil; the ac current in the primary causes a changing magnetic 
flux through the secondary coil. The emf induced in the secondary coil can then be 
used to drive a load circuit connected to it.

If the primary coil has N1 turns, an emf ℰ1 is induced in the primary coil accord-
ing to Faraday’s law:

 ℰ1 = −N1 

ΔΦB

Δt
 (20-23)

Here ΔΦB/Δt is the rate of change of the flux through each turn of the primary. 
Ignoring resistance in the coil and other energy losses, the induced emf is equal to 
the ac voltage applied to the primary.

If the secondary coil has N2 turns, then the emf induced in the secondary coil is

 ℰ2 = −N2 

ΔΦB

Δt
 (20-24)

At any instant, the flux through each turn of the secondary is equal to the flux through 
each turn of the primary, so ΔΦB/Δt is the same quantity in Eqs. (20-23) and (20-24). 
Eliminating ΔΦB/Δt from the two equations, we find the ratio of the two emfs to be

Primary coil

Secondary coil

Soft-iron
core

Soft-iron
core

Primary
coil

Secondary
coil

B

Figure 20.23 Two trans-
formers. Each consists of two 
coils wound on a common iron 
core so that nearly all the mag-
netic field lines produced by 
the primary coil pass through 
each turn of the secondary.

Ideal transformer

 
ℰ2

ℰ1
=

N2

N1
 (20-25)

The output—the emf in the secondary—is N2 /N1 times the input emf applied to the 
primary. The ratio N2/N1 is called the turns ratio. A transformer is often called a step-
up or a step-down transformer, depending on whether the secondary emf is larger or 
smaller than the emf applied to the primary. The same transformer may often be used 
as a step-up or step-down transformer depending on which coil is used as the primary.

 Circuit symbol for a transformer

CHECKPOINT 20.6

The	primary	coil	of	a	transformer	is	connected	to	a	dc	battery.	 Is	there	an	emf	
induced	 in	 the	 secondary	 coil?	 If	 so,	 why	 do	we	 not	 use	 transformers	with	 dc	
sources?
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Current Ratio In an ideal transformer, power losses in the transformer itself are 
negligible. Then the rate at which energy is supplied to the primary is equal to the 
rate at which energy is supplied by the secondary (P1 = P2). Since power equals volt-
age times current, the ratio of the currents is the inverse of the ratio of the emfs:

 
I2

I1
=

ℰ1

ℰ2
=

N1

N2
 (20-26)

Transformers are generally very efficient when operating as designed, so Eq. (20-26) 
is usually a good approximation. An exception is when the current flowing in the 
secondary is zero (the secondary is not connected to a load circuit) or small (the 
resistance of the load circuit is large). Then very little power is delivered to the load 
circuit and power losses in the transformer cannot be neglected.

Example 20.7

A Cell Phone Charger

A transformer inside the charger for a cell phone has 500 turns 
in the primary coil. It supplies an emf of amplitude 6.8 V 
when plugged into the usual sinusoidal household emf of 
amplitude 170 V. (a) How many turns does the secondary coil 
have? (b) If the current drawn by the cell phone has amplitude 
1.50 A, what is the amplitude of the current in the primary?

Strategy The ratio of the emfs is the same as the turns 
ratio. We know the two emfs and the number of turns in the 
primary, so we can find the number of turns in the second-
ary. To find the current in the primary, we assume an ideal 
transformer. Then the currents in the two are inversely pro-
portional to the emfs.

Solution (a) The turns ratio is equal to the emf ratio:

ℰ2

ℰ1
=

N2

N1

Solving for N2 yields

N2 =
ℰ2

ℰ1
  N1 =

6.8 V
170 V

× 500 = 20 turns

(b) The currents are inversely proportional to the emfs:

I1

I2
=

ℰ2

ℰ1
=

N2

N1

I1 =
ℰ2

ℰ1
  I2 =

6.8 V
170 V

× 1.50 A = 0.060 A

Discussion The most likely error would be to get the 
turns ratio upside down. Here we need a step-down trans-
former, so N2 must be smaller than N1. If the same trans-
former were hooked up backward, interchanging the 
primary and the secondary, then it would act as a step-up 
transformer. Instead of supplying 6.8 V to the cell phone, 
it would supply

170 V ×
500
20

= 4250 V

We can check that the power input and the power output are 
equal:

P1 = ℰ1I1 = 170 V × 0.060 A = 10.2 W

P2 = ℰ2I2 = 6.8 V × 1.50 A = 10.2 W

(Since emfs and currents are sinusoidal, the instantaneous 
power is not constant. By multiplying the amplitudes of the 
current and emf, we calculate the maximum power.)

Practice Problem 20.7 An Ideal Transformer

An ideal transformer has five turns in the primary and two 
turns in the secondary. If the average power input to the pri-
mary is 10.0 W, what is the average power output of the 
secondary?

Application: The Distribution of Electricity

Why is it so important to be able to transform voltages? The main reason is to 
minimize energy dissipation in power lines. Suppose that a power plant supplies a 
power P to a distant city. Since the power supplied is PS = ISVS, where IS and VS are 
the current and voltage supplied to the load (the city), the plant can either supply a 
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higher voltage and a smaller current, or a lower voltage and a larger current. If the 
power lines have total resistance R, the rate of energy dissipation in the power lines 
is Is

2R. Thus, to minimize energy dissipation in the power lines, we want as small a 
current as possible flowing through them, which means the potential differences must 
be large—hundreds of kilovolts in some cases. Transformers are used to raise the 
output emf of a generator to high voltages (Fig. 20.24). It would be unsafe to have 
such high voltages on household wiring, so the voltages are transformed back down 
before reaching the house.

20.7 EDDY CURRENTS

Whenever a conductor is subjected to a changing magnetic flux, the induced emf 
causes currents to flow. In a solid conductor, induced currents flow simultane-
ously along many different paths. These eddy currents are so named due to their 
resemblance to swirling eddies of current in air or in the rapids of a river. Though 
the pattern of current flow is complicated, we can still use Lenz’s law to get a 
general idea of the direction of the current flow (clockwise or counterclockwise). 
We can also determine the qualitative effects of eddy current flow using energy 
conservation. Since they flow in a resistive medium, the eddy currents dissipate 
electric energy.

Figure 20.24 Voltages are 
transformed in several stages. 
This step-up transformer raises 
the voltage from a generating 
station to 345 kV for transmis-
sion over long distances. Volt-
ages are transformed back down 
in several stages. The last trans-
former in the series reduces the 
3.4 kV on the local power lines 
to the 170 V used in the house.
©Mark Antman/The Image Works

Conceptual Example 20.8

Eddy-Current Damping

A balance must have some damping mechanism. Without 
one, the balance arm would tend to oscillate for a long time 
before it settles down; determining the mass of an object 
would be a long, tedious process. A typical device used to 
damp out the oscillations is shown in Fig. 20.25.

A metal plate attached to the balance arm passes be-
tween the poles of a permanent magnet. (a) Explain the 
damping effect in terms of energy conservation. (b) Does the 
damping force depend on the speed of the plate?

Strategy As portions of the metal plate move into or out 
of the magnetic field, the changing magnetic flux through 
regions of the plate induces emfs. These induced emfs cause 
the flow of eddy currents. Lenz’s law determines the direc-
tion of the eddy currents.

Solution (a) As the plate moves between the magnet poles, 
parts of it move into the magnetic field while other parts 
move out of the field. Due to the changing magnetic flux, 
induced emfs cause eddy currents to flow. The eddy currents 
dissipate energy; the energy must come from the kinetic en-
ergy of the balance arm, pan, and object on the pan. As the 
currents flow, the kinetic energy of the balance decreases and 
it comes to rest much sooner than it would otherwise.
(b) If the plate is moving faster, the flux is changing faster. 
Faraday’s law says that the induced emfs are proportional to 
the rate of change of the flux. Larger induced emfs cause larger 
currents to flow. The damping force is the magnetic force act-
ing on the eddy currents. Therefore, the damping force is larger.

As the plate slows down and comes to rest, the damping 
force decreases to zero. A sliding friction pad could exert a 
frictional force even when the plate is at rest, which would 
affect the reading of the balance. Eddy current damping does 
not change the reading because the damping force at rest 
must be zero.

Discussion Another way to approach part (a) is to use 
Lenz’s law. The magnetic force acting on the eddy currents 

Figure 20.25
A balance. The damping mechanism is at the far right (arrow); as 
the balance arm oscillates, the metal plate moves between the 
poles of a magnet.
©Tom Pantages

continued on next page
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Application: Eddy-Current Braking

The phenomenon described in Example 20.8 is called eddy-current braking. The eddy-
current brake is ideal for a sensitive instrument such as a laboratory balance. At the 
end of the balance arm, a metal plate passes between two magnets. When the arm is 
moving, eddy currents are induced in the metal plate. The damping mechanism never 
wears out or needs adjustment, and we are guaranteed that it exerts no force when the 
balance arm is not moving. Eddy-current brakes are also used with rail vehicles such 
as the maglev monorail, tramways, locomotives, passenger coaches, and freight cars.

The damping force due to eddy currents automatically acts opposite to the motion; 
its magnitude is also larger when the speed is larger. The damping force is much like 
the viscous force on an object moving through a fluid (see Problem 43).

Application: The Induction Stove

The induction stove discussed in the opening of this chapter operates via eddy currents. 
Under the cooking surface is an electromagnet that generates an oscillating magnetic 
field. When a metal pan is put on the stove, the emf causes currents to flow, and the 
energy dissipated by these currents is what warms the pan (Fig. 20.27). The pan must 
be made of metal; if a pan made of Pyrex glass is used, no currents flow and no heat-
ing occurs. For the same reason, there is no risk of starting a fire if a pot holder or 
sheet of paper is accidentally put on the induction stove. The cooking surface itself is 
a nonconductor; its temperature only rises to the extent that heat is conducted to it from 
the pan. The cooking surface therefore gets no hotter than the bottom of the pan.

20.8 INDUCED ELECTRIC FIELDS

When a conductor moves in a magnetic field, a motional emf arises due to the mag-
netic force on the mobile charges. Since the charges move along with the conductor, 
they have a nonzero average velocity. The magnetic force on these charges pushes 
them around the circuit if a complete circuit exists.

What causes the induced emf in a stationary conductor in a changing magnetic 
field? Now the conductor is at rest, and the mobile charges have an average velocity 
of zero. The average magnetic force on them is then zero, so it cannot be the magnetic 
force that pushes the charges around the circuit. An induced electric field, created 
by the changing magnetic field, acts on the mobile charge in the conductor, pushing 
it around the circuit. The same force law (F

→
= qE

→
) applies to induced electric fields 

as to any other electric field.
The induced emf around a loop is the work done per unit charge on a charged par-

ticle that moves around the loop. Thus, an induced electric field does nonzero work on a 
charge that moves around a closed path, starting and ending at the same point. In other 

Conceptual Example 20.8 continued

must oppose the flux change, so it must oppose the motion 
of the plate through the magnet. Slowing down the plate 
lessens the rate of flux change, whereas speeding up the 
plate would increase the rate of flux change—and increase 
the balance’s kinetic energy, violating energy conservation.

Conceptual Practice Problem 20.8 Choosing a 
Core for a Transformer

In some transformers, the core around which wire is wrapped 
consists of parallel, insulated iron wires instead of solid iron 

Figure 20.27 The eddy 
 currents induced in a metal 
pan on an induction stove.

(Fig. 20.26). Explain the advantage of using the insulated 
wires instead of the solid core. [Hint: Think about eddy cur-
rents. Why are eddy currents a disadvantage here?]

Figure 20.26
Transformer cores.

(a) Bundles of
iron wires

(b) Solid soft-iron
core
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words, the induced electric field is nonconservative. The work done by the induced E
→

 
field cannot be described as the charge times the potential difference. The concept of 
potential depends on the electric field doing zero work on a charge moving around a closed 
path—only then can the potential have a unique value at each point in space. Table 20.1 
summarizes the differences between conservative and nonconservative E

→
 fields.

Electromagnetic Fields

How can Faraday’s law give the induced emf regardless of why the flux is changing—
whether because of a changing magnetic field or because of a conductor moving in 
a magnetic field? A conductor that is moving in one frame of reference is at rest in 
another frame of reference. As we will see in Chapter 26, Einstein’s theory of special 
relativity says that either reference frame is equally valid. In one frame, the induced 
emf is due to the motion of the conductor; in the other, the induced emf is due to a 
changing magnetic field.

The electric and magnetic fields are not really separate entities. They are intimately 
connected. An electric and a magnetic field are different physical quantities with differ-
ent units. We regularly think of them as distinct, but a more profound view is to think 
of them as two aspects of the electromagnetic field. To use a loose analogy: a vector 
has different x- and y-components in different coordinate systems, but these components 
represent the same vector quantity. In the same way, the electromagnetic field has electric 
and magnetic parts (analogous to vector components) that depend on the frame of refer-
ence. A purely electric field in one frame of reference has both electric and magnetic 
“components” in another reference frame.

You may notice a missing symmetry. If a changing B
→

 field is always accompanied 
by an induced E

→
 field, what about the other way around? Does a changing electric 

field make an induced magnetic field? The answer to this important question—central 
to our understanding of light as an electromagnetic wave—is yes (Chapter 22).

20.9 INDUCTANCE

Mutual Inductance

Figure 20.28 shows two coils of wire. A power supply with variable emf causes cur-
rent I1 to flow in coil 1; the current produces magnetic field lines as shown. Some of 
these field lines cross through the turns of coil 2. If we adjust the power supply so 
that I1 changes, the flux through coil 2 changes and an induced emf appears in coil 2. 
Mutual inductance—when a changing current in one device causes an induced emf 
in another device—can occur between two circuit elements in the same circuit as well 

CONNECTION:

Relativity unifies the electric 
and magnetic fields.

Conservative E
→

 Fields Nonconservative (Induced) E
→

 Fields

Source Charges Changing B
→

 fields
Field lines Start on positive charges  

  and end on negative 
charges

Closed loops

Can be described by  
 an electric potential?

Yes No

Work done over a  
 closed path

Always zero Can be nonzero

Table 20.1 Comparison of Conservative and Nonconservative E
→

 Fields

Coil 1
Galvanometer

Adjustable
power supply

I1 I2

Coil 2

Iron core

B

Figure 20.28 An induced 
emf appears in coil 2 due to 
the changing current in coil 1.
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as between circuit elements in two different circuits. In either case, a changing current 
through one element induces an emf in the other. The effect is truly mutual: a chang-
ing current in coil 2 induces an emf in coil 1 as well.

Self-Inductance

American scientist Joseph Henry (1797–1878) was the first to wrap insulated wires around 
an iron core to make an electromagnet. (Henry actually discovered induced emfs before 
Faraday, but Faraday published first.) Henry was also the first to suggest that a changing 
current in a coil induces an emf in the same coil—an effect called self-inductance (or 
inductance for short). When a coil, solenoid, toroid, or other circuit element is used in a 
circuit primarily for its self-inductance effects, it is called an inductor (Fig. 20.29).

Figure 20.29 An iron ring 
wrapped with insulated wire 
serves as an inductor on this 
circuit board.
©CobraCZ/Shutterstock

The circuit symbol for an inductor is 

The inductance L of an inductor is defined as the constant of proportionality 
between the self-flux through the inductor and the current I flowing through the 
inductor windings.

Definition of inductance

 NΦ = LI  (20-27)

Induced emf in an inductor

 ℰ = −N  

ΔΦ
Δt

= −L  

ΔI

Δt
 (20-29)

where the flux through each turn is Φ and the inductor has N turns. The SI unit 
for inductance is called the henry (symbol H). From Eq. (20-27), L = NΦ/I and, 
therefore,

 1 H = 1 
Wb
A

= 1 
Wb/s
A/s

= 1 
V·s
A

 (20-28)

When the current in the inductor changes, the flux changes. N and L are constants, 
so N ΔΦ = L ΔI. Then, from Faraday’s law, the induced emf in the inductor is

The inducted emf is proportional to the rate of change of the current.

Inductance of a Solenoid The most common form of inductor is the solenoid. In 
Problem 51, the self-inductance L of a long air core solenoid of n turns per unit length, 
length ℓ, and radius r is found to be

 L = μ0n
2πr2ℓ (20-30)

In terms of the total number of turns N, where N = nℓ, the inductance is

 L =
μ0N

2πr2

ℓ
 (20-31)

Inductors in Circuits The behavior of an inductor in a circuit can be summarized 
as current stabilizer. The inductor “likes” the current to be constant—it “tries” to 
maintain the status quo. If the current is constant, there is no induced emf; to the 
extent that we can ignore the resistance of its windings, the inductor acts like a short 
circuit. When the current is changing, the induced emf is proportional to the rate of 
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change of the current. According to Lenz’s law, the direction of the emf opposes the 
change that produces it. If the current is increasing, the direction of the emf in the 
inductor pushes back as if to make it harder for the current to increase (Fig. 20.30a). 
If the current is decreasing, the direction of the emf in the inductor is forward, as if 
to help the current keep flowing (Fig. 20.30b).

Inductors Store Energy An inductor stores energy in its magnetic field, just as a 
capacitor stores energy in its electric field. Suppose the current in an inductor increases 
at a constant rate from 0 to I in a time T. We let lowercase i stand for the instanta-
neous current at some time t between 0 and T, and let uppercase I stand for the final 
current. The instantaneous rate at which energy accumulates in the inductor is

 P = ℰi (18-34)

Since current increases at a constant rate, the magnetic flux increases at a constant rate, 
so the induced emf is constant. Also, since the current increases at a constant rate, the 
average current is Iav = I/2. Then the average rate at which energy accumulates is

 Pav = ℰIav =
1
2

 ℰI  (20-32)

Using Eq. (20-29) for the emf, the average power is

 Pav =
1
2

 (L 

Δi

Δt
 )I  (20-33)

and the total energy stored in the inductor is

 U = PavT =
1
2(L 

Δi

Δt)IT  (20-34)

Since the current changes at a constant rate, Δi/Δt = I/T. The total energy stored in 
the inductor is

+ – – +

Increasing current
I

Decreasing current
I

(a) (b)

Figure 20.30 The current 
through both these inductors 
flows to the right. In (a), the 
current is increasing; the 
induced emf in the inductor 
“tries” to prevent the increase. 
In (b), the current is decreas-
ing; the induced emf in the 
inductor “tries” to prevent the 
decrease.

CONNECTION:

Compare the energy stored in 
an inductor and the energy 
stored in a capacitor:
UC = 1

2C−1Q2 [Eq. (17-31)].
The energy in the magnetic 
field of an inductor is propor-
tional to the square of the 
current, just as the energy in 
the electric field of a capaci-
tor is proportional to the 
square of the charge.

Magnetic energy stored in an inductor

 U =
1
2

 LI2 (20-35)

Although to simplify the calculation we assumed that the current was increased from 
zero at a constant rate, Eq. (20-35) for the energy stored in an inductor depends only 
on the current I and not on how the current reached that value.

Magnetic Energy Density We can use the inductor to find the magnetic energy 
density in a magnetic field. Consider a solenoid so long that we can ignore the mag-
netic energy stored in the field outside it. The inductance is

 L = μ0n
2πr2ℓ (20-30)

where n is the number of turns per unit length, ℓ is the length of the solenoid, and r 
is its radius. The energy stored in the inductor when a current I flows is

 U =
1
2

 LI2 =
1
2

 μ0n
2πr2ℓI2 (20-36)

The volume of space inside the solenoid is the length times the cross-sectional area:

volume = πr2ℓ

Then the magnetic energy density—energy per unit volume—is

 uB =
U

πr2ℓ
=

1
2

μ0n
2I2 (20-37)



790 CHAPTER	20 Electromagnetic Induction

Equation (20-38) is valid for more than the interior of an air core solenoid; it gives 
the energy density for any magnetic field except for the field inside a ferromagnet. 
Both the magnetic energy density and the electric energy density are proportional to 
the square of the field magnitude—recall that the electric energy density is

 uE =
1
2

 κϵ0E
2 (17-34)

CHECKPOINT 20.9

Five	 solenoids	 are	 wound	 with	 the	 same	 number	 of	 turns	 per	 unit	 length	 n.	
Their	lengths,	diameters,	and	the	currents	flowing	through	them	are	given.	Rank	
them	in	decreasing	order	of	the	magnetic	energy	stored.	(a)	ℓ	=	6	cm,	d	=	1	cm,	
I	=	150	mA;	(b)	ℓ	=	12	cm,	d	=	0.5	cm,	 I	=	150	mA;	(c)	ℓ	=	6	cm,	d	=	2	cm,	
I	=	75	mA;	(d)	ℓ	=	12	cm,	d	=	1	cm,	 I	=	150	mA;	(e)	ℓ	=	12	cm,	d	=	2	cm,	
I	=	30	mA.

Magnetic energy density

 uB =
1

2μ0
 B2 (20-38)

Example 20.9

Energy Stored in an MRI Magnet

The main magnet in an MRI machine is a large solenoid whose 
windings are superconducting wire (with no electrical resis-
tance) kept cold by liquid helium at its boiling point (−269°C). 
The solenoid is 2.0 m long and 0.60 m in diameter. During 
normal operation, the current through the windings is 120 A 
and the magnetic field magnitude is 1.4 T. (a) How much  energy 
is stored in the magnetic field during normal operation? 
(b)  During an accidental quench, part of the coil becomes a 
normal conductor instead of a superconductor. The energy 
stored in the magnet is then rapidly dissipated. How many 
moles of liquid helium can be boiled by the energy stored in the 
magnet (Fig. 20.31)? (The latent heat of vaporization of helium 
is 82.9  J/mol.) At 20°C and 1 atm, what volume would this 
amount of helium occupy? (c) After necessary repairs, the mag-
net is restarted by connecting the solenoid to an 18 V power 
supply. How long does it take for the current to reach 120 A?

Strategy (a) The energy stored can be found from the in-
ductance and the current [Eq. (20-35)], but the problem 
gives the magnetic field rather than the inductance, so an 
easier approach starts by calculating the magnetic energy 
density. The energy stored is then the energy density (energy 
per unit volume) times the volume of the solenoid. (b) The 
helium is already at its boiling point and undergoes no tem-
perature change. Using the energy found in part (a) along 
with the latent heat, we can calculate the number of moles of 

helium that boil. Then the ideal gas law relates the number of 
moles to the volume the helium occupies after it has warmed 
to room temperature. (c) The superconducting windings 
of  the solenoid have zero electrical resistance, so we can 

continued on next page

Figure 20.31
Quench of a superconducting magnet. The energy stored in the 
magnet is rapidly dissipated, boiling the liquid helium that is used 
to keep the magnet cold.
©George Miller

To express the energy density in terms of the magnetic field magnitude recall that 
B = μ0nI [Eq. (19-33)] inside a long solenoid. Therefore,
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Example 20.9 continued

treat the solenoid as an ideal inductor. When connected to a 
power supply, Kirchhoff’s loop rule requires that the induced 
emf in the solenoid be equal to the emf of the power supply.

Solution (a) The shape of a solenoid is cylindrical, so the 
volume is V = πr2ℓ. Using the magnetic energy density 
[Eq. (20-38)], the total energy stored is:

U = uBπr2ℓ =
1

2μ0
 B2πr2ℓ

Now we can substitute numerical values.

 U =
1

2(4π × 10−7 T·m/A)
 (1.4 T)2π(0.30 m)2(2.0 m)

 = 0.441 MJ, which rounds to 0.44 MJ

(b) The number of moles of helium that boil is

n =
U

Lv

where Lv is the latent heat of vaporization per mole.

n =
U

Lv
=

0.441 MJ
82.9 J/mol

= 5300 mol

Then from the ideal gas law,

 V = n  

RT

P
=

U

Lv
 

RT

P

 =
0.441 × 106 J × 8.31 J

K·mol × 293 K
82.9 J

mol × 101.3 × 103 Pa
= 130 m3

Although all of the energy stored in the solenoid doesn’t 
go into boiling helium, this result makes it clear that 

 asphyxiation is a serious danger when an accidental 
quench occurs.

(c) The inductance can be found from the energy U stored at 
If = 120 A:

U =
1
2

  LI2
f ⇒  L =

2U

I2
f

The induced emf in the solenoid is equal to the emf of the 
power supply.

∣ℰ∣ = L 

ΔI

Δt
 ⇒ Δt =

L ΔI

∣ℰ∣
=

2U ΔI

I2
f ∣ℰ∣

The current is initially zero, so ΔI = If. Then

Δt =
2(0.441 × 106 J)(120 A)

(120 A)2(18 V)
= 408 s = 6.8 min

Discussion The problem did not require it, but we can 
find the inductance from the information given. One ap-
proach is to calculate it from the stored energy, as in part (c). 
Another is to use the expression for the magnetic field inside 
a solenoid, B = μ0nI, to find the number of turns per unit 
length n, and then Eq. (20-30) to find the inductance. Either 
approach yields L = 61 H.

Practice Problem 20.9 Power in an Inductor

The current in an inductor increases from 0 to 2.0 A during 
a time interval of 4.0 s. The inductor is a solenoid with ra-
dius 2.0 cm, length 12 cm, and 9000 turns. Calculate the 
average rate at which energy is stored in the inductor during 
this time interval. [Hint: Use one method to calculate the 
answer and another as a check.]

20.10 LR CIRCUITS

To get an idea of how inductors behave in circuits, let’s first study them in dc  circuits—
that is, in circuits with batteries or other constant-voltage power supplies. Consider 
the LR circuit in Fig. 20.32. The inductor is assumed to be ideal: its windings have 
negligible resistance. At t = 0, the switch S is closed. What is the subsequent current 
in the circuit?

The current through the inductor just before the switch is closed is zero. As the 
switch is closed, the current is initially zero. An instantaneous change in current 
through an inductor would mean an instantaneous change in its stored energy, since 
U ∝ I  2. An instantaneous jump in energy would mean that energy is supplied in zero 
time. Since nothing can supply infinite power,

Current through an inductor must always change continuously, never 
 instantaneously.

RL

ℰb

ℰL

S

Figure 20.32 A dc circuit 
with an inductor L, a resistor R, 
and a switch S. When the cur-
rent is changing, an emf is 
induced in the inductor (repre-
sented by a battery symbol 
above the inductor).
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The initial current is zero, so there is no voltage drop across the resistor. The 
magnitude of the induced emf in the inductor (ℰL)  is initially equal to the battery’s 
emf (ℰb) . Therefore, the current is rising at an initial rate given by

 
ΔI

Δt
=

ℰb

L
 (20-39)

As current builds up, the voltage drop across the resistor increases. Then the 
induced emf in the inductor (ℰL)  gets smaller (Fig. 20.33) so that

 (ℰb − ℰL) − IR = 0 (20-40)
or
 ℰb = ℰL + IR (20-41)

Since the voltage across an ideal inductor is the induced emf, we can substitute 
ℰL = L(ΔI/Δt) : [The minus sign has already been written explicitly in Eq. (20-40); ℰL 
here stands for the magnitude of the emf.]

 ℰb = L  

ΔI

Δt
+ IR (20-42)

The battery emf is constant. Thus, as the current increases, the voltage drop across 
the resistor gets larger and the induced emf in the inductor gets smaller. Therefore, 
the rate at which the current increases gets smaller (Fig. 20.34). After a very long 
time, the current reaches a stable value. Since the current is no longer changing, there 
is no voltage drop across the inductor, so ℰb = IfR or

 If =
ℰb

R
 (20-43)

The current as a function of time I(t) is:

 I(t) = If (1 − e− t/τ)  (20-44)

The time constant τ for this circuit must be some combination of L, R, and ℰ. Dimen-
sional analysis (Problem 62) shows that τ must be some dimensionless constant times 
L/R. It can be shown with calculus that the dimensionless constant is 1:

Time constant, LR circuit

 τ =
L

R
 (20-45)

The induced emf as a function of time is

 ℰL(t) = ℰb − IR = ℰb −
ℰb

R
 (1 − e− t/τ)R = ℰbe

− t/τ (20-46)

The LR circuit in which the current is initially zero is analogous to the charging RC 
circuit. In both cases, the device starts with no stored energy and gains energy after the 
switch is closed. In charging a capacitor, the charge eventually reaches a nonzero equi-
librium value, whereas for the inductor the current reaches a nonzero equilibrium value.

CHECKPOINT 20.10

In	 Fig.	20.32,	ℰb=	1.50	V,	L	=	3.00	mH,	and	R	=	12.0	Ω.	 (a)	 At	what	 rate	 is	
the	current	through	the	inductor	changing	just	after	the	switch	is	closed?	(b)	When	
does	the	 induced	emf	 in	the	 inductor	 fall	 to	e−1	≈	0.368	times	 its	 initial	value?

CONNECTION:

I(t) for this LR circuit has the 
same mathematical form as 
q(t) for the charging RC 
 circuit.

0

0.368ℰb

0.135ℰb

ℰb

ℰL

2τ 3τ 4τ
t

τ

Figure 20.33 The voltage 
drop across the inductor as the 
current builds up.

0

0.632If

0.865If
If

I

τ 2τ 3τ 4τ
t

Figure 20.34 The current in 
the circuit as a function of time.
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What about an LR circuit analogous to the discharging RC circuit? That is, once 
a steady current is flowing through an inductor, and energy is stored in the inductor, 
how can we stop the current and reclaim the stored energy? Simply opening the switch 
in Fig. 20.32 would not be a good way to do it. The attempt to suddenly stop the 
current would induce a huge emf in the inductor. Most likely, sparks would complete 
the circuit across the open switch, allowing the current to die out more gradually. 
(Sparking generally isn’t good for the health of the switch.)

A better way to stop the current is shown in Fig. 20.35. Initially switch S1 is 
closed and a current I0 = ℰb/R1 is flowing through the inductor (Fig. 20.35a). Switch 
S2 is closed and then S1 is immediately opened at t = 0. Since the current through 
the inductor can only change continuously, the current flows as shown in Fig. 20.35b. 
At t = 0, the current is I0 = ℰb/R1. The current gradually dies out as the energy stored 
in the inductor is dissipated in resistor R2. The current as a function of time is a 
decaying exponential:

 I(t) = I0e
− t/τ (20-47)

where

 τ =
L

R2
 (20-48)

The voltages across the inductor and resistor can be found from the loop rule and 
Ohm’s law.

R2

R1 L

I0

I0
I0

ℰb

S2

S1

R2

R1 L

ℰb

S2

S1
I(t)I(t)

I(t)

(a)

(b)

Figure 20.35 A circuit that 
allows the current in the induc-
tor circuit to be safely stopped. 
(a) Initially switch S1 is closed 
and switch S2 is open. (b) At 
t = 0, switch S2 is closed and 
then switch S1 immediately 
opened.

CONNECTION:

I(t) in this LR circuit is analo-
gous to q(t) for a discharging 
RC circuit.

CONNECTION:

This summary shows that RC and LR circuits are closely analogous.

Capacitor Inductor

Voltage is proportional to Charge Rate of change of 
current

Can change discontinuously Current Voltage
Cannot change discontinuously Voltage Current
Energy stored (U) is proportional to V2 I2

When V = 0 and I ≠ 0 U = 0 U = maximum
When I = 0 and V ≠ 0 U = maximum U = 0
Energy stored (U) is proportional to E2 B2

Time constant = RC L/R
“Charging” circuit I(t) ∝ e−t/τ I(t) ∝ (1 − e−t/τ)

VC(t) ∝ (1 − e−t/τ) VL(t) = ℰL(t) ∝ e−t/τ

“Discharging” circuit I(t) ∝ e−t/τ I(t) ∝ e−t/τ

VC(t) ∝ e−t/τ
VL(t) = ℰL(t) ∝ e−t/τ

Example 20.10

Switching on a Large Electromagnet

A large electromagnet has an inductance L = 15 H. The re-
sistance of the windings is R = 8.2 Ω. Treat the electromag-
net as an ideal inductor in series with a resistor (as in 

Fig. 20.32). When a switch is closed, a 24 V dc power supply 
is connected to the electromagnet. (a) What is the ultimate 
current through the windings of the electromagnet? (b) How 

continued on next page
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Figure 20.36
Practice Problem 20.10.

50.0 Ω24 V

8.2 Ω

15 H

Electromagnet

Example 20.10 continued

long after closing the switch does it take for the current to 
reach 99.0% of its final value?

Strategy When the current reaches its final value, there is 
no induced emf. The ideal inductor in Fig. 20.32 therefore 
has no potential difference across it. Then the entire voltage 
of the power source is across the resistor. The current follows 
an exponential curve as it builds to its final value. When it is 
at 99.0% of its final value, it has 1.0% left to go.

Solution (a) After the switch has been closed for many 
time constants, the current reaches a steady value. When the 
current is no longer changing, there is no induced emf. 
Therefore, the entire 24 V of the power supply is dropped 
across the resistor:

ℰb = ℰL + IR

when ℰL = 0, If =
ℰb

R
=

24 V
8.2 Ω

= 2.9 A

(b) The factor e−t/τ represents the fraction of the current yet to 
build up. When the current reaches 99.0% of its final value,

1 − e− t/τ = 0.990 or e− t/τ = 0.010

There is 1.0% yet to go. To solve for t, first take the natural 
logarithm (ln) of both sides to get t out of the exponent 
[Eq. (A-29)]:

ln(e− t/τ) = −t/τ = ln 0.010 = −4.61

Now solve for t:

t = 4.61τ = 4.61(
15 H
8.2 Ω) = 8.4 s

It takes 8.4 s for the current to build up to 99.0% of its final 
value.

Discussion A slightly different approach is to write the 
current as a function of time:

I(t) =
ℰb

R
 (1 − e− t/τ) = If(1 − e− t/τ)

We are looking for the time t at which I = 99.0% of 2.9 A or 
I/If = 0.990. Then

0.990 = 1 − e− t/τ or e− t/τ = 0.010

as before.

Practice Problem 20.10 Switching Off the 
 Electromagnet

When the electromagnet is to be turned off, it is connected to 
a 50.0 Ω resistor, as in Fig. 20.36, to allow the current to 
decrease gradually. In what time interval after the switch is 
opened does the current decrease to 0.1 A?

Master the Concepts

 ∙ A conductor moving through a magnetic field develops 
a motional emf given by
 ℰ = vBL (20-5)

  if both v→ and B
→

 are perpendicular to the rod.

+

–

L
v

E

B

 ∙ When analyzing a circuit that includes induced emfs, it 
is often helpful to draw the induced emfs using the same 
symbol used for batteries and other emfs.

 ∙ The emf due to an ac generator with one planar coil of 
wire turning in a uniform magnetic field is sinusoidal 
and has amplitude ωNBA:

 ℰ(t) = ωNBA sin ωt (20-12)

Here ω is the angular speed of the coil, A is its area, and 
N is the number of turns.

T

ωNBA

ℰ

–ωNBA

0
t

continued on next page
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Master the Concepts continued

 ∙ Magnetic flux through a planar surface:

 ΦB = B⊥A = BA⊥ = BA cos θ (20-17)
(θ is the angle between B

→
 and the normal.)

The magnetic flux is proportional to the number of 
magnetic field lines that cut through a surface. The SI 
unit of magnetic flux is the weber (1 Wb = 1 T·m2).

B‖ = B sin θ

B⊥ = B cos θ

A

B

B

θ

θ

 ∙ Faraday’s law gives the induced emf whenever there is a 
changing magnetic flux, regardless of the reason the flux 
is changing:

 ℰ = −N  

ΔΦB

Δt
 (20-19)

  ΦB represents the flux through each turn of wire in a 
loop or coil; N is the number of turns.

 ∙ Lenz’s law: when a changing magnetic flux causes an in-
duced current to flow, the induced current produces its 
own magnetic field in a direction that opposes the change 
in flux. Also, the magnetic force on an induced current 
 opposes the change in flux that caused the induced current.

 ∙ The back emf in a motor increases as the rotational 
speed increases.

 ∙ For an ideal transformer,

 
ℰ2

ℰ1
=

N2

N1
=

I1

I2
 (20-26)

The ratio N2/N1 is called the turns ratio. There is no en-
ergy loss in an ideal transformer, so the power input is 
equal to the power output.

 ∙ Whenever a solid conductor is subjected to a changing 
magnetic flux, the induced emf causes eddy currents to 

flow simultaneously along many different paths. Eddy 
currents dissipate energy.

 ∙ A changing magnetic field gives rise to an induced elec-
tric field. If W is the work done by the induced electric 
field on a particle of charge q as the particle moves 
around the loop, then the induced emf around the loop is 
ℰ = W/q.

 ∙ Mutual inductance: a changing current in one device 
induces an emf in another device.

 ∙ Self-inductance: a changing current in a device induces an 
emf in the same device. The inductance L is defined by:

 NΦ = LI  (20-27)

 ℰ = −L 

ΔI

Δt
 (20-29)

 ∙ The energy stored in an inductor is

 U =
1
2

 LI2 (20-35)

 ∙ The energy density (energy per unit volume) in a mag-
netic field is

 uB =
1

2μ0
 B2 (20-38)

 ∙ Current through an inductor must always change con-
tinuously, never instantaneously. In an LR circuit, the 
time constant is

 τ =
L

R
 (20-45)

The current in an LR circuit is

 If I0 = 0, I(t) = If(1 − e− t/τ)  (20-44)

0

0.632If

0.865If

If

I

τ 2τ 3τ 4τ
t

 If If = 0, I(t) = I0e
− t/τ (20-47)

Conceptual Questions

 1. A vertical magnetic field is perpendicular to the hori-
zontal plane of a wire loop. When the loop is rotated 
about a horizontal axis in the plane, the current induced 
in the loop reverses direction twice per rotation. Explain 
why there are two reversals for one rotation.

 2. In a transformer, two coils are wound around an iron 
core; an alternating current in one coil induces an emf in 

the second. The core is normally made of either lami-
nated iron—thin sheets of iron with an insulating mate-
rial between them—or a bundle of parallel insulated 
iron wires. Why not just make it of solid iron?

 3. A certain amount of energy must be supplied to 
 increase the current through an inductor from 0 mA 
to  10 mA. Does it take the same amount of energy, 
more, or less to increase the current from 10 mA to 
20 mA?
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 4. High-voltage power lines run along the edge of a farm-
er’s field. Describe how the farmer might be able to 
steal electric power without making any electrical con-
nection to the power line. (Yes, it works. Yes, it has been 
done. Yes, it is illegal.)

 5. A metal plate is attached 
to the end of a rod and po-
sitioned so that it can 
swing into and out of a 
perpendicular magnetic 
field pointing out of the 
plane of the paper as 
shown. In position 1, the 
plate is just swinging into 
the field; in position 2, the plate is swinging out of the 
field. Does an induced eddy current circulate clock-
wise or counterclockwise in the metal plate when it is 
in (a) position 1 and (b) position 2? (c) Will the in-
duced eddy currents act as a braking force to stop the 
pendulum motion? Explain.

 6.  Magnetic induction is the principle behind the 
 operation of mechanical speedometers used in auto-
mobiles and bicycles. In the drawing, a simplified ver-
sion of the speedometer, a metal disk is free to spin 
about the vertical axis passing through its center. Sus-
pended above the disk is a horseshoe magnet. (a) If 
the horseshoe magnet is connected to the drive shaft 
of the vehicle so that it rotates about a vertical axis, 
what happens to the disk? [Hint: Think about eddy 
currents and Lenz’s law.] (b) Instead of being free to 
rotate, the disk is restrained by a hairspring. The 
 hairspring exerts a restoring torque on the disk 
 proportional to its angular displacement from equilib-
rium. When the horseshoe magnet rotates, what 
happens to the disk? A pointer attached to the disk 
indicates the speed of the vehicle. How does the angu-
lar position of the pointer depend on the angular speed 
of the magnet?

N S

Rotating
magnet

Metal disk

 7. Wires that carry telephone signals or Internet data are 
twisted. The twisting reduces the noise on the line from 

nearby electric devices that produce changing currents. 
How does the twisting reduce noise pickup?

I I

 8.  If the magnetic fields produced by the x-, y-, and z-
coils in an MRI (see Section 19.8) are changed too rap-
idly, the patient may experience twitching or tingling 
sensations. What do you think might be the cause of 
these sensations? Why does the much stronger static 
field not cause twitching or tingling?

 9. The magnetic flux through a flat surface is known. The 
area of the surface is also known. Is that information 
enough to calculate the average magnetic field on the 
surface? Explain.

 10. Would a ground fault interrupter work if the circuit used 
dc current instead of ac? Explain.

 11. In the study of thermodynamics, we thought of a refrig-
erator as a reversed heat engine. (a) Explain how a gen-
erator is a reversed electric motor. (b) What kind of 
device is a reversed loudspeaker?

 12. Two identical circular coils of wire are separated by a 
fixed center-to-center distance. Describe the orientation 
of the coils that would (a) maximize or (b) minimize 
their mutual inductance.

 13. (a) Explain why a transformer works for ac but not for 
dc. (b) Explain why a transformer designed to be con-
nected to an emf of amplitude 170 V would be damaged 
if connected to a dc emf of 170 V.

 14. Credit cards have a magnetic strip that encodes informa-
tion about the credit card account. Why do devices that 
read the magnetic strip often include the instruction to 
swipe the card rapidly? Why can’t the magnetic strip be 
read if the card is swiped too slowly?

 15. Think of an example that illustrates why an “anti-Lenz” 
law would violate the conservation of energy. (The “anti-
Lenz” law is: The direction of induced emfs and currents 
always reinforces the change that produces them.)

 16. A 2 m long copper pipe is held vertically. When a mar-
ble is dropped down the pipe, it falls through in about 
0.7 s. A magnet of similar size and shape dropped down 
the pipe takes much longer. Why?

 17. An electric mixer is being used to mix up some cake 
batter. What happens to the motor if the batter is too 
thick, so the beaters are turning slowly?

 18. A circular loop of wire can be used as an antenna to 
sense the changing magnetic fields in an electromag-
netic wave (such as a radio transmission). What is the 
advantage of using a coil with many turns rather than a 
single loop?

 19. Some low-cost voice recorders do not have a separate 
microphone. Instead, the speaker is used as a micro-
phone when recording. Explain how this works.

B

1 2
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Multiple-Choice Questions

 1. An electric current is induced in a conducting loop by 
all but one of these processes. Which one does not pro-
duce an induced current?

 (a)  rotating the loop so that it cuts across magnetic field 
lines

 (b)  placing the loop so that its area is perpendicular to a 
changing magnetic field

 (c)  moving the loop parallel to uniform magnetic field 
lines

 (d)  expanding the area of the loop while it is perpen-
dicular to a uniform magnetic field

t0

I2
t

t0I2
t

t0

I2
t

t0
I2

t t
t0

I2 t0
I2

t

(a) (b) (c)

(f)(e)(d)

 2. Suppose the switch in Fig. 20.21 has been closed for a 
long time but is suddenly opened at t = t0. Which of 
these graphs best represents the current in coil 2 as a 
function of time? I2 is positive if it flows from A to B 
through the resistor.

 3. A split-ring commutator is used in a dc generator to
 (a)  rotate a loop so that it cuts through magnetic field lines.
 (b)  reverse the connections to an armature so that the 

current periodically reverses direction.
 (c)  reverse the connections to an armature so that the 

current does not reverse direction.
 (d)  prevent a coil from rotating when the magnetic field 

is changing.
 4. The current in the long wire 

is decreasing. What is the 
 direction of the current in-
duced in the conducting loop 
below the wire?

 (a) counterclockwise (CCW) (b) clockwise (CW)
 (c) CCW or CW depending on the shape of the loop
 (d) No current is induced.
 5. In a bicycle speedometer, a bar magnet is attached to the 

spokes of the wheel and a coil is attached to the frame so 
that the north pole of the magnet moves past it once for 
every revolution of the wheel. As the magnet moves 
past the coil, a pulse of current is induced in the coil. A 
computer then measures the time between pulses and 
computes the bicycle’s speed. The figure shows the 
magnet about to move past the coil. Which of the graphs 
shows the resulting current pulse? Take current counter-
clockwise in part (a) of the figure to be positive.

Magnet
(north pole facing
the viewer)

Coil

t

I

t

I

t

I

t

I

(a) (b) (d)(c)

 6. For each of the experiments (1, 2, 3, 4) shown, in what 
direction does current flow through the resistor? Note 
that the wires are not always wrapped around the plastic 
tube in the same way.

(1) S to be closed
S P

(2) S to be opened

(3) Coil moves to right

Q S P Q

P
(4) Coil moves left

Q P Q

 (1) (2) (3) (4)
 (a) P to Q P to Q P to Q P to Q
 (b) P to Q Q to P P to Q Q to P
 (c) Q to P P to Q Q to P P to Q
 (d) Q to P P to Q P to Q Q to P
 (e) Q to P Q to P Q to P Q to P
 (f) Q to P Q to P P to Q P to Q
 7. In a moving coil microphone, the induced emf in the 

coil at any instant depends mainly on
 (a) the displacement of the coil.
 (b) the velocity of the coil.
 (c) the acceleration of the coil.
 8. The figure shows a 

region of uniform 
magnetic field out 
of the page. Outside 
the region, the mag-
netic field is zero. 
Some rectangular 

Conducting loop

Long wire
I

1

2

43

v

vv

v
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wire loops move as indicated. Which of the loops would 
feel a magnetic force directed to the right?

 (a) 1 (b) 2 (c) 3 (d) 4
 (e) 1 and 2 (f) 2 and 4 (g) 3 and 4
 (h) none of them
 9. A moving magnet microphone is similar to a moving 

coil microphone (Fig. 20.15) except that the coil is sta-
tionary and the magnet is attached to the diaphragm, 
which moves in response to sound waves in the air. If, in 
response to a sound wave, the magnet moves according 
to x(t) = A sin ωt, the induced emf in the coil would be 
(approximately) proportional to which of these?

 (a) sin ωt (b) cos ωt (c) sin 2ωt (d) cos 2ωt
 10. An airplane is flying due east. Earth’s magnetic field has 

a downward vertical component and a horizontal compo-
nent due north. Which point on the plane’s exterior 
 accumulates positive charge due to the motional emf?

 (a) the nose (the point farthest east)
 (b) the tail (the point farthest west)
 (c) the tip of the left wing (the point farthest north)
 (d) the tip of the right wing (the point farthest south)

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

20.1 Motional Emf; 20.2 Electric Generators
 1. A vertical metal rod of length 20 cm moves south at 

constant speed 2.6 m/s in a 0.60 T magnetic field di-
rected west. (a) Which end of the rod has an accumula-
tion of excess electrons? (b) What is the potential 
difference between the ends of the rod?

 2. A vertical metal rod of length 36 cm moves north at 
constant speed 1.6 m/s in a 0.40 T magnetic field di-
rected 27° east of north. (a) Which end of the rod has an 
accumulation of excess electrons? (b) What is the po-
tential difference between the ends of the rod?

 3. In Fig. 20.2, the distance between the rails is L = 5.0 cm. 
The metal rod is sliding to the right at v = 16 cm/s and 
the magnetic field has magnitude B = 0.75 T. The rod 
and rails have negligible resistance compared with the 
resistor (R = 180 Ω). Find (a) the current in the rod, 
(b) the rate at which energy is dissipated in the resistor, 
and (c) the magnetic force on the rod.

Problems 4–6. In Fig. 20.4, a square metal loop of side 4.0 cm 
and resistance 5.0 Ω moves to the right (+x-direction) into, 
through, and out of a 6.0 cm wide region of uniform  magnetic 
field perpendicular to the plane of the loop. The magnetic 

field in the region is 0.25 T. At t = 0, the loop just begins to 
enter the region of magnetic field.
 4. The loop moves at a constant 10 cm/s. Plot a graph of 

the current in the loop as a function of time. Label the 
axes with numerical values and take counterclockwise 
current to be positive.

 5. The loop moves at a constant 2.0 cm/s. Plot a graph of 
the magnetic force on side c (the right side of the loop) 
as a function of time. Plot it as an x-component (i.e., 
positive is to the right and negative is to the left). Label 
the axes with numerical values.

 6. The loop moves at a constant 1.0 cm/s. Plot a graph of 
the external force applied to the loop (to keep it moving 
at constant velocity) as a function of time. Plot it as an 
x-component (i.e., positive is to the right and negative is 
to the left). Label the axes with numerical values.

 7. In Fig. 20.2, a metal rod of length L is sliding to the 
right at speed v. (a) What is the current in the rod, in 
terms of v, B, L, and R? (b) What is the direction of the 
magnetic force on the rod? (c) What is the magnitude 
of the magnetic force on the rod (in terms of v, B, L, 
and R)?

 8.  Suppose that the current were to flow in the di-
rection opposite to that shown in Fig. 20.2. (a) In 
what direction would the magnetic force on the rod 
be? (b) In the absence of an external force, what 
would happen to the rod’s kinetic energy? Why is this 
not possible? (c) Returning to the correct direction of 
the current, sketch a rough graph of the kinetic en-
ergy of the rod as a function of time, if no external 
force acts. What happens to the kinetic energy?

 9.  To maintain a constant emf, the moving rod of 
Fig. 20.2 must maintain a constant velocity. In order to 
maintain a constant velocity, some external force must 
pull it to the right. (a) What is the magnitude of the ex-
ternal force required, in terms of v, B, L, and R? (b) At 
what rate does this force do work on the rod? (c) What 
is the power dissipated in the resistor? (d) Overall, is 
energy conserved? Explain.

 10. In Fig. 20.2, what would the magnitude (in terms of v, 
L, R, and B) and direction (CW or CCW) of the current 
in the circuit be if the direction of the magnetic field 
were: (a) into the page; (b) to the right (in the plane of 
the page); (c) up (in the plane of the page); (d) such 
that it has components both out of the page and to the 
right, with a 20.0° angle between the field and the 
plane of the page?

 11. When the armature of an ac generator rotates at 
15.0 rad/s, the amplitude of the induced emf is 27.0 V. 
What is the amplitude of the induced emf when the ar-
mature rotates at 10.0 rad/s?

 12. The armature of an ac generator is a circular coil with 
50 turns and radius 3.0 cm. When the armature rotates 
at 350 rev/min, the amplitude of the emf in the coil is 
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17.0  V. What is the magnitude of the magnetic field 
 (assumed to be uniform)?

 13. The armature of an ac generator is a rectangular coil 
2.0 cm by 6.0 cm with 80 turns. It is immersed in a uni-
form magnetic field of magnitude 0.45 T. If the ampli-
tude of the emf in the coil is 17.0 V, at what angular 
speed is the armature rotating?

 14.  A solid copper disk of radius R rotates at angular 
velocity ω in a perpendicular magnetic field B. The fig-
ure shows the disk rotating clockwise and the magnetic 
field into the page. (a) Is the charge that accumulates on 
the edge of the disk positive or negative? Explain. 
(b) What is the potential difference between the center 
of the disk and the edge? [Hint: Think of the disk as a 
large number of thin wedge-shaped rods. The center of 
such a rod is at rest, and the outer edge moves at speed 
v = ωR. The rod moves through a perpendicular mag-
netic field at an average speed of 1

2 ωR.

ω

B

20.3 Faraday’s Law; 20.4 Lenz’s Law
 15. A horizontal desk surface measures 1.3 m × 1.0 m. If 

Earth’s magnetic field has magnitude 0.044 mT and is 
directed 65° below the horizontal, what is the magnetic 
flux through the desk surface?

16. The magnetic field between the poles of a magnet has 
magnitude 0.55 T. A circular loop of wire with radius 
3.2 cm is placed between the poles so the field makes an 
angle of 22° with the plane of the loop. What is the 
magnetic flux through the loop?

 17. A square loop of wire, 0.75 m on each side, has one 
edge along the positive z-axis and is tilted toward the 
yz-plane at an angle of 30.0° with respect to the horizon-
tal (xz-plane). There is a uniform magnetic field of 
0.32 T pointing in the positive x-axis direction. (a) What 
is the flux through the loop? (b) If the angle increases to 
60°, what is the new flux through the loop? (c) While 
the angle is being increased, which direction will cur-
rent flow through the top side of the loop?

B

30.0°

y

x

z

Problems 18–20. Two wire loops are side by side, as shown. 
The current I1 in loop 1 is supplied by an external source (not 
shown) and is clockwise as viewed from the right.
 18.  While I1 is increasing, 

does current flow in loop 2? If 
so, does it flow clockwise or 
counterclockwise as viewed 
from the right? Explain.

 19.  While I1 is increasing, 
what is the direction of the 
magnetic force exerted on loop 
2, if any? Explain.

 20.  While I1 is constant, does 
current flow in loop 2? If so, 
does it flow clockwise or 
counterclockwise as viewed 
from the right? Explain.

 21. A long, straight wire carry-
ing a steady current is in the 
plane of a circular loop of 
wire. (a) If the loop is moved 
closer to the wire, what di-
rection does the induced current in the loop flow? (b) At 
one instant, the induced emf in the loop is 3.5 mV. What 
is the rate of change of the magnetic flux through the 
loop at that instant?

 22. A long straight wire carrying a current I is in the plane of 
a circular loop of wire. The current I is decreasing. Both 
the loop and the wire are held in place by external forces. 
The loop has resistance 24 Ω. (a) In what direction does 
the induced current in the loop flow? (b) In what direc-
tion is the external force holding the loop in place? (c) At 
one instant, the induced current in the loop is 84 mA. 
What is the rate of change of the magnetic flux through 
the loop at that instant in webers per second?

 23. A circular conducting loop with ra-
dius 3.40 cm is placed in a uniform 
magnetic field of 0.880 T with the 
plane of the loop perpendicular to 
the magnetic field, as shown. The 
loop is rotated 180° about the axis in 
0.222 s. (a) As the loop begins to 
rotate, does the induced current flow 
clockwise or counterclockwise? (b) What is the average 
induced emf in the loop during this rotation?

 24. A circular conducting loop with radius 1.8 cm is placed 
in a uniform magnetic field of 0.88 T with the plane of 
the coil perpendicular to the magnetic field as shown. 
The magnetic field decreases to 0.36 T in a time interval 
of 29 ms. What is the average induced emf in the loop 
during this interval?

 25. An external magnetic field parallel to the central axis of 
a 50 turn coil of radius 5.0 cm increases from 0 to 1.8 T 
in 3.6 s. (a) If the resistance of the coil is 2.8 Ω, what is 

2

1

CW

CCW

I1

Problems 18–20

Conducting loop

Long wire
I

Problems 21 and 22

B

Axis
Problems 23–24
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the magnitude of the induced current in the coil? 
(b) What is the direction of the current if the axial com-
ponent of the field points away from the viewer?

 26. An external magnetic field is parallel to the central axis 
of a 50 turn coil of radius 5.0 cm. During an interval of 
160 ms, the field changes from 0.20 T in one direction to 
0.30 T in the opposite direction. The resistance of the 
coil is 82 Ω. What is the average induced current in the 
coil during this  interval?

 27. In the figure, switch S is initially open. It is closed, and 
then opened again a few seconds later. (a) In what direc-
tion does current flow through the ammeter when switch 
S is closed? (b) In what direction 
does current flow when switch S 
is then opened? (c) Sketch a 
qualitative graph of the current 
through the ammeter as a func-
tion of time. Take the current to 
be positive to the right.

 28.  Crocodiles are thought to be able to detect changes 
in the flux due to Earth’s magnetic field as they move 
their heads. Suppose a crocodile is initially facing 
north. The horizontal component of Earth’s magnetic 
field is 30 μT. Consider a vertical, circular loop of neu-
rons inside the crocodile’s head with radius 12 cm. The 
loop is initially perpendicular to the horizontal compo-
nent of Earth’s magnetic field. The crocodile rotates its 
head 90° until it is facing east in a time interval of 
2.7  s. What is the average emf induced around this 
loop of neurons?

 29. A bar magnet approaches a coil as 
shown. (a) In which direction 
does current flow through the gal-
vanometer as the magnet ap-
proaches? (b) How does the 
magnitude of the current depend 
on the number of turns in the coil? (The resistance of 
the coil is negligible compared with the resistance of the 
galvanometer.) (c) How does the current depend on 
the speed of the magnet? (d) Would the experiment give 
similar results if the magnet remains stationary and the 
coil moves to the left instead? Explain.

 30. Another example of motional emf is a 
rod attached at one end and rotating in 
a plane perpendicular to a uniform 
magnetic field. We can analyze this 
motional emf using Faraday’s law. 
(a)  Consider the area that the rod 
sweeps out in each revolution and find the magnitude of 
the emf in terms of the angular frequency ω, the length 
of the rod R, and the magnitude of the uniform magnetic 
field B. (b) Write the emf magnitude in terms of the 
speed v of the tip of the rod and compare this with mo-
tional emf magnitude of a rod moving at constant veloc-
ity perpendicular to a uniform magnetic field.

 31. Two loops of wire are 
next to each other in 
the same plane. (a) If 
the switch S is closed, 
does current flow in 
loop 2? If so, in what 
direction? (b) Does the 
current in loop 2 flow for only a brief moment, or does 
it continue? (c) Is there a magnetic force on loop 2? If 
so, in what direction? (d) Is there a magnetic force on 
loop 1? If so, in what direction?

20.5 Back Emf in a Motor
 32. A dc motor has coils with a resistance of 16 Ω and is 

connected to an emf of 120.0 V. When the motor oper-
ates at full speed, the back emf is 72 V. (a) What is the 
current in the motor when it first starts up? (b) What is 
the current when the motor is at full speed? (c) If the 
current is 4.0 A with the motor operating at less than 
full speed, what is the back emf at that time?

 33.  Tim is using a cordless electric weed trimmer with 
a dc motor to cut the long weeds in his backyard. The 
trimmer generates a back emf of 18.00 V when it is con-
nected to an emf of 24.0 V dc. The total electrical resis-
tance of the electric motor is 8.00 Ω. (a) How much 
current flows through the motor when it is running 
smoothly? (b) Suddenly the string of the trimmer gets 
wrapped around a pole in the ground and the motor 
quits spinning. What is the current through the motor 
when there is no back emf? What should Tim do?

 34.  A dc motor is connected to a constant emf of 12.0 V. 
The resistance of its windings is 2.0 Ω. At normal oper-
ating speed, the motor takes in 6.0 W of electrical 
power. (a) What is the initial current drawn by the motor 
when it is first started up? (b) What current does it draw 
at normal operating speed? (c) What is the back emf 
induced in the windings at normal speed?

20.6 Transformers
 35. A step-down transformer has 4000 turns on the primary 

and 200 turns on the secondary. If the primary voltage 
amplitude is 2.2 kV, what is the secondary voltage 
 amplitude?

 36. An ideal step-down transformer has a turns ratio of 
1/100. An ac voltage of amplitude 170 V is applied to 
the primary. If the primary current amplitude is 1.0 mA, 
what is the secondary current amplitude?

 37. A doorbell uses a transformer to deliver an amplitude of 
8.5 V when it is connected to a 170 V amplitude line. If 
there are 50 turns on the secondary, (a) what is the turns 
ratio? (b) How many turns does the primary have?

 38. The primary coil of a transformer has 250 turns; the 
secondary coil has 1000 turns. An alternating current is 
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sent through the primary coil. The emf in the primary is 
of amplitude 16 V. What is the emf amplitude in the 
secondary?

 39. When the emf for the primary of a transformer is of 
amplitude 5.00 V, the secondary emf is 10.0 V in ampli-
tude. What is the transformer turns ratio (N2/N1)?

 40. A transformer with a primary coil of 1000 turns is used 
to step up the standard 170 V amplitude line voltage to 
a 220 V amplitude. How many turns are required in the 
secondary coil?

 41. An ideal transformer with 1800 turns on the primary 
and 300 turns on the secondary is used in an electric slot 
car racing set to reduce the input voltage amplitude of 
170 V from the wall output. The current in the second-
ary coil is of amplitude 3.2 A. What is the voltage am-
plitude across the secondary coil and the current 
amplitude in the primary coil?

 42. An ideal transformer takes an ac voltage of amplitude 
170 V as its input and supplies a 7.8 V amplitude to a 
circuit that converts it to dc. The primary has 300 turns. 
(a) How many turns does the secondary have? (b) When 
the circuit uses a power of 5.0 W, what is the amplitude 
of the current drawn from the 170 V line?

20.7 Eddy Currents
 43. A 2 m long copper pipe is held vertically. When a mar-

ble is dropped down the pipe, it falls through in about 
0.7 s. A magnet of similar size and shape takes much 
longer to fall through the pipe. (a) As the magnet is fall-
ing through the pipe with its north pole below its south 
pole, what direction do currents flow around the pipe 
above the magnet (CW or CCW as viewed from above)? 
(b) What direction do the currents flow around the pipe 
below the magnet? (c) Sketch a qualitative graph of the 
speed of the magnet as a function of time. [Hint: What 
would the graph look like for a marble falling through 
honey?]

 44. In Problem 43, the pipe is suspended from a spring scale. 
The weight of the pipe is 12.0 N; the weight of the mar-
ble and magnet are each 0.3 N. Sketch graphs to show 
the reading of the spring scale as a function of time for 
the fall of the marble and again for the fall of the magnet. 
Label the vertical axis with numerical values.

20.9 Inductance
 45. Two solenoids, of N1 and N2 turns respectively, are 

wound on the same form. They have the same length ℓ 
and radius r. (a) If an ac current

I1(t) = Im sin ωt

  flows in solenoid 1 (N1 turns), write an expression for 
the total flux through solenoid 2 as a function of time. 
(b) What is the maximum induced emf in solenoid 2?

 46. A solenoid is made of 300.0 turns of wire, wrapped around 
a hollow cylinder of radius 1.2 cm and length 6.0  cm. 
What is the self-inductance of the solenoid?

 47. A solenoid of length 2.8 cm and diameter 0.75 cm is 
wound with 160 turns per centimeter. When the current 
through the solenoid is 0.20 A, what is the magnetic 
flux through one of the windings of the solenoid?

 48. If the current in the solenoid in Problem 47 is decreas-
ing at a rate of 35.0 A/s, what is the induced emf (a) in 
one of the windings? (b) in the entire solenoid?

 49. An ideal solenoid has length ℓ. If the windings are 
compressed so that the length of the solenoid is re-
duced to 0.50ℓ, what happens to the inductance of the 
solenoid?

 50.  The main magnet in an MRI machine is a supercon-
ducting solenoid 1.8 m long and 70 cm in diameter. Dur-
ing normal operation, the current through the windings is 
120 A and the magnetic field magnitude is 1.5 T. (a) How 
many turns does the solenoid have? (b) How much energy 
is stored in the magnetic field during normal operation? 
(c) How much energy is stored if the current is 50 A?

 51. In this problem, you derive the expression for the self-
inductance of a long solenoid [Eq. (20-30)]. The sole-
noid has n turns per unit length, length ℓ, and radius r. 
Assume that the current flowing in the solenoid is I. 
(a) Write an expression for the magnetic field inside the 
solenoid in terms of n, ℓ, r, I, and universal constants. 
(b) Assume that all of the field lines cut through each 
turn of the solenoid. In other words, assume the field is 
uniform right out to the ends of the solenoid—a good 
approximation if the solenoid is tightly wound and suf-
ficiently long. Write an expression for the magnetic flux 
through one turn. (c) What is the total flux linkage 
through all turns of the solenoid? (d) Use the definition 
of self-inductance [Eq. (20-27)] to find the self- 
inductance of the solenoid.

 52. The current in a 0.080 H solenoid increases from 
20.0 mA to 160.0 mA in 7.0 s. Find the average emf in 
the solenoid during that time interval.

 53.  Calculate the equivalent inductance Leq of two ideal 
inductors, L1 and L2, connected in series in a circuit. As-
sume that the magnetic field of each inductor produces no 
flux through the other inductor. [Hint: Imagine replacing 
the two inductors with a single equivalent inductor Leq. 
How is the emf in the series equivalent related to the emfs 
in the two inductors? What about the currents?]

 54.  Calculate the equivalent inductance Leq of two ideal 
inductors, L1 and L2, connected in parallel in a circuit. 
Assume that the magnetic field of each inductor 
 produces no flux through the other inductor. [Hint: 
Imagine replacing the two inductors with a single equiv-
alent inductor Leq. How is the emf in the parallel equiva-
lent related to the emfs in the two inductors? What about 
the currents?]
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20.10 LR Circuits
 55. A 5.0 mH inductor and a 10.0 Ω resistor are connected 

in series with a 6.0 V dc battery. (a) What is the voltage 
across the resistor immediately after the switch is 
closed? (b) What is the voltage across the resistor after 
the switch has been closed for a long time? (c) What is 
the current in the inductor after the switch has been 
closed for a long time?

6.0 V

5.0 mH10.0 Ω S

 56. In a circuit, a parallel combination of a 10.0 Ω resistor 
and a 7.0 mH inductor is connected in series with a 
5.0 Ω resistor, a 6.0 V dc battery, and a switch. (a) What 
are the voltages across the 5.0 Ω resistor and the 10.0 Ω 
resistor, respectively, immediately after the switch is 
closed? (b) What are the voltages across the 5.0 Ω resis-
tor and the 10.0 Ω resistor, respectively, after the switch 
has been closed for a long time? (c) What is the current 
in the 7.0 mH in-
ductor after the 
switch has been 
closed for a long 
time?

 57. Refer to Problem 
56. After the 
switch has been 
closed for a very long time, it is opened. What are the 
voltages across (a) the 5.0 Ω resistor and (b) the 10.0 Ω 
resistor immediately after the switch is opened?

 58.  A 0.67 mH inductor and a 130 Ω resistor are placed 
in series with a 24 V battery. (a) How long will it take 
for the current to reach 67% of its maximum value? 
(b) What is the maximum energy stored in the inductor? 
(c) How long will it take for the energy stored in the 
inductor to reach 67% of its maximum value? Comment 
on how this compares with the answer in part (a).

 59. No currents flow in the circuit diagrammed before the 
switch is closed. Consider all the circuit elements to 
be ideal. (a) At the instant the switch is closed, what are 
the values of the 
currents I1 and I2, 
the potential differ-
ences across the re-
sistors, the power 
supplied by the bat-
tery, and the in-
duced emf in the inductor? (b) After the switch has been 
closed for a long time, what are the values of the  currents 
I1 and I2, the potential differences across the resistors, 

the power supplied by the battery, and the induced emf 
in the inductor?

 60.  The windings of an elec-
tromagnet have inductance 
L  = 8.0 H and resistance  
R = 2.0 Ω. A 100.0 V dc 
power supply is connected to 
the windings by closing 
switch S2. (a) A few minutes 
later, what is the current in the 
windings? (b) The electromag-
net is to be shut off. Before disconnecting the power sup-
ply by opening switch S2, a shunt resistor with resistance 
20.0 Ω is connected in parallel across the windings. Why 
is the shunt resistor needed? Why must it be connected 
before the power supply is disconnected? (c) What is the 
maximum power dissipated in the shunt resistor? The 
shunt resistor must be chosen so that it can handle at least 
this much power without damage. (d) When the power 
supply is disconnected by opening switch S2, how long 
does it take for the current in the windings to drop to  
0.10 A? (e) Would a larger shunt resistor dissipate the 
energy stored in the electromagnet faster? Explain.

 61. A coil of wire is connected to an ideal 6.00 V battery at 
t = 0. At t = 10.0 ms, the current in the coil is 204 mA. 
One minute later, the current is 273 mA. Find the resis-
tance and inductance of the coil. [Hint: Sketch I(t).]

 62. The time constant τ for an LR circuit must be some com-
bination of L, R, and ℰ. (a) Write the units of each of 
these three quantities in terms of V, A, and s. (b) Show 
that the only combination that has units of seconds is L/R.

 63. A coil has an inductance of 0.15 H and a resistance of 
33 Ω. The coil is connected to a 6.0 V ideal battery. 
When the current reaches half its maximum value: 
(a) At what rate is magnetic energy being stored in the 
inductor? (b) At what rate is energy being dissipated? 
(c) What is the total power that the battery supplies?

Problems 64–66. In the circuit, switch S is opened at t = 0 
after having been closed for a long time.
64. (a) How much energy is stored in the inductor at t = 0? 

(b) What is the instantaneous rate of change of the induc-
tor’s energy at t = 0? (c) What is the average rate of change 
of the inductor’s energy between t = 0.0 and t = 1.0 s?

65. At what time is the current in the inductor 0.0010 times 
its initial value?

 66. At what time is energy stored in the inductor 0.10 times 
its initial value?

7.0 mH6.0 V

S

10.0 Ω

5.0 Ω

Problems	56	and	57
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 67. A coil has an inductance of 0.15 H and a resistance of 
33 Ω. The coil is connected to a 6.0 V battery. After a 
long time elapses, the current in the coil is no longer 
changing. (a) What is the current in the coil? (b) What is 
the energy stored in the coil? (c) What is the rate of en-
ergy dissipation in the coil? (d) What is the induced emf 
in the coil?

 68.  A 0.30 H inductor and a 200.0 Ω resistor are con-
nected in series to a 9.0 V battery. (a) What is the 
maximum current that flows in the circuit? (b) How 
long after connecting the battery does the current 
reach half its maximum value? (c) When the current 
is half its maximum value, find the energy stored in 
the inductor, the rate at which energy is being stored 
in the inductor, and the rate at which energy is dissi-
pated in the resistor. (d) Redo parts (a) and (b) if, in-
stead of being negligibly small, the internal 
resistances of the inductor and battery are 75 Ω and 
20.0 Ω, respectively.

Collaborative Problems

 69.  The main magnet in an MRI machine is a super-
conducting solenoid 1.8 m long and 30 cm in radius. 
During normal operation, the current through the 
windings is 100 A, the resistance of the windings is 
zero, and the magnetic field magnitude is 1.5 T. 
(a) What is its inductance? (b) The magnet is started 
by connecting the solenoid to a power supply. It takes 
8.0 min for the current to go from zero to 100 A. 
What is the emf of the power supply?

 70. A bar magnet is initially at rest inside a 
coil as shown. The magnet is then pulled 
out from the left side. (a) In which direc-
tion does current flow through the galva-
nometer as the magnet is pulled away? 
(b) How would the magnitude of the cur-
rent change if two such magnets were used, held side by 
side with the north poles together and the south poles 
together? (c) How would the magnitude of the current 
change if the two magnets were held side by side with 
opposite poles together instead?

 71.  Refer to Fig. 20.2. The rod has length L and its posi-
tion is x at some instant, as shown in the figure. Express 
your answers in terms of x, L, v, B (the magnetic field 
magnitude), and R, as needed. (a) What is the area en-
closed by the conducting loop at this instant? (b) What 
is the magnetic flux through the loop at this instant? 
(c) The rod moves to the right at speed v. At what rate is 
the flux changing? (d) According to Faraday’s law, what 
is the induced emf in the loop? Compare your answer 
with Eq. (20-5). (e) What is the induced current I? 
(f) Explain why the induced current flows counterclock-
wise around the loop.

 72. In Fig. 20.6, side 3 of the rectangular coil in the electric 
generator rotates about the axis at constant angular 
speed ω. The figure with this problem shows side 3 by 
itself. (a) First consider the right half of side 3. Although 
the speed of the wire differs depending on the distance 
from the axis, the direction is the same for the entire 
right half. Use the magnetic force law to find the direc-
tion of the force on electrons in the right half of the 
wire. (b) Does the magnetic force tend to push electrons 
along the wire, either toward or away from the axis? 
(c) Is there an induced emf along the length of this half 
of the wire? (d) Generalize your answers to the left side 
of wire 3 and the two sides of wire 1. What is the net 
emf due to these two sides of the coil?

Axis

Bθ

ω

ω

 73. A loop of wire is con-
nected to a battery and a 
variable resistor as shown. 
Two other loops of wire, B 
and C, are placed inside 
the large loop and outside 
the large loop, respec-
tively. As the resistance in 
the variable resistor is in-
creased, are there currents induced in the loops B and 
C? If so, do the currents circulate CW or CCW?

 74.  In the ac generator of Fig. 20.6, the emf produced is 
ℰ(t) = ωBA sin ωt. If the generator is connected to a 
load of resistance R, then the current that flows is

I(t) =
ωBA

R
 sin ωt

 (a) Find the magnetic forces on sides 2 and 4 at the 
 instant shown in Fig. 20.7. (Remember that θ = ωt.) 
(b) Why do the magnetic forces on sides 1 and 3 not 
cause a torque about the axis of rotation? (c) From the 
magnetic forces found in (a), calculate the torque on the 
loop about its axis of rotation at the instant shown in 
Fig. 20.7. (d) In the absence of other torques, would the 
magnetic torque make the loop increase or decrease its 
angular velocity? Explain.

 75. A circular loop of wire moves 
in one of three directions near 
a long, straight current- carrying 
wire. For each case, find the 
direction of the current in the 
loop, the direction of the mag-
netic force on the loop, and the 
direction of the magnetic force 
on the straight wire.

G

(a)

(c)

(b)

I
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A
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Comprehensive Problems

 76. A circular metal ring is 
suspended above a sole-
noid. The magnetic field 
due to the solenoid is 
shown. The current in 
the solenoid is increas-
ing. (a) What is the di-
rection of the current in 
the ring? (b) The flux 
through the ring is pro-
portional to the current 
in the solenoid. When 
the current in the sole-
noid is 12.0 A, the mag-
netic flux through the 
ring is 0.40 Wb. When the current increases at a rate of 
240 A/s, what is the induced emf in the ring? (c) Is there 
a net magnetic force on the ring? If so, in what direc-
tion? (d) If the ring is cooled by immersing it in liquid 
nitrogen, what happens to its electrical resistance, the 
induced current, and the magnetic force? The change in 
size of the ring is negligible. (With a sufficiently strong 
magnetic field, the ring can be made to shoot up high 
into the air.)

 77. The strings of an 
electric guitar are 
made of ferromag-
netic metal. The 
pickup consists of 
two components. A 
magnet causes the 
part of the string 
near it to be magne-
tized. The vibra-
tions of the string 
near the pickup coil 
produce an induced emf in the coil. The electrical signal 
in the coil is then amplified and used to drive the speak-
ers. In the figure, the string is moving away from the coil. 
What is the direction of the induced current in the coil?

 78. A toroid has a 
square cross section 
of side a. The toroid 
has N turns and 
 radius R. The toroid 
is narrow (a ≪ R) 
so that the magnetic 
field inside the 
 toroid can be con-
sidered to be uniform in magnitude. What is the self-
inductance of the toroid?

 79. Suppose you wanted to use Earth’s magnetic field to make 
an ac generator at a location where the magnitude of the 

field is 0.050 mT. Your coil has 1000.0 turns and a radius 
of 5.0 cm. At what angular velocity would you have to 
rotate it in order to generate an emf of amplitude 1.0 V?

 80. A uniform magnetic field of magnitude 0.29 T makes an 
angle of 13° with the plane of a circular loop of wire. 
The loop has radius 1.85 cm. What is the magnetic flux 
through the loop?

 81. A solenoid is 8.5 cm long, 1.6 cm in diameter, and has 
350 turns. When the current through the solenoid is 
65 mA, what is the magnetic flux through one turn of 
the solenoid?

 82. How much energy due to Earth’s magnetic field is pres-
ent in 1.0 m3 of space near Earth’s surface at a place 
where the field has magnitude 0.045 mT?

 83. The largest constant magnetic field achieved in the labo-
ratory is about 40 T. (a) What is the magnetic energy 
density due to this field? (b) What magnitude electric 
field would have an equal energy density?

 84. The outside of an ideal solenoid (N1 turns, length ℓ, 
 radius r) is wound with a coil of wire with N2 turns. If 
the current in the solenoid is changing at a rate ΔI1/Δt, 
what is the magnitude of the induced emf in the coil?

 85. A CRT requires a 20.0 kV amplitude power supply. 
(a) What is the turns ratio of the transformer that raises 
the 170 V amplitude household voltage to 20.0 kV? 
(b) If the tube draws 82 W of power, find the currents in 
the primary and secondary windings. Assume an ideal 
transformer.

 86.  A flip coil is a device used to measure a magnetic 
field. A coil of radius r, N turns, and electrical resis-
tance R is initially perpendicular to a magnetic field of 
magnitude B. The coil is connected to a special kind of 
galvanometer that measures the total charge Q that 
flows through it. To measure the field, the flip coil is 
rapidly flipped upside down. (a) What is the change in 
magnetic flux linkage through the coil? (b) If the time 
interval during which the coil is flipped is Δt, what is 
the average induced emf in the coil? (c) What is the 
 average current that flows through the galvanometer? 
(d) What is the total charge Q in terms of r, N, R, and B?

 87.  A 50 turn coil with a radius of 10.0 cm is mounted 
so the coil’s axis can be oriented in any horizontal di-
rection. Initially the axis is oriented so the magnetic 
flux from Earth’s field is maximized. If the coil’s axis 
is rotated through 90.0° in 0.080 s, an average emf of 
0.687 mV is induced in the coil. What is the magnitude 
of the horizontal component of Earth’s magnetic field 
at this location?

 88.  A bar magnet is initially far from a circular loop of 
wire. The magnet is moved at constant speed along the 
axis of the loop. It moves toward the loop, proceeds to 
pass through it, and then continues until it is far away on 
the right side of the loop. Sketch a qualitative graph of 
the current in the loop as a function of the position of 
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the bar magnet. Take the current to be positive when it 
is counterclockwise as viewed from the left.

2

Coil

1 3

 89.  The magnetic field between the poles of an electro-
magnet is 2.6 T. A coil of wire is placed in this region so 
that the field is parallel to the axis of the coil. The coil 
has electrical resistance 25 Ω and radius 1.8 cm. When 
the current supply to the electromagnet is shut off, the 
total charge that flows through the coil is 9.0 mC. How 
many turns are there in the coil?

 90.  An ideal inductor of inductance L is connected to an 
ac power supply, which provides an emf ℰ(t) = ℰm sin ωt. 
(a) Write an expression for the current in the inductor as 
a function of time. (b) What is the ratio of the maximum 
emf to the maximum current? This ratio is called the 
reactance. (c) Do the maximum emf and maximum cur-
rent occur at the same time? If not, how much time sep-
arates them?

 91. An airplane is flying due north at 180 m/s. Earth’s mag-
netic field has a northward component of 0.030 mT and 
an upward component of 0.038 mT. (a) If the wingspan 
(distance between the wingtips) is 46 m, what is the 
motional emf between the wingtips? (b) Which wingtip 
is positively charged?

 92.  Repeat Problem 91 if the plane flies 30.0° west of 
south at 180 m/s instead.

 93.  An ideal solenoid (N1 turns, length ℓ1, radius r1) is 
placed inside another ideal solenoid (N2 turns, length 
ℓ2 > ℓ1, radius r2 > r1) such that the axes of the two co-
incide. If the current in the outer solenoid is changing at 
a rate ΔI2/Δt, what is the magnitude of the induced emf 
in the inner solenoid?

Review and Synthesis

 94. A 15.0 g conducting rod of length 1.30 m 
is free to slide downward between two 
vertical rails without friction. The ends 
of the rod maintain electrical contact 
with the rails. The rails are connected 
to an 8.00 Ω resistor, and the entire ap-
paratus is placed in a 0.450 T uniform 
magnetic field. Ignore the resistance of 
the rod and rails. (a) What is the terminal velocity of the 
rod? (b) At this  terminal velocity, compare the rate of 
change of the gravitational potential energy with the 
power dissipated in the resistor.

 95. Compare the electric energy that can be stored in a ca-
pacitor to the magnetic energy that can be stored in an 
inductor of the same size (i.e., the same volume). For 

the capacitor, assume that air is between the plates; the 
maximum electric field is then the breakdown strength 
of air, about 3 MV/m. The maximum magnetic field at-
tainable in an ordinary solenoid with an air core is on 
the order of 10 T.

 96. A square loop of wire is made 
up of 50 turns of wire, 45 cm on 
each side. The loop is immersed 
in a 1.4 T magnetic field per-
pendicular to the plane of the 
loop. The loop of wire has little 
resistance but it is connected to 
two resistors in parallel as 
shown. (a) When the loop of 
wire is rotated by 180°, how much charge flows 
through the circuit? (b) How much charge goes through 
the 5.0 Ω resistor?

 97. In the past, bicycles used small bottle-shaped dc gen-
erators to power the headlight. A small wheel (the top 
of the “bottle”) in contact with a tire caused the shaft 
of the generator to rotate. Suppose the generator has 
150 turns of wire in a circular coil of radius 1.8 cm. 
The magnetic field magnitude in the region of the coil 
is 0.20 T. When the generator supplies an emf of am-
plitude 4.2 V to the lightbulb, the lightbulb consumes 
an average power of 6.0 W and a maximum instanta-
neous power of 12.0 W. (a) What is the rotational 
speed in rev/min of the armature of the generator? 
(b) What is the average torque and maximum instanta-
neous torque that must be applied by the bicycle tire to 
the generator, assuming the generator to be ideal? 
(c) The radius of the tire is 32 cm, and the radius of the 
shaft of the generator where it contacts the tire is 
1.0 cm. At what linear speed must the bicycle move to 
supply an emf of amplitude 4.2 V?

 98. A circular conducting coil with radius 2.6 cm is placed in 
a vertical magnetic field of 0.33 T. The coil is made of 
copper wire with a diameter of 0.90 mm. The coil starts 
in a horizontal plane and is flipped over (rotated 180° 
about a horizontal axis) in 0.57 s. What is the average 
current that flows through the coil during the rotation?

 99.  A square loop of 
wire of side 2.3 cm 
and electrical resis-
tance 79 Ω is near a 
long straight wire 
that carries a cur-
rent of 6.8 A in the 
direction indicated. The long wire and loop both lie in 
the plane of the page. The left side of the loop is 9.0 cm 
from the wire. (a) If the loop is at rest, what is the 
 induced emf in the loop? What are the magnitude and 
direction of the induced current in the loop? What are 
the magnitude and direction of the magnetic force on 
the loop? (b) Repeat if the loop is moving to the right at

B

R

5.0 Ω

10.0 Ω

B
45 cm

2.3 cm

9.0 cm

2.3 cm
I
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  a constant speed of 45 cm/s. (c) In (b), find the electric 
power dissipated in the loop and show that it is equal to 
the rate at which an external force, pulling the loop to 
keep its speed constant, does work.

 100.  A solid metal cylinder of mass m rolls down parallel 
metal rails spaced a distance L apart with a constant ac
celeration of magnitude a0 [part (a) of figure]. The rails 
are inclined at an angle θ to the horizontal. Now the rails 
are connected electrically at the top and immersed in a 
magnetic field of magnitude B that is perpendicular to 
the plane of the rails [part (b) of figure]. (a) As it rolls 
down the rails, in what direction does current flow in the 
cylinder? (b) What direction is the magnetic force on the 
cylinder? (c) Instead of rolling at constant acceleration, 
the cylinder now approaches a terminal speed vt. What 
is vt in terms of L, m, R, g, θ, and B? R is the total elec
trical resistance of the circuit consisting of the cylinder, 
rails, and wire; assume R is constant (i.e., the resistances 
of the rails themselves are negligible).

Wire
Metal
cylinder

(a)

L v
a0

θθ

(b)

B

Answers to Practice Problems

20.1 only the magnitudes of the currents
20.2 Both the amplitude and frequency of the emf will 
change. The frequency is reduced from 12 to 10 Hz. The 
amplitude of the emf is proportional to the frequency, so the 
new amplitude is 18 V × (10/12) = 15 V.
20.3 B⊥ = B cos 60.0°
20.4 7.6 V
20.5 (a) F = B2L2v/R to the left at position 2 and position 4; 
(b) P = B2L2v2/R

20.6 (a) to the left; (b) from A to B through the resistor; 
(c) no; current only flows in coil 2 while the flux is chang-
ing. When the magnetic field due to coil 1 is constant, no 
current flows in coil 2. (d) N S NS

Coil 1 Coil 220.7 10.0 W
20.8 In a solid core, eddy currents would flow around the 
axis of the core. The insulation between wires prevents these 
eddy currents from flowing. Since energy is dissipated by 
eddy currents, their existence reduces the efficiency of the 
transformer.
20.9 0.53 W
20.10 0.9 s

Answers to Checkpoints

20.1 The average velocity of the electrons in the rod is out 
of the page and the magnetic field is into the page, so the 
average magnetic force on the electrons is zero. Therefore, 
the induced emf is zero.
20.4 (a) The flux through the loop due to the external mag
netic field is increasing. From Lenz’s law, the induced cur
rent opposes the change in flux. Therefore, the induced 
current creates its own magnetic field out of the page. From 
the righthand rule, the induced current is counterclockwise. 
(b) Now the flux is decreasing. To oppose this change, the 
induced current produces a magnetic field into the page. The 
current is clockwise.
20.6 An emf would be induced in the secondary very briefly 
as the current in the primary builds up to its final value. Once 
the current in the primary reaches its final value, the flux 
through the secondary is no longer changing, so no emf is in
duced. Therefore, transformers cannot be used with dc sources.
20.9 (d), (a) = (c), (b), (e)
20.10 (a) The induced emf in the inductor is initially 
equal to the battery emf: ℰb = ℰL = L(ΔI/Δt). Then  
ΔI/Δt = ℰb/L = 500 A/s. (b) The induced emf in the induc
tor falls to e−1 times its initial value at t = τ = L/R =  
0.250 ms.
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Alternating Current

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Electrical impedance  
tomography (Problem 54)

∙ Fast-twitch muscle fibers 
(Problem 56)

Concepts & Skills to Review

•	 ac	generators;	sinusoidal	
emfs	(Sections	20.2	
and 20.3)

•	 resistance;	Ohm’s	law;	
power	(Sections	18.4	
and	18.8)

•	 emf	and	current	
	(Sections	18.1		
and	18.2)

•	 math skill:	sinusoidal	
functions	of	time	
	(Appendix	A.8)

•	 period,	frequency,	angular	
frequency	(Section	10.6)

•	 capacitance	and	
	inductance	(Sections	17.5	
and	20.9)

•	 vector	addition		
(Sections	3.1	and	3.2;	
Appendix	A.10)

•	 graphical	analysis	of	SHM	
(Section	10.7)

•	 resonance	(Section	10.10)

Courtesy of Alan Giambattista

Look	 closely	 at	 the	 overhead	 power	 lines	 that	 supply	 electricity	 to	 a	
house.	 Why	 are	 there	 three	 cables—aren’t	 two	 sufficient	 to	make	 a	
complete	circuit?	Do	the	three	cables	correspond	to	the	three	prongs	
of	an	electric	outlet?
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21.1 SINUSOIDAL CURRENTS AND VOLTAGES:  
RESISTORS IN AC CIRCUITS

In an alternating current (ac) circuit, currents and emfs periodically change direction. 
An ac power supply periodically reverses the polarity of its emf. The sinusoidally vary-
ing emf due to an ac generator (also called an ac source) can be written (Fig. 21.1a)

 ℰ(t) = ℰm sin ωt (21-1)

CONNECTION:

In Section 20.2 we learned 
how a generator produces a 
sinusoidal emf.

CONNECTION:

The definitions of period, 
 frequency, and angular 
 frequency used in ac circuits 
are the same as for simple 
harmonic motion.

Circuit symbol for an ac generator (source of sinusoidal emf): 

The emf varies continuously between +ℰm and −ℰm; ℰm is called the amplitude (or 
peak value) of the emf. In a circuit with a sinusoidal emf connected to a resistor 
(Fig. 21.1b), the potential difference across the resistor is equal to ℰ(t), by Kirchhoff’s 
loop rule. Then the current i(t) varies sinusoidally with amplitude I = ℰm/R:

 i(t) =
ℰ(t)

R
=

ℰm

R
 sin ωt = I sin ωt (21-2)

It is important to distinguish the time-dependent quantities from their amplitudes. Note 
that lowercase i stands for the instantaneous current, but capital I stands for the 
amplitude of the current. We use this convention for all time-dependent quantities in 
this chapter except for emf: ℰ is the instantaneous emf and ℰm (“m” for maximum) 
is the amplitude of the emf.

The time T for one complete cycle is the period. The frequency f is the inverse 
of the period:

 f =
1
T

 (21-3)

Since there are 2π radians in one complete cycle, the angular frequency in radians is

 ω = 2πf  (21-4)

In SI units the period is measured in seconds, the frequency is measured in hertz (Hz), 
and the angular frequency is measured in rad/s. The usual voltage at a wall outlet in a 
home in the United States has an amplitude of about 170 V and a frequency of 60 Hz.

Application: Resistance Heating As simple as it may appear, the circuit of 
Fig. 21.1 has many applications. Electric heating elements found in toasters, hair dry-
ers, electric baseboard heaters, electric stoves, and electric ovens are just resistors 
connected to an ac source. So is an incandescent lightbulb: the filament is a resistor 
whose temperature rises due to energy dissipation until it is hot enough to radiate a 
significant amount of visible light.

T3–
2T T 2T

t
00 1–

2

ℰ(t)

ℰ(t)

+ℰm

–ℰm

(a) (b)

R

First half
of cycle
(ℰ > 0)

Second half
of cycle
(ℰ < 0)

–+

ℰ(t)
(c)

R

+–

Figure 21.1 (a) A sinusoidal 
emf as a function of time. 
(b) The emf connected to a 
resistor, indicating the direction 
of the current and the polarity of 
the emf during the first half of 
the cycle (0 < t < 1

2T). 
(c) The same circuit, indicating 
the direction of current and the 
polarity of the emf during the 
second half of the cycle 
(1

2T < t < T).
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Power Dissipated in a Resistor

The instantaneous power dissipated by a resistor in an ac circuit is
 p(t) = i(t)v(t) = (I sin ωt) (V sin ωt) = IV sin2 ωt (21-5)
where i(t) and v(t) represent the current through and potential difference across the 
resistor, respectively. (Remember that power dissipated means the rate at which energy 
is dissipated.) Since v = ir, the power can also be written as

 p = I2R sin2 ωt =
V2

R
 sin2 ωt (21-6)

Figure 21.2 shows the instantaneous power delivered to a resistor in an ac circuit; 
it varies from 0 to a maximum of IV. Since the sine function squared is always non-
negative, the power is always nonnegative. The direction of energy flow is always the 
same—energy is dissipated in the resistor—no matter what the direction of the current.

The maximum power is given by the product of the peak current and the peak 
voltage (IV   ). We are usually more concerned with average power than with instanta-
neous power, since the instantaneous power varies rapidly. In a toaster or lightbulb, the 
fluctuations in instantaneous power are so fast that we usually don’t notice them. The 
average power is IV times the average value of sin2 ωt, which is 1/2 (see Problem 11).

RMS Values

The root mean square (rms) current Irms is defined as the square root of the mean 
(average) of the square of the instantaneous current. Using angle brackets to represent 
the average value over one cycle, we can find the relationship between rms current and 
peak current I.

Irms = √⟨i2⟩ = √⟨I2 sin2 ωt⟩ = √⟨I2 sin2 ωt⟩ = √I2 ×
1
2

=
1

√2
  I  (21-8)

Similarly, the rms values of sinusoidal emfs and potential differences are also equal 
to the peak values divided by √2.

Average power dissipated by a resistor

 Pav =
1
2

 IV =
1
2

 I2R (21-7)

RMS values of sinusoidal quantities

 rms value =
1

√2
× amplitude (21-9)

Rms values have the advantage that they can be treated like dc values for finding 
the average power dissipated in a resistor:

 Pav = IrmsVrms = I2
rms R =

V2
rms

R
 (21-10)

Meters designed to measure ac voltages and currents are usually calibrated to read 
rms values instead of peak values. In the United States, most electric outlets supply 
an ac voltage of approximately 120 V rms; the peak voltage is 120 V × √2 = 170 V. 
Electric devices are usually labeled with rms values.

CHECKPOINT 21.1

A	 hair	 dryer	 is	 labeled	 “120	 V,	 10	 A,”	 where	 both	 quantities	 are	 rms	 values.	
What	 is	 the	average	power	dissipated?

CONNECTION:

Rms speed of a gas molecule 
(Section 13.6) is defined the 
same way: vrms = √⟨v2⟩.

IV

IV

0
0

Average
power

T t

p

T

Maximum
power

1–
2

1–
2

One cycle

Figure 21.2 Power p dissi-
pated by a resistor in an ac cir-
cuit as a function of time 
during one cycle. The area 
under the graph of p(t) repre-
sents the energy dissipated. The 
average power is IV/2.
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Example 21.1

Resistance of a 100 W Lightbulb

A 100 W incandescent lightbulb is designed to be connected to 
an ac voltage of 120 V (rms). (a) What is the resistance of the 
lightbulb filament at normal operating temperature? (b) Find 
the rms and peak currents through the filament. (c) When the 
cold filament is initially connected to the circuit by flipping a 
switch, is the average power larger or smaller than 100 W?

Strategy The average power dissipated by the filament is 
100 W. Since the rms voltage across the bulb is 120 V, if we 
connected the bulb to a dc power supply of 120 V, it would 
dissipate a constant 100 W.

Solution (a) Average power and rms voltage are related by

 Pav =
V2

rms

R
 (21-10)

We solve for R:

R =
V2

rms

Pav
=

(120 V)2

100 W
= 144 Ω

(b) Average power is rms voltage times rms current:

Pav = IrmsVrms

We can solve for the rms current:

Irms =
Pav

Vrms
=

100 W
120 V

= 0.833 A

The amplitude of the current is a factor of √2 larger.

I = √2 Irms = 1.18 A

(c) For metals, resistance increases with increasing tempera-
ture. When the filament is cold, its resistance is smaller. 
Since it is connected to the same voltage, the current is larger 
and the average power dissipated is larger.

Discussion Check: The power dissipated can also be 
found from peak values:

Pav =
1
2

 IV =
1
2

 (1.18 A × 170 V) = 100 W

Another check: the amplitudes should be related by 
Ohm’s law.

V = IR = 1.18 A × 144 Ω = 170 V

Practice Problem 21.1 European Wall Outlet

The rms voltage at a wall outlet in Europe is 220 V. 
 Suppose a space heater draws an rms current of 12.0 A. 
What are the amplitudes of the voltage and current? What 
are the peak power and the average power dissipated in the 
heating element? What is the resistance of the heating 
 element?

21.2 ELECTRICITY IN THE HOME

In a North American home, most electric outlets supply an rms voltage of 110–120 V at a 
frequency of 60 Hz. However, some appliances with heavy demands—such as electric heat-
ers, water heaters, stoves, and large air conditioners—are supplied with 220–240 V rms. At 
twice the voltage amplitude, they only need to draw half as much current for the same power 
to be delivered, reducing energy dissipation in the wiring (and the need for extra thick wires).

Local power lines are at voltages of several kilovolts. Step-down transformers 
reduce the voltage to 120/240 V rms. You can see these transformers wherever the 
power lines run on poles above the ground; they are the metal cans mounted to some 
of the poles (Fig. 21.3). The transformer has a center tap—a connection to the middle 
of the secondary coil; the voltage across the entire secondary coil is 240 V rms, but 
the voltage between the center tap and either end is only 120 V rms. The center tap 
is grounded at the transformer and runs to a building by a cable that is often uninsu-
lated. There it is connected to the neutral wire (which usually has white insulation) 
in every 120 V circuit in the building.

The other two connections from the transformer run to the building by insulated 
cables and are called hot. The hot wires in an outlet box usually have either black or 
red insulation. Relative to the neutral wire, each of the hot wires is at 120 V rms, but 
the two are 180° out of phase with each other. Half of the 120 V circuits in the build-
ing are connected to one of the hot cables and half to the other. Appliances needing 
to be supplied with 240 V are connected to both hot cables; they have no connection 
to the neutral cable.
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Older 120 V outlets have only two prongs: hot and neutral. The slot for the neutral 
prong is slightly larger than the hot; a polarized plug can only be connected one way, 
preventing the hot and neutral connections from being interchanged. This safety feature 
is now superseded in devices that use the third prong on modern outlets (Fig. 21.4). The 
third prong is connected directly to ground through its own set of wires (usually uninsu-
lated or with green insulation)—it is not connected to the neutral wires. The metal case 
of most electric appliances is connected to ground as a safety measure. If something goes 
wrong with the wiring inside the appliance so that the case becomes electrically con-
nected to the hot wire, the third prong provides a low-resistance path for the current to 
flow to ground; the large current trips a circuit breaker or fuse. Without the ground con-
nection, the case of the appliance would be at 120 V rms with respect to ground; some-
one touching the case could get a shock by providing a conducting path to ground.

21.3 CAPACITORS IN AC CIRCUITS

Figure 21.5a shows a capacitor connected to an ac source. The ac source pumps charge 
as needed to keep the voltage across the capacitor equal to the voltage of the source. 
Since the charge on the capacitor is proportional to the voltage v,

q(t) = Cv(t)

The current is proportional to the rate of change of the voltage Δv/Δt:

 i(t) =
Δq

Δt
= C  

Δv

Δt
 (21-11)

The time interval Δt must be small for i to represent the instantaneous current.

Circuit breakers

Electric
dryer

Television

Microwave

Service
panel
or
breaker box

Ground
wires are
grounded
here

Hot
Neutral

Ground
240 V
outlet

Hot Hot

Ground

2-prong
120 V
outlet

Hot
Neutral

Neutral is 
grounded here

Standard
3-prong
120 V
outlet

Step-down
transformer

High-voltage
lines

Utility pole

Secondary
connection
to
transformer

Primary
connection

to transformer

Junction boxes

t
V Hot

t
V Hot

t
V Neutral

Figure 21.3 Electric wiring in a North American home.
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Figure 21.5b shows the voltage v(t) and current i(t) as functions of time for the 
capacitor. Note some important points:

∙ The current is maximum when the voltage is zero.
∙ The voltage is maximum when the current is zero.
∙ The capacitor repeatedly charges and discharges.

The voltage and the current are both sinusoidal functions of time with the same 
frequency, but they are out of phase: the current starts at its maximum positive 
value, but the voltage reaches its maximum positive value one quarter cycle later. 
The voltage stays a quarter cycle behind the current at all times. The period T is 
the time for one complete cycle of a sinusoidal function; one cycle corresponds to 
360° since

 ωT = 2π rad = 360° (21-12)

For one quarter cycle, 1
4ωT = π/2 rad = 90°. Thus, we say that the voltage and current 

are one quarter cycle out of phase or 90° out of phase. The current leads the capac-
itor voltage by a phase constant of 90°; equivalently, the voltage lags the current by 
the same phase angle.

If the voltage across the capacitor is given by

 v(t) = V sin ωt (21-13)

then the current varies in time as

 i(t) = I sin (ωt + π/2)  (21-14)

We add the π/2 radians to the argument of the sine function to give the current a head 
start of π/2 rad. (We use radians rather than degrees since angular frequency ω is 
generally expressed in rad/s.)

In the general expression

 i = I sin (ωt + ϕ)  (21-15)

the angle ϕ is called the phase constant, which, for the case of the current in the 
capacitive circuit, is ϕ = π/2. A sine function shifted π/2 radians ahead is a cosine 
function, as can be seen in Fig. 21.5; that is,

 sin (ωt + π/2) = cos ωt (21-16)
so
 i(t) = I cos ωt (21-17)
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iFigure 21.5 (a) An ac gen-
erator connected to a capacitor. 
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current and voltage for a capac-
itor connected to an ac source 
as a function of time. Signs are 
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Reactance

The amplitude of the current I is proportional to the voltage amplitude V. A larger volt-
age means that more charge needs to be pumped onto the capacitor; to pump more charge 
in the same amount of time requires a larger current. We write the proportionality as

Definition of reactance (capacitor)

 VC = IXC (21-18)

Reactance of a capacitor

 XC =
1

ωC
 (21-21)

where the quantity XC is called the reactance of the capacitor. Compare Eq. (21-18) 
to Ohm’s law for a resistor (v = iR); reactance must have the same SI unit as resis-
tance (ohms). We have written Eq. (21-18) in terms of the amplitudes (V, I), but it 
applies equally well if both V and I are rms values (since both are smaller by the 
same factor, √2).

By analogy with Ohm’s law, we can think of the reactance as the “effective 
resistance” of the capacitor. The reactance determines how much current flows; the 
capacitor reacts in a way to impede the flow of current. A larger reactance means a 
smaller current, just as a larger resistance means a smaller current.

There are, however, important differences between reactance and resistance. A 
resistor dissipates energy, but an ideal capacitor does not; the average power dissipated 
by an ideal capacitor is zero, not I2

rmsXC. Note also that Eq. (21-18) relates only the 
amplitudes of the current and voltage. Since the current and voltage in a capacitor 
are 90° out of phase, it does not apply to the instantaneous values:

 v(t) ≠ i(t)XC (21-19)

For a resistor, on the other hand, the current and voltage are in phase (phase differ-
ence of zero); it is true for a resistor that v(t) = i(t)R.

Another difference is that reactance depends on frequency. If the peak charge is 
Q, then the peak current is I = ωQ (see Problem 18). Since Q = CV, we can find the 
reactance:

 XC =
V

I
=

V

ωQ
=

V

ωCV
 (21-20)

CONNECTION:

Reactance is a generalization 
of the definition of resistance 
(ratio of voltage to current). 
For capacitors and inductors, 
reactance is the ratio of the 
voltage amplitude to the cur-
rent amplitude; the ratio of 
the instantaneous voltage to 
the instantaneous current is 
not constant due to the phase 
difference between them.

The reactance is inversely proportional to the capacitance and to the angular fre-
quency. To understand why, let us focus on the first quarter of a cycle (0 ≤ t ≤ T/4) 
in Fig. 21.5b. During this quarter cycle, a total charge Q = CV flows onto the capac-
itor plates since the capacitor goes from being uncharged to fully charged. For a larger 
value of C, a proportionately larger charge must be put on the capacitor to reach a 
potential difference of V; to put more charge on in the same amount of time (T/4), the 
current must be larger. Thus, when the capacitance is larger, the reactance must be 
lower because more current flows for a given ac voltage amplitude.

The reactance is also inversely proportional to the frequency. For a higher fre-
quency, the time available to charge the capacitor (T/4) is shorter. For a given voltage 
amplitude, a larger current must flow to achieve the same maximum voltage in a 
shorter time interval. Thus, the reactance is smaller for a higher frequency.

At very high frequencies, the reactance approaches zero. The capacitor no longer 
impedes the flow of current; ac current flows in the circuit as if there were a conduct-
ing wire short-circuiting the capacitor. For the other limiting case, very low frequen-
cies, the reactance approaches infinity. At a very low frequency, the applied voltage 
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changes slowly; the current stops as soon as the capacitor is charged to a voltage equal 
to the applied voltage.

CHECKPOINT 21.3

A	capacitor	is	connected	to	an	ac	power	supply.	If	the	power	supply’s	frequency	
is	doubled	without	changing	 its	amplitude,	what	happens	to	the	amplitude	and	
frequency	of	 the	current?

Example 21.2

Capacitive Reactance for Two Frequencies

(a) Find the capacitive reactance and the rms current for a 
4.00 μF capacitor when it is connected to an ac source of 
12.0 V rms at 60.0 Hz. (b) Find the reactance and current 
when the frequency is changed to 15.0 Hz while the rms 
voltage remains at 12.0 V.

Strategy The reactance is the proportionality constant be-
tween the rms values of the voltage across and current 
through the capacitor. The capacitive reactance is given by 
Eq. (21-21). Frequencies in Hz are given; we need angular 
frequencies to calculate the reactance.

Solution (a) Angular frequency is

ω = 2πf

Then the reactance is

 XC =
1

2π f C

 =
1

2π × 60.0 Hz × 4.00 × 10−6 F
= 663 Ω

The rms current is

Irms =
Vrms

XC
= (12.0 V)/(663 Ω) = 18.1 mA

(b) We could redo the calculation in the same way. An alter-
native is to note that the frequency is multiplied by a factor 
15
60 = 1

4. Since reactance is inversely proportional to frequency,

XC = 4 × 663 Ω = 2650 Ω

A larger reactance means a smaller current:

Irms =
1
4

×
12.0 V
663 Ω

= 4.52 mA

Discussion When the frequency is increased, the reac-
tance decreases and the current increases. As we see in Sec-
tion 21.7, capacitors can be used in circuits to filter out low 
frequencies because at lower frequency, less current flows. 
When a PA system makes a humming sound (60 Hz hum), a 
capacitor can be inserted between the amplifier and the 
speaker to block much of the 60 Hz noise while letting the 
higher frequencies pass through.

Practice Problem 21.2 Capacitive Reactance and 
rms Current for a New Frequency

Find the capacitive reactance and the rms current for a 
4.00 μF capacitor when it is connected to an ac source of 
220.0 V rms and 4.00 Hz.

Power

Figure 21.6 shows a graph of the instantaneous power p(t) = v(t)i(t) for a capacitor 
superimposed on graphs of the current and voltage. The 90° (π/2 rad) phase difference 
between current and voltage has implications for the power in the circuit. During the 
first quarter cycle (0 ≤ t ≤ T/4), both the voltage and the current are positive. The 
power is positive: the generator is delivering energy to the capacitor to charge it. 
During the second quarter cycle (T/4 ≤ t ≤ T/2), the current is negative while the 
voltage remains positive. The power is negative; as the capacitor discharges, energy 
is returned to the generator from the capacitor.

The power continues to alternate between positive and negative as the capacitor 
stores and then returns electric energy. The average power is zero since all the energy 
stored is given back and none of it is dissipated.

T T TT

t

vC
i

p

vC ip

1–4
3–4

1–2

Figure 21.6 Current, voltage, 
and power for a capacitor in an 
ac circuit.
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21.4 INDUCTORS IN AC CIRCUITS

An inductor in an ac circuit develops an induced emf that opposes changes in the cur-
rent, according to Faraday’s law [Eq. (20-18)]. We use the same sign convention as for 
the capacitor: the current i through the inductor in Fig. 21.7a is positive when it flows 
to the right, and the voltage across the inductor vL is positive if the left side is at a 
higher potential than the right side. If current flows in the positive direction and is 
increasing, the induced emf opposes the increase (Fig. 21.7b) and vL is positive. If 
current flows in the positive direction and is decreasing, the induced emf opposes the 
decrease (Fig. 21.7c) and vL is negative. Since in the first case Δi/Δt is positive and 
in the second case Δi/Δt is negative, the voltage has the correct sign if we write

 vL = L  

Δi

Δt
 (21-22)

In Problem 28 you can verify that Eq. (21-22) also gives the correct sign when current 
flows to the left.

The voltage amplitude across the inductor is proportional to the amplitude of the 
current. The constant of proportionality is called the reactance of the inductor (XL):

Definition of reactance (inductor)

 VL = IXL (21-23)

Reactance of an inductor

 XL = ωL (21-24)

As for the capacitive reactance, the inductive reactance XL has units of ohms. As in 
Eq. (21-18), V and I in Eq. (21-23) can be either amplitudes or rms values, but be 
careful not to mix amplitude and rms in the same equation.

In Problem 30 you can show, using reasoning similar to that used for the capac-
itor, that the reactance of an inductor is

Note that the inductive reactance is directly proportional to the inductance L and to 
the angular frequency ω, in contrast to the capacitive reactance, which is inversely 
proportional to the angular frequency and to the capacitance. The induced emf in the 
inductor always acts to oppose changes in the current. At higher frequency, the more 
rapid changes in current are opposed by a greater induced emf in the inductor. Thus, 
the ratio of the amplitude of the induced emf to the amplitude of the current—the 
reactance—is greater at higher frequency.

CHECKPOINT 21.4

Suppose	 an	 inductor	 and	 a	 capacitor	 have	 equal	 reactance	 at	 some	 angular	
frequency	ω0.	 (a)	 Which	 has	 the	 larger	 reactance	 for	ω	 >	ω0?	 (b)	 Which	 has	
the	 larger	 reactance	 for	ω	<	ω0?

Figure 21.8 shows the potential difference across the inductor and the current 
through the inductor as functions of time. We assume an ideal inductor—one with no 
resistance in its windings. Since vL = L Δi/Δt, the graph of vL(t) is proportional to the 
slope of the graph of i(t) at any time t. The voltage and current are out of phase by 
a quarter cycle, but this time the current lags the voltage by 90° (π/2 rad); current 
reaches its maximum a quarter cycle after the voltage reaches a maximum. A mne-
monic device for remembering what leads and what lags is that the letter c (for 

– +

+ –

i increasing

(b)

i decreasing

(c)

Induced
emf

Induced
emf

i(t)

ℰ(t)
(a)

Figure 21.7 (a) An inductor 
connected to an ac source. 
(b) and (c) The potential differ-
ence across the inductor for 
current flowing to the right 
depends on whether the current 
is increasing or decreasing.

T T TT
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vLvL
i

i

i

vL i

1–4
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1–2

Figure 21.8 Current and 
potential difference across an 
inductor in an ac circuit. Note 
that when the current is maxi-
mum or minimum, its instanta-
neous rate of change— 
represented by its slope—is 
zero, so vL = 0. On the other 
hand, when the current is zero, 
it is changing the fastest, so vL 
has its maximum magnitude.



816 CHAPTER	21 Alternating Current

 current) appears in the second half of the word inductor (current lags inductor voltage) 
and at the beginning of the word capacitor (current leads capacitor voltage).

In Fig. 21.8, the voltage across the inductor can be written

 vL(t) = V sin ωt (21-25)
The current is
 i(t) = −I cos ωt = I sin (ωt − π/2)  (21-26)

where we have used the trigonometric identity −cos ωt = sin (ωt − π/2). We see 
explicitly that the current lags behind the voltage from the phase constant ϕ = −π/2.

Power

As for the capacitor, the 90° phase difference between current and voltage means that 
the average power is zero. No energy is dissipated in an ideal inductor (one with no 
resistance). The generator alternately sends energy to the inductor, where it is tempo-
rarily stored in a magnetic field, and receives energy back from the inductor.

Example 21.3

Inductor in a Radio’s Tuning Circuit

A 0.56 μH inductor is used as part of the tuning circuit in a 
radio. Assume the inductor is ideal. (a) Find the reactance of 
the inductor at a frequency of 90.9 MHz. (b) Find the ampli-
tude of the current through the inductor if the voltage ampli-
tude is 0.27 V. (c) Find the capacitance of a capacitor that 
has the same reactance at 90.9 MHz.

Strategy The reactance of an inductor is the product of 
angular frequency and inductance. The reactance in ohms is 
the ratio of the voltage amplitude to the amplitude of the 
 current. For the capacitor, the reactance is 1/(ωC).

Solution (a) The reactance of the inductor is

 XL = ωL = 2π f L

 = 2π × 90.9 MHz × 0.56 μH = 320 Ω

(b) The amplitude of the current is

 I =
V

XL

 =
0.27 V
320 Ω

= 0.84 mA

(c) We set the two reactances equal (XL = XC) and solve for C:

ωL =
1

ωC

 C =
1

ω2L
=

1
4π2 × (90.9 × 106 Hz)2 × 0.56 × 10−6 H

 = 5.5 pF

Discussion We can check by calculating the reactance of 
the capacitor:

XC =
1

ωC
=

1
2π × 90.9 × 106 Hz × 5.5 × 10−12 F

= 320 Ω

In Section 21.6 we study tuning circuits in more detail.

Practice Problem 21.3 Reactance and rms 
 Current

Find the inductive reactance and the rms current for a 
3.00 mH inductor when it is connected to an ac source of 
10.0 mV (rms) at a frequency of 60.0 kHz.

21.5 RLC SERIES CIRCUITS

Figure 21.9a shows an RLC series circuit. Kirchhoff’s junction rule tells us that the 
instantaneous current through each element is the same, since there are no junctions. 
The loop rule requires the sum of the instantaneous voltage drops across the three 
elements to equal the applied ac voltage:

 ℰ(t) = vL(t) + vR(t) + vC(t)  (21-27)
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The three voltages are sinusoidal functions of time with the same frequency but dif-
ferent phase constants.

Suppose that we choose to write the current with a phase constant of zero. The 
voltage across the resistor is in phase with the current, so it also has a phase constant 
of zero (see Fig. 21.9b). The voltage across the inductor leads the current by 90°, so 
it has a phase constant of +π/2. The voltage across the capacitor lags the current by 
90°, so it has a phase constant of −π/2.

ℰ(t) = ℰm sin (ωt + ϕ) = VL sin (ωt +
π

2) + VR sin ωt + VC sin (ωt −
π

2) (21-28)

Phasor Diagrams We could simplify this sum using trigonometric identities, but there 
is an easier method. We can represent each sinusoidal voltage by a vector-like object 
called a phasor. The magnitude of the phasor represents the amplitude of the voltage; 
the angle of the phasor represents the phase constant of the voltage. We can then add 
phasors the same way we add vectors. Although we draw them like vectors and add like 
vectors, they are not vectors in the usual sense. A phasor is not a quantity with a direc-
tion in space, like real vectors such as acceleration, momentum, or magnetic field.

Figure 21.10a shows three phasors representing the voltages vL(t), vR(t), and vC(t). 
An angle counterclockwise from the +x-axis represents a positive phase constant. First 
we add the phasors representing vL(t) and vC(t), which are in opposite directions. Then 
we add the sum of these two to the phasor that represents vR(t) (Fig. 21.10b). The 
vector sum represents ℰ(t). The amplitude of ℰ(t) is the length of the sum; from the 
Pythagorean theorem,

 ℰm = √V 
2
R + (VL − VC)2 (21-29)

CHECKPOINT 21.5

In	a	series	RLC	circuit,	 the	voltage	amplitudes	across	 the	capacitor	and	 induc-
tor	are	90	mV	and	50	mV,	 respectively.	The	applied	emf	has	amplitude	ℰm	=	
50	mV.	What	 is	 the	voltage	amplitude	across	 the	 resistor?

Impedance Each of the voltage amplitudes on the right side of Eq. (21-29) can be 
rewritten as the amplitude of the current times a reactance or resistance:

 ℰm = √(IR)2 + (IXL − IXC)2 (21-30)

Factoring out the current yields

 ℰm = I√R2 + (XL − XC)2 (21-31)

0

(a) (b)

T1–4 TT3–4

t

T1–2

ℰ(t)

L

R

C

vL
vR

vCvL

vR

vC

Figure 21.9 (a) An RLC 
series circuit. (b) The voltages 
across the circuit elements as 
functions of time. The current 
is in phase with vR, leads vC by 
90°, and lags vL by 90°.

(b)

ϕ

VR

VL – VC

ℰ

x

VL

VC

m

VR

(a)

Figure 21.10 (a) Phasor 
 representation of the voltages. 
(b) The phase angle ϕ between 
the source emf and the voltage 
across the resistor (which is in 
phase with the current).
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Thus, the amplitude of the ac source voltage is proportional to the amplitude of the 
current. The constant of proportionality is called the impedance (pronounced 
 im-peed-ance) of the circuit.

Impedance

 ℰm = IZ  (21-32)

 Z = √R2 + (XL − XC)2 (21-33)

Impedance is measured in ohms.
From Fig. 21.10b, the source voltage ℰ(t) leads vR(t)—and the current i(t)—by 

a phase angle ϕ, where

 tan ϕ =
VL − VC

VR
=

IXL − IXC

IR
=

XL − XC

R
 (21-34)

We assumed XL > XC in Figs. 21.9 and 21.10. If XL < XC, the phase angle ϕ is negative, 
which means that the source voltage lags the current. Figure 21.10b also implies that

 cos ϕ =
VR

ℰm
=

IR

IZ
=

R

Z
 (21-35)

If one or two of the elements R, L, and C are not present in a circuit, the forego-
ing analysis is still valid. Since there is no potential difference across a missing element, 
we can set the resistance or reactance of the missing element(s) to zero. For instance, 
since an inductor is made by coiling a long length of wire, it usually has an appre-
ciable resistance. We can model a real inductor as an ideal inductor in series with a 
resistor. The impedance of the inductor is found by setting XC = 0 in Eq. (21-33).

Example 21.4

An RLC Series Circuit

In an RLC circuit, the following three elements are con-
nected in series: a resistor of 40.0 Ω, a 22.0 mH inductor, 
and a 0.400 μF capacitor. The ac source has a peak voltage 
of 0.100 V and an angular frequency of 1.00 × 104 rad/s. 
(a) Find the amplitude of the current. (b) Find the phase an-
gle between the current and the ac source. Which leads? 
(c) Find the peak voltages across each of the circuit elements.

Strategy The impedance is the ratio of the source voltage 
amplitude to the amplitude of the current. By finding the 
reactances of the inductor and capacitor, we can find the 
impedance and then solve for the amplitude of the current. 
The reactances also enable us to calculate the phase constant ϕ. 
If ϕ is positive, the source voltage leads the current; if ϕ is 
negative, the source voltage lags the current. The peak 
 voltage across any element is equal to the peak current times 
the reactance or resistance of that element.

Solution (a) The inductive reactance is

XL = ωL = 1.00 × 104 rad/s × 22.0 × 10−3 H = 220 Ω

The capacitive reactance is

XC =
1

ωC
=

1
1.00 × 104 rad/s × 0.400 × 10−6 F

= 250 Ω

Then the impedance of the circuit is

Z = √R2 + (XL − XC)2 = √(40.0 Ω)2 + (−30 Ω)2 = 50 Ω

For a source voltage amplitude V = 0.100 V, the amplitude 
of the current is

I =
V

Z
=

0.100 V
50 Ω

= 2.0 mA

(b) The phase angle ϕ is

ϕ = tan−1 
XL − XC

R
= tan−1 

−30 Ω
40.0 Ω

= −0.64 rad = −37°

Since XL < XC  , the phase angle ϕ is negative, which means 
that the source voltage lags the current.

(c) The voltage amplitude across the inductor is

VL = IXL = 2.0 mA × 220 Ω = 440 mV
continued on next page
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Power Factor

No power is dissipated in an ideal capacitor or an ideal inductor; the power is dissi-
pated only in the resistance of the circuit (including the resistances of the wires of 
the circuit and the windings of the inductor):

 Pav = IrmsVR,rms (21-10)

We want to rewrite the average power in terms of the rms source voltage.

 
VR,rms

ℰrms
=

IrmsR

IrmsZ
=

R

Z
 (21-36)

From Eq. (21-35), R/Z = cos ϕ. Therefore,

 VR,rms = ℰrms cos ϕ (21-37)

and

 Pav = Irmsℰrms cos ϕ (21-38)

The factor cos ϕ in Eq. (21-38) is called the power factor. When there is only 
resistance and no reactance in the circuit, ϕ = 0 and cos ϕ = 1; then Pav = Irmsℰrms. 
When there is only capacitance or inductance in the circuit, ϕ = ±90° and cos ϕ = 0, 
so that Pav = 0. Many electric devices contain appreciable inductance or capacitance; 
the load they present to the source voltage is not purely a resistance. In particular, 
any device with a transformer has some inductance due to the windings. The label on 
an electric device sometimes includes a quantity with units of V·A and a smaller 
quantity with units of W. The former is the product Irmsℰrms; the latter is the average 
power consumed.

Figure 21.11
A phasor diagram used to find impedance and phase 
angle. (The lengths of the phasors are not to scale.)

XL

XC

R
30 Ω Z = 50 Ω

R = 40.0 Ω220 Ω

250 Ω

40.0 Ω

ϕ

Example 21.4 continued

For the capacitor and resistor,

VC = IXC = 2.0 mA × 250 Ω = 500 mV

and

VR = IR = 2.0 mA × 40.0 Ω = 80 mV

Discussion Since the voltage phasors in Fig. 21.10 are 
each proportional to I, we can divide each by I to form a pha-
sor diagram where the phasors represent reactances or resis-
tances (Fig. 21.11). Such a phasor diagram can be used to 

find the impedance of the circuit and the phase constant, in-
stead of using Eqs. (21-33) and (21-34).

Note that the sum of the voltage amplitudes across the 
three circuit elements is not the same as the source voltage 
amplitude:

100 mV ≠ 440 mV + 80 mV + 500 mV

The voltage amplitudes across the inductor and capaci-
tor are each larger than the source voltage amplitude. The 
voltage amplitudes are maximum values; since the voltages 
are not in phase with each other, they do not attain their 
maximum values at the same instant of time. What is true is 
that the sum of the instantaneous potential differences across 
the three elements at any given time is equal to the instanta-
neous source voltage at the same time [Eq. (21-28)].

Practice Problem 21.4 Instantaneous Voltages

If the current in this same circuit is written as i(t) = I sin ωt, 
what would be the corresponding expressions for vC(t), vL(t), 
vR(t), and ℰ(t)? (The main task is to get the phase constants 
correct.) Using these expressions, show that at t = 80.0 μs, 
vC(t) + vL(t) + vR(t) = ℰ(t). (The loop rule is true at any time 
t; we just verify it at one particular time.)
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EVERYDAY PHYSICS DEMO

Find	an	electric	device	that	has	a	label	with	two	numerical	ratings,	one	in	V·A	
and	 one	 in	W.	 The	windings	 of	 a	 transformer	 have	 significant	 inductance,	 so	
try	 something	 with	 an	 external	 transformer	 (inside	 the	 power	 supply)	 or	 an	
internal	 transformer	 (e.g.,	 a	 desktop	 computer).	 The	 windings	 of	motors	 also	
have	 inductance,	so	something	with	a	motor	 is	also	a	good	choice.	Calculate	
the	 power	 factor	 for	 the	 device.	 Now	 find	 a	 device	 that	 has	 little	 reactance	
relative	 to	 its	 resistance,	such	as	a	heater	or	an	 incandescent	 lightbulb.	Why	
is	 there	no	numerical	 rating	 in	V·A?

Example 21.5

Laptop Power Supply

A power supply for a laptop computer 
is labeled as follows: “45 W AC 
Adapter. AC input: 1.0 A max, 120 V, 
60.0 Hz.” A simplified circuit model 
for the power supply is a resistor R and 
an ideal inductor L in series with an 
ideal ac emf. The inductor represents 
primarily the inductance of the wind-
ings of the transformer; the resistor rep-
resents primarily the load presented by 
the laptop computer. Find the values of L and R when the 
power supply draws the maximum rms current of 1.0 A.

Strategy First we sketch the circuit (Fig. 21.12). The next 
step is to identify the quantities given in the problem, taking 
care to distinguish rms quantities from amplitudes and aver-
age power from Irmsℰrms. Since power is dissipated in the 
resistor but not in the inductor, we can find the resistance 
from the average power. Then we can use the power factor to 
find L. We assume no capacitance in the circuit, which 
means we can set XC = 0.

Solution The problem tells us that the maximum rms cur-
rent is Irms = 1.0 A. The rms source voltage is ℰrms = 120 V. 
The frequency is f = 60.0 Hz. The average power is 45 W 
when the power supply draws 1.0 A rms; the average power 
is smaller when the current drawn is smaller. Then

ℰrms Irms = 120 V × 1.0 A = 120 V·A
Note that the average power is less than Irmsℰrms; it can 
never be greater than Irmsℰrms since cos ϕ ≤ 1.

Since power is dissipated only in the resistor,

Pav = I2
rmsR

The resistance is therefore

R =
Pav

I2
rms

=
45 W

(1.0 A)2 = 45 Ω

The ratio of the average power to Irmsℰrms gives the power 
factor:

ℰrms Irms cos ϕ
ℰrms Irms

= cos ϕ =
45 W

120 V·A = 0.375

The phase angle is ϕ = cos−1 0.375 = 68.0°. From the phasor 
diagram of Fig. 21.13,

tan ϕ =
VL

VR
=

IXL

IR
=

XL

R
=

ωL

R

Now we can solve for L:

L =
R tan θ

ω
=

45 Ω tan 68.0°
2π × 60.0 Hz

= 0.30 H

Discussion Check: cos ϕ should be equal to R/Z.

R

Z
=

R

√R2 + (ωL)2
=

45 Ω
√(45 Ω)2 + (2π × 60.0 Hz × 0.30 H)2 

= 0.375

This agrees with cos ϕ = 0.375.

Practice Problem 21.5 A More Typical Current 
Draw

The adapter rarely draws the maximum rms current of 1.0 A. 
Suppose that, more typically, the adapter draws an rms current 
of 0.25 A. What is the average power? Use the same simpli-
fied circuit model with the same value of L but a different 
value of R. [Hint: Begin by finding the impedance.]

L

R

ℰ

Figure 21.12
A circuit diagram for 
the power supply.

Figure 21.13
Phasor addition of the voltages across the 
inductor and resistor.

ϕ

VR

VL ℰm
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21.6 RESONANCE IN AN RLC CIRCUIT

Suppose an RLC circuit is connected to an ac source with a fixed amplitude but vari-
able frequency. The impedance depends on frequency, so the amplitude of the current 
depends on frequency. Figure 21.14 shows three graphs (called resonance curves) of 
the amplitude of the current I = ℰm/Z as a function of angular frequency for a circuit 
with L = 1.0 H, C = 1.0 μF, and ℰm = 100 V. Three different resistors were used: 
200 Ω, 500 Ω, and 1000 Ω.

The shape of these graphs is determined by the frequency dependence of the 
inductive and capacitive reactances (Fig. 21.15). At low frequencies, the reactance of 
the capacitor XC = 1/(ωC) is much greater than either R or XL, so Z ≈ XC. At high 
frequencies, the reactance of the inductor XL = ωL is much greater than either R or 
XC, so Z ≈ XL. At extreme frequencies, either high or low, the impedance is larger 
and the amplitude of the current is therefore small.

The impedance of the circuit is

 Z = √R2 + (XL − XC)2 (21-33)

Since R is constant, the minimum impedance Z = R occurs at an angular frequency 
ω0—called the resonant angular frequency—for which the reactances of the inductor 
and capacitor are equal so that XL − XC = 0. Then, at resonance,

 ω0L =
1

ω0C
 (21-39)

Solving for ω0 yields

I 
(A

)

R1 = 200 Ω

R2 = 500 Ω

ω (rad/s)

R3 = 1000 Ω
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Figure 21.14 The amplitude 
of the current I as a function 
of angular frequency ω = 
1000 rad/s for three different 
resistances in a series RLC 
 circuit. The widths of each 
peak at half-maximum current 
are indicated. The horizontal 
scale is logarithmic.

XC

X, R

R

XL

ω0
ω

Figure 21.15 Frequency 
dependence of the inductive 
and capacitive reactances and 
of the resistance as a function 
of frequency.

Resonant angular frequency of RLC circuit

 ω0 =
1

√LC
 (21-40)

Note that the resonant frequency of a circuit depends only on the values of the 
inductance and the capacitance, not on the resistance. In Fig. 21.14, the maximum 
current occurs at the resonant frequency for any value of R. However, the value of 
the maximum current depends on R since Z = R at resonance. The resonance peak is 
higher for a smaller resistance. If we measure the width of a resonance peak where 
the amplitude of the current has half its maximum value, we see that the resonance 
peaks get narrower with decreasing resistance.

Resonance in an RLC circuit is analogous to resonance in mechanical oscilla-
tions (see Section 10.10 and Table 21.1). Just as a mass-spring system has a single 

CONNECTION:

Resonance in RLC circuits 
and in mechanical systems

Table 21.1 Analogy Between RLC Oscillations and Mechanical 
Oscillations

RLC Mechanical

q, i, Δi/Δt x, vx, ax

1
C , R, L k, b, m
1
2( 1

C) q2 1
2kx2

1
2 Li2 1

2mv2
x

Ri2
bv2

x

ω0 = √
1/C
L

ω0 = √
k

m
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resonant frequency, determined by the spring constant and the mass, the RLC circuit 
has a single resonant frequency, determined by the capacitance and the inductance. 
When either system is driven externally—by a sinusoidal applied force for the mass-
spring or by a sinusoidal applied emf for the circuit—the amplitude of the system’s 
response is greatest when driven at the resonant frequency. In both systems, energy 
is being converted back and forth between two forms. For the mass-spring, the two 
forms are kinetic and elastic potential energy; for the RLC circuit, the two forms 
are electric energy stored in the capacitor and magnetic energy stored in the induc-
tor. The resistor in the RLC circuit fills the role of friction in a mass-spring system: 
dissipating energy.

Application: Tuning Circuits A sharp resonance peak enables a tuning circuit to 
select one out of many different frequencies being broadcast. With one type of tuner, 
common in old radios, the tuning knob adjusts the capacitance by rotating one set of 
parallel plates relative to a fixed set so that the area of overlap is varied (Fig. 21.16). 
By changing the capacitance, the resonant frequency can be varied. The tuning circuit 
is driven by a mixture of many different frequencies coming from the antenna, but 
only frequencies very near the resonance frequency produce a significant response in 
the tuning circuit.

Figure 21.16 The variable 
capacitor from inside an old 
radio. The radio is tuned to a 
particular resonant frequency 
by adjusting the capacitance. 
This is done by rotating the 
knob, which changes the over-
lap of the two sets of plates.
©sciencephotos/Alamy

Example 21.6

A Tuner for a Radio

A radio tuner has a 400.0 Ω resistor, a 0.50 mH inductor, and 
a variable capacitor connected in series. Suppose the capaci-
tor is adjusted to 72.0 pF. (a) Find the resonant frequency for 
the circuit. (b) Find the reactances of the inductor and ca-
pacitor at the resonant frequency. (c) The applied emf at the 
resonant frequency coming in from the antenna is 20.0 mV 
(rms). Find the rms current in the tuning circuit. (d) Find the 
rms voltages across each of the circuit elements.

Strategy The resonant frequency can be found from the 
values of the capacitance and the inductance. The reactances 
at the resonant frequency must be equal. To find the current 
in the circuit, we note that the impedance is equal to the re-
sistance since the circuit is in resonance. The rms current is 
the ratio of the rms voltage to the impedance. The rms volt-
age across a circuit element is the rms current times the ele-
ment’s reactance or resistance.

Solution (a) The resonant angular frequency is given by

 ω0 =
1

√LC

 =
1

√0.50 × 10−3 H × 72.0 × 10−12 F
 = 5.27 × 106 rad/s

The resonant frequency in Hz is

f0 =
ω0

2π
= 840 kHz

(b) The reactances are

XL = ωL = 5.27 × 106 rad/s × 0.50 × 10−3 H = 2.6 kΩ

and

XC =
1

ωC
=

1
5.27 × 106 rad/s × 72.0 × 10−12 F

= 2.6 kΩ

They are equal, as expected.

(c) At the resonant frequency, the impedance is equal to the 
resistance.

Z = R = 400.0 Ω

The rms current is

Irms =
ℰrms

Z
=

20.0 mV
400.0 Ω

= 0.0500 mA

(d) The rms voltages are

 VL,rms = IrmsXL = 0.0500 mA × 2.6 × 103 Ω = 130 mV
 VC,rms = IrmsXC = 0.0500 mA × 2.6 × 103 Ω = 130 mV
 VR,rms = IrmsR = 0.0500 mA × 400.0 Ω = 20.0 mV

Discussion The resonant frequency of 840 kHz is a reason-
able result since it lies in the AM radio band (530–1700 kHz).

The rms voltages across the inductor and across the ca-
pacitor are equal at resonance, but the instantaneous voltages 
are opposite in phase (a phase difference of π rad or 180°), so 

continued on next page
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21.7 CONVERTING AC TO DC; FILTERS

Diodes

A diode is a circuit component that allows current to flow much more easily in one 
direction than in the other. An ideal diode has zero resistance for current in one direc-
tion, so that the current flows without any voltage drop across the diode, and infinite 
resistance for current in the other direction, so that no current flows. The circuit 
symbol for a diode ( ) has an arrowhead to indicate the direction of allowed current.

Application: Rectifiers

The circuit in Fig. 21.17a is called a half-wave rectifier. If the input is a sinusoidal 
emf, the output (the voltage across the resistor) is as shown in Fig. 21.17b. The out-
put signal can be smoothed out by a capacitor (Fig. 21.17c). The capacitor charges 
up when current flows through the diode; when the source voltage starts to drop and 
then changes polarity, the capacitor discharges through the resistor. (The capacitor 
cannot discharge through the diode because that would send current the wrong way 
through the diode.) The discharge keeps the voltage vR up. By making the RC time 
constant (τ = RC) long enough, the discharge through the resistor can be made to 
continue until the source voltage turns positive again (Fig. 21.17d).

Circuits involving more than one diode can be arranged to make a full-wave 
rectifier. The output of a full-wave rectifier (without a capacitor to smooth it) is shown 
in Fig. 21.18a. Circuits like these are found inside the ac adapter used with electronic 
devices such as laptop computers (Fig. 21.18b). Many other devices have circuits to 
do ac-to-dc conversion inside of them.

Filters

The capacitor in Fig. 21.17c serves as a filter. Figure 21.19 shows two RC filters 
commonly used in circuits. Figure 21.19a is a low-pass filter. For a high-frequency 

Example 21.6 continued

the sum of the potential difference across the two is always 
zero. In a phasor diagram, the phasors for vL and vC are op-
posite in direction and equal in length, so they add to zero. 
Then the voltage across the resistor is equal to the applied 
emf in both amplitude and phase.

Practice Problem 21.6 Tuning the Radio to a 
 Different Station

Find the capacitance required to tune to a station broadcast-
ing at 1420 kHz.

R
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Half-wave rectifier

Half-wave rectifier
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Figure 21.17 (a) A half-wave rectifier. (b) The voltage across the resistor. When the input voltage is negative, the 
output voltage vR is zero, so the negative half of the “wave” has been cut off. (c) A capacitor inserted to smooth the 
output voltage. (d) The dark graph line shows the voltage across the resistor, assuming the RC time constant is much 
larger than the period of the sinusoidal input voltage. The light graph line shows what the output would have been 
without the capacitor.
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ac signal, the capacitor serves as a low reactance path to ground (XC ≪ R); the  voltage 
across the resistor is much larger than the voltage across the capacitor, so the voltage 
across the output terminals is a small fraction of the input voltage. For a low-frequency 
signal, XC ≫ R, so the output voltage is nearly as great as the input voltage. For a 
signal consisting of a mixture of frequencies, the high frequencies are “filtered out” 
while the low frequencies “pass through.”

The high-pass filter of Fig. 21.19b does just the opposite. Suppose a circuit con-
nected to the input terminals supplies a mixture of a dc potential difference plus ac 
voltages at a range of frequencies. The reactance of the capacitor is large at low 
frequencies, so most of the voltage drop for low frequencies occurs across the capac-
itor; most of the high-frequency voltage drop occurs across the resistor and thus across 
the output terminals.

Combinations of capacitors and inductors are also used as filters. For both RC 
and LC filters, there is a gradual transition between frequencies that are blocked and 
frequencies that pass through. The frequency range where the transition occurs can 
be selected by choosing the values of R and C (or L and C).

Application: Crossover Networks A speaker used with an audio system often has 
two vibrating cones (the drivers) that produce the sounds. A crossover network 
(Fig.  21.20) separates the signal from the amplifier, sending the low frequencies to 
the woofer and the high frequencies to the tweeter.

(a)

vR

t

Full-wave rectifier
without capacitor

Transformer
Capacitor

Diodes

(b)

Figure 21.18 (a) Output of a 
full-wave rectifier. (b) This ac 
adapter contains a transformer 
(labeled “CK-62”) to reduce the 
amplitude of the ac source volt-
age. The two red diodes serve 
as a full-wave rectifier circuit, 
and the capacitor smooths out 
the ripples. The output is a 
nearly constant dc voltage.
©The Image Works Archive

R

C

(b)

Output
voltage

Input
voltage

High-pass RC filter

C

R

(a)

Output
voltage

Input
voltage

Low-pass RC filter

Figure 21.19 Two RC 
filters: (a) low-pass and 
(b) high-pass.

Figure 21.20 (a) Two speaker drivers are connected to an amplifier by a 
 crossover network. (b) The amplitude of the current I going to each of the  
drivers (expressed as a fraction of the input amplitude I0), graphed as a function  
of frequency.
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Master the Concepts

 ∙ In the equation

v = V sin (ωt + ϕ)

the lowercase letter (v) represents the instantaneous 
voltage and the uppercase letter (V) represents the 

 amplitude (peak value) of the voltage. The quantity ϕ is 
called the phase constant.

 ∙ The circuit symbol for an ac generator (source of sinu-
soidal emf) is 

continued on next page
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Master the Concepts continued

 ∙ The rms value of a sinusoidal quantity is 1/√2 times the 
amplitude.

 ∙ Reactances (XC, XL) and impedance (Z) are generaliza-
tions of the concept of resistance and are measured in 
ohms. The amplitude of the voltage across a circuit ele-
ment or combination of elements is equal to the ampli-
tude of the current through the element(s) times the 
reactance or impedance of the element(s). Except for a 
resistor, there is a phase difference between the voltage 
and current:

Amplitude Phase

Resistor VR = IR vR, i are in phase
Capacitor VC = IXC i leads vC by 90°

XC = 1/(ωC )
Inductor VL = IXL vL leads i by 90°

XL = ωL

RLC series  
 circuit

ℰm = IZ ℰ leads/lags i by

Z = √R2 + (XL − XC)2
ϕ = tan−1

  
XL − XC

R

 ∙ The average power dissipated in a resistor is

 Pav = Irms Vrms = I2
rmsR =

V2
rms

R
 (21-10)

The average power dissipated in an ideal capacitor or 
ideal inductor is zero.

 ∙ The average power dissipated in a series RLC circuit can 
be written

 Pav = Irmsℰrms cos ϕ (21-38)

  where ϕ is the phase difference between i(t) and ℰ(t). 
The power factor cos ϕ is equal to R/Z.

 ∙ To add sinusoidal voltages, we can represent each volt-
age by a vector-like object called a phasor. The magni-
tude of the phasor represents the amplitude of the 
voltage; the angle of the phasor represents the phase 

constant of the voltage. We can then add phasors the 
same way we add vectors.

x

VL

VC

VR

 ∙ The angular frequency at which resonance occurs in a 
series RLC circuit is

 ω0 =
1

√LC
 (21-40)

At resonance, the current amplitude has its maximum 
value, the capacitive reactance is equal to the inductive re-
actance, and the impedance is equal to the resistance. If the 
resistance in the circuit is small, the resonance curve (the 
graph of current amplitude as a function of frequency) has 
a sharp peak. By adjusting the resonant frequency, such a 
circuit can be used to select a narrow range of frequencies 
from a signal consisting of a broad range of frequencies.
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 ∙ An ideal diode has zero resistance for current in one 
direction, so that the current flows without any voltage 
drop across the diode, and infinite resistance for current 
in the other direction, so that no current flows. Diodes 
can be used to convert ac to dc.

 ∙ Capacitors and inductors can be used to make filters to 
selectively remove unwanted high or low frequencies 
from an electrical signal.

Conceptual Questions

 1. Explain why there is a phase difference between the cur-
rent in an ac circuit and the potential difference across a 
capacitor in the same circuit.

 2. Electric power is distributed long distances over trans-
mission lines by using high ac voltages and therefore 

small ac currents. What is the advantage of using high 
voltages instead of safer low voltages?

 3. Explain the differences between average current, rms 
current, and peak current in an ac circuit.

 4. The United States and Canada use 120 V rms as the stan-
dard household voltage, whereas most of the rest of the 
world uses 240 V rms for the household standard. What 
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are the advantages and disadvantages of the two 
 systems?

 5. Some electric appliances are able to operate equally 
well with either dc or ac voltage sources, but other ap-
pliances require one type of source or the other and can-
not run on both. Explain and give a few examples of 
each type of appliance.

 6. For an ideal inductor in an ac circuit, explain why the 
voltage across the inductor must be zero when the cur-
rent is maximum.

 7. For a capacitor in an ac circuit, explain why the current 
must be zero when the voltage across the capacitor is 
maximum.

 8. An electric heater is plugged into an ac outlet. Since the 
ac current changes polarity, there is no net movement of 
electrons through the heating element; the electrons just 
tend to oscillate back and forth. How, then, does the 
heating element heat up? Don’t we need to send elec-
trons through the element? Explain.

 9. An electric appliance is rated 120 V, 5 A, 500 W. The first 
two are rms values; the third is the average power con-
sumption. Why is the power not 600 W (= 120 V × 5 A)?

 10. What happens if a 40 W incandescent lightbulb, de-
signed to be connected to an ac voltage with amplitude 
170 V and frequency 60 Hz, is instead connected to a 
170 V dc power supply? Explain. What dc voltage 
would make the lightbulb burn with the same brightness 
as the 170 V peak 60 Hz ac?

 11. A circuit has a resistor and an unknown component in 
series with a 12 V (rms) sinusoidal ac source. The cur-
rent in the circuit decreases by 20% when the frequency 
decreases from 240 Hz to 160 Hz. What is the second 
component in the circuit? Explain your reasoning.

 12. A circuit has a resistor and an unknown component in 
series with a 12 V (rms) sinusoidal ac source. The cur-
rent in the circuit decreases by 25% when the frequency 
increases from 150 Hz to 250 Hz. What is the second 
component in the circuit? Explain your reasoning.

 13. How can the lights in a home be dimmed using a coil of 
wire and a soft-iron core?

 14. Explain what is meant by a phase difference. Sketch 
graphs of i(t) and vC(t), given that the current leads the 
voltage by π/2 radians.

 15. What does it mean if the power factor is 1? What does it 
mean if it is zero?

 16.  Let’s examine the crossover network of Fig. 21.20 in 
the limiting cases of very low and very high frequen-
cies. (a) How do the reactances of the capacitor and in-
ductor compare for very low frequencies? (b) How do 
the rms currents through the tweeter and woofer com-
pare for very low frequencies? (c) Answer these two 
questions in the case of very high frequencies. (d) With 
what should a frequency be compared to determine if it 
is “very low” or “very high”?

Multiple-Choice Questions

 1. For an ac circuit, graphs (1, 2) could represent:

t

1
2

 (a) the (1-voltage, 2-current) for a capacitor.
 (b) the (1-current, 2-voltage) for a capacitor.
 (c) the (1-voltage, 2-current) for a resistor.
 (d) the (1-current, 2-voltage) for a resistor.
 (e) the (1-voltage, 2-current) for an inductor.
 (f) the (1-current, 2-voltage) for an inductor.
 (g) either (a) or (e).
 (h) either (a) or (f).
 (i) either (b) or (e).
 (j) either (b) or (f).
 2. For a capacitor in an ac circuit, how much energy is stored 

in the capacitor at the instant when current is zero?
 (a) zero
 (b) maximum
 (c) half of the maximum amount
 (d)  1/√2 × the maximum amount
 (e)  impossible to answer without being given the phase 

angle
 3. For an ideal inductor in an ac circuit, the current through 

the inductor
 (a) is in phase with the induced emf.
 (b) leads the induced emf by 90°.
 (c) leads the induced emf by an angle less than 90°.
 (d) lags the induced emf by 90°.
 (e) lags the induced emf by an angle less than 90°.
 4. For an ideal inductor in an ac circuit, how much 

 energy is stored in the inductor at the instant when 
current is zero?

 (a) zero
 (b) maximum
 (c) half of the maximum amount
 (d) 1/√2 × the maximum amount
 (e)  impossible to tell without being given the phase 

angle
 5. A capacitor is connected to the terminals of a variable 

frequency oscillator. The peak voltage of the source is 
kept fixed while the frequency is increased. Which 
statement is true?

 (a) The rms current through the capacitor increases.
 (b) The rms current through the capacitor decreases.
 (c)  The phase relation between the current and source 

voltage changes.
 (d)  The current stops flowing when the frequency 

change is large enough.
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 6. A voltage v(t) = (120 V) sin [(302 rad/s)t] is produced 
by an ac generator. What is the rms voltage and the fre-
quency of the source?

 (a) 170 V and 213 Hz (b) 20 V and 427 Hz
 (c) 60 V and 150 Hz (d) 85 V and 48 Hz
 7. An ac source is connected to a series combination of a 

resistor, capacitor, and an inductor. Which statement is 
correct?

 (a)  The current in the capacitor leads the current in the 
inductor by 180°.

 (b)  The current in the inductor leads the current in the 
capacitor by 180°.

 (c)  The current in the capacitor and the current in the 
resistor are in phase.

 (d)  The voltage across the capacitor and the voltage 
across the resistor are in phase.

 8. A series RLC circuit is connected to an ac generator. 
When the generator frequency varies (but the peak emf 
is constant), the average power is:

 (a) a minimum when ∣XL − XC∣ = R.
 (b) a minimum when XC = XL.
 (c) equal to I2

rmsR only at the resonant frequency.
 (d) equal to I2

rmsR at all frequencies.

Questions 9 and 10. The graphs show the peak current as a 
function of frequency for various circuit elements placed in 
the diagrammed circuit. The amplitude of the generator emf 
is constant, independent of the frequency.
 9. Which graph is correct if the circuit element is a 

 capacitor?

a

b
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?
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 cu
rre

nt
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V

Multiple-Choice	Questions	9	and	10

 10. Which graph is correct if the circuit element is a 
resistor?

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

21.1 Sinusoidal Currents and Voltages: Resistors 
in ac Circuits; 21.2 Electricity in the Home
 1. A lightbulb is connected to a 120 V (rms), 60 Hz source. 

How many times per second does the current reverse 
direction?

 2. A European outlet supplies 220 V (rms) at 50 Hz. How 
many times per second is the magnitude of the voltage 
equal to 220 V?

 3. A 1500 W heater runs on 120 V rms. What is the peak 
current through the heater?

 4. A circuit breaker trips when the rms current exceeds 
20.0 A. How many 100.0 W lightbulbs can run on this 
circuit without tripping the breaker? (The voltage is 
120 V rms.)

 5.  A 1500 W electric hair dryer is designed to work in 
the United States, where the ac voltage is 120 V rms. 
What power is dissipated in the hair dryer when it is 
plugged into a 240 V rms socket in Europe? What may 
happen to the hair dryer in this case?

 6. A 4.0 kW heater is designed to be connected to a  
120 V rms source. What is the power dissipated by the 
heater if it is instead connected to a 120 V dc source?

 7. (a) What rms current is drawn by a 4200 W electric 
room heater when running on 120 V rms? (b) What is 
the power dissipation by the heater if the voltage drops 
to 105 V rms during a brownout? Assume the resistance 
stays the same.

 8. A television set draws an rms current of 2.50 A from a 
60 Hz power line. Find (a) the average current, (b) the 
average of the square of the current, and (c) the ampli-
tude of the current.

 9. The instantaneous sinusoidal emf from an ac generator 
with an rms emf of 4.0 V oscillates between what  values?

 10. A hair dryer has a power rating of 1200 W at 120 V rms. 
Assume the hair dryer circuit contains only resistance. 
(a) What is the resistance of the heating element? 
(b)  What is the rms current drawn by the hair dryer? 
(c) What is the maximum instantaneous power dissipated?

 11.  Show that over one complete cycle, the average 
value of a sin2 ωt is 1

2. Use the trigonometric identity 
sin2 ωt = (1 − cos 2ωt)/2.

21.3 Capacitors in ac Circuits
 12. A variable capacitor with negligible resistance is con-

nected to an ac voltage source. How does the current in 
the circuit change if the capacitance is increased by a 
factor of 3.0 and the driving frequency is increased by a 
factor of 2.0?

 13. At what frequency is the reactance of a 6.0 μF capacitor 
equal to 1.0 kΩ?

 14. A 0.400 μF capacitor is connected across the terminals 
of a variable frequency oscillator. (a) What is the fre-
quency when the reactance is 6.63 kΩ? (b) Find the re-
actance for half of that same frequency.

 15. A 0.250 μF capacitor is connected to a 220 V rms ac 
source at 50.0 Hz. (a) Find the reactance of the capaci-
tor. (b) What is the rms current through the capacitor?
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 16. A capacitor is connected across the terminals of a  
115 V rms, 60.0 Hz generator. For what capacitance is 
the rms current 2.3 mA?

 17. Show, from XC = 1/(ωC  ), that the units of capacitive 
reactance are ohms.

 18.  The charge on a capacitor in an ac circuit is q(t) = 
Q  sin ωt. Using a small-angle approximation  
(Appendix A.9), we can write q(t) ≈ Qωt for times  
∣t∣ ≪ 1/ω. What is the slope of the graph of q(t) at t = 0? 
This is equal to the current at t = 0, which is the peak 
current I. (As a general statement, the maximum rate of 
change of any sinusoidal function of time is ω times the 
amplitude.)

 19. Three capacitors (2.0 μF, 3.0 μF, 6.0 μF) are connected 
in series to an ac voltage source with amplitude 12.0 V 
and frequency 6.3 kHz. (a) What are the peak voltages 
across each capacitor? (b) What is the peak current that 
flows in the circuit?

 20.  A capacitor (capacitance = C  ) is connected to an ac 
power supply with peak voltage V and angular fre-
quency ω. (a) During a quarter cycle when the capacitor 
goes from being uncharged to fully charged, what is 
the average current (in terms of C, V, and ω)? [Hint: 
iav = ΔQ/Δt.] (b) What is the rms current? (c) Explain 
why the average and rms currents are not the same.

 21. A capacitor and a resistor are connected in parallel across 
an ac source. The reactance of the capacitor is equal to 
the resistance of the resistor. Assuming that iC(t) = I sin ωt, 
sketch graphs of iC(t) and iR(t) on the same axes.

21.4 Inductors in ac Circuits
 22. A variable inductor with negligible resistance is con-

nected to an ac voltage source. How does the current in 
the inductor change if the inductance is increased by a 
factor of 3.0 and the driving frequency is increased by a 
factor of 2.0?

 23. At what frequency is the reactance of a 20.0 mH induc-
tor equal to 18.8 Ω?

 24. What is the reactance of an air core solenoid of length 
8.0 cm, radius 1.0 cm, and 240 turns at a frequency of 
15.0 kHz?

 25. A solenoid with a radius of 8.0 × 10−3 m and 200 turns/cm 
is used as an inductor in a circuit. When the solenoid is 
connected to a source of 15 V rms at 22 kHz, an rms cur-
rent of 3.5 × 10−2 A is measured. Assume the  resistance of 
the solenoid is negligible. (a) What is the inductive reac-
tance? (b) What is the length of the  solenoid?

 26. A 4.00 mH inductor is connected to an ac voltage source 
of 151.0 V rms. If the rms current in the circuit is  
0.820 A, what is the frequency of the source?

 27. Two ideal inductors (0.10 H, 0.50 H) are connected in 
series to an ac voltage source with amplitude 5.0 V and 
frequency 126 Hz. (a) What are the peak voltages across 
each inductor? (b) What is the peak current that flows in 
the circuit?

 28.  Suppose that current flows to the left through the 
inductor in Fig. 21.7a so that i is negative. (a) If the cur-
rent is increasing in magnitude, what is the sign of Δi/Δt? 
(b) In what direction is the induced emf that opposes 
the increase in current? (c) Show that Eq. (21-22) gives 
the correct sign for vL. [Hint: vL is positive if the left side 
of the inductor is at a higher potential than the  right 
side.] (d) Repeat these three questions if the current 
flows to the left through the inductor and is  decreasing 
in magnitude.

 29.   Suppose that an ideal capacitor and an ideal in-
ductor are connected in series in an ac circuit. (a) What 
is the phase difference between vC(t) and vL(t)? [Hint: 
Since they are in series, the same current i(t) flows 
through both.] (b) If the rms voltages across the capaci-
tor and inductor are 5.0 V and 1.0 V, respectively, what 
would an ac voltmeter (which reads rms voltages) con-
nected across the series combination read?

 30.  The voltage across an inductor and the current through 
the inductor are related by vL = L Δi/Δt. Suppose that 
i(t) = I sin ωt. (a) Sketch a graph of i(t), showing at least 
one full cycle. (b) Using a small-angle approximation 
 (Appendix A.9), find the slope of the graph of i(t) for times 
∣t∣ ≪ 1/ω. (This is the maximum value of Δi/Δt.) Express 
your answer in terms of I and ω. (c) Using your answer to 
part (b), find VL, the voltage amplitude, in terms of L, I, and 
ω. (d) Show that the reactance is XL = ωL. (e) Sketch a 
graph of vL(t), showing at least one full cycle. What is the 
phase difference between the current and voltage?

 31.   Make a figure analogous to Fig. 21.5 for an ideal 
inductor in an ac circuit. Start by assuming that the volt-
age across an ideal inductor is vL(t) = VL sin ωt. Make a 
graph showing one cycle of vL(t) and i(t) on the same 
axes. Then, at each of the times t = 0, 1

8T, 28T, . . . , T, 
indicate the direction of the current (or that it is zero), 
whether the current is increasing, decreasing, or (instan-
taneously) not changing, and the direction of the in-
duced emf in the inductor (or that it is zero).

 32. A 25.0 mH inductor, with internal resistance of 25.0 Ω, 
is connected to a 110 V rms source. If the average power 
dissipated in the circuit is 50.0 W, what is the frequency? 
(Model the inductor as an ideal inductor in series with a 
resistor.)

 33. An inductor has an impedance of 30.0 Ω and a resis-
tance of 20.0 Ω at a frequency of 50.0 Hz. What is the 
inductance? (Model the inductor as an ideal inductor in 
series with a resistor.)

21.5 RLC Series Circuits
 34. A 6.20 mH inductor is one of the elements in an RLC 

series circuit. When this circuit is connected to a 1.60 kHz 
sinusoidal source with an rms voltage of 960.0 V, an 
rms current of 2.50 A lags behind the voltage by 52.0°. 
(a) What is the impedance of this circuit? (b) What is 
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the resistance of this circuit? (c) What is the average 
power dissipated in this circuit?

 35. A series combination of a resistor and a capacitor is 
connected to a 110 V rms, 60.0 Hz ac source. If the ca-
pacitance is 0.80 μF and the rms current in the circuit is 
28.4 mA, what is the resistance?

 36. A 300.0 Ω resistor and a 2.5 μF capacitor are connected 
in series across the terminals of a sinusoidal emf with a 
frequency of 159 Hz. The inductance of the circuit is 
negligible. What is the impedance of the circuit?

 37. A series RLC circuit has a 0.20 mF capacitor, a 13 mH 
inductor, and a 10.0 Ω resistor, and is connected to an ac 
source with amplitude 9.0 V and frequency 60 Hz. 
(a) Calculate the voltage amplitudes VL, VC, VR, and the 
phase angle. (b) Draw the phasor diagram for the volt-
ages of this circuit.

 38. (a) Find the power factor for the RLC series circuit of 
Example 21.4. (b) What is the average power delivered 
to each element (R, L, C)?

 39. A computer draws an rms current of 2.80 A at an rms 
voltage of 120 V. The average power consumption is 
240 W. (a) What is the power factor? (b) What is the 
phase difference between the voltage and current?

 40. An RLC series circuit is connected to an ac power sup-
ply with a 12 V amplitude and a frequency of 2.5 kHz. 
If R = 220 Ω, C = 8.0 μF, and L = 0.15 mH, what is the 
average power dissipated?

 41. An ac circuit has a single resistor, capacitor, and in-
ductor in series. The circuit uses 100 W of power and 
draws a maximum rms current of 2.0 A when operat-
ing at 60 Hz and 120 V rms. The capacitive reactance 
is 0.50 times the inductive reactance. (a) Find the 
phase angle. (b) Find the values of the resistor, the 
inductor, and the capacitor.

 42. An RLC circuit has a resistance of 10.0 Ω, an induc-
tance of 15.0 mH, and a capacitance of 350 μF. By 
what factor does the impedance of this circuit change 
when the frequency at which it is driven changes from 
60 Hz to 120  Hz? Does the impedance increase or 
decrease?

 43. An ac circuit contains a 12.5 Ω resistor, a 5.00 μF ca-
pacitor, and a 3.60 mH inductor connected in series to 
an ac generator with an output voltage of 50.0 V (peak) 
and frequency of 1.59 kHz. Find the impedance, the 
power factor, and the phase difference between the 
source voltage and current for this circuit.

 44.   A 0.48 μF capacitor is connected in series to a 
5.00 kΩ resistor and an ac source of voltage amplitude 
2.0 V. (a) At f = 120 Hz, what are the voltage ampli-
tudes across the capacitor and across the resistor? 
(b) Do the voltage amplitudes add to give the ampli-
tude of the source voltage (i.e., does VR + VC = 2.0 V)? 
Explain. (c) Draw a phasor diagram to show the addi-
tion of the voltages.

 45.   A series combination of a 22.0 mH inductor and 
a 145.0 Ω resistor is connected across the output termi-
nals of an ac generator with peak voltage 1.20 kV. (a) At 
f = 1250 Hz, what are the voltage amplitudes across the 
inductor and across the resistor? (b) Do the voltage 
a mplitudes add to give the source voltage (i.e., does 
VR + VL = 1.20 kV)? Explain. (c) Draw a phasor  diagram 
to show the addition of the voltages.

 46.   A 3.3 kΩ resistor is in series with a 2.0 μF 
 capacitor in an ac circuit. The rms voltages across the 
two are the same. (a) What is the frequency? (b) Would 
each of the rms voltages be half of the rms voltage of the 
source? If not, what fraction of the source voltage are 
they? (In other words, VR/  ℰm = VC/  ℰm = ?) [Hint: Draw 
a phasor diagram.] (c) What is the phase angle between 
the source voltage and the current? Which leads? 
(d) What is the impedance of the circuit?

 47.   A 150 Ω resistor is in series with a 0.75 H in-
ductor in an ac circuit. The rms voltages across the two 
are the same. (a) What is the frequency? (b) Would 
each of the rms voltages be half of the rms voltage of 
the source? If not, what fraction of the source voltage 
are they? (In other words, VR/ℰm = VL/ℰm = ?) 
(c) What is the phase angle between the source voltage 
and the current? Which leads? (d) What is the imped-
ance of the circuit?

 48.  A series circuit with a resistor and a capacitor has a 
time constant of 0.25 ms. The circuit has an impedance 
of 350 Ω at a frequency of 1250 Hz. What are the 
 capacitance and the resistance?

 49.  (a) What is the reactance of a 10.0 mH inductor at the 
frequency f = 250.0 Hz? (b) What is the impedance of a 
series combination of the 10.0 mH inductor and a 10.0 Ω 
resistor at 250.0 Hz? (c) What is the maximum current 
through the same circuit when the ac voltage source has 
a peak value of 1.00 V? (d) By what angle does the 
 current lag the voltage in the circuit?

21.6 Resonance in an RLC Circuit
 50. The FM radio band is broadcast between 88 MHz and 

108 MHz. What range of capacitors must be used to 
tune in these signals if an inductor of 3.00 μH is used?

 51. An RLC series circuit is built with a variable capacitor. 
How does the resonant frequency of the circuit change 
when the area of the capacitor is increased by a factor of 2?

 52.  A series RLC circuit has R = 500.0 Ω, L = 35.0 mH, 
and C = 87.0 pF. What is the impedance of the circuit at 
resonance? Explain.

 53. In an RLC series circuit, these three elements are con-
nected in series: a resistor of 60.0 Ω, a 40.0 mH induc-
tor, and a 0.0500 F capacitor. The series elements are 
connected across the terminals of an ac oscillator with 
an rms voltage of 10.0 V. Find the resonant frequency 
for the circuit.
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 54.  Electrical impedance tomography (EIT) is a medi-
cal imaging technique in which a low ac current is 
passed through part of the body. The impedance be-
tween the electrodes provides a measure of body com-
position. Consider a simplified model in which the body 
acts as the resistor and capacitor of an RLC circuit, and 
the external circuit contains an inductance L = 0.80 H as 
well as the power supply. (a) If the resonant frequency is 
measured to be 50 kHz, what is the capacitance? 
(b) How can the resistance be determined?

 55.  To test hearing at various frequencies, a resonant 
RLC circuit is connected to a speaker. The resonant 
 frequency is selected by changing a variable capacitor. 
(a) For an RLC circuit with L = 300 mH, what is the 
necessary capacitance to achieve a resonance frequency 
of 20 Hz (about the lowest frequency that can be de-
tected by people with excellent hearing)? (b) What is 
the necessary capacitance for a frequency of 20 kHz 
(about the highest audible frequency)?

 56.  Fast-twitch muscle fibers can contract and relax as 
many as 70 times per second. Early measurements of 
this involved subjecting the muscle to electrical im-
pulses from an oscillator circuit. If an RLC circuit is 
used with R = 150 kΩ and C = 300 μF, what inductance 
would be necessary to achieve 70 twitches per second?

 57. An RLC series circuit is driven by a sinusoidal emf at the 
circuit’s resonant frequency. (a) What is the phase differ-
ence between the voltages across the capacitor and induc-
tor? [Hint: Since they are in series, the same current i(t) 
flows through them.] (b) At resonance, the rms current in 
the circuit is 120 mA. The resistance in the circuit is 
20 Ω. What is the rms value of the applied emf? (c) If the 
frequency of the emf is changed without changing its rms 
value, what happens to the rms current?

 58. An RLC series circuit has a resistance of R = 325 Ω, an 
inductance L = 0.300 mH, and a capacitance C = 33.0 nF. 
(a) What is the resonant frequency? (b) If the capacitor 
breaks down for peak voltages in excess of 7.0 × 102 V, 
what is the maximum source voltage amplitude when the 
circuit is operated at the resonant frequency?

 59. An RLC series circuit has L = 0.300 H and C = 6.00 μF. 
The source has a peak voltage of 440 V. (a) What is the 
angular resonant frequency? (b) When the source is set 
at the resonant frequency, the peak current in the circuit 
is 0.560 A. What is the resistance in the circuit? (c) What 
are the peak voltages across the resistor, the inductor, 
and the capacitor at the resonant frequency?

 60.  Finola has a circuit with a 4.00 kΩ resistor, a 
0.750  H inductor, and a capacitor of unknown value 
connected in series to a 440.0 Hz ac source. With an 
oscilloscope, she measures the phase angle to be 25.0°. 
(a)  What is the value of the unknown capacitor? 
(b) Finola has several capacitors on hand and would like 
to use one to tune the circuit to maximum power. Should 
she connect a second capacitor in parallel across the first 

capacitor or in series in the circuit? Explain. (c) What 
value capacitor does she need for maximum power?

 61. Repeat Problem 37 for an operating frequency of 
98.7  Hz. (a) What is the phase angle for this circuit? 
(b) Draw the phasor diagram. (c) What is the resonant 
frequency for this circuit?

21.7 Converting ac to dc; Filters
 62.  An RC filter is shown. The filter resistance R is vari-

able between 180 Ω and 2200 Ω and the filter capaci-
tance is C = 0.086 μF. At what frequency is the output 
amplitude equal to 1/√2 times the input amplitude if 
R = (a) 180 Ω? (b) 2200 Ω? (c) Is this a low-pass or 
high-pass filter? Explain.

R
C OutputInput

 63. In the crossover network of the figure, the crossover 
frequency is found to be 252 Hz. The capacitance is 
C = 560 μF. Assume the inductor to be ideal. (a) What 
is the impedance of the tweeter branch (the capacitor in 
series with the 8.0 Ω resistance of the tweeter) at the 
crossover frequency? (b) What is the impedance of 
the woofer branch at the crossover frequency? [Hint: The 
current amplitudes in the two branches are the same.] 
(c) Find L. (d) Derive an equation for the crossover fre-
quency fco in terms of L and C.

C

L

Woofer
8.0 Ω

Tweeter
8.0 Ω

Speaker
Problems	63	and	64

 64. In the crossover network of Problem 63, the inductance 
L is 1.20 mH. The capacitor is variable; its capacitance 
can be adjusted to set the crossover point according to 
the frequency response of the woofer and tweeter. What 
should the capacitance be set to for a crossover point of 
180 Hz? [Hint: At the crossover point, the currents are 
equal in amplitude.]

Collaborative Problems

 65.  The circuit shown has a source voltage of 440 V rms, 
resistance R = 250 Ω, inductance L = 0.800 H, and 
capacitance C = 2.22 μF. (a)  Find the angular fre-
quency ω0 for resonance in this circuit. (b) Draw a 
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 phasor diagram for the circuit at resonance. (c) Find 
these rms voltages measured between various points in 
the circuit: Vab, Vbc, Vcd, Vbd, and Vad. (d) The resistor is 
replaced with one of R = 125 Ω. Now what is the an-
gular frequency for resonance? (e) What is the rms 
current in the circuit operated at resonance with the 
new resistor?

Vad
Vbd

VcdVbcVab

a cb dR CL

 66.   The diagram shows a simplified household 
 circuit. Resistor R1 = 240.0 Ω represents a lightbulb; 
resistor R2 = 12.0 Ω represents a hair dryer. The resis-
tors r = 0.50 Ω (each) represent the resistance of the 
wiring in the walls. Assume that the generator supplies 
a constant 120.0 V rms. (a) The lightbulb is initially on 
and the hair dryer is off. How much does the rms volt-
age across the lightbulb decrease when the hair dryer is 
switched on? (Give the magnitude of the decrease—i.e., 
a positive answer.) (b) How much does the power dissi-
pated in the lightbulb decrease? (c) Explain why the 
neutral and ground wires in a junction box are not at the 
same potential even though they are both grounded at 
the circuit breaker panel.

r

r

r

r

R1

A

Light-
bulb R2

Hair
dryer

Neutral

Hot

ℰ

 67. You are working as an electrical engineer designing 
transformers for transmitting power from a generating 
station producing 2.5 × 106 W to a city 120 km away. 
The power will be carried on two transmission lines to 
complete a circuit, each line constructed out of copper 
with a radius of 5.0 cm. (a) What is the total resistance of 
the transmission lines? (b) If the power is transmitted at 
1200 V rms, find the average power dissipated in the 
wires. (c) The rms voltage is increased from 1200 V by a 
factor of 150 using an ideal transformer with a primary 
coil of 1000 turns. How many turns are in the secondary 
coil? (d) What is the new rms current in the transmission 
lines after the voltage is stepped up with the transformer? 
(e) How much average power is dissipated in the trans-
mission lines when using the transformer?

 68.  A variable inductor can be placed in series with a 
lightbulb to act as a dimmer. (a) What inductance would 
reduce the current through a 100 W lightbulb to 75% of 
its maximum value? Assume a 120 V rms, 60 Hz source. 
(b) Could a variable resistor be used in place of the vari-
able inductor to reduce the current? Why is the inductor 
a much better choice for a dimmer?

Comprehensive Problems

 69. For a particular RLC series circuit, the capacitive reac-
tance is 12.0 Ω, the inductive reactance is 23.0 Ω, and 
the maximum voltage across the 25.0 Ω resistor is 8.00 V. 
(a) What is the impedance of the circuit? (b) What is 
the maximum voltage across this circuit? (c) What is the 
current amplitude?

 70. The phasor diagram for a particular RLC series circuit is 
shown in the figure. If the circuit has a resistance of 100 Ω 
and is driven at a frequency of 60 Hz, find (a) the current 
amplitude, (b) the capacitance, and (c) the inductance.

VL

VC

VR
10.0 V

7.0 V

15.0 V

VL – VC

ℰm

 71.  A portable heater is connected to a 60 Hz ac outlet. 
How many times per second is the instantaneous power 
a maximum?

 72. What is the rms voltage of the oscilloscope trace of the 
figure, assuming that the signal is sinusoidal? The cen-
tral horizontal line represents zero volts. The oscillo-
scope voltage knob has been clicked into its calibrated 
position.

100

Volts/DIV
mV

V 15
22

51
10

50
500 20

200

 73.  A 22 kV power line that is 10.0 km long supplies 
the electric energy to a small town at an average rate 
of 6.0 MW. (a) If a pair of aluminum cables of diam-
eter 9.2 cm are used, what is the average power dissi-
pated in the transmission line? (b) Why is aluminum 
used rather than a better conductor such as copper or 
silver?

 74.  An x-ray machine uses 240 kV rms at 60.0 mA rms 
when it is operating. If the power source is a 420 V rms 
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line, (a) what must be the turns ratio of the ideal trans-
former? (b) What is the rms current in the primary? 
(c) What is the average power used by the x-ray tube?

 75. A coil with an internal resistance of 120 Ω and induc-
tance of 12.0 H is connected to a 60.0 Hz, 110 V rms 
line. (a) What is the impedance of the coil? (b) Calcu-
late the current in the coil.

 76. The field coils used in an ac motor are designed to have 
a resistance of 0.45 Ω and an impedance of 35.0 Ω. 
What inductance is required if the frequency of the ac 
source is (a) 60.0 Hz? (b) 0.20 kHz?

 77. A capacitor is rated at 0.025 μF. How much rms current 
flows when the capacitor is connected to a 110 V rms, 
60.0 Hz line?

 78. A capacitor to be used in a radio is to have a reactance 
of 6.20 Ω at a frequency of 520 Hz. What is the 
 capacitance?

 79. An alternator supplies a peak current of 4.68 A to a coil. 
The voltage of the alternator is 420 V peak at 60.0 Hz. 
When a capacitor of 38.0 μF is placed in series with the 
coil, the power factor is found to be 1.00. Find (a) the 
 inductive reactance of the coil and (b) the  inductance of 
the coil.

 80. At what frequency does the maximum current flow 
through a series RLC circuit containing a resistance of 
4.50 Ω, an inductance of 440 mH, and a capacitance 
of 520 pF?

 81. What is the rms current flowing in a 4.50 kW motor 
connected to a 220 V rms line when (a) the power factor 
is 1.00 and (b) when it is 0.80?

 82. A variable capacitor is connected in series to an induc-
tor with negligible internal resistance and of inductance 
2.4 × 10−4 H. The combination is used as a tuner for a 
radio. If the lowest frequency to be tuned in is 0.52 MHz, 
what is the maximum capacitance required?

 83. A large coil used as an electromagnet has a resistance 
of R = 450 Ω and an inductance of L = 2.47 H. The 
coil is connected to an ac source with a voltage ampli-
tude of 2.0 kV and a frequency of 9.55 Hz. (a) What is 
the power factor? (b) What is the impedance of the 
circuit? (c) What is the peak current in the circuit? 
(d) What is the average power delivered to the electro-
magnet by the source?

 84.  An ac series circuit containing a capacitor, induc-
tor, and resistance is found to have a current of ampli-
tude 0.50 A for a source voltage of amplitude 10.0 V 
at an angular frequency of 200.0 rad/s. The total resis-
tance in the circuit is 15.0 Ω. (a) What are the power 
factor and the phase angle for the circuit? (b) Can you 
determine whether the current leads or lags the source 
voltage? Explain.

 85. (a) When the resistance of an RLC series circuit that is 
at resonance is doubled, what happens to the power 

 dissipated? (b) Now consider an RLC series circuit that 
is not at resonance. For this circuit, the initial resistance 
and impedance are related by R = XC = XL/2. Determine 
how the power output changes when the resistance dou-
bles for this circuit.

 86. An RLC circuit has a resistance of 255 Ω, an induc-
tance of 146 mH, and a capacitance of 877 nF. 
(a)  What is the resonant frequency of this circuit? 
(b) If this circuit is connected to a sinusoidal genera-
tor with a frequency 0.50 times the resonant frequency 
and a maximum voltage of 480 V, which will lead, the 
current or the voltage? (c) What is the phase angle of 
this circuit? (d) What is the rms current in this circuit? 
(e) How much average power is dissipated in this 
 circuit? (f) What is the maximum voltage across each 
circuit element?

 87. A variable inductor is connected to a voltage source 
whose frequency can vary. The rms current is Ii. If the 
inductance is increased by a factor of 3.0 and the fre-
quency is reduced by a factor of 2.0, what will be the 
new rms current in the circuit? The resistance in the 
circuit is negligible.

 88. A generator supplies an  average power of 12  MW 
through a transmission line that has a resistance of 
10.0 Ω. What is the power loss in the transmission line 
if the rms line voltage ℰrms is (a) 15 kV and (b) 110 kV? 
What percentage of the total power supplied by the 
 generator is lost in the transmission line in each case?

Problems	88	and	89

10.0 Ω

Load

Transmission
lineℰrms

 89.  (a) Calculate the rms current drawn by the load in 
the figure with Problem 88 if ℰrms = 250 kV and the 
average power supplied by the generator is 12 MW. 
(b) Suppose that the average power supplied by the gen-
erator is still 12 MW, but the load is not purely resistive; 
rather, the load has a power factor of 0.86. What is the 
rms current drawn? (c) Why would the power company 
want to charge more in the second case, even though the 
average power is the same?

 90.  Transformers are often rated in terms of kilovolt-
amps. A pole on a residential street has a transformer 
rated at 35 kV·A to serve four homes on the street. (a) If 
each home has a fuse that limits the incoming current to 
60 A rms at 220 V rms, find the maximum load in kV·A 
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on the transformer. (b) Is the rating of the transformer 
adequate? (c) Explain why the transformer rating is 
given in kV·A rather than in kW.

 91. A certain circuit has a 25 Ω resistor and one other com-
ponent in series with a 12 V (rms) sinusoidal ac source. 
The rms current in the circuit is 0.317 A when the fre-
quency is 150 Hz and increases by 25.0% when the fre-
quency increases to 250 Hz. (a) What is the second 
component in the circuit? (b) What is the current at 
250 Hz? (c) What is the numerical value of the second 
component?

 92.  A 40.0 mH inductor, with internal resistance of 
30.0 Ω, is connected to an ac source

ℰ(t) = (286 V) sin [ (390 rad/s)t]

 (a) What is the impedance of the inductor in the cir-
cuit? (b) What are the peak and rms voltages across 
the inductor (including the internal resistance)? 
(c) What is the peak current in the circuit? (d) What is 
the average power dissipated in the circuit? (e) Write 
an expression for the current through the inductor as a 
function of time.

 93.  In an RLC circuit, these three elements are con-
nected in series: a resistor of 20.0 Ω, a 35.0 mH induc-
tor, and a 50.0 μF capacitor. The ac source of the circuit 
has an rms voltage of 100.0 V and an angular frequency 
of 1.0 × 103 rad/s. (a) Find the rms current and the rms 
voltage across each of the circuit elements. (b) Does the 
current lead or lag the source voltage? (c) Draw a phasor 
 diagram. (d) Find the average power dissipated.

 94.  (a) What is the reactance of a 5.00 μF capacitor at 
the frequencies f = 12.0 Hz and 1.50 kHz? (b) What is 
the impedance of a series combination of the 5.00 μF 
capacitor and a 2.00 kΩ resistor at the same two 
 frequencies? (c) What is the maximum current through 
the circuit of part (b) when the ac source has a 
peak  voltage of 2.00 V? (d) For each of the two 
 frequencies, does the current lead or lag the voltage? 
By what angle?

 95.  An RLC series circuit is connected to a 240 V rms 
power supply at a frequency of 2.50 kHz. The ele-
ments in the circuit have the following values: R = 
12.0 Ω, C = 0.26 μF, and L = 15.2 mH. (a) What is the 
impedance of the circuit? (b) What is the rms current? 
(c) What is the phase angle? (d) Does the current lead 
or lag the voltage? (e) What are the rms voltages 
across each circuit element?

Review and Synthesis

 96. A parallel plate capacitor has two plates, each of area 
3.0 × 10−4 m2, separated by 3.5 × 10−4 m. The space 
 between the plates is filled with a dielectric. When the

capacitor is connected to a source of 120 V rms at 
8.0 kHz, an rms current of 1.5 × 10−4 A is measured. 
(a) What is the capacitive reactance? (b) What is the 
dielectric constant of the material between the plates 
of the capacitor?

 97. Suppose a power plant produces 800 kW of power 
and is to send that power for many miles over a cop-
per wire with a total resistance of 12 Ω. (a) If the 
power is sent across the copper wires at 48 kV rms, 
how much current flows through the wires? (b) What 
is the power dissipated due to the resistance of the 
wires at this current? What percent of the total power 
output of the plant is this? [Hint: The 12 Ω resistance 
of the wires is in series with the load presented by the 
customers’ homes, and the 48 kV rms voltage is con-
nected across the series combination.] (c) Although a 
series of transformers step the voltage down to the 
120 V used for household voltage, assume you are 
using a single transformer to do the job. If the single 
transformer has 10 000 primary turns, how many sec-
ondary turns should it have?

 98. Consider an induction stove utilizing a primary heat-
ing coil located just beneath the stove top. The circuit 
elements in the stove supply the coil with a peak ac 
voltage of 340 V at a frequency of 50 kHz. The coil has 
18 turns; its inductance is 80 μH and its resistance is 
1.0 Ω. (a) What average power is dissipated in the coil 
when the stove is turned on but with nothing on the 
stove top? (b) What average power must the stove de-
liver to 1.0 L of water initially at 20°C to bring it to 
boiling temperature in 5.0 min?

 99.  A hydroelectric power plant is situated at the base 
of a dam. Water exits the power plant 120 m below the 
top of the reservoir at a speed of about 4 m/s (at 
 atmospheric pressure). The volume flow rate of water 
through the power plant is 1000 m3/s. The plant oper-
ates with an energy efficiency of 80% and produces a 
peak voltage of 10 kV. Estimate the maximum possible 
peak current and the maximum possible power output 
that the power plant can supply.

 100. A parallel plate capacitor is used in a series RLC 
circuit along with a 0.650 H inductor. When the 
space between the plates is filled with a dielectric 
with κ  =  5.50, the resonant frequency is 220 Hz. 
Now the dielectric is removed, leaving air between 
the capacitor plates. What is the new resonant 
 frequency?

Answers to Practice Problems

21.1 V = 310 V; I = 17.0 A; Pmax = 5300 W; Pav = 2600 W; 
R = 18 Ω
21.2 9950 Ω; 22.1 mA
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21.3 1.13 kΩ; 8.84 μA
21.4 vC(t) = 1

ωC  sin  (ωt − π/2)  
vL(t) = IωL sin (ωt + π/2) vR(t) = IR sin ωt

ℰ(t) = IZ sin (ωt − 0.64)
At t = 80.0 μs, ωt = 0.800 rad
vC(t) = (500 mV) sin (−0.771 rad) = −348.4 mV
vL(t) = (440 mV) sin (2.371 rad) = +306.5 mV
vR(t) = (80 mV) sin (0.800 rad) = +57.4 mV
ℰ(t) = (100 mV) sin (0.16 rad) = +15.9 mV
vC + vL + vR = +16 mV
 21.5 29 W
 21.6 25 pF

Answers to Checkpoints

 21.1 The average power is the product of the rms voltage 
and current: Pav = IrmsVrms = 10 A × 120 V = 1200 W.
 21.3 When frequency is doubled, the reactance is halved, 
and the amplitude of the current, I = ℰm/Xc, is doubled. The 
frequency of the current is also doubled (it must be the same 
as the frequency of the voltage).
 21.4 The inductive reactance XL increases with increasing fre-
quency. The capacitive reactance XC decreases with increasing 
frequency. (a) For ω > ω0, XL > XC. (b) For ω < ω0, XC > XL.
 21.5 ℰm = √V2

R + (VL − VC)2 so VR = √ℰ2
m − (VL − VC)2 

= 30 mV
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Electromagnetic Waves

PART FOUR Electromagnetic Waves and Optics

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ X-rays and CT scans in 
medicine and dentistry 
(Section 22.3)

∙ Thermography (Section 22.3)
∙ Infrared detection by snakes, 

beetles, and bed bugs 
(Section 22.3)

∙ Biological effects of UV 
exposure (Section 22.3)

∙ Detection of polarized light 
by bees (Section 22.7)

∙ LASIK eye surgery (Problems 
68, 69)

Concepts & Skills to Review

•	 simple harmonic motion 

(Section 10.5)

•	 energy transport by waves; 

transverse waves; amplitude, 

frequency, wavelength, 

wavenumber, and angular 

frequency; equations for 

waves (Sections 11.1–11.5)

•	 Ampère’s and Faraday’s laws 

(Sections 19.9 and 20.3)

•	 dipoles (Sections 16.4 

and 19.1)

•	 rms values (Section 21.1)

•	 thermal radiation 

(Section 14.8)

•	 Doppler effect (Section 12.8)

•	 relative velocity (Section 3.5)Source: Stephen Ausmus, USDA-ARS

Bees use the position of the Sun in the sky to navigate and find their 
way back to their hives. This is remarkable in itself—since the Sun 
moves across the sky during the day, the bees navigate with respect 
to a moving reference point rather than a fixed reference point. Even 
if the bees are kept in the dark for part of the day, they still navigate 
with reference to the Sun; they compensate for the motion of the Sun 
during the time they were in the dark. They must have some sort of 
internal clock that enables them to keep track of the Sun’s motion.
 What do they do when the Sun’s position is obscured by clouds? 
Experiments have shown that the bees can still navigate as long as 
there is a patch of blue sky. How is this possible?
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22.1 MAXWELL’S EQUATIONS AND ELECTROMAGNETIC WAVES

Accelerating Charges Produce Electromagnetic Waves

In our study of electromagnetism so far, we have considered the electric and magnetic 
fields due to charges whose accelerations are small. A point charge at rest creates an 
electric field only. A charge moving at constant velocity creates both electric and 
magnetic fields. Charges at rest or moving at constant velocity do not generate 
 electromagnetic waves—waves that consist of oscillating electric and magnetic fields. 
Electromagnetic (EM) waves are produced only by charges that accelerate. EM waves, 
also called electromagnetic radiation, consist of oscillating electric and magnetic 
fields that travel away from the accelerating charges.

To create an EM wave that lasts longer than a pulse, the charges must continue 
to accelerate. Let’s consider two point charges ±q that move in simple harmonic 
motion along the same line with the same amplitude and frequency but half a cycle 
out of phase. What do the electric and magnetic fields due to this oscillating electric 
dipole look like? The fields don’t just look like oscillating versions of the fields of 
static electric and magnetic dipoles. The charges emit EM radiation because the oscil-
lating fields affect each other. The magnetic field is not constant, since the motion of 
the charges is changing. According to Faraday’s law of induction, a changing magnetic 
field induces an electric field. The electric field of the oscillating dipole at any instant 
is therefore different from the electric field of a static dipole. Faraday’s law liberates 
the electric field lines: they do not have to start and end on the source charges. Instead, 
they can be closed loops far from the oscillating dipole.

According to Ampère’s law, as we have stated it, the magnetic field lines must 
enclose the current that is their source. Scottish physicist James Clerk Maxwell 
(1831–1879) was puzzled by a lack of symmetry in the laws of electromagnetism. If 
a changing magnetic field creates an electric field, might not a changing electric field 
give rise to a magnetic field? The answer turns out to be yes. Magnetic field lines 
need not enclose a current; they can circulate around electric field lines, which extend 
far from the oscillating dipole.

Figure 22.1 shows the electric and magnetic field lines due to an oscillating dipole. 
With changing electric fields as a source of magnetic fields, the field lines (both elec-
tric and magnetic) can break free of the dipole, form closed loops, and travel away 
from the dipole as an electromagnetic wave. The electric and magnetic fields sustain 
each other as the wave travels outward. Although the fields do diminish in magnitude, 
they do so much less rapidly than if the field lines were tied to the dipole. Since 

Figure 22.1 Electric and magnetic field lines due to an oscillating dipole. The green lines are electric field lines in 
the plane of the page. The orange dots and crosses are magnetic field lines crossing the plane of the page. The field 
lines break free of the dipole and travel away from it as an electromagnetic wave. Far from the dipole, the fields are 
strongest in directions perpendicular to the dipole axis and weakest in directions along the axis.
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changing electric fields are a source of magnetic fields, a wave consisting of just an 
oscillating electric field without an oscillating magnetic field is impossible. Since 
changing magnetic fields are a source of electric fields, a wave consisting of just an 
oscillating magnetic field without an oscillating electric field is also impossible.

There are no electric waves or magnetic waves; there are only electromagnetic 
waves.

Maxwell’s Equations

Maxwell modified Ampère’s law and used it with the three other basic laws of elec-
tromagnetism to predict the existence of electromagnetic waves and to derive their 
properties. His theory predicted that EM waves of any frequency travel through 
vacuum at the same speed, a speed that closely matched measurements of the speed 
of light—strong evidence that light is an EM wave. The first experimental evidence 
of EM waves other than light came in 1887 when the German physicist Heinrich Hertz 
(1857–1894) generated and detected radio waves for the first time. The existence of 
EM waves shows the electric and magnetic fields are real, not just convenient 
mathematical tools for calculating electric and magnetic forces.

In honor of Maxwell’s achievements, the four basic laws of electromagnetism are 
collectively called Maxwell’s equations. They are:

 1. Gauss’s law [Eq. (16-17)]: If an electric field line is not a closed loop, it can 
only start and stop on electric charges. Electric charges produce electric fields.

 2. Gauss’s law for magnetism: Magnetic field lines are always closed loops since 
there are no magnetic charges (monopoles). The magnetic flux through a closed 
surface (or the net number of field lines leaving the surface) is zero.

 3. Faraday’s law [Eq. (20-18)]: Changing magnetic fields are another source of 
electric fields.

 4. The Ampère-Maxwell law says that changing electric fields as well as currents 
are sources of magnetic fields. Magnetic field lines are still always closed loops, 
but the loops do not have to surround currents; they can surround changing 
electric fields as well.

22.2 ANTENNAS

Electric Dipole Antenna as Transmitter The electric dipole antenna consists of 
two metal rods lined up as if they were a single long rod (Fig. 22.2). The rods are 
fed from the center with an oscillating current. For half of a cycle, the current flows 
upward; the top of the antenna acquires a positive charge and the bottom acquires an 
equal negative charge. When the current reverses direction, these accumulated charges 
diminish and then reverse direction so that the top of the antenna becomes negatively 
charged and the bottom becomes positively charged. The result of feeding an alternat-
ing current to the antenna is an oscillating electric dipole.

The field lines for the EM wave emitted by an electric dipole antenna are similar 
to the field lines for an oscillating electric dipole (see Fig. 22.1). From the field lines, 
some of the properties of EM waves can be observed:

∙ For equal distances from the antenna, the amplitudes of the fields are smallest 
along the antenna’s axis (in the ±y-direction in Fig. 22.2) and largest in directions 
perpendicular to the antenna (in any direction perpendicular to the y-axis).

∙ In directions perpendicular to the antenna, the electric field is parallel to the 
antenna’s axis. In other directions, E

→
 is not parallel to the antenna’s axis, but is 

perpendicular to the direction of propagation of the wave—that is, perpendicular 
to the direction that energy travels from the antenna to the observation point.

∙ The magnetic field is perpendicular to both the electric field and to the direction 
of propagation.

CONNECTION:

Maxwell’s equations: A 
collection of the four basic 
laws of electromagnetism. 
Maxwell’s equations show 
that electricity and 
magnetism are not two 
separate phenomena but 
rather aspects of the same 
electromagnetic interaction. 
They also give optics, 
previously treated as a 
separate branch of physics, its 
foundation in the principles 
of electromagnetism.

Figure 22.2 Current in an 
electric dipole antenna.
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Electric Dipole Antenna as Receiver An electric dipole antenna can be used as 
a receiver or detector of EM waves as well. In Fig. 22.3a, an EM wave travels past 
an electric dipole antenna. The electric field of the wave acts on free electrons in the 
antenna, causing an oscillating current. This current can then be amplified and the 
signal processed to decode the radio or TV transmission. The antenna is most effective 
if it is aligned with the electric field of the wave. If it is not, then only the component 
of E

→
 parallel to the antenna acts to cause the oscillating current. The emf and the 

oscillating current are reduced by a factor of cos θ, where θ is the angle between E
→

 
and the antenna (Fig. 22.3b). If the antenna is perpendicular to the E

→
 field, no 

oscillating current results.

CHECKPOINT 22.2

What happens if an electric dipole antenna (being used as a receiver) is oriented 
perpendicular to the E

→
 field of the wave?

Figure 22.3 (a) The E
→

 field of an EM wave makes an oscillating current flow in 
an electric dipole antenna. (The magnetic field lines are omitted for clarity.) (b) The 
current in the antenna is smaller when it is not aligned with the electric field. Only 
the component of E

→
 parallel to the antenna accelerates electrons along the antenna’s 

length.
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Example 22.1

Electric Dipole Antenna

An electric dipole antenna that provides a computer’s 
wireless network connection has length 6.5 cm. The 
microwaves from the wireless access point travel in the 
+z-direction. The electric field of the wave is always in 
the ±y-direction and varies sinusoidally with time:

Ey(t) = Em cos ωt; Ex = Ez = 0

where the amplitude—the maximum magnitude—of the 
electric field is Em = 3.2 mV/m. (a) How should the antenna 
be oriented for best reception? (b) What is the emf in the 
antenna if it is oriented properly?

Strategy For maximum amplitude, the antenna must be 
oriented so that the full electric field can drive current along 
the length of the antenna. The emf is defined as the work 
done by the electric field per unit charge.

Solution (a) We want the electric field of the wave to push 
free electrons along the antenna’s length with a force directed 
along the length of the antenna. The electric field is always in 
the ±y-direction, so the antenna should be oriented along the 
y-axis.

continued on next page
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Magnetic Dipole Antenna Another kind of antenna is the magnetic dipole 
antenna. Recall that a loop of current is a magnetic dipole. (The right-hand rule 
establishes the direction of the north pole of the dipole: if the fingers of the right 
hand are curled around the loop in the direction of the current, the thumb points 
“north.”) To make an oscillating magnetic dipole, we feed an alternating current into 
a loop or coil of wire. When the current reverses directions, the north and south poles 
of the magnetic dipole are interchanged.

If we consider the antenna axis to be the direction perpendicular to the coil, then 
the three observations made for the electric dipole antenna still hold, if we just 
substitute magnetic for electric and vice versa.

The magnetic dipole antenna works as a receiver as well (Fig. 22.4). The oscil-
lating magnetic field of the wave causes a changing magnetic flux through the antenna. 
According to Faraday’s law, an induced emf is present that makes an alternating cur-
rent flow in the antenna. To maximize the rate of change of flux, the magnetic field 
should be perpendicular to the plane of the antenna.

Antenna Limitations Antennas can generate only EM waves with long wavelengths 
and low frequencies. It isn’t practical to use an antenna to generate EM waves with short 
wavelengths and high frequencies such as visible light; the frequency at which the 
current would have to alternate to generate such waves is far too high to be achieved in 
an antenna, while the antenna itself cannot be made short enough. (To be most effective, 
the length of an antenna should not be larger than half the wavelength.)

Figure 22.4 A loop of wire 
serves as a magnetic dipole 
antenna. As the magnetic field 
of the wave changes, the 
magnetic flux through the loop 
changes, causing an induced 
current in the loop. (The 
electric field lines are omitted 
for clarity.)

Induced
current

To amplifier

(b) The work done by the electric field E as it moves a charge 
q along the length of the antenna is

W = Fy 
Δy = qEL

The emf is the work per unit charge:

ℰ =
W

q
= EL

The emf varies with time because the electric field oscillates. 
The emf as a function of time is

ℰ(t) = EL = EmL cos ωt

Therefore, it is a sinusoidally varying emf with the same 
frequency as the wave. The amplitude of the emf is

ℰm = EmL = 3.2 m V/m × 0.065 m = 0.21 m V

Discussion The oscillating electric field has the same 
amplitude and phase at every point on the antenna. As a 
result, the emf is proportional to the length of the antenna. If 
the antenna is so long that the phase of the electric field 
varies with position along the antenna, then the emf is no 
longer proportional to the length of the antenna and may 
even start to decrease with additional length.

Practice Problem 22.1 Location of Transmitting 
Antenna

(a) If the wave in Example 22.1 is transmitted from a distant 
electric dipole antenna, where is the transmitting antenna 
located relative to the receiving antenna? (Answer in terms 
of xyz-coordinates.) (b) Write an equation for the electric 
field components as a function of position and time.

Example 22.1 continued

Problem-Solving Strategy: Antennas
∙ Electric dipole antenna (rod): antenna axis is along the rod.
∙ Magnetic dipole antenna (loop): antenna axis is perpendicular to the loop.
∙ Used as a transmitter, a dipole antenna radiates most strongly in directions 

perpendicular to its axis. In these directions, the wave’s electric field is 
parallel to the antenna axis if transmitted by an electric dipole antenna and 
the wave’s magnetic field is parallel to the antenna axis if transmitted by a 
magnetic dipole antenna.

∙ An antenna does not radiate in the two directions along its axis.
∙ For maximum sensitivity when used as a receiver, the axis of an electric dipole 

antenna should be aligned with the electric field of the wave and the axis of a 
magnetic dipole antenna should be aligned with the magnetic field of the wave.
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22.3 THE ELECTROMAGNETIC SPECTRUM

EM waves can exist at every frequency, without restriction. The properties of EM waves 
and their interactions with matter depend on the frequency of the wave. The electro-
magnetic spectrum—the range of frequencies (and wavelengths)—is traditionally 
divided into six or seven named regions (Fig. 22.5). The names persist partly for 
historical reasons—the regions were discovered at different times—and partly because 
the EM radiation of different regions interacts with matter in different ways. The 
boundaries between the regions are fuzzy and somewhat arbitrary. Throughout this 
section, the wavelengths given are those in vacuum; EM waves in vacuum or in air 
travel at a speed of 3.00 × 108 m/s.

Visible Light

Visible light is the part of the spectrum that can be detected by the human eye. This 
seems like a pretty cut-and-dried definition, but actually the sensitivity of the eye falls 
off gradually at both ends of the visible spectrum. Just as the range of frequencies of 
sound that can be heard varies from person to person, so does the range of frequencies 
of light that can be seen. For an average range we take frequencies of 430 THz 
(1  THz  = 1012 Hz) to 750 THz, corresponding to wavelengths in vacuum of 
700–400  nm. Light containing a mixture of all the wavelengths in the visible range 
appears white. White light can be separated by a prism into the colors red 
(700–620  nm), orange (620–600 nm), yellow (600–580 nm), green (580–490 nm), 
blue (490–450 nm), and violet (450–400 nm). Red has the lowest frequency (longest 
wavelength) and violet has the highest frequency (shortest wavelength).

It is not a coincidence that the human eye evolved to be most sensitive to the 
range of EM waves that are most intense in sunlight (Fig. 22.6). However, other 
animals have visible ranges that differ from that of humans; the range is often well 
suited to the particular needs of the animal.

Lightbulbs, fire, the Sun, and fireflies are some sources of visible light. Most 
of the things we see are not sources of light; we see them by the light they reflect. 
When light strikes an object, some may be absorbed, some may be transmitted 
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Figure 22.5 Regions of the EM spectrum. Note that the wavelength and frequency scales are logarithmic.
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through the object, and some may be reflected. The relative amounts of absorption, 
transmission, and reflection usually differ for different wavelengths. A lemon appears 
yellow because it reflects much of the incident yellow light and absorbs most of the 
other spectral colors.

The wavelengths of visible light are small on an everyday scale but large relative 
to atoms. The diameter of an average-sized atom—and the distance between atoms in 
solids and liquids—is about 0.2 nm. Thus, the wavelengths of visible light are 
2000–4000 times larger than the size of an atom.

Infrared

After visible light, the first parts of the EM spectrum to be discovered were those on 
either side of the visible: infrared and ultraviolet (discovered in 1800 and 1801, 
respectively). The prefix infra- means below; infrared radiation (IR) is lower in 
frequency than visible light. IR extends from the low-frequency (red) edge of the 
visible to a frequency of about 300 GHz (λ = 1 mm). Remote controls for TVs 
transmit IR signals with a wavelength of about 1 μm, just outside the visible range. 
The astronomer William Herschel (1738–1822) discovered IR in 1800 while studying 
the temperature rise caused by the light emerging from a prism. He discovered that the 
thermometer reading was highest for levels just outside the illuminated region, adja-
cent to the red end of the spectrum. Since the radiation was not visible, Herschel 
deduced that there must be some invisible radiation beyond the red.

The thermal radiation given off by objects near room temperature is primarily 
infrared (Fig. 22.7), with the peak of the radiated IR at a wavelength of about 
0.01 mm = 10 μm. At higher temperatures, the power radiated increases as the wave-
length of peak radiation decreases. A roaring wood stove with a surface temperature 
of 500°F has an absolute temperature about 1.8 times room temperature (530 K); it 
radiates about 11 times more power than when at room temperature since P ∝ T 4 
[Stefan’s law, Eq. (14-23)]. Nevertheless, the peak is still in the infrared. The wavelength 

CONNECTION:

Thermal radiation was 
discussed as a type of heat 
flow in Section 14.8.
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Figure 22.6 Graph of 
relative intensity (average 
power per unit area) of sunlight 
incident on Earth’s atmosphere 
as a function of wavelength.

Figure 22.7 (a) False-color thermogram of a man’s head. An instrument measures the intensity of infrared radiation 
(IR) and displays the information in color. The coolest areas, which radiate the lowest intensity of IR, are colored blue. 
The warmest areas, which radiate the highest intensity of IR, are colored pink. This thermogram shows that the the 
nose and ears are cooler than the rest of the face. (b) False-color thermogram of a house in winter, showing that most 
of the heat escapes through the roof. Note that some heat escapes around the window frame, although the window itself 
is cool due to double-pane glass.
(a) ©Ted Kinsman/Science Source; (b) ©Richard Lowenberg/Science Source

(a) (b)
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of peak radiation is about 5.5 μm = 5500 nm since λmax ∝ 1/T [Wien’s law,  
Eq. (14-24)]. If the stove gets even hotter, its radiation is still mostly IR but glows 
red as it starts to radiate significantly in the red part of the visible spectrum. (Call 
the fire department!) Even the filament of an incandescent lightbulb (T ≈ 3000 K) 
radiates much more IR than it does visible. The peak of the Sun’s thermal radiation 
is in the visible; nevertheless about half the energy reaching us from the Sun is IR.

 Infrared Detection by Animals Rattlesnakes and other snakes in the pit viper 
family have specialized sensory organs (“pits”) that detect IR radiation. This sense helps 
the snakes locate prey at night. Some species of beetles can sense a distant forest fire in 
part by detecting IR radiation. These beetles fly toward the fire to lay eggs in the burned 
wood. Bed bugs are attracted to their prey in part by detecting IR radiation.

Ultraviolet

The prefix ultra- means above; ultraviolet (UV) radiation is higher in frequency than 
visible light. UV ranges in wavelength from the shortest visible wavelength (about 
400 nm) down to about 10 nm. There is plenty of UV in the Sun’s radiation: the UV 
that penetrates the atmosphere is mostly in the 300–400 nm range. Black lights emit 
UV; certain fluorescent materials—such as the coating on the inside of the glass tube 
in a fluorescent light—can absorb UV and then emit visible light (Fig. 22.8).

 Biological Effects of UV Exposure UV incident on human skin causes the pro-
duction of vitamin D. More UV exposure causes tanning; too much exposure can cause 
sunburn and skin cancer. Sunblock works by absorbing UV before it reaches the skin. 
Water vapor transmits UV in the 300–400 nm range fairly well, so tanning and sunburn 
can occur even on overcast days. Ordinary window glass absorbs most UV, so you can’t 
get a sunburn through a window. UV incident on the eye can cause cataracts, so when 
out in the sun it is important to wear quality sunglasses that don’t transmit UV.

Radio Waves

After IR and UV were identified, most of the nineteenth century passed before any 
of the outlying regions of the EM spectrum were discovered. The lowest frequencies 
(up to about 1 GHz) and longest wavelengths (down to about 0.3 m) are called radio 
waves. AM and FM radio, VHF and UHF TV broadcasts, and ham radio operators 
occupy assigned frequency bands within the radio wave part of the spectrum.

Wagler’s pit viper (Tropidolaemus 
wagleri) is native to southeast Asia. 
On each side of the head, a pit organ 
is located between the eye and the 
nostrils. These organs enable the pit 
viper to detect infrared radiation.
©Avalon/Photoshot License/Alamy

(a) (b)

Figure 22.8 (a) The large star coral (Montastraea cavernosa) is dull brown when illuminated by white light. (b) When 
illuminated with an ultraviolet source, the coral absorbs UV and emits visible light that appears bright yellow. A small 
sponge (bottom right corner) looks bright red in white light due to selective reflection. It appears black when illuminated 
with UV because it does not fluoresce.
©Charles Mazel
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Although radio waves, microwaves, and visible light are used in communications, 
they are not themselves sound waves. Sound waves are traveling disturbances of atoms 
or molecules in a material medium such as air or water. EM waves are traveling 
oscillations of electric and magnetic fields and do not require a material medium.

Microwaves

Microwaves are the part of the EM spectrum lying between radio waves and IR, with 
vacuum wavelengths roughly from 1 mm to 30 cm. Microwaves were first generated 
and detected in the laboratory in 1888 by Heinrich Hertz. Microwaves are used in 
communications (cell phones, wireless computer networks, and satellite TV) and in 
radar. After the development of radar in World War II, the search for peacetime uses 
of microwaves resulted in the development of the microwave oven.

Application: Microwave Ovens A microwave oven (Fig 22.9) immerses food in 
microwaves with a wavelength in vacuum of about 12 cm. Water is a good absorber 
of microwaves because the water molecule is polar. An electric dipole in an electric 
field feels a torque that tends to align the dipole with the field, since the positive and 
negative charges are pulled in opposite directions. As a result of the rapidly oscillating 
electric field of the microwaves ( f = 2.5 GHz), the water molecules rotate back and 
forth; the energy of this rotation then spreads throughout the food.

Application: Cosmic Microwave Background Radiation In the early 1960s, 
Arno Penzias (b. 1933) and Robert Wilson (b. 1936) were having trouble with their 
radio telescope; they were plagued by noise in the microwave part of the spectrum. 
Subsequent investigation led them to discover that the entire universe is bathed in 
microwaves that correspond to blackbody radiation at a temperature of 2.7 K (peak 
wavelength about 1 mm). This cosmic microwave background radiation is left over 
from the origin of the universe—a huge explosion called the Big Bang.

Cool air
drawn in

Chicken pot pie
in paper, glass, or
ceramic container

Air intake vents
Electric current

Transformer

Fan for air
to cool
magnetron

Magnetron

Warm air exhausted
Microwave

beam

Wave guide to direct
microwaves into oven

Metal screen in glass
window reflects microwaves
back into oven

Microwaves reflected 
from metal casing 
of the oven

Rotating paddle to scatter the 
microwaves throughout oven

Figure 22.9 A microwave oven. The microwaves are produced in a magnetron, a resonant cavity that produces the 
oscillating currents that give rise to microwaves at the desired frequency. Since metals reflect microwaves well, a metal 
waveguide directs the microwaves toward the rotating metal stirrer, which reflects the microwaves in many different 
directions to distribute them throughout the oven. (This reflective property is one reason why metal containers and alu-
minum foil should generally not be used in a microwave oven; no microwaves could reach the food inside the container 
or foil.) The oven cavity is enclosed by metal to reflect microwaves back in and minimize the amount leaking out of 
the oven. The sheet of metal in the door has small holes so we can see inside, but since the holes are much smaller 
than the wavelength of the microwaves, the sheet still reflects microwaves.
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X-Rays and Gamma Rays

Higher in frequency and shorter in wavelength than UV are x-rays and gamma rays, 
which were discovered in 1895 and 1900, respectively. The two names are still used, 
based on the source of the waves, mostly for historical reasons. There is considerable 
overlap in the frequencies of the EM waves generated by these two methods, so today 
the distinction is somewhat arbitrary.

X-rays were unexpectedly discovered by German physicist Wilhelm Konrad Röntgen 
(1845–1923) when he accelerated electrons to high energies and smashed them into a 
target. The large deceleration of the electrons as they come to rest in the target produces 
the x-rays. Röntgen received the first Nobel Prize in physics for the discovery of x-rays.

Gamma rays were first observed in the decay of radioactive nuclei on Earth. 
Pulsars, neutron stars, black holes, and explosions of supernovae are sources of gamma 
rays that travel toward Earth, but—fortunately for us—gamma rays are absorbed by 
the atmosphere. Only when detectors were placed high in the atmosphere and above 
it by using balloons and satellites did the science of gamma-ray astronomy develop. 
In the late 1960s, scientists first observed bursts of gamma rays from deep space that 
last for times ranging from a fraction of a second to a few minutes; these bursts occur 
about once a day. A gamma-ray burst can emit more energy in 10 s than the Sun will 
emit in its entire lifetime. The source of the gamma-ray bursts is still under investigation.

Application: X-rays in Medicine and Dentistry, CT Scans Most diagnostic 
x-rays used in medicine and dentistry have wavelengths between 10 and 60 pm 
(1 pm = 10−12 m). In a conventional x-ray, film records the amount of x-ray radiation 
that passes through the tissue. Computed tomography (CT) allows a cross-sectional 
image of the body. An x-ray source is rotated around the body in a plane, and a 
computer measures the x-ray transmission at many different angles. Using this 
information, the computer constructs an image of that slice of the body (Fig. 22.10).

Scanning drum 
is rotated through

360 degrees.

Movable bed
allows any part

of the body
to be scanned.

X-ray beam 
passes through 

the body.

X-ray detector
records intensity
of x-rays
transmitted
through the body.

X-ray tube
emits x-rays 
as the scanner
rotates around

the body.

Figure 22.10 Apparatus 
used for a CT scan.
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8.6 km

Mirror

ω

Semitransparent
mirror

Observer

Beam
of light

Rotating
notched
wheel

Figure 22.11 Fizeau’s apparatus to measure the speed of light. The notched 
wheel rotates at an angular speed ω that can be varied. At certain values of ω, the 
beam of light passes through one of the notches in the wheel, travels a long dis-
tance to a mirror, reflects, and passes back through another notch to the observer. 
At other values of ω, the reflected beam is interrupted by the rotating wheel. The 
speed of light can be calculated from the measured angular speeds at which the 
observer sees the reflected beam.

CONNECTION:

The speed of a mechanical 
wave depends on properties of 
the medium (e.g., tension and 
linear mass density for a trans-
verse wave on a string). The 
speed of EM waves through a 
transparent material such as 
glass depends on the electric 
and magnetic properties of 
that material. The speed of 
EM waves in vacuum is a uni-
versal constant related to the 
constants ϵ0 and μ0.

22.4 SPEED OF EM WAVES IN VACUUM AND IN MATTER

Light travels so fast that it is not obvious that it takes any time at all to go from one 
place to another. Since high-precision electronic instruments were not available, early 
measurements of the speed of light had to be cleverly designed. In 1849, French 
scientist Armand Hippolyte Louis Fizeau (1819–1896) measured the speed of visible 
light to be approximately 3 × 108 m/s (Fig. 22.11).

Speed of Light in Vacuum

In Chapters 11 and 12 we saw that the speed of a mechanical wave depends on prop-
erties of the wave medium. Sound travels faster through steel than it does through 
water and faster through water than through air. In every case, the wave speed depended 
on two characteristics of the wave medium: one that characterizes the restoring force 
and another that characterizes the inertia.

Unlike mechanical waves, electromagnetic waves can travel through vacuum; they 
do not require a material medium. Light reaches Earth from galaxies billions of light-
years away, traveling the vast distances between galaxies without a problem; but a 
sound wave can’t even travel a few meters between two astronauts on a space walk, 
since there is no air or other medium to sustain a sound wave’s pressure variations. 
What, then, determines the speed of light in vacuum?

Looking back at the laws that describe electric and magnetic fields, we find two 
universal constants. One of them is the permittivity of vacuum ϵ0, found in Coulomb’s 
law and Gauss’s law; it is associated with the electric field. The second is the 
permeability of vacuum μ0, found in Ampère’s law; it is associated with the magnetic 
field. Since these are the only two quantities that can determine the speed of light in 
vacuum, there must be a combination of them that has the dimensions of speed.

The values of these constants in SI units are

 ϵ0 = 8.85 × 10−12 
C2

N·m2   and  μ0 = 4π × 10−7 
T·m
A

 (22-1)

The tesla can be written in terms of other SI units. Using F
→

= qv→ × B
→

 as a guide,

 1 T = 1 
N

C·m/s
 (22-2)
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The only combination of these constants that has the dimensions of a velocity is

1
√ϵ0μ0

= (8.85 × 10−12 
  C2

N·m2 × 4π × 10−7 
N·m

  C·(m/s)·(  C/s))
−1/2

= 3.00 × 108 m/s

The dimensional analysis done here leaves the possibility of a multiplying factor 
such as 1

2 or √π . In the mid-nineteenth century, Maxwell proved mathematically that 
an electromagnetic wave—a wave consisting of oscillating electric and magnetic fields 
propagating through space—could exist in a vacuum. Starting from Maxwell’s 
equations (see Section 22.1), he derived the wave equation, an equation of a special 
mathematical form that describes wave propagation for any kind of wave. In the place 
of the wave speed appeared (ϵ0μ0)−1/2. Using the values of ϵ0 and μ0 that had been 
measured in 1856, Maxwell showed that electromagnetic waves in vacuum travel at 
3.00 × 108 m/s—very close to what Fizeau measured. Maxwell’s derivation was the 
first evidence that light is an electromagnetic wave.

The speed of electromagnetic waves in vacuum is represented by the symbol c 
(for the Latin celeritas, “speed”).

Speed of electromagnetic waves in vacuum

 c =
1

√ϵ0μ0
= 3.00 × 108 m/s (22-3)

Although c is usually called the speed of light, it is the speed of any electromagnetic 
wave in vacuum, regardless of frequency or wavelength, not just the speed for frequen-
cies visible to humans.

Strategy The light from the supernova travels at speed c. 
The time that it takes light to travel a distance 1.6 × 1021 m 
tells us how long ago the explosion occurred.

Solution The time for light to travel a distance d at 
speed c is

Δt =
d

c
=

1.6 × 1021 m
3.00 × 108 m/s

= 5.33 × 1012 s

To get a better idea how long that is, we convert seconds to 
years:

5.33 × 1012 s ×
1 yr

3.156 × 107 s
= 170 000 yr

Example 22.2

Light Travel Time from a “Nearby” Supernova

A supernova is an exploding star and is billions of times 
brighter than an ordinary star. Supernova SN1987a 
(Fig.  22.12), named for the year it was first observed on 
Earth, occurred 1.6 × 1021 m from Earth. When did the 
explosion occur?

continued on next page

Figure 22.12
Image of the region around SN1987a taken by NASA’s 
Hubble Space Telescope in 2006. The ring of bright spots 
is caused by a shock wave of material expelled outward by 
the exploding star.
Source: NASA, ESA, P. Challis and R. Kirshner (Harvard-Smithsonian 
Center for Astrophysics)
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Discussion When we look at the stars, the light we see 
was radiated by the stars long ago. By looking at distant 
galaxies, astronomers get a glimpse of the universe in the 
past. Beyond the Sun, the closest star to Earth is about 4 ly 
(light-years) away, which means that it takes light 4 yr to 
reach us from that star. The most distant galaxies observed 
are at a distance of over 1010 ly; looking at them, we see 
more than 10 billion years into the past.

Practice Problem 22.2 A Light-Year

A light-year is the distance traveled by light (in vacuum) in 
one Earth year. Find the conversion factor from light-years 
to meters.

Speed of Light in Matter

When an EM wave travels through a material medium, it travels at a speed v that is 
less than c. For example, visible light travels through glass at speeds between about 
1.6 × 108 m/s and 2.0 × 108 m/s, depending on the type of glass and the frequency 
of the light. Instead of specifying the speed, it is common to specify the index of 
refraction n:

Index of refraction

 n =
c

v
 (22-4)

Refraction refers to the bending of a wave as it passes from one medium to another; 
we will study refraction in detail in Section 23.3. Since the index of refraction is a 
ratio of two speeds, it is a dimensionless number. For glass in which light travels at 
2.0 × 108 m/s, the index of refraction is

n =
3.0 × 108 m/s
2.0 × 108 m/s

= 1.5

The speed of light in air (at 1 atm) is only slightly less than c; the index of 
refraction of air is 1.0003. Most of the time this 0.03% difference is not important, 
so we can use c as the speed of light in air. The speed of visible light in an 
 optically transparent medium is less than c, so the index of refraction is greater 
than 1.

When an EM wave passes from one medium to another, the frequency and wave-
length cannot both remain unchanged since the wave speed changes and v = fλ. As 
is the case with mechanical waves, it is the wavelength that changes; the frequency 
remains the same. The incoming wave (with frequency f ) causes charges in the atoms 
at the boundary to oscillate with the same frequency f, just as for the charges in an 
antenna. The oscillating charges at the boundary radiate an EM wave at that same 
frequency into the second medium. Therefore, the electric and magnetic fields in the 
second medium must oscillate at the same frequency as the fields in the first medium. 
In just the same way, if a transverse wave of frequency f traveling down a string 
reaches a point at which an abrupt change in wave speed occurs, the incident wave 
makes that point oscillate up and down at the same frequency f as any other point on 
the string. The oscillation of that point sends a wave of the same frequency to the 
other side of the string. Since the wave speed has changed but the frequency is the 
same, the wavelength has changed as well.

Example 22.2 continued
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We sometimes need to find the wavelength λ of an EM wave in a medium of 
index n, given its wavelength λ0 in vacuum. Since the frequencies are equal,

 f =
c

λ0
=

v

λ
 (22-5)

Solving for λ gives

 λ =
v

c
 λ0 =

λ0

n
 (22-6)

Since n > 1, the wavelength is shorter than the wavelength in vacuum. The wave travels 
more slowly in the medium than in vacuum; since the wavelength is the distance traveled 
by the wave in one period T = 1/f, the wavelength in the medium is shorter.

If blue light of wavelength λ0 = 480 nm enters glass that has an index of refraction 
of 1.5, it is still visible light, even though its wavelength in glass is 320 nm; it has not 
been transformed into UV radiation. When light of a given frequency enters the eye, 
it has the same frequency in the fluid in the eye regardless of how many material media 
it has passed through, since the frequency remains the same at each boundary.

CHECKPOINT 22.4

A light wave travels from water (n = 4/3) into air. Its wavelength in water is 
480 nm. What is its wavelength in air?

frequency stays the same each time light passes from one 
medium to another.

The speed of light in a material is v = c/n. Solving for λvf 
and substituting v = c/n gives

λvf = vvf 

λair

vair
=

c

nvf
 
nairλair

c
=

1 × 480 nm
1.33

= 360 nm

Discussion Vitreous fluid has a larger index of refraction 
than air, so the speed of light in vitreous fluid is less than in 
air. Since wavelength is the distance traveled in one period, 
the wavelength in vitreous fluid is shorter than in air.

Practice Problem 22.3 Wavelength Change from 
Air to Water

The speed of visible light in water is 2.25 × 108 m/s. When 
light of wavelength 592 nm in air passes into water, what is 
its wavelength in water?

Example 22.3

 Wavelength Change of Light in the Eye

Light entering the eye passes in turn through the aqueous 
fluid (n = 1.33), the lens (n = 1.44), and the vitreous fluid 
(n  = 1.33), before reaching the retina. If light with wave-
length 480 nm in air enters the eye, what is its wavelength in 
the vitreous fluid?

Strategy The key is to remember that the frequency is the 
same as the wave passes from one medium to another.

Solution Frequency, wavelength, and speed are related by
v = λf

Then the frequency is f = v/λ. Since the frequencies are equal,
vvf

λvf
=

vair

λair

where “vf” refers to vitreous fluid. The indices of refraction 
of the aqueous fluid and the lens are not needed because the 

Dispersion

Although EM waves of every frequency travel through vacuum at the same speed c, 
the speed of EM waves in a material medium does depend on frequency. Therefore, 
the index of refraction is not a constant for a given material; it is a function of fre-
quency. Variation of the speed of a wave with frequency is called dispersion. Dispersion 
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causes white light to separate into colors when it passes through a glass prism 
(Fig.  22.13). The dispersion of the light into different colors arises because each 
color travels at a slightly different speed in the same medium.

A nondispersive medium is one for which the variation in the index of 
 refraction is negligibly small for the range of frequencies of interest. No medium 
(apart from vacuum) is truly nondispersive, but many can be treated as nondisper-
sive for a restricted range of frequencies. For most optically transparent materials, 
the index of refraction increases with increasing frequency; blue light travels 
more slowly through glass than does red light. In other parts of the EM spectrum, 
or even for visible light in unusual materials, n can decrease with increasing 
 frequency instead.

22.5 CHARACTERISTICS OF TRAVELING ELECTROMAGNETIC 
WAVES IN VACUUM

The various characteristics of traveling EM waves in vacuum (Fig. 22.14) can be 
derived from Maxwell’s equations (see Section 22.1). Such a derivation requires 
higher level mathematics, so we state the characteristics without proof.

∙ EM waves in vacuum travel at speed c = 3.00 × 108 m/s, independent of frequency. 
The speed is also independent of amplitude.

∙ The electric and magnetic fields oscillate at the same frequency. Thus, a single 
frequency f and a single wavelength λ = c/f pertain to both the electric and 
magnetic fields of the wave.

∙ The electric and magnetic fields oscillate in phase with each other. That is, at a 
given instant, the electric and magnetic fields are at their maximum magnitudes 
at a common set of points. Similarly, the fields are both zero at a common set of 
points at any instant.

CONNECTION:

The wavelength, wavenum-
ber, frequency, angular fre-
quency, and period of an EM 
wave are defined exactly as 
for mechanical waves.

Figure 22.13 A prism sepa-
rates a beam of white light 
(coming in from the right) into 
the colors of the spectrum.
©Getty Images
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Figure 22.14 One wavelength of an EM wave traveling in the +x-direction (to the right). The electric field is repre-
sented by green vector arrows sketched at a few points, pointing in the −y-direction for 0 < x < 1

2λ and in the 
+y-direction for 1

2λ < x < λ. The magnetic field is perpendicular to the plane of the page and is represented by orange 
vector symbols. The magnetic field is in the −z-direction for 0 < x < 1

2λ and in the +z-direction for 1
2λ < x < λ. The 

magnitude of E
→

 is represented by the length of the green arrows. The magnitude of B
→

 is represented by the size of the 
orange vector symbols. The graph shows the y-component of E

→
 as a function of x at some instant. A graph of the 

z-component of B
→

 at the same instant would look the same because the electric and magnetic fields are in phase.
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∙ The amplitudes of the electric and magnetic fields are proportional to each other. 
The ratio is c:

 Em = cBm (22-7)

∙ Since the fields are in phase and the amplitudes are proportional, the instantaneous 
magnitudes of the fields are proportional at any point:

 ∣E
→

(x, y, z, t)∣ = c∣B
→

(x, y, z, t)∣ (22-8)

∙ The EM wave is transverse; that is, the electric and magnetic fields are each 
perpendicular to the direction of propagation of the wave.

∙ The fields are also perpendicular to each other. Therefore, E
→

, B
→

, and the velocity 
of propagation are three mutually perpendicular vectors.

∙ At any point, E
→

× B
→

 is always in the direction of propagation (Fig. 22.15).
∙ The electric energy density is equal to the magnetic energy density at any point. The 

wave carries exactly half its energy in the electric field and half in the magnetic field.

CHECKPOINT 22.5

An EM wave travels in the +x-direction. The wave’s electric field at a point P 
and at time t has magnitude 0.009 V/m and is in the −y-direction. What is the 
magnetic field at P at the same instant?

E

B

v

(out of page)

xz
(out of page)

y

Figure 22.15 Using the 
right-hand rule to check the 
directions of the fields in 
Fig. 22.14. At x > 1

2λ, E
→

 is 
in  the +y-direction and B

→
 is 

in  the +z-direction. The cross 
product E

→
× B

→
 is in the 

direction of propagation (+x).

Then

(4.0 m−1)x + ωt = 2πn

where n is some integer. A short time later, t is a little bigger, 
so x must be a little smaller so that (4.0 m−1)x + ωt is still 
equal to 2πn. Since the x-coordinate of a crest gets smaller as 
time passes, the wave is moving in the −x-direction.

(b) The constant multiplying x, 4.0 m−1, is the wavenumber, 
a quantity related to the wavelength. Since the wave repeats 
in a distance λ and the cosine function repeats every 2π 
radians, k(x + λ) must be 2π radians greater than kx:

k(x + λ) = kx + 2π

or

k =
2π

λ

Therefore, the wavenumber is k = 4.0 m−1. The speed of the 
wave is c. Since any periodic wave travels a distance λ in a 
time T,

T =
λ

c

ω =
2π

T
=

2πc

λ
= kc = 4.0 m−1 × 3.00 × 108 m/s

= 1.2 × 109 rad/s

Example 22.4

Traveling EM Wave

The x-, y-, and z-components of the electric field of an EM 
wave in vacuum are

Ey = (−60.0  

V
m)cos[(4.0 m−1)x + ωt], Ex = Ez = 0

(a) In what direction does the wave travel? (b) Find the value 
of ω. (c) Write an expression for the components of the mag-
netic field of the wave.

Strategy Parts (a) and (b) require some general knowl-
edge about waves, but nothing specific to EM waves. Turning 
back to Chapter 11 may help refresh your memory. Part (c) 
involves the relationship between the electric and magnetic 
fields, which is particular to EM waves. The instantaneous 
magnitude of the magnetic field is given by B(x, y, z, t) = 
E(x, y, z, t)/c. We must also determine the direction of the 
magnetic field: E

→
, B

→
, and the velocity of propagation are 

three mutually perpendicular vectors and E
→

× B
→

 must be in 
the direction of propagation.

Solution (a) Since the electric field depends on the value 
of x but not on the values of y or z, the wave moves parallel 
to the x-axis. Imagine riding along a crest of the wave—a 
point where

cos [(4.0 m−1)x + ωt] = 1
continued on next page
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(c) Since the wave moves in the −x-direction and the electric 
field is in the ±y-direction, the magnetic field must be in the 
±z-direction to make three perpendicular directions. Since 
the magnetic field is in phase with the electric field, with the 
same wavelength and frequency, it must take the form

B = ±Bm cos [(4.0 m−1)x + (1.2 × 109 s−1)t],
Bx = By = 0

The amplitudes are proportional:

Bm =
Em

c
=

60.0 V/m
3.00 × 108 m/s

= 2.00 × 10−7 T

The last step is to decide which sign is correct. At x = t = 0, 
the electric field is in the −y-direction. E

→
× B

→
 must be in the 

−x-direction (the direction of propagation). Then

(−y-direction) × (direction of B
→

) = (−x-direction)

Trying both possibilities with the right-hand rule (Fig. 22.16), 
we find that B

→
 is in the +z-direction at x = t = 0. Then the 

magnetic field is written

Bz = (2.00 × 10−7 T) cos[(4.0 m−1)x + (1.2 × 109 s−1)t],
Bx = By = 0

Discussion When cos [(4.0 m−1)x + (1.2 × 109 s−1)t] is 
negative, then E

→
 is in the +y-direction and B

→
 is in the 

Example 22.4 continued

−z-direction. Since both fields reverse direction, it is still 
true that E

→
× B

→
 is in the direction of propagation.

Practice Problem 22.4 Another Traveling Wave

The x-, y-, and z-components of the electric field of an EM 
wave in vacuum are

Ex = (32 
V
m) cos [ky − (6.0 × 1011 s−1)t],

Ey = Ez = 0

where k is positive. (a) In what direction does the wave 
travel? (b) Find the value of k. (c) Write an expression for the 
components of the magnetic field of the wave.

+x

+z

–x

–y

E

+y

B
v

Figure 22.16
Using the right-hand rule 
to find the direction of B

→
.

22.6 ENERGY TRANSPORT BY EM WAVES

Electromagnetic waves carry energy, as do all waves. Life on Earth exists only because 
the energy of EM radiation from the Sun can be harnessed by green plants, which 
through photosynthesis convert some of the energy in light to chemical energy. Photo-
synthesis sustains not only the plants themselves, but also animals that eat plants and 
fungi that derive their energy from decaying plants and animals—the entire food chain 
can be traced back to the Sun as energy source. Only a few exceptions exist, such as 
the bacteria that live in geothermal vents on the ocean floor. The heat flow from the 
interior of Earth does not originate with the Sun; it comes from radioactive decay.

Most industrial sources of energy are derived from electromagnetic energy from 
the Sun. Fossil fuels—petroleum, coal, and natural gas—come from the remains of 
plants and animals. Solar cells convert the incident sunlight’s energy directly into 
electricity (Fig. 22.17); the Sun is also used to heat water and homes directly. Hydro-
electric power plants rely on the Sun to evaporate water, in a sense pumping it back 
uphill so that it can once again flow down rivers and turn turbines. Wind can be 
harnessed to generate electricity, but the winds are driven by uneven heating of Earth’s 
surface by the Sun. The only energy sources we have that do not come from the Sun’s 
EM radiation are nuclear fission and geothermal energy.

Energy Density

The energy in light is stored in the oscillating electric and magnetic fields in the wave. 
For an EM wave in vacuum, the energy densities (SI unit: J/m3) are

 uE =
1
2

 ϵ0 
E2 (17-34)

and

 uB =
1

2μ0
 B2 (20-38)

CONNECTION:

The expressions for electric 
and magnetic energy 
densities in an EM wave are 
the same as introduced in 
Chapters 17 and 20.

Figure 22.17 Photovoltaic 
power plant located within 
 Nellis Air Force Base in Clark 
County, Nevada.
©Fotosearch/PhotoLibrary
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It can be proved (Problem 38) that the two energy densities are equal for a traveling 
EM wave in vacuum, using the relationship between the magnitudes of the fields 
[Eq.  (22-8)]. Thus, for the total energy density, we can write

 u = uE + uB = ϵ0E
2 =

1
μ0

 B2 (22-9)

Since the fields vary from point to point and also change with time, so do the energy 
densities. Since the fields oscillate rapidly, in most cases we are concerned with the 
average energy densities—the average of the squares of the fields. Recall that an rms 
(root mean square) value is defined as the square root of the average of the square (see 
Section 21.1):
 Erms = √⟨E2⟩  and  Brms = √⟨B2⟩ (22-10)
The angle brackets around a quantity denote the average value of that quantity. Squaring 
both sides, we have
 E2

rms = ⟨E2⟩  and  B2
rms = ⟨B2⟩ (22-11)

Then the average energy density can be written in terms of the rms values of the fields:

Average energy density in an EM wave

 ⟨u⟩ = ϵ0⟨E2⟩ = ϵ0E
2
rms (22-12)

 ⟨u⟩ =
1
μ0

 ⟨B2⟩ =
1
μ0

 B2
rms (22-13)

If the electric and magnetic fields are sinusoidal functions of time, the rms values are 
1/√2 times the amplitudes (see Section 21.1).

Intensity

The energy density tells us how much energy is stored in the wave per unit volume; this 
energy is being carried with the wave at speed c. Suppose light falls at normal incidence 
on a surface (e.g., a photographic film or a leaf) and we want to know how much energy 
hits the surface. (Normal incidence means the direction of propagation of the light is 
perpendicular to the surface.) For one thing, the energy arriving at the surface depends 
on how long it is exposed—the reason exposure time is a critical parameter in photog-
raphy. Also important is the surface area; a large leaf receives more energy than a small 
one, everything else being equal. Thus, the most useful quantity to know is how much 
energy arrives at a surface per unit time per unit area—or the average power per unit 
area. If light hits a surface of area A at normal incidence, the intensity (I) is

Intensity

 I =
⟨P⟩
A

 (22-14)

The SI units of I are

 
energy

time·area
=

J
s·m2 =

W
m2 (22-15)

The intensity depends on how much energy is in the wave (measured by u) and 
the speed at which the energy moves (which is c). If a surface of area A is illuminated 
by light at normal incidence, how much energy falls on it in a time Δt? The wave 
moves a distance c Δt in that time, so all the energy in a volume Ac Δt hits the surface 
during that time (Fig. 22.18). (We are not concerned with what happens to the 
energy—whether it is absorbed, reflected, or transmitted.) The intensity is then

Intensity and energy density

 I =
⟨u⟩V

A Δt
=

⟨u⟩Ac Δt

A Δt
= ⟨u⟩c (22-16)

c Δt

A

EM wave

Figure 22.18 Geometry for 
finding the relationship between 
energy density and intensity.

CONNECTION:

Intensity of an EM wave is 
 defined exactly as for mechan-
ical waves (Section 11.1)— 
average power per cross- 
sectional area. Just as for me-
chanical waves, the intensity 
is proportional to the ampli-
tude squared.
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From Eq. (22-16), the intensity I is proportional to average energy density ⟨u⟩, 
which is proportional to the squares of the rms electric and magnetic fields 
[Eqs.  (22-12) and (22-13)]. If the fields are sinusoidal functions of time, the rms 
values are 1/√2 times the amplitudes [Eq. (21-9)]. Therefore,

Intensity and Amplitude

The intensity is proportional to the squares of the electric and magnetic field 
amplitudes.
 I ∝ E2

m ∝ B2
m (22-17)

Example 22.5

EM Fields of a Lightbulb

At a distance of 4.00 m from a 100.0 W lightbulb, what are 
the intensity and the rms values of the electric and magnetic 
fields? Assume that all of the electric power goes into EM 
radiation (mostly in the infrared) and that the radiation is 
isotropic (equal in all directions).

Strategy Since the radiation is isotropic, the intensity depends 
only on the distance from the lightbulb. Imagine a sphere sur-
rounding the lightbulb at a distance of 4.00 m. Radiant energy 
must pass perpendicularly through the surface of the sphere at a 
rate of 100.0 W. We can figure out the intensity (average power 
per unit area) and from it the rms values of the fields.

Solution All of the energy radiated by the lightbulb 
crosses the surface of a sphere of radius 4.00 m. Therefore, 
the intensity at that distance is the power radiated divided by 
the surface area of the sphere:

I =
⟨P⟩
A

=
⟨P⟩
4πr2 =

100.0 W
4π × 16.0 m2 = 0.497 W/m2

To solve for Erms, we relate the intensity to the average energy 
density and then the energy density to the field:

⟨u⟩ =
I

c
= ϵ0E

2
rms

Erms = √
I

ϵ0c
=

√

0.497 W/m2

8.85 × 10−12 
C2

N·m2 × 3.00 × 108 m/s

= 13.7 V/m

Similarly, for Brms,

Brms = √
μ0I

c
= √

4π × 10−7 
T·m
A

× 0.497 W/m2

3.00 × 108 m/s
= 4.56 × 10−8 T

Discussion A good check would be to calculate the ratio 
of the two rms fields:

Erms

Brms
=

13.7 V/m
4.56 × 10−8 T

= 3.00 × 108 m/s = c

as expected.

Practice Problem 22.5 Field of Lightbulb at 
Greater Distance

What are the rms fields 8.00 m away from the lightbulb? [Hint: 
Look for a shortcut rather than redoing the whole calculation.]

Power and Angle of Incidence If a surface is illuminated by light of intensity I, 
but the surface is not perpendicular to the incident light, the rate at which energy hits 
the surface is less than IA. As Fig. 22.19 shows, a perpendicular surface of area A cos θ 
casts a shadow over the surface of area A and thus intercepts all the energy. The 
angle of incidence θ is measured between the direction of the incident light and the 
normal (a direction perpendicular to the surface). Thus, a surface that is not perpen-
dicular to the incident wave receives energy at a rate

 ⟨P⟩ = IA cos θ (22-18)

If Eq. (22-18) reminds you of flux, then congratulations on your alertness! The 
intensity is often called the flux density. Electric and magnetic fields are sometimes 
called electric flux density and magnetic flux density. However, the flux involved with 
intensity is not the same as the electric or magnetic fluxes that we defined in 
Eqs.  (16-15) and (20-17). The intensity is the power flux density.

θ

θ A

A cos θ

Normal

Figure 22.19 The surface of 
area A cos θ, which is perpen-
dicular to the incoming wave, 
intercepts the same light energy 
as would a surface of area A 
for which the incoming wave is 
incident at an angle θ from the 
normal.
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Discussion In Practice Problem 22.6, you will find that 
the power per unit area at the winter solstice is less than half 
that at the summer solstice. The intensity of sunlight hasn’t 
changed; what changes is how the energy is spread out on the 
surface. Fewer of the Sun’s rays hit a given surface area 
when the surface is tilted more.

Earth is actually a bit closer to the Sun in the northern 
hemisphere’s winter than in summer. The angle at which the 
Sun’s radiation hits the surface and the number of hours of 
daylight are much more important in determining the incident 
power than is the small difference in distance from the Sun.

Practice Problem 22.6 Average Power on the 
Winter Solstice

What is the average power per unit area at a latitude of 40.0° 
north at noon on the winter solstice (Fig. 22.20b)?

40.0°

Direction    to 
incoming sunlight

Equator

Normal to
surface

50.0°

23.5°

(a) (b)

Direction    to 
incoming sunlight

40.0°

Sunlight

Sunlight

Equator

50.0°

50.0° – 23.5°
= 26.5°

23.5°

Axis of
rotation

Axis of
rotation

Axis of
rotation

Spring equinox

Summer solstice Winter solstice

Normal
to surface

Sunlight

θ

θ

θ
θ

Figure 22.20
(a) At noon on the summer solstice in the northern hemisphere, the rotation axis is inclined 23.5° toward the Sun. At a 
latitude of 40.0° north, the incoming sunlight is nearly normal to the surface of Earth. (b) At noon on the winter solstice in 
the northern hemisphere, the rotation axis is inclined 23.5° away from the Sun. At a latitude of 40.0° north, the incoming 
sunlight makes a large angle with the normal to the surface. (Diagram is not to scale.)

Example 22.6

Power per Unit Area from the Sun 
on the Summer Solstice

The intensity of sunlight reaching Earth’s surface on a clear day 
is about 1.0 kW/m2. At a latitude of 40.0° north, find the average 
power per unit area reaching Earth at noon on the summer sol-
stice (Fig. 22.20a). (The difference is due to the 23.5° inclina-
tion of Earth’s rotation axis. In summer, the axis is inclined 
toward the Sun; in winter it is inclined away from the Sun.)
Strategy Because Earth’s surface is not perpendicular to 
the Sun’s rays, the power per unit area falling on Earth is less 
than 1.0 kW/m2. We must find the angle that the Sun’s rays 
make with the normal to the surface.
Solution A radius going from Earth’s center to the surface 
is normal to the surface at that point, assuming Earth to be a 
sphere. We need to find the angle between the normal and an 
incoming ray. At a latitude of 40.0°, the angle between the 
radius and Earth’s axis of rotation is 90.0° − 40.0° = 50.0° 
(Fig. 22.20a). From the figure, θ + 50.0° + 23.5° = 90.0° and 
therefore θ = 16.5°. (This means the noon Sun is 16.5° away 
from the zenith.) The average power per unit area is then

⟨P⟩
A

= I cos θ = 1.0 × 103 W/m2 × cos 16.5° = 960 W/m2
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22.7 POLARIZATION

Linear Polarization

Imagine a transverse wave on a sting traveling along the z-axis. In what directions 
can the string be displaced to produce transverse waves on this string? The displace-
ment could be in the ±x-direction, as in Fig. 22.21a. Or it could be in the ±y-direction, 
as in Fig. 22.21b. Or it could be in any direction in the xy-plane. In Fig. 22.21c, the 
displacement of any point on the string from its equilibrium position is parallel to a 
line that makes an angle θ with the x-axis. These three waves are said to be linearly 
polarized. For the wave in Fig. 22.21a, we would say that the wave is polarized in 
the ±x-direction (or, for short, in the x-direction).

Linearly polarized waves are also called plane-polarized; the two terms are synony-
mous, despite what you might guess. Each wave in Fig. 22.21 is characterized by a single 
plane, called the plane of vibration, in which the entire string vibrates. For example, the 
plane of vibration for Fig. 22.21a is the xz-plane. Both the direction of propagation of the 
wave and the direction of motion of every point of the string lie in the plane of vibration.

Any transverse wave can be linearly polarized in any direction perpendicular to the 
direction of propagation. EM waves are no exception. But there are two fields in an EM 
wave, which are perpendicular to each other. Knowing the direction of one of the fields 
is sufficient, since E

→
× B

→
 must point in the direction of propagation. By convention, the 

direction of polarization of EM waves is taken to be the electric field direction. (Note that 
the term polarization in the context of EM waves has an entirely different meaning from 
its use in Chapter 16, where it indicated a separation of positive and negative charges.)

Both electric and magnetic dipole antennas emit radio waves that are linearly polar-
ized. If an FM radio broadcast is transmitted using a horizontal electric dipole antenna, 
the radio waves at any receiver are linearly polarized. The direction of polarization 
varies from place to place. If you are due west of the transmitter, the waves that reach 
you are polarized along the north-south direction, since they must be in the horizontal 
plane and perpendicular to the direction of propagation (which is west in this case). For 
best reception, an electric dipole antenna should be aligned with the direction of polar-
ization of the radio waves, since it is the electric field that drives current in the antenna.

Because electric and magnetic fields are vectors, any linearly polarized EM wave 
can be regarded as the superposition of two waves polarized along perpendicular axes 
(Fig. 22.22). If an electric dipole antenna makes an angle θ with the electric field of 
a wave, only the component of E

→
 along the antenna makes electrons move back and 

forth along the antenna. If we think of the wave as two perpendicular polarizations, 
the antenna responds to the polarization parallel to it while the perpendicular 
polarization has no effect.

Wave
motionWave

motion

String
motion

θ

String
motion Wave

motion

String
motion

y

xz

z

(a) (b) (c)

y

x

Figure 22.21 Transverse waves on a string with three different linear (plane) polarizations.

Figure 22.22 Any linearly 
polarized wave can be thought 
of as a superposition of two 
perpendicular polarizations 
because electric and magnetic 
fields are vectors.

E
Ey

Ex

y

x

θ
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Random Polarization

The light coming from an incandescent lightbulb is unpolarized or randomly polar-
ized. The direction of the electric field changes rapidly and in a random way. Antennas 
emit linearly polarized waves because the motion of the electrons up and down the 
antenna is orderly and always along the same line. Thermal radiation (which is mostly 
IR, but also includes visible light) from an incandescent lightbulb is caused by the vibra-
tions of huge numbers of atoms. The atoms are essentially independent of one another; 
nothing makes them vibrate in step or in the same direction. The wave is therefore made 
up of the superposition of a huge number of waves whose electric fields are in random, 
uncorrelated directions. Thermal radiation is always unpolarized, whether it comes from 
an incandescent lightbulb, from a wood stove (mostly IR), or from the Sun.

Circular Polarization

In a circularly polarized EM wave, the electric field at any point has a constant 
magnitude but its direction rotates in the plane perpendicular to the direction of prop-
agation. Imagine the electric field vector rotating, with its tip tracing out a circle. 
According to the convention used in optics, if you are looking at the wave coming 
toward you and the electric field vector rotates clockwise, it is right circularly 
polarized; if it rotates counterclockwise it is left circularly polarized.

A circularly polarized wave is the superposition of waves polarized along per-
pendicular axes that have the same amplitude and frequency and are 90° out of phase. 
Suppose that at some point the electric fields due to two waves traveling along the 
z-axis are Ex = Em cos ωt and Ey = Em sin ωt. At any time the magnitude of the  electric 
field is Em:

E = √E2
x + E2

y = √E2
m cos2 ωt + E2

m sin2 ωt = Em √cos2 ωt + sin2 ωt = Em (22-19)

At a time t the electric field makes an angle θ with respect to the +x-axis, where

 θ = tan−1 
Ey

Ex

= tan−1
(

Em sin ωt

Em cos ωt) = ωt (22-20)

Thus, the electric field vector rotates with constant angular velocity ω.

Polarizers

Devices called polarizers transmit linearly polarized waves in a fixed direction (called 
the transmission axis) regardless of the polarization state of the incident waves. 
A polarizer for microwaves consists of many parallel strips of metal (Fig. 22.23). The 
spacing of the strips must be significantly less than the wavelength of the microwaves. 
The strips act as little antennas. The parallel component of the electric field of the 
incident wave makes currents flow up and down the metal strips. These currents 
dissipate energy, so some of the wave is absorbed. The antennas also produce a wave 
of their own; it is out of phase with the incident wave, so it cancels the parallel-
component of E

→
 in the forward-going wave and sends a reflected wave back. Between 

absorption and reflection, none of the electric field parallel to the metal strips gets 
through the polarizer. The microwaves that are transmitted are linearly polarized per-
pendicular to the strips. The electric field does not pass through the “slots” between 
the metal strips! The transmission axis of the polarizer is perpendicular to the strips.

Sheet polarizers for visible light operate on a principle similar to that of the wire 
grid polarizer. A sheet polarizer contains many long hydrocarbon chains with iodine 
atoms attached. In production, the sheet is stretched so that these long molecules are all 
aligned in the same direction. The iodine atoms allow electrons to move easily along 
the chain, so the aligned polymers behave as parallel conducting wires, and their spacing 
is close enough that it does to visible light what a wire grid polarizer does to microwaves. 
The sheet polarizer has a transmission axis perpendicular to the aligned polymers.
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Ideal Polarizers If randomly polarized light is incident on an ideal polarizer, the 
transmitted intensity is half the incident intensity, regardless of the orientation of the 
transmission axis (Fig. 22.24a). The randomly polarized wave can be thought of as 
two perpendicular polarized waves that are uncorrelated—the relative phase of the 
two varies rapidly with time. Half of the energy of the wave is associated with each 
of the two perpendicular polarizations.
 I = 1

2I0  (incident wave unpolarized, ideal polarizer)  (22-21)
If, instead, the incident wave is linearly polarized, then the component of E

→
 

parallel to the transmission axis gets through (Fig. 22.24b). If θ is the angle between 
the incident polarization and the transmission axis, then
 E = E0 cos θ  (incident wave polarized, ideal polarizer)  (22-22)

Since intensity is proportional to the square of the amplitude, the transmitted 
intensity is
 I = I0 cos2 θ  (incident wave polarized, ideal polarizer)  (22-23)
Equation (22-23) is called Malus’s law after its discoverer Étienne-Louis Malus 
(1775–1812), an engineer and one of Napoleon’s captains. When applying Malus’s law, 
be sure to use the correct angle. In Eqs. (22-22) and (22-23), θ is the angle between 
the polarization direction of the incident light and the transmission axis of the polarizer.

Figure 22.23 In this experiment, horizontally polarized microwaves are incident on an ideal polarizing grid. The 
incident intensity is I0. Note that the transmission axis of the grid is perpendicular to the strips of metal. Microwaves 
transmitted through the grid are polarized along the transmission axis of the grid. (a) When the transmission axis is parallel 
to the incident polarization, all of the incident wave gets through—the transmitted intensity is I0. (b) When the transmission 
axis is perpendicular to the incident polarization, nothing gets through—the transmitted intensity is 0. (c) When the 
transmission axis makes an angle θ with the incident polarization, the component of the electric field parallel to the 
transmission axis gets through. Intensity is proportional to electric field squared, so the transmitted intensity is I0 cos2 θ.

(a)

Transmission axis
of polarizing grid

is horizontal

Transmitted wave is polarized
parallel to the transmission axis

of the grid

Microwave
transmitter

Incident wave is
horizontally polarized

(b)

Transmission axis
is vertical

No transmitted wave

(c)

Transmission axis
makes angle θ  with the 

 incident polarization

Transmitted wave is polarized
parallel to the transmission axis

of the grid

I = I0  
cos2θ

I = I0I = I0I = I0

I = I0 I = 0

θ

Figure 22.24 (a) Unpolarized light is incident on three polarizers with transmission axes oriented in different direc-
tions. The transmitted intensity is the same for all three. (b) Linearly polarized light is incident on the three polarizers. 
The maximum intensity is transmitted by the leftmost polarizer, showing that the incident light is vertically polarized. 
Note that the maximum transmitted intensity is slightly less than the incident intensity—these are real, not ideal, polar-
izers. As the polarizer is rotated, the transmitted intensity decreases, reaching a minimum when the transmission axis is 
perpendicular to the incident polarization. (An ideal polarizer would transmit zero intensity in this orientation.)

(a) (b)
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Problem-Solving Strategy: Ideal Polarizers

∙ The transmitted light is always linearly polarized along the transmission 
axis, regardless of the polarization of the incident light.

∙ If the incident light is unpolarized, the transmitted intensity is half the 
incident intensity: I = 1

2I0.
∙ If the incident light is polarized, the transmitted intensity is I = I0 cos2 θ, 

where θ is the angle between the incident polarization and the transmis-
sion axis.

CHECKPOINT 22.7

Light with intensity I0 is incident on an ideal polarizing sheet. The transmitted 
intensity is 1

2 I0. How can you determine whether the incident light is randomly 
polarized or linearly polarized? If it is linearly polarized, what is the direction of 
its polarization?

intensity [Eq. (22-21)] since the wave has equal amounts of 
energy associated with its two perpendicular (but uncorre-
lated) components.

I1 =
1
2

 I0

The light is now linearly polarized parallel to the transmis-
sion axis of the first polarizer, which is vertical.

The component of the electric field parallel to the trans-
mission axis of the second polarizer passes through. The 
amplitude is thus reduced by a factor cos 30.0° and, since 
intensity is proportional to amplitude squared, the intensity 
is reduced by a factor cos2 30.0° (Malus’s law). The intensity 
transmitted through the second polarizer is

I2 = I1 cos2 30.0° =
1
2

 I0 cos2 30.0° = 0.375I0

The light is now linearly polarized 30.0° from the vertical.

Discussion For problems involving two or more polarizers 
in series, treat each polarizer in turn. Use the intensity and 
polarization state of the light that emerges from one polarizer 
as the incident intensity and polarization for the next polarizer.

Practice Problem 22.7 Minimum and Maximum 
Intensities

If randomly polarized light of intensity I0 is incident on two 
polarizers, what are the maximum and minimum possible 
intensities of the transmitted light as the angle between the 
two transmission axes is varied?

Example 22.7

Unpolarized Light Incident on Two Polarizers

Randomly polarized light of intensity I0 is incident on two 
sheet polarizers (Fig. 22.25). The transmission axis of the 
first polarizer is vertical; that of the second makes a 30.0° 
angle with the vertical. What is the intensity and polarization 
state of the light after passing through the two?

Strategy We treat each polarizer separately. First we find 
the intensity of light transmitted by the first polarizer. The 
light transmitted by a polarizer is always linearly polarized 
parallel to the transmission axis of the polarizer, since only 
the component of E

→
 parallel to the transmission axis gets 

through. Then we know the intensity and polarization state 
of the light that is incident on the second polarizer.

Solution When randomly polarized light passes through a 
polarizer, the transmitted intensity is half the incident 

Figure 22.25
The circular disks are polarizing sheets with their transmission 
axes marked.

30.0°
I0

E01

E02

I1

I2

First 
sheet
polarizer

Random
polarization
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sheet
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Second
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First
transmission
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Application: Liquid Crystal Displays

Liquid crystal displays (LCDs) are commonly found in flat-panel TVs and computer 
screens, calculators, digital watches, and digital meters. In each segment of the display, 
a liquid crystal layer is sandwiched between two finely grooved surfaces with their 
grooves perpendicular (Fig. 22.26a). As a result the molecules twist 90° between the 
two surfaces. When a voltage is applied across the liquid crystal layer, the molecules 
line up in the direction of the electric field (Fig. 22.26b).

Unpolarized light from a small fluorescent bulb is polarized by one polarizing 
sheet. The light then passes through the liquid crystal and then through a second 
polarizing sheet with its transmission axis perpendicular to the first. When no voltage 
is applied, the liquid crystal rotates the polarization of the light by 90° and the light 
can pass through the second polarizer (Fig. 22.26a). When a voltage is applied, the 
liquid crystal transmits light without changing its polarization; the second polarizer 
blocks transmission of the light (Fig. 22.26b). When you look at an LCD display, you 
see the light transmitted by the second sheet. If a segment has a voltage applied to 
it, no light is transmitted; we see a black segment. If a segment of liquid crystal does 
not have an applied voltage, it transmits light and we see the same gray color as the 
background.

EVERYDAY PHYSICS DEMO

View an LCD computer monitor or TV through polarized sunglasses or through 
a polarizing filter from a camera. Rotate the sunglasses (or filter) and observe 
how the intensity changes. Determine the direction of polarization of the light 
from the LCD. (The transmission axis of polarized sunglasses is vertical.)

Polarization by Scattering

Although the radiation emitted by the Sun is unpolarized, much of the sunlight that 
we see is partially polarized. Partially polarized light is a mixture of unpolarized 
and linearly polarized light. A sheet polarizer can be used to distinguish linearly 
polarized, partially polarized, and unpolarized light. The polarizer is rotated, and the 
transmitted intensity at different angles is noted. If the incident light is unpolarized, 

First
polarizer Alignment

layers
Second

polarizer

Liquid crystal
molecules

Light is 
transmitted

No light is 
transmitted

Light

(a)

Light

(b)

Applied
voltage

Figure 22.26 (a) When no 
voltage is applied to the liquid 
crystal, it rotates the polariza-
tion of the light so it can pass 
through the second polarizing 
sheet. (b) When a voltage is 
applied to the liquid crystal, no 
light is transmitted through the 
second polarizing sheet.
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the intensity stays constant as the polarizer is rotated. If the incident light is linearly 
polarized, the intensity is zero in one orientation and maximum at a perpendicular 
orientation. If partially polarized light is analyzed in this way, the transmitted intensity 
varies as the polarizer is rotated, but it is not zero for any orientation; it is maximum 
in one orientation and minimum (but nonzero) in a perpendicular orientation. 
A polarizer used to analyze the polarization state of light is often called an analyzer.

Natural, unpolarized light becomes partially polarized when it is scattered or 
reflected. (Polarization by reflection is discussed in detail in Section 23.5.) Unless 
you look straight at the Sun (which can cause severe eye damage—do not try it!), the 
sunlight that reaches you has been scattered or reflected and thus is partially polarized. 
Common polarized sunglasses consist of a sheet polarizer, oriented to absorb the 
preferential direction of polarization of light reflected from horizontal surfaces, such 
as a road or the water on a lake, and to reduce the glare of scattered light in the air. 
Polarized sunglasses are often used in boating and aviation because they preferentially 
cut down on glare rather than indiscriminately reducing the intensity for all polarization 
states (Fig. 22.27).

Why the Sky Is Blue The blue sky we see on sunny days is sunlight that is scat-
tered by molecules in the air. On the Moon, there is no blue sky because there is no 
atmosphere. Even during the day, the sky is as black as at night, although the Sun 
and Earth may be brightly shining above (Fig. 22.28). Earth’s atmosphere scatters 
blue light, with its shorter wavelengths, more than light with longer wavelengths. At 
sunrise and sunset, we see the light left over after much of the blue is scattered out—
primarily red and orange. The same scattering process that makes the sky blue and 
the sunset red also polarizes the scattered light.

Why Scattered Light Is Polarized Figure 22.29 shows unpolarized sunlight being 
scattered by a molecule in the atmosphere. In this case, the incident light is horizon-
tal, as would occur shortly before sunset. In response to the electric field of the wave, 
charges in the molecule oscillate—the molecule becomes an oscillating dipole. Since 
the incoming wave is unpolarized, the dipole does not oscillate along a single axis, 
but does so in random directions perpendicular to the incident wave. As an oscillating 
dipole, the molecule radiates EM waves. An oscillating dipole radiates most strongly 
in directions perpendicular to its axis; it does not radiate at all in directions parallel 
to its axis.

North-south oscillation of the molecular dipole radiates in the three directions A, 
B, and C equally, since those directions are all perpendicular to the north-south axis 

Figure 22.27 (a) In this 
photo, taken without a 
polarizing filter in front of the 
lens, the image of the building 
across the street is clearly 
visible. (b) A polarizing filter 
in front of the lens with a 
horizontal transmission axis 
eliminates the image of the 
building because the light that 
reflects from the window is 
vertically polarized.
©Tom Pantages

(a) (b)

Figure 22.28 An astronaut 
walks away from the lunar 
module Intrepid while a bril-
liant Sun shines above the 
Apollo 12 base. Notice that the 
sky is dark even though the 
Sun is above the horizon; the 
Moon lacks an atmosphere to 
scatter sunlight and form a 
blue sky.
©NASA/Corbis Historical/Getty Images
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of the dipole. Vertical oscillation of the molecular dipole radiates most strongly in a 
horizontal plane (including A). Vertical oscillation radiates more weakly in direction 
B and not at all in direction C. Therefore, in direction C, the light is linearly polarized 
in the north-south direction. More generally, light scattered through 90° is polarized 
in a direction that is perpendicular both to the direction of the incident light and to 
the direction of the scattered light. When we look at the sky, the light we see is par-
tially polarized. It would be completely polarized only if it scatters through an angle 
of exactly 90° and if all of the light scatters only once.

Problem-Solving Strategy: Polarization by Scattering

Light scattered through 90° is polarized in a direction that is perpendicular both 
to the direction of the incident light and to the direction of the scattered light.

EVERYDAY PHYSICS DEMO

Take a pair of polarized sunglasses (or a polarizing filter from a camera) outside 
on a sunny day and analyze the polarization of the sky in various directions 
(but do not look directly at the Sun, even through sunglasses!). Get a second 
pair of sunglasses (or filter) so you can put two polarizers in series. Rotate 
the one closest to you while holding the other in the same orientation. When 
is the transmitted intensity maximum? When is it minimum?

Figure 22.29 Unpolarized 
sunlight is scattered by the 
atmosphere. (In this illustration, 
it is early evening, so the inci-
dent light from the Sun comes 
in horizontally from west to 
east.) A person looking straight 
up at the sky sees light that is 
scattered through 90°. This 
light (C) is polarized north-
south, which is perpendicular 
both to the direction of propa-
gation of incident light (east) 
and to the direction of propaga-
tion of scattered light (down).

Unpolarized
sunlight

Unpolarized

Polarized
north-south

Partially
polarized

Molecule

A

B

C

North

South

EastWest

Up

Down

Sun

Looking at each polarization by itself, we determine how 
effectively a molecule can scatter the light downward. 
A sketch of the situation is crucial.

Solution and Discussion Figure 22.30 shows light trav-
eling downward from the Sun as a mixture of north-south 
and east-west polarizations. Now we treat the two polariza-
tions one at a time.

Conceptual Example 22.8

Light Polarized by Scattering

At noon, if you look at the sky just above the horizon toward 
the east, in what direction is the light polarized?

Strategy At noon, sunlight travels straight down (approxi-
mately). Some of the light is scattered by the atmosphere 
through roughly 90° and then travels westward toward the 
observer. We consider the unpolarized light from the Sun to 
be a random mixture of two perpendicular polarizations. 

continued on next page
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The north-south electric fields cause charges in the mol-
ecule to oscillate along a north-south axis. An oscillating 
dipole radiates most strongly in all directions perpendicular 
to the dipole axis, including in the westward direction of the 
scattered light we want to analyze.

The east-west electric fields produce an oscillating 
dipole with an east-west axis. An oscillating dipole radiates 
only weakly in directions nearly parallel to its axis. 
Therefore, the light scattered westward is polarized in the 
north-south direction.

Conceptual Practice Problem 22.8 Looking North

Just before sunset, if you look north at the sky just over the 
horizon, in what direction is the light partially polarized?

North

South
EastWest

Up

Down

Observer Molecule
in the air

Sun Figure 22.30
Light traveling downward 
from the Sun is an 
uncorrelated mixture of 
both east-west and north-
south polarizations. The 
two polarizations are 
represented by double-
headed arrows. The light 
scattered westward is 
polarized along the north-
south direction.

Application: Bees Can Detect the Polarization of Light

A bee has a compound eye consisting of thousands of transparent fibers called the 
ommatidia. Each ommatidium has one end on the hemispherical surface of the com-
pound eye (Fig. 22.31) and is sensitive to light coming from the direction along which 
the fiber is aligned.

Each ommatidium is made up of nine cells. One of these cells is sensitive to the 
polarization of the incident light. The bee can therefore detect the polarization state 
of light coming from various directions. When the Sun is not visible, the bee can infer 
the position of the Sun from the polarization of scattered light, as was established by 
a series of ingenious experiments by Karl von Frisch and others in the 1960s. Using 
polarizing sheets, von Frisch and his colleagues could change the apparent polariza-
tion state of the scattered sunlight and watch the effects on the flight of the bees.

22.8 THE DOPPLER EFFECT FOR EM WAVES

The Doppler effect exists for all kinds of waves, including EM waves. However, the 
Doppler formula [Eq. (12-22)] derived for sound cannot be correct for EM waves. 
Those equations involve the velocity of the source and the observer relative to the 
medium through which the sound travels. For sound waves in air, vs and vo are 
measured relative to the air. Since EM waves do not require a medium, the Doppler 
shift for light involves only the relative velocity of the observer and the source.

Using Einstein’s relativity, the Doppler shift formula for EM waves can be derived:

Doppler effect for EM waves

 fo = fs√
1 + vrel/c
1 − vrel/c

 (22-24)

In Eq. (22-24), vrel is positive if the source and observer are approaching (getting 
closer together) and negative if receding (getting farther apart). If the relative speed 
of source and observer is much less than c, a simpler expression can be found using 
the binomial approximations found in Appendix A.9:

 (1 +
vrel

c )
1/2

≈ 1 +
vrel

2c
 and (1 −

vrel

c )
−1/2

≈ 1 +
vrel

2c
 (22-25)

CONNECTION:

Doppler effect: The observed 
frequency of a wave is affected 
by the motion of the source or 
observer (Section 12.8). With 
sound, the motion of source 
and observer are measured 
with respect to the wave 
medium. For EM waves in 
vacuum, the Doppler shift 
depends only on the relative 
motion of source and observer.

Figure 22.31 Scanning 
electron micrograph of the 
compound eye of a honeybee 
(Apis mellifera).
©David Scharf/Science Source

Conceptual Example 22.8 continued
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Substituting these approximations into Eq. (22-24), we obtain

 fo ≈ fs(1 +
vrel

2c )
2

 (22-26)

Applying the binomial approximation once more results in this useful expression:

Doppler effect for EM waves (vrel ≪ c)

 fo ≈ fs(1 +
vrel

c ) (22-27)

Figure 22.32
(a) The police car emits microwaves 
at frequency f1. The speeder receives 
them at a Doppler-shifted frequency 
f2. (b) The wave is reflected at fre-
quency f2; the police car receives the 
reflected wave at frequency f3.

Police

38.0 m/s

v = ?

SpeederEmitted at
frequency f1

Emitted microwave
travels toward speeder

Received at
frequency f2

(b)

(a)

Police

38.0 m/s

v = ?

SpeederEmitted at
frequency f2

Microwave reflected
back toward police

Received at
frequency f3

continued on next page

There are three different frequencies in the problem. 
Let’s call the frequency emitted by the police car 
f1 = 3.0 × 1010 Hz, the frequency received by the speeder f2, 
and the frequency of the reflected wave as observed by the 
police car f3. The police car is catching up to the speeder, so 
the source and observer are approaching; therefore, vrel is 
positive and the Doppler shift is toward higher frequencies.

Solution Assuming f3 is greater than f1, the beat frequency is

 fbeat = f3 − f1 (12-18)

The frequency observed by the speeder is

f2 = f1(1 +
vrel

c )

Now the speeder’s car emits a microwave of frequency f2. 
The frequency observed by the police car is

f3 = f2(1 +
vrel

c ) = f1(1 +
vrel

c )
2

Example 22.9

A Speeder Caught by Radar

A police car is moving at 38.0 m/s (85.0 mi/h) to catch up 
with a speeder directly ahead. The speed limit is 29.1 m/s 
(65.0 mi/h). A police car radar “clocks” the speed of the other 
car by emitting microwaves with frequency 3.0 × 1010 Hz and 
observing the frequency of the reflected wave. The reflected 
wave, when combined with the outgoing wave, produces 
beats at a rate of 1400 s−1. How fast is the speeder going? 
[Hint: First find the frequency “observed” by the speeder. The 
electrons in the metal car body oscillate and emit the reflected 
wave with this same frequency. For the reflected wave, the 
speeder is the source and the police car is the observer.]

Strategy There are two Doppler shifts, since the EM wave 
is reflected off the car. We can first think of the car as the 
observer, receiving a Doppler-shifted radar wave from the 
police car (Fig. 22.32a). Then the car “rebroadcasts” this 
wave back to the police car (Fig. 22.32b). This time the 
speeder’s car is the source and the police car is the observer. 
The relative speed of the two cars is much less than the speed 
of light, so we use the approximate formula [Eq. (22-27)].
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Applications: Doppler Radar and the Expansion of the Universe

Radar used by meteorologists can provide information about the position of storm 
systems. Now they use Doppler radar, which also provides information about the 
velocity of storm systems. Another important application of the Doppler shift of vis-
ible light is the evidence it gives for the expansion of the universe. Light reaching 
Earth from distant stars is red-shifted. That is, the spectrum of visible light is shifted 
downward in frequency toward the red. According to Hubble’s law (named for 
American astronomer Edwin Hubble, 1889–1953), the speed at which a galaxy moves 
away from ours is proportional to how far from us the galaxy is. Thus, the Doppler 
shift can be used to determine a star or galaxy’s distance from Earth.

Looking out at the universe, the red shift tells us that other galaxies are moving 
away from ours in all directions; the farther away the galaxy, the faster it is receding 
from us and the greater the Doppler shift of the light that reaches Earth. This doesn’t 
mean that Earth is at the center of the universe; in an expanding universe, observers on 
a planet anywhere in the universe would see distant galaxies moving away from it in 
all directions. Ever since the Big Bang, the universe has been expanding. Whether it 
continues to expand forever, or whether the expansion will stop and the universe collapse 
into another big bang, is a central question studied by cosmologists and astrophysicists.

We need to solve for vrel. Noting again that the car speed is 
much less than the speed of light, we can use the binomial 
approximation [Eq. (A-66)]:

f3 = f1(1 +
vrel

c )
2

≈ f1(1 + 2  

vrel

c )
Now we can solve for vrel.

vrel =
1
2

  c(
f3

f1
− 1) =

1
2

  c(
f3 − f1

f1 ) =
1
2

  c(
fbeat

f1 )

=
1
2

× 3.00 × 108 m/s ×
1400 Hz

3.0 × 1010 Hz
= 7.0 m/s

Since the two are approaching, the speeder is moving at less 
than 38.0 m/s. Relative to the road, the speeder is moving at

38.0 m/s − 7.0 m/s = 31.0 m/s (= 69.3 mi/h)

Perhaps the police officer will be kind enough to give only a 
warning this time.

Discussion Using the approximate form for the Doppler 
shift simplifies the algebra and reveals that the beat fre-
quency is directly proportional to the relative speed. We 
could also have used the exact form of Eq. (22-24) to obtain 
the same answer.

Practice Problem 22.9 Reflection from Stationary 
Objects

Suppose the police car is moving at 23 m/s. What beat 
frequency results when the radar is reflected from stationary 
objects?

Example 22.9 continued

Master the Concepts

 ∙ EM waves consist of oscillating electric and magnetic 
fields that propagate away from their source. EM waves 
always have both electric and magnetic fields.

 ∙ The Ampère-Maxwell law is Ampère’s law modified by 
Maxwell so that a changing electric field generates a 
magnetic field.

 ∙ The Ampère-Maxwell law, along with Gauss’s law, 
Gauss’s law for magnetism, and Faraday’s law, are 
called Maxwell’s equations. They describe completely 
the electric and magnetic fields. Maxwell’s equations 
say that E

→
- and B

→
-field lines do not have to be tied to 

matter. Instead, they can break free and electromagnetic 
waves can travel far from their sources.

 ∙ Radiation from a dipole antenna is weakest along the 
antenna’s axis and strongest in directions perpendicular 
to the axis. Electric dipole antennas and magnetic dipole 
antennas can be used either as sources of EM waves or 
as receivers of EM waves.

 ∙ The electromagnetic spectrum—the range of frequen-
cies and wavelengths of EM waves—is traditionally 
divided into named regions. From lowest to highest 
frequency, they are: radio waves, microwaves, infrared, 
visible, ultraviolet, x-rays, and gamma rays.

 ∙ EM waves of any frequency travel through vacuum at 
a speed

 c =
1

√ϵ0μ0
= 3.00 × 108 m/s (22-3)

continued on next page
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 ∙ EM waves can travel through matter, but they do so at 
speeds less than c. The index of refraction for a material 
is defined as

 n =
c

v
 (22-4)

  where v is the speed of EM waves through the material.
 ∙ The speed of EM waves (and therefore also the index of 

refraction) in matter depends on the frequency of the 
wave.

©Getty Images

 ∙ When an EM wave passes from one medium to another, 
the wavelength changes; the frequency remains the 
same. The wave in the second medium is created by 
the  oscillating charges at the boundary, so the fields 
in  the second medium must oscillate at the same 
frequency as the fields in the first.

 ∙ Properties of EM waves in vacuum:
  The electric and magnetic fields oscillate at the same 

frequency and are in phase.

 ∣E
→

(x, y, z, t)∣ = c∣B
→

(x, y, z, t)∣ (22-8)

E
→

, B
→

, and the direction of propagation are three mutually 
perpendicular directions.

E
→

× B
→

 is always in the direction of propagation.
The electric energy density is equal to the magnetic 
energy density.

 ∙ Energy density (SI unit: J/m3) of an EM wave in  
vacuum:

⟨u⟩ = ϵ0⟨E2⟩ = ϵ0E
2
rms =

1
μ0

 ⟨B2⟩ =
1
μ0

 B2
rms (22-12, 13)

 ∙ The intensity (SI unit: W/m2) is

 I = ⟨u⟩c (22-16)

Intensity is proportional to the squares of the electric 
and magnetic field amplitudes.

 ∙ The average power incident on a surface of area A is

 ⟨P⟩ = IA cos θ (22-18)

where θ is 0° for normal incidence and 90° for grazing 
incidence.

Master the Concepts continued

A

θ

A cos θ

Normal

θ

 ∙ The polarization of an EM wave is the direction of its 
electric field.

 ∙ If unpolarized waves pass through a polarizer, the trans-
mitted intensity is half the incident intensity:

 I =
1
2

 I0 (22-21)

 ∙ If a linearly polarized wave is incident on a polarizer, 
the component of E

→
 parallel to the transmission axis 

gets through. If θ is the angle between the incident 
polarization and the transmission axis, then

 E = E0 cos θ (22-22)

Since intensity is proportional to the square of the 
amplitude, the transmitted intensity is

 I = I0 cos2 θ (22-23)

Unpolarized
sunlight

Unpolarized

Polarized
north-south

Partially
polarized

Molecule

A

B

C

North

South

EastWest

Up

Down

Sun

 ∙ Unpolarized light can be partially polarized due to scat-
tering or reflection.

 ∙ The Doppler effect for EM waves:

 fo = fs√
1 + vrel/c
1 − vrel/c

 (22-24)

where vrel is positive if the source and observer are 
approaching, and negative if receding. If the relative 
speed of the source and observer is much less than c,

 fo ≈ fs(1 +
vrel

c ) (22-27)
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 14. The amplitudes of an EM wave are related by Em = cBm. 
Since c = 3.00 × 108 m/s, a classmate says that the elec-
tric field in an EM wave is much larger than the mag-
netic field. How would you reply?

 15. Why is it warmer in summer than in winter?

Multiple-Choice Questions

 1. The speed of an electromagnetic wave in vacuum 
depends on

 (a)  the amplitude of the electric field but not on the 
amplitude of the magnetic field.

 (b)  the amplitude of the magnetic field but not on the 
amplitude of the electric field.

 (c) the amplitude of both fields.
 (d) the angle between the electric and magnetic fields.
 (e) the frequency and wavelength.
 (f) none of the above.
 2. Which of these statements correctly describes the orien-

tation of the electric field (E
→

), the magnetic field (B
→

), 
and the velocity of propagation (v→) of an electromag-
netic wave?

 (a)  E
→

 is perpendicular to B
→

; v→ may have any orientation 
relative to E

→
.

 (b)  E
→

 is perpendicular to B
→

; v→ may have any orientation 
perpendicular to E

→
.

 (c)  E
→

 is perpendicular to B
→

; B
→

 is parallel to v→.
 (d)  E

→
 is perpendicular to B

→
; E

→
 is parallel to v→.

 (e)  E
→

 is parallel to B
→

; v→ is perpendicular to both E
→

 
and B

→
.

 (f)  Each of the three vectors is perpendicular to the 
other two.

 3. An electromagnetic wave is created by
 (a) all electric charges.
 (b) an accelerating electric charge.
 (c) an electric charge moving at constant velocity.
 (d) a stationary electric charge.
 (e) a stationary bar magnet.
 (f)  a moving electric charge, whether accelerating or 

not.
 4. The radio station that broadcasts your favorite music is 

located due north of your home; it uses a horizontal 
electric dipole antenna directed north-south. In order to 
receive this broadcast, you need to

 (a)  orient the receiving antenna horizontally, north-
south.

 (b) orient the receiving antenna horizontally, east-west.
 (c) use a vertical receiving antenna.
 (d) move to a town farther to the east or to the west.
 (e)  use a magnetic dipole antenna instead of an electric 

dipole antenna.

Conceptual Questions

 1. In Section 22.3, we stated that an electric dipole antenna 
should be aligned with the electric field of an EM wave 
for best reception. If a magnetic dipole antenna is used 
instead, should its axis be aligned with the magnetic 
field of the wave? Explain.

 2. A magnetic dipole antenna has its axis aligned with the 
vertical. The antenna sends out radio waves. If you are 
due south of the antenna, what is the polarization state 
of the radio waves that reach you?

 3. Linearly polarized light of intensity I0 shines through 
two polarizing sheets. The second of the sheets has its 
transmission axis perpendicular to the polarization of 
the light before it passes through the first sheet. Must 
the intensity transmitted through the second sheet be 
zero, or is it possible that some light gets through? 
Explain.

 4. Using Faraday’s law, explain why it is impossible to 
have a magnetic wave without any electric component.

 5. According to Maxwell, why is it impossible to have an 
electric wave without any magnetic component?

 6. Zach insists that the seasons are caused by the elliptical 
shape of Earth’s orbit. He says that it is summer when 
Earth is closest to the Sun and winter when it is farthest 
away from the Sun. What evidence can you think of to 
show that the seasons are not due to the change in dis-
tance between Earth and the Sun?

 7. Why are days longer in summer than in winter?
 8. Describe the polarization of radio waves transmitted 

from a horizontal electric dipole antenna that travel par-
allel to Earth’s surface.

 9. The figure shows a magnetic dipole antenna transmit-
ting an electromagnetic wave. At a point P far from the 
antenna, what are the directions of the electric and mag-
netic fields of the wave?

x
z P

y

Magnetic
dipole

antenna

 10. In everyday experience, visible light seems to travel in 
straight lines whereas radio waves do not. Explain.

 11. A light wave passes through a hazy region in the sky. If 
the electric field vector of the emerging wave is one 
quarter that of the incident wave, what is the ratio of the 
transmitted intensity to the incident intensity?

 12. Can sound waves be polarized? Explain.
 13. Until the Supreme Court ruled it to be unconstitutional, 

drug enforcement officers examined buildings at night 
with a camera sensitive to infrared. How did this help 
them identify marijuana growers?
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 5. If the wavelength of an electromagnetic wave is about 
the diameter of an apple, what type of radiation is it?

 (a) X-ray (b) UV (c) Infrared
 (d) Microwave (e) Visible light (f) Radio wave
 6. The Sun is directly overhead, and you are facing toward 

the north. Light coming to your eyes from the sky just 
above the horizon is

 (a) partially polarized north-south.
 (b) partially polarized east-west.
 (c) partially polarized up-down.
 (d) randomly polarized.
 (e) linearly polarized up-down.
 7. A dipole radio transmitter has its rod-shaped antenna 

oriented vertically. At a point due south of the transmit-
ter, the radio waves have their magnetic field

 (a) oriented north-south.
 (b) oriented east-west.
 (c) oriented vertically.
 (d) oriented in any horizontal direction.
 8. A beam of light is linearly polarized. You wish to rotate 

its direction of polarization by 90° using one or more 
ideal polarizing sheets. To get maximum transmitted 
intensity, you should use how many sheets?

 (a) 1 (b) 2 (c) 3
 (d) As many as possible
 (e)  There is no way to rotate the direction of polarization 

90° using polarizing sheets.
 9. A vertical electric dipole antenna
 (a) radiates uniformly in all directions.
 (b)  radiates uniformly in all horizontal directions, but 

more strongly in the vertical direction.
 (c)  radiates most strongly and uniformly in the horizontal 

directions.
 (d) does not radiate in the horizontal directions.
 10. Light passes from one medium (in which the speed of 

light is v1) into another (in which the speed of light is 
v2). If v1 < v2, as the light crosses the boundary,

 (a) both f and λ decrease.
 (b) neither f nor λ change.
 (c) f increases, λ decreases.
 (d) f does not change, λ increases.
 (e) both f and λ increase.
 (f) f does not change, λ decreases.
 (g) f decreases, λ increases.

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

22.1 Maxwell’s Equations and Electromagnetic 
Waves; 22.2 Antennas

Problems 1–3. An electric dipole antenna used to transmit 
radio waves is oriented vertically.
 1. At a point due south of the transmitter, what is the 

direction of the wave’s magnetic field?
 2. At a point due north of the transmitter, how should a 

second electric dipole antenna be oriented to serve as a 
receiver?

 3. At a point due north of the transmitter, how should a 
magnetic dipole antenna be oriented to serve as a 
receiver?

Problems 4–5. An electric dipole antenna used to transmit 
radio waves is oriented horizontally north-south.
 4. At a point due east of the transmitter, what is the 

direction of the wave’s electric field?
 5. At a point due east of the transmitter, how should a 

magnetic dipole antenna be oriented to serve as a 
receiver?

22.3 The Electromagnetic Spectrum;  
22.4 Speed of EM Waves in Vacuum and in Matter
 6. What is the wavelength of the radio waves broadcast by 

an FM radio station with a frequency of 90.9 MHz?
 7. What is the frequency of the microwaves in a microwave 

oven? The wavelength is 12 cm.
 8. How long does it take sunlight to travel from the Sun to 

Earth?
 9. How long does it take light to travel from this text to 

your eyes? Assume a distance of 50.0 cm.
 10. How far does a beam of light travel in 1 ns?
 11. In order to study the structure of a crystalline solid, you 

want to illuminate it with EM radiation whose wave-
length is the same as the spacing of the atoms in the 
crystal (0.20 nm). (a) What is the frequency of the EM 
radiation? (b) In what part of the EM spectrum (radio, 
visible, etc.) does it lie?

 12.  The currents in household wiring and power lines 
alternate at a frequency of 60.0 Hz. (a) What is the 
wavelength of the EM waves emitted by the wiring? 
(b) Compare this wavelength with Earth’s radius. (c) In 
what part of the EM spectrum are these waves?

 13.  In musical acoustics, a frequency ratio of 2:1 is 
called an octave. Humans with extremely good hearing 
can hear sounds ranging from 20 Hz to 20 kHz, which is 
approximately 10 octaves (since 210 = 1024 ≈ 1000). 
(a) Approximately how many octaves of visible light are 
humans able to perceive? (b) Approximately how many 
octaves wide is the microwave region?
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 14. In the United States, the ac household current oscillates 
at a frequency of 60 Hz. In the time it takes for the 
current to make one oscillation, how far has the electro-
magnetic wave traveled from the current-carrying wire? 
This distance is the wavelength of a 60 Hz EM wave. 
Compare this length with the distance from Boston to 
Los Angeles (4200 km).

 15. You are watching a baseball game on television that is 
being broadcast from 4500 km away. The batter hits the 
ball with a loud “crack” of the bat. A microphone is 
located 22 m from the batter, and you are 2.0 m from the 
television set. On a day when sound travels 343 m/s in 
air, what is the minimum time it takes for you to hear the 
crack of the bat after the batter hits the ball?

 16. You and a friend are sitting in the outfield bleachers of a 
Major League Baseball park, 140 m from home plate on a 
day when the temperature is 20°C. Your friend is listening 
to the radio commentary with headphones while watch-
ing. The broadcast network has a microphone located 
17 m from home plate to pick up the sound as the bat hits 
the ball. This sound is transferred as an EM wave a dis-
tance of 75 000 km by satellite from the ball park to the 
radio. (a) When the batter hits a hard line drive, who will 
hear the “crack” of the bat first, you or your friend, and 
what is the shortest time interval between the bat hitting 
the ball and one of you hearing the sound? (b) How much 
later does the other person hear the sound?

 17. The speed of light in topaz is 1.85 × 108 m/s. What is the 
index of refraction of topaz?

 18. What is the speed of light in a diamond that has an index 
of refraction of 2.4168?

 19. When the NASA Rover Spirit successfully landed on 
Mars in January of 2004, Mars was 170.2 × 106 km 
from Earth. Twenty-one days later, when the Rover 
Opportunity landed on Mars, Mars was 198.7 × 106 km 
from Earth. (a) How long did it take for a one-way trans-
mission to the scientists on Earth from Spirit on its 
landing day? (b) How long did it take for scientists to 
communicate with Opportunity on its landing day?

 20. The index of refraction of water is 1.33. (a) What is the 
speed of light in water? (b) What is the wavelength in 
water of a light wave with a vacuum wavelength of 
515 nm?

 21. Light of wavelength 692 nm in air passes into window 
glass with an index of refraction of 1.52. (a) What is the 
wavelength of the light inside the glass? (b) What is the 
frequency of the light inside the glass?

 22. Light travels through tanks filled with various 
substances. The indices of refraction of the substances n 
and the lengths of the tanks are given. Rank them in 
order of the time it takes light to traverse the tank, 
from  greatest to smallest. (a) n = 5/4, length = 1 m; 
(b)  n = 1, length = 4/5 m; (c) n = 1, length = 1 m; 
(d) n = 3/2, length = 1 m; (e) n = 3/2, length = 5/4 m; 
(f) n = 3/2, length = 4/5 m.

22.5 Characteristics of Traveling 
Electromagnetic Waves in Vacuum
 23. On a cold, autumn day, Tuan is staring out of the win-

dow watching the leaves blow in the wind. One bright 
yellow leaf is reflecting light that has a predominant 
wavelength of 580 nm. (a) What is the frequency of this 
light? (b) If the window glass has an index of refraction 
of 1.50, what are the speed, wavelength, and frequency 
of this light as it passes through the window?

 24. The electric field in a microwave traveling through air 
has amplitude 0.60 mV/m and frequency 30 GHz. Find 
the amplitude and frequency of the magnetic field.

 25. The magnetic field in a microwave traveling through 
vacuum has amplitude 4.00 × 10−11 T and frequency 
120 GHz. Find the amplitude and frequency of the 
electric field.

 26. The magnetic field in a radio wave traveling through air 
has amplitude 2.5 × 10−11 T and frequency 3.0 MHz. 
(a)  Find the amplitude and frequency of the electric 
field. (b) The wave is traveling in the −y-direction. At 
y = 0 and t = 0, the magnetic field is 1.5 × 10−11 T in the 
+z-direction. What are the magnitude and direction of 
the electric field at y = 0 and t = 0?

 27. The electric field in a radio wave traveling through 
 vacuum has amplitude 2.5 × 10−4 V/m and frequency 
1.47  MHz. (a) Find the amplitude and frequency of 
the  magnetic field. (b) The wave is traveling in the  
+x-direction. At x = 0 and t = 0, the electric field is  
1.5 × 10−4 V/m in the −y-direction. What are the magni-
tude and direction of the magnetic field at x = 0 and t = 0?

 28.  The magnetic field of an EM wave is given by 
By = Bm sin (kz + ωt), Bx = 0, and Bz = 0. (a) In what 
direction is this wave traveling? (b) Write expressions 
for the components of the electric field of this wave.

 29.  The electric field of an EM wave is given by  
Ez = Em sin (ky − ωt + π/6), Ex = 0, and Ey = 0. (a) In what 
direction is this wave traveling? (b) Write expressions for 
the components of the magnetic field of this wave.

22.6 Energy Transport by EM Waves
 30. The intensity of the sunlight that reaches Earth’s upper 

atmosphere is approximately 1400 W/m2. (a) What is 
the average energy density? (b) Find the rms values of 
the electric and magnetic fields.

 31. The cylindrical beam of a 10.0 mW laser is 0.85 cm in 
diameter. What is the rms value of the electric field?

 32. In astronomy it is common to expose a photographic plate 
to a particular portion of the night sky for quite some time 
in order to gather plenty of light. Before leaving a plate 
exposed to the night sky, Matt decides to test his tech-
nique by exposing two photographic plates in his lab to 
light coming through several pinholes. The source of light 
is 1.8 m from one photographic plate and the exposure 
time is 1.0 h. For how long should Matt expose a second 
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plate located 4.7 m from the source if the second plate is 
to have equal exposure (i.e., the same energy collected)?

 33. A 1.0 m2 solar panel on a satellite that keeps the panel 
oriented perpendicular to radiation arriving from the 
Sun absorbs 1.4 kJ of energy every second. The satellite 
is located at 1.00 AU from the Sun. (The Earth-Sun 
distance is approximately 1 AU.) How long would it 
take an identical panel that is also oriented perpendicu-
lar to the incoming radiation to absorb the same amount 
of energy, if it were on an interplanetary exploration 
vehicle 1.55 AU from the Sun?

 34. Fernando detects the electric field from an isotropic 
source that is 22 km away by tuning in an electric field 
with an rms amplitude of 55 mV/m. What is the average 
power of the source?

 35. A certain star is 14 million light-years from Earth. The 
intensity of the light that reaches Earth from the star is 
4 × 10−21 W/m2. At what rate does the star radiate EM 
energy?

 36. The intensity of the sunlight that reaches Earth’s upper 
atmosphere is approximately 1400 W/m2. (a) What is the 
total average power output of the Sun, assuming it to be 
an isotropic source? (b) What is the intensity of sunlight 
incident on Mercury, which is 5.8 × 1010 m from the Sun?

 37. The radio telescope in Arecibo, Puerto Rico, has a 
diameter of 305 m. It can detect radio waves from space 
with intensities as small as 10−26 W/m2. (a) What is the 
average power incident on the telescope due to a wave at 
normal incidence with intensity 1.0 × 10−26 W/m2? 
(b) What is the average power incident on Earth’s sur-
face? (c) What are the rms electric and magnetic fields?

 38. Prove that, in an EM wave traveling in vacuum, the electric 
and magnetic energy densities are equal; that is, prove that

1
2
ϵ0E

2 =
1

2μ0
 B2

  at any point and at any instant of time.

22.7 Polarization
 39. Randomly polarized light with intensity I0 passes 

through two ideal polarizers, one after the other. The 
transmission axes of the first and second polarizers are at 
angles θ1 and θ2, respectively, to the horizontal. Rank the 
intensities of the light transmitted through the second 
polarizer, from greatest to least. (a) θ1 = 0°, θ2 = 30°; 
(b) θ1 = 30°, θ2 = 30°; (c) θ1 = 0°, θ2 = 90°; (d) θ1 = 60°, 
θ2 = 0°; (e) θ1 = 30°, θ2 = 60°.

 40. Horizontally polarized light with intensity I0 passes 
through two ideal polarizers, one after the other. The 
transmission axes of the first and second polarizers are 
at angles θ1 and θ2, respectively, to the horizontal. Rank 
the intensities of the light transmitted through the 
second polarizer, from greatest to least. (a) θ1 = 0°, 
θ2 = 30°; (b) θ1 = 30°, θ2 = 30°; (c) θ1 = 0°, θ2 = 90°; 
(d) θ1 = 60°, θ2 = 0°; (e) θ1 = 30°, θ2 = 60°.

 41. Unpolarized light passes through two ideal polarizers in 
turn with polarization axes at 45° to each other. What is the 
fraction of the incident light intensity that is transmitted?

 42. Light polarized in the x-direction shines through two 
ideal polarizing sheets. The first sheet’s transmission 
axis makes an angle θ with the x-axis, and the transmis-
sion axis of the second is parallel to the y-axis. (a) If the 
incident light has intensity I0, what is the intensity of the 
light transmitted through the second sheet? (b) At what 
angle θ is the transmitted intensity maximum?

 43. Unpolarized light is incident on a system of three ideal 
polarizers. The second polarizer is oriented at an angle 
of 30.0° with respect to the first, and the third is ori-
ented at an angle of 45.0° with respect to the first. If the 
light that emerges from the system has an intensity of 
23.0 W/m2, what is the intensity of the incident light?

 44. Unpolarized light 
is incident on 
four ideal polar-
izing sheets with 
their transmission 
axes oriented as 
shown in the fig-
ure. What per-
centage of the 
initial light inten-
sity is transmitted through this set of polarizers?

 45.  A polarized beam of light has intensity I0. We want 
to rotate the direction of polarization by 90.0° using 
ideal polarizing sheets. (a) Explain why we must use at 
least two sheets. (b) What is the transmitted intensity if 
we use two sheets, each of which rotates the direction of 
polarization by 45.0°? (c) What is the transmitted inten-
sity if we use four sheets, each of which rotates the 
direction of polarization by 22.5°?

 46.  Vertically polarized microwaves traveling into the 
page are directed at each of three metal plates (a, b, c) 
that have parallel slots cut in them. (a) Which plate 
transmits microwaves best? (b) Which plate reflects 
microwaves best? (c) If the intensity transmitted through 
the best transmitter is I1, what is the intensity transmit-
ted through the second-best transmitter?

 (a) (b) (c)

30.0°

 47. Two sheets of ideal polarizing material are placed with 
their transmission axes at right angles to each other. A 
third polarizing sheet is placed between them with its 
transmission axis at 45° to the axes of the other two. (a) If 
unpolarized light of intensity I0 is incident on the 
 system, what is the intensity of the transmitted light? 

30.0°
0°

60.0°
90.0°Angles of the transmission

axes from the vertical
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(b) What is the intensity of the transmitted light when 
the middle sheet is removed?

 48. Vertically polarized light with intensity I0 is normally 
incident on an ideal polarizer. As the polarizer is rotated 
about a horizontal axis, the intensity I of light transmit-
ted through the polarizer varies with the orientation of 
the polarizer (θ), where θ = 0 corresponds to a vertical 
transmission axis. Sketch a graph of I as a function of θ 
for one complete rotation of the polarizer (0 ≤ θ ≤ 360°).

 49. Just after sunrise, you look north at the sky just above 
the horizon. Is the light you see polarized? If so, in what 
direction?

 50. Just after sunrise, you look straight up at the sky. Is the 
light you see polarized? If so, in what direction?

22.8 The Doppler Effect for EM Waves
 51. If the speeder in Example 22.9 were going faster than 

the police car, how fast would it have to go so that the 
reflected microwaves produce the same number of beats 
per second?

 52. Light of wavelength 659.6 nm is emitted by a star. The 
wavelength of this light as measured on Earth is 
661.1 nm. How fast is the star moving with respect to 
Earth? Is it moving toward Earth or away from it?

 53. A star is moving away from Earth at a speed of 
2.4 × 108 m/s. Light of wavelength 480 nm is emitted by 
the star. What is the wavelength as measured by an 
Earth observer?

 54. A spaceship traveling 12.3 km/s relative to Earth sends out 
an EM pulse with a wavelength of 850.00 nm (as measured 
by the source). The pulse is reflected from another space-
ship that is moving toward the first spaceship at a speed of 
24.6 km/s relative to Earth. What will be the wavelength of 
the reflected pulse as measured by the first spaceship?

 55. A police car’s radar gun emits microwaves with a 
frequency of f1 = 7.50 GHz. The beam reflects from a 
speeding car, which is moving toward the police car at 
48.0 m/s with respect to the police car. The speeder’s 
radar detector detects the microwave at a frequency f2. 
(a) Which is larger, f1 or f2? (b) Find the frequency 
difference f2 − f1.

 56. What must be the relative speed between source and 
receiver if the wavelength of an EM wave as measured 
by the receiver is twice the wavelength as measured by 
the source? Are source and observer moving closer 
together or farther apart?

 57. How fast would you have to drive in order to see a red 
light as green? Take λ = 630 nm for red and λ = 530 nm 
for green.

Collaborative Problems

 58.  The solar panels on the roof of a house measure 
4.0 m by 6.0 m. Assume they convert 12% of the incident 
EM wave’s energy to electric energy. (a) What average 

power do the panels supply when the incident intensity 
is 1.0 kW/m2 and the panels are perpendicular to the 
incident light? (b) What average power do the panels 
supply when the incident intensity is 0.80 kW/m2 and 
the light is incident at an angle of 60.0° from the nor-
mal? (c) Take the average daytime power requirement of 
a house to be about 2 kW. How do your answers to 
(a) and (b) compare? What are the implications for the 
use of solar panels?

 59. A police car’s radar gun emits microwaves with a fre-
quency of f1 = 36.0 GHz. The beam reflects from a 
speeding car, which is moving away at 43.0 m/s with 
respect to the police car. The frequency of the reflected 
microwave as observed by the police is f2. (a) Which is 
larger, f1 or f2? (b) Find the frequency difference f2 − f1. 
[Hint: There are two Doppler shifts. First think of the 
police as source and the speeder as observer. The speed-
ing car “retransmits” a reflected wave at the same 
frequency at which it receives the incident wave.]

 60. Suppose some astronauts have landed on Mars. When 
the astronauts ask a question of mission control person-
nel on Earth, what is the shortest possible time they 
have to wait for a response? The average distance from 
Mars to the Sun is 2.28 × 1011 m.

 61.  An AM radio station broadcasts at 570 kHz. (a) What 
is the wavelength of the radio wave in air? (b) If a radio 
is tuned to this station and the inductance in the tuning 
circuit is 0.20 mH, what is the capacitance in the tuning 
circuit? (c) In the vicinity of the radio, the amplitude of 
the electric field is 0.80 V/m. The radio uses a coil an-
tenna of radius 1.6 cm with 50 turns. What is the maxi-
mum emf induced in the antenna, assuming it is oriented 
for best reception? Assume that the fields are sinusoidal 
functions of time.

 62. Consider the three ideal 
polarizing filters shown in 
the figure. The angles 
listed indicate the direc-
tion of the transmission 
axis of each polarizer with 
respect to the vertical. 
(a) If unpolarized light of 
intensity I0 is incident from the left, what is the intensity 
of the light that exits the last polarizer? (b) If vertically 
polarized light of intensity I0 is incident from the left, 
what is the intensity of the light that exits the last polar-
izer? (c) Can you remove one polarizer from this series 
of filters so that light incident from the left is not trans-
mitted at all if unpolarized light is incident as in part 
(a)? If so, which polarizer should you remove? Answer 
the same questions for vertically polarized incident light 
as in part (b). (d) If you can remove one polarizer to 
maximize the amount of light transmitted in part (a), 
which one should you remove? Answer the same ques-
tion for part (b).

0°
60.0°

90.0°

I0
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Comprehensive Problems

 63. Calculate the frequency of an EM wave with a wave-
length the size of (a) the thickness of a piece of paper 
(60 μm), (b) a 91 m long soccer field, (c) the diameter of 
Earth, and (d) the distance from Earth to the Sun.

 64. The intensity of solar radiation that falls on a detector on 
Earth is 1.00 kW/m2. The detector is a square that 
measures 5.00 m on a side and the normal to its surface 
makes an angle of 30.0 with respect to the Sun’s radia-
tion. How long will it take for the detector to measure 
420 kJ of energy?

 65. Astronauts on the Moon communicated with mission 
control in Houston via EM waves. There was a notice-
able time delay in the conversation due to the round-trip 
transit time for the EM waves between the Moon and 
Earth. How long was the time delay?

 66. The antenna on a wireless router radiates microwaves at 
a frequency of 5.0 GHz. What is the maximum length of 
the antenna if it is not to exceed half of a wavelength?

 67. Two identical television signals are sent between two 
cities that are 400.0 km apart. One signal is sent through 
the air, and the other signal is sent through a fiber optic 
network. The signals are sent at the same time, but the 
one traveling through air arrives 7.7 × 10−4 s before the 
one traveling through the glass fiber. What is the index 
of refraction of the glass fiber?

Problems 68–69. A laser used in LASIK eye surgery pro-
duces 55 pulses per second. The wavelength is 193 nm (in 
air), and each pulse lasts 10.0 ps. The average power emitted 
by the laser is 120.0 mW and the beam diameter is 0.80 mm.
 68.  (a) In what part of the EM spectrum is the laser 

pulse? (b) How long (in centimeters) is a single pulse of 
the laser in air? (c) How many wavelengths fit in one 
pulse?

 69.  (a) What is the total energy of a single pulse? 
(b) What is the intensity during a pulse?

 70.  A 2.0 mW laser pointer has a beam diameter of 
1.5 mm. When it is accidentally pointed at a person’s 
eye, the beam is focused to a spot of diameter  
20.0 μm on the retina and the retina is exposed for  
80 ms. (a)  What is the intensity of the laser beam?  
(b) What is the intensity of light incident on the retina? 
(c) What is the total energy incident on the retina?

 71. The range of wavelengths allotted to the radio broadcast 
band is from about 190 m to 550 m. If each station needs 
exclusive use of a frequency band 10 kHz wide, how 
many stations can operate in the broadcast band?

 72. Polarized light of intensity I0 is incident on a pair of 
ideal polarizing sheets. Let θ1 and θ2 be the angles be-
tween the direction of polarization of the incident light 
and the transmission axes of the first and second sheets, 

respectively. Show that the intensity of the transmitted 
light is I = I0 cos2 θ1 cos2 (θ1 − θ2).

 73. An unpolarized beam of light (intensity I0) is moving in 
the x-direction. The light passes through three ideal 
polarizers whose transmission axes are (in order) at 
angles 0.0°, 45.0°, and 30.0° counterclockwise from 
the y-axis in the yz-plane. (a) What is the intensity and 
polarization of the light that is transmitted by the last 
polarizer? (b) If the polarizer in the middle is removed, 
what is the intensity and polarization of the light trans-
mitted by the last polarizer?

 74. A sinusoidal EM wave has an electric field amplitude 
Em = 32.0 mV/m. What are the intensity and average 
energy density? [Hint: Recall the relationship between 
amplitude and rms value for a quantity that varies 
sinusoidally.]

 75. Energy carried by an EM wave coming through the air 
can be used to light a bulb that is not connected to a 
battery or plugged into an electric outlet. Suppose a 
receiving antenna is attached to a bulb and the bulb is 
found to dissipate a maximum power of 1.05 W when 
the antenna is aligned with the electric field coming 
from a distant source. The wavelength of the source is 
large compared to the antenna length. When the antenna 
is rotated so it makes an angle of 20.0° with the 
incoming electric field, what is the power dissipated by 
the bulb?

 76. A 10 W laser emits a beam of light 4.0 mm in diameter. 
The laser is aimed at the Moon. By the time it reaches 
the Moon, the beam has spread out to a diameter of 
85 km. Ignoring absorption by the atmosphere, what is 
the intensity of the light (a) just outside the laser and 
(b) where it hits the surface of the Moon?

77. You are trying to communicate with a spaceship that is 
traveling at 1.2 × 108 m/s away from Earth. If you send 
a message at a frequency of 55 kHz, to what frequency 
should the astronauts on the ship tune to receive your 
message?

 78. To measure the speed of light, Galileo and a colleague 
stood on different mountains with covered lanterns. 
Galileo uncovered his lantern and his friend, seeing the 
light, uncovered his own lantern in turn. Galileo 
measured the elapsed time from uncovering his lantern 
to seeing the light signal response. The elapsed time 
should be the time for the light to make the round trip 
plus the reaction time for his colleague to respond. 
To determine reaction time, Galileo repeated the experi-
ment while he and his friend were close to one another. 
He found the same time whether his colleague was nearby 
or far away and concluded that light traveled almost 
 instantaneously. Suppose the reaction time of Galileo’s 
colleague was 0.25 s and for Galileo to observe a differ-
ence, the complete round trip would have to take 0.35 s. 
How far apart would the two mountains have to be for 
Galileo to observe a finite speed of light? Is this feasible?
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Review and Synthesis

 79. What are the three lowest angular speeds for which the 
wheel in Fizeau’s apparatus (see Fig. 22.11) allows the 
reflected light to pass through to the observer? Assume 
the distance between the notched wheel and the mirror 
is 8.6 km and that there are 5 notches in the wheel.

 80. By expressing ϵ0 and μ0 in base SI units (kg, m, s, A), 
show that the only combination of the two with dimen-
sions of speed is (ϵ0μ0)−1/2.

 81. A microwave oven can heat 350 g of water from 25.0°C to 
100.0°C in 2.00 min. (a) At what rate is energy absorbed by 
the water? (b) These microwaves pass through a waveguide 
of cross-sectional area 88.0 cm2. What is the average inten-
sity of the microwaves in the waveguide? (c) What are the 
rms electric and magnetic fields inside the waveguide?

 82. Verify that the equation I = ⟨u⟩c is dimensionally 
consistent (i.e., check the units).

 83. Using Faraday’s law, show that if a magnetic dipole 
antenna’s axis makes an angle θ with the magnetic field 
of an EM wave, the induced emf in the antenna is 
reduced from its maximum possible value by a factor of 
cos θ. [Hint: Assume that, at any instant, the magnetic 
field everywhere inside the loop is uniform.]

 84. You are standing 1.2 m from a heat lamp that draws an rms 
current of 12.5 A when connected to 120 V rms. (a) As-
suming that the energy of the heat lamp is radiated uni-
formly in a hemispherical pattern, what is the intensity of 
the light on your face? (b) If you stand in front of the heat 
lamp for 2.0 min, how much energy is incident on your 
face? Assume your face has a total area of 2.8 × 10−2 m2. 
(c) What are the rms electric and magnetic fields?

 85.  An EM wave is generated by a magnetic dipole 
antenna as shown in the figure. The current in the 
antenna is produced by an LC resonant circuit. The 
wave is detected at a distant point P. Using the coordi-
nate system in the figure, write equations for the x-, y-, 
and z-components of the EM fields at a distant point P. 
(If there is more than one possibility, just give one con-
sistent set of answers.) Define all quantities in your 
equations in terms of L, C, Em (the electric field ampli-
tude at point P), and universal constants.

x
z P

y

Magnetic
dipole

antenna

 86.  A magnetic dipole antenna is used to detect an electro-
magnetic wave. The antenna is a coil of 50 turns with ra-
dius 5.0 cm. The EM wave has frequency 870 kHz, 
electric field amplitude 0.50 V/m, and magnetic field am-
plitude 1.7 × 10−9 T. (a) For best results, should the axis 
of the coil be aligned with the electric field of the wave, 
or with the magnetic field, or with the direction of propa-

gation of the wave? (b) Assuming it is aligned correctly, 
what is the amplitude of the induced emf in the coil? 
(Since the wavelength of this wave is much larger than 
5.0 cm, it can be assumed that at any instant the fields are 
uniform within the coil.) (c) What is the amplitude of the 
emf induced in an electric dipole antenna of length 5.0 cm 
aligned with the electric field of the wave?

Answers to Practice Problems

22.1 (a) EM waves from the transmitting antenna travel 
outward in all directions. Since the wave travels from the 
transmitter to the receiver in the +z-direction (the direction 
of propagation), the direction from the receiver to the trans-
mitter is the −z-direction. (b) Ey(t) = Em cos (kz − ωt), where 
k = 2π/λ is the wavenumber; Ex = Ez = 0.
22.2 1 ly = 9.5 × 1015 m
22.3 444 nm
22.4 (a) +y-direction; (b) 2.0 × 103 m−1; (c) Bz(x, y, z, t) = 
(−1.1 × 10−7 T) cos [(2.0 × 103 m−1)y − (6.0 × 1011 s−1)t], 
Bx = By = 0
22.5 The rms fields are proportional to √I  and I is propor-
tional to 1/r2, so the rms fields are proportional to 1/r. 
Erms = 6.84 V/m; Brms = 2.28 × 10−8 T
22.6 450 W/m2

22.7 minimum zero (when transmission axes are perpen-
dicular); maximum is 1

2I0 (when transmission axes are 
parallel)
22.8 vertically
22.9 4.6 kHz

Answers to Checkpoints

22.2 The component of the electric field parallel to the 
antenna is zero. As a result, the wave does not cause an oscil-
lating current to flow along the antenna.
22.4 The frequency of the wave does not change. With 
nair  ≈  1, λair ≈ λ0 (the vacuum wavelength). λ0 = nw λw = 
640 nm. [More generally, if neither medium is air, set the 
frequencies equal: f = v1/λ1 = v2/λ2. Then λ2 = λ1(v2/v1) = 
λ1(n1/n2).]
22.5 The magnitude of the magnetic field is B = E/c = 
3 × 10−11 T. The direction of B

→
 must be perpendicular to 

both the direction of propagation (+x) and the electric field 
(−y), so it’s either in the +z- or −z-direction. From the right-
hand rule, the direction of B

→
 is in the −z-direction.

22.7 Rotate the polarizing sheet. If the incident light is 
randomly polarized, the transmitted intensity does not 
change. If the incident light is linearly polarized, the 
transmitted intensity does change as you rotate the polarizer. 
To get transmitted intensity of 1

2I0, the incident polarization 
must be at a 45° angle to the transmission axis of the polarizer 
(cos2 45° = 1

2) .
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Reflection and Refraction of Light

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Endoscopy (Section 23.4; 
Conceptual Question 20; 
Problems 26, 27)

∙ Oil immersion 
microscopy (Conceptual 
Question 21)

∙ Refraction of light by the 
eye (Problems 10, 11)

Concepts & Skills to Review

•	 reflection	and	refraction	
(Section	11.8)

•	 index	of	refraction;	
dispersion	(Section	22.4)

•	 math skills:	geometry—
especially	similar	
triangles,	alternate	
interior	angles,	and	
complementary	angles	
(Appendix	A.6)

•	 polarization	by	scattering	
(Section	22.7)

©Universal History Archive/UIG via Getty Images

Alexander	Graham	Bell	(1847–1922)	is	famous	today	for	the	invention	
of	the	telephone	in	the	1870s.	However,	Bell	believed	his	most	impor-
tant	 invention	was	 the	Photophone.	 Instead	 of	 sending	 electrical	 sig-
nals	 over	metal	 wires,	 the	 Photophone	 sent	 light	 signals	 through	 the	
air,	relying	on	focused	beams	of	sunlight	and	reflections	from	mirrors.	
What	 prevented	 Bell’s	 Photophone	 from	 becoming	 as	 commonplace	
as	 the	 telephone	many	years	ago?
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23.1 WAVEFRONTS, RAYS, AND HUYGENS’S PRINCIPLE

Sources of Light

When we speak of light, we mean electromagnetic radiation that we can see with the 
unaided eye. Light is produced in many different ways. The filament of an incandes-
cent lightbulb emits light due to its high surface temperature; at T ≈ 3000 K, a 
significant fraction of the thermal radiation occurs in the visible range. The light 
emitted by a firefly is the result of a chemical reaction, not of a high surface tem-
perature (Fig. 23.1). A fluorescent substance—such as the one painted on the inside 
of a fluorescent lightbulb—emits visible light after absorbing ultraviolet radiation.

Most objects we see are not sources of light; we see them by the light they reflect 
or transmit. Some fraction of the light incident on an object is absorbed, some fraction 
is transmitted through the object, and the rest is reflected. The nature of the material 
and its surface determine the relative amounts of absorption, transmission, and reflec-
tion at a given wavelength. Grass appears green because it reflects wavelengths that 
the brain interprets as green. Terra-cotta roof tiles reflect wavelengths that the brain 
interprets as red-orange (Fig. 23.2).

Wavefronts and Rays

Since EM waves share many properties in common with all waves, we can use other 
waves (e.g., water waves) to aid visualization. A pebble dropped into a pond starts a 
disturbance that propagates radially outward in all directions on the surface of the 
water (Fig. 23.3). A wavefront is a set of points of equal phase (e.g., the points where 
the wave disturbance is maximum or the points where the wave disturbance is zero). 
Each of the circular wave crests in Fig. 23.3 can be considered a wavefront. A water 
wave with straight line wavefronts can be created by repeatedly dipping a long bar 
into water.

A ray points in the direction of propagation of a wave and is perpendicular to 
the wavefronts. For a circular wave, the rays are radii pointing outward from the point 
of origin of the wave (Fig. 23.4a); for a linear wave, the rays are a set of lines paral-
lel to one another, perpendicular to the wavefronts (Fig. 23.4b).

Whereas a surface water wave can have wavefronts that are circles or lines, a 
wave traveling in three dimensions, such as light, has wavefronts that are spheres, 
planes, or other surfaces. If a small source emits light equally in all directions, the 

Figure 23.1 The light flash 
of a firefly is caused by a 
chemical reaction between 
oxygen and the substance 
 luciferin. The reaction is 
 catalyzed by the enzyme 
 luciferase.
©tomosang/Getty Images

Figure 23.2 Reflectance—percentage of incident light that is reflected—as a function of wavelength for (a) grass and 
(b) some terra-cotta roof tiles.
Source: Reproduced from the ASTER Spectral Library through the courtesy of the Jet Propulsion Laboratory, California Institute of Technology, 
 Pasadena, California.
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wavefronts are spherical and the rays point radially outward (Fig. 23.4c). Far away 
from such a point source, the rays are nearly parallel to one another and the wavefronts 
nearly planar, so the wave can be represented as a plane wave (Fig. 23.4d). The Sun 
can be considered a point source when viewed from across the galaxy; even on Earth 
we can treat the sunlight falling on a small lens as a collection of nearly parallel rays.

Huygens’s Principle

Long before the development of electromagnetic theory, the Dutch scientist Christiaan 
Huygens (1629–1695) developed a geometric method for visualizing the behavior of 
light when it travels through a medium, passes from one medium to another, or 
is  reflected.

Figure 23.3 Concentric circular ripples travel on the surface of a pond outward 
from the point where a fish broke the water surface to catch a bug. Each of the cir-
cular wave crests is a wavefront. Rays are directed radially outward from the center 
and are perpendicular to the wavefronts.
©Thinkstock/Getty Images

Figure 23.4 (a) Rays and wavefronts for a wave traveling along a surface away from a disturbance, such as ripples on 
a pond (see Fig. 23.3). The rays show the wave propagating away from the disturbance in all directions; the wavefronts 
are circles centered on the disturbance. (b) Far away from the disturbance, the rays are nearly parallel and the wave-
fronts nearly straight lines. (c) Rays and wavefronts for a wave traveling in three dimensions away from a point source. 
The rays show the wave propagating away from the disturbance in all directions; the wavefronts are spherical surfaces 
centered on the disturbance. (d) Far from the point source, the rays are nearly parallel and the wavefronts are approxi-
mately planar.

Straight-line wavefronts
Circular wavefronts

Planar wavefronts

Rays Rays

Spherical wavefronts

(a) (b) (c) (d)
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Huygens’s Principle

At some time t, consider every point on a wavefront as a source of a new 
spherical wave. These wavelets move outward at the same speed as the original 
wave. At a later time t + Δt, each wavelet has a radius v Δt, where v is the speed 
of propagation of the wave. The wavefront at t + Δt is a surface tangent to the 
wavelets. (In situations where no reflection occurs, we ignore the backward-
moving wavefront.)

Geometric Optics

Geometric optics is an approximation to the behavior of light that applies only when 
interference and diffraction (see Section 11.9) are negligible. In order for diffraction 
to be negligible, the sizes of objects and apertures must be large relative to the wave-
length of the light. In the realm of geometric optics, the propagation of light can be 
analyzed using rays alone. In a homogeneous material, the rays are straight lines. At 
a boundary between two different materials, both reflection and transmission may 
occur. Huygens’s principle enables us to derive the laws that determine the directions 
of the reflected and transmitted rays.

diffraction. If a plane wavefront is large, then the wavefront 
at a later time is a plane with only a bit of curvature at the 
edges; for many purposes, the diffraction at the edges is 
negligible.

Conceptual Practice Problem 23.1 A Spherical 
Wave

Repeat Example 23.1 for the spherical light wave due to a 
point source.

Conceptual Example 23.1

Wavefronts from a Plane Wave

Apply Huygens’s principle to a plane wave. In other words, 
draw the wavelets from points on a planar wavefront and use 
them to sketch the wavefront at a later time.

Strategy Since we are limited to a two-dimensional sketch, 
we draw a wavefront of a plane wave as a straight line. We 
choose a few points on the wavefront as sources of wavelets. 
Since there is no backward-moving wave, the wavelets are 
hemispheres; we draw them as semicircles. Then we draw a 
line tangent to the wavelets to represent the surface tangent to 
the wavefronts; this surface is the new wavefront.

Solution and Discussion In Fig. 23.5a, we first draw a 
wavefront and four points. We imagine each point as a source 
of wavelets, so we draw four semicircles of equal radius, one 
centered on each of the four points. Finally, we draw a line 
tangent to the four semicircles; this line represents the wave-
front at a later time.

Why draw a straight line instead of a wavy line that 
follows the semicircles along their edges as in Fig. 23.5b? 
Remember that Huygens’s principle says that every point on 
the wavefront is a source of wavelets. We only draw wavelets 
from a few points, but we must remember that wavelets come 
from every point on the wavefront. Imagine drawing in more 
and more wavelets; the surface tangent to them would get 
less and less wavy, ultimately becoming a plane.

At the edges, the new wavefront is curved. This 
distortion of the wavefront at the edges is an example of 

Figure 23.5
(a) Application of Huygens’s principle to a plane wave. (b) This 
construction is not complete because it does not consider wavelets 
coming from every point on the wavefront.
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23.2 THE REFLECTION OF LIGHT

Specular and Diffuse Reflection

Reflection from a smooth surface is called specular reflection; rays incident at a given 
angle all reflect at the same angle (Fig. 23.6a). Reflection from a rough, irregular 
surface is called diffuse reflection (Fig. 23.6b). Diffuse reflection is more common in 
everyday life and enables us to see our surroundings. Specular reflection is more 
important in optical instruments.

The roughness of a surface is a matter of degree; what appears smooth to the 
unaided eye can be quite rough on the atomic scale. Thus, there is not a sharp distinc-
tion between diffuse and specular reflection. If the sizes of the pits and holes in the 
rough surface of Fig. 23.6b were small compared with the wavelengths of visible light, 
the reflection would be specular. When the sizes of the pits are much larger than the 
wavelengths of visible light, the reflection is diffuse. A polished glass surface looks 
smooth to visible light, because the wavelengths of visible light are thousands of times 
larger than the spacing between atoms in the glass. The same surface looks rough to 
x-rays with wavelengths smaller than the atomic spacing. The metal mesh in the door 
of a microwave oven reflects microwaves well because the size of the holes is small 
compared to the 12 cm wavelength of the microwaves.

The Laws of Reflection

Huygens’s principle illustrates how specular reflection occurs. In Fig. 23.7, plane wave-
fronts travel toward a polished metal surface. Every point on an incident wavefront 
serves as a source of secondary wavelets. Points on an incident wavefront just make the 
wavefront advance toward the surface. When a point on an incident wavefront contacts 
the metal, the wavelet propagates away from the surface—forming the reflected wave-
front—since light cannot penetrate the metal. Wavelets emitted from these points all 
travel at the same speed, but they are emitted at different times. At any given instant, a 
wavelet’s radius is proportional to the time interval since it was emitted.

Although Huygens’s principle is a geometric construction, the construction is 
validated by modern wave theory. We now know that the reflected wave is generated 
by charges at the surface that oscillate in response to the incoming electromagnetic 
wave; the oscillating charges emit EM waves, which add up to form the reflected wave.

Figure 23.6 (a) A beam of 
light reflecting from a mirror 
illustrates specular reflection. 
(b) Diffuse reflection occurs 
when the same laser reflects 
from a rough surface.

Incident
beam

Incident
beam Reflected raysReflected beam

Smooth surface Rough surface
(a) (b)

Figure 23.7 A plane wave 
strikes a metal surface. The 
wavelets emitted by each point 
on an incident wavefront when 
it reaches the surface form the 
reflected wave.
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The laws of reflection summarize the relationship between the directions of the 
incident and reflected rays. The laws are formulated in terms of the angles between 
a ray and a normal—a line perpendicular to the surface where the ray touches the 
surface. The angle of incidence (θi) is the angle between an incident ray and the 
normal (Fig. 23.8); the angle of reflection (θr) is the angle between the reflected ray 
and the normal. In Problem 6 you can go on to prove that

 θi = θr (23-1)

The other law of reflection says that the incident ray, the reflected ray, and the 
normal all lie in the same plane (the plane of incidence).

Laws of Reflection

1. The angle of incidence equals the angle of reflection.
2.  The reflected ray lies in the same plane as the incident ray and the normal 

to the surface at the point of incidence. The two rays are on opposite sides 
of the normal.

For diffuse reflection from rough surfaces, the angles of reflection for the incom-
ing rays are still equal to their respective angles of incidence. However, the normals 
to the rough surface are at random angles with respect to each other, so the reflected 
rays travel in many directions (see Fig. 23.6b).

Reflection and Transmission

So far we have considered only specular reflection from a totally reflecting surface 
such as polished metal. When light reaches a boundary between two transparent media, 
such as from air to glass, some of the light is reflected and some is transmitted into 
the new medium. The reflected light still follows the same laws of reflection (as long 
as the surface is smooth so that the reflection is specular). For normal incidence on 
an air-glass surface, only 4% of the incident intensity is reflected; 96% is transmitted.

23.3 THE REFRACTION OF LIGHT: SNELL’S LAW

In Section 22.4, we showed that when light passes from one transparent medium to 
another, the wavelength changes (unless the speeds of light in the two media are the 
same) while the frequency stays the same. In addition, Huygens’s principle helps us 
understand why light rays change direction as they cross the boundary between the 
two media—a phenomenon known as refraction.

We can use Huygens’s principle to understand how refraction occurs. Figure 23.9a 
shows a plane wave incident on a planar boundary between air and glass. In the air, 
a series of planar wavefronts moves toward the glass. The distance between the wave-
fronts is equal to one wavelength. Once the wavefront reaches the glass boundary and 
enters the new material, the wave slows down—light moves more slowly through glass 
than through air. Since the wavefront approaches the boundary at an angle to the 

Figure 23.8 The angles of 
incidence and of reflection are 
measured between the ray and 
the normal to the surface (not 
between the ray and the sur-
face). The incident ray, the 
reflected ray, and the normal 
all lie in the same plane.

Incident ray

Normal to
surface

θi
θr

θi = θr

Reflected ray
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normal, the portion of the wavefront that is still in air continues at the same merry 
pace while the part that has entered the glass moves more slowly. Figure 23.9b shows 
a Huygens’s construction for a wavefront that is partly in glass. The wavelets have 
smaller radii in glass since the speed of light is smaller in glass than in air.

Figure 23.9c shows two right triangles that are used to relate the angle of incidence 
θi to the angle of the transmitted ray (or angle of refraction) θt. The two angles labeled 
θi are equal because their sides are perpendicular, right side to right side and left side to 
left side. The two angles labeled θt are equal to each other for the same reason. The two 
triangles share the same hypotenuse (h). Using some trigonometry, we find that

 sin θi =
λi

h
  and  sin θt =

λt

h
 (23-2)

Eliminating h yields

 
sin θi

sin θt
=

λi

λt
 (23-3)

It is more convenient to rewrite this relationship in terms of the indices of 
refraction. Recall that when light passes from one transparent medium to another, the 
frequency f does not change (see Section 22.4). Since v = f  λ, λ is directly proportional 
to v. By definition [n = c/v, Eq. (22-4)], the index of refraction n is inversely propor-
tional to v. Therefore, λ is inversely proportional to n:

 
λi

λt
=

vi/f
vt/f

=
vi

vt
=

c/ni

c/nt
=

nt

ni
 (23-4)

By replacing λi/λt with nt/ni in Eq. (23-3) and cross multiplying, we obtain

Snell’s law
 ni sin θi = nt sin θt (23-5)

This law of refraction was discovered experimentally by Dutch professor Willebrord 
Snell (1580–1626). To determine the direction of the transmitted ray uniquely, two 
additional statements are needed:

Laws of Refraction

1. ni sin θi = nt sin θt, where the angles are measured from the normal.
2.  The incident ray, the transmitted ray, and the normal all lie in the same 

plane—the plane of incidence.
3.  The incident and transmitted rays are on opposite sides of the normal 

(Fig. 23.10).

Figure 23.9 (a) Wavefronts and rays at a glass-air boundary. The reflected wavefronts are omitted. Note that the 
wavefronts are closer together in glass because the wavelength is smaller. (b) Huygens’s construction for a wavefront 
partly in air and partly in glass. (c) Geometry for finding the angle of the transmitted ray.
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Figure 23.10 The incident 
ray, the reflected ray, the trans-
mitted ray, and the normal all 
lie in the same plane. All 
angles are measured with 
respect to the normal. Notice 
that the reflected and transmit-
ted rays are always on the 
opposite side of the normal 
from the incident ray.
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The index of refraction of a material depends on the temperature of the material 
and on the frequency of the light. Table 23.1 lists indices of refraction for several 
materials for yellow light with a wavelength in vacuum of 589.3 nm. (It is customary 
to specify the vacuum wavelength instead of the frequency.) In many circumstances 
the slight variation of n over the visible range of wavelengths can be ignored.

CHECKPOINT 23.3

A	glass	 (n	=	1.5)	 fish	 tank	 is	 filled	with	water	 (n	=	1.33).	When	a	 light	 ray	 in	
the	 glass	 is	 transmitted	 into	 the	 water,	 does	 it	 refract	 toward	 the	 normal	 or	
away	 from	 the	 normal?	 Explain.	 (Assume	 the	 light	 ray	 is	 not	 normal	 to	 the	
glass surface.)

EVERYDAY PHYSICS DEMO

Fill	a	clear	drinking	glass	with	water	and	 then	put	a	pencil	 in	 the	glass.	Look	
at	 the	 pencil	 from	 many	 different	 angles.	 Why	 does	 the	 pencil	 look	 as	 if	 it	
is bent?

EVERYDAY PHYSICS DEMO

Place	a	coin	at	the	far	edge	of	the	bottom	of	an	empty	mug.	Sit	in	a	position	
so	that	you	are	 just	unable	 to	see	the	coin.	Then,	without	moving	your	head,	
utter	 the	magic	 word	REFRACTION	 as	 you	 pour	 water	 carefully	 into	 the	mug	
on	 the	 near	 side;	 pour	 slowly	 so	 that	 the	 coin	 does	 not	 move.	 The	 coin	
becomes	visible	when	 the	mug	 is	 filled	with	water	 (Fig.	23.11).

Table 23.1 Indices of Refraction for λ = 589.3 nm in Vacuum  
(at 20°C Unless Otherwise Noted)

Material Index Material Index

Solids Liquids
Ice (at 0°C) 1.309 Water 1.333
Fluorite 1.434 Acetone 1.36
Fused quartz 1.458 Ethyl alcohol 1.361
Polystyrene 1.49 Carbon tetrachloride 1.461
Lucite 1.5 Glycerin 1.473
Plexiglas 1.51 Sugar solution (80%) 1.49
Crown glass 1.517 Benzene 1.501
Plate glass 1.523 Carbon disulfide 1.628
Sodium chloride 1.544 Methylene iodide 1.74
Light flint glass 1.58
Dense flint glass 1.655 Gases at 0°C, 1 atm
Sapphire 1.77
Zircon 1.923 Helium 1.000 036
Diamond 2.419 Ethyl ether 1.000 152
Titanium dioxide 2.9 Water vapor 1.000 250
Gallium phosphide 3.5 Dry air 1.000 293

Carbon dioxide 1.000 449
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Figure 23.11 (a) The coin at the bottom of the empty mug is not visible. (b) After the mug is filled with water, the 
coin is visible. (c) Refraction at the water-air boundary bends light rays from the coin so they enter the eye.
©Jill Braaten/McGraw-Hill Education

(a) (b)

When mug is 
empty, ray from 
edge of coin 
does not enter 
the eye.

Ray that enters
the eye from
edge of coin.

(c)

Side view

Example 23.2

Ray Traveling Through a Window Pane

A beam of light strikes one face of a window pane with an 
angle of incidence of 30.0°. The index of refraction of the 
glass is 1.52. The beam travels through the glass and emerges 
from a parallel face on the opposite side. Ignore reflections. 
(a) Find the angle of refraction for the ray inside the glass. 
(b) Show that the rays in air on either side of the glass (the 
incident and emerging rays) are parallel to each other.

Strategy First we draw a ray diagram. We are only con-
cerned with the rays transmitted at each boundary, so we 
omit reflected rays from the diagram. At each boundary we 
draw a normal, label the angles of incidence and refraction, 
and apply Snell’s law. When the ray passes from air 
(n = 1.00) to glass (n = 1.52), it bends closer to the normal: 
since n1 sin θ1 = n2 sin θ2, a larger n means a smaller θ. 
Likewise, when the ray passes from glass to air, it bends 
away from the normal.

Solution (a) Figure 23.12 is a ray diagram. At the first air-
glass boundary, Snell’s law yields

n1 sin θ1 = n2 sin θ2

sin θ2 =
n1

n2
 sin θ1 =

1.00
1.52

 sin 30.0° = 0.3289

The angle of refraction is
θ2 = sin−1 0.3289 = 19.2°

(b) At the second boundary, from glass to air, we apply 
Snell’s law again. Since the surfaces are parallel, the two 
normals are parallel. The angle of refraction at the first 
boundary and the angle of incidence at the second are alter-
nate interior angles (see Fig. A.8a), so the angle of incidence 
at the second boundary must be θ2.

n2 sin θ2 = n3 sin θ3

We do not need to solve for θ3 numerically. From the 
first boundary we know that n1 sin θ1 = n2 sin θ2; therefore, 
n1 sin θ1 = n3 sin θ3. Since n1 = n3, θ3 = θ1. The two rays—
emerging and incident—are parallel to each other.

Discussion Note that the emerging ray is parallel to the 
incident ray, but it is displaced (see the dashed line in 
Fig. 23.12). If the two glass surfaces were not parallel, then 
the two normals would not be parallel. Then the angle of 
incidence at the second boundary would not be equal to the 
angle of refraction at the first; the emerging ray would not be 
parallel to the incident ray.

Practice Problem 23.2 Fish Eye View

A fish is at rest beneath the still surface of a pond. If the Sun 
is 33° above the horizon, at what angle above the horizontal 
does the fish see the Sun? [Hint: Draw a diagram that 
includes the normal to the surface; be careful to correctly 
identify the angles of incidence and refraction.]

Figure 23.12
A ray of light travels through a window pane.
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Application: Mirages

Refraction of light in the air causes the mirages seen in the desert or on a hot road 
in summer (Fig. 23.13a). The hot ground warms the air near it, so light rays from 
the sky travel through warmer and warmer air as they approach the ground. Since the 
speed of light in air increases with increasing temperature, light travels faster in the 
hot air near the ground than in the cooler air above. The temperature change is grad-
ual, so there is no abrupt change in the index of refraction; instead of being bent 
abruptly, rays gradually curve upward (Fig. 23.13b).

The wavelets from points on a wavefront travel at different speeds; the radius of 
a wavelet closer to the ground is larger than that of a wavelet higher up (Fig. 23.13c). 
The brain interprets the rays coming upward into the eye as coming from the ground 
even though they really come from the sky. What may look like a body of water on 
the ground is actually an image of the blue sky overhead.

A superior mirage occurs when the layer of air near Earth’s surface is colder than 
the air above, due to a snowy field or to the ocean. A ship located just beyond the 
horizon can sometimes be seen because light rays from the ship are gradually bent 
downward (Fig. 23.14). Ships and lighthouses seem to float in the sky or appear much 
taller than they are. Refraction also allows the Sun to be seen before it actually rises 
above the horizon and after it is already below the horizon at sunrise and sunset.

Figure 23.13 (a) Mirage seen in the desert in Namibia. Note that the images are upside down. (b) A ray from the 
Sun bends upward into the eye of the observer. (c) The bottom of the wavefront moves faster than the top.
©Pete Turner/Getty Images
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Figure 23.14 (a) Superior mirage viewed from Thule Air Base in Greenland. (b) Sketch of the light rays that form a 
superior mirage of a house.
©Jack Stephens/Alamy
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Dispersion in a Prism

When natural white light enters a triangular prism, the light emerging from the far 
side of the prism is separated into a continuous spectrum of colors from red to violet 
(Fig. 23.15). The separation occurs because the prism is dispersive—that is, the speed 
of light in the prism depends on the frequency of the light (see Section 22.4).

Natural white light is a mixture of light at all the frequencies in the visible 
range. At the front surface of the prism, each light ray of a particular frequency 
refracts at an angle determined by the index of refraction of the prism at that fre-
quency. The index of refraction increases with increasing frequency, so it is small-
est for red and increases gradually until it is largest for violet. As a result, violet 
bends the most and red the least. Refraction occurs again as light leaves the prism. 
The geometry of the prism is such that the different colors are spread apart farther 
at the back surface.

Application: Rainbows

Rainbows are formed by the dispersion of light in water. A ray of sunlight that enters 
a raindrop is separated into the colors of the spectrum. At each air-water boundary 
there may be both reflection and refraction. The rays that contribute to a primary 
rainbow—the brightest and often the only one seen—pass into the raindrop, reflect 
off the back of the raindrop, and then are transmitted back into the air (Fig. 23.16a). 
Refraction occurs both where the ray enters the drop (air-water) and again when it 
leaves (water-air), just as for a prism. Since the index of refraction varies with 
frequency, sunlight is separated into the spectral colors. For relatively large water 
droplets, as occur in a gentle summer shower, the rays emerge with an angular sepa-
ration between red and violet of about 2° (Fig. 23.16b).

A person looking into the sky away from the Sun sees red light coming from 
raindrops higher in the sky and violet light coming from lower droplets (Fig. 23.16c). 
The rainbow is a circular arc that subtends an angle of 42° for red and 40° for violet, 
with the other colors falling in between.

In good conditions, a double rainbow can be seen. The secondary rainbow has a 
larger radius, is less intense, and has its colors reversed (Fig. 23.16d). It arises from 
rays that undergo two reflections inside the raindrop before emerging. The angles 
subtended by a secondary rainbow are 50.5° for red and 54° for violet.

23.4 TOTAL INTERNAL REFLECTION

According to Snell’s law, if a ray is transmitted from a slower medium into a faster 
medium (from a higher index of refraction to a lower one), the refracted ray bends away 
from the normal (Fig. 23.17, ray b). That is, the angle of refraction is greater than the 
angle of incidence. As the angle of incidence is increased, the angle of refraction even-
tually reaches 90° (Fig. 23.17, ray c). At 90°, the refracted ray is parallel to the surface. 
It isn’t transmitted into the faster medium; it just moves along the surface, and in fact 
carries no energy. The angle of incidence for which the angle of refraction is 90° is 
called the critical angle θc for the boundary between the two media. From Snell’s law,

 ni sin θc = nt sin 90° (23-6)

Critical angle

 θc = sin−1 
nt

ni
 (23-7)

Figure 23.15 Dispersion of 
white light by a prism. (See 
also the photo in Fig. 22.13.)



Figure 23.16 (a) Rays of sunlight that are incident on the upper half of a raindrop and reflect once inside the rain-
drop. Although the incident rays are parallel, the emerging rays are not. The pair of rays along the bottom edge shows 
where the emerging light has the highest intensity. Only the rays of maximum intensity are shown in parts (b) through 
(d). (b) Because the index of refraction of water depends on frequency, the angle at which the light leaves the drop 
depends on frequency. At each boundary, both reflection and transmission occur. Reflected or transmitted rays that do 
not contribute to the primary rainbow are omitted. (c) Light from many different raindrops contributes to the appear-
ance of a rainbow. Angles are exaggerated for clarity. (d) Light rays that reflect twice inside the raindrop form the 
secondary rainbow. Note that the order of the colors is reversed: now violet is highest and red is lowest.
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where the subscripts “i” and “t” refer to the media in which the incident and transmit-
ted rays travel. Since we are discussing an incident ray in a slower medium, ni > nt.

For an angle of incidence greater than θc, the refracted ray can’t bend away from 
the normal more than 90°; to do so would be reflection rather than refraction, and 
a  different law governs the angle of reflection. Mathematically, there is no angle 
whose sine is greater than 1 (= sin 90°), so it is impossible to satisfy Snell’s law if 
ni sin θi > nt (which is equivalent to saying θi > θc). If the angle of incidence is greater 
than θc, there cannot be a transmitted ray; if there is no ray transmitted into the faster 
medium, all the light must be reflected from the boundary (Fig. 23.17, ray d). This 
is called total internal reflection.

Total internal reflection
 No transmitted ray for θi ≥ θc (23-8)

Total internal reflection maximizes the intensity of the reflected wave because none 
of the energy is transmitted past the boundary.

Total reflection cannot occur when a ray in a faster medium hits a boundary with 
a slower medium. In that case the refracted ray bends toward the normal, so the angle 
of refraction is always less than the angle of incidence. Even at the largest possible 
angle of incidence, 90°, the angle of refraction is less than 90°. Total internal reflec-
tion can only occur when the incident ray is in the slower medium.

Figure 23.17 Partial reflec-
tion and total internal reflection 
at the upper surface of a rect-
angular glass block. The angles 
of incidence of rays a and b 
are less than the critical angle, 
ray c is incident at the critical 
angle θc, and ray d is incident 
at an angle greater than θc. 
(Angles exaggerated for clarity.)
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n = 1.50
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100%
reflection100%

reflection

c
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Example 23.3

Total Internal Reflection in a Triangular 
Glass Prism

A beam of light is incident on the triangular glass 
prism in air. What is the largest angle of incidence θi 
below the normal (as shown in Fig. 23.18) so that the 
beam undergoes total reflection from the back of the 
prism (the hypotenuse)? The prism has an index of 
refraction n = 1.50.

Strategy In this problem it is easiest to work 
backward. Total internal reflection occurs if the 

Figure 23.18
Example 23.3.

90° 45°

45° BackFront
θi

angle of incidence at the back of the prism is greater than or 
equal to the critical angle. We start by finding the critical 
angle and then work backward using geometry and Snell’s 
law to find the corresponding angle of incidence at the front 
of the prism.

Solution To find the critical angle from Snell’s law, we set 
the angle of refraction equal to 90°.

ni sin θc = na sin 90°

The incident ray is in the internal medium (glass). Therefore, 
ni = 1.50 and na = 1.00.

sin θc =
na

ni
 sin 90° =

1.00
1.50

× 1.00 = 0.667

θc = sin−1 0.667 = 41.8°

continued on next page
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Application: Total Internal Reflection in Periscopes, Cameras, 
Binoculars, and Diamonds

Optical instruments such as periscopes, single-lens reflex (SLR) cameras, binoculars, 
and telescopes often use prisms to reflect a beam of light. Figure 23.20a shows a 
simple periscope. Light is reflected through a 90° angle by each of two prisms; the net 
result is a displacement of the beam. A similar scheme is used in binoculars (Fig. 23.20b). 
In an SLR camera, one of the prisms is replaced by a movable mirror. When the mirror 
is in place, the light through the camera lens is diverted up to the viewfinder, so you 
can see what will appear on the image sensor. Depressing the shutter moves the mirror 
out of the way so the light falls onto the sensor instead. In binoculars and telescopes, 
erecting prisms are often used to turn an upside down image right side up.

An advantage of using prisms instead of mirrors in these applications is that 100% 
of the light is reflected. A typical mirror reflects only about 90%—remember that the 
oscillating electrons that produce the reflected wave are moving in a metal with some 
electrical resistance, so energy dissipation occurs.

Example 23.3 continued

In Fig. 23.19, we draw an enlarged ray diagram and label the 
angle of incidence at the back of the prism as θc. The angles 
of incidence and refraction at the front are labeled θi and θt; 
they are related through Snell’s law:

1.00 sin θi = 1.50 sin θt

What remains is to find the relationship between θt and θc. 
By drawing a line at the second boundary that is parallel to 
the normal at the first boundary, we can use alternate interior 
angles to label θt (see Fig. 23.19). The angle between the two 
normals is 45.0°, so

θt = 45.0° − θc = 45.0° − 41.8° = 3.2°

Then

sin θi = 1.50 sin θt = 1.50 × 0.05582 = 0.0837
θi = sin−1 0.0837 = 4.8°

Discussion For a beam incident below the normal at 
angles from 0 to 4.8°, total internal reflection occurs at the 
back. If a beam is incident at an angle greater than 4.8°, then 
the angle of incidence at the back is less than the critical 
angle, so transmission into the air occurs there. Conceptual 
Practice Problem 23.3 considers what happens to a beam 
incident above the normal.

If we had mixed up the two indices of refraction, we 
would have wound up trying to take the inverse sine of 1.5. 
That would be a clue that we made a mistake.

Conceptual Practice Problem 23.3 Ray Incident 
from Above the Normal

Draw a ray diagram for a beam of light incident on the prism 
of Fig. 23.18 from above the normal. Show that at any angle 
of incidence, the beam undergoes total internal reflection at 
the back of the prism.

Figure 23.19
Ray diagram to show the three angles θi, θt, and θc.

90°

45°

45°

Normal

NormalLine parallel to
the first normal

θt
θcθt

θi

Figure 23.20 (a) A peri-
scope uses two reflecting 
prisms to shift the beam of 
light. (b) In binoculars, the 
light undergoes total internal 
reflection twice in each prism. (a) (b)
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The brilliant sparkle of a diamond is due to total internal reflection. The cuts are 
made so that most of the light incident on the front faces is totally reflected several 
times inside the diamond and then re-emerges toward the viewer. A poorly cut dia-
mond allows too much light to emerge away from the viewer (Fig. 23.21).

Application: Fiber Optics

Total internal reflection is the principle behind fiber optics, a technology that has 
revolutionized both communications and medicine. At the center of an optical fiber 
is a transparent cylindrical core made of glass or plastic with a relatively high index 
of refraction (Fig. 23.22). The core may be as thin as a few micrometers in diameter—
quite a bit thinner than a human hair. Surrounding the core is a coating called the 
cladding, which is also transparent but has a lower index of refraction than the core. 
The “mismatch” in the indices of refraction is maximized so that the critical angle at 
the core-cladding boundary is as small as possible.

Light signals travel nearly parallel to the axis of the core. It is impossible to have 
light rays enter the fiber perfectly parallel to the axis of the fiber, so the rays eventu-
ally hit the cladding at a large angle of incidence. As long as the angle of incidence 
is greater than the critical angle, the ray is totally reflected back into the core; no 
light leaks out into the cladding. A ray may typically reflect from the cladding thou-
sands of times per meter of fiber, but since the ray is totally reflected each time, the 
signal can travel long distances—kilometers in some cases—before any appreciable 
signal loss occurs.

The fibers are flexible so they can be bent as necessary. The smaller the critical 
angle, the more tightly a fiber can be bent. If the fiber is kinked (bent too tightly), 
rays strike the boundary at less than the critical angle, resulting in dramatic signal 
loss as light passes into the cladding.

Optical fiber is far superior to copper wire in its capacity to carry information. 
The bandwidth of a single optical fiber is thousands of times greater than that of a 
twisted pair of copper wires. Electrical signals in copper wires also lose strength much 
more rapidly (due in part to the electrical resistance of the wires) and are susceptible 
to electrical interference. Signals in optical fibers can travel 100 km or more before 
a repeater is needed to boost the signal.

Figure 23.21 (a) This ray 
undergoes total internal reflec-
tion twice before re-emerging 
from a front face of the dia-
mond. (b) Due to a poor cut, a 
similar ray in this diamond 
would be incident on one of 
the back faces at less than the 
critical angle. The ray is mostly 
transmitted out the back of the 
diamond.

(b)(a)

Figure 23.22 (a) An optical 
fiber. (b) A bundle of optical 
fibers.
©Influx Productions/Getty Images
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Application: Endoscopy In medicine, bundles of optical fibers are at the heart of 
the endoscope (Fig. 23.23), which is fed through the nose, mouth, or rectum, or 
through a small incision, into the body. One bundle of fibers carries light into a body 
cavity or an organ and illuminates it; another bundle transmits an image back to the 
doctor for viewing.

The endoscope is not limited to diagnosis; it can be fitted with instruments 
enabling a physician to take tissue samples, perform surgery, cauterize blood vessels, 
or suction out debris. Surgery performed using an endoscope uses much smaller 
incisions than traditional surgery; as a result, recovery is much faster. A gallbladder 
operation that used to require an extended hospital stay can now be done on an 
outpatient basis in many cases.

Bell’s Photophone

Almost a century before the invention of fiber optics, Bell’s Photophone used light to 
carry a telephone signal. The Photophone projected the voice toward a mirror, which 
vibrated in response. A focused beam of sunlight reflecting from the mirror captured 
the vibrations. Other mirrors were used to reflect the signal as necessary until it was 
transformed back into sound at the receiving end. The light traveled in straight line 
paths through air between the mirrors.

Bell’s Photophone worked only intermittently. Many things could interfere with 
a transmission, including cloudy weather. With nothing to keep the beam from 
spreading out, it worked only over short distances. Not until the invention of fiber 
optics in the 1970s could light signals travel reliably over long distances without 
significant loss or interference.

23.5 POLARIZATION BY REFLECTION

In Section 22.7 we mentioned that unpolarized light is partially or totally polarized by 
reflection (see Fig. 22.27). For one particular angle of incidence, the reflected light is 
totally polarized perpendicular to the plane of incidence. This angle of incidence is 
called Brewster’s angle θ B, after the Scottish physicist David Brewster (1781–1868).

The reflected light is totally polarized when the reflected and transmitted rays are 
perpendicular to each other (Fig. 23.24). These rays are perpendicular if θB + θt = 90°. 
Since the two angles are complementary, sin θt = cos θB

 (see Fig. A.10). Then

 ni sin θB = nt sin θt = nt cos θB (23-9)

 
sin θB

cos θB
=

nt

ni
=  tan  θB (23-10)

Figure 23.23 An endoscope.
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Brewster’s angle

 θB = tan−1  
nt

ni
 (23-11)

The value of Brewster’s angle depends on the indices of refraction of the two media. 
Unlike the critical angle for total internal reflection, Brewster’s angle exists regardless 
of which index of refraction is larger.

Why Is the Reflected Light Totally Polarized When the Reflected and Trans-
mitted Rays Are Perpendicular? In Fig. 23.24b, the polarization components of 
the incident, transmitted, and reflected light are shown in different colors to help 
distinguish them. (These colors have nothing to do with the color of the light.) Oscil-
lating charges at the surface of the second medium radiate both the reflected light and 
the transmitted light. The oscillations are along the directions shown as green and 
yellow, respectively. A dipole radiates most strongly in directions perpendicular to its 
oscillation axis, so the “green” component in the reflected light is strong. Dipole 
radiation is weak in directions nearly parallel to the axis; along the axis, there is no 
radiation at all. Therefore, when the reflected and transmitted rays are perpendicular, 
the “yellow” oscillations of the dipoles don’t radiate in the direction of the reflected 
ray. At other angles of incidence, the reflected ray is not quite parallel to the “yellow” 
oscillations, so the reflected light has a weak polarization component in the plane of 
incidence and the wave is partially polarized.

CHECKPOINT 23.5

Polarized	sunglasses	are	useful	 for	cutting	out	 reflected	glare	due	 to	 reflection	
from	horizontal	surfaces.	 In	which	direction	should	 the	transmission	axis	of	 the	
sunglasses	be	oriented:	 vertically	or	horizontally?	Explain.

Figure 23.24 (a) Unpolarized light is partially or totally polarized by reflection. The stronger polarization component in 
the reflected light is perpendicular to the plane of incidence. (b) Ray diagram in the plane of incidence. The  polarization 
directions are shown in different colors merely to help distinguish them; these colors have nothing to do with the color of 
the light, which is the same as the color of the incident light. When light is incident at Brewster’s angle, the reflected and 
transmitted rays are perpendicular and the reflected light is totally polarized. The unpolarized incident light is represented 
as a mixture of two perpendicular polarization components, shown in green and red. In the transmitted light, the two 
 perpendicular polarizations are shown in green and yellow. Note that the polarization component in the plane of incidence 
( yellow) is not in the same direction as in the incident light (red); polarization components must be perpendicular to the 
ray since light is a transverse wave. For light incident at Brewster’s angle, the reflected ray is in the same direction as the 
“ yellow” polarization of the transmitted ray.

Unpolarized incident light Reflected light is 
partially or totally 

polarized

y

x
z

(a) (b)

Two polarization
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23.6 THE FORMATION OF IMAGES THROUGH  
REFLECTION OR REFRACTION

When you look into a mirror, you see an image of yourself. What do we mean by an 
image? It appears as if your identical twin were standing behind the mirror. If you 
were looking at an actual twin, each point on your twin would reflect light in many 
different directions. Some of that light enters your eye. In essence, what your eye does 
is trace rays backward to figure out where they come from. Your brain interprets light 
reflected from the mirror in the same way: all the light rays from any point on you 
(the object whose image is being formed) reflect from the mirror as if they came from 
a single point behind the mirror.

Ideally, in the formation of an image, there is a one-to-one correspondence of 
points on the object and points on the image. If rays from one point on the object 
seem to come from many different points, the overlap of light from different points 
would look blurred. (A real lens or mirror may deviate somewhat from ideal behavior, 
causing some degree of blurring in the image.)

Real and Virtual Images

There are two kinds of images. For the plane mirror, the light rays seem to come 
from a point behind the mirror, but we know there aren’t actually any light rays 
back there. In a virtual image, we trace light rays back to a point from which 
they appear to diverge, even though the rays do not actually come from that point. 
In a real image, light rays actually do pass through the image point. A camera 
lens forms a real image of the object being photographed on the image sensor. 
The light rays have to actually be there to expose the sensor! The rays from a 
point on the object must all reach the same pixel on the sensor or else the picture 
will come out blurry. If the sensor and the back of the camera were not there to 
interrupt the light rays, they would diverge from the image point (Fig. 23.25). An 
image must be real if it is projected onto a surface such as a sensor, a viewing 
screen, or the retina of the eye.

Projecting a real image onto a screen is only one way to view it. Real images 
can also be viewed directly (as virtual images are viewed) by looking through the 
lens or into the mirror. However, to view a real image, the viewer must be located 
beyond the image so that the rays from a point on the object all diverge from a 
point on the image. In Fig. 23.25, if the image sensor is removed, the image can 
be viewed by looking into the lens from points beyond the image (i.e., to the right 
of where the sensor is placed).

Finding an Image Using a Ray Diagram

∙ Draw two (or more) rays coming from a single off-axis point on the object 
toward whatever forms the image (usually a lens or mirror). Only two rays 
are necessary since they all map to the same image point.

∙ Trace the rays, applying the laws of reflection and refraction as needed, 
until they reach the observer.

∙ If the outgoing light rays intersect, the intersection point is the location of 
the real image.  

∙ If the outgoing rays do not intersect, extrapolate them backward along 
straight lines. The point where the extrapolated lines intersect is the location 
of the virtual image.

∙ To find the image of an extended object, find the images of two or more 
points on the object.
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Figure 23.26 (a) Formation of the image of the fish. (b) Two right triangles that share side s enable us to solve for 
the image depth d′ in terms of d.

t

Air na
Water nw

t

i

d'd d d'

s

s

t

i

Backward
extrapolation
of second ray

Second ray

(a) (b)

i

Belted
kingfisher

Fish

Image  
of fish

θ

θ

θ

θ θ

θ

above sees not only a ray coming straight up (θi = 0); it also 
sees rays at small but nonzero angles of incidence. We may 
be able to use small-angle approximations for these angles. 
However, for clarity in the ray diagram, we exaggerate the 
angles of incidence.

Solution In Fig. 23.26a we sketch a fish under water at a 
depth d. From a point on the fish, rays diverge toward the 
surface. At the surface they are bent away from the normal 
(since air has a lower index of refraction). The image point is 
found by tracing the refracted rays straight backward (dashed 
lines) to where they meet. We label the image depth d′. From 

Example 23.4

A Kingfisher Looking for Prey

A small fish is at a depth d below the surface of a still pond 
(Fig. 23.26). What is the apparent depth of the fish as viewed 
by a belted kingfisher—a bird that dives underwater to catch 
fish? Assume the kingfisher is directly above the fish. Use 
n = 4

3 for water.

Strategy The apparent depth is the depth of the image of 
the fish. Light rays coming from the fish toward the surface 
are refracted as they pass into the air. We choose a point on 
the fish and trace the rays from that point into the air; then 
we trace the refracted rays backward along straight lines 
until they meet at the image point. The kingfisher directly 

continued on next page

Figure 23.25 Formation of a 
real image by a camera lens. If 
the image sensor and the back 
of the camera were not there, 
the rays would continue on, 
diverging from the image point. 
A viewer could then see the 
real image directly.

Object

Lens

Viewer

Image
sensor Image
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the ray diagram, we see that d′ < d; the apparent depth is less 
than the actual depth.

Only two rays need be used to locate the image. To sim-
plify the math, one of them can be the ray normal to the 
surface. The other ray is incident on the water surface at 
angle θi. This ray leaves the water surface at angle θt, where

 nw sin θi = na sin θt (1)

To find d′, we use two right triangles (Fig. 23.26b) that 
share the same side s—the distance between the points at 
which the two chosen rays intersect the water surface. The 
angles θi and θt are known since they are alternate interior 
angles with the angles at the surface. From these triangles,

tan θi =
s

d
 and tan θt =

s

d′
For small angles, we can set tan θ ≈ sin θ (Appendix A.9). 
Then Eq. (1) becomes

nw 
s

d
= na 

s

d′

Example 23.4 continued

After eliminating s, we solve for the ratio d′/d:

apparent depth
actual depth

=
d′
d

=
na

nw
=

3
4

The apparent depth of the fish is 3
4 of the actual depth.

Discussion The result is valid only for small angles of 
incidence—that is, for a viewer directly above the fish. The 
apparent depth depends on the angle at which the fish is 
viewed.

Practice Problem 23.4 Evading the Predator

Suppose the fish looks upward and sees the kingfisher. If the 
kingfisher is a height h above the surface of the pond, what 
is its apparent height h′ as viewed by the fish?

CHECKPOINT 23.6

In	Figure	23.26,	 is	 the	 image	of	 the	 fish	 real	or	 virtual?	Explain.

23.7 PLANE MIRRORS

A shiny metal surface is a good reflector of light. An ordinary mirror is back-silvered; 
that is, a thin layer of shiny metal is applied to the back of a flat piece of glass. A 
back-silvered mirror actually produces two reflections: a faint one, seldom even 
noticed, from the front surface of the glass and a strong one from the metal. Front-
silvered mirrors are used in precision work, since they produce only one reflection; 
they are not practical for everyday use because the metal coating is easily scratched. 
If we ignore the faint reflection from the glass, then back-silvered mirrors are treated 
the same as front-silvered mirrors.

Light reflected from a mirror follows the laws of reflection discussed in Section 23.2. 
Figure 23.27a shows a point source of light located in front of a plane mirror; an observer 
looks into the mirror. If the reflected rays are extrapolated backward through the mirror, 
they all intersect at one point, which is the image of the point source. Using any two rays 
and some geometry, you can show (Problem 45) that

For a plane mirror, a point source and its image are at the same distance from 
the mirror (on opposite sides); both lie on the same normal line.

The rays only appear to originate at the image behind the mirror; no rays travel 
through the mirror. Therefore, the image is virtual.

We treat an extended object in front of a plane mirror as a set of point sources 
(the points on the surface of the object). In Fig. 23.27b, a pencil is in front of a mir-
ror. To sketch the image, we first construct normals to the mirror from several points 
on the pencil. Then each image point is placed a distance behind the mirror equal to 
the distance from the mirror to the corresponding point on the object.
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Figure 23.27 (a) A plane mirror forms a virtual image of a point source. The source and image are equidistant from 
the mirror and lie on the same normal line. (b) Sketching the image of a pencil formed by a plane mirror.
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Conceptual Example 23.5

Mirror Length for a Full-Length Image

Grant is carrying his niece Dana on his shoulders 
(Fig. 23.28). What is the minimum vertical length of a plane 
mirror in which Grant can see a full image (from his toes to 
the top of Dana’s head)? How should this minimum-length 
mirror be placed on the wall?

Strategy Ray diagrams are essential in geometric optics. 
A ray diagram is most helpful if we carefully decide which 
rays are most important to the solution. Here, we want to 
make sure Grant can see the images of two particular points: 
his toes and the top of Dana’s head. If he can see those two 
points, he can see everything between them. In order for 
Grant to see the image of a point, a ray of light from that 
point must reflect from the mirror and enter Grant’s eye.

Solution and Discussion After drawing Grant, Dana, 
and the mirror (see Fig. 23.28), we want to draw a ray from 
Grant’s toes that strikes the mirror and is reflected to his eye. 
The line DH is a normal to the mirror surface. Since the 
angle of incidence is equal to the angle of reflection, the 

triangles CHD and EHD are congruent and CD = DE = GH. 
Therefore,

GH = 1
2 CE

Similarly, we draw a ray from the top of Dana’s head to the 
mirror that is reflected into Grant’s eye and find that

FG = 1
2 AC

The length of the mirror is

FH = FG + GH = 1
2(AC + CE) = 1

2 AE

Therefore, the length of the mirror must be one half the dis-
tance from Grant’s toes to Dana’s head.

The minimum-length mirror only allows a full-length 
view if it is hung properly. The top of the mirror (F ) must be 
a distance AB below the top of Dana’s head. A full-length 
mirror is not necessary to get a full-length view. Extending 
the mirror all the way to the floor is of no use; the bottom of 
the mirror only needs to be halfway between the floor and the 
eyes of the shortest person who uses the mirror. Note that 
the distance s between Grant and the mirror has no effect on 
the result. That is, you need the same height mirror whether 
you’re up close to it or farther back.

Practice Problem 23.5 Two Sisters with One Mirror

Sarah’s eyes are 1.72 m above the floor when she is wearing 
her dress shoes, and the top of her head is 1.84 m above the 
floor. Sarah has a mirror that is 0.92 m in length, hung on the 
wall so she can just see a full-length image of herself. Sup-
pose Sarah’s sister Michaela is 1.62 m tall and her eyes are 
1.52 m above the floor. If Michaela uses Sarah’s mirror with-
out moving it, can she see a full-length image of herself? 
Draw a ray diagram to illustrate.

Figure 23.28
Conceptual Example 23.5.
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EVERYDAY PHYSICS DEMO

You	 can	 demonstrate	 multiple	 images	 using	 two	 plane	 mirrors.	 Set	 up	 two	
plane	mirrors	at	a	90°	angle	on	a	table	and	place	an	object	with	 lettering	on	
it	 between	 them.	 You	 should	 see	 three	 images.	 The	 image	 straight	 back	 is	
due	to	rays	that	reflect	twice—once	from	each	mirror.	 In	which	of	the	images	
is	 the	 lettering	 reversed?	 (See	 Conceptual	 Question	 4	 for	 some	 insight	 into	
the	apparent	 left-right	 reversal.)

To	 explore	 further,	 gradually	 reduce	 the	 angle	 between	 the	 mirrors	
(Fig. 23.29).

23.8 SPHERICAL MIRRORS

Convex Spherical Mirror

In a spherical mirror, the reflecting surface is a section of a sphere. A convex mirror 
curves away from the viewer; its center of curvature is behind the mirror (Fig. 23.30). 
An extended radius drawn from the center of curvature through the vertex—the center 
of the surface of the mirror—is the principal axis of the mirror.

In Fig. 23.31a, a ray parallel to the principal axis is incident on the surface of a 
convex mirror at point A, which is close to the vertex V. (In the diagram, the distance 
between points A and V is exaggerated for clarity.) A radial line from the center of 
curvature through point A is normal to the mirror. The angle of incidence is equal to 
the angle of reflection: θi = θr = θ.

By alternate interior angles, we know that
 ∠ACF = θ (23-12)
Triangle AFC is isosceles (see Fig. A.6) since it has two equal angles; therefore,
 AF = FC (23-13)
Since the incident ray is close to the principal axis, θ is small. As a result,
 AF + FC ≈ R  and  VF ≈ AF ≈ 1

2R (23-14)
where AC = VC = R is the radius of curvature of the mirror. (The notation AF means the 
length of the line segment from A to F.) Note that this derivation is true for any angle θ as 
long as it is sufficiently small. Thus, all rays parallel to the axis that are incident near the 
vertex are reflected by the convex mirror so that they appear to originate from point F, 
which is called the focal point of the mirror (Fig. 23.31b). A convex mirror is also called 
a diverging mirror since the reflection of a set of parallel rays is a set of diverging rays.

Focal Point of a Convex Mirror

The focal point of a convex mirror is on the principal axis a distance 1
2R behind 

the mirror.

Figure 23.31 (a) Location of the focal point (F) of a convex mirror. (b) Parallel rays reflected from a convex mirror 
appear to be coming from the focal point.
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Figure 23.30 A convex mir-
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Figure 23.29 Two plane 
 mirrors at an angle of 72° form 
four images.
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To find the image of an object placed in front of the mirror, we draw a few rays. 
Figure 23.32 shows an object in front of a convex mirror. Four rays are drawn from 
the point at the top of the object to the mirror surface. One ray (shown in green) is 
parallel to the principal axis; it is reflected as if it were coming from the focal point. 
Another ray (red) is headed along a radius toward the center of curvature C; it reflects 
back on itself since the angle of incidence is zero. A third ray (blue) heads directly 
toward the focal point F. Since a ray parallel to the axis is reflected as if it came from 
F, a ray going toward F is reflected parallel to the axis. Why? Because the law of 
reflection is reversible; we can reverse the direction of a ray and the law of reflection 
still holds. A fourth ray (brown), incident on the mirror at its vertex, reflects making 
an equal angle with the axis (since the axis is normal to the mirror).

These four reflected rays—as well as other reflected rays from the top of the 
object—meet at one point when extended behind the mirror. That is the location of 
the top of the image. The bottom of the image lies on the principal axis because the 
bottom of the object is on the principal axis; rays along the principal axis are radial 
rays, so they reflect back on themselves at the surface of the mirror. From the ray 
diagram, we can conclude that the image is upright, virtual, smaller than the object, 
and closer to the mirror than the object. Note that the image is not at the focal point; 
the rays coming from a point on the object are not all parallel to the principal axis. 
If the object were far from the mirror, then the rays from any point would be nearly 
parallel to one another. Rays from a point on the principal axis would meet at the 
focal point; rays from a point not on the axis would meet at a point in the focal 
plane—the plane perpendicular to the axis passing through the focal point.

The four rays we chose to draw are called the principal rays only because they 
are easier to draw than other rays. Principal rays are easier to draw, but they are not 
more important than other rays in forming an image. Any two of them can be drawn 
to locate an image, but it is wise to draw a third as a check.

A convex mirror enables one to see a larger area than the same size plane mirror 
(Fig. 23.33). The outward curvature of the convex mirror enables the viewer to see 
light rays coming from larger angles. Convex mirrors are sometimes used in stores to 

Figure 23.32 Using the principal rays to locate the image formed by a convex mirror. The rays are shown in differ-
ent colors merely to help distinguish them; the actual color of the light along each ray is the same—whatever the color 
of the top of the object is.
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1. A ray parallel to the principal axis is reflected as if it came 
from a focal point.
2. A ray along a radius is reflected back on itself.
3. A ray directed toward the focal point is reflected parallel 
to the principal axis.
4. A ray incident on the vertex of the mirror reflects at an equal 
angle to the axis.

Principal rays for convex mirrors

Figure 23.33 A convex 
 mirror provides a larger field 
of view than a plane mirror 
would.
©Todd Gipstein/Getty Images
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help clerks watch for shoplifting. The passenger’s side mirror in most cars is convex 
to enable the driver to see farther out to the side.

Concave Spherical Mirror

A concave mirror curves toward the viewer; its center of curvature is in front of the 
mirror. A concave mirror is also called a converging mirror since it makes parallel 
rays converge to a point (Fig. 23.34). In Problem 57 you can show that rays parallel 
to the mirror’s principal axis pass through the focal point F at a distance R/2 from 
the vertex, assuming the angles of incidence are small.

Focal Point of a Concave Mirror

The focal point of a concave mirror is on the principal axis a distance 1
2R in front 

of the mirror.

The location of the image of an object placed in front of a concave mirror can 
be found by drawing two or more rays. As for the convex mirror, there are four prin-
cipal rays—rays that are easiest to draw. The principal rays are similar to those for a 
convex mirror, the difference being that the focal point is in front of a concave mirror.

Figure 23.35 illustrates the use of principal rays to find an image. In this case, 
the object is between the focal point and the center of curvature. The image is real 
because it is in front of the mirror; the principal rays actually do pass through the 
image point. Depending on the location of the object, a concave mirror can form either 
real or virtual images. The images can be larger or smaller than the object.

Applications: Cosmetic Mirrors and Automobile Headlights Mirrors designed 
for shaving or for applying cosmetics are often concave in order to form a magnified 
image (Fig. 23.36a). Dentists use concave mirrors for the same reason. Whenever an 
object is within the focal point of a concave mirror, the image is virtual, upright, and 
larger than the object (Fig. 23.36b).

In automobile headlights, the lightbulb filament is placed at the focal point of a 
concave mirror. Light rays coming from the filament are reflected out in a beam of 
parallel rays. (Sometimes the shape of the mirror is parabolic rather than spherical; a 
parabolic mirror reflects all the rays from the focal point into a parallel beam, not 
just those close to the principal axis.)

Figure 23.34 Reflection of 
rays parallel to the principal 
axis of a concave mirror. Point 
C is the mirror’s center of 
curvature and F is the focal 
point. Both points are in front 
of the mirror, in contrast to 
the convex mirror.

Principal
axis

C VF

R

Figure 23.35 An object between the focal point and the center of curvature of a concave mirror forms a real image 
that is inverted and larger than the object. (The angles and the curvature of the mirror are exaggerated for clarity.)

Image

C F

1. A ray parallel to the principal axis is reflected through the
focal point.
2. A ray along a radius is reflected back on itself.
3. A ray along the direction from the focal point to the mirror
is reflected parallel to the principal axis.
4. A ray incident on the vertex of the mirror reflects at an equal
angle to the axis.

Principal rays for concave mirrors
Object



 23.8 SPHERICAL	MIRRORS 897

Figure 23.36 (a) Putting on makeup is made easier because the image is enlarged. (b) Formation of a virtual image 
when the object is between the focal point and the concave mirror’s surface.
©Martyn F. Chillmaid/Science Source

(a)

Object Image

(b)

C F

Example 23.6

Scale Diagram for a Concave Mirror

Make a scale diagram showing a 1.5 cm tall object located 
10.0 cm in front of a concave mirror with a radius of cur-
vature of 8.0 cm. Locate the image graphically and estimate 
its position and height.

Strategy For a scale diagram, we should use a piece of 
graph paper and choose a scale that fits on the paper—
although sometimes it is helpful to make a rough sketch first 
to get some idea of where the image is. Drawing two princi-
pal rays enables us to find the image. Using the third princi-
pal ray is a good check. Since the mirror is concave, the center 
of curvature and the focal point are both in front of the mirror.

Solution To start, we draw the mirror and the principal 
axis; then we mark the focal point and center of curvature at 
the correct distances from the vertex (Fig. 23.37). The green 
ray goes from the top of the object to the mirror parallel to the 
principal axis. It is reflected by the mirror so that it passes 
through the focal point. The blue ray travels from the tip of the 
object through the focal point F. This ray is reflected from the 
mirror along a line parallel to the principal axis. The intersec-
tion of the two rays determines the location of the tip of the 
image. By measuring the image on the graph paper, we find 
that the image is 6.7 cm from the mirror and is 1.0 cm high.

Discussion As a check, the red ray travels through the 
center of curvature along a radius. Assuming the mirror 

extends far enough to reflect this ray, it strikes the mirror per-
pendicular to the surface since it is on a radial line. The re-
flected ray travels back along the same radial line and intersects 
the other two rays at the tip of the image, verifying our result.

Practice Problem 23.6 Another Graphical Solution

Draw a scale diagram to locate the image of an object 1.5 cm 
tall and 6.0 cm in front of the same mirror. Estimate the posi-
tion and height of the image. Is it real or virtual? [Hint: Draw 
a rough sketch first.]

Figure 23.37
Example 23.6.

Object

1 cm

1 cm

C F

Image

Transverse Magnification

The image formed by a mirror or a lens is, in general, not the same size as the object. 
It may also be inverted (upside down). The transverse magnification m (also called 
the lateral or linear magnification) is a ratio that gives both the relative size of the 
image—in any direction perpendicular to the principal axis—and its orientation. The 
magnitude of m is the ratio of the image size to the object size:

 ∣m∣ =
image size
object size

 (23-15)
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If ∣m∣ < 1, the image is smaller than the object. The sign of m is determined by the 
orientation of the image. For an inverted (upside down) image, m < 0; for an upright 
(right side up) image, m > 0.

Let h be the height of the object (really the displacement of the top of the object 
from the axis) and h′ be the height of the image. If the image is inverted, h′ and h 
have opposite signs. Then the definition of the transverse magnification is

 m =
h′
h

 (23-16)

Using Fig. 23.38, we can find a relationship between the magnification and p and 
q, the object distance and the image distance. Note that p and q are measured along 
the principal axis to the vertex of the mirror. The two right triangles ΔPAV and ΔQBV 
are similar (see Fig. A.7), so

 
h

p
=

−h′
q

 (23-17)

Why the negative sign? In this case, if h is positive, then h′ is negative, since the image 
is on the opposite side of the axis from the object. The magnification is then

Magnification

 m =
h′
h

= − 

q

p
 (23-18)

Although in Fig 23.38 the object is beyond the center of curvature, Eq. (23-18) is true 
regardless of where the object is placed. It applies to any spherical mirror, concave or 
convex (see Problem 56), as well as to plane mirrors and even to lenses.

CHECKPOINT 23.8

A	plane	mirror	 forms	an	 image	of	an	object	 in	 front	of	 it.	 Is	 the	 image	 real	or	
virtual?	What	 is	 the	 transverse	magnification	 (m)?

The Mirror Equation

From Fig. 23.39, we can derive an equation relating the object distance p, the image 
distance q, and the focal length f = 1

2R (the distance from the focal point to the mir-
ror). Note that p, q, and f are all measured along the principal axis to the vertex V of 
the mirror. Triangles ΔPAC and ΔQBC are similar. Note that AC = p − R and 
BC = R − q, where R is the radius of curvature. Then

 
  PA  

 AC 

=
 QB 

BC
    or    

h

p − R
=

−h′
R − q

 (23-19)

Rearranging yields

 
h′
h

= − 

R − q

p − R
 (23-20)

Since h′/h is the magnification,

 
h′
h

= − 

q

p
= − 

R − q

p − R
 (23-21)

Substituting f = R/2, cross multiplying, and dividing by p, q, and f (Problem 58), we 
obtain the mirror equation.

Mirror equation

 
1
p

+
1
q

=
1
f

 (23-22)

Figure 23.38 Right triangles 
ΔPAV and ΔQBV are similar 
because the angle of incidence 
for the ray equals the angle of 
reflection.

VA

h

h'

P

B

Q

q
p

C

Figure 23.39 Similar trian-
gles ΔPAC and ΔQBC used to 
derive the lens equation.

VA C

p
R

q

F
B

Q

h

P
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We derived the magnification and mirror equations for a concave mirror forming 
a real image, but the equations apply as well to convex mirrors and to virtual images 
if we use the sign conventions for q and f listed in Table 23.2. Note that q is negative 
when the image is behind the mirror (i.e., the image is virtual) and f is negative when 
the focal point is behind the mirror (i.e., the mirror is diverging).

The magnification equation and the sign convention for q imply that real images 
of real objects are always inverted (if both p and q are positive, m is negative); virtual 
images of real objects are always upright (if p is positive and q is negative, m is posi-
tive). The same rule can be established by drawing ray diagrams. A real image is always 
in front of the mirror (where the light rays are); a virtual image is behind the mirror.

If an object is far from the mirror (p = ∞), the mirror equation gives q = f. Rays 
coming from a faraway object are nearly parallel to one another. After reflecting from 
the mirror, the rays converge at the focal point for a concave mirror or appear to 
diverge from the focal point for a convex mirror. If the faraway object is not on the 
principal axis, the image is formed above or below the focal point (Fig. 23.40).

Table 23.2 Sign Conventions for Mirrors

Quantity When Positive (+) When Negative (−)

Object distance p Real object* Virtual object*
Image distance q Real image Virtual image
Focal length f Converging mirror  

 (concave): f = 1
2R

Diverging mirror  
 (convex): f = −1

2R

Magnification m 
 and image height h′ 

Upright image Inverted image

*In Chapter 23, we consider only real objects. Chapter 24 discusses multiple-lens systems, in which 
virtual objects are possible.

Figure 23.40 A faraway 
object above the principal axis 
forms an image at q =  f.

F

f

Solving for the image distance, we find

q = −mp = −1
3 × 30.0 cm = −10.0 cm

Since q is negative, the image is virtual.

(b) Now we can use the mirror equation to find the focal 
length:

1
f

=
1
p

+
1
q

=
q + p

pq

f =
pq

q + p

=
30.0 cm ×  (−10.0 cm)

−10.0 cm + 30.0 cm

= −15.0 cm

(c) Since the focal length is negative, the mirror is convex.

Example 23.7

Passenger’s Side Mirror

An object is located 30.0 cm from a passenger’s side mirror. 
The image formed is upright and one third the size of the 
object. (a) Is the image real or virtual? (b) What is the focal 
length of the mirror? (c) Is the mirror concave or convex?

Strategy The magnitude of the magnification is the ratio 
of the image size to the object size, so ∣m∣ = 1

3. The sign of 
the magnification is positive for an upright image and nega-
tive for an inverted image. Therefore, we know that m = +1

3. 
The object distance is p = 30.0 cm. The magnification is also 
related to the object and image distances, so we can find q. 
The sign of q indicates whether the image is real or virtual. 
Then the mirror equation can be used to find the focal length 
of the mirror. The sign of the focal length tells us whether 
the mirror is concave or convex.

Solution (a) The magnification is related to the image and 
object distances:

 m = −  

q

p
 (23-18)

continued on next page
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EVERYDAY PHYSICS DEMO

Look	at	each	side	of	a	shiny	metal	spoon.	 (Stainless	steel	gets	dull	with	use;	
the	newer	 the	spoon	the	better.	A	polished	silver	spoon	would	be	 ideal.)	One	
side	is	a	convex	mirror;	the	other	is	a	concave	mirror.	For	each,	notice	whether	
your	 image	 is	 upright	 or	 inverted	 and	 enlarged	 or	 diminished	 in	 size.	 Next,	
decide	 whether	 each	 image	 is	 real	 or	 virtual.	 Which	 side	 gives	 you	 a	 larger	
field	of	 view	 (in	other	words,	 enables	 you	 to	 see	a	bigger	part	of	 the	 room)?	
Try	 holding	 the	 spoon	 at	 different	 distances	 to	 see	 what	 changes.	 (Keep	 in	
mind	 that	 the	 focal	 length	 of	 the	 spoon	 is	 small.	 If	 you	 hold	 the	 spoon	 less	
than	a	focal	 length	from	your	eye,	you	won’t	be	able	to	see	clearly—your	eye	
cannot	 focus	 at	 such	 a	 small	 distance.	 Thus,	 it	 is	 not	 possible	 to	 get	 close	
enough	 to	 the	concave	side	 to	see	a	 virtual	 image.)

23.9 THIN LENSES

Whereas mirrors form images through reflection, lenses form images through 
refraction. In a spherical lens, each of the two surfaces is a section of a sphere. The 
principal axis of a lens passes through the centers of curvature of the lens surfaces. 
The optical center of a lens is a point on the principal axis through which rays pass 
without changing direction.

We can understand the behavior of a lens by regarding it as an assembly of prisms 
(Fig. 23.42). The angle of deviation of the ray—the angle that the ray emerging from 
the prism makes with the incident ray—is proportional to the angle between the two 
faces of the prism (see Fig. 23.43 and Problem 18). The two faces of a lens are parallel 
where they intersect the principal axis. A ray striking the lens at the center emerges 
in the same direction as the incident ray since the refraction of an entering ray is 
undone as the ray emerges. However, the ray is displaced; it is not along the same 
line as the incident ray. As long as we consider only thin lenses—lenses whose 
thickness is small compared with the focal length—the displacement is negligible; the 
ray passes straight through the lens.

Example 23.7 continued

Discussion As expected, the passenger’s side mirror is 
convex. With all the distances known, we can sketch a ray 
diagram (Fig. 23.41) to check the result.

Practice Problem 23.7 A Spherical Mirror of 
Unknown Type

An object is in front of a spherical mirror; the image of the 
object is upright and twice the size of the object, and it 
appears to be 12.0 cm behind the mirror. What is the object 
distance, what is the focal length of the mirror, and what 
type of mirror is it (convex or concave)?

Figure 23.41
Ray diagram for convex mirror (Example 23.7).

15.0 cm15.0 cm

30.0 cm

h'

h

F C

Image

Object

Convex
mirror

10.0
cm

Figure 23.42 (a) and 
(b) Lenses made by 
 combining prism sections.
©Monica Schroeder/Science Source

F

F

(a)

(b)

Diverging lens

Converging lens

Principal
focal point

Principal
focal point

Figure 23.43 The angle of deviation δ increases as the 
angle β between the two faces increases. For small β, δ is 
proportional to β.α α

β

δ
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The curved surfaces of a lens mean that the angle β between the two faces 
gradually increases as we move away from the center. Thus, the angle of deviation of 
a ray increases as the point where it strikes the lens moves away from the center. We 
restrict our consideration to paraxial rays: rays that strike the lens close to the 
principal axis (so that β is small) and do so at a small angle of incidence. For paraxial 
rays and thin lenses, a ray incident on the lens at a distance d from the center has an 
angle of deviation δ that is proportional to d (Fig. 23.44; see Problem 97).

Lenses are classified as diverging or converging, depending on what happens to 
the rays as they pass through the lens. A diverging lens bends light rays outward, 
away from the principal axis. A converging lens bends light rays inward, toward the 
principal axis (Fig. 23.45a). If the incident rays are already diverging, a converging 
lens may not be able to make them converge; it may only make them diverge less 
(Fig. 23.45b). Lenses take many possible shapes (Fig. 23.46); the two surfaces may 
have different radii of curvature. Note that converging lenses are thickest at the center 
and diverging lenses are thinnest at the center, assuming the index of refraction of the 
lens is greater than that of the surrounding medium.

Focal Points and Principal Rays

Unlike a spherical mirror, a lens has two focal points. The distance between each 
focal point and the optical center is the magnitude of the focal length of the lens. 
For a diverging lens, incident rays parallel to the principal axis are refracted by the 
lens so that they appear to diverge from the principal focal point, which is before 
the lens (see Fig. 23.42a). For a converging lens, incident rays parallel to the axis 
are refracted by the lens so they converge to the principal focal point past the lens 
(Fig. 23.42b).

Focal Length of a Lens

The focal length of a lens with spherical surfaces depends on four quantities: the 
radii of curvature of the two surfaces and the indices of refraction of the lens and 
of the surrounding medium (usually, but not necessarily, air).

Two rays suffice to locate the image formed by a thin lens, but a third ray is use-
ful as a check. The three rays that are generally the easiest to draw are called the 

Figure 23.44 The angle of 
deviation of a paraxial ray 
striking the lens a distance d 
from the principal axis is pro-
portional to d. To simplify ray 
diagrams, we draw rays as if 
they bend at a vertical line 
through the optical center 
rather than bending at each of 
the two lens surfaces.

Principal
axis

Optical center

Lens

d
δ

Figure 23.45 (a) When 
diverging rays strike a converg-
ing lens, the lens bends them 
inward. (b) If they are 
diverging too rapidly, the lens 
may not be able to bend them 
enough to make them converge. 
In that case, the rays diverge 
less  rapidly after they leave the 
lens.

(a) (b)

Figure 23.46 Shapes of 
some diverging and converging 
lenses. Diverging lenses are 
thinnest at the center; 
converging lenses are thickest 
at the center.

Converging lenses

Double
concave

Plano
concave

Concave
meniscus

Double
convex

Plano
convex

Convex
meniscus

Diverging lenses
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principal rays (Table 23.3). (The “principal” rays are not more important than other 
rays that form the image. They are just rays that are easier to draw.) The third princi-
pal ray makes use of the secondary focal point, which is on the opposite side of the 
lens from the principal focal point, and equally far from the lens. The behavior of ray 
3 can be understood by reversing the direction of all the rays, which also interchanges 
the two focal points. Figures 23.47 and 23.48 illustrate how to draw the principal rays.

Table 23.3 Principal Rays and Principal Focal Points for Thin Lenses

Principal Ray/Focal Point Converging Lens Diverging Lens

Ray 1. An incident ray parallel to the 
principal axis

Passes through the principal focal point Appears to come from the principal focal 
point

Ray 2. A ray incident at the optical center Passes straight through the lens Passes straight through the lens
Ray 3. A ray that emerges parallel to the 

principal axis
Appears to come from the secondary 

focal point
Appears to have been heading for the 

secondary focal point
Location of the principal focal point Past the lens Before the lens

Figure 23.47 The three principal rays for a converging lens. (a) For an object distance greater than the focal length, 
the image is real. After passing through the lens, rays coming from a point on the object converge to a point on the real 
image. (b) For an object distance less than the focal length, the image is virtual. After passing through the lens, rays 
coming from a point on the object never converge to a point, but when they are traced back, they appear to be coming 
from a single point on the virtual image.

1. A ray parallel to the principal axis emerges from the lens headed toward the principal focal point.
2. A ray through the center of the lens passes through undeflected.
3. A ray coming from the secondary focal point emerges from the lens parallel to the principal axis.

Principal rays for converging lenses

(a)

Object

Real
image

Ray 1
Ray 1

Ray 2

Ray 3
Ray 3

Converging
lens

Principal
focal point

Secondary
focal point

ff

(b)

Secondary
focal point

Object

Ray 1

Ray 2

Ray 3

Converging
lens

Principal
focal point

Virtual
image

ff

Figure 23.48 The three principal rays for a diverging lens forming a virtual image.

Object

Ray 1
Ray 1

Ray 2

Ray 3

Diverging
lens

Principal
focal point

Secondary
focal point

Virtual
image

∣ f ∣∣ f ∣

1. A ray parallel to the principal axis emerges from the lens 
headed away from the principal focal point.
2. A ray through the center of the lens passes through 
undeflected.
3. A ray headed toward the secondary focal point emerges from 
the lens parallel to the principal axis.

Principal rays for diverging lenses
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CHECKPOINT 23.9

Is	 the	 image	 formed	by	 a	 converging	 lens	always	 real,	 always	 virtual,	 or	 can	 it	
be	either	 real	or	 virtual?	Explain.	 [Hint:	Refer	 to	Fig.	23.45.]

always before the lens (on the same side as the incident rays). 
Therefore, the image is on the same side of the lens as the 
object. From Fig. 23.49, we see that, just as for mirrors, the 
virtual image is upright—the image of the point at the top of 
the object is always above the principal axis.

Conceptual Practice Problem 23.8 Orientation of 
Real Images

A converging lens forms a real image of an object placed 
before the lens. Using a ray diagram, show that the image is 
inverted.

Conceptual Example 23.8

Orientation of Virtual Images

A lens forms an image of an object placed before the lens. 
Using a ray diagram, show that if the image is virtual, then 
it must also be upright, regardless of whether the lens is 
converging or diverging.

Strategy The principal rays are usually the easiest to 
draw. Principal rays 1 and 3 behave differently for converg-
ing and diverging lenses. They also deal with focal points, 
whereas the problem implies that the location of the object 
with respect to the focal points is irrelevant (except that we 
know a virtual image is formed). Ray 2 passes undeviated 
through the center of the lens. It behaves the same way for 
both types of lens and does not depend on the location of the 
focal points.

Solution and Discussion  Figure 23.49 shows an object 
in front of a lens (which could be either converging or 
diverging). Principal ray 2 from the top of the object passes 
straight through the center of the lens. We extrapolate the 
refracted ray backward and sketch a few possibilities for the 
location of the image—with only one ray we do not know 
the  actual location. We do know that a point on a virtual 
image is located not where the rays emerging from the lens 
meet, but rather where the backward extrapolation of those 
rays meet. In other words, the position of a virtual image is 

Figure 23.49
The principal ray passing undeviated through the center of a lens 
shows that virtual images of real objects are upright.

Object

Possible
image

locations

Lens

The Magnification and Thin Lens Equations

We can derive the thin lens equation and the magnification equation from the geometry 
of Fig. 23.50. From the similar right triangles ΔEGC and ΔDBC, we write

 tan α =
h

p
=

−h′
q

 (23-23)

Figure 23.50 Ray diagram 
showing two of the three prin-
cipal rays used in the derivation 
of the thin lens equation and 
the magnification.
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As in the derivation of the mirror equation, h′ is a signed quantity. For an inverted 
image, h′ is negative; −h′ is the (positive) length of side BD. Just as for spherical 
mirrors, magnification is given by

Magnification

 m =
h′
h

= −  

q

p
 (23-18)

From two other similar right triangles ΔACF and ΔDBF,

 tan β =
h

f
=

−h′
q − f

 (23-24)

or

 
q − f

f
=

−h′
h

=
q

p
 (23-25)

After dividing through by q and rearranging, we obtain the thin lens equation, which 
has exactly the same form as the mirror equation.

Thin lens equation

 
1
p

+
1
q

=
1
f

 (23-22)

CONNECTION:

The magnification and thin 
lens equations have the same 
form as the corresponding 
equations derived for mirrors. 
The derivations used a con-
verging lens and a real image, 
but they apply to all cases—
either kind of lens and either 
kind of image—as long as we 
use the same sign conventions 
for q and f as for spherical 
mirrors (Table 23.4).

Table 23.4 Sign Conventions for Mirrors and Lenses

Quantity When Positive (+) When Negative (−)

Object distance p Real object* Virtual object*
Image distance q Real image Virtual image
Focal length f Converging lens or mirror Diverging lens or mirror
Magnification m and  
 image height h′

Upright image Inverted image

*In Chapter 23, we consider only real objects. Chapter 24 discusses multiple-lens systems, in which 
virtual objects are possible.

Solution (a) Since p and f are known, we find q from the 
thin lens equation

1
p

+
1
q

=
1
f

Let us solve for q.

q = (
1
f

−
1
p)

−1

Substituting numerical values, we find

q = (
1

15.00 cm
−

1
90.0 cm)

−1

= +18.0 cm

Example 23.9

Zoom Lens

A wild daisy 1.2 cm in diameter is 90.0 cm from a camera’s 
zoom lens. The focal length of the lens has magnitude 
150.0 mm. (a) Find the distance between the lens and the 
image sensor. (b) How large is the image of the daisy?

Strategy The problem can be solved using the lens and 
magnification equations. The lens must be converging to 
form a real image on the sensor, so f = +150.0 mm. The im-
age must be formed on the sensor, so the distance from the 
lens to the sensor is q. After finishing the algebraic solution, 
we sketch a ray diagram as a check.
Given: h = 1.2 cm; p = 90.0 cm; f = +15.00 cm
Find: q, h′

continued on next page
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The sensor is 18.0 cm from the lens.

(b) From the magnification equation,

m =
h′
h

= −
q

p
= − 

18.0 cm
90.0 cm

= −0.200

h′ = mh = −0.200 × 1.2 cm
= −0.24 cm

The image of the daisy is 0.24 cm in diameter.

Discussion Figure 23.51 shows a ray diagram using the 
three principal rays that confirms the algebraic solution.

Practice Problem 23.9 Finding the Focal Length 
of a Lens

A 3.00 cm tall object is placed 60.0 cm in front of a lens. The 
virtual image formed is 0.50 cm tall. What is the focal length 
of the lens? Is it converging or diverging?

Figure 23.51
Ray diagram for Example 23.9.

F
F

Converging
lens

15.00 cm15.00 cm
90.0 cm 18.0 cm

h = 1.2 cm
h' = –0.24 cm

Example 23.9 continued

EVERYDAY PHYSICS DEMO

If	 you	 or	 a	 friend	 are	 farsighted	 and	 have	 eyeglasses,	 put	 the	 glasses	 on	 a	
table	 with	 the	 lenses	 vertical	 so	 you	 can	 look	 through	 the	 lenses	 at	 distant	
objects.

Increase	your	distance	from	the	lenses	until	you	see	a	clear	inverted	image	
of	distant	objects.	Why	is	the	image	inverted?	Is	the	image	real	or	virtual?	The	
eyeglasses	 form	 an	 upright	 image	 when	 they	 are	 worn	 as	 intended.	 Are	 the	
lenses	converging	or	diverging?

A	similar	experiment	can	be	done	using	a	concave	mirror	(e.g.,	those	used	
to	apply	makeup	or	when	shaving).	Enlist	a	friend’s	help	so	you	can	gradually	
move	 farther	and	 farther	 from	 the	mirror.	 At	a	 sufficiently	 large	distance,	 you	
can	see	an	 inverted	 image	of	 yourself.

Objects and Images at Infinity

Suppose an object is a large distance from a lens (“at infinity”). Substituting p = ∞ 
in the lens equation yields q = f. The rays from a faraway object are nearly parallel 
to one another when they strike the lens, so the image is formed in the principal focal 
plane (the plane perpendicular to the axis passing through the principal focal point). 
Similarly, if an object is placed in the principal focal plane of a converging lens, then 
p = f and q = ∞. The image is at infinity—that is, the rays emerging from the lens 
are parallel, so they appear to be coming from an object at infinity.
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Master the Concepts

 ∙ A wavefront is a set of points of equal phase. A ray 
points in the direction of propagation of a wave and is 
perpendicular to the wavefronts. Huygens’s principle is 
a geometric construction used to analyze the propaga-
tion of a wave. Every point on a wavefront is considered 
a source of spherical wavelets. A surface tangent to the 
wavelets at a later time is the wavefront at that time.

 ∙ Geometric optics deals with the propagation of light when 
interference and diffraction are negligible. The chief tool 
used in geometric optics is the ray diagram. At a bound-
ary between two different media, light can be reflected as 
well as transmitted. The laws of reflection and refraction 
give the directions of the reflected and transmitted rays. 
In the laws of reflection and refraction, angles are mea-
sured between rays and a normal to the boundary.

 ∙ Laws of reflection:
 1.  The angle of incidence equals the angle of reflection 

[Eq. (23-1)].
 2.  The reflected ray lies in the same plane as the inci-

dent ray and the normal to the surface at the point of 
incidence.

 ∙ Laws of refraction:
 1. Snell’s law: ni sin θi = nt sin θt (23-5)
 2.  The incident ray, the transmitted ray, and the normal 

all lie in the same plane—the plane of incidence.
 3.  The incident and transmitted rays are on opposite 

sides of the normal.

Incident
ray

Transmitted
ray

Reflected
ray

Normal

θi θr

θt

 ∙ When a ray is incident on a boundary from a material 
with a higher index of refraction to one with a lower 
index of refraction, total internal reflection occurs (there 
is no transmitted ray) if the angle of incidence exceeds 
the critical angle

 θc = sin−1 
nt

ni
 (23-7)

 ∙ When a ray is incident on a boundary, the reflected ray is 
totally polarized perpendicular to the plane of incidence 
if the angle of incidence is equal to Brewster’s angle

 θB = tan−1 
nt

ni
 (23-11)

 ∙ In the formation of an image, there is a one-to-one cor-
respondence of points on the object and points on the 
image. In a virtual image, light rays appear to diverge 
from the image point, but they really don’t. In a real 
image, the rays actually do pass through the image 
point. Only a real image can be viewed by projecting it 
onto a screen. Both real and virtual images can be 
viewed directly by looking into the lens or mirror. For a 
real image, the viewer must be at a greater distance from 
the lens or mirror than the image is.

 ∙ A spherical mirror has one focal point; a lens has two, 
one on each side. In an ideal converging mirror or lens, all 
incident rays parallel to the principal axis would converge 
at the (principal) focal point. In an ideal diverging mirror 
or lens, all incident rays parallel to the principal axis 
would appear to diverge from the (secondary) focal point.

 ∙ Finding an image using a ray diagram:
 1.  Draw two (or more) rays coming from a single point 

on the object toward the lens or mirror.
 2.  Trace the rays, applying the laws of reflection and 

refraction as needed, until they reach the observer.
 3.  For a real image, the rays intersect at the image 

point. For a virtual image, extrapolate the rays back-
ward along straight line paths until they intersect at 
the image point.

 ∙ The easiest rays to trace for a mirror or lens are called 
the principal rays.

Object

Ray 1 Ray 1

Ray 2

Ray 3

Diverging
lens

Principal
focal point

Secondary
focal point

Virtual
image

∣ f ∣∣ f ∣

 ∙ A plane mirror forms an 
upright, virtual image of an 
object that is located at the 
same distance behind the 
mirror as the object is in 
front of the mirror. The 
object and image points are both located on the same 
normal line from the object to the mirror surface. The 
image of an extended object is the same size as the object.

 ∙ The magnitude of the transverse magnification m is the 
ratio of the image size to the object size; the sign of m is 
determined by the orientation of the image. For an 
inverted (upside-down) image, m < 0; for an upright 
(right-side-up) image, m > 0. For either lenses or mirrors,

 m =
h′
h

= − 

q

p
 (23-18)

Image of
pencil

Plane mirror

d4 d4

d3 d3

d2 d2

d1 d1

continued on next page
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 ∙ The mirror/thin lens equation relates the object and im-
age distances to the focal length:

 
1
p

+
1
q

=
1
f

 (23-22)

 ∙ These sign conventions enable the magnification and 
mirror/thin lens equations to apply to all kinds of mirrors 
and lenses and both kinds of image:

Quantity When Positive  
 (+)

When Negative  
 (−)

Object distance p Real object Virtual object
Image distance q Real image Virtual image
Focal length f Converging lens  

 or mirror
Diverging lens  
 or mirror

Magnification m Upright image Inverted image

Master the Concepts continued

Conceptual Questions

 1. Describe the difference between specular and diffuse 
reflection. Give some examples of each.

 2. What is the difference between a virtual and a real 
image? Describe a method for demonstrating the 
presence of a real image.

 3. Water droplets in air create rainbows. Describe the 
physical situation that causes a rainbow. Should you look 
toward or away from the Sun to see a rainbow? Why is the 
secondary rainbow fainter than the primary rainbow?

 4. Why does a mirror hanging in a vertical plane seem to 
interchange left and right but not up and down? [Hint: 
Refer to Fig. 23.28. Instead of calling Grant’s hands left 
and right, call them east and west. In Grant’s image, are 
the east and west hands reversed? Note that Grant faces 
south while his image faces north.]

 5. A framed poster is covered with glass that has a rougher 
surface than regular glass. How does a rough surface 
reduce glare?

 6. Explain how a plane mirror can be thought of as a 
special case of a spherical mirror. What is the focal 
length of a plane mirror? Does the spherical mirror 
equation work for plane mirrors with this choice of focal 
length? What is the transverse magnification for any 
image produced by a plane mirror?

 7. A ray of light passes from air into water, striking the 
surface of the water with an angle of incidence of 45°. 
Which of these quantities change as the light enters the 
water: wavelength, frequency, speed of propagation, 
direction of propagation?

 8. If the angle of incidence is greater than the angle of 
refraction for a light beam passing an interface, what can 
be said about the relative values of the indices of refrac-
tion and the speed of light in the first and second media?

 9. A concave mirror has focal length f. (a) If you look into 
the mirror from a distance less than f, is the image you see 
upright or inverted? (b) If you stand at a distance greater 
than 2f, is the image upright or inverted? (c) If you stand 
at a distance between f and 2f, an image is formed but you 
cannot see it. Why not? Sketch a ray diagram and com-
pare the locations of the object and image.

 10. The focal length of a concave mirror is 4.00 m and an 
object is placed 3.00 m in front of the mirror. Describe 
the image in terms of real, virtual, upright, and inverted.

 11. Why is the passenger’s side mirror in many cars convex 
rather than plane or concave?

 12. When a virtual image is formed by a mirror, is it in front 
of the mirror or behind it? What about a real image?

 13. Light rays travel from left to right through a lens. If a 
virtual image is formed, on which side of the lens is it? 
On which side would a real image be found?

 14. Why is the brilliance of an artificial diamond made of 
cubic zirconia (n = 1.9) distinctly inferior to the real thing 
(n = 2.4) even if the two are cut the same way? How 
would an artificial diamond made of glass compare?

 15. The surface of the water in a swimming pool is com-
pletely still. Describe what you would see looking 
straight up toward the surface from under water. [Hint: 
Sketch some rays. Consider both reflected and transmit-
ted rays at the water surface.]

 16. A ray reflects from a spherical mirror at point P. Explain 
why a radial line from the center of curvature through 
point P always bisects the angle between the incident 
and reflected rays.

 17.  Why must projectors and cameras form real images? 
Does the lens in the eye form real or virtual images on 
the retina?

 18. Is it possible for a plane mirror to produce a real image of 
an object in front of the mirror? Explain. If it is possible, 
sketch a ray diagram to demonstrate. If it is not possible, 
sketch a ray diagram to show which way a curved mirror 
must curve (concave or convex) to produce a real image.

 19. A slide projector forms a real image of the slide on a 
screen using a converging lens. If the bottom half of the 
lens is blocked by covering it with opaque tape, does the 
bottom half of the image disappear, or does the top half 
disappear, or is the entire image still visible on the screen? 
If the entire image is visible, is anything different about 
it? [Hint: It may help to sketch a ray diagram.]

 20.  A lens is placed at the end of a bundle of optical 
fibers in an endoscope. The purpose of the lens is to 
make the light rays parallel before they enter the fibers 
(in other words, to put the image at infinity). What is the 
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advantage of using a lens with the same index of refrac-
tion as the core of the fibers?

 21.  To increase the amount of light collected by the 
objective lens of a microscope, a technique known as oil 
immersion microscopy is used. To replace the air 
between the objective lens and the thin slip of glass 
(n = 1.51) covering the specimen, a drop of oil with the 
same index of refraction as the cover slip fills the space 
between them. Using Snell’s law, sketch some light rays 
from the specimen to the objective lens in both cases 
and explain why this technique is useful.

 22. A converging lens made from dense flint glass is placed 
into a container of transparent glycerin. Describe what 
happens to the focal length.

 23. Suppose you are facing due north at sunrise. Sunlight is 
reflected by a store’s display window as shown. Is the 
reflected light partially polarized? If so, in what direction?

Sunlight from
the sunrise

Store’s
display
window

Observer

 24. For each of the lenses in the figure, state whether the 
lens is converging or diverging.

(a) (b) (c) (d)

 25. A glass prism bends a ray of blue light more than a ray 
of red light since its index of refraction is slightly higher 
for blue than for red. Does a diverging glass lens have 
the same focal point for blue light and for red light? If 
not, for which color is the focal point closer to the lens?

 26. A converging lens made of glass (n = 1.5) is placed 
under water (n = 1.33). Describe how the focal length of 
the lens under water compares to the focal length in air.

 27.  A manufacturer is designing a shaving mirror, which 
is intended to be held close to the face. If the manufacturer 
wants the image formed to be upright and as large as pos-
sible, what characteristics should he choose? (Should the 
mirror be convex or concave? Should the magnitude of the 
focal length be greater than or less than the distance be-
tween the face and the mirror?)

Multiple-Choice Questions

 1. The image of an object in a plane mirror
 (a) is always smaller than the object.
 (b) is always the same size as the object.
 (c) is always larger than the object.
 (d) can be larger, smaller, or the same size as the object, 

depending on the distance between the object and 
the mirror.

 2. The image of a slide formed by a slide projector is 
correctly described by which of the listed terms?

 (a) real, upright, enlarged
 (b) real, inverted, diminished
 (c) virtual, inverted, enlarged
 (d) virtual, upright, diminished
 (e) real, upright, diminished
 (f) real, inverted, enlarged
 (g) virtual, inverted, diminished
 3. Which statements are true? The rays in a plane wave 

are
 1. parallel to the wavefronts.
 2. perpendicular to the wavefronts.
 3. directed radially outward from a central point.
 4. parallel to one another.
 (a) 1, 2, 3, 4  (b) 1, 4
 (c) 2, 3  (d) 2, 4
 4. During a laboratory experiment with an object placed in 

front of a concave mirror, the image distance q is deter-
mined for several different values of object distance p. 
How might the focal length f of the mirror be deter-
mined from a graph of the data?

 (a) Plot q versus p; slope = f
 (b) Plot q versus p; slope = 1/f
 (c) Plot 1/p versus 1/q; vertical intercept = 1/f
 (d) Plot q versus p; vertical intercept = 1/f
 (e) Plot q versus p; vertical intercept = f
 (f) Plot 1/p versus 1/q; slope = 1/f
 5. A man runs toward a plane mirror at 5 m/s and the 

mirror, on rollers, simultaneously approaches him at 
2 m/s. What is the speed at which his image moves rela-
tive to the ground?

 (a) 14 m/s (b) 7 m/s
 (c) 3 m/s (d) 9 m/s
 (e) 12 m/s
 6. Two converging lenses, of the same size and shape, 

are held in sunlight, the same distance above a sheet 
of paper. The figure shows the paths of some rays 
through the two lenses. Which lens is made of mate-
rial with a higher index of refraction? How do you 
know?

 (a) Lens 1, because its focal length is smaller
 (b) Lens 1, because its focal length is greater
 (c) Lens 2, because its focal length is smaller
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 (d) Lens 2, because its focal length is greater
 (e) Impossible to answer with the information given

Sunlight

Lens 1 Lens 2

Smoke

Paper

 7. Which of these statements correctly describe the images 
formed by an object placed before a single thin lens?

 1. Real images are always enlarged.
 2. Real images are always inverted.
 3. Virtual images are always upright.
 4. Converging lenses never produce virtual images.
 (a) 1 and 3 (b) 2 and 3
 (c) 2 and 4 (d) 2, 3, and 4
 (e) 1, 2, and 3 (f) 4 only
 8. A point source of light is placed at the focal point of a 

converging lens; the rays of light coming out of the lens 
are parallel to the principal axis. Now suppose the 
source is moved closer to the lens but still on the axis. 
Which statement is true about the light rays coming out 
of the lens?

 (a) They diverge from one another.
 (b) They converge toward one another.
 (c) They still emerge parallel to the principal axis.
 (d) They emerge parallel to one another but not parallel 

to the axis.
 (e) No rays emerge because a virtual image is formed.
 9. Light reflected from horizontal surfaces of lakes, roads, 

and automobile hoods is
 (a) partially polarized in the horizontal direction.
 (b) partially polarized in the vertical direction.
 (c) partially polarized only if the Sun is directly 

overhead.
 (d) randomly polarized.
 10. A light ray inside a glass prism is incident at Brewster’s 

angle on a surface of the prism with air outside. Which 
of these is true?

 (a) There is no transmitted ray; the reflected ray is plane 
polarized.

 (b) The transmitted ray is plane polarized; the reflected 
ray is partially polarized.

 (c) There is no transmitted ray; the reflected ray is 
partially polarized.

 (d) The transmitted ray is partially polarized; the 
reflected ray is plane polarized.

 (e) The transmitted ray is plane polarized; there is no 
reflected ray.

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

23.1 Wavefronts, Rays, and Huygens’s Principle
 1.   Apply Huygens’s principle to a 10 cm long planar 

wavefront approaching a reflecting wall at normal 
incidence. The wavelength is 1 cm, and the wall has an 
opening of width 4 cm. The center of the incoming 
wavefront approaches the center of the opening. Without 
worrying about the details of edge effects, what are the 
general shapes of the wavefronts on each side of the 
reflecting wall?

 2.   Repeat Problem 1 for an opening of width 0.5 cm.

23.2 The Reflection of Light
 3. Light rays from the Sun, which is at an angle of 35° 

above the western horizon, strike the still surface of a 
pond. (a) What is the angle of incidence of the Sun’s 
rays on the pond? (b) What is the angle of reflection of 
the rays that leave the pond surface? (c) In what direction 
and at what angle from the pond surface are the reflected 
rays traveling?

 4. A spherical wave (from a point source) reflects from a 
planar surface. Draw a ray diagram and sketch some 
wavefronts for the reflected wave.

 5. Two plane mirrors form a 70.0° angle as shown. For 
what angle θ is the final ray horizontal?

70.0° θ

 6.  Choose two rays in Fig. 23.7 and use them to prove 
that the angle of incidence is equal to the angle of 
reflection. [Hint: Choose a wavefront at two different 
times, one before reflection and one after. The time for 
light to travel from one wavefront to the other is the 
same for the two rays.]

 7. A light ray reflects from a plane 
mirror as shown in the figure. What 
is the angle of deviation δ?

23.3 The Refraction of Light: Snell’s Law
 8. Sunlight strikes the surface of a lake at an angle of inci-

dence of 30.0°. At what angle with respect to the normal 
would a fish see the Sun?

50° δ
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 9. Sunlight strikes the surface of a lake. A diver sees the 
Sun at an angle of 42.0° with respect to the vertical. 
What angle do the Sun’s rays in air make with the 
vertical?

 10.  The index of refraction of Sophia’s cornea is 1.376 
and that of the aqueous fluid behind the cornea is 1.336. 
Light is incident from air onto her cornea at an angle of 
17.5° from the normal to the surface. At what angle to 
the normal is the light traveling in the aqueous fluid?

Cornea
17.5°

Aqueous fluid

Problems	10	and	11

 11.  The index of refraction of Aidan’s cornea is 1.376 
and that of the aqueous fluid behind the cornea is 1.336. 
He is swimming underwater (index of refraction 1.333). 
Light is incident from water onto his cornea at an angle of 
17.50° from the normal to the surface. At what angle to 
the normal does the light travel inside the aqueous fluid?

 12. A beam of light in air is incident on a stack of four flat 
transparent materials with indices of refraction 1.20, 
1.40, 1.32, and 1.28. If the angle of incidence for the 
beam on the first of the four materials is 60.0°, what 
angle does the beam make with the normal when it 
emerges into the air after passing through the entire 
stack?

 13. A light ray in the core (n = 1.40) of a cylindrical optical 
fiber travels at an angle θ1 = 49.0° with respect to the 
axis of the fiber. A ray is transmitted through the 
cladding (n = 1.20) and into the air. What angle θ2 does 
the exiting ray make with the outside surface of the 
cladding?

Air
Cladding
CoreAxis

θ1

θ2

Problems	13	and	14

 14. A light ray in the core (n = 1.40) of a cylindrical optical 
fiber is incident on the cladding. See the figure with 
Problem 13. A ray is transmitted through the cladding 
(n = 1.20) and into the air. The emerging ray makes an 
angle θ2 = 5.00° with the outside surface of the cladding. 
What angle θ1 did the ray in the core make with the axis?

 15. A glass lens has a scratch-resistant plastic coating on it. 
The speed of light in the glass is 0.67c, and the speed of 
light in the coating is 0.80c. A ray of light in the coating 
is incident on the plastic-glass boundary at an angle of 
12.0° with respect to the normal. At what angle with 
respect to the normal is the ray transmitted into the 
glass?

 16. In Figure 23.11, a coin is right up against the far edge of 
the mug. In picture (a) the coin is just hidden from view 
and in picture (b) we can almost see the whole coin. If 
the mug is 6.5 cm in diameter and 8.9 cm tall, what is 
the diameter of the coin?

 17.  A horizontal light ray is 
incident on a crown glass prism 
as shown in the figure where 
β  =  30.0°. Find the angle of 
deviation δ of the ray—the 
angle that the ray emerging 
from the prism makes with the 
incident ray.

 18.  A horizontal light ray is incident on a prism as shown 
in the figure with Problem 17 where β is a small angle 
(exaggerated in the figure). Find the angle of deviation 
δ of the ray—the angle that the ray emerging from the 
prism makes with the incident ray—as a function of β 
and n, the index of refraction of the prism, and show that 
δ is proportional to β.

 19.  The prism in the 
figure is made of 
crown glass. Its index 
of refraction ranges 
from 1.517 for the 
longest visible wave-
lengths to 1.538 for the 
shortest. Find the range of refraction angles for the light 
transmitted into air through the right side of the prism.

23.4 Total Internal Reflection
 20.  (a) Calculate the critical angle for a diamond 

surrounded by air. (b) Calculate the critical angle for a 
diamond under water. (c) Explain why a diamond 
sparkles less under water than in air.

 21. Calculate the critical angle for a sapphire surrounded 
by air.

 22. Is there a critical angle for a light ray coming from a 
medium with an index of refraction 1.2 and incident on 
a medium that has an index of refraction 1.4? If so, what 
is the critical angle that allows total internal reflection 
in the first medium?

 23.  The figure shows some light rays reflected from a 
small defect in the glass toward the surface of the glass. 
(a) If θc = 40.00°, what is the index of refraction of the 
glass? (b) Is there any point above the glass at which a 
viewer would not be able to see the defect? Explain.

Air

θc
Glass

Defect

α α

δ

β

Problems	17	and	18

60.0°
55.0°

White
light

60.0° 60.0°



 PROBLEMS 911

 24.  A 45° prism has an index of refraction of 1.6. Light 
is normally incident on the left side of the prism. Does 
light exit the back of the prism (e.g., at point P)? If so, 
what is the angle of refraction with respect to the normal 
at point P? If not, what happens to the light?

45°

45°

P

Problems	24,	25,	and	74

 25. Light incident on a 45.0° prism as shown in the figure 
undergoes total internal reflection at point P. What can 
you conclude about the index of refraction of the prism? 
(Determine either a minimum or maximum possible 
value.)

 26.   A useful measure of the quality of a fiber-optic 
cable such as those used in endoscopes and other 
medical equipment is the numerical aperture. The 
larger the numerical aperture, the more light will be 
carried by the fiber. If light is incident on the fiber (core 
index n1, cladding index n2) from a medium of index 
of  refraction n, the numerical aperture of the fiber is 
n  sin θmax, where θmax is the largest incident angle 
for which light will totally reflect as it travels along the 
fiber. Show that the numerical aperture is equal to 
√n2

1 − n2
2. [Hint: See Appendix A.7 for useful trigono-

metric identities.]

90° – θc

θc θc

Outside
medium: n
θmax

Cladding: n2
Core: n1

Problems	26–27

 27.  (a) Using the result of Problem 26, calculate the 
numerical aperture of a fiber-optic cable whose cladding 
and core have indices of refraction 1.40 and 1.62, 
respectively. (b) Light enters the fiber from a balloon of 
saline solution (n = 1.35), which is often used in endo-
scopic procedures at the end of the fiber to increase 
visibility. What is the maximum entrance angle for 
transmission of light through the fiber?

 28.  The angle of incidence θ of a ray of light in air is 
adjusted gradually as it enters a shallow tank made of 
Plexiglas and filled with carbon disulfide. Is there an 
angle of incidence for which light is transmitted into the 
carbon disulfide but not into the Plexiglas at the bottom 
of the tank? If so, find the angle. If not, explain why not.

 29.  Repeat Problem 28 for a Plexiglas tank filled with 
carbon tetrachloride instead of carbon disulfide.

 30. What is the index of refraction of the core of an optical 
fiber if the cladding has n = 1.20 and the critical angle 
at the core-cladding boundary is 45.0°?

23.5 Polarization by Reflection

 31.  In an experiment to measure the index of refraction 
of human skin, it was found that if a beam of unpolar-
ized light was shone on a skin sample from air at an 
incident angle of 54.7°, the reflected light was 
completely polarized. What is the index of refraction of 
this skin sample?

 32. Some glasses used for viewing 3D movies are polar-
ized, one lens having a vertical transmission axis and 
the other horizontal. While standing in line on a winter 
afternoon for a 3D movie and looking through his 
glasses at the road surface, Maurice notices that the left 
lens cuts down reflected glare significantly, but the 
right lens does not. The glare is minimized when the 
angle between the reflected light and the horizontal 
direction is 37°. (a) Which lens has the transmission 
axis in the vertical direction? (b) What is Brewster’s 
angle for this case? (c) What is the index of refraction 
of the material reflecting the light?

 33.  (a) Sunlight reflected from the still surface of a lake 
is totally polarized when the incident light is at what 
angle with respect to the horizontal? (b) In what 
direction is the reflected light polarized? (c) Is any light 
incident at this angle transmitted into the water? If so, at 
what angle below the horizontal does the transmitted 
light travel?

 34.   Light travels in a medium with index n1 toward a 
boundary with another material of index n2 < n1. 
(a)  Which is larger, the critical angle or Brewster’s 
angle? Does the answer depend on the values of n1 and 
n2 (other than assuming n2 < n1)? (b) What can you say 
about the critical angle and Brewster’s angle for light 
coming the other way (from the medium with index n2 
toward the medium with n1)?

23.6 The Formation of Images Through 
Reflection or Refraction

 35. A defect in a diamond appears to be 2.0 mm below the 
surface when viewed from directly above that surface. 
How far beneath the surface is the defect?

 36. An insect is trapped inside a piece of amber (n = 1.546). 
Looking at the insect from directly above, it appears to 
be 7.00 mm below a smooth surface of the amber. How 
far below the surface is the insect?

 37. At a marine animal park, Alison is looking through a 
glass window and watching dolphins swim underwater. 
If the dolphin is swimming directly toward her at 15 m/s, 
how fast does the dolphin appear to be moving?
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 38.  A penny is at the bottom of a bowl brim full of water. 
When you look at the water surface from the side, with your 
eyes at the water level, the penny appears to be just barely 
under the surface and a horizontal distance of 3.0 cm from 
the edge of the bowl. If the penny is actually 8.0 cm below 
the water surface, what is the horizontal distance between the 
penny and the edge of the bowl? [Hint: The rays you see pass 
from water to air with refraction angles close to 90°.]

23.7 Plane Mirrors
 39. Norah wants to buy a mirror so that she can check on her 

appearance from top to toe before she goes off to work. 
If Norah is 1.64 m tall, how tall a mirror does she need?

 40. Daniel’s eyes are 1.82 m from the floor when he is wear-
ing his dress shoes, and the top of his head is 1.96 m from 
the floor. Daniel has a mirror that is 0.98 m in length. 
How high from the floor should the bottom edge of the 
mirror be located if Daniel is to see a full-length image of 
himself? Draw a ray diagram to illustrate your answer.

 41. A rose in a vase is placed 0.250 m in front of a plane 
mirror. Nagar looks into the mirror from 2.00 m in front 
of it. How far away from Nagar is the image of the rose?

 42. Entering a darkened room, Gustav strikes a match in an 
attempt to see his surroundings. At once he sees what 
looks like another match about 4 m away from him. As 
it turns out, a mirror hangs on one wall of the room. 
How far is Gustav from the wall with the mirror?

 43. In an amusement park 
maze with all the walls 
covered with mirrors, 
Pilar sees Hernando’s 
reflection from a series 
of three mirrors. If the 
reflected angle from 
mirror 3 is 55° for the 
mirror arrangement 
shown in the figure, what is the angle of incidence on 
mirror 1?

 44. Hannah is standing in the middle of a room with two 
opposite walls that are separated by 10.0 m and covered 
by plane mirrors. There is a candle in the room 1.50 m 
from one mirrored wall. Hannah is facing the opposite 
mirrored wall and sees many images of the candle. How 
far from Hannah are the closest four images of the 
candle that she can see?

10.0 m

1.50 m

Mirror 3

Pilar

Hernando

Mirror 2
55°

15° Mirror 1

 45.  A point source of light is in front of a plane mirror. 
(a) Show that all the reflected rays, when extended back 
behind the mirror, intersect in a single point. [Hint: See 
Fig. 23.27a and use similar triangles.] (b) Show that the 
image point lies on a line through the object and 
perpendicular to the mirror, and that the object and 
image distances are equal. [Hint: Use any pair of rays in 
Fig. 23.27a.]

23.8 Spherical Mirrors
 46. An object 2.00 cm high is placed 12.0 cm in front of a 

convex mirror with radius of curvature of 8.00 cm. Where 
is the image formed? Draw a ray diagram to illustrate.

 47. A 1.80 cm high object is placed 20.0 cm in front of a 
concave mirror with a 5.00 cm focal length. What is the 
position of the image? Draw a ray diagram to illustrate.

 48. A convex mirror produces an image located 18.4 cm 
behind the mirror when an object is placed 32.0 cm in 
front of the mirror. What is the focal length of this mirror?

 49. Bruce is trying to remove an eyelash from the surface of 
his eye. He looks in a shaving mirror to locate the eyelash, 
which is 0.40 cm long. If the focal length of the mirror is 
18 cm and he puts his eye at a distance of 11 cm from the 
mirror, how long is the image of his eyelash?

 50.  In her job as a dental hygienist, Kathryn uses a con-
cave mirror to see the back of her patient’s teeth. When 
the mirror is 1.20 cm from a tooth, the image is upright 
and 3.00 times as large as the tooth. What are the focal 
length and radius of curvature of the mirror?

 51. An object is placed in front of a concave mirror with a 
25.0 cm radius of curvature. A real image twice the size 
of the object is formed. At what distance is the object 
from the mirror? Draw a ray diagram to illustrate.

 52. An object is placed in front of a convex mirror with a 
25.0 cm radius of curvature. A virtual image half the 
size of the object is formed. At what distance is the 
object from the mirror? Draw a ray diagram to illustrate.

 53. The right-side rearview mirror of Mike’s car says that 
objects in the mirror are closer than they appear. Mike 
decides to do an experiment to determine the focal 
length of this mirror. He holds a plane mirror next to the 
rearview mirror and views an object that is 163 cm away 
from each mirror. The object appears 3.20 cm wide in 
the plane mirror, but only 1.80 cm wide in the rearview 
mirror. What is the focal length of the rearview mirror?

 54.  A concave mirror has a radius of curvature of 5.0 m. 
An object, initially 2.0 m in front of the mirror, is moved 
back until it is 6.0 m from the mirror. Describe how the 
image location changes.

 55.  In a subway station, a convex mirror allows the 
attendant to view activity on the platform. A woman 
1.64 m tall is standing 4.5 m from the mirror. The image 
formed of the woman is 0.500 m tall. (a) What is the 
radius of curvature of the mirror? (b) The mirror is 
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0.500 m in diameter. If the woman’s shoes appear at the 
bottom of the mirror, does her head appear at the top—
in other words, does the image of the woman fill the 
mirror from top to bottom? Explain.

 56.  Derive the magnification equation, m = h′/h = −q/p, 
for a convex mirror. Draw a ray diagram as part of the 
solution.

 57.  Show that when rays parallel to the principal axis 
reflect from a concave mirror, the reflected rays all pass 
through the focal point at a distance R/2 from the vertex. 
Assume that the angles of incidence are small. [Hint: Fol-
low the similar derivation for a convex mirror in the text.]

 58. Starting with Fig. 23.39, perform all the algebraic steps 
to obtain the mirror equation in the form of Eq. (23-22).

23.9 Thin Lenses
 59. (a) For a converging lens with a focal length of 3.50 cm, 

find the object distance that will result in an inverted 
image with an image distance of 5.00 cm. Use a ray dia-
gram to verify your calculations. (b) Is the image real or 
virtual? (c) What is the magnification?

 60. Sketch a ray diagram to show that when an object is 
placed more than twice the focal length away from a 
converging lens, the image formed is inverted, real, and 
diminished in size.

 61. Sketch a ray diagram to show that when an object is 
placed at twice the focal length from a converging lens, 
the image formed is inverted, real, and the same size as 
the object.

 62. Sketch a ray diagram to show that when an object is 
placed between twice the focal length and the focal 
length from a converging lens, the image formed is 
inverted, real, and enlarged in size.

 63. Sketch a ray diagram to show that when an object is a 
distance equal to the focal length from a converging 
lens, the emerging rays from the lens are parallel to each 
other, so the image is at infinity.

 64. When an object is placed 6.0 cm in front of a converging 
lens, a virtual image is formed 9.0 cm from the lens. 
What is the focal length of the lens?

 65. An object of height 3.00 cm is placed 12.0 cm from a 
diverging lens of focal length −12.0 cm. Draw a ray 
diagram to find the height and position of the image.

 66. Sketch a ray diagram to show that if an object is placed 
less than the focal length from a converging lens, the 
image is virtual and upright.

 67. An object that is 6.00 cm tall is placed 40.0 cm in front 
of a diverging lens. The magnitude of the focal length of 
the lens is 20.0 cm. Find the image position and size. Is 
the image real or virtual? Upright or inverted?

 68. The projector in a movie theater has a lens with a focal 
length of 29.5 cm. It projects an image of the 70.0 mm 
wide film onto a screen that is 38.0 m from the projec-

tor. (a) How wide is the image on the screen? (b) What 
kind of lens is used in the projector? (c) Is the image on 
the screen upright or inverted compared with the film?

 69.  A standard “35 mm” slide measures 24.0 mm by 
36.0 mm. Suppose a slide projector produces a 60.0 cm 
by 90.0 cm image of the slide on a screen. The focal 
length of the lens is 12.0 cm. (a) What is the distance 
between the slide and the screen? (b) If the screen is 
moved farther from the projector, should the lens be 
moved closer to the slide or farther away?

 70.  In order to read his book, Stephen uses a pair of 
reading glasses. When he holds the book at a distance of 
25 cm from his eyes, the glasses form an upright image 
a distance of 52 cm from his eyes. (a) Is this a converg-
ing or diverging lens? (b) What is the magnification of 
the lens? (c) What is the focal length of the lens?

 71. Jamila has a set of reading glasses with focal length 
+0.50 m. (a) Are the lenses converging or diverging? 
(b) An object is placed 40.0 cm in front of one of the 
lenses. Where is the image formed? (c) What is the size 
of the image relative to the size of the object? (d) Is the 
image upright or inverted?

 72. A diverging lens has a focal length of −8.00 cm. 
(a) What are the image distances for objects placed at 
these distances from the lens: 5.00 cm, 8.00 cm, 
14.0 cm, 16.0 cm, 20.0 cm? In each case, describe the 
image as real or virtual, upright or inverted, and enlarged 
or diminished in size. (b) If the object is 4.00 cm high, 
what is the height of the image for the object distances 
of 5.00 cm and 20.0 cm?

 73. A converging lens has a focal length of 8.00 cm. 
(a) What are the image distances for objects placed at 
these distances from the thin lens: 5.00 cm, 14.0 cm, 
16.0 cm, 20.0 cm? In each case, describe the image as 
real or virtual, upright or inverted, and enlarged or 
diminished in size. (b) If the object is 4.00 cm high, 
what is the height of the image for the object distances 
of 5.00 cm and 20.0 cm?

Collaborative Problems

 74. A ray of light is incident normally from air onto a glass 
(n = 1.50) prism as shown in the figure with Problem 24. 
(a) Draw all of the rays that emerge from the prism and 
give angles to represent their directions. (b) Repeat part 
(a) with the prism immersed in water (n = 1.33). 
(c) Repeat part (a) with the prism immersed in a sugar 
solution (n = 1.50).

 75.  A dentist holds a small mirror 1.9 cm from a surface 
of a patient’s tooth. The image formed is upright and 
5.0 times as large as the object. (a) Is the image real or 
virtual? (b) What is the focal length of the mirror? Is it 
concave or convex? (c) If the mirror is moved closer to 
the tooth, does the image get larger or smaller? (d) For 
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what range of object distances does the mirror produce 
an upright image?

 76.  The vertical displacement d of light rays parallel to 
the axis of a lens is measured as a function of the vertical 
displacement h of the incident ray from the principal 
axis as shown in part (a) of the figure. The data are 
graphed in part (b) of the figure. The distance D from 
the lens to the screen is 1.0 m. What is the focal length 
of the lens for paraxial rays?

(a)

ScreenLens

(b)

D –2

–2

0

2

–1 0 1 2

d d 
(c

m
)

h (cm)

h

 77.  A beam of light in air enters a glass block at an 
angle of 30° to the glass surface, as shown. The glass 
has an index of refraction of 1.35. (a) Find the angle 
labeled θ1. (b) Calculate the critical angle between the 
glass and air. (c) Does the light follow path A, path B, or 
both? Explain. (d) Find the angle(s) θA, if light follows 
path A, and θB, if light follows path B.

B

A

θ1
θA

θB

30˚

Comprehensive Problems

 78. A point source of light is placed 10 cm in front of a 
concave mirror; the reflected rays are parallel. What is 
the radius of curvature of the mirror?

 79. An object 8.0 cm high forms a virtual image 3.5 cm high 
located 4.0 cm behind a mirror. (a) Find the object distance. 
(b) Describe the mirror: is it plane, convex, or concave? 
(c) What are its focal length and radius of curvature?

 80. An object is placed 10.0 cm in front of a lens. An 
upright, virtual image is formed 30.0 cm away from the 
lens. What is the focal length of the lens? Is the lens 
converging or diverging?

 81. A concave mirror has a radius of curvature of 14 cm. If 
a pointlike object is placed 9.0 cm away from the mirror 
on its principal axis, where is the image?

 82. A 5.0 cm tall object is placed 50.0 cm from a lens with 
focal length −20.0 cm. (a) How tall is the image? (b) Is 
the image upright or inverted?

 83. Samantha puts her face 32.0 cm from a makeup mirror 
and notices that her image is magnified by 1.80 times. 
(a) What kind of mirror is this? (b) Where is her face 
relative to the radius of curvature or focal length? 
(c) What is the radius of curvature of the mirror?

 84.  In many cars the passenger’s side mirror says: 
“Objects in the mirror are closer than they appear.” 
(a)  Does this mirror form real or virtual images? 
(b) Since the image is diminished in size, is the mirror 
concave or convex? Why? (c) Show that the image must 
actually be closer to the mirror than is the object. How 
then can the image seem to be farther away?

 85. A laser beam is traveling through an unknown substance. 
When it encounters a boundary with air, the angle of 
reflection is 25.0° and the angle of refraction is 37.0°. 
(a) What is the index of refraction of the substance? 
(b) What is the speed of light in the substance? (c) At 
what minimum angle of incidence would the light be 
totally internally reflected?

 86. A scuba diver in a lake aims her underwater spotlight at 
the lake surface. (a) If the beam makes a 75° angle of 
incidence with respect to a normal to the water surface, 
is it reflected, transmitted, or both? Find the angles of 
the reflected and transmitted beams (if they exist). 
(b) Repeat for a 25° angle of incidence.

 87. A 3.00 cm high pin, when placed at a certain distance in 
front of a concave mirror, produces an upright image 
9.00 cm high, 30.0 cm from the mirror. Find the position 
of the pin relative to the mirror and the image. Draw a 
ray diagram to illustrate.

 88. An object of height 5.00 cm is placed 20.0 cm from a 
converging lens of focal length 15.0 cm. Draw a ray 
diagram to find the height and position of the image.

 89. A letter on a page of the compact edition of the Oxford 
English Dictionary is 0.60 mm tall. A magnifying glass 
(a single thin lens) held 4.5 cm above the page forms an 
image of the letter that is 2.4 cm tall. (a) Is the image 
real or virtual? (b) Where is the image? (c) What is the 
focal length of the lens? Is it converging or diverging?

 90. The focal length of a thin lens is −20.0 cm. A screen is 
placed 160 cm from the lens. What is the y-coordinate 
of the point where the light ray shown hits the screen? 
The incident ray is parallel to the central axis and is 
1.0 cm from that axis.

Central axis of lens
160 cm

1.0 cm

Lens

Screen

y
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 91. A ray of light is reflected from two mirrored surfaces as 
shown in the figure. If the initial angle of incidence is 
34°, what are the values of angles α and β? (The figure 
is not to scale.)

β

α
34°

 92. A beam of light consisting of a mixture of red, yellow, 
and blue light originates from a source submerged in 
some carbon disulfide. The light beam strikes an 
interface between the carbon disulfide and air at an an-
gle of incidence of 37.5° as shown in the figure. The 
carbon disulfide has the following indices of refraction 
for the wavelengths present: red (656.3 nm), n = 1.6182; 
yellow (589.3 nm), 1.6276; blue (486.1 nm), 1.6523. 
Which color(s) is/are recorded by the detector located 
above the surface of the carbon disulfide?

37.5°

Detector

Carbon disulfide

Light sourceGlass

 93. A glass block (n = 1.7) is 
submerged in an unknown 
liquid. A ray of light inside 
the block undergoes total in-
ternal reflection. What can 
you conclude concerning the 
index of refraction of the liquid?

 94. Draw a ray diagram and locate the image for the object 
shown in the figure.

2F 2FFF

Object

Converging
lens

ff

 95.  A ray of light in air is 
incident on benzene 
contained in a shallow 
tank made of crown 
glass, making an angle 
of 60.0° with the sur-
face. What is the angle of refraction of the light ray 
(measured from the normal) when it enters the glass at 
the bottom of the tank?

  96.  A ray of light passes from air through dense flint 
glass and then back into air. The angle of incidence on 
the first glass surface is 60.0°. The thickness of the 
glass is 5.00 mm; its front and back surfaces are paral-
lel. How far is the ray displaced as a result of traveling 
through the glass?

  97.  Show that the deviation angle δ for a ray striking a 
thin converging lens at a distance d from the principal 
axis is given by δ = d/f. Therefore, a ray is bent through 
an angle δ that is proportional to d and does not depend 
on the angle of the incident ray (as long as it is parax-
ial). [Hint: Look at the figure and use the small-angle 
approximation sin θ ≈ tan θ ≈ θ (in radians).]

B

p

(Angles are greatly exaggerated for ease in labeling.)

q

D

E

A

d
C

δ  = β + γ

γβ

Review and Synthesis

  98.  A diamond in air is illuminated with white light. 
On one particular facet, the angle of incidence is 26.00°. 
Inside the diamond, red light (λ = 660.0 nm in vacuum) 
is refracted at 10.48° with respect to the normal; blue 
light (λ = 470.0 nm in vacuum) is refracted at 10.33°. 
(a) What are the indices of refraction for red and blue 
light in diamond? (b) What is the ratio of the speed of 
red light to the speed of blue light in diamond? (c) How 
would a diamond look if there were no dispersion?

  99.  (a) Sunlight reflected from the smooth ice surface 
of a frozen lake is totally polarized when the incident 
light is at what angle with respect to the horizontal? 
(b) In what direction is the reflected light polarized? 
(c) What is the direction of the magnetic field of the 
reflected light? (d) Is any light incident at this angle 
transmitted into the ice? If so, at what angle below the 
horizontal does the transmitted light travel?

 100. Laura is walking directly toward a plane mirror at a 
speed of 0.8 m/s relative to the mirror. At what speed 
is her image approaching the mirror?

 101. Xi Yang is practicing for his driver’s license test. He 
notices in the rearview mirror that a tree, located 
directly behind the automobile, is approaching his car 
as he is backing up. If the car is moving at 8.0 km/h in 
reverse, how fast relative to the car does the image of 
the tree appear to be approaching?

40.0° 40.0°

50.0°50.0°

n = 1.7

60.0° Air

Benzene
Glass
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Answers to Practice Problems

23.1

23.2 51°
23.3 If θi = 0, then θt = 0 and the angle of incidence at the 
back of the prism is 45°, which is larger than the critical 
angle (41.8°). If θi > 0, then θt > 0 and the angle of incidence 
at the back is greater than 45°.

θi
θt
θt Line parallel to first normal

Normal Normal

45°

45°

45°

45°

 23.4 4
3 h

23.5 No, she can’t see her feet; the bottom of the mirror is 
10 cm too high.
23.6 12 cm in front of the mirror, 3.0 cm tall, real
23.7 p = 6.00 cm, f = +12 cm, concave
23.8 

Image
Object

23.9 −12 cm (diverging)

Answers to Checkpoints

23.3 From Snell’s law, the product n sin θ is the same in 
both media. Thus, sin θ is larger in the material with the 
smaller index of refraction (here, water). From 0 to 90°, sin θ 
increases as θ increases, the angle that the ray makes with 
the normal (θ). Therefore, θwater is larger than θglass. Since θ is 
the angle the ray makes with the normal, the ray refracts 
away from the normal when it enters the water.
23.5 Light reflected from a horizontal surface is partially or 
completely polarized horizontally (parallel to the reflecting 
surface). To reduce reflected glare, the transmission axis of 
the polarized sunglasses should be oriented vertically.
23.6 Light rays from a point on the fish are refracted by the 
water-air interface. The figure shows that the rays are bent 
outward (away from the normal). The rays never converge to 
a point to form a real image. Tracing the rays backward 
(dashed yellow lines) shows that they appear to diverge from 
the image point but do not actually pass through that point. 
The image is virtual.
23.8 A plane mirror forms a virtual image that is the same 
size as the object (see Fig. 23.27). The magnification is 
m = +1.
23.9 The image can be either real or virtual. Figure 23.45a 
shows a converging lens forming a real image because the 
rays from a point on the object converge to a point on the 
image. Figure 23.45b shows a converging lens forming a 
virtual image. In this case, the rays from a point on the object 
do not converge to a point on the image. If we trace the rays 
coming out of the lens backward, they appear to diverge 
from a point on the image.
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24
Optical Instruments

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ The human eye  
(Section 24.3; Conceptual 
Questions 10–15; 
 Problems 21–24)

∙ Corrective lenses (Sec-
tion 24.3; Examples 24.4, 
24.5; Practice Problems 
24.4, 24.5; Problems 
25–32, 63)

∙ Microscopy (Section 24.5; 
Problems 41–51, 74,  
82, 85)

Concepts & Skills to Review

•	 distinction	between	real	
and	virtual	images	
	(Section	23.6)

•	 magnification	
	(Section 23.8)

•	 refraction	(Section	23.3)
•	 thin	lenses	(Section	23.9)
•	 finding	images	with		

ray diagrams		
(Sections	23.6–23.9)

•	 math skill:	small-angle	
approximations		
(Appendix	A.9)

Source: NASA

The	 Hubble	 Space	 Telescope,	 orbiting	 Earth	 at	 an	 altitude	 of	 about	
600	 km,	 was	 launched	 in	 1990	 by	 the	 crew	 of	 the	 Space	 Shuttle	
Discovery.	What	is	the	advantage	of	having	a	telescope	in	space	when	
there	are	 telescopes	on	Earth	with	 larger	 light-gathering	capabilities?
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24.1 LENSES IN COMBINATION

Optical instruments generally involve two or more lenses in combination. Let’s start 
this chapter by considering what happens when light rays emerging from a lens pass 
through another lens. We will find that the image formed by the first lens serves as 
the object for the second lens.

Suppose that light rays diverge from a point on the image formed by the first 
lens. These rays are refracted by the second lens the same way as if they were com-
ing from a point on an object. Therefore, the location and size of the image formed 
by the second lens can be found by applying the lens equation, where the object 
distance p is the distance from the image formed by the first lens to the second lens. 
For lenses in combination, we apply the lens equation to each lens in turn, where the 
object for a given lens is the image formed by the previous lens. Remember that for 
any application of the lens equation, the object and image distances p and q are mea-
sured from the center of the same lens. This same procedure holds true for combina-
tions of lenses and mirrors.

In Chapter 23, all objects were real; p was always positive. With more than one 
lens, it is possible to have a virtual object for which p is negative. Rays from a point 
on a real object are diverging as they enter a lens; rays from a point on a virtual object 
are  converging as they enter a lens. If one lens produces a real image that would have 
formed past the second lens—so that the rays are converging to a point past the sec-
ond lens—that image becomes a virtual object for the second lens (Fig. 24.1). Before 
the real image could form from the first lens, the presence of the second lens inter-
venes; the rays striking the second lens are converging to a point rather than diverg-
ing from a point. This seemingly complicated situation is treated simply by using a 
negative object distance for a virtual object.

When a lens forms a real image, its position with respect to the second lens 
determines whether it is a real or a virtual object for the second lens. If the first lens 
would have formed a real image past the second lens, the image becomes a virtual 
object for the second lens. If the first lens forms a real or virtual image before the 
second lens, the image is a real object for the second lens.

For a system of two thin lenses separated by a distance s, we can apply the thin 
lens equation separately to each lens:

1
p1

+
1
q1

=
1
f1

1
p2

+
1
q2

=
1
f2

CONNECTION:

For a system of two (or more) 
lenses, apply the thin lens 
equation to each lens in turn. 
The image formed by one 
lens serves as the object for 
the next lens.

Object

Lens 2Lens 1Lens 1

Image
formed
by lens 2

h

p1 q1

q2 p2
s

Object Image
formed
by lens 1

h

p1 q1

Image that 
would have 
been formed 
by lens 1

(a) (b)

Figure 24.1 (a) Lens 1, a converging lens, forms a real image of an object. 
(b) Now lens 2 is placed a distance s < q1 past lens 1. Lens 2 interrupts the light rays 
before they come together to form the real image, but we can think of the image that 
would have formed as the virtual object for lens 2. For a virtual object, p is negative.
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The object distance p2 for the second lens is

Equation (24-1) gives the correct sign for p2 in every case. If q1 < s, then the 
image formed by the first lens is on the incident side of the second lens and, thus, is 
a real object for the second lens (p2 > 0). If q1 > s, then the second lens interrupts 
the light rays before they form an image. The image that would have been formed by 
the first lens is beyond the second lens, so the image becomes a virtual object for the 
second lens (p2 < 0).

Ray Diagrams for Two Lenses In a ray diagram for a two-lens system, only one of 
the principal rays for the first lens is a principal ray for the second lens. Figure 24.2 
shows a ray diagram for a system where lens 1 is converging and lens 2 is diverging.

Transverse Magnification

Suppose N lenses are used in combination. Let h1 be the size of the object and h′n be 
the size of the image formed by the nth lens. Since

 
h′N
h1

=
h′1
h1

×
h′2
h′1

×
h′3
h′2

× · · · ×
h′N

h′N−1
 (24-2)

 p2 = s − q1 (24-1)

Object

Lens 1

Lens 2

Image
formed
by lens 2

h

F1

p1 q1

q2 p2

s

F1′ F2 F2′

3

3

2

2

1

1

Image formed 
by lens 1 is 
the virtual 
object for 
lens 2

Path of rays 1 
and 2 if lens 2 
were not 
present

Figure 24.2 Ray diagram for a two-lens combination. Ray 1 comes from the object through focal point F′1 and emerges 
from lens 1 parallel to the principal axis. Ray 1 is a principal ray for lens 2, emerging as if it came directly from F2. In 
the absence of lens 2, ray 1 would have continued parallel to the axis. To locate the image formed by lens 1, we choose 
another principal ray (ray 2) and trace it, ignoring lens 2. These two rays locate the image formed by lens 1. Since it lies 
beyond lens 2, it becomes a virtual object. We do not yet know what happens to ray 2 when it strikes lens 2. To find the 
final image, we need another principal ray for lens 2. Ray 3 passes undeflected through the center of lens 2; we extrapolate 
it back through lens 1 to the object. The intersection of rays 1 and 3 locates the final image, which is virtual. Now we 
can finish ray 2; it must emerge from lens 2 as if coming from the image point.
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the overall transverse magnification due to the N lenses is the product (not the sum) 
of the magnifications due to the individual lenses:

Overall transverse magnification

 m =
h′N
h1

  = m1 × m2 × · · · × mN  (24-3)

CHECKPOINT 24.1

The	grid	 in	Fig.	24.2	 represents	1	cm	×	1	cm.	What	are	 the	distances	p1,	q1,	
s,	p2,	and	q2?	What	are	 the	 transverse	magnifications	due	 to	 lens	1	and	 to	 lens	
2?	 What	 is	 the	 overall	 transverse	 magnification?	 Be	 sure	 to	 include	 correct	
algebraic	signs	with	 your	answers.

Conceptual Example 24.1

Virtual Image as Object

Two lenses are used in combination. Suppose the first lens 
forms a virtual image. Does that image serve as a virtual 
object for the second lens?

Strategy The distinction between a real and virtual object 
depends on whether the rays incident on the second lens are 
converging or diverging.

Solution and Discussion If the first lens forms a virtual 
image, then the rays from any point on the object diverge as they 
emerge from the first lens. To find the image point, we trace 
those rays backward to find the point from which they seem to 
originate. Since the rays incident on the second lens are diverg-
ing, the image must become a real object for the second lens.

Another approach: the image formed by the first lens 
is located before the second lens (i.e., on the same side as 
the incident light rays). Thus, the rays behave as if they 
diverge from an actual object at the same location—as a 
real object.

Conceptual Practice Problem 24.1 Real Image 
as Object

Two lenses are used in combination. Suppose the first lens 
forms a real image. Does that image serve as a real object or 
as a virtual object for the second lens? If either is possible, 
what determines whether the object is real or virtual?

Example 24.2

Two Converging Lenses

Two converging lenses, separated by a distance of 40.0 cm, 
are used in combination. The focal lengths are f1 = +10.0 cm 
and f2 = +12.0 cm. An object, 4.00 cm high, is placed  
15.0 cm in front of the first lens. Find the intermediate and 
final image distances, the overall transverse magnification, 
and the height of the final image.

Strategy We draw a diagram to help visualize what is 
happening and then apply the lens equation to each lens in 
turn. The overall magnification is the product of the separate 
magnifications due to the two lenses.

Given: p1 = +15.0 cm; f1 = +10.0 cm; f2 = +12.0 cm; sepa-
ration s = 40.0 cm; h = 4.00 cm

To find: q1; q2; m; h′2

Solution Figure 24.3 is a ray diagram that uses two 
principal rays for each lens to find the intermediate and 
final images. From the ray diagram, we expect that the 
intermediate image is real and to the left of lens 2; the 
 final image is virtual, inverted, to the left of lens 1, and 
greatly enlarged.

continued on next page
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24.2 CAMERAS

One kind of optical instrument is the camera, which often has only one lens to produce 
an image, or even—in a pinhole camera—no lens. Figure 24.4 shows a simple digital SLR 
(single lens reflex) camera. The camera uses a converging lens to form a real image on 
the image sensor. The image must be real in order to expose the sensor. Light rays from 
a point on an object being photographed must converge to a corresponding point on the 
sensor. A video projector also uses a converging lens to form a real image on a screen.

In good-quality cameras, the distance between the lens and the sensor can be 
adjusted in accordance with the lens equation so that a sharp image forms on the 
sensor. For distant objects, the lens must be one focal length from the sensor. For 
closer objects, the lens must be a little farther than that, since the image forms past 
the focal point. Fixed focus cameras have a lens that cannot be moved. Such cameras 

Example 24.2 continued

The thin lens equation, applied to lens 1, enables us to 
solve for q1.

1
p1

+
1
q1

=
1
f1

Rearranging the equation and substituting values, we have

1
q1

=
1
f1

−
1
p1

=
1

10.0 cm
−

1
15.0 cm

=
1

30 cm

Therefore, q1 = +30 cm.
From Fig. 24.3, the object distance for lens 2 ( p2) is the 

separation of the two lenses (s) minus the image distance for 
the image formed by lens 1 (q1).

p2 = s − q1 = 40.0 cm − 30 cm = 10 cm

The object distance is positive because the object is real: 
it is on the left of lens 2, and the rays from the object are di-
verging as they enter lens 2. We apply the thin lens equation 
to the second lens to find q2.

1
q2

=
1
f2

−
1
p2

=
1

12.0 cm
−

1
10 cm

= −  

1
60 cm

q2 = −60 cm

The image is 60 cm to the left of lens 2 or, equivalently,  
20 cm to the left of lens 1. The image distance is negative, so 
the image is virtual.

For a single lens the magnification is

m = −  

q

p

For a combination of two lenses the overall magnification is

 m = m1 × m2 = −  

q1

p1
× (−  

q2

p2)

 = (−  

30 cm
15.0 cm) × (−  

−60 cm
10 cm ) = −12

The final image is inverted, as indicated by the negative 
value of m, and its height is

∣h′2∣ = ∣mh1∣ = 12 × 4.00 cm = 48 cm

Discussion Now we compare the numerical results with the 
ray diagram. As expected, the intermediate image is real and to 
the left of lens 2 (q1 = 30 cm < s = 40.0 cm). The final image 
is virtual (q2 < 0), inverted (m < 0), and enlarged (∣m∣ > 1).

Practice Problem 24.2 Object Located at More 
than Twice the Focal Length

Repeat Example 24.2 if the same object is placed 25.0 cm 
before the first lens and the second lens is moved so it is only 
10.0 cm from the first lens. Are you able to predict anything 
about the final image by sketching a ray diagram?

Figure 24.3
Ray diagram for Example 24.2. The intermediate real image 
formed by lens 1 is found using two of the principal rays, shown 
in red and green. The green ray is also a principal ray for lens 2. 
The principal ray that passes straight through the center of lens 2, 
shown in blue, is not actually present—lens 1 is not large enough 
to send a ray toward lens 2 in that direction. Nevertheless, we can 
still use it to locate the final image.

p1 p2

f1 f2
q1

q2

Object

F1′

F1 F2F2′

Lens 1 Lens 2
Intermediate
image formed 
by lens 1

Final image
formed 
by lens 2

s
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may give good results for faraway objects, but for closer objects it is more important 
that the lens position be adjustable.

CHECKPOINT 24.2

A	camera	has	a	single	lens	with	focal	length	f.	Can	the	camera	be	used	to	take	
a	picture	of	an	object	at	a	distance	 less	 than	 f	 from	 the	 lens?	Explain.

Mirror
Image sensor

Shutter
open

Lens Aperture

Shutter
closed

(a) (b)

Figure 24.4 This single lens 
reflex (SLR) camera uses a sin-
gle converging lens to form real 
images on the image sensor. The 
camera is adjusted for sharp 
images of objects at different 
distances by moving the lens 
closer to or farther away from 
the sensor. (a) The shutter is 
closed, preventing exposure of 
the sensor. (b) The mirror 
swings out of the way and the 
shutter opens for a short time to 
expose the sensor.

Example 24.3

Fixed-Focus Camera

A camera lens has a focal length of 50.0 mm. Photographs 
are taken of objects located at various positions, from 
an   infinite distance away to as close as 6.00 m from 
the  lens. (a) For an object at infinity, at what distance 
from the lens is the image formed? (b) For an object at a 
distance of 6.00 m, at what distance from the lens is the 
image formed?

Strategy We apply the thin lens equation for the two ob-
ject distances and find the two image distances.

Solution (a) The thin lens equation is

1
p

+
1
q

=
1
f

For an object at infinity, 1/p = 1/∞ = 0. Then

0 +
1
q

=
1
f

Therefore, q = f. The image distance is equal to the focal 
length; the image is 50.0 mm from the lens.

(b) This time p = 6.00 m from the camera:

1
6.00 m

+
1
q

=
1

50.0 × 10−3 m

Solving for q yields

1
q

=
1

50.0 × 10−3 m
−

1
6.00 m

or
q = 50.4 mm

Discussion The images are formed within 0.4 mm of each 
other, so the camera can form reasonably sharp images for 
objects from 6 m to infinity with a fixed distance between 
the lens and the image sensor.

Practice Problem 24.3 Close-Up Photograph

Suppose the same lens is used with an adjustable camera to 
take a photograph of an object at a distance of 1.50 m. To what 
distance from the image sensor should the lens be moved?

Regulating Exposure

A diaphragm made of overlapping metal blades acts like the iris of the eye; it regulates 
the size of the aperture—the opening through which light is allowed into the camera 
(see Fig. 24.4). The shutter is the mechanism that regulates the exposure time—the 
time interval during which light is allowed through the aperture. The aperture size 
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and exposure time are selected so that the correct amount of light energy reaches the 
sensor. If they are chosen incorrectly, the sensor is over- or underexposed.

Depth of Field

Once the lens-sensor distance q is chosen, only objects in a plane at a particular 
distance p from the lens form sharp images on the sensor. Rays from a point on an 
object not in this plane expose a circle on the sensor (the circle of confusion) instead 
of a single point (Fig. 24.5a). For some range of distances from the plane, the circle 
of confusion is small enough to form an acceptably clear image. This range of dis-
tances is called the depth of field.

A diaphragm can be placed before the lens to reduce the aperture size, reducing 
the size of the circle of confusion (Fig. 24.5b). Thus, reducing the aperture size 
causes an increase in the depth of field. The trade-off is that, with a smaller aperture, 
a longer exposure time is necessary to correctly expose the sensor, which can be 
problematic if the subject is in motion or if the camera is not held steady by a tripod. 
Some compromise must be made between using a small aperture—so that more of 
the surroundings are imaged sharply—and using a short exposure time so that motion 
of the subject or the camera does not blur the image.

Pinhole Camera

Even simpler than a camera with one lens is a pinhole camera, or camera obscura 
(“dark room” in Latin). To make a pinhole camera, a tiny pinhole is made in one side 
of a box (Fig. 24.6a). An inverted, real “image” is formed on the opposite side of the 
box. A photographic plate (a glass plate coated with a photosensitive emulsion) or 
film placed on the back wall can record the image.

Artists made use of the camera obscura by working in a chamber with a small open-
ing that admitted light rays from a scene outside the chamber. The image could be 
projected onto a canvas and the artist could trace the outline of the scene on the canvas. 
Jan van Eyck, Titian, Caravaggio, Vermeer, and Canaletto are just a few of the artists 
known or believed to have used a camera obscura to achieve realistic naturalism  
(Fig. 24.6b). In the eighteenth and nineteenth centuries, the camera obscura was commonly 
used to copy paintings and prints.

p

qPoint not on the
plane at distance p

Circle of
confusion

Sensor

(a) (b)

Smaller circle
of confusion

Sensor

Diaphragm

Figure 24.5 (a) The circle of 
confusion for a point not on the 
plane in focus. (b) Reduction of 
the aperture size reduces the 
circle of confusion and thereby 
increases the depth of field.

Figure 24.6 (a) A small pinhole camera. (b) The Concert was painted by Jan Vermeer around 1666. A camera 
obscura probably contributed to the accuracy of the perspective and the near-photographic detail in Vermeer’s paintings.
©PicturesNow.com/Alamy

(a)

Object

Pinhole

Film or screen

Image

(b)
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The pinhole camera does not form a true image—rays from a point on an object 
do not converge to a single point on the wall. The pinhole admits a narrow cone of 
rays diverging from each point on the object; the cone of rays makes a small circular 
spot on the wall. If this spot is small enough, the image appears clear to the eye. A 
smaller pinhole results in a dimmer, sharper “image” unless the hole is so small that 
diffraction spreads the spots out significantly.

24.3 THE EYE

The human eye is similar to a digital camera. The camera forms a real image on a 
CCD array; the eye forms a real image on the retina, a membrane with approximately 
125 million photoreceptor cells (the rods and cones). The focusing mechanism is dif-
ferent, though. In the camera, the lens moves toward or away from the image sensor 
to form an image on the sensor as the object distance p changes. In the eye, the lens 
is at a fixed distance from the retina, but it has a variable focal length; the focal length 
is adjusted to keep the image distance constant as the object distance varies.

Figure 24.8 shows the anatomy of the eye. It is approximately spherical, with an 
average diameter of 2.5 cm. A bulge in front is filled with the aqueous fluid (or aque-
ous “humor”) and covered on the outside by a transparent membrane called the  cornea. 
The aqueous fluid is kept at an overpressure to maintain the slight outward bulge. The 
curved surface of the cornea does most of the refraction of light rays entering the eye. 
The adjustable crystalline lens does the fine tuning. (The name comes from water- 
soluble proteins called crystallins.) For most purposes, we can consider the cornea and 
the lens to act like a single lens, about 2.0 cm from the retina, with adjustable focal 
length. In order to see objects at distances of 25 cm or greater from the eye, which is 

EVERYDAY PHYSICS DEMO

A	 safe	 way	 to	 view	 the	 Sun	 is	 through	 a	 pinhole	 camera	 arrangement	 	
(Fig.	24.7).	 (This	 is	 a	 good	way	 to	 view	a	 solar	 eclipse.)	 Poke	a	pinhole	 in	 a	
piece	of	cardboard,	a	paper	plate,	or	an	aluminum	pie	pan.	Then	hold	a	white	
sheet	 of	 cardboard	 below	 the	 pinhole	 and	 view	 the	 image	 of	 the	 Sun	 on	 it.	
(Remember	 not	 to	 look	 directly	 at	 the	 Sun,	 even	 during	 an	 eclipse;	 severe	
damage	 to	 your	eyes	can	occur.)

Image of eclipse

Light from Sun
(around perimeter
of the Moon)

Pinhole

Figure 24.7 A pinhole cam-
era arrangement for viewing an 
eclipse of the Sun.

CONNECTION:

In a simplified model of the 
human eye, a single converg-
ing lens of variable focal 
length is located at a fixed 
distance from the retina. In a 
camera, usually the focal 
length of the lens is fixed and 
the distance between the lens 
and the image sensor (or 
film) is variable instead.

Cornea

Aqueous fluid

Crystalline lens

Macula lutea

Pupil

Iris

Optic nerve

Retina

Vitreous
fluid

Fovea
centralis

Ciliary muscle

Figure 24.8 Anatomy of the 
human eye.
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considered normal vision, the focal length of the cornea-lens combination must vary 
between 1.85 cm and 2.00 cm if the distance to the retina is 2.00 cm (see Problem 21).

The spherical volume of the eye behind the lens is filled with a jelly-like material 
called the vitreous fluid. The indices of refraction of the aqueous fluid and the vitre-
ous fluid are approximately the same as that of water (1.333). The index of the lens, 
made of a fibrous, jelly-like material, is a bit higher (1.437). The cornea has an index 
of refraction of 1.351.

The eye has an adjustable aperture (the pupil) that functions like the diaphragm 
in a camera to control the amount of light that enters. The size of the pupil is adjusted 
by the iris, a ring of muscular tissue (the colored portion of the eye). In bright light, 
the iris expands to reduce the size of the pupil and limit the amount of light entering 
the eye. In dim light, the iris contracts to allow more light to enter through the dilated 
pupil. The expansion and contraction of the iris is a reflex action in response to chang-
ing light conditions. In ordinary light the diameter of the pupil is about 2 mm; in dim 
light it is about 8 mm.

On the retina, the photoreceptor cells are densely concentrated in a small region 
called the macula lutea. The cones come in three different types that respond to dif-
ferent wavelengths of light (Fig. 24.9). Thus, the cones are responsible for color vision. 
Centered within the macula lutea is the fovea centralis, of diameter 0.25 mm, where 
the cones are tightly packed together and where the most acute vision occurs in bright 
light. The muscles that control eye movement ensure that the image of an object being 
examined is centered on the fovea centralis.
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Figure 24.9 How the sensi-
tivities of the rods and the 
three types of cones depend on 
the vacuum wavelength of the 
incident light. (Rods are much 
more sensitive than cones, so if 
the vertical scale were absolute 
instead of relative, the graph 
for the rods would be much 
taller than the others.)

EVERYDAY PHYSICS DEMO

Each	retina	has	a	blind spot	with	no	rods	or	cones,	located	where	the	optic	nerve	
leaves	the	retina.	The	blind	spot	 is	not	usually	noticed	because	the	brain	fills	 in	
the	missing	information.	To	observe	the	blind	spot,	draw	a	cross	and	a	dot,	about	
10	cm	apart,	on	a	sheet	of	white	paper.	Cover	your	left	eye	and	hold	the	paper	
far	 from	 your	 eyes	with	 the	dot	 on	 the	 right.	Keep	 your	 eye	 fixed	on	 the	 cross	
as	 you	 slowly	move	 the	 paper	 toward	 your	 face.	 The	 dot	 disappears	 when	 the	
image	 falls	 on	 the	blind	 spot.	Continue	 to	move	 the	paper	 even	 closer	 to	 your	
eye;	you	will	see	the	spot	again	when	 its	 image	moves	off	 the	blind	spot.

The rods are more sensitive to dim light than the cones but do not have different types 
sensitive to different wavelengths, so we cannot distinguish colors in very dim light. Out-
side the macula the photoreceptor cells are much less densely packed and they are all rods. 
However, the rods outside the macula are more densely packed than the rods inside the 
macula. If you are trying to see a dim star in the sky, it helps to look a little to the side 
of the star so the image of the star falls outside the macula where there are more rods.
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Accommodation

Variation in the focal length of the flexible lens is called accommodation; it is the 
result of an actual change in the shape of the lens through the action of the ciliary 
muscles. The adjustable shape of the lens allows for accommodation for various object 
distances, while still forming an image at the fixed image distance determined by the 
separation of lens and retina. When the object being viewed is far away, the ciliary 
muscles relax; the lens is relatively flat and thin, giving it a longer focal length  
(Fig. 24.10a). For closer objects, the ciliary muscles squeeze the lens into a thicker, 
more rounded shape (Fig. 24.10b), giving the lens a shorter focal length.

Accommodation enables an eye to form a sharp image on the retina of objects at a 
range of distances from the near point to the far point. An adult with good vision has 
a near point at 25 cm or less and a far point at infinity. A child can have a near point of 
10 cm or less. Corrective lenses (eyeglasses or contact lenses) or surgery can compensate 
for an eye with a near point greater than 25 cm or a far point less than infinity.

Optometrists write prescriptions in terms of the refractive power (P) of a lens rather 
than the focal length. The refractive power is simply the reciprocal of the focal length:

Viewing distant object,
longer focal length

Viewing nearby object,
shorter focal length

(a)

Lens Retina
Ciliary muscles

Cornea

(b)

Lens Retina
Ciliary muscles

Cornea

Figure 24.10 The lens of 
the eye has (a) a longer focal 
length when viewing distant 
objects and (b) a shorter focal 
length when viewing nearby 
objects.

Refractive power

 P =
1
f

 (24-4)

Refractive power is usually measured in diopters (symbol D). One diopter is the refrac-
tive power of a lens with focal length f = 1 m (1 D = 1 m−1). The shorter the focal 
length, the more “powerful” the lens because the rays are bent more. Converging lenses 
have positive refractive powers, and diverging lenses have negative refractive powers.

Why use refractive power instead of focal length? When two or more thin lenses 
with refractive powers P1, P2, . . . are sufficiently close together, they act as a single thin 
lens with refractive power
 P = P1 + P2 + · · · (24-5)

as can be shown in Problem 10 by substituting P for 1/f.

Application: Correcting Myopia

A myopic eye can see nearby objects clearly but not distant objects. Myopia (near-
sightedness) occurs when the shape of the eyeball is elongated or when the curvature 
of the cornea is excessive. A myopic eye forms the image of a distant object in front of 
the retina (Fig. 24.11a). The refractive power of the lens is too large; the eye makes 
the rays converge too soon. A diverging corrective lens (with negative refractive 
power) can compensate for nearsightedness by bending the rays outward (Fig. 24.11b).

For objects at any distance from the eye, the diverging corrective lens forms a 
virtual image closer to the eye than is the object. For an object at infinity, the cor-
rective lens forms an image at the far point of the eye (Fig. 24.11c). For less distant 
objects, the virtual image is closer than the far point. The eye is able to focus rays 
from this image onto the retina since it is never past the far point.
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Application: Correcting Hyperopia

A hyperopic (farsighted) eye can see distant objects clearly but not nearby objects; 
the near point distance is too large. The refractive power of the eye is too small; the 
cornea and lens do not refract the rays enough to make them converge on the retina  
(Fig. 24.12a). A  converging lens can correct for hyperopia by bending the rays inward 
so they converge sooner (Fig. 24.12b). In order to have normal vision, the near point 
should be 25 cm (or less). Thus, for an object at 25 cm from the eye, the corrective 
lens forms a virtual image at the eye’s near point.

(a) (b)

(c)

Object

Virtual image formed 
by diverging lens

Real
image 

on retina

Figure 24.11 (a) In a nearsighted eye, parallel rays from a point on a distant object converge before they reach the 
retina. (b) A diverging lens corrects for the nearsighted eye by bending the rays outward just enough that the eye brings 
them back together at the retina. (c) The diverging lens forms a virtual image closer to the eye than the object; the eye 
can make the rays from this image converge into a real image on the retina. (Not to scale.)

Example 24.4

Correction for a Nearsighted Eye

 Without her contact lenses, Dana cannot see clearly an 
object more than 40.0 cm away. What refractive power 
should her contact lenses have to give her normal vision?

Strategy The far point for Dana’s eyes is 40.0 cm. For an 
object at infinity, the corrective lens must form a virtual 
 image 40.0 cm from the eye. We use the lens equation with 
p = ∞ and q = −40.0 cm to find the focal length or refractive 
power of the corrective lens. The image distance is nega-
tive because the image is virtual—it is formed on the same 
side of the lens as the object.

Solution The thin lens equation is

1
p

+
1
q

=
1
f

= P

Since p = ∞, 1/p = 0. Then

0 +
1

−40.0 cm
=

1
f

Solving for the focal length yields

f = −40.0 cm

The refractive power of the lens in diopters is the inverse of 
the focal length in meters.

P =
1
f

=
1

−0.400 m
= −2.50 D

Discussion The focal length and refractive power are neg-
ative, as expected for a diverging lens. We might have antici-
pated that f  = −40.0 cm without using the thin lens equation. 
Rays coming from a distant source are nearly parallel. Paral-
lel rays incident on a diverging lens emerge such that they 
appear to come from the focal point before the lens. Thus, the 
image is at the focal point on the incident side of the lens.

Practice Problem 24.4  What Happens to the  
Near Point?

Suppose Dana’s near point (without her contact lenses) is 
10.0 cm. What is the closest object she can see clearly 
with her contact lenses on? [Hint: For what object dis-
tance do the contact lenses form a virtual image 10.0 cm 
before the lenses?]
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(a) (b)

Object closer
than near point

Virtual image
formed by corrective lens

Object closer
than near point

Real image 
on retina

Figure 24.12 (a) A farsighted eye forms an image of a nearby object past the retina. (Not to scale.) (b) A converging 
 corrective lens forms a virtual image farther away from the eye than the object. Rays from this virtual image can be 
brought together by the eye to form a real image on the retina.

Example 24.5

Correction for Farsighted Eye

 Winifred is unable to focus on objects closer than 2.50 m 
from her eyes. What refractive power should her corrective 
lenses have?

Strategy For an object 25 cm from Winifred’s eye, the cor-
rective lens must form a virtual image at the near point of Win-
ifred’s eye (2.50 m from the eye). We use the thin lens equation 
with p = 25 cm and q = −2.50 m to find the focal length. As in 
the last example, the image distance is negative because it is a 
virtual image formed on the same side of the lens as the object.

Solution From the thin lens equation,

1
p

+
1
q

=
1
f

We substitute p = 0.25 m and q = −2.50 m:

1
0.25 m

+
1

−2.50 m
= 3.6 m−1 =

1
f

Then the focal length is

f = 0.28 m

The refractive power is

P =
1
f

= +3.6 D

Discussion This solution assumes that the corrective lens 
is very close to the eye, as for a contact lens. If Winifred 
wears eyeglasses that are 2.0 cm away from her eyes, then 
the object and image distances we should use—since they 
are measured from the lens—are p = 23 cm and q = −2.48 m. 
The thin lens equation then gives P = +3.9 D.

Practice Problem 24.5  Using Eyeglasses

A man can clearly see an object that is 2.00 m away (or 
more) without using his eyeglasses. If the eyeglasses have a 
refractive power of +1.50 D, how close can an object be to 
the eyeglasses and still be clearly seen by the man? Assume 
the eyeglasses are 2.0 cm from the eye.

Presbyopia

As a person ages, the crystalline lens becomes less flexible and the eye’s ability to ac-
commodate decreases, a phenomenon known as presbyopia. Older people have diffi-
culty focusing on objects held close to the eyes; from the age of about 40 years many 
people need eyeglasses for reading. At age 60, a near point of 50 cm is typical; in some 
people it may be 1 m or even more. Reading glasses for a person suffering from presby-
opia are similar to those used by a farsighted person.
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Astigmatism

Astigmatism, a common vision problem, is caused by an asymmetry of the cornea or the 
crystalline lens about the principal axis. Consider a set of planes that include the axis. 
If the curvature of the cornea or lens varies from one plane to another, then the eye 
effectively has different focal lengths for rays in different planes. Correction for astigma-
tism can involve corrective lenses, such as spherocylindrical lenses, that are asymmetric.

CHECKPOINT 24.3

On	 a	 camping	 trip,	 you	 discover	 that	 no	 one	 has	 brought	 matches.	 A	 friend	
suggests	using	his	eyeglasses	to	focus	sunlight	onto	some	dry	grass	and	shred-
ded	 bark	 to	 get	 a	 fire	 started.	 Could	 this	 scheme	 work	 if	 your	 friend	 is	 near-
sighted?	What	about	 if	he	 is	 farsighted?	Explain.

24.4 ANGULAR MAGNIFICATION AND THE SIMPLE MAGNIFIER

Angular Magnification

We use magnifiers and microscopes to enlarge objects too small to see with the naked 
eye. But what do we mean by enlarged in this context? The apparent size of an object 
depends on the size of the image formed on the retina of the eye. For the unaided 
eye, the retinal image size is proportional to the angle subtended by the object.  
Figure 24.13 shows two identical objects being viewed from different distances. Imagine 
rays from the top and bottom of each object that are incident on the center of the lens 
of the eye. The angle θ is called the angular size of the object. The image on the 
retina subtends the same angle θ; the angular size of the image is the same as that of 
the object. Rays from the object at a greater distance subtend a smaller angle; the 
angular size depends on distance from the eye.

A magnifying glass, microscope, or telescope serves to make the image on the 
retina larger than it would be if viewed with the unaided eye. Since the size of the 
image on the retina is proportional to the angular size, we measure the usefulness of 
an optical instrument by its angular magnification—the ratio of the angular size 
using the instrument to the angular size with the unaided eye.

Definition of angular magnification

 M =
θaided

θunaided
 (24-6)

Image

θθ

The magnifying power of an optical instrument is ∣ M ∣, the absolute value of the 
angular magnification. Magnifying power is a completely different quantity from 
refractive power (see Section 24.3).

The overall transverse magnification (the ratio of the retinal image size to the object 
size) isn’t the same as its angular magnification. For example, the overall transverse 

Figure 24.13 Identical 
objects viewed from different 
distances. Rays drawn from the 
top and bottom of the nearer 
object illustrate the angle θ 
subtended by the object. The 
size of the image on the retina 
is proportional to the angle 
subtended.
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magnification of a telescope-eye combination is much less than 1; even when using 
the telescope, the image of the Moon on the retina is much smaller than the size 
of the Moon itself. The telescope is useful because it makes the image of the Moon 
on the retina (or on the sensor of a camera) larger by a factor ∣ M ∣ than it would be 
in unaided viewing.

EVERYDAY PHYSICS DEMO

On	a	 clear	 night	with	 the	Moon	 visible,	 go	 outside,	 shut	 one	eye,	 and	 hold	 a	
pencil	at	arm’s	 length	between	your	open	eye	and	the	Moon	so	it	blocks	your	
view	of	the	Moon.	Compare	the	angular	size	of	the	Moon	with	the	angular	width	
of	 the	pencil.	Estimate	 the	distance	 from	your	eye	 to	 the	pencil	and	 the	pen-
cil’s	width.	Use	this	information	and	the	Earth-Moon	distance	(4	×	105	km)	to	
estimate	 the	 diameter	 of	 the	 Moon.	 Compare	 your	 estimate	 with	 the	 actual	
diameter	of	 the	Moon	 (3.5	×	103	km).

Simple Magnifier

When you want to see something in greater detail, you naturally move your eye closer 
to the object to increase the angular size of the object. But the eye’s ability to accom-
modate for nearby objects is limited; anything closer than the near point cannot be 
seen clearly. Thus, the maximum angle subtended at the unaided eye by an object 
occurs when the object is located at the near point.

A simple magnifier is a converging lens placed so that the object distance is less 
than the focal length. The virtual image formed is enlarged, upright, and farther away 
from the lens than the object (Fig. 24.14). Typically, the image is put well beyond the 
near point so that it is viewed by a more relaxed eye at the expense of a small reduction 
in angular magnification. The angle subtended by the enlarged virtual image seen by the 
eye is much larger than the angle subtended by the object when placed at the near point.

If a small object of height h is viewed with the unaided eye (Fig. 24.15a), the 
angular size when it is placed at the near point (a distance N from the eye) is

 θunaided ≈
h

N
  (in radians)  (24-7)

where we assume h ≪ N and, thus, θunaided is small enough that tan θunaided ≈ θunaided. 
If the object is now placed at the focal point of a converging lens, the image is formed 
at infinity and can be viewed with a relaxed eye (Fig. 24.15b). The angular size of 
the image is

 θaided ≈
h

f
  (in radians)  (24-8)

f f

F′
Object

Converging lens

Virtual
image

F

Figure 24.14 A converging 
lens used as a magnifying glass 
forms an enlarged virtual 
image. The object distance is 
less than the focal length.

Object at focal point
of converging lens

Virtual
image formed
by converging

lens is at
infinity

(b) Eye aided by converging lens

h

f

Object at
near point h

N

(a) Unaided eye

θunaided
θaided

Figure 24.15 (a) The angle θunaided subtended at the eye by an object placed at the near point. (b) The magnifier 
forms a virtual image of the object at infinity. The angle θaided subtended by the virtual image is larger than θunaided.
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Then the angular magnification M is

When calculating the angular magnification of an optical instrument, it is cus-
tomary to assume a standard near point of N = 25 cm.

Angular magnification of a simple magnifier

 M =
θaided

θunaided
=

h/f
h/N

=
N

f
 (24-9)

Equation (24-9) gives the angular magnification when the object is placed at the 
focal point of the magnifier. If the object is placed closer to the magnifier (p < f ), 
the angular magnification is somewhat larger. The angular size of the image would 
then be θaided = h/p, and the angular magnification would be

 M =
θaided

θunaided
=

h/p
h/N

=
N

p
 (24-10)

In many cases, the small increase in angular magnification is not worth the eyestrain 
of viewing an image closer to the eye (see Problem 40).

CHECKPOINT 24.4

A	diverging	lens	(f	<	0)	can	form	a	virtual	 image	of	a	real	object.	Can	a	diverg-
ing	 lens	 be	 used	 as	 a	 simple	magnifier?	 Explain.	 [Hint:	 The	 image	 distance	 is	
less	 than	 the	object	distance:	 ∣ q ∣	<	p.]

Example 24.6

A Magnifying Glass

A converging lens with a focal length of 4.00 cm is used as a 
simple magnifier. The lens forms a virtual image at your 
near point, 25.0 cm from your eye. Where should the object 
be placed, and what is the angular magnification? Assume 
that the magnifier is held close to your eye.

Strategy We can use 25.0 cm as the image distance from 
the lens; if the magnifier is near the eye, distances from the 
lens are approximately the same as distances from the eye. 
We apply the thin lens equation to find the object distance 
with the focal length and image distance known.

Solution By rearranging the thin lens equation to solve for 
the object distance, we obtain

p =
fq

q − f

We now substitute q = −25.0 cm (negative for a virtual im-
age) and f = +4.00 cm.

 p =
4.00 cm × (−25.0 cm)
−25.0 cm − 4.00 cm

 = 3.45 cm

The object is placed 3.45 cm from the lens. The angular size 
(in radians) of the image formed is

θ =
h

p

where h is the size of the object. The object is not at the 
focal point of the lens, so the angular size is not h/f as it is 
in Fig. 24.15b. If the object were to be viewed without the 
magnifier, while placed at the near point of N = 25.0 cm, 
the angular size would be

θ0 =
h

N

continued on next page
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Example 24.6 continued

The angular magnification is

M =
h/p
h/N

=
N

p
=

25.0 cm
3.45 cm

= 7.25

Discussion If the object had been placed at the principal 
focal point, 4.00 cm from the lens, to form a final image at 
infinity, the angular magnification would have been

M =
N

f
=

25.0 cm
4.00 cm

= 6.25

Practice Problem 24.6 Where to Place an Object 
with a Magnifier

The focal length of a simple magnifier is 12.0 cm. As-
sume the viewer’s eye is held close to the lens. (a) What is 
the angular magnification of an object if the magnifier 
forms a final image at the viewer’s near point (25.0 cm)? 
(b) What is the angular magnification if the final image is 
at infinity?

24.5 COMPOUND MICROSCOPES

The simple magnifier is limited to angular magnifications of 15–20 at most. By con-
trast, the compound microscope, which uses two converging lenses, enables angular 
magnifications of 2000 or more. The compound microscope was probably invented 
in the Netherlands around 1600.

A small object to be viewed under the microscope is placed just beyond the 
focal point of a converging lens called the objective. The function of the objective 
is to form an enlarged real image. A second converging lens, called the ocular or 
eyepiece, is used to view the real image formed by the objective lens (Fig. 24.16). 
The eyepiece acts as a simple magnifier; it forms an enlarged virtual image. The 
position of the final image can be anywhere between the near point of the observer 
and infinity. Usually it is placed at infinity, since that enables viewing with a relaxed 
eye and doesn’t decrease the angular magnification very much. To form a final 
image at infinity, the image formed by the objective is located at the focal point of 
the eyepiece. Inside the barrel of the microscope, the positions of the two lenses 
are adjusted so that the image formed by the objective falls at or within the focal 
point of the eyepiece.

If we used just the eyepiece as a simple magnifier to view the object, the angular 
magnification would be

 Me =
N

fe
 (due to eyepiece)  (24-11)

where fe is the focal length of the eyepiece and the virtual image is at infinity for ease 
of viewing. Customarily we assume N = 25 cm. The objective forms an image that 
is larger than the object; as shown in Problem 85, the transverse magnification due 
to the objective is

 mo = −  

L

fo
 (due to objective)  (24-12)

where L (the tube length) is the distance between the focal points of the two lenses, 
not the distance between the lenses. Since the image of the objective is placed at the 
focal point of the eyepiece, as in Fig. 24.16, the tube length is

 L = qo − fo (24-13)

Many microscopes are designed with a tube length of 16 cm.

fe

fe

L

fo

qo

fo

Parallel 
rays—final 
image at 
infinity

Eyepiece

Objective

Object

Intermediate
image

Figure 24.16 A compound 
microscope. To form a final 
image at infinity, the intermedi-
ate image must be located at 
the focal point of the eyepiece.
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When we view the image with the eyepiece, the eyepiece provides the same 
angular magnification as before (Me), but it magnifies an image already mo times as 
large as the object. The overall angular magnification is the product of mo and Me:

Angular magnification of a microscope

 M = moMe = −  

L

fo
×

N

fe
 (24-14)

The negative sign in Eq. (24-14) means that the final image is inverted.
Equation (24-14) shows that, for large magnification, both focal lengths should be 

small. Microscopes are often made so that any one of several different objective lenses 
can be swung into position, depending on the magnification desired. The manufacturer 
usually provides the values of the magnification (∣ mo ∣ and Me) instead of the focal 
lengths of the lenses. For example, if an eyepiece is labeled “5×,” then Me = 5.

Example 24.7

Magnification by a Microscope

A compound microscope has an objective lens of focal length 
1.40 cm and an eyepiece with a focal length of 2.20 cm. The 
objective and the eyepiece are separated by 19.6 cm. The final 
image is at infinity. (a) What is the angular magnification? 
(b) How far from the objective should the object be placed?

Strategy Since the final image is at infinity, Eq. (24-14) 
can be used to find the angular magnification M. We first 
find the tube length L of the microscope. From Fig. 24.16, 
the distance between the lenses is the sum of the two focal 
lengths plus the tube length. We assume the typical near 
point of N = 25 cm. To find where the object should be 
placed, we apply the thin lens equation to the objective. The 
image formed by the objective is at the focal point of the 
eyepiece since the final image is at infinity.

Given: fo = 1.40 cm, fe = 2.20 cm, lens separation = 19.6 cm
To find:  (a) overall angular magnification M; (b) object 

 distance po

Solution (a) The tube length is

 L = distance between lenses − fo − fe

 = 19.6 cm − 1.40 cm − 2.20 cm = 16.0 cm

Then the angular magnification is

 M = −  

L

fo
×

N

fe

 = −  

16.0 cm
1.40 cm

×
25 cm

2.20 cm
= −130

The negative magnification indicates that the final image is 
inverted.

(b) To have the final image at infinity, the image formed 
by the objective lens must be located at the focal point of the 
eyepiece. From Fig. 24.16, the intermediate image  distance is

qo = L + fo = 16.0 cm + 1.40 cm = 17.4 cm

Then the object distance is found using the thin lens equation:

1
po

+
1
qo

=
1
fo

Solving for the object distance, po, yields

 po =
foqo

qo − fo

 =
1.40 cm × 17.4 cm
17.4 cm − 1.40 cm

 = 1.52 cm

Discussion We can check the result for part (b) to see if 
the object is just past the focal point of the objective. The 
object is 1.52 cm from the objective and the focal point is 
1.40 cm, so the object is just 1.2 mm past the focal point.

Practice Problem 24.7 Object Distance for a 
Sharp Image

An observer with a near point of 25 cm looks through a mi-
croscope with an objective lens of focal length fo = 1.20 cm. 
When an object is placed 1.28 cm from the objective, the 
angular magnification is −198 and the final image is formed 
at infinity. (a) What is the tube length L for this microscope? 
(b) What is the focal length of the eyepiece?
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The Transmission Electron Microscope

Many other kinds of microscope, both optical and nonoptical, are in use. The one most 
similar to the optical compound microscope is the transmission electron microscope 
(TEM). In the 1920s, the German physicist Ernst Ruska (1906–1988) found that a 
magnetic field due to a coil could act as a lens for electrons. An optical lens functions 
by changing the directions of the light rays; the magnetic coil changes the directions 
of the electrons’ trajectories. Ruska was able to use the lens to form an image of an 
object irradiated with electrons. Eventually he coupled two such lenses together to form 
a microscope. By 1933 he had produced the first electron microscope, using an electron 
beam to form images of tiny objects with far greater clarity than the conventional opti-
cal microscope. Ruska’s microscope is called a transmission microscope because the 
electron beam passes right through the thin slice of a sample being studied.

Resolution

A large magnification is of little use if the image is blurry. Resolution is the ability to form 
clear and distinct images of points very close to each other on an object. High resolution 
is a desirable quality in a microscope. The ultimate limit on the resolution of an optical 
instrument is limited by diffraction—the spreading out of light rays (Sections 25.6–25.8). 
Due to diffraction, the size of an object that can be clearly imaged by an optical instrument 
cannot be much smaller than the wavelength of the light used. Thus, we cannot expect to 
see anything smaller than about 400 nm using a compound optical microscope. Atoms 
have diameters in the 0.05–0.5 nm range, which is much smaller than the wavelength of 
light, so an ordinary light microscope cannot resolve details on the atomic scale. Ultravio-
let microscopes can do a little better (about 100 nm) due to the shorter wavelength. Trans-
mission electron microscopes can resolve details down to about 0.05 nm.

24.6 TELESCOPES

Refracting Telescopes

The most common type of telescope for nonscientific work is the refracting telescope, 
which has two converging lenses that function just as those in a compound microscope. 
The refracting telescope has an objective lens that forms a real image of the object; the 
eyepiece (ocular) is used to view this real image. The microscope is used to view tiny 
objects placed close to the objective lens; the purpose of the objective is to form an 
enlarged image. The telescope is used to view objects whose angular sizes are small 
because they are far away; the objective forms an image that is tiny compared with the 
object, but the image is available for closeup viewing through the eyepiece.

Astronomical Telescope In an astronomical refracting telescope, the object is so 
far away that the rays from a point on the object can be assumed to be parallel; the 
object distance is taken as infinity (Fig. 24.17). The objective forms a real, diminished 
image at its principal focus. By placing this image at the secondary focal point of the 
eyepiece, the final image is at infinity for ease of viewing. Thus, the principal focal 
point of the objective must coincide with the secondary focal point of the eyepiece, 
in contrast to the microscope in which the two are separated by a distance L (the tube 
length). When an astronomical telescope is connected to a camera to record the image, 
the camera lens replaces the eyepiece and the image formed by the objective is not 
placed at the focal point of the camera lens because the camera lens must form a real 
image on the image sensor.

The objective is located at one end of the telescope barrel, and the eyepiece is at 
the other end. Then the barrel length of the telescope is the sum of the focal lengths 
of the objective and the eyepiece.

 barrel length = fo + fe (24-15)
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The angle that would be subtended if viewed by the unaided eye is the same as the 
angle subtended at the objective (θo). The angle subtended at the observer’s eye look-
ing through the eyepiece at the final image formed at infinity is θe. From the two 
small right triangles in Fig. 24.17 and the small angle approximation [Eq. (A-70)], 
the angular size of the object for the unaided eye is

 θo ≈ tan θo =
h

AB
=

h

fo
 (24-16)

The angular size of the final image is

 θe ≈ tan θe = −  

h

DE
= −  

h

fe
 (24-17)

The final image is inverted, so its angular size is negative. With a telescope, the 
magnification that is of interest is again the angular magnification: the ratio of the 
angle subtended at the eye by the final magnified image to the angle subtended for 
the unaided eye. Then the angular magnification is

Objective

Light rays
from object
at infinity

Final image
at infinity

Eyepiece

Intermediate
image

A B

C
h

E D

F
h

h h

fefe

h

fofo

θe

θo

θo

θe

Figure 24.17 An astronomical refracting telescope. A highlighted ray passing through the secondary focal point of 
the objective leaves the lens parallel to the principal axis, then continues to the eyepiece and is refracted so that it goes 
through the principal focal point of the eyepiece. Two small right triangles are redrawn below the diagram for clarity. 
The hypotenuse (AC, FD) of each triangle is along the highlighted ray. The leg (BC, EF) of each triangle from the prin-
cipal axis to the hypotenuse is of length h because the line connecting C to F is parallel to the principal axis and 
passes through the tip of the image.

Angular magnification of an astronomical telescope

 M =
θe

θo
= −  

fo

fe
 (24-18)

where the negative sign indicates an inverted image. As for microscopes, the angular 
magnification is usually reported as a positive number. For the greatest magnification, 
the objective lens has as long a focal length as possible, but the eyepiece has as short 
a focal length as possible.

CHECKPOINT 24.6

For	greatest	magnifying	power,	 the	objective	 lens	of	a	microscope	should	have	
a	 small	 focal	 length	whereas	 the	 objective	 lens	 of	 a	 telescope	 should	 have	 a	
large	 focal	 length.	Explain	why.
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Example 24.8

Yerkes Refracting Telescope

The Yerkes telescope in southern Wisconsin is the largest 
refracting telescope in the world. Its objective lens is 1.016 m 
(40 in.) in diameter and has a focal length of 19.8 m (65 ft). 
If the magnifying power is 508, what is the focal length of 
the eyepiece?

Strategy The magnifying power is the magnitude of the 
angular magnification. For an astronomical refracting tele-
scope, the angular magnification is negative.

Solution From Eq. (24-18), the angular magnification is

M =
θe

θo
= −  

fo

fe

Solving for fe yields

fe = −  

fo

M

Now we substitute M = −508 and fo = 19.8 m:

fe = −  

19.8 m
−508

= 3.90 cm

Discussion The focal length of the eyepiece is positive, 
which is correct. The eyepiece serves as a simple magnifier 
used to view the image formed by the objective. The simple 
magnifier is a converging lens—that is, a lens with positive 
focal length.

Practice Problem 24.8 Replacing the Eyepiece

If the eyepiece used with the Yerkes telescope in Example 24.8 
is changed to one with focal length 2.54 cm that produces 
a final image at infinity, what is the new angular mag-
nification?

Terrestrial Telescopes An inverted image is no problem when the telescope is 
used as an astronomical telescope. When a telescope is used to view terrestrial objects, 
such as a bird perched high on a tree limb or a rock singer on stage at an outdoor 
concert, the final image must be upright. Binoculars are essentially a pair of telescopes 
with reflecting prisms that invert the image so the final image is upright.

Another way to make a terrestrial telescope is to add a third lens between the 
objective and the eyepiece to invert the image again so that the final image is upright. 
The Galilean telescope, invented by Galileo in 1609, produces an upright image with-
out using a third lens. The upright image is obtained by using a diverging lens as the 
 eyepiece (see Problem 62). The eyepiece is located so that the image formed by the 
objective becomes a virtual object for the eyepiece, which then forms an upright 
virtual image. The barrel length for a Galilean telescope is shorter than for telescopes 
with only converging lenses.

Reflecting Telescopes

Reflecting telescopes use one or more mirrors in place of lenses. Mirrors have several 
advantages over lenses; these advantages become overwhelming in the large telescopes 
that must be used to gather enough light rays to be able to see distant, faint stars. 
(Large telescopes also minimize the loss of resolution due to diffraction.) Since the 
index of refraction varies with wavelength, a lens has slightly different focal lengths 
for different wavelengths; thus, dispersion distorts the image. A mirror works by 
reflection rather than refraction, so it has the same focal length for all wavelengths. 
Large mirrors are much easier to build than large lenses. When making a large glass 
lens, the glass becomes so heavy that it deforms due to its own weight. It also suffers 
from stresses and strains as it cools from a molten state; such stresses reduce the 
optical quality of the lens. A large mirror need not be so heavy, since only the surface 
is important; it can be supported everywhere under its surface, whereas a lens can 
only be supported at the edge. Another advantage of the reflecting telescope is that 
the heaviest part—the large concave mirror—is located at the base of the telescope, 
making the instrument stable. The largest lens used with a refracting telescope—a 
little over 1 m (3.3 ft) in diameter—is in the Yerkes telescope. By comparison, the 
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primary mirror in each of the twin Keck reflecting telescopes in Hawaii has a diam-
eter ten times as large—10 m (33 ft).

Figure 24.18 shows one kind of reflecting telescope, known as the Cassegrain 
arrangement (after the French scientist Laurent Cassegrain, 1629–1693). Parallel light 
rays from a distant star are reflected from a concave mirror toward its focal point F. 
Before the rays can reach the focal point, they are intercepted in their path by a smaller 
convex mirror. The convex mirror directs the rays through a hole in the center of the 
large concave mirror so that they come to a focus at a point P. Photographic film or 
an electronic recording instrument can be placed at point P, or a lens can be used to 
direct the rays to a viewer’s eye.

Application: Hubble Space Telescope

A famous telescope using the Cassegrain arrangement is the Hubble Space Telescope 
(HST). The HST orbits Earth at an altitude of more than 600 km; its primary mirror 
is 2.4 m in diameter. Why put a telescope in orbit? The atmosphere limits the amount 
of detail that is seen by any telescope on Earth. The density of the air in the atmo-
sphere at any location is continually fluctuating; as a result, light rays from distant 
stars are bent by different amounts, making it impossible to bring the rays to a sharp 
focus. There are systems that correct for atmospheric fluctuations, but since the HST 
is above the atmosphere, it avoids the whole problem.

Accomplishments of the HST (Fig. 24.19) include clear images of quasars, the 
most energetic objects of the universe; the first surface map of Pluto; the discovery 

Concave mirror
of focal length f

Convex mirror Image of
the star

P

f

F

Figure 24.18 Cassegrain 
focus arrangement of a 
 reflecting telescope.

Figure 24.19 Three stunning images captured by the Advanced Camera for Surveys aboard the Hubble Space Telescope. 
(a) The Cone Nebula, a pillar of cold gas and dust. Hydrogen atoms absorb ultraviolet radiation and emit light, causing 
the red “halo” around the pillar. (b) Collision of two spiral galaxies known as the “Mice.” A similar fate may await our 
galaxy a few billion years from now. (c) The center of the Omega Nebula, a region of flowing gas and newly formed 
stars surrounded by a cloud of hydrogen. Light emitted by excited atoms of nitrogen and sulfur produces the rose-colored 
region right of center. Other colors are produced by excited atoms of hydrogen and oxygen.
Source: (a) NASA; (b) ACS Science & Engineering Team, Hubble Space Telescope, NASA; (c) ACS Science & Engineering Team, NASA

(a) (b) (c)



938 CHAPTER	24 Optical Instruments

of intergalactic helium left over from the Big Bang (the birth of the universe); and 
clear evidence for the existence of black holes (objects so dense that nothing, not even 
light, can escape their gravitational pull). The HST has provided evidence of gravita-
tional lensing, in which the gravity from massive galaxies bends light rays inward like 
a lens to form images of even more distant objects behind them.

The HST has provided a deeper look back in time than any other optical telescope, 
providing views of galaxies at an early stage of the universe and evidence for the age 
of the universe. In 2021, NASA plans to launch the James Webb Space Telescope, 
with a mirror 6.5 m in diameter. It will be placed 1.5 million kilometers from Earth 
on the side away from the Sun.

Application: Radio Telescopes

The EM radiation traveling to Earth from celestial bodies is not limited to the vis-
ible part of the spectrum. Radio telescopes detect radio waves from space. The 
radio telescope at Arecibo, Puerto Rico (Fig. 24.20), is the most sensitive radio 
telescope in the world. Arecibo takes only a few minutes to gather information 
from a radio source that would require several hours of observation with a smaller 
radio telescope.

A home satellite dish is a small version of a radio telescope. It is directed 
toward a satellite and forms a real image of the microwaves beamed down to Earth 
from the satellite. When the dish is properly aimed to receive the signal sent by the 
satellite from a TV station, the microwaves of that station are focused on the antenna 
of the receiver.

24.7 ABERRATIONS OF LENSES AND MIRRORS

Aberrations are ways in which real lenses and mirrors deviate from the behavior of 
an ideal lens or mirror.

Chromatic Aberration

When light composed of several wavelengths passes through a lens, the various wave-
lengths are refracted by differing amounts because the index of refraction depends on 
wavelength; this lens defect is called chromatic aberration (Fig. 24.21). One way 
to minimize chromatic aberration is to make lenses from low-dispersion glass or 

Figure 24.20 The radio tele-
scope at Arecibo, Puerto Rico, 
occupies nearly 20 acres of a 
remote hilltop region. The bowl 
of the telescope, 305 m 
(0.19 mi) in diameter and 51 m 
(167 ft) deep, is made from 
metallic mesh panels instead of 
solid metal; it reflects just as 
well as a solid metal surface 
because the holes are much 
smaller than the wavelengths of 
the radio waves. A detector is 
suspended in midair at the focal 
point, 137 m above the bowl.
©Bruce Dale/National Geographic/ 
Getty Images
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polymer, for which the change in the index of refraction across the visible spectrum 
is small. An even better way is to use two lenses—one converging and one diverging. 
One of the lenses is made from a low-dispersion material and the other from a higher-
dispersion material. Through careful design, the chromatic aberration of one is largely 
reversed by the other. Mirrors do not exhibit chromatic aberration because they rely 
on reflection, not refraction, to form images.

Monochromatic Aberrations

Monochromatic aberrations occur even for a single wavelength of light. They are 
not caused by dispersion, and are therefore present in mirrors as well as lenses. Recall 
that the thin lens and mirror equations are only approximately valid, because we used 
small-angle approximations to derive them. These approximations were justified by 
the assumption that the rays were paraxial—nearly parallel to the principal axis and 
not too far away from it. The actual path of a ray deviates from what the paraxial 
approximation predicts, giving rise to monochromatic aberrations.

For an object on the principal axis, the refracted or reflected rays cross the axis 
at different points, depending on how far from the axis the rays strike the lens or 
mirror (Fig. 24.22). This defect, which blurs the image, is called spherical aberration. 
A simple fix for spherical aberration is to place an aperture before the lens or mirror 
so that only rays traveling close to the principal axis can reach the lens. Unfortunately, 
the trade-off is that less light passes through the lens—the image formed is sharper 
but less bright.

Spherical aberration can be reduced by using lenses or mirrors with surfaces 
that are not spherical or by using multiple lens systems. For mirrors, spherical 
aberration can be avoided by using a parabolic mirror. A parabolic mirror focuses 
all incident rays that are parallel to the principal axis to a single focal point even 
if they are not paraxial. Large astronomical reflecting telescopes use parabolic 
mirrors. Since light rays are reversible, if a point light source is placed at the focal 
point of a parabolic mirror, the reflected rays form a parallel beam. Searchlights 
and automobile headlights use parabolic reflectors to send out fairly parallel rays 
in a well-defined beam of light.

When the object is not on the principal axis, other aberrations come into play. 
Some of them, such as field curvature and distortion, deform the shape or size of the 
image. Others, such as coma and astigmatism, make the image blurry. (Note that the 
term astigmatism is used in two different senses. Here, it is a monochromatic aberra-
tion present even in symmetric lenses and mirrors. Astigmatism of the eye is caused 
by an asymmetric cornea.)

(a)

(b)

Figure 24.21 (a) In a dispersive medium, the index of refraction depends on 
wavelength. As a result, the focal length of a lens depends on wavelength. Usually, 
as shown here, the index of refraction decreases with increasing wavelength. Then if 
the image sensor of a camera is placed at the correct location for green light, it will 
be a little too close to the lens for red light and a little too far for blue. (b) Photo of 
a Baya Weaver (Ploceus philippinus) taken near Bangalore, India. The violet fringe 
around the bird is caused by chromatic aberration.

Figure 24.22 Spherical aberration of a converging lens with a point object at 
infinity. In effect, the lens has different focal lengths for rays that strike the lens at 
different distances from the principal axis.
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Master the Concepts

 ∙ In a series of lenses, the image formed by one lens be-
comes the object for the next lens.

 ∙ If one lens produces a real image that would have 
formed past a second lens—so that the rays are converg-
ing to a point past the second lens—that image becomes 
a virtual object for the second lens. In the thin lens 
equation, p is negative for a virtual object.

 ∙ When the image formed by one lens serves as the object 
for a second lens a distance s away, the object distance 
p2 for the second lens is

 p2 = s − q1 (24-1)

 ∙ The overall transverse magnification of an image formed 
by two or more lenses is the product of the magnifica-
tions due to the individual lenses.

 m =
h′N
h1

= m1 × m2 × … × mN  (24-3)

 ∙ A typical digital camera has a single converging lens. 
To focus on an object, the distance between the lens and 
the sensor is adjusted so that a real image is formed on 
the sensor.

 ∙ The aperture size and the exposure time must be chosen 
to allow just enough light to expose the sensor (or film). 
The depth of field is the range of distances from the 
plane of sharp focus for which the lens forms an accept-
ably clear image. Greater depth of field is possible with 
a smaller aperture.

 ∙ In the human eye, the cornea and the crystalline lens 
refract light rays to form a real image on the photorecep-
tor cells in the retina. For most purposes, we can con-
sider the cornea and the lens to act like a single lens 
with an adjustable focal length. The adjustable shape of 
the lens allows for accommodation for various object 
distances, while still forming an image at the fixed im-
age distance determined by the separation of lens and 
retina. The nearest and farthest object distances that the 
eye can accommodate are called the near point and far 
point. A young adult with good vision has a near point 
at 25 cm or less and a far point at infinity.

 ∙ The refractive power of a lens is the reciprocal of the 
focal length:

 P =
1
f

 (24-4)

  Refractive power is measured in diopters (1 D = 1 m−1). 
When two or more thin lenses are placed close together, 

they act as a single thin lens with refractive power equal to 
the sum of the refractive powers of the individual lenses:

 P = P1 + P2 + · · · (24-5)

 ∙ A myopic (nearsighted) eye has a far point closer than 
infinity; for objects past the far point, it forms an image 
before the retina. A diverging corrective lens (with neg-
ative refractive power) can compensate for nearsighted-
ness by bending light rays outward.

 ∙ A hyperopic (farsighted) eye has too large a near point 
distance; the refractive power of the eye is too small. For 
objects closer than the near point, the eye forms an image 
past the retina. A converging lens can correct for hypero-
pia by bending the rays inward so they converge sooner.

 ∙ As a person ages, the crystalline lens becomes less flex-
ible and the eye’s ability to accommodate decreases, a 
phenomenon known as presbyopia.

 ∙ Angular magnification is the ratio of the angular size 
using the instrument to the angular size as viewed by the 
unaided eye.

 M =
θaided

θunaided
 (24-6)

 ∙ The simple magnifier is a converging lens placed so that 
the object distance is less than or equal to the focal 
length. The virtual image formed is enlarged and up-
right. The angular magnification M is

 M =
N

p
 (24-10)

 where N, the near point, is usually taken to be 25 cm. If 
the image is to be at infinity for ease of viewing, then 
the object is placed at the focal point ( p = f ).

 ∙ The compound microscope consists of two converging 
lenses. A small object to be viewed is placed just beyond 
the focal point of the objective, which forms an enlarged 
real image. The eyepiece (ocular) acts as a simple mag-
nifier to view the image formed by the objective. If the 
final image is at infinity, the angular magnification due 
to the microscope is

 M = moMe = −  

L

fo
×

N

fe
 (24-14)

  where N is the conventional near point (25 cm) and L 
(the tube length) is the distance between the focal points 
of the two lenses.

continued on next page



 CONCEPTUAL	QUESTIONS 941

Master the Concepts continued

fe
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image

 ∙ An astronomical refracting telescope uses two con-
verging lenses. As in the microscope, the objective 
forms a real image and the eyepiece functions as a 
magnifier for viewing the real image. The overall 
 angular magnification is

 M = −  

fo

fe
 (24-18)

Objective

Light rays
from object
at infinity

Final image
at infinity

Eyepiece

Intermediate
image

h h

fefe

h

fofo

θe

θo

 ∙ In a reflecting telescope, a concave mirror takes the 
place of the objective lens.

 ∙ Spherical aberration occurs because rays that are not 
paraxial are brought to a focus at a different spot than 
are paraxial rays.

 ∙ Chromatic aberration is caused by dispersion in the 
lens.

Conceptual Questions

 1. Why must a camera or a projector use a converging lens? 
Why must the objective of a microscope or telescope be a 
converging lens (or a converging mirror)? Why can the 
eyepiece of a telescope be either converging or diverging?

 2. A magnifying glass can be held over a piece of white 
paper and its position adjusted until the image of an 
overhead light is formed on the paper. Explain.

 3. If a piece of white cardboard is placed at the location of 
a virtual object, what (if anything) would be seen on the 
cardboard?

 4. Why is a refracting telescope with a large angular mag-
nification longer than one with a smaller magnification?

 5. Why are astronomical observatories often located on 
mountaintops?

 6. Why do some telescopes produce an inverted image?
 7. Why is the receiving antenna of a satellite dish placed at 

a set distance from the dish?
 8. Two magnifying glasses are labeled with their angular 

magnifications. Glass A has a magnification of “2×” 
(M = 2) and glass B has a magnification of 4×. Which 
has the longer focal length? Explain.

 9. What causes chromatic aberration? What can be done to 
compensate for chromatic aberration?

 10.  For human eyes, about 70% of the refraction occurs 
at the cornea; less than 25% occurs at the two surfaces 

of the lens. Why? [Hint: Consider the indices of refrac-
tion.] Is the same thing true for fish eyes?

 11.  When snorkeling, you wear goggles in order to see 
clearly. Why is your vision blurry without the goggles? 
A nearsighted person notices that he is able to see more 
clearly when he is underwater (without goggles or cor-
rective lenses) than in air (without corrective lenses). 
Why might this be true?

 12.  When the muscles of the eye remain tensed for a 
significant period of time, eyestrain results. How much 
is this a concern for a person using (a) a microscope, 
(b) a telescope, and (c) a simple magnifier?

 13.  Draw a diagram of the human eye, labeling the cor-
nea, the lens, the iris, the retina, and the aqueous and 
vitreous fluids.

 14.  Color printers always use at least three different col-
ors of ink or toner. Televisions and computer monitors 
have pixels of at least three different colors. Why are at 
least three necessary? [Hint: See Fig. 24.9.]

 15.  The figure shows a sche-
matic diagram of a defective 
eye. What is this defect called?

 16. If rays from points on an ob-
ject are converging as they en-
ter a lens, is the object real or 
virtual?

 17. What are some of the advantages of using mirrors rather 
than lenses for astronomical telescopes?
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 18. Both a microscope and a telescope can be constructed 
from two converging lenses. What are the differences? 
Why can’t a telescope be used as a microscope? Why 
can’t a microscope be used as a telescope?

 19. In her bag, a photographer is carrying three camera 
lenses with focal lengths of 400.0 mm, 50.0 mm, and 
28.0 mm. Which lens should she use for (a) wide angle 
shots (a cathedral, taken from the square in front), (b) 
everyday use (children at play), and (c) telephoto work 
(lions in Africa taken from across a river)?

Multiple-Choice Questions

 1. The compound microscope is made from two lenses. 
Which statement is true concerning the operation of the 
compound microscope?

 (a) Both lenses form real images.
 (b) Both lenses form virtual images.
 (c)  The lens closest to the object forms a virtual image; 

the other lens forms a real image.
 (d)  The lens closest to the object forms a real image; the 

other lens forms a virtual image.
 2. Which of these statements best explains why a telescope 

enables us to see details of a distant object such as the 
Moon or a planet more clearly?

 (a)  The image formed by the telescope is larger than the 
object.

 (b)  The image formed by the telescope subtends a larger 
angle at the eye than the object does.

 (c)  The telescope can also collect radio waves that 
sharpen the visual image.

 3. Siu-Ling has a far point of 25 cm. Which statement here 
is true?

 (a) She may have normal vision.
 (b)  She is myopic and requires diverging lenses to cor-

rect her vision.
 (c)  She is myopic and requires converging lenses to cor-

rect her vision.
 (d)  She is hyperopic and requires diverging lenses to 

correct her vision.
 (e)  She is hyperopic and requires converging lenses to 

correct her vision.
 4. The figure shows a schematic diagram of a defective eye 

and some lenses. Which of the lenses shown can correct 
for this defect?

(a) (e)(d)(c)(b)

 (a) (e)(d)(c)(b)

 5. What causes chromatic aberration?
 (a)  Light is an electromagnetic wave and has intrinsic 

diffraction properties.
 (b)  Different wavelengths of light give different angles 

of refraction at the lens-air interface.
 (c)  The coefficient of reflection is different for light of 

different wavelengths.
 (d)  The outer edges of the lens produce a focus at a dif-

ferent point from that formed by the central portion 
of the lens.

 (e)  The absorption of light in the glass varies with wave-
length.

 6. An astronomical telescope has an angular magnification 
of 10. The barrel length is 33 cm. What are the focal 
lengths of the objective and the eyepiece, in that order 
respectively, from the choices listed?

 (a) 3 cm, 30 cm
 (b) 30 cm, 3 cm

 (c) 20 cm, 13 cm
 (d) 0.3 m, 3 m

 7. What causes spherical aberration?
 (a)  Light is an electromagnetic wave and has intrinsic 

diffraction properties.
 (b)  Different wavelengths of light give different angles 

of refraction at the lens-air interface.
 (c)  The lens surface is not perfectly smooth.
 (d)  The outer edges of the lens produce a focus at a dif-

ferent point from that formed by the central portion 
of the lens.

 8. A nearsighted person wears corrective lenses. One of 
the focal points of the corrective lenses should be

 (a) at the cornea.
 (b) at the retina.
 (c) at infinity.

 (d) past the retina.
 (e) at the near point.
 (f) at the far point.

 9. Reducing the aperture on a camera
 (a)  reduces the depth of field and requires a longer expo-

sure time.
 (b)  reduces the depth of field and requires a shorter ex-

posure time.
 (c)  increases the depth of field and requires a longer 

exposure time.
 (d)  increases the depth of field and requires a shorter 

exposure time.
 (e)  does not change the depth of field and requires a 

longer exposure time.
 (f)  does not change the depth of field and requires a 

shorter exposure time.
 10. A compound microscope has three possible objective 

lenses (focal lengths fo) and two eyepiece lenses (focal 
lengths fe). For maximum angular magnification, the 
objective and eyepiece should be chosen such that

 (a) fo and fe are both the largest available.
 (b) fo and fe are both the smallest available.
 (c) fo is the largest available; fe is the smallest available.
 (d) fe is the largest available; fo is the smallest available.
 (e) fe and fo are nearly the same.
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Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

24.1 Lenses in Combination
 1. An object is placed 12.0 cm in front of a lens of focal 

length 5.0 cm. Another lens of focal length 4.0 cm is 
placed 2.0 cm past the first lens. (a) Where is the final 
image? Is it real or virtual? (b) What is the overall mag-
nification?

 2. A converging lens and a diverging lens, separated by 
a distance of 30.0 cm, are used in combination. The 
converging lens has a focal length of 15.0 cm. The 
diverging lens is of unknown focal length. An object 
is placed 20.0 cm in front of the converging lens; the 
final image is virtual and is formed 12.0 cm before 
the diverging lens. What is the focal length of the  
diverging lens?

 3. Two converging lenses are placed 88.0 cm apart. An 
object is placed 1.100 m to the left of the first lens, 
which has a focal length of 25.0 cm. The final image is 
located 15.0 cm to the right of the second lens. (a) What 
is the focal length of the second lens? (b) What is the 
overall magnification?

 4. A converging lens with a focal length of 15.0 cm and a 
diverging lens are placed 25.0 cm apart, with the con-
verging lens on the left. A 2.00 cm high object is placed 
22.0 cm to the left of the converging lens. The final im-
age is 34.0 cm to the left of the converging lens. (a) 
What is the focal length of the diverging lens? (b) What 
is the height of the final image? (c) Is the final image 
upright or inverted?

 5. Verify the locations and sizes of the images formed by 
the two lenses in Fig. 24.2 using the lens equation and 
the following data: f1 = +4.00 cm, f2 = −2.00 cm,  
s = 8.00 cm (where s is the distance between the lenses), 
p1 = +6.00 cm, and h1 = 2.00 mm. (Note that here we 
take the vertical scale to be different from the horizontal 
scale.)

 6. You plan to project an inverted image 30.0 cm to the 
right of an object. You have a diverging lens with focal 
length −4.00 cm located 6.00 cm to the right of the ob-
ject. Once you put a second lens at 18.0 cm to the right 
of the object, you obtain an image in the proper loca-
tion. (a) What is the focal length of the second lens? 
(b) Is this lens converging or diverging? (c) What is the 
overall magnification? (d) If the object is 12.0 cm high, 
what is the image height?

 7. You would like to project an upright image at a position 
32.0 cm to the right of an object. You have a converging 

lens with focal length 3.70 cm located 6.00 cm to the 
right of the object. By placing a second lens at 24.65 cm 
to the right of the object, you obtain an image in the 
proper location. (a) What is the focal length of the sec-
ond lens? (b) Is this lens converging or diverging? 
(c) What is the overall magnification? (d) If the object is 
12.0 cm high, what is the image height?

 8.  An object is located 10.0 cm in front of a converging 
lens with focal length 12.0 cm. To the right of the con-
verging lens is a second converging lens, 30.0 cm from 
the first lens, of focal length 10.0 cm. Find the location 
of the final image by ray tracing and verify by using the 
lens equations.

 9.  An object is located 16.0 cm in front of a converging 
lens with focal length 12.0 cm. To the right of the con-
verging lens, separated by a distance of 20.0 cm, is a 
diverging lens of focal length −10.0 cm. Find the loca-
tion of the final image by ray tracing and verify using 
the lens equations.

 10.  Show that if two thin lenses are close together (s, the 
distance between the lenses, is negligibly small), the 
two lenses can be replaced by a single equivalent lens 
with focal length feq. Find the value of feq in terms of 
f1 and f2.

24.2 Cameras
 11. A camera uses a 200.0 mm focal length telephoto lens to 

take pictures from a distance of infinity to as close as 
2.0 m. What are the minimum and maximum distances 
from the lens to the sensor?

 12.  A statue is 6.6 m from the opening of a pinhole 
camera, and the screen is 2.8 m from the pinhole. (a) Is 
the image erect or inverted? (b) What is the magnifica-
tion of the image? (c) To get a brighter image, we en-
large the pinhole to let more light through, but then the 
image looks blurry. Why? (d) To admit more light and 
still have a sharp image, we replace the pinhole with a 
lens. Should it be a converging or  diverging lens? Why? 
(e) What should the focal length of the lens be?

 13. Esperanza uses a camera with a lens of focal length 
50.0 mm to take a photo of her son Carlos, who is 
1.2 m tall and standing 3.0 m away. (a) What must be 
the distance between the lens and the camera’s sensor 
to get a sharp picture? (b) What is the magnification of 
the  image? (c) What is the height of the image of  Carlos 
on the sensor?

 14. A person on a safari wants to take a photograph of a hip-
popotamus from a distance of 75.0 m. The animal is 
4.00 m long, and its image is to be 1.20 cm long on the 
camera’s image sensor. (a) What focal length lens should 
be used? (b) What would be the size of the image if a 
lens of 50.0 mm focal length were used? (c) How close 
to the hippo would the person have to be to capture a 
1.20 cm long image using a 50.0 mm lens?
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 15. Jim plans to take a picture of McGraw Tower with a 
camera that has a 50.0 mm focal length lens. The image 
sensor of his camera measures 7.2 mm by 5.3 mm. The 
tower has a height of 52 m, and Jim wants a detailed 
close-up picture. How close to the tower should Jim be 
to capture the largest possible image of the entire tower?

 16. A photographer wishes to take a photograph of the  
Eiffel Tower (300 m tall) from across the Seine River, a 
distance of 300 m from the tower. What focal length 
lens should she use to get an image that is 20 mm high 
on the camera’s image sensor?

 17. If a slide of width 36 mm is to be projected onto a screen 
of 1.50 m width located 12.0 m from the projector, what 
focal length lens is required to fill the width of the screen?

 18. A slide projector has a lens of focal length 12 cm. Each 
slide is 24 mm by 36 mm. The projector is used in a 
room where the screen is 5.0 m from the projector. How 
large must the screen be?

 19. A converging lens with focal length 3.00 cm is placed 
4.00 cm to the right of an object. A diverging lens with 
focal length −5.00 cm is placed 17.0 cm to the right of 
the converging lens. (a) At what location(s), if any, can 
you place a screen in order to display an image? (b) Re-
peat part (a) for the case where the lenses are separated 
by 10.0 cm.

 20.  A converging lens with a focal length of 3.00 cm is 
placed 24.00 cm to the right of a concave mirror with a 
focal length of 4.00 cm. An object is placed between the 
mirror and the lens, 
6.00 cm to the right of the 
mirror and 18.00 cm to 
the left of the lens. Name 
three places where you 
could find an image of 
this object. For each im-
age tell whether it is in-
verted or upright and give 
the overall magnification.

24.3 The Eye
Unless the problem states otherwise, model the cornea- 
crystalline lens system as a single lens 2.0 cm from the retina 
and assume the near point is 25 cm.
 21.  If the distance from the lens to the retina is 2.00 cm, 

show that the focal length of the lens must vary between 
1.85 cm and 2.00 cm to see objects from 25.0 cm to 
 infinity.

 22.  The distance from the lens of a particular eye to the 
retina is 1.75 cm. What is the focal length of the lens 
when the eye produces a clear image of an object 
25.0 cm away?

 23.  One can estimate the size of the blind spot on the 
retina by treating the eye as a camera obscura. Suppose 
your friend Julie’s eye can be approximated as a sphere 

of diameter 2.5 cm. She notices that a 3.5 cm diameter 
ball held 40 cm from her pupil can just be hidden within 
her blind spot. Estimate the diameter of the blind spot 
on her retina.

 24.  Joe is told by his ophthalmologist that he requires 
glasses with a refractive power of −4.50 D to correct his 
vision. His previous prescription was −4.00 D. (a) Is Joe 
nearsighted or farsighted? (b) When Joe is not wearing 
his glasses, how far away can he see objects clearly? (c) 
When he wears his old prescription, how far away can 
he see clearly?

 25.   Suppose that the lens in a particular eye has a 
focal length that can vary between 1.85 cm and 2.00 cm, 
but the distance from the lens to the retina is only 1.90 cm. 
(a) Is this eye nearsighted or farsighted? Explain. 
(b) What range of distances can the eye see clearly 
without corrective lenses?

 26.  If Michaela needs to wear reading glasses with 
refractive power of +3.0 D, what is her uncorrected 
near point? Ignore the distance between the glasses 
and the eye.

 27.  The uncorrected far point of Colin’s eye is 2.0 m. 
What refractive power contact lens enables him to 
clearly distinguish objects at large distances?

 28.   Anne’s retina is 1.8 cm from the lens. The near-
est object she can see clearly without corrective lenses 
is 2.0 m away. (a) Sketch a ray diagram to show (quali-
tatively) what happens when she tries to look at some-
thing closer than 2.0 m without corrective lenses. (b) 
What should the focal length of her contact lenses be so 
that she can see clearly objects as close as 20.0 cm from 
her eye?

 29.  (a) If Harry has a near point of 1.5 m, what focal 
length contact lenses does he require? (b) What is the 
refractive power of these lenses?

 30.   A nearsighted man cannot clearly see objects 
more than 2.0 m away. The distance from the lens to the 
retina is 2.0 cm, and the eye’s power of accommodation is 
4.0 D (in other words, the refractive power of the lens 
increases by a maximum of 4.0 D when accommodating 
for nearby objects). (a) As an amateur optometrist, what 
corrective eyeglass lenses would you suggest to enable 
him to clearly see distant objects? Assume the corrective 
lenses are 2.0 cm from the eyes. (b) Find the nearest 
object he can see clearly with and without his glasses.

 31.  Suppose the distance from the lens to the retina is 
18 mm. (a) What must the refractive power of the lens 
be when looking at distant objects? (b) What must the 
refractive power of the lens be when looking at an ob-
ject 20.0 cm from the eye? (c) Suppose that the eye is 
farsighted; the person cannot see clearly objects that are 
closer than 1.0 m. Find the refractive power of the con-
tact lens you would prescribe so that objects as close as 
20.0 cm can be seen clearly.

Concave
mirror

Object

Converging
lens

18.00 cm
6.00 cm
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 32.   Veronique is nearsighted; she cannot see clearly 
anything more than 6.00 m away without her contacts. 
One day she doesn’t wear her contacts; rather, she wears 
an old pair of glasses prescribed when she could see 
clearly up to 8.00 m away. Assume the glasses are 2.0 cm 
from her eyes. What is the greatest distance an object 
can be placed so that she can see it clearly with these 
glasses?

24.4 Angular Magnification and  
the Simple Magnifier

Problems 33–35. Assume that the magnifier is held close to 
the eye. Use the standard nearpoint of 25 cm to find the 
 angular magnification.
 33. Five converging lenses are used as simple magnifiers. In 

each case, the focal length f and the distance between 
the lens and the object p are given. Rank them in order 
of the angular magnification, greatest to least. 

  (a) f = 15 cm, p = 15 cm; (b) f = 15 cm, p = 10 cm; 
  (c) f = 10 cm, p = 10 cm; (d) f = 20 cm, p = 20 cm; 
  (e) f = 20 cm, p = 15 cm.
 34.  An insect that is 5.00 mm long is placed 10.0 cm 

from a simple magnifier with a focal length of 12.0 cm. 
(a) What is the position of the image? (b) What is the 
size of the image? (c) Is the image upright or inverted? 
(d) Is the image real or virtual? (e) What is the angular 
magnification?

 35. (a) What is the focal length of a magnifying glass that 
gives an angular magnification of 8.0 when the image is 
at infinity? (b) How far must the object be from the lens?

 36. Callum is examining a square stamp of side 3.00 cm 
with a magnifying glass of refractive power +40.0 D. 
The magnifier forms an image of the stamp at a distance 
of 1.36 m from his eye (instead of at infinity). Assume 
that Callum’s eye is close to the magnifying glass. (a) 
What is the distance between the stamp and the magni-
fier? (b) What is the angular magnification? (c) How 
large is the image formed by the magnifier?

 37.  Keesha is looking at a beetle with a magnifying 
glass. She wants the lens to form an upright, enlarged 
image at a distance of 25 cm. The focal length of the 
magnifying glass is +5.0 cm. Assume that Keesha’s eye 
is close to the magnifying glass. (a) What should be the 
distance between the magnifying glass and the beetle? 
(b) What is the angular magnification?

 38. A magnifying glass can focus sunlight enough to heat 
up paper or dry grass and start a fire. A magnifying 
glass with a diameter of 4.0 cm has a focal length of 
6.0 cm. (a) Using information found in Appendix B, 
estimate the size of the image of the Sun when the 
magnifying glass focuses the image to its smallest size. 
(b) If the intensity of the Sun falling on the magnifying 
glass is 0.85 kW/m2, what is the intensity of the image 
of the Sun?

 39.  A biology professor notices a speck on a student’s 
lab report and pulls out her magnifying lens to investi-
gate. Holding the lens close to her eye, she is surprised 
to find Pelomyxa palustris, the largest known species of 
amoeba. (a) When observed without magnification at 
her near point of 28 cm, the amoeba subtends an angle 
of 0.015 radians. What is the amoeba’s length? (b) 
When the image formed by the magnifier is at the pro-
fessor’s near point, the angular magnification is 8.5. 
How far from the lens is the amoeba?

 40.  A simple magnifier gives the maximum angular mag-
nification when it forms a virtual image at the near point 
of the eye instead of at infinity. For simplicity, assume 
that the magnifier is right up against the eye, so that 
distances from the magnifier are approximately the 
same as distances from the eye. (a) For a magnifier with 
focal length f, find the object distance p such that the 
image is formed at the near point, a distance N from the 
lens. (b) Show that the angular size of this image as seen 
by the eye is

θ =
h(N + f)

Nf

  where h is the height of the object. [Hint: Refer to 
Fig. 24.15.] (c) Now find the angular magnification and 
compare it to the angular magnification when the virtual 
image is at infinity.

24.5 Compound Microscopes
 41. Five microscopes all have 16 cm tube lengths. Given the 

focal lengths of the eyepiece and objective, rank them in 
order of the magnifying power ∣ M ∣, greatest to smallest. 
(a) fe = 1.5 cm, fo = 1.5 cm; (b) fe = 2.0 cm, fo = 2.0 cm; 
(c) fe = 1.5 cm, fo = 1.0 cm; (d) fe = 2.0 cm, fo = 1.0 cm; 
(e) fe = 4.0 cm, fo = 1.0 cm.

 42. The eyepiece of a microscope has a focal length of 1.25 cm, 
and the objective lens focal length is 1.44 cm. (a) If the 
tube length is 18.0 cm, what is the angular magnification 
of the microscope? (b) What objective focal length 
would be required to double this magnification?

 43. Jordan is building a compound microscope using an 
eyepiece with a focal length of 7.50 cm and an objective 
with a focal length of 1.500 cm. He will place the speci-
men a distance of 1.600 cm from the objective. (a) How 
far apart should Jordan place the lenses? (b) What will 
be the angular magnification of this microscope?

 44.  The wing of an insect is 1.0 mm long. When viewed 
through a microscope, the image is 1.0 m long and is 
located 5.0 m away. Determine the angular magnification.

 45. A microscope has an eyepiece that gives an angular 
magnification of 5.00 for a final image at infinity and 
an objective lens of focal length 15.0 mm. The tube 
length of the microscope is 16.0 cm. (a) What is the 
transverse magnification due to the objective lens 
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alone? (b) What is the angular magnification due to the 
microscope? (c) How far from the objective should the 
object be placed?

 46.  Repeat Problem 45(c) using a different eyepiece that 
gives an angular magnification of 5.00 for a final image 
at the viewer’s near point (25.0 cm) instead of at infinity.

 47.  To study the physical features of Hydra viridis, a 
student uses a compound microscope with a magnifying 
power of 425. (a) If the eyepiece has focal length 1.9 cm 
and the tube length is 19.2 cm, what focal length does 
the objective have? Assume a near point of 25 cm. (b) If 
the objective lens is replaced with one having focal 
length 7.5 mm, what would the magnifying power be?

 48. A microscope has an objective lens of focal length 
5.00 mm. The objective forms an image 16.5 cm from 
the lens. The focal length of the eyepiece is 2.80 cm. 
(a) What is the distance between the lenses? (b) What 
is the angular magnification? The near point is 
25.0  cm. (c) How far from the objective should the 
object be placed?

 49.  Repeat Problem 48 if the eyepiece location is ad-
justed slightly so that the final image is at the viewer’s 
near point (25.0 cm) instead of at infinity.

 50. The figure shows a schematic diagram of a microscope. 
(Note that the image formed by the eyepiece is not at 
infinity.) For the object and image locations shown, 
which of the points (A, B, C, or D) represents a focal 
point of the eyepiece? Draw a ray diagram.

Eyepiece

Image formed
by objective

Image formed
by eyepiece

Objective
Object

A

D

C

B

 51.  A biologist observes a paramecium with a micro-
scope whose eyepiece and objective have focal lengths 
2.25 cm and 1.10 cm, respectively. The specimen is 1.18 cm 
from the objective lens, and the final image is located  
at infinity. (a) What is the distance between the lenses? 
(b) What is the angular magnification?

24.6 Telescopes
 52. Five telescopes all have the same magnifying power. 

Given the focal length of the objective, rank them in 
order of the focal length of the eyepiece, greatest to 

smallest. (a) fo = 80 cm; (b) fo = 60 cm; (c) fo = 100 cm; 
(d) fo = 50 cm; (e) fo = 120 cm.

 53. A telescope mirror has a radius of curvature of 10.0 m. 
It is used to take a picture of the Moon. What is the di-
ameter of the image of the Moon produced by this mir-
ror? (See Appendix B for necessary information.)

 54. (a) What is the angular size of the Moon as viewed from 
Earth’s surface? See Appendix B for necessary informa-
tion. (b) The objective and eyepiece of a refracting tele-
scope have focal lengths 80 cm and 2.0 cm, respectively. 
What is the angular size of the Moon as viewed through 
this telescope?

 55. What is the distance between the objective and eyepiece 
in the Yerkes telescope? (See Example 24.8.)

 56. You have a set of converging lenses with focal lengths 
1.00 cm, 10.0 cm, 50.0 cm, and 80.0 cm. (a) Which two 
lenses would you select to make a telescope with the 
largest magnifying power? What is the angular magnifi-
cation of the telescope when viewing a distant object? 
(b) Which lens is used as objective and which as  
eyepiece? (c) What should be the distance between the 
objective and eyepiece?

 57. A refracting telescope is 45.0 cm long, and the caption 
states that the telescope magnifies images by a factor of 
30.0. Assuming these numbers are for viewing an object 
an infinite distance away with minimum eyestrain, what 
is the focal length of each of the two lenses?

 58. The objective lens of an astronomical telescope forms an 
image of a distant object at the focal point of the eyepiece, 
which has a focal length of 5.0 cm. If the two lenses are 
45.0 cm apart, what is the angular magnification?

 59. A refracting telescope is used to view the Moon. The 
focal lengths of the objective and eyepiece are +2.40 m 
and +16.0 cm, respectively. (a) What should be the dis-
tance between the lenses? (b) What is the diameter of 
the image produced by the objective? (c) What is the 
angular magnification?

Collaborative Problems

 60. (a) If you were stranded on an island with a pair of  
3.5 D reading glasses, could you make a useful telescope? 
If so, what would be the length of the telescope and what 
would be the angular magnification? (b) Answer the 
same questions if you also had a pair of 1.3 D reading 
glasses.

 61. Kim says that she was less than 10 ft away from the 
president when she took a picture of him with her 50 mm 
focal length camera lens. The picture shows the upper 
half of the president’s body (3.0 ft of his total height). 
On the negative of the film, this part of his body is  
18 mm high. How close was Kim to the president when 
she took the picture?
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 62.  The eyepiece of a Galilean telescope is a diverging 
lens. The focal points Fo and F ′e coincide. In one such 
telescope, the lenses are a distance d = 32 cm apart and 
the focal length of the objective is 36 cm. A rhinoceros 
is viewed from a large distance. (a) What is the focal 
length of the eyepiece? (b) At what distance from the 
eyepiece is the final image? (c) Is the final image formed 
by the eyepiece real or virtual? Upright or inverted? (d) 
What is the angular magnification?

Objective
To final
image

Rays from
object

Eyepiece

Intermediate
image

fe fe

fo

Fo, Fe′

α

α

β

Fe

 63.   A man requires reading glasses with +2.0 D re-
fractive power to read a book held 40.0 cm away with a 
relaxed eye. Assume the glasses are 2.0 cm from his 
eyes. (a) What is his uncorrected far point? (b) What re-
fractive power lenses should he use for distance vision? 
(c) His uncorrected near point is 1.0 m. What should the 
refractive powers of the two lenses in his bifocals be to 
give him clear vision from 25 cm to infinity?

Comprehensive Problems

 64. Good lenses used in cameras and other optical devices 
are actually compound lenses made of several lenses put 
together to minimize aberrations. Suppose a converging 
lens with a focal length of 4.00 cm is placed right next to 
a diverging lens with focal length of −20.0 cm. An object 
is placed 2.50 m to the left of this combination. (a) Where 
will the image be located? (b) Is the image real or virtual?

 65. A camera has a telephoto lens of 240 mm focal length. 
The lens can be moved in and out a distance of 16 mm 
from the image sensor by rotating the lens barrel. If the 
lens can focus objects at infinity, what is the closest object 
distance for which the camera can give a sharp image?

 66.  You have two lenses of focal lengths 25.0 cm and 
5.0 cm. (a) To build an astronomical telescope that gives 
an angular magnification of 5.0, how should you use the 
lenses (which for objective and which for eyepiece)? 
 Explain. (b) How far apart should they be?

 67. A slide projector has a projection lens of 10.0 cm 
 focal length, and the screen is located 2.5 m from the 
projector. (a) What is the distance between the slide 

and the projection lens? (b) What is the magnification 
of the image? (c) How wide is the image of a slide of 
width 36 mm on the screen?

 68. A slide projector, using slides of width 5.08 cm, pro-
duces an image that is 2.00 m wide on a screen 3.50 m 
away. What is the focal length of the projector lens?

 69. Two lenses, of focal lengths 3.0 cm and 30.0 cm, are 
used to build a small telescope. (a) Which lens should 
be the objective? (b) What is the angular magnification? 
(c) What is the distance between the intermediate image 
(formed by the objective) and the objective lens?

 70. An astronomical telescope provides an angular magnifi-
cation of 12. The two converging lenses are 66 cm apart. 
Find the focal length of each of the lenses.

 71.  A camera lens has a fixed focal length of magnitude 
50.0 mm. The camera is adjusted for a sharp image of a 
1.0 m tall child who is standing 3.0 m from the lens. 
(a) Should the image formed be real or virtual? Why? 
(b) Is the lens converging or diverging? Why? (c) What 
is the distance from the lens to the camera’s image sensor? 
(d) How tall is the image on the sensor? (e) To adjust the 
camera, the lens is moved away from or closer to the 
sensor. What is the total distance the lens must be able 
to move if the camera can take sharp pictures of objects 
at distances anywhere from 1.00 m to infinity?

 72. A camera with a 50.0 mm lens can focus on objects lo-
cated from 1.5 m to an infinite distance away by adjust-
ing the distance between the lens and the image sensor. 
When the focus is changed from that for a distant moun-
tain range to that for a flower bed at 1.5 m, how far does 
the lens move with respect to the image sensor?

 73. The image sensor of a camera measures 24 mm by 36 mm. 
The focal length of the camera lens is 50.0 mm. A 
picture is taken of a person 182 cm tall. What is the 
minimum distance from the camera for the person to 
stand so that the image fits on the sensor? Give two  
answers, one for each orientation of the camera.

 74.  A dissecting microscope is designed to have a large 
distance between the object and the objective lens. Sup-
pose the focal length of the objective of a dissecting 
microscope is 5.0 cm, the focal length of the eyepiece is 
4.0 cm, and the distance between the lenses is 32.0 cm. 
(a) What is the distance between the object and the ob-
jective lens? (b) What is the angular magnification?

 75. A cub scout makes a microscope by placing two con-
verging lenses of +18 D at opposite ends of a 28 cm 
long tube. (a) What is the tube length of the microscope? 
(b) What is the angular magnification? (c) How far 
should an object be placed from the objective lens?

 76. A convex lens of refractive power +12 D is used as a 
magnifier to examine a wildflower. What is the angular 
magnification if the final image is at (a) infinity or 
(b) the near point of 25 cm?

 77. A refracting telescope has an objective lens with a focal 
length of 2.20 m and an eyepiece with a focal length of 
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1.5 cm. If you look through this telescope the wrong way, 
that is, with your eye placed at the objective lens, by what 
factor is the angular size of an observed object reduced?

 78. Two converging lenses, separated by a distance of 
50.0 cm, are used in combination. The first lens, located 
to the left, has a focal length of 15.0 cm. The second 
lens, located to the right, has a focal length of 12.0 cm. 
An object, 3.00 cm high, is placed at a distance of 
20.0 cm in front of the first lens. (a) Find the intermedi-
ate and final image distances relative to the correspond-
ing lenses. (b) What is the overall  magnification? 
(c) What is the height of the final image?

 79.  An object is placed 20.0 cm from a converging lens 
with focal length 15.0 cm (see the figure, not drawn to 
scale). A concave mirror with focal length 10.0 cm is lo-
cated 75.0 cm to the right of the lens. Light goes through 
the lens, reflects from the mirror, and passes through the 
lens again, forming a final image. (a) Describe the final 
image—is it real or virtual? Upright or inverted? (b) What 
is the location of the final image? (c) What is the overall  
transverse magnification?

Concave
mirrorConverging

lens
Object

75.0 cm

20.0 cm
15.0 cm

10.0 cm

 80. Two lenses, separated by a distance of 21.0 cm, are used 
in combination. The first lens has a focal length of 
+30.0 cm; the second has a focal length of −15.0 cm. 
An object, 2.0 mm long, is placed 1.8 cm before the first 
lens. (a) What are the intermediate and final image dis-
tances relative to the corresponding lenses? (b) What is 
the overall magnification? (c) What is the height of the 
final image?

 81. A converging lens with a focal length of 5.500 cm is 
placed 8.00 cm to the left of a diverging lens with a fo-
cal length of −4.20 cm. An object that is 1.0 cm tall is 
placed 9.000 cm to the left of the converging lens. (a) 
Where is the final image formed? (b) How tall is the 
final image? (c) Is the final image upright or  inverted?

 82.  A microscope has an eyepiece of focal length 2.00 cm 
and an objective of focal length 3.00 cm. The eyepiece 
produces a virtual image at the viewer’s near point 
(25.0 cm from the eye). (a) How far from the eyepiece is 
the image formed by the objective? (b) If the lenses are 
20.0 cm apart, what is the distance from the objective 
lens to the object being viewed? (c) What is the angular 
magnification?

 83.  An object is placed between a concave mirror with a 
radius of curvature of 18.0 cm and a diverging lens with 
a focal length of magnitude 12.5 cm. The object is 15.0 cm 
from the mirror and 20.0 cm from the lens. Looking 
through the lens, you see two images. Image 1 is formed 
by light rays that reflect from the mirror before passing 
through the lens. Image 2 is formed by light rays that 
pass through the lens without reflecting from the mirror. 
Find the location of each image and determine whether 
it is inverted or upright and real or virtual. [Hint: Treat 
the mirror-lens combination in the same way you would 
treat two lenses.]

 84.  An object is located at x = 0. At x = 2.50 cm is a 
converging lens with a focal length of 2.00 cm, at x = 
16.5 cm is an unknown lens, and at x = 19.8 cm is an-
other converging lens with focal length 4.00 cm. An 
upright image is formed at x = 39.8 cm. For each lens, 
the object distance exceeds the focal length. The magni-
fication of the system is 6.84. (a) Is the unknown lens 
diverging or converging? (b) What is the focal length of 
the unknown lens?

Review and Synthesis

 85.  Use the thin-lens equation to show that the transverse 
magnification due to the objective of a microscope is  
mo = −L /fo. [Hints: The object is near the focal point of 
the objective; do not assume it is at the focal point. 
Eliminate po to find the magnification in terms of qo and 
fo. How is L related to qo and fo?]

 86.  (This problem illustrates spherical aberration.) A 
concave mirror has radius of curvature R. A ray of light 
parallel to and a distance R/√2 away from the optical 
axis is incident on the mirror. (a) Use the law of reflec-
tion to find the distance from the vertex to the point 
where the reflected ray crosses the optical axis. (b) How 
far is this point from the focal point of the mirror for 
paraxial rays?

 87. (a) What is the angular size of the Moon as viewed from 
Earth’s surface? See Appendix B for necessary informa-
tion. (b) Elysha is gazing at a full Moon at night. The 
diameter of her pupil is 7.0 mm and the diameter of her 
eye is 2.0 cm. What is the diameter of the image of the 
Moon on her retina? (c) The intensity of the moonlight 
incident on her eye is 0.022 W/m2. What is the intensity 
incident on her retina?

Answers to Practice Problems

 24.1 The object can be either real or virtual. If the real im-
age forms before the second lens, it becomes a real object; if 
the second lens interrupts the light rays before they form the 
real image, it becomes a virtual object.
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 24.2 q1 = +16.7 cm; q2 = 4.3 cm; m = −0.43; h′2 = −1.7 cm. 
The final image is real, inverted, and reduced in size.
 24.3 51.7 mm
 24.4  13.3 cm
 24.5 49.9 cm
 24.6 (a) 3.08; (b) 2.08
 24.7 (a) 18 cm; (b) 1.9 cm
 24.8 −780

Answers to Checkpoints

24.1 p1 = +6 cm (real object); q1 = +12 cm (a real image 
would be formed if lens 2 were not there); s = 8 cm; p2 =  
−4 cm (virtual object); q2 = −4 cm (virtual image); m1 =  
−2 (image formed by lens 1 is twice as tall as the object and 
inverted); m2 = −1 (object and image are the same size and 
the image is inverted); m = m1m2 = +2 (final image is twice 
as tall as the original object and is upright)

24.2 No, because the lens must form a real image on the 
sensor (or film). If the object distance p is less than f, the 
image formed is virtual.
24.3 If your friend is nearsighted, the scheme won’t work. 
Diverging lenses are used to correct for nearsightedness. A 
diverging lens can’t be used to start a fire because it can’t 
make the light rays converge onto a small spot. If your friend 
is farsighted, the scheme could work. Converging lenses are 
used to correct for farsightedness.
24.4 No. To be seen clearly, the image can’t be any closer 
than the near point of the eye: ∣ q ∣ = N. With a diverging lens, 
the object distance would have to be greater than the near 
point: p > ∣ q ∣ = N. The angular size of the image is therefore 
less than what it would be using the unaided eye.
24.6 In a microscope, a small object is placed just beyond 
the focal point of the objective lens. The angular size of the 
object is larger when it is closer to the objective, so we want 
a small focal length. In a telescope, the object is far away so 
its angular size is fixed. An objective with a larger focal 
length produces a larger real image of the distant object.



C H A P T E R

25
Interference and Diffraction

•	 principle	of	superposition	
(Section	11.7)

•	 interference	and	diffrac-
tion	(Section	11.9)

•	 phase	difference	and	
	coherence	(Section	11.9)

•	 wavefronts,	rays,	and	
Huygens’s	principle	
	(Section	23.1)

•	 reflection	and	refraction	
(Sections	23.2	and	23.3)

•	 electromagnetic	spec-
trum	(Section	22.3)

•	 intensity	(Section	22.6)

Concepts & Skills to Review

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Iridescent colors in but-
terflies, birds, and other 
animals (Section 25.3; 
Conceptual Question 16; 
Problem 90)

∙ Interference microscopy 
(Section 25.2)

∙ Resolution of the eye 
(Section 25.8; Problems 
57, 60, 72, 73, 97)

∙ X-ray diffraction studies 
of nucleic acids and 
 proteins (Section 25.9)

©Kevin Schafer/Getty Images

When	we	look	at	plants	and	animals,	most	of	the	colors	we	see—brown	
eyes,	green	 leaves,	 yellow	sunflowers—are	due	 to	 the	selective	absorp-
tion	of	light	by	pigments.	 In	the	leaves	and	stems	of	green	plants,	chlo-
rophyll	 is	 the	 chief	 pigment	 that	 absorbs	 light	 with	 some	 wavelengths	
and	reflects	 light	with	other	wavelengths	 that	we	perceive	as	green.
	 In	 some	 animals,	 color	 is	 produced	 in	 a	 different	 way.	 The	 shim-
mering,	intense	blue	color	of	the	wing	of	many	species	of	the	Morpho	
butterfly	 of	 Central	 and	 South	 America	 makes	 colors	 produced	 by	
pigments	 look	 flat.	When	 the	wing	 or	 the	 viewer	moves,	 the	 color	 of	
the	 wing	 changes	 slightly,	 causing	 the	 shimmering	 quality	 we	 call	 iri-
descence.	 Iridescent	colors	are	 found	 in	 the	wings	or	 feathers	of	 the	
Oregon	 swallowtail	 butterflies,	 ruby-throated	 hummingbirds,	 and	many	
other	species	of	butterflies	and	birds.	 Iridescent	colors	also	appear	 in	
some	beetles,	 in	 the	 scales	of	 fish,	 and	 in	 the	 skins	of	 snakes.	How	
are	 these	 iridescent	colors	produced?
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25.1 CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCE

Chapters 23 and 24 dealt with topics in geometric optics: reflection, refraction, and 
image formation. For the most part, we were able to trace light rays propagating in 
straight-line paths; the rays changed direction only due to reflection or refraction at 
boundaries. Geometric optics is a useful approximation when objects and apertures 
are large relative to the wavelength of the light.

Now we consider what happens when light propagates around obstacles or through 
apertures that are not large compared with the wavelength. In such situations we 
encounter interference and diffraction. Any kind of wave can exhibit interference and 
diffraction because they are just manifestations of the principle of superposition, which 
says that the net wave disturbance at any point due to two or more waves is the sum 
of the disturbances due to each wave individually. Superposition is not a new principle 
for light. We used it earlier in our study of sound and other mechanical waves (see 
Sections 11.7 and 11.9). We also used it to find the electric and magnetic fields  
due to more than one source; the electric and magnetic fields are the vector sums of 
the fields due to each source individually (see Sections 16.4 and 19.8). Now we apply the 
principle of superposition to the electric and magnetic fields in EM waves.

Coherent and Incoherent Sources

Why do we not commonly see interference effects with visible light? With light from 
a source such as the Sun, an incandescent bulb, or a fluorescent bulb, we do not see 
regions of constructive and destructive interference; rather, the intensity at any point 
is the sum of the intensities due to the individual waves. Light from any one of these 
sources is, at the atomic level, emitted by a vast number of independent sources. 
Waves from independent sources are incoherent; they do not maintain a fixed phase 
relationship with one another. We cannot accurately predict the phase (e.g., whether 
the wave is at a maximum or at a zero) at one point given the phase at another point. 
Incoherent waves have rapidly fluctuating phase relationships. The result is an averag-
ing out of interference effects, so that the total intensity (or power per unit area) is 
just the sum of the intensities of the individual waves.

Only the superposition of coherent waves produces interference. Coherent waves 
must be locked in with a fixed phase relationship. Coherent and incoherent waves are 
idealized extremes; all real waves fall somewhere between the extremes. The light 
emitted by a laser can be highly coherent—the phase difference between two points 
in the beam can be stable even if the points are separated by as much as several 
kilometers. Light from a distant point source (e.g., a star other than the Sun) has some 
degree of coherence.

The British physicist Thomas Young (1773–1829) performed the first visible-light 
interference experiments using a clever technique to obtain two coherent light sources 
from a single source (Fig. 25.1). When a single narrow slit is illuminated, the light 
wave that passes through the slit diffracts (spreads out). The single slit acts as a 
single coherent source to illuminate two other slits. These two other slits then act as 
sources of coherent light for interference.

Interference of Two Coherent Waves

If two waves are in step with each other, with the crest of one falling at the same 
point as the crest of the other, they are said to be in phase. The phase difference 
between the two waves that are in phase is an integral multiple of 2π rad. The super-
position of two waves that are in phase has an amplitude equal to the sum of the 
amplitudes of the two waves. For instance, in Fig. 25.2 two sinusoidal waves are in 
phase. The electric field amplitudes of the two are 2E0 and 5E0. When the two waves 
are added together, the resulting wave has an amplitude of 2E0 + 5E0 = 7E0. The 
superposition of two waves that are in phase is called constructive interference.

CONNECTION:

Interference and diffraction 
phenomena are manifesta-
tions of the principle of 
 superposition.
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For constructive interference, the intensity of the resulting wave (I) is greater than 
the sum of the intensities of the two waves individually (I1 + I2). If the amplitudes 
of two waves are E1m and E2m, the resulting amplitude when they interfere construc-
tively is Em = E1m + E2m. To find the resulting intensity, recall that intensity is pro-
portional to amplitude squared (see Section 22.6):

 I ∝ E2
m (22-17)

Using C as the constant of proportionality, Eq. (22-17) becomes I = CE2
m. Then

 I = CE2
m = C(E1m + E2m)2 = CE2

1m + CE2
2m + 2CE1mE2m (25-1)

The first two terms are the individual intensities I1 = CE2
1m and I2 = CE2

2m. The third 
term can also be written in terms of I1 and I2:

 2CE1m E2m = 2√CE2
1m √CE2

2m = 2√I1I2 (25-2)

Therefore, the intensity of the waves when they interfere constructively is

 I = I1 + I2 + 2√I1I2 (25-3)

Since intensity is power per unit area, where does the extra energy come from to make 
I > I1 + I2? Don’t worry; energy is still conserved. The interference can’t be construc-
tive everywhere; if in some places I > I1 + I2, then in other places I < I1 + I2. To 
summarize:

CONNECTION:

In the superposition of coher-
ent waves, the intensities can-
not be added together, whether 
for light or any other kind of 
wave (see Section 11.9).

Incoherent
light

Single slit

Two slits

Figure 25.1 Young’s tech-
nique for illuminating two slits 
with coherent light. The single 
slit on the left serves as a 
source of coherent light. Light 
from the two slits illuminates a 
screen (not shown). An interfer-
ence pattern is then viewed on 
the screen.

7E0

t

5E0

2E0

–2E0

–5E0

–7E0

Figure 25.2 Two coherent 
waves (green and blue) with 
amplitudes 2E0 and 5E0. Since 
they are in phase, they interfere 
constructively. The superposi-
tion of the two (red) has an 
amplitude of 7E0. Note that 
shifting either of the waves a 
whole number of cycles to the 
right or left would not change 
the superposition of the two.
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Constructive interference of two waves

 Phase difference Δϕ = an integer multiple of 2π rad (25-4)

 Amplitude       Em = E1m + E2m (25-5)

 Intensity      I = I1 + I2 + 2√I1I2 (25-3)

Destructive interference of two waves

 Phase difference Δϕ = an odd multiple of π rad (25-6)

 Amplitude       Em = ∣E1m − E2m∣ (25-7)

 Intensity      I = I1 + I2 − 2√I1I2 (25-8)

Two waves that are 180° out of phase are a half cycle apart; where one is at a 
crest the other is at a trough (Fig. 25.3). The superposition of two such waves is called 
destructive interference. The phase difference for destructive interference is an odd 
multiple of π rad. The destructive interference of two waves with amplitudes 2E0 and 
5E0 gives a resulting amplitude of 3E0. If the two waves had the same amplitude, 
there would be complete cancellation—the superposition would have an amplitude 
and intensity of zero. For unequal amplitudes, a calculation similar to the one done 
for constructive interference leads to an expression for the intensity. To summarize:

CHECKPOINT 25.1

Can	 the	phase	difference	between	 two	coherent	waves	be	π/3	 rad?	 If	 so,	 is	
interference	of	 the	waves	constructive,	destructive,	or	something	 in	between?	
Explain.

Phase Difference due to Different Paths

In interference, two or more coherent waves travel different paths to a point where 
we observe the superposition of the two. The paths may have different lengths, or 
pass through different media, or both. The difference in path lengths introduces a 
phase difference—it changes the phase relationship between the waves.

Suppose two waves start in phase but travel different paths in the same medium 
to a point where they interfere (Fig. 25.4). If the difference in path lengths Δℓ is an 
integral number of wavelengths,

 Δℓ = mλ (m = 0, ±1, ±2, . . .) (25-9)

then one wave is simply going through a whole number of extra cycles, which leaves 
them in phase—they interfere constructively. Path lengths that are integral multiples of 
λ can be ignored because they do not change the relative phase between the two waves.

5E0

–5E0

–3E0

3E0

–2E0

t

2E0

Figure 25.3 Destructive 
interference of two waves 
(green and blue) with ampli-
tudes 2E0 and 5E0. The super-
position of the two (red) has 
amplitude 3E0. Note that shift-
ing either of the waves a whole 
number of cycles to the right 
or left would not change their 
superposition. Shifting one of 
the waves a half cycle right or 
left would change the superpo-
sition into constructive interfer-
ence instead of destructive.
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On the other hand, suppose two waves start in phase but the difference in path 
lengths is an odd number of half wavelengths:

 Δℓ = ±
1
2

λ, ±
3
2

λ, ±
5
2

λ, . . . = (m +
1
2)λ (m = 0, ±1, ±2, . . .)  (25-10)

One wave travels a half cycle farther than the other (plus a whole number of cycles, 
which can be ignored). Now the waves are 180° out of phase; they interfere destruc-
tively. Note that a path difference of 1

2λ introduces a phase difference of 180° (π rad) 
and a path difference of λ introduces a phase difference of 360° (2π rad). In general, 
the phase difference Δϕ due to a path difference Δℓ is given by

 
Δϕ

2π rad
=

Δℓ
λ

 (25-11)

In cases where the two paths are not completely in the same medium, we have to 
keep track of the number of cycles in each medium separately (since the wavelength 
changes as a wave passes from one medium into another).

Source 1

Source 2

1 = 2.75λ 

2 = 3.25λ

Figure 25.4 Two loudspeak-
ers are fed the same electrical 
signal. The sound waves travel 
different distances to reach the 
observer. The phase difference 
between the two waves depends 
on the difference in the dis-
tances traveled. In this case, 
ℓ2 − ℓ1 = 0.50λ, so the waves 
arrive at the observer 180° out 
of phase. (The blue graphs rep-
resent pressure variations due 
to the two longitudinal sound 
waves.)

Example 25.1

Interference of Microwave Beams

A microwave transmitter (T) and receiver (R) are set up side 
by side (Fig. 25.5a). Two flat metal plates (M) that are good 
reflectors for microwaves face the transmitter and receiver, 
several meters away. The beam from the transmitter is broad 

enough to reflect from both metal plates. As the lower plate 
is slowly moved to the right, the microwave power measured 
at the receiver is observed to oscillate between minimum and 
maximum values (Fig. 25.5b). Approximately what is the 
wavelength of the microwaves?

(a)

T

x

M

M

R

4.5 5.0

(b)

6.05.5 6.54.03.5

Power
at R

x (cm)

Figure 25.5
(a) Microwave transmitter and receiver and reflecting plates;  
(b) microwave power detected as a function of x.

continued on next page
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Example 25.1 continued

Strategy Maximum power is detected when the waves re-
flected from the two plates interfere constructively at the 
receiver. Thus, the positions of the mirror that give maxi-
mum power must occur when the path difference is an inte-
gral number of wavelengths.

Solution When the lower plate is farther from the trans-
mitter and receiver, the wave reflected from it travels some 
extra distance before reaching the receiver. If the metal 
plates are far enough from the transmitter and receiver, 
then the microwaves approach the plates and return almost 
along the same line. Then the extra distance traveled is 
 approximately 2x.

Constructive interference occurs when the path lengths 
differ by an integral number of wavelengths:

Δℓ = 2x = mλ (m = 0, ±1, ±2, . . .)

From one position of constructive interference to an ad-
jacent one, the path length difference must change by one 
wavelength:

2 Δx = λ

The maxima are at x = 3.9, 5.2, and 6.5 cm, so Δx = 1.3 cm. 
Then

λ = 2.6 cm

Discussion Note that the distance the lower plate is 
moved between maxima is half a wavelength, since the wave 
makes a round trip.

Practice Problem 25.1 Path Difference for 
 Destructive Interference

Verify that from one position of destructive interference to 
an adjacent one, the path length difference changes by one 
wavelength.

Application: How CDs, DVDs, and Blu-ray Discs Are Read

In Example 25.1, EM waves from a single source are reflected from metal surfaces 
at two different distances from the source; the two reflected waves interfere at the 
detector. A similar system is used to read CDs, DVDs, and Blu-ray discs.

To manufacture a CD, a disk of polycarbonate plastic 1.2 mm thick is impressed 
with a series of pits arranged in a single spiral track (Fig. 25.6). The pits are 500 nm 
wide and at least 830 nm long. The disk is coated with a thin layer of aluminum and 
then with acrylic to protect the aluminum. To read the CD, a laser beam (λ = 780 nm) 
illuminates the aluminum layer from below; the reflected beam enters a detector. The 
laser beam is wide enough that when it reflects from a pit, part of it also reflects off 
the land (the flat part of the aluminum layer) on either side of the track. The height 
h of the pits is chosen so that light reflected from the land interferes destructively 
with light reflected from the pit (see Problem 59). Thus, a pit causes a minimum 
intensity to be detected. On the other hand, when the laser reflects from the land 
between pits, the intensity at the detector is a maximum. Changes between the two 
intensity levels represent the binary digits (the 0’s and the 1’s).

A DVD is similar to a CD, but the pits are smaller (width 320 nm and minimum 
length only 400 nm). The data tracks are also more closely spaced (740 nm from 
center to center as opposed to 1600 nm for a CD). The data tracks are illuminated by 
a 640 nm laser. The pits on a Blu-ray disc are even smaller than those on a DVD, 
and the tracks are more closely spaced. A Blu-ray player uses a 405 nm laser—which 
is not really blue, but rather at the extreme violet end of the visible spectrum.

25.2 THE MICHELSON INTERFEROMETER

The concept behind the Michelson interferometer (Fig. 25.7) is not complicated, yet it 
is an extremely precise tool. A beam of coherent light is incident on a beam splitter S 
(a half-silvered mirror) that reflects only half of the incident light, while transmitting 
the rest. Thus, a single beam of coherent light from the source is separated into two 
beams, which travel different paths down the arms of the interferometer and are reflected 
back by fully silvered mirrors (M1, M2). At the half-silvered mirror, again half of each 
beam is reflected and half transmitted. Light sent back toward the source leaves the 
interferometer. The remainder combines into a single beam and is observed on a screen.
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Label Acrylic

Polycarbonate plastic
Aluminum (reflective layer)

Pit
Land between pits

in the track

h

(a)

(b) (c)

Land between tracks

Track

Track

1600 nm

500 nm

500 nm

Compact disc

Motor
Laser

Lens

Detector

Semitransparent
mirror 

Reflected beam

Figure 25.6 (a) Cross-sectional view of a CD. A laser beam passes through the polycarbonate plastic and reflects 
from the aluminum layer. (b) The pits are arranged in a spiral track. Surrounding the pits, the flat aluminum surface is 
called land. When the laser reflects from the bottom of a pit, it also reflects from the land on either side. (c) A motor 
spins the CD at between 200 and 500 rev/min keeping the track speed constant. Light from a laser is reflected by a 
semitransparent mirror toward the CD; light reflected by the CD is transmitted through this same mirror to the detector. 
The detector produces an electrical signal proportional to the variations in the intensity of reflected light.

Light source

Screen
M1

M2

S

d1

d2

Figure 25.7 A Michelson 
interferometer. The American 
physicist Albert Michelson 
(1852–1931) invented the inter-
ferometer to determine whether 
Earth’s motion has any effect 
on the speed of light as mea-
sured by an observer on Earth.

A phase difference between the two beams may arise because the arms have 
different lengths or because the beams travel through different media in the two arms. 
If the two beams arrive at the screen in phase, they interfere constructively to pro-
duce maximum intensity (a bright fringe) at the screen; if they arrive 180° out of 
phase, they interfere destructively to produce a minimum intensity (a dark fringe).

Example 25.2

Measuring the Index of Refraction of Air

Suppose a transparent vessel 30.0 cm long is placed in 
one arm of a Michelson interferometer. The vessel ini-
tially contains air at 0°C and 1 atm. With light of vacuum 
wavelength 633 nm, the mirrors are arranged so that a 
bright spot appears at the center of the screen. As air is 

gradually pumped out of the vessel, the central region of 
the screen changes from bright to dark and back to bright 
274 times—that is, 274 bright fringes are counted (not 
including the initial bright fringe). Calculate the index of 
refraction of air.

continued on next page
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Example 25.2 continued

Strategy As air is pumped out, the path lengths traveled in 
each of the two arms do not change, but the number of wave-
lengths traveled does change, since the index of refraction in-
side the vessel begins at some initial value n and decreases 
gradually to 1. Each new bright fringe means that the number 
of wavelengths traveled has changed by one more wavelength.

Solution Let the index of refraction of air at 0°C and 
1 atm be n. If the vacuum wavelength is λ0 = 633 nm, then 
the wavelength in air is λ = λ0 /n. Initially, the number of 
wavelengths traveled during a round-trip through the air in 
the vessel is

 initial number of wavelengths =
round-trip distance
wavelength in air

 =
2d

λ
=

2d

λ0/n

where d = 30.0 cm is the length of the vessel. As air is 
 removed, the number of wavelengths decreases since, as n 
decreases, the wavelength gets longer. Assuming that the 
vessel is completely evacuated in the end (or nearly so), the 
final number of wavelengths is

 final number of wavelengths =
round-trip distance

wavelength in vacuum

 =
2d

λ0

The change in the number of wavelengths traveled, N, is 
equal to the number of bright fringes observed:

N =
2d

λ0/n
−

2d

λ0
=

2d

λ0
 (n − 1)

Since N = 274, we can solve for n.

 n =
Nλ0

2d
+ 1

 =
274 × 6.33 × 10−7 m

2 × 0.300 m
+ 1

 = 1.000 289

Discussion The measured value for the index of refraction 
of air is close to that given in Table 23.1 (n = 1.000 293).

Conceptual Practice Problem 25.2 A Possible 
 Alternative Method

Instead of counting the fringes, another way to measure the 
index of refraction of air might be to move one of the mirrors 
as the air is slowly pumped out of the vessel, maintaining a 
bright fringe at the screen. The distance the mirror moves 
could be measured and used to calculate n. If the mirror 
moved is the one in the arm that does not contain the vessel, 
should it be moved in or out? In other words, should that arm 
be made longer or shorter?

Application: The Interference Microscope 

An interference microscope enhances contrast in the image when viewing objects that 
are transparent or nearly so. A cell in a water solution is difficult to see with an ordi-
nary microscope. The cell reflects only a small fraction of the light incident on it, so 
it transmits almost the same intensity as the water does and there is little contrast 
between the cell and the surrounding water. However, if the cell’s index of refraction 
is different from that of water, light transmitted through the cell is phase-shifted com-
pared with the light that passes through water. The interference microscope exploits 
this phase difference. As with the Michelson interferometer, a single beam of light is 
split into two and then recombined. The light in one arm of the interferometer passes 
through the sample. When the beams are recombined, interference translates the phase 
differences that are invisible in an ordinary microscope into intensity differences that 
are easily seen.

25.3 THIN FILMS

The rainbow-like colors seen in soap bubbles and oil slicks are produced by inter-
ference (Fig. 25.8). At each surface of the film, some light is reflected and some 
transmitted. Whether we view light reflected from a film or light transmitted 
though it, we see the superposition of rays that have traveled different paths. The 
interference between these rays produces the colors we see. Unless otherwise 
stated, we will consider thin-film interference for normal incidence only. However, 

Figure 25.8 The colors seen 
in this bubble are produced by 
interference.
©Snova/Shutterstock
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ray diagrams will show rays at near-normal incidence so they don’t all lie on the 
same line in the diagram.

Figure 25.9 shows a light ray incident on a portion of a thin film. At each bound-
ary, some light is reflected while most is transmitted. When looking at the light 
reflected from the film, we see the superposition of all the reflected rays (of which 
only the first three—labeled 1, 2, and 3—are shown). The interference of these rays 
determines what color we see. In most cases, we can consider the interference of the 
first two reflected rays and ignore the rest. Unless the indices of refraction on either 
side of a boundary are very different, the amplitude of a reflected wave is a small 
fraction of the amplitude of the incident wave. Rays 1 and 2 each reflect only once; 
their amplitudes are nearly the same. Ray 3 reflects three times, so its amplitude is 
much smaller. Other reflected rays are even weaker.

Interference effects are much less pronounced in the transmitted light. Ray A is 
strong since it does not suffer a reflection. Ray B suffers two reflections, so it is much 
weaker than A. Ray C is even weaker since it goes through four reflections. Thus, 
the amplitude of the transmitted light for constructive interference is not much larger 
than the amplitude for destructive interference. Nevertheless, interference in the trans-
mitted light must occur for energy to be conserved: if more of the energy of a par-
ticular wavelength is reflected, less is transmitted. In Problem 25 you can show that 
if a certain wavelength interferes constructively in reflected light, then it interferes 
destructively in transmitted light, and vice versa.

Phase Shifts due to Reflection

Whenever light hits a boundary where the wave speed suddenly changes, reflection 
occurs. Just as for waves on a string (Fig. 25.10), the reflected wave is inverted if it 
reflects off a slower medium (a medium in which the wave travels more slowly); it 
is not inverted if it reflects off a faster medium. The transmitted wave is never inverted.

Film
nt nf ni

Transmitted
rays

A
B
C

1
2
3

Reflected
rays

Incident
ray

t

Figure 25.9 Rays reflected 
and transmitted by a thin film.

Incident 
pulse

Reflected pulse 
is inverted

Transmitted 
pulse

Faster medium Slower medium

(a) (b)

Incident 
pulse

Faster mediumSlower medium

Reflected pulse
is not inverted

Transmitted 
pulse

Figure 25.10 (a) A wave 
pulse on a string heads for a 
boundary with a slower 
medium (greater mass per unit 
length). The reflected pulse is 
inverted. (b) A pulse reflected 
from a faster medium is not 
inverted.

Not inverted
(no phase change)

Inverted
(180˚ phase change)

Faster medium
(lower n)

Slower medium
(higher n)

Transmitted

Transmitted

Incident

Incident

Reflected

Reflected

Figure 25.11 A 180° phase 
change due to reflection occurs 
when light reflects from a 
boundary with a slower medium.

When light reflects at normal or near-normal incidence from a boundary with 
slower medium (higher index of refraction), it is inverted (180° phase change); 
when light reflects from a faster medium (lower index of refraction), it is not 
inverted (no phase change). See Fig. 25.11.

To determine whether rays 1 and 2 in Fig. 25.9 interfere constructively or destruc-
tively, we must consider both the relative phase change due to reflection and the extra 
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CONNECTION:

In Section 11.8, we saw that 
reflected waves are some-
times inverted, which is to 
say they are phase-shifted 
180° with respect to the 
 incident wave.

path length traveled by ray 2 in the film. Depending on the indices of refraction of 
the three media (the film and the media on either side), it may be that neither of the 
rays is inverted on reflection, or that both are, or that one of the two is. If the index 
of refraction of the film nf is between the other two indices (ni and nt), there is no 
relative difference due to reflection; either both are inverted or neither is. If the index 
of the film is the largest of the three or the smallest of the three, then one of the two 
rays is inverted; in either case there is a relative phase difference of 180°.

CHECKPOINT 25.3

In	Fig.	25.9,	suppose	ni	=	1.2,	nf	=	1.6,	and	nt	=	1.4.	Which	of	 rays	1	and	2	
are	phase-shifted	180°	due	 to	 reflection?

Problem-Solving Strategy for Thin Films

∙ Sketch the first two reflected rays. Even if the problem concerns normal 
incidence, draw the incident ray with a nonzero angle of incidence to sep-
arate the various rays. Label the indices of refraction.

∙ Decide whether there is a relative phase difference of 180° between the rays 
due to reflection.

∙ If there is no relative phase difference due to reflection, then an extra path 
length of mλ keeps the two rays in phase, resulting in constructive interfer-
ence. An extra path length of (m + 1

2)λ causes destructive interference. 
Remember that λ is the wavelength in the film, since that is the medium in 
which ray 2 travels the extra distance.

∙ If there is a 180° relative phase difference due to reflection, then an extra path 
length of mλ preserves the 180° phase difference and leads to destructive inter-
ference. An extra path length of (m + 1

2)λ causes constructive interference.
∙ Remember that ray 2 makes a round-trip in the film. For normal incidence, 

the extra path length is 2t.

continued on next page

Example 25.3

Appearance of a Film of Soapy Water

A wire frame is dipped into soapy water and then held verti-
cally. A thin film of soapy water clings to the frame (Fig. 25.12). 
Due to gravity pulling downward, the film thickness gradually 
increases from thinnest at the top to thickest at the bottom. The 
film has index of refraction n = 1.36. (a) The light reflected 
perpendicular to the film at a certain point is missing the wave-
lengths 504 nm and 630.0 nm. No wavelengths between these 
two are missing. What is the thickness of the film at that point? 
(b) What other visible wavelengths are missing, if any?

Strategy First we sketch the first two reflected rays, label-
ing the indices of refraction and the thickness t of the film 
(Fig. 25.13). The sketch helps determine whether there is a 
relative phase difference of 180° due to reflection. The 
wavelengths missing in reflected light are those that  interfere 

Figure 25.12
A thin film of soapy water viewed in reflected light (the viewer and 
the light source are both on the same side of the film). The thickness 
of the film gradually increases from the top of the frame to the bottom.
©Ted Kinsman/Science Source
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Example 25.3 continued

destructively; we consider phase shifts both due to reflection 
and due to the extra path ray 2 travels in the film. We must 
remember to use the wavelength in the film, not the wave-
length in vacuum, because ray 2 travels its extra distance 
within the film.

Solution (a) For light reflected perpendicular to the film 
(normal incidence), reflected ray 2 travels an extra dis-
tance 2t compared with ray 1, which introduces a phase dif-
ference between them. Since there is already a relative phase 
difference of 180° due to reflection, the path difference 2t 
must be an integral number of wavelengths to preserve 
destructive interference:

2t = mλ = m 

λ0

n

Suppose λ0,m = 630.0 nm is the vacuum wavelength for which 
the path difference is mλ for a certain value of m. Since there 
are no missing wavelengths between the two, λ0,(m+1) = 
504 nm must be the vacuum wavelength for which the path 
difference is m + 1 times the wavelength in the film. Why 
not m − 1? Because 504 nm is smaller than 630.0 nm, so a 
larger number of wavelengths fits in the path difference 2t.

2nt = mλ0,m = (m + 1)λ0,(m+1)

We can solve for m:

m × 630.0 nm = (m + 1) × 504 nm = m × 504 nm + 504 nm

m × 126 nm = 504 nm

m = 4.00

Then the thickness is

t =
mλ0

2n
=

4.00 × 630.0 nm
2 × 1.36

= 926.47 nm → 926 nm

(b) We already know the missing wavelengths for m = 4 and 
m = 5. Let’s check other values of m.

2nt = 2 × 1.36 × 926.47 nm = 2520 nm

For m = 3,

λ0 =
2nt

m
=

2520 nm
3

= 840 nm

which is infrared rather than visible. There is no need to 
check m = 1 or 2 since they give wavelengths even larger 
than 840  nm—wavelengths even farther from the visible 
range. Therefore, we try m = 6:

λ0 =
2nt

m
=

2520 nm
6

= 420 nm

This wavelength is generally considered to be visible. What 
about m = 7?

λ0 =
2nt

m
=

2520 nm
7

= 360 nm

A wavelength of 360 nm is UV. Thus, the only other miss-
ing visible wavelength is 420 nm.

Discussion As a check, we can verify directly that the 
three missing wavelengths in vacuum travel an integral num-
ber of wavelengths in the film:

    λ0 λ =
λ0

1.36
               mλ

420 nm 308.8 nm 6 × 308.8 nm = 1853 nm
504 nm 370.6 nm 5 × 370.6 nm = 1853 nm
630 nm 463.2 nm 4 × 463.2 nm = 1853 nm

Since the path difference is 2t = 2 × 926.47 nm = 1853 nm, 
the extra path is an integral number of wavelengths for all 
three.

Practice Problem 25.3 Constructive Interference 
in Reflected Light

What visible wavelengths interfere constructively in the re-
flected light where t = 926 nm?

Film
(slow)

Air
(fast)

Air
(fast)

n = 1 n = 1n = 1.36

Reflected
rays

1

0
π

2

Incident
ray

t

A
B Phase shifts 

due to 
reflection

Figure 25.13
The first two rays reflected by the soap film. At A, reflected ray 1 
is inverted. At B, reflected ray 2 is not inverted.

Thin Films of Air

A thin air gap between two solids can produce interference effects. If a glass lens 
with a convex spherical surface is placed on a flat plate of glass, the air gap between 
the two increases in thickness as we move out from the contact point (Fig. 25.14). 
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Source of light

Glass

Glass

1 2

0

Air

(a) (b) (c)

t
π

Figure 25.14 (a) The air gap between a convex, spherical glass surface and an 
optically flat glass plate. The curvature of the lens is exaggerated here. In reality, the 
air gap would be very thin and the glass surfaces almost parallel. (b) Light rays 
reflected from the top and bottom of the air gap. Ray 2 has a phase shift of π rad 
due to reflection, but ray 1 does not. Ray 2 also has a phase shift due to the extra 
path traveled in the air gap. For normal incidence, the extra path length is 2t, where 
t is the thickness of the air gap. When viewed from above, we see the superposition 
of reflected rays 1 and 2. (c) A pattern of circular interference fringes, known as 
Newton’s rings, is seen in the reflected light.

Assuming a perfect spherical shape, we expect to see alternating bright and dark 
circular fringes in the reflected light. The fringes are called Newton’s rings (after Isaac 
Newton). Well past Newton’s day, it was a puzzle that the center was a dark spot. 
Thomas Young figured out that the center is dark because of the phase shift on reflec-
tion. Young did an experiment producing Newton’s rings with a lens made of crown 
glass (n = 1.5) on top of a flat plate made of flint glass (n = 1.7). When the gap 
between the two was filled with air, the center was dark in reflected light. Then he 
immersed the experiment in sassafras oil (which has an index of refraction between 
1.5 and 1.7). Now the center spot was bright, since there was no longer a relative 
phase difference of 180° due to reflection.

Newton’s rings can be used to check a lens to see if its surface is spherical. A 
perfectly spherical surface gives circular interference fringes that occur at predictable 
radii (see Problem 24).

Application: Antireflective Coatings

A common application of thin film interference is the antireflective coatings on lenses. 
The importance of these coatings increases as the number of lenses in an instrument 
increases—if even a small percentage of the incident light intensity is reflected at 
each surface, reflections at each surface of each lens can add up to a large fraction 
of the incident intensity being reflected and a small fraction being transmitted through 
the instrument.

The most common material used as an antireflective coating is magnesium fluo-
ride (MgF2). It has an index of refraction n = 1.38, between that of air (n = 1) and 
glass (n ≈ 1.5 or 1.6). The thickness of the film is chosen so destructive interference 
occurs for a wavelength in the middle of the visible spectrum.

Application: Iridescent Colors in Butterfly Wings

Interference from light reflected by step structures or partially overlapping scales 
produces the iridescent colors seen in many butterflies, moths, birds, and fish. A 
stunning example is the shimmering blue of the Morpho butterfly. Figure 25.15a 
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shows the Morpho wing as viewed under an electron microscope. The treelike struc-
tures that project up from the top surface of the wing are made of a transparent mate-
rial. Light is thus reflected from a series of steps. Let us concentrate on two rays 
reflected from the tops of successive steps of thickness t1 with spacing t2 between the 
steps (Fig. 25.15b). Both rays are inverted on reflection, so there is no relative phase 
difference due to reflection. At normal incidence, the path difference is 2(t1 + t2). 
However, the ray passes through a thickness t1 of the step where the index of refrac-
tion is n = 1.5. We cannot find the wavelength for constructive interference simply 
by setting the path difference equal to a whole number of wavelengths: which wave-
length would we use?

To solve this sort of problem, we think of path differences in terms of numbers 
of wavelengths. The number of wavelengths traveled by ray 2 in a distance 2t1 (round-
trip) through a thickness t1 of the wing structure is

 
2t1

λ
=

2t1

λ0/n
 (25-12)

where λ0 is the wavelength in vacuum and λ = λ0/n is the wavelength in the medium 
with index of refraction n. The number of wavelengths traveled in a distance 2t2 in air is

 
2t2

λ
=

2t2

λ0
 (25-13)

For constructive interference, the number of extra wavelengths traveled by ray 2, 
relative to ray 1, must be an integer:

 
2t1

λ0/n
+

2t2

λ0
= m (25-14)

We can solve this equation for λ0 to find the wavelengths that interfere constructively:

 λ0 =
2
m

(nt1 + t2)  (25-15)

(a)
(c)

(b)

= 127 nmt2Air

Air

= 64 nmt1

1 2

n = 1.5

n = 1.5

= 127 nmt2

= 64 nmt1n = 1.5

n = 1.5

1 2 1 2

Figure 25.15 (a) Morpho wing as viewed under an electron microscope. (b) Light rays reflected from two successive 
steps interfere. Constructive interference produces the shimmering blue color of the wing. For clarity, the rays shown 
are not at normal incidence. (c) Two other pairs of rays that interfere.
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For m = 1,

λ0 = 2(1.5 × 64 nm + 127 nm) = 2 × 223 nm = 446 nm

This is the dominant wavelength in the light we see when looking at the butterfly 
wing at normal incidence. We only considered reflections from two adjacent steps, 
but if those interfere constructively, so do all the other reflections from the tops of 
the steps. Constructive interference at higher values of m are outside the visible spec-
trum (in the UV).

Since the path length traveled by ray 2 depends on the angle of incidence, the 
wavelength of light that interferes constructively depends on the angle of view (see 
Conceptual Question 16). Thus, the color of the wing changes as the viewing angle 
changes, which gives the wing its shimmering iridescence.

So far we have ignored reflections from the bottoms of the steps. Rays reflected 
from the bottoms of two successive steps interfere constructively at the same wave-
length of 446 nm, since the path difference is the same. The interference of two other 
pairs of rays (Fig. 25.15c) gives constructive interference only in UV since the path 
length difference is so small.

25.4 YOUNG’S DOUBLE-SLIT EXPERIMENT

In 1801, Thomas Young performed a double-slit interference experiment that not only 
demonstrated the wave nature of light, but also allowed the first measurement of the 
wavelength of light. Figure 25.16 shows the setup for Young’s experiment. Coherent 
light of wavelength λ illuminates a mask in which two parallel slits have been cut. 
Each slit has width a, which is comparable to the wavelength λ, and length L ≫ a; 
the centers of the slits are separated by a distance d. When light from the slits is 
observed on a screen at a great distance D from the slits, what pattern do we see—how 
does the intensity I of light falling on the screen depend on the angle θ, which mea-
sures the direction from the slits to a point on the screen?

Light from a single narrow slit spreads out primarily in directions perpendicular 
to the slit, since the wavefronts coming from it are cylindrical. Thus, the light from 
one narrow slit forms a band of light on the screen. The light does not spread out 
significantly in the direction parallel to the slit since the slit length L is large relative 
to the wavelength.

With two narrow slits, the two bands of light on the screen interfere with each 
other. The light from the slits starts out in phase, but travels different paths to reach 
the screen. We expect constructive interference at the center of the interference pattern 
(θ = 0) since the waves travel the same distance and so are in phase when they reach 
the screen. Constructive interference also occurs wherever the path difference is an 
integral multiple of λ. Destructive interference occurs when the path difference is an 

Figure 25.16 Young’s double-
slit interference experiment.  
(a) The slit geometry. The  
center-to-center distance between 
the slits is d. From the point 
midway between the slits, a 
line perpendicular to the mask 
extends toward the center of 
the interference pattern on the 
screen and a line making an 
angle θ to the normal can be 
used to locate a particular 
point to either side of the cen-
ter of the interference pattern. 
(b) Cylindrical wavefronts 
emerge from the slits and 
interfere to form a pattern of 
fringes on the screen.

θ

a

L

d

Normal

To screen

(a) (b)
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odd number of half wavelengths. A gradual transition between constructive and 
destructive interference occurs since the path difference increases continuously as θ 
increases. This leads to the characteristic alternation of bright and dark bands (fringes) 
that are shown in Fig. 25.17a, a photograph of the screen from a double-slit experi-
ment. Figure 25.17b and c are a graph of the intensity on the screen and a Huygens 
construction for the same interference pattern, respectively.

Locations of Maxima and Minima To find where constructive or destructive 
interference occurs, we need to calculate the path difference. Figure 25.18a shows two 
rays going from the slits to a nearby screen. If the screen is moved farther from the 
slits, the angle α gets smaller. When the screen is far away, α is small and the rays 
are nearly parallel. In Fig. 25.18b, the rays are drawn as parallel for a distant screen. 
The distances that the rays travel from points A and B to the screen are equal; the 
path difference is the distance from the right slit to point B:

 Δℓ = d sin θ (25-16)

Maximum intensity at the screen is produced by constructive interference; for con-
structive interference, the path difference is an integral multiple of the wavelength:

x0
(b)

(c)

Screen

Plane
wavefronts

λ

I m = 0

m = 1m = –1

m = 2m = –2

D

(a)

θ

x

Figure 25.17 Double-slit 
interference pattern using red 
light. (a) The interference pat-
tern on the screen. Constructive 
interference produces a high 
intensity of red light on the 
screen; destructive interference 
leaves the screen dark. (b) The 
intensity as a function of posi-
tion x on the screen. The max-
ima (positions where the 
interference is constructive) are 
labeled with the associated 
value of m. (c) A Huygens 
 construction for the double-slit 
experiment. The blue lines rep-
resent antinodal lines (lines 
along which the waves interfere 
constructively). Note the rela-
tionship between x, the position 
on the screen, and the angle θ:  
tan θ = x/D, where D is the dis-
tance from the slits to the screen.

Double-slit maxima

 d sin θ = mλ (m = 0, ±1, ±2, . . .)  (25-17)
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Screen

D

A B

d

(a)

α

θ

A

B

d sin θ

d

(b)

S1 S2

θ

θ

θ

Figure 25.18 (a) Rays from 
two slits to a nearby screen. As 
the screen is moved farther 
away, the angle α decreases—
the rays become more nearly 
parallel. (b) In the limit of a 
distant screen, the two rays are 
parallel (but still meet at the 
same point on the screen). The 
difference in path lengths is  
d sin θ.

The absolute value of m is often called the order of the maximum. Thus, the 
third-order maxima are those for which d sin θ = ±3λ. Minimum (zero) intensity at 
the screen is produced by destructive interference; for destructive interference, the 
path difference is an odd number of half wavelengths:

Double-slit minima

 d sin θ = ± 
1
2

 λ, ± 
3
2

 λ, ± 
5
2

 λ, . . . (25-18)

In Fig. 25.17, the bright and dark fringes appear to be equally spaced. In Problem 28, 
you can show that the interference fringes are equally spaced near the center of the 
interference pattern, where θ is a small angle.

Example 25.4

Interference from Two Parallel Slits

A laser (λ = 690.0 nm) is used to illuminate two parallel 
slits. On a screen that is 3.30 m away from the slits, interfer-
ence fringes are observed. The distance between adjacent 
bright fringes in the center of the pattern is 1.80 cm. What is 
the distance between the slits?

Strategy The centers of the bright fringes occur at angles 
θ given by d sin θ = mλ. The distance between the m = 0 and 
m = 1 maxima is x = 1.80 cm. A sketch helps us see the re-
lationship between the angle θ and the distances given in the 
problem.

Solution The central bright fringe (m = 0) is at θ0 = 0. The 
next bright fringe (m = 1) is at an angle given by

d sin θ1 = λ

Figure 25.19 is a sketch of the geometry of the situation. 
The angle between the lines going to the m = 0 and m = 1 
maxima is θ1. The distance between these two maxima on 

continued on next page

θ1
D

x

Screen

Two slits

m = 1

m = 0

Figure 25.19
Sketch of the double-slit experiment for Example 25.4.

CONNECTION:

Antinodes are locations of 
maximum amplitude and 
nodes are locations of mini-
mum amplitude, whether in 
EM waves or mechanical 
waves (see Sections 11.10 
and 12.4).
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25.5 GRATINGS

Instead of having two parallel slits, a grating (sometimes called a “diffraction grating”) 
consists of a large number of parallel, narrow, evenly spaced slits. Typical gratings have 
hundreds or thousands of slits. The slit separation of a grating is commonly character-
ized by the slit density, which is the number of slits per centimeter (or the number per 
any other unit of distance). The slit density is the reciprocal of the slit separation d:

 slit density =
1

slit spacing
=

1
d

 (25-19)

Gratings are made with slit densities up to about 50 000 slits/cm, so slit separations 
are as small as 200 nm. The smaller the slit separation, the more widely different 
wavelengths of light are separated by the grating.

Figure 25.20 shows light rays traveling from the slits of a grating to a distant 
screen. Suppose light from the first two slits is in phase at the screen because the 
path difference d sin θ is a whole number of wavelengths mλ. Then, since the slits are 
evenly spaced, the light from all the slits arrives at the screen in phase. The path 
difference between any pair of slits is an integral multiple of d sin θ and therefore an 

Example 25.4 continued

the screen is x, and the distance from the slits to the screen is 
D. We can find θ1 from x and D using trigonometry:

tan θ1 =
x

D
=

0.0180 m
3.30 m

= 0.005 455

θ1 = tan−1 0.005 455 = 0.3125°

Now we substitute θ1 into the condition for the m = 1 
maximum.

d =
λ

sin θ1
=

690.0 nm
 sin  0.3125°

=
690.0 nm
0.005 454

= 0.127 mm

Discussion We might have noticed that since x ≪ D, θ1 is 
a small angle—that’s why the sine and the tangent are the 
same to three significant figures. Using the small angle ap-
proximation (sin θ ≈ tan θ ≈ θ in radians) from the start gives

dθ1 = λ

and

θ1 =
x

D

so

d =
λD

x
=

690.0 nm × 3.30 m
0.0180 m

= 0.127 mm

Practice Problem 25.4 Fringe Spacing When the 
Wavelength Is Changed

In a particular double-slit experiment, the distance between 
the slits is 50 times the wavelength of the light. (a) Find the 
angles in radians at which the m = 0, 1, and 2 maxima occur. 
(b) Find the angles at which the first two minima occur. 
(c) What is the distance between two maxima at the center of 
the pattern on a screen 2.0 m away?

Conceptual Example 25.5

Changing the Slit Separation

A laser is used to illuminate two narrow parallel slits. The 
interference pattern is observed on a distant screen. What 
happens to the pattern observed if the distance between the 
slits is slowly decreased?

Solution and Discussion When the slits are closer to-
gether, the path difference d sin θ for a given angle gets smaller. 
Larger angles are required to produce a path difference that is a 
given multiple of the wavelength. The interference pattern 

therefore spreads out, with each maximum (other than m = 0) 
and minimum moving out to larger and larger angles.

Conceptual Practice Problem 25.5 Interference 
Pattern for d < λ

If the distance between two slits in a double-slit experiment 
is less than the wavelength of light, what would you see at a 
distant screen?
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θ

d

d sin θ

Figure 25.20 Light rays 
traveling from the slits of a 
grating to a point on a screen. 
Since the screen is far away, 
the rays are nearly parallel to 
one another; they all leave the 
grating at (nearly) the same 
angle θ. Since the distance 
between any two adjacent slits 
is d, the path difference 
between two adjacent rays is 
d  sin θ.

integral multiple of λ. Therefore, the angles for constructive interference for a grating 
are the same as for two slits with the same separation:

CONNECTION:

Maxima for a grating are at 
the same angles as maxima 
for two slits with the same d.

Maxima for a grating

 d sin θ = mλ (m = 0, ±1, ±2, . . .)  (25-17)

As for two slits, ∣m∣ is called the order of the maximum.
For two slits, there is a gradual change in intensity from maximum to minimum 

and back to maximum. By contrast, for a grating with a large number of slits, the 
maxima are narrow and the intensity everywhere else is negligibly small. How does 
the presence of many slits make the maxima so narrow?

Suppose we have a grating with N = 100 slits, numbered 0 to 99. The first-order 
maximum occurs at angle θ such that the path length difference between slits 0 and 
1 is d sin θ = λ. Now suppose we look at a slightly greater angle θ + Δθ such that  
d sin (θ + Δθ) = 1.01λ. The rays from slits 0 and 1 are almost in phase; if there were 
only two slits, the intensity would be almost as large as the maximum. With 100 slits, 
each ray is 1.01λ longer than the previous ray. If the length of ray 0 is ℓ0, then the 
length of ray 1 is ℓ0 + 1.01λ, the length of ray 2 is ℓ0 + 2.02λ, and so forth. 
The length of ray 50 is ℓ0 + 50.50λ; thus, rays 0 and 50 interfere destructively since 
the path difference is an odd number of half wavelengths. Likewise, slits 1 and 
51 interfere destructively (51.51λ − 1.01λ = 50.50λ); slits 2 and 52 interfere destruc-
tively; and so on. Since the light from every slit interferes destructively with the light 
from some other slit, the intensity at the screen is zero. The intensity goes from 
maximum at θ to zero at θ + Δθ.

The angle Δθ is called the half-width of the maximum since it is the angle from 
the center of the maximum to one edge of the maximum (rather than from one edge 
to the other). By generalizing the argument, we find that the widths of the maxima 
are inversely proportional to the number of slits (Δθ ∝ 1/N). The larger the number 
of slits, the narrower the maxima. Increasing N also makes the maxima brighter. More 
slits let more light pass through and bunch the light energy into narrower maxima. 
Since light from N slits interferes constructively, the amplitudes of the maxima are 
proportional to N and the intensities are proportional to N2. The maxima for a grating 
are narrow and occur at different angles for different wavelengths. Therefore:

A grating separates light with a mixture of wavelengths into its constituent 
wavelengths.

CHECKPOINT 25.5

How	are	the	maxima	produced	by	a	grating	different	from	those	produced	by	a	
double	slit	with	 the	same	spacing	d?

Example 25.6

Slit Spacing for a Grating

Bright white light shines on a grating. A cylindrical strip of 
color film is exposed by light emerging at all angles (−90° to 
+90°) from the grating (Fig. 25.21a). Figure 25.21b shows 
the resulting photograph. Estimate the number of slits per 
centimeter in the grating.

Strategy The grating separates white light into the colors of 
the visible spectrum. Each color forms a maximum at angles 
given by d sin θ = mλ. From Fig. 25.21b, we see that more than 
just first-order maxima are present. If we can  estimate the 

continued on next page
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Application: CD and DVD Tracking

Data on a CD or DVD is encoded as pits arranged along a spiral track (see Section 
25.1). The track is only 500 nm wide on a CD and 320 nm wide on a DVD. One of 
the hardest jobs of an optical disc reader is to keep the laser beam centered on the 
data track. One method used to keep the laser on track uses a grating to split the laser 
beam into three beams (Fig. 25.22). The central beam (m = 0 maximum) is centered 
on the data track. The first-order beams (m = ±1 maxima) are tracking beams. They 
reflect from the flat aluminum surfaces (called land) on either side of the track. Nor-
mally the reflected intensity of the tracking beams is constant. If one of the tracking 
beams encounters the pits in an adjacent track, the resulting change in reflected inten-
sity signals the reader that the position of the laser needs correction.

Application: Spectroscopy

The grating spectroscope is a precision instrument to measure wavelengths of vis-
ible light (Fig. 25.23). Spectroscope means (roughly) spectrum viewer. The angles 
at which maxima occur are used along with the spacing of slits in the grating to 
determine the wavelength(s) present in the light source. The maxima are often called 

Example 25.6 continued

wavelength of the light that exposed the edge of the photo—
light that left the grating at ±90°—and if we know what order 
maximum that is, we can find the slit separation.

Solution The central (m = 0) maximum appears white 
due to constructive interference for all wavelengths. On ei-
ther side of the central maximum lie the first-order maxima. 
The first-order violet (shortest wavelength) comes first (at 
the smallest angle), and red is last. Next comes a gap where 
there are no maxima. Then the second-order maxima begin 
with violet. The colors do not progress through the pure 
spectral colors as before because the third-order maxima 
start to appear before the second order is finished. The 
third-order spectrum is not complete; the last color we see 
at either extreme (θ = ±90°) is blue-green. Thus, the third-
order maximum for blue-green light occurs at ±90°.

Wavelengths that appear blue-green are around 500 nm 
(see Section 22.3). Using λ = 500 nm and m = 3 for the third-
order maximum, we can solve for the slit separation.

d sin θ = mλ

d =
mλ

sin θ
=

3 × 500 nm
sin 90°

= 1500 nm

Then the slit density is

1
d

=
1

1500 × 10−9 m
= 670 000 slits/m = 6700 slits/cm

Discussion The final answer is reasonable for the slit 
density in a grating. We would suspect an error if it came out 
to be 67 million slits/cm, or 67 slits/cm.

For a maximum occurring at 90°, we cannot use the 
small angle approximation! We often look at maxima formed 
by gratings that occur at large angles for which the small 
angle approximation is not valid.

Practice Problem 25.6 Slit Spacing for a Full Third 
Order

How many slits per centimeter would a grating have if it 
just barely produced the full third-order spectrum? Would 
any of the fourth-order spectrum be produced by such a 
grating?

Film

(a)

Grating

White light

θ

(b)

Figure 25.21 
(a) White light incident on a grating. (b) The developed film.
©Alan Giambattista

Laser

Grating

Track
Pit

Land

Land

Figure 25.22 A three-beam 
tracking system.
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spectral lines—they appear as thin lines because they have the shape of the entry 
slit of the collimator.

Although thermal radiation (e.g., sunlight and incandescent light) contains a con-
tinuous spectrum of wavelengths, other sources of light contain a discrete spectrum 
composed of only a few narrow bands of wavelengths. A discrete spectrum is also 
called a line spectrum due to its appearance as a set of lines when viewed through a 
spectroscope. For example, fluorescent lights and gas discharge tubes produce discrete 
spectra. In a gas discharge tube, a glass tube is filled with a single gas at low pressure 
and an electrical current is passed through the gas. The light that is emitted is a dis-
crete spectrum that is characteristic of the gas. Some older streetlights are sodium 
discharge tubes; they have a characteristic yellow color.

Figure 25.24 shows the spectrum of a sodium discharge tube, which includes a 
pair of yellow lines. Imagine using a grating with fewer slits. The maxima would be 
wider; if they were too wide, the two yellow lines would overlap and appear as a 
single line. So a large number of slits is an advantage if we need to resolve (distin-
guish) wavelengths that are close together.

Reflection Gratings

In the transmission gratings we have been discussing, the light viewed is that trans-
mitted by the transparent slits of the grating. Another common kind of grating is the 
reflection grating. Instead of slits, a reflection grating has a large number of parallel, 
thin reflecting surfaces separated by absorbing surfaces. Using Huygens’s principle, 
the analysis of the reflection grating is the same as for the transmission grating, except 
that the direction of travel of the wavelets is reversed. Reflection gratings are used in 
high-resolution spectroscopy of astronomical x-ray sources. The spectra enable scien-
tists to identify elements such as iron, oxygen, silicon, and magnesium in the corona 
of a star or in the remnants of a supernova.

Light
source Collimating

lens

Platform

Grating

Movable
observing
telescope

Slit
θ

Figure 25.23 Overhead view of a grating spectroscope. Light from the source first passes through a narrow, vertical slit, 
which is at the focal point of the collimating lens. Thus, the rays emerging from the lens are parallel to one another. The 
grating rests on a platform that is adjusted so that the incident rays strike the grating at normal incidence. The telescope can 
be moved in a circle around the grating to observe the maxima and to measure the angle θ at which each one occurs.

Figure 25.24 Emission spectrum of sodium. The spectrum includes two yellow lines at wavelengths of 589.0 nm and 
589.6 nm (the sodium doublet).
©Alan Giambattista
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EVERYDAY PHYSICS DEMO

A	DVD	 (or	CD)	can	be	used	as	a	 reflection	grating,	 since	 it	has	a	 large	num-
ber	 of	 equally	 spaced	 reflective	 tracks.	 Hold	 a	 DVD	 at	 an	 angle	 so	 that	 the	
side	without	 the	 label	 reflects	 light	 from	 the	Sun	or	 another	 light	 source.	 Tilt	
it	 back	and	 forth	 slightly	 and	 look	 for	 the	 rainbow	of	 colors	 that	 results	 from	
the	interference	of	light	reflecting	from	the	narrowly	spaced	grooves.	Next	place	
the	DVD,	label	side	down,	on	the	floor	directly	below	a	ceiling	light.	Look	down	
at	 the	 DVD	 as	 you	 slowly	 walk	 away	 from	 it.	 The	 first-order	 maxima	 form	 a	
band	 of	 colors	 (violet	 to	 red).	 Once	 you	 are	 a	 meter	 or	 so	 away,	 gradually	
lower	your	head	to	the	floor,	watching	it	the	whole	time.	You	have	now	observed	
from	θ	=	 0	 to	θ	 =	90°.	 Count	 how	many	orders	 of	maxima	 you	 see	 for	 the	
different	colors.	Now	estimate	 the	spacing	between	 tracks	on	 the	DVD.

(a) (b)

(b)(a)

Barrier

(d)(c)

Figure 25.25 (a) A plane 
wave reaches a barrier. Points 
along the wavefront act as 
sources of spherical wavelets. 
(b)–(d) At later times, the 
initial wavelets are propagating 
outward as new ones form; the 
wavefront spreads around the 
edges of the barrier.

Figure 25.26 Demonstration 
of diffraction using water 
waves in a ripple tank. The 
waves are incident from the left 
on openings of three different 
widths. Diffraction becomes 
more pronounced as the width 
of the opening is reduced.
©Andrew Lambert Photography/ 
Science Source

25.6 DIFFRACTION AND HUYGENS’S PRINCIPLE

Suppose a plane wave approaches an obstacle. Using geometric optics, we would 
expect the rays not blocked by the obstacle to continue straight ahead, forming a sharp, 
well-defined shadow on a screen beyond the obstacle. If the obstacle is large relative 
to the wavelength, then geometric optics gives a good approximation to what actually 
happens. If the obstacle is not large compared with the wavelength, we must return 
to Huygens’s principle to show how a wave diffracts.

In Fig. 25.25a, a wavefront just reaches a barrier with an opening in it. Every 
point on that wavefront acts as a source of spherical wavelets. Points on the wavefront 
that are behind the barrier have their wavelets absorbed or reflected. Therefore, the 
propagation of the wave is determined by the wavelets generated by the unobstructed 
part of the wavefront. The Huygens constructions in Figs. 25.25b–d suggest that the 
wave diffracts around the edges of the barrier, something that would not be expected 
in geometric optics.

Figure 25.26 shows water waves in a ripple tank that pass through three openings of 
different widths. For the opening that is much wider than the wavelength (Fig. 25.26a), 
the spreading of the wavefronts is a small effect. Essentially, the part of the wavefront that 
is not obstructed just travels straight ahead, producing a sharp shadow. As the opening 
gets narrower (Fig. 25.26b), the spreading of the wavefronts becomes more pronounced. 
Diffraction is appreciable when the size of the opening approaches the size of the wave-
length or is even smaller. In the case of Fig. 25.26c, where the opening is about the size 
of the wavelength, the opening acts almost like a point source of circular waves.

For the openings of intermediate size, a careful look at the waves shows that the 
amplitude is larger in some directions than in others (Fig. 25.26b). The source of this 
structure, due to the interference of wavelets from different points, is examined in 
Section 25.7.
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Since EM waves are three-dimensional, we must be careful when interpreting two-
dimensional sketches of Huygens wavelets. Figure 25.27a might represent light incident 
on a small circular hole or a long, thin slit. If it represents a hole, the light spreads in 
all directions, yielding spherically shaped wavefronts (Fig. 25.27b). If the opening rep-
resents a slit, we can think of the two perpendicular directions in turn. The more nar-
rowly restricted the wavefront, the more it spreads out. In the direction of the length of 
the slit, we get essentially a geometric shadow with sharply defined edges. In the direc-
tion of the width, the wavefront is restricted to a short distance, so the wave spreads 
out in that direction. The wavefronts past the slit are cylindrically shaped (Fig. 25.27c).

(a) (b) (c)

Figure 25.27 (a) Sketch of wavefronts that could represent either a small circular hole or a slit. (b) For a small 
 circular hole, the emerging wavefronts are spherical. (c) For a slit, the emerging wavefronts are cylindrical.

Conceptual Example 25.7

Diffraction and Photolithography

The CPU (central processing unit) chip in a computer con-
tains about 3 × 108 transistors, numerous other circuit ele-
ments, and the electric connections between them, all in a 
very small package. One process used to fabricate such a 
chip is called photolithography. In photolithography, a sili-
con wafer is coated with a photosensitive material. The chip 
is then exposed to ultraviolet radiation through a mask that 
contains the desired pattern of material to be removed. The 
wafer is then etched. The areas of the wafer not exposed to 
UV are not susceptible to etching. In areas that were ex-
posed to UV, the photosensitive material and part of the 
silicon underneath are removed. Why does this process 
work better with UV than it would with visible light? Why 
are researchers trying to develop x-ray lithography to 
 replace UV lithography?

Strategy Without knowing details of the chemical pro-
cesses involved, we think about the implications of different 
wavelengths. X-ray wavelengths are shorter than UV wave-
lengths, which are in turn shorter than visible wavelengths.

Solution and Discussion The photolithography process 
depends on the formation of a sharp shadow of the mask. 
To make smaller chips contain more and more circuit ele-
ments, the lines in the mask must be made as thin as possi-
ble. The danger is that if the lines are too thin, diffraction 
will spread out the light going through the mask. To mini-
mize diffraction effects, the wavelength should be small 
compared with the openings in the mask. UV has smaller 
wavelengths than visible light, so the openings in the mask 
can be made smaller. X-ray lithography would permit even 
smaller openings.

Conceptual Practice Problem 25.7 Sunlight 
Through a Window

Sunlight streams through a rectangular window, illuminating 
a bright area on the floor. The edges of the illuminated area 
are fuzzy rather than sharp. Is the fuzziness due to diffrac-
tion? Explain. If not diffraction, what does blur the boundar-
ies of the illuminated area?
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Application: Poisson Spot

One of the counterintuitive predictions of the wave theory of light is that the shadow of 
a circular or spherical object in coherent light should have a bright spot at the center due 
to diffraction (Fig. 25.28). Augustin-Jean Fresnel’s (1788–1827) prediction of this bright 
spot was considered by some eminent scientists of the nineteenth century (such as Siméon-
Denis Poisson, 1781–1840) to be ridiculous—until it was shown experimentally to exist.

EVERYDAY PHYSICS DEMO

Find	a	finely	woven	piece	of	cloth	with	a	regular	mesh	pattern,	such	as	a	piece	
of	silk,	a	nylon	curtain,	an	umbrella,	or	a	piece	of	lingerie.	Look	through	the	cloth	
at	a	distant,	bright	light	source	in	an	otherwise	darkened	room—or	at	a	streetlight	
outside	at	night.	Can	you	explain	 the	origin	of	 the	pattern	you	see?	Could	 it	be	
simply	a	geometric	shadow	of	 the	 threads	 in	 the	cloth?	Observe	 the	pattern	as	
you	 rotate	 the	cloth.	Also	 try	stretching	 the	cloth	slightly	 in	one	direction.

25.7 DIFFRACTION BY A SINGLE SLIT

In a more detailed treatment of diffraction, we must consider the phases of all the 
Huygens wavelets and apply the principle of superposition. Interference of the wave-
lets causes structure in the diffracted light. In the ripple tanks of Fig. 25.26, we saw 
structure in the diffraction pattern. In some directions, the wave amplitude was large; 
in other directions it was small. Figure 25.29 shows the diffraction pattern formed by 
light passing through a single slit. A wide central maximum contains most of the light 
energy. (Central maximum is the usual way to refer to the entire bright band in the 
center of the pattern, although the actual maximum is just at θ = 0. A more accurate 
name is central bright fringe.) The intensity is brightest right at the center and falls 
off gradually until the first minimum on either side, where the screen is dark (inten-
sity is zero). Continuing away from the center, maxima and minima alternate, with 
the intensity changing gradually between them. The lateral maxima are quite weak 
compared with the central maximum and they are not as wide.

According to Huygens’s principle, the diffraction of the light is explained by 
considering every point along the slit as a source of wavelets (Fig. 25.30a). The light 
intensity at any point beyond the slit is the superposition of these wavelets. The 
wavelets start out in phase, but travel different distances to reach a given point on the 
screen. The structure in the diffraction pattern is a result of the interference of the 
wavelets. This is a much more complicated interference problem than any we have 
considered because an infinite number of waves interfere—every point along the slit 
is a source of wavelets. Despite this complication, a clever insight—similar to one we 
used with the grating—lets us find out where the minima are without the need to 
resort to complicated math.

Finding the Minima Figure 25.30b shows two rays that represent the propagation 
of two wavelets: one from the top edge of the slit and one from exactly halfway down. 
The rays are going off at the same angle θ to reach the same point on a distant screen. 
The lower one travels an extra distance 1

2a to reach the screen. If this extra distance 
is equal to 1

2λ, then these two wavelets interfere destructively. Now let’s look at two 
other wavelets, shifted down a distance Δx so that they are still separated by half the 
slit width (1

2a) . The path difference between these two must also be 1
2λ, so these two 

interfere destructively. All the wavelets can be paired off; since each pair interferes 
destructively, no light reaches the screen at that angle. Therefore, the first diffraction 
minimum occurs where

 
1
2

 a sin θ =
1
2

 λ (25-20)

Figure 25.28 Diffraction 
pattern formed by a small 
sphere. Note the bright Poisson 
spot at the center.
©GIPhotoStock/Science Source
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The other minima are found in a similar way, by pairing off wavelets separated 
by a distance of 1

4 a, 16 
a, 18 

a, . . ., 1
2m  

a, where m is any integer other than zero. The dif-
fraction minima are given by

 
1

2m
 a sin θ =

1
2

 λ (m = ±1, ±2, ±3, . . .)  (25-21)

Simplifying algebraically yields:
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Figure 25.29 Single-slit dif-
fraction. (a) Photo of the dif-
fraction pattern as viewed on a 
screen. (b) Intensity (as a per-
centage of the intensity of the 
central maximum) as a function 
of the number of wavelengths 
difference in the path length 
from top and bottom rays  
[(a sin θ)/λ]. Minima occur at 
angles where (a sin θ)/λ is an 
integer other than zero. 
(c) Close-up of the same graph. 
Intensities of the first three 
 lateral maxima (as percentages) 
are 4.72%, 1.65%, and 0.834%. 
The first three lateral maxima 
occur when a sin θ = 1.43λ, 
2.46λ, and 3.47λ.
©Tom Pantages

Single-slit diffraction minima

 a sin θ = mλ (m = ±1, ±2, ±3, . . .)  (25-22)

a

θ

θ

(b)

1–2

a sin θ1–2

a

θ

(a)

Figure 25.30 (a) Every point 
along a slit serves as a source 
of Huygens’s wavelets. (b) The 
ray from the center of the slit 
travels a greater distance to 
reach the screen than the ray 
from the top of the slit; the 
extra distance is 1

2a sin θ.
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Be careful: Eq. (25-22) looks a lot like Eq. (25-17) for the interference maxima 
due to N slits, but it gives the locations of the diffraction minima. Also, m = 0 is 
excluded in Eq. (25-22); a maximum, not a minimum, occurs at θ = 0.

What happens if the slit is made narrower? As a gets smaller, the angles θ for 
the minima get larger—the diffraction pattern spreads out. If the slit is made wider, 
then the diffraction pattern shrinks as the angles for the minima get smaller.

The angles at which the lateral maxima occur are much harder to find than the 
angles of the minima; there is no comparable simplification we can use. The central 
maximum is at θ = 0, since the wavelets all travel the same distance to the screen 
and arrive in phase. The other maxima are approximately (not exactly) halfway 
between adjacent minima (see Fig. 25.29c).

Example 25.8

Single-Slit Diffraction

The diffraction pattern from a single slit of width 0.020 mm 
is viewed on a screen. If the screen is 1.20 m from the slit 
and light of wavelength 430 nm is used, what is the width of 
the central maximum?

Strategy The central maximum extends from the m = −1 
minimum to the m = +1 minimum. Since the pattern is sym-
metrical, the width is twice the distance from the center to 
the m = +1 minimum. A sketch helps relate the angles and 
distances in the problem.

Solution The m = 1 minimum occurs at an angle θ satisfying

a sin θ = λ

We draw a sketch (Fig. 25.31) showing the angle θ for the 
m  = 1 minimum, the distance x from the center of the 
 diffraction pattern to the first minimum, and the distance D 

from the slit to the screen. The width of the central maxi-
mum is 2x. From Fig. 25.31,

tan θ =
x

D

Assuming that x ≪ D, θ is a small angle. Therefore,  
sin θ ≈ tan θ:

x

D
=

λ

a

x =
λD

a
=

430 × 10−9 m × 1.20 m
0.020 × 10−3 m

= 0.026 m

Comparing the values of x and D, our assumption that x ≪ D 
is justified. The width of the central maximum is 2x = 5.2 cm.

Discussion The width of the central maximum depends on 
the angle θ for the first minimum and the distance D between 
the slit and the screen. The angle θ, in turn, depends on the 
wavelength of light and the slit width. For larger values of θ, 
which means either a longer wavelength or a smaller slit width, 
the diffraction pattern is more spread out on the screen. For a 
given wavelength, narrowing the slit increases the diffraction. 
For a given slit width, the diffraction pattern is wider for longer 
wavelengths so the pattern for red light (λ = 690 nm) is more 
spread out than that for violet light (λ = 410 nm).

Practice Problem 25.8 Location of First Lateral 
Maximum

Approximately how far from the center of the diffraction 
pattern is the first lateral maximum?

Figure 25.31
A diffraction pattern is formed on a distant screen by light of wave-
length λ from a single slit of width a at a distance D from the screen.

a

x

D

θ

Screen

Slit
Central
maximum

First
minimum

Intensities of the Maxima in Double-Slit Interference

In a double-slit interference experiment, the bright fringes are equally spaced but are 
not equal in intensity (see Fig. 25.17). Light diffracts from each slit; the light reach-
ing the screen from either slit forms a diffraction pattern (see Fig. 25.29). The two 
diffraction patterns have the same amplitude at any point on the screen, but different 
phases. Where the interference is constructive, the amplitude is twice what it would 
be at that point for a single slit (and therefore four times the intensity).
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Figure 25.17 shows only interference maxima within the central diffraction max-
imum of each slit. If the light incident on the slits is bright enough, interference 
maxima beyond the first diffraction minimum can be observed (Fig. 25.32).

25.8 DIFFRACTION AND THE RESOLUTION OF 
OPTICAL  INSTRUMENTS

Cameras, telescopes, binoculars, microscopes—practically all optical instruments, 
including the human eye—admit light through circular apertures. Thus, the diffraction 
of light through a circular aperture is of great importance. If an instrument is to resolve 
(distinguish) two objects as being separate entities, it must form separate images of 
the two. If diffraction spreads out the image of each object enough that they overlap, 
the instrument cannot resolve them.

When light passes through a circular aperture of diameter a, the light is restricted 
(the wavefronts are blocked) in all perpendicular directions rather than being restricted 
primarily in a single direction (as for a slit). Thus, for a circular opening, light spreads 
out in all directions. The diffraction pattern due to a circular aperture (Fig. 25.33) 
reflects the circular symmetry of the aperture. The diffraction pattern has many sim-
ilarities to that of a slit. It has a wide, bright central maximum, beyond which minima 
and weaker maxima alternate; but now the pattern consists of concentric circles 
reflecting the circular shape of the aperture.

Calculating the angles for the minima and maxima is a difficult problem. Of 
greatest interest to us is the location of the first minimum, which is given by

 a sin θ ≈ 1.22λ (25-23)

The reason that the first minimum is of particular interest is that it tells us the diameter 
of the central maximum, which contains 84% of the intensity of the diffracted light. 
The size of the central maximum is what limits the resolution of an optical instrument.

When we look at a distant star through a telescope, the star is far enough to be 
considered a point source, but since the light passes through the circular aperture of the 
telescope, it spreads out into a circular diffraction pattern like Fig. 25.33. What if we 
look at two or more stars that appear close to one another? With the unaided eye, people 
with good vision can see two separate stars, Mizar and Alcor, in the handle of the Big 
Dipper (Fig. 25.34a). With a telescope, one can see that Mizar is actually two stars, called 
Mizar A and Mizar B (Fig. 25.34b); the eye cannot resolve (separate) the images of these 
two stars, but a telescope with its much wider aperture can. Spectroscopic observations 
reveal periodic Doppler shifts in the light coming from Mizar A and Mizar B, showing 
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10 d sin θ 
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λ

λ

4 × the
single-slit
intensity

Figure 25.32 A graph of the 
intensity for double-slit interfer-
ence where the spacing d 
between the two slits is five 
times the slit width a (i.e.,  
d = 5a). The first diffraction 
minimum occurs where  
a sin θ = λ; at that same angle,  
5a sin θ = d sin θ = 5λ. The 
fifth-order interference maximum 
is missing because it falls at 
the first diffraction minimum, 
where no light reaches the 
screen. The peak heights follow 
the intensity pattern for a single 
slit. At points of constructive 
interference, the amplitude is 
twice what it would be from 
one slit alone, so the intensity 
is four times what it would be 
from one slit.

Figure 25.33 Diffraction 
pattern from a circular aperture 
on a distant screen.
©Tom Pantages
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that each is a binary star system—a pair of stars so close together that they rotate about 
their common center of mass. The companion stars to Mizar A and Mizar B cannot be 
seen with even the best telescopes available. When light rays from these five stars pass 
through a circular aperture, diffraction spreads out the images, so that we see only three 
stars through a telescope or two stars when viewed directly.

Rayleigh’s Criterion

Light from a single star (or other point source) forms a circular diffraction pattern 
after passing through a circular aperture. Two stars with a small angular separation 
form two overlapping diffraction patterns. Since the stars are incoherent sources, their 
diffraction patterns overlap without interfering with each other (Fig. 25.35). How far 
apart must the diffraction patterns be in order to resolve the stars?

A somewhat arbitrary but conventional criterion is due to the British physicist Baron 
Rayleigh (John William Strutt, 1842–1919) who said that the images must be separated 
by at least half the width of each of the diffraction patterns. In other words, Rayleigh’s 
criterion says that two sources can just barely be resolved if the center of one diffraction 
pattern falls at the first minimum of the other one. Suppose light from two sources trav-
els through vacuum (or air) and enters a circular aperture of diameter a. If Δθ is the 
angular separation of the two sources as measured from the aperture and λ0 is the wave-
length of the light in vacuum (or air), then the sources can be resolved if

Alcor

Mizar A

Mizar B

(a)

(b)

Figure 25.34 (a) The Big 
Dipper, a part of the constella-
tion Ursa Major. (b) A tele-
scope with a wide aperture 
reveals distinct images for 
Mizar A, Mizar B, and Alcor.

Screen

Intensities as
seen on screen

Top view

Δθ
1
2 1

2

Circular
aperture

Two
sources

Figure 25.35 Two point sources with an angular separation Δθ form overlapping 
diffraction patterns when the light passes through a circular aperture. In this case, 
the images can be resolved according to Rayleigh’s criterion.

Rayleigh’s criterion

 a sin Δθ ≥ 1.22λ0 (25-24)

Example 25.9

Resolution with a Laser Printer

A laser printer puts tiny dots of ink (toner) on the page. The dots 
should be sufficiently close together (and therefore small 
enough) that we don’t see individual dots; rather, we see letters 
or graphics. Approximately how many dots per inch (dpi) ensure 
that you don’t see individual dots when viewing a page 0.40 m 
from the eye in bright light? Use a pupil diameter of 2.5 mm.

Strategy If the angular separation of the dots exceeds 
Rayleigh’s criterion, then you might be able to resolve indi-
vidual dots. Therefore, the angular separation of the dots 

should be smaller than that given by Rayleigh’s criterion—
we do not want to be able to resolve individual dots.

Solution Call the distance between the centers of two ad-
jacent dots Δx, the diameter of the pupil a, and the angular 
separation of the dots Δθ (Fig. 25.36). The page is held a 
distance D = 0.40 m from the eye. Then, since Δx ≪ D, the 
angular separation of the dots is

Δθ ≈
Δx

D
continued on next page
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Example 25.9 continued

In order for the dots to merge, the angular separation Δθ must 
be smaller than the angle given by the Rayleigh criterion for 
resolution. The minimum Δθ for resolution is given by

a sin Δθ ≈ a Δθ = 1.22λ0

Since we do not want the dots to be resolved, we want

a Δθ < 1.22λ0

Substituting for Δθ yields

a 
Δx

D
< 1.22λ0

To guarantee that Δx is small enough so that the dots blend 
together for all visible wavelengths, we take λ0 = 400.0 nm, 
the smallest wavelength in the visible range. Now we solve 
for the distance between dots Δx:

Δx <
1.22λ0D

a
=

1.22 × 400.0 nm × 0.40 m
0.0025 m

= 7.81 × 10−5 m = 0.0781 mm

To find the minimum number of dots per inch, first convert 
the dot separation Δx to inches.

Δx = 0.0781 mm (
1 in

25.4 mm) = 0.003 07 in

The number of dots per inch is the reciprocal of the distance 
between adjacent dots in inches:

1
0.003 07 in/dot

= 330 dpi

Discussion Based on this estimate, we expect the printout 
from a 300 dpi printer to be slightly grainy, since we can just 
barely resolve individual dots. Output from a 600 dpi printer 
should look smooth.

You might wonder whether Eq. (25-24) applies to 
 diffraction that occurs within the eye since it uses the 

wavelength in vacuum (λ0). The wavelength in the vitreous 
fluid of the eye is λ = λ0/n, where n ≈ 1.36 is the index of 
refraction of the vitreous fluid. Equation (25-24) does 
 apply in this situation because the factor of n in the 
 wavelength is canceled by a factor of n due to refraction 
(see Problem 97).

Practice Problem 25.9 Pointillist Paintings

The Postimpressionist painter Georges Seurat perfected a 
technique known as pointillism, in which paintings are 
 composed of closely spaced dots of different colors, each 
about 2 mm in diameter (Fig. 25.37). A close-up view  reveals 
the individual dots; from farther away the dots blend to-
gether. Estimate the minimum distance away a viewer should 
be in order to see the dots blend into a smooth variation of 
colors. Assume a pupil diameter of 2.2 mm.

Pupil
(circular
aperture)

ΔθΔx

D

Figure 25.36
Angular separation Δθ of two adjacent dots.

(a)

(b)

Figure 25.37
(a) Le Bec du Hoc, Grandcamp, by Georges Seurat (1859–1891). 
(b) A close-up view of the same painting.
©Universal History Archive/UIG via Getty Images

Application: Resolution of the Human Eye 

In bright light, the pupil of the eye narrows to about 2 mm; diffraction caused by this 
small aperture limits the resolution of the human eye. In dim light, the pupil is much 
wider. Now the limit on the eye’s resolution in dim light is not diffraction, but the 
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spacing of the photoreceptor cells on the fovea (where they are most densely packed). 
For an average pupil diameter, the spacing of the cones is optimal (see Problem 60). 
If the cones were less densely packed, resolution would be lost; if they were more 
densely packed, there would be no gain in resolution due to diffraction.

25.9 X-RAY DIFFRACTION

The interference and diffraction examples discussed so far have dealt mostly with vis-
ible light. However, the same effects occur for wavelengths longer and shorter than those 
visible to our eyes. Is it possible to do an experiment that shows interference or diffrac-
tion effects with x-rays? X-ray radiation has wavelengths much shorter than those of 
visible light, so to do such an experiment, the size and spacing of the slits in a grating 
(for example) would have to be much smaller than in a visible-light grating. Typical 
x-ray wavelengths range from about 10 nm to about 0.01 nm. There is no way to make 
a parallel-slit grating small enough to work for x-rays: the diameter of an atom is typi-
cally around 0.2 nm, so the slit spacing would be about the size of a single atom.

In 1912, the German physicist Max von Laue (1879–1960) realized that the reg-
ular arrangement of atoms in a crystal makes a perfect grating for x-rays. The regular 
arrangement and spacing of the atoms is analogous to the regular spacing of the slits 
in a conventional grating, but a crystal is a three-dimensional grating (as opposed to 
the two-dimensional gratings we use for visible light).

Figure 25.38a shows the atomic structure of aluminum. When a beam of x-rays passes 
through the crystal, the x-rays are scattered in all directions by the atoms. The x-rays 
scattered in a particular direction from different atoms interfere with one another. In cer-
tain directions they interfere constructively, giving maximum intensity in those directions. 
A detector records those directions as a collection of spots for a single crystal, or as a 
series of rings for a sample consisting of many randomly oriented crystals (Fig. 25.38b).

Determining the directions for constructive interference is a difficult problem due 
to the three-dimensional structure of the grating. Australian physicist William Law-
rence Bragg (1890–1971) discovered a great simplification. He showed that we can 
think of the x-rays as if they reflect from planes of atoms (Fig. 25.39a). Constructive 
interference occurs if the path difference between x-rays reflecting from an adjacent 
pair of planes is an integral multiple of the wavelength. Figure 25.39b shows that the 
path difference is 2d sin θ, where d is the distance between the planes and θ is the 
angle that the incident and reflected beams make with the plane (not with the normal). 
Then, constructive interference occurs at angles given by Bragg’s law:

(a)

a0

a0

(b)

X-ray diffraction maxima

 2d sin θ = mλ (m = 1, 2, 3, . . .)  (25-25)

Figure 25.38 (a) Crystal 
structure of gold. The dots rep-
resent the positions of the gold 
atoms. (b) The x-ray diffraction 
pattern of a sample of poly-
crystalline gold (a  large number 
of randomly oriented gold crys-
tals), as viewed on a screen. 
Here masked, a central spot is 
formed by the undeflected inci-
dent beam of x-rays. Rings 
form at angles for which the 
scattered x-rays interfere con-
structively.
©Science Source

Note that the “reflected” beam makes an angle of 2θ with the incident beam.
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Although Bragg’s law is a great simplification, x-ray diffraction is still compli-
cated because there are many sets of parallel planes in a crystal, each with its own 
plane spacing. In practice, the largest plane spacings contain the largest number of 
scattering centers (atoms) per unit area, so they produce the strongest maxima.

Applications of X-Ray Diffraction

∙ Just as a grating separates white light into the colors of the spectrum, a crystal 
is used to extract an x-ray beam with a narrow range of wavelengths from a beam 
with a continuous x-ray spectrum.

∙ If the structure of the crystal is known, then the angle of the emerging beam is 
used to determine the wavelength of the x-rays.

∙ The x-ray diffraction pattern can be used to determine the structure of a crystal. 
By measuring the angles at which strong beams emerge from the crystal, the 
plane spacings d are found and from them the crystal structure.

∙ X-ray diffraction patterns are used to determine the molecular structures of bio-
logical molecules such as proteins and nucleic acids. X-ray diffraction studies by 
British biophysicist Rosalind Franklin (1920–1958) were a key clue to American 
molecular biologist James Watson (b. 1928) and British molecular biologist  
Francis Crick (1916–2004) in their 1953 discovery of the double helix structure 
of DNA (Fig. 25.40). Intense beams of x-rays radiated by electrons in synchrotrons 
have even been used to study the structure of viruses.

25.10 HOLOGRAPHY

An ordinary photograph is a record of the intensity of light that falls on the film at 
each point. For incoherent light, the phases vary randomly, so it would not be useful 
to record phase information. A hologram is made by illuminating the subject with 
coherent light; the hologram is a record of the intensity and the phase of the light 
incident on the film. Holography was invented in 1948 by Hungarian-British physicist 
Dennis Gabor (1900–1979), but holograms were difficult to make until lasers became 
available in the 1960s.

Imagine using a laser, a beam splitter, and some mirrors to produce two coherent 
plane waves of light that overlap but travel in different directions (Fig. 25.41). Let the 
waves fall on a photographic plate. The exposure of the plate at any point depends on 
the intensity of the light falling on it. Since the two waves are coherent, a series of par-
allel fringes of constructive and destructive interference occur. The spacing between 
fringes depends on the angle θ0 between the two waves; a smaller angle makes the spac-
ing between fringes larger. In Problem 92, the spacing between fringes is found to be

 d =
λ

sin θ0
 (25-26)

When the plate is developed as a transparency, the equally spaced fringes make 
a grating. If the plate is illuminated at normal incidence with coherent light at the 

(a)

Incident x-rays
1

2

3

θθ

θθ

(b)

Ray 1Ray 2

θθ

θ θ

θ

θ

θ

d sin θd sin θ
d

Figure 25.39 (a) Incident 
x-rays behave as if they reflect 
from parallel planes of atoms. 
(b) Geometry for finding the 
path difference for rays reflect-
ing from two adjacent planes.

Figure 25.40 This x-ray dif-
fraction pattern of DNA 
(deoxyribonucleic acid) was 
obtained by Rosalind Franklin 
in 1953. Some aspects of the 
structure of DNA can be 
deduced from the pattern of 
spots and bands. Franklin’s data 
convinced James Watson and 
Francis Crick of DNA’s helical 
structure, which is revealed by 
the cross of bands in the 
 diffraction pattern.
©Science History Images/Alamy
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same wavelength λ, the central (m = 0) maximum is straight ahead, while the m = 1 
maximum is at an angle given by

 sin θ =
λ

d
= sin θ0 (25-27)

Thus, the m = 0 and m = 1 maxima re-create the original two waves.
Now imagine a plane wave with a point object (Fig. 25.42). The point object 

scatters light, producing spherical waves just as a point source does. The interference 
of the original plane wave with the scattered spherical wave gives a series of circular 
fringes. When this plate is developed and illuminated with laser light, both the plane 
and spherical waves are re-created. The spherical waves appear to come from a point 
behind the plate, which is a virtual image of the point object. The plate is a hologram 
of the point object.

With a more complicated object, each point on the surface of the object is a 
source of spherical waves. When the hologram is illuminated with coherent light, a 
virtual image of the object is created. This image can be seen from different perspec-
tives (Fig. 25.43) since the hologram re-creates wavefronts just as if they were coming 
from the object.

 0θ

Photographic
plate

Figure 25.43 Two views of a single holographic image of a dragon behind a lens. Notice that the part of the dragon 
that is magnified by the lens in the hologram depends on the viewing angle.
©Holographics North, Inc.

Figure 25.41 Two coherent 
plane waves traveling in differ-
ent directions expose a photo-
graphic plate. An interference 
pattern is formed on the plate. 
The red lines indicate points of 
constructive interference 
between the two waves. Bright 
fringes occur where these lines 
intersect the photographic plate.

Photographic
plate

Point
object Bright

fringes

Figure 25.42 Coherent plane 
waves are scattered by a point 
object. The spherical waves 
scattered by the object interfere 
with the plane wave to form a 
set of circular interference 
fringes on a photographic plate.
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Master the Concepts

 ∙ When two coherent waves are in phase, their superposi-
tion results in constructive interference:

Phase difference Δϕ = an integer multiple 
 of 2π rad (25-4)
Amplitude Em = E1m + E2m (25-5)

Intensity I = I1 + I2 + 2√I1I2 (25-3)
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 ∙ When two coherent waves are 180° out of phase, their 
superposition results in destructive interference:

Phase difference Δϕ = an odd multiple 
 of π rad (25-6)
Amplitude Em = ∣E1m − E2m∣ (25-7)

Intensity I = I1 + I2 − 2√I1I2 (25-8)
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 ∙ A path length difference equal to λ causes a phase shift 
of 2π (360°). A path length difference of 1

2λ causes a 
phase shift of π (180°).

 ∙ When light reflects from a boundary with a slower  medium 
(higher index of refraction), it is inverted (180°  phase 
change); when light reflects from a faster medium (lower 
index of refraction), it is not inverted (no phase change).

 ∙ The maxima in a double-slit interference experiment 
occur at angles given by

 d sin θ = mλ   (m = 0, ±1, ±2, . . .)  (25-17)

The absolute value of m is called the order (e.g. for the 
second-order maxima, ∣m∣ = 2).

 ∙ The minima in a double-slit interference experiment oc-
cur at angles given by

 d sin θ = ± 
1
2

 λ, ± 
3
2

 λ, ± 
5
2

 λ, . . . (25-18)

 ∙ A grating with N slits produces maxima that are narrow 
(width ∝ 1/N) and bright (intensity ∝ N2). The maxima 
occur at the same angles as for two slits.

 ∙ The minima in a single-slit diffraction pattern occur at 
angles given by

 a sin θ = mλ (m = ±1, ±2, ±3, . . .)  (25-22)

A wide central maximum contains most of the light en-
ergy. The other maxima are approximately (not exactly) 
halfway between adjacent minima.

 ∙ The first minimum in the diffraction pattern due to a 
circular aperture is given by

 a sin θ = 1.22λ (25-23)
 ∙ Rayleigh’s criterion says that two sources can just barely be 

resolved if the center of one diffraction pattern falls at the 
first minimum of the other one. If Δθ is the angular separa-
tion of the two sources, then the sources can be resolved if
 a sin Δθ ≥ 1.22λ0 (25-24)

Position on Screen
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 ∙ The regular arrangement of atoms in a crystal makes a grat-
ing for x-rays. We can think of the x-rays as if they reflect 
from planes of atoms. Constructive interference occurs if 
the path difference between x-rays reflecting from a pair of 
adjacent planes is an integral multiple of the wavelength.

 ∙ A hologram is made by illuminating the subject with 
coherent light; the hologram is a record of the intensity 
and the phase of the light incident on the film. The 
 hologram re-creates wavefronts just as if they were 
coming from the object.

Conceptual Questions

 1. Explain why two waves of significantly different fre-
quencies cannot be coherent.

 2. Why do eyeglasses, camera lenses, and binoculars with 
antireflective coatings often look faintly purple?

 3. Telescopes used in astronomy have large lenses (or mir-
rors). One reason is to let a lot of light in—important for 
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seeing faint astronomical bodies. Can you think of an-
other reason why it is an advantage to make these tele-
scopes so large?

 4. The Hubble Space Telescope uses a mirror of radius  
1.2 m. Is its resolution better when detecting visible 
light or UV? Explain.

 5. Why can you easily hear sound around a corner due to 
diffraction, although you cannot see around the same 
corner?

 6. Stereo speakers should be wired with the same polarity. 
If by mistake they are wired with opposite polarities, the 
bass (low frequencies) sound much weaker than if they 
are wired correctly. Why? Why is the bass (low frequen-
cies) weakened more than the treble (high frequencies)?

 7. Two antennas driven by the same electrical signal emit 
coherent radio waves. Is it possible for two antennas 
driven by independent signals to emit radio waves that are 
coherent with each other? If so, how? If not, why not?

 8. A radio station wants to ensure good reception of its 
signal everywhere inside a city. Would it be a good idea 
to place several broadcasting antennas at roughly equal 
intervals around the perimeter of the city? Explain.

 9. The size of an atom is about 0.1 nm. Can a light micro-
scope make an image of an atom? Explain.

 10. What are some of the advantages of a UV microscope 
over a visible light microscope? What are some of the 
disadvantages?

 11. The f-stop of a camera lens is defined as the ratio of the 
focal length of lens to the diameter of the aperture. A 
large f-stop therefore means a small aperture. If diffrac-
tion is the only consideration, would you use the largest 
or the smallest f-stop to get the sharpest image?

 12. In Section 25.3 we studied interference due to thin 
films. Why must the film be thin? Why don’t we see 
interference effects when looking through a window or 
at a poster covered by a plate of glass—even if the glass 
is optically flat?

 13. Describe what happens to a single-slit diffraction pat-
tern as the width of the slit is slowly decreased.

 14. Explain, using Huygens’s principle, why the Poisson 
spot is expected.

 15. What effect places a lower limit on the size of an object 
that can be clearly seen with the best optical microscope?

 16.  Make a sketch (similar to Fig. 25.15b) of the re-
flected rays from two adjacent steps of the Morpho 
butterfly wing for a large angle of incidence (around 
45°). Refer to your sketch to explain why the wave-
length at which constructive interference occurs de-
pends on the viewing angle.

 17. A lens (n = 1.51) has an antireflective coating of MgF2 
(n = 1.38). Which of the first two reflected rays has a 
phase shift of 180°? Suppose a different antireflective 
coating on a similar lens had n = 1.62. Now which of 
the first two reflected rays has a phase shift of 180°?

 18. In the microwave experiment of Example 25.1 and in 
the Michelson interferometer, we ignored phase changes 
due to reflection from a metal surface. Microwaves and 
light are inverted when they reflect from metal. Why 
were we able to ignore the 180° phase shifts?

 19. Why does a crystal act as a three-dimensional grating 
for x-rays but not for visible light?

 20. Why don’t you see an interference pattern on your desk 
when you have light from two different lamps illuminat-
ing the surface?

 21. (a) In double-slit interference, how does the slit separa-
tion affect the distance between adjacent interference 
maxima? (b) How does the distance between the slits 
and screen affect that separation? (c) If you are trying to 
resolve two closely spaced maxima, how might you de-
sign your double-slit spectrometer?

Multiple-Choice Questions

 1. If the figure shows the wavefronts for a double-slit inter-
ference experiment with light, at which of the labeled 
points is the intensity zero? The wavefronts represent 
wave crests only (not crests and troughs).

 (a) A only (b) B only (c) C only (d) A and B
 (e) B and C (f) A and C (g) A, B, and C

A
C

B

S1 S2

Multiple-Choice	Questions	1	and	2

 2. If the figure shows the surface water waves in a ripple 
tank with two coherent sources, at which of the labeled 
points would a bit of floating cork bob up and down 
with greater amplitude than at neighboring points? 
(Same answer choices as Question 1.)

 3. In a double-slit experiment, light rays from the two  
slits that reach the second maximum on one side of the 
central maximum travel distances that differ by

 (a) 2λ (b) λ (c) λ/2 (d) λ/4
 4. A Michelson interferometer is set up for microwaves. Ini-

tially the reflectors are placed so that the detector reads a 
maximum. When one of the reflectors is moved 12 cm, 
the needle swings to minimum and back to maximum six 
times. What is the wavelength of the microwaves?

 (a) 0.5 cm (b) 1 cm (c) 2 cm (d) 4 cm
 (e) Cannot be determined from the information given.
 5. In a double-slit experiment with coherent light, the in-

tensity of the light reaching the center of the screen 
from one slit alone is I0 and the intensity of the light 
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reaching the center from the other slit alone is 9I0. When 
both slits are open, what is the intensity of the light at 
the interference minima nearest the center? The slits are 
very narrow.

 (a) 0 (b) I0 (c) 2I0
 (d) 3I0 (e) 4I0 (f) 8I0

 6. Which of these actions will improve the resolution of a 
microscope?

 (a) increase the wavelength of the light
 (b) decrease the wavelength of the light
 (c) increase the diameter of the lenses
 (d) decrease the diameter of the lenses
 (e) both (b) and (c) (f) both (b) and (d)
 (g) both (a) and (c) (h) both (a) and (d)
 7. Coherent light of a single frequency passes through a 

double slit, with slit separation d, to produce a pattern of 
maxima and minima on a screen a distance D from the 
slits. What would cause the separation between adjacent 
minima on the screen to decrease?

 (a) decrease the frequency of the incident light
 (b) increase of the screen distance D
 (c) decrease the separation d between the slits
 (d)  increase the index of refraction of the medium in 

which the setup is immersed
 8. Two narrow slits, of width a, separated by a distance d, 

are illuminated by light with a wavelength of 660 nm. 
The resulting interference pattern is labeled (1) in 
the figure. The same light source is then used to illumi-
nate another group of slits and produces pattern (2). The 
second slit arrangement is

 (a) many slits, spaced d apart.
 (b) many slits, spaced 2d apart.
 (c) two slits, each of width 2a, spaced d apart.
 (d) two slits, each of width a/2, spaced d apart.

(1)

(2)

s

s

 9. The figure shows the interference pattern obtained in a 
double-slit experiment. Which letter indicates a third-
order maximum?

(a)(b)

Central bright fringe

(c) (d) (e)

 10. The intensity pattern in the diagram is due to
 (a) two slits. (b) a single slit.
 (c) a grating. (d) a circular aperture.

5–5 10–10
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Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

25.1 Constructive and Destructive Interference
 1. Two coherent EM waves have amplitudes of E0 and 

0.48E0. What is the resulting amplitude when they inter-
fere constructively?

 2. Two coherent EM waves have amplitudes of E0 and 
0.67E0. What is the resulting amplitude when they inter-
fere destructively?

 3. Two coherent EM waves have intensities of I0 and 
0.28I0. What is the resulting intensity when they inter-
fere constructively?

 4. Two coherent EM waves have intensities of I0 and 
0.60I0. What is the resulting intensity when they inter-
fere destructively?

 5. Four coherent EM waves are all in phase. Individually, 
they have intensities of I0, 0.80I0, 0.60I0, and 0.40I0. 
What is the intensity of the superposition of the four?

 6. Four coherent EM waves have intensities of I0, 0.80I0, 
0.60I0, and 0.40I0. The second is 180° out of phase with 
the first; the third and fourth are in phase with the first. 
What is the intensity of the superposition of the four?

 7. When Albert turns on his small desk lamp, the light fall-
ing on his book has intensity I0. When this is not quite 
enough, he turns the small lamp off and turns on a high-
intensity lamp so that the light on his book has intensity 
4I0. What is the intensity of light falling on the book 
when Albert turns both lamps on? If there is more than 
one possibility, give the range of intensity possibilities.

 8. An experiment similar to Example 25.1 is performed; 
the power at the receiver as a function of x is shown in the 
figure. (a) Approximately what is the wavelength of  
the microwaves? (b) If the amplitude of the wave entering 
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the detector at the first maximum is E0, approximately 
what is the amplitude at the second maximum?

1.5 2.50.5 20
0
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1
x (cm)

 9. A steep cliff west of Lydia’s home reflects a 1020 kHz 
radio signal from a station that is 74 km due east of her 
home. If there is destructive interference, what is the min-
imum distance of the cliff from her home? Assume there 
is a 180° phase shift when the wave reflects from the cliff.

25.2 The Michelson Interferometer
 10. A Michelson interferometer is adjusted so that a bright 

fringe appears on the screen. As one of the mirrors is 
moved 25.8 μm, 92 bright fringes are counted on the 
screen. What is the wavelength of the light used in the 
interferometer?

 11. Suppose a transparent vessel 30.0 cm long is placed in one 
arm of a Michelson interferometer, as in Example 25.2. 
The vessel initially contains air at 0°C and 1.00 atm. With 
light of vacuum wavelength 633 nm, the mirrors are ar-
ranged so that a bright spot appears at the center of the 
screen. As air is slowly pumped out of the vessel, one of 
the mirrors is gradually moved to keep the center region of 
the screen bright. The distance the mirror moves is mea-
sured to determine the value of the index of refraction of 
air, n. Assume that, outside of the vessel, the light travels 
through vacuum. Calculate the distance that the mirror 
would be moved as the container is emptied of air.

 12.  A Michelson interferometer is set up using white light. 
The arms are adjusted so that a bright white spot appears 
on the screen (constructive interference for all wave-
lengths). A slab of glass (n = 1.46) is inserted into one of 
the arms. To return to the white spot, the mirror in the other 
arm is moved 6.73 cm. (a) Is the mirror moved in or out? 
Explain. (b) What is the thickness of the slab of glass?

25.3 Thin Films
 13. A camera lens (n = 1.50) is coated with a thin layer of 

magnesium fluoride (n = 1.38). The purpose of the 
coating is to allow all the light to be transmitted by can-
celing out reflected light. What is the minimum thick-
ness of the coating necessary to cancel out reflected 
visible light of wavelength 550 nm?

 14. A thin film of oil (n = 1.50) is spread over a puddle of 
water (n = 1.33). In a region where the film looks red 
from directly above (λ = 630 nm), what is the minimum 
possible thickness of the film?

 15. A thin film of oil (n = 1.50) of thickness 0.40 μm is 
spread over a puddle of water (n = 1.33). For which 

wavelength in the visible spectrum do you expect con-
structive interference for reflection at normal incidence?

 16. A transparent film (n = 1.3) is deposited on a glass lens 
(n = 1.5) to form a nonreflective coating. What is the 
minimum thickness that would minimize reflection of 
light with wavelength 500.0 nm in air?

 17. A camera lens (n = 1.50) is coated with a thin film of 
magnesium fluoride (n = 1.38) of thickness 90.0 nm. 
What wavelength in the visible spectrum is most 
strongly transmitted through the film?

 18. A soap film has an index of refraction n = 1.35. The 
film is viewed in reflected light. (a) At a spot where the 
film thickness is 910.0 nm, which wavelengths are miss-
ing in the reflected light? (b) Which wavelengths are 
strongest in the reflected light?

 19. A soap film has an index of refraction n = 1.35. The 
film is viewed in transmitted light. (a) At a spot where 
the film thickness is 910.0 nm, which wavelengths are 
weakest in the transmitted light? (b) Which wavelengths 
are strongest in the transmitted light?

 20.  The intensity of reflection of various wavelengths 
of light projected onto the eye can be used to deter-
mine the thickness of the tear film that coats the cor-
nea. The tear film and cornea have indices of refraction 
1.360 and 1.376, respectively. When white light is in-
cident on the cornea, strong reflected intensities ap-
pear at wavelengths (in air) of 480 nm and 520 nm, but 
no wavelengths between them. What is the thickness 
of the tear film?

 21. At a science museum, Marlow looks down into a display 
case and sees two pieces of very flat glass lying on top 
of each other with light and dark regions on the glass. 
The exhibit states that monochromatic light with a 
wavelength of 550 nm is incident on the glass plates and 
that the plates are sitting in air. The glass has an index of 
refraction of 1.51. (a) What is the minimum distance 
between the two glass plates for one of the dark regions? 
(b) What is the minimum distance between the two 
glass plates for one of the light regions? (c) What is the 
next largest distance between the plates for a dark re-
gion? [Hint: Do not worry about the thickness of the 
glass plates; the thin film is the air between the plates.]

 22. See Problem 21. This time the glass plates are immersed 
in clear oil with an index of refraction of 1.50. (a) What 
is the minimum distance between the two glass plates 
for one of the dark regions? (b) What is the minimum 
distance between the two glass plates for one of the light 
regions? (c) What is the next largest distance between 
the plates for a dark region?

 23. Two optically flat plates of glass are separated at one 
end by a wire of diameter 0.200 mm; at the other end 
they touch. Thus, the air gap between the plates has a 
thickness ranging from 0 to 0.200 mm. The plates are 
15.0 cm long and are illuminated from above with light 
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of wavelength 600.0 nm. How many bright fringes are 
seen in the reflected light?

Wire

d

l

 24.  A lens is placed on a flat plate of glass to test whether 
its surface is spherical. See the following figure. Show 
that the radius rm of the mth dark ring should be

rm = √mλR

  where R is the radius of curvature of the lens surface 
 facing the plate and the wavelength of the light used is λ. 
Assume that rm ≪ R. [Hint: Start by finding the thick-
ness t of the air gap at a radius r = R sin θ ≈ Rθ. Use 
small-angle approximations.]

Incident light

Glass

Glass

Air

R

r
t

Problem	24

 25.   A thin film is 
viewed both in reflected 
and transmitted light at 
normal incidence. The 
figure shows the stron-
gest two rays for each. 
Show that if rays 1 and 
2 interfere construc-
tively, then rays 3 and 4 must interfere destructively, and 
if rays 1 and 2 interfere destructively, then rays 3 and 4 
interfere constructively. Assume that n2 is the largest of 
the three indices of refraction.

 26.   Repeat Problem 25 assuming that n1 < n2 < n3.

25.4 Young’s Double-Slit Experiment
 27. Light of 650 nm is incident on two slits. A maximum is 

seen at an angle of 4.10° and the next minimum at 4.78°. 
What is the order m of the maximum and what is the 
distance d between the slits?

 28. Show that the interference fringes in a double-slit ex-
periment are equally spaced on a distant screen near the 
center of the interference pattern. [Hint: Use the small-
angle approximation for θ.]

 29. In a double-slit interference experiment, the wavelength 
is 475 nm, the slit separation is 0.120 mm, and the screen 
is 36.8 cm away from the slits. What is the linear distance 
between adjacent maxima on the screen? [Hint: Assume 
the small-angle approximation is justified and then check 
the validity of your assumption once you know the value 
of the separation between adjacent maxima.]

 30. Light incident on a pair of slits produces an interference 
pattern on a screen 2.50 m from the slits. If the slit sepa-
ration is 0.0150 cm and the distance between adjacent 
bright fringes in the pattern is 0.760 cm, what is  
the wavelength of the light? [Hint: Is the small-angle  
approximation justified?]

 31. Ramon has a coherent light source with wavelength  
547 nm. He wishes to send light through a double slit with 
slit separation of 1.50 mm to a screen 90.0 cm away. 
What is the minimum width of the screen if Ramon 
wants to display five complete bright fringes?

 32.  Use a compass to make an accurate drawing of the 
wavefronts in a double-slit interference experiment simi-
lar to Fig. 25.17c. Place the slits 2.0 cm apart and let the 
wavelength of the incident wave be 1.0 cm. Using a 
straightedge, draw lines of constructive interference (anti-
nodes) and use them to find the locations of the m = ±1 
maxima on a screen 12 cm from the slits. Measure the 
angles of the maxima with a protractor; do they agree with 
those given by Eq. (25-17)? Explain any discrepancy.

 33. Light of wavelength 589 nm incident on a pair of slits 
produces an interference pattern on a distant screen in 
which the separation between adjacent bright fringes at 
the center of the pattern is 0.530 cm. A second light 
source, when incident on the same pair of slits, produces 
an interference pattern on the same screen with a sepa-
ration of 0.640 cm between adjacent bright fringes at 
the center of the pattern. What is the wavelength of the 
second source? [Hint: Is the small-angle approximation 
justified?]

 34. Light from a helium-neon laser (632.8 nm) is incident 
on a pair of slits. In the interference pattern on a screen  
1.5 m from the slits, the bright fringes are separated  
by 1.35 cm. What is the slit separation? [Hint: Is the 
small-angle approximation justified?]

 35. A double slit is illuminated with monochromatic light of 
wavelength 600.0 nm. The m = 0 and m = 1 bright 
fringes are separated by 3.0 mm on a screen 40.0 cm 
away from the slits. What is the separation between the 
slits? [Hint: Is the small-angle approximation justified?]

 36.  You are given a slide with two slits cut into it and 
asked how far apart the slits are. You shine white light 
on the slide and notice the first-order color spectrum 
that is created on a screen 3.40 m away. On the screen, 
the red light with a wavelength of 700 nm is separated 
from the violet light with a wavelength of 400 nm by 
7.00 mm. What is the separation of the two slits?

Incident ray

1
2

3

4

n2 n1n3

Problems	25	and	26
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25.5 Gratings
 37. A grating has exactly 8000 slits uniformly spaced over 

2.54 cm and is illuminated by light from a mercury va-
por discharge lamp. What is the expected angle for the 
third-order maximum of the green line (λ = 546 nm)?

 38. A red line (wavelength 630 nm) in the third order over-
laps with a blue line in the fourth order for a particular 
grating. What is the wavelength of the blue line?

 39. Red light of 650 nm appears in orders 1, 2 and 3 using a 
particular grating. What are the minimum and maximum 
possible number of slits per centimeter in this grating?

 40. A grating has 5000.0 slits/cm. How many orders of 
 violet light of wavelength 412 nm can be observed with 
this grating?

 41. A grating is made of exactly 8000 slits; the slit spacing is 
1.50 μm. Light of wavelength 0.600 μm is incident nor-
mally on the grating. (a) How many maxima are seen in 
the pattern on the screen? (b) Sketch the pattern that would 
appear on a screen 3.0 m from the grating. Label distances 
from the central maximum to the other maxima.

 42.  A reflection grating spectrometer is used to view the 
spectrum of light from a helium discharge tube. The three 
brightest spectral lines seen are red, yellow, and blue in 
color. These lines appear at the positions labeled A, B, 
and C in the figure, though not necessarily in that order of 
color. In this spectrometer, the distance between the grat-
ing and screen is 30.0 cm and the groove spacing in the 
grating is 1870 nm. (a) Which is the red line? Which is 
the yellow line? Which is the blue line? (b)  Calculate  
the wavelength (in nanometers) of spectral line C.  
(c) What is the 
highest order of 
spectral line C 
that is possible 
to see using this 
grating?

 43.   A spectrometer is used to analyze a light source. 
The screen-to-grating distance is 50.0 cm, and the grat-
ing has 5000.0 slits/cm. Spectral lines are observed at 
the following angles: 12.98°, 19.0°, 26.7°, 40.6°, 42.4°, 
63.9°, and 77.6°. (a) How many different wavelengths 
are present in the spectrum of this light source? Find 
each of the wavelengths. (b) If a different grating with 
2000.0 slits/cm were used, how many spectral lines 
would be seen on the screen on one side of the central 
maximum? Explain.

 44.  White light containing wavelengths from 400 nm to 
700 nm is shone through a grating. Assuming that at 
least part of the third-order spectrum is present, show 
that the second- and third-order spectra always overlap, 
regardless of the slit separation of the grating.

 45.  A grating 1.600 cm wide has exactly 12 000 slits. 
The grating is used to resolve two nearly equal wave-
lengths in a light source: λa = 440.000 nm and  
λb = 440.936 nm. (a) How many orders of the lines can 

be seen with the grating? (b) What is the angular separa-
tion θb − θa between the lines in each order? (c) Which 
order best resolves the two lines? Explain.

 46.  A grating spectrometer is used to resolve wave-
lengths 660.0 nm and 661.4 nm in second order. (a) How 
many slits per centimeter must the grating have to 
 produce both wavelengths in second order? (The answer 
is either a maximum or a minimum number of slits per 
centimeter.) (b) The minimum number of slits required 
to resolve two closely spaced lines is N = λ/(m Δλ), 
where λ is the average of the two wavelengths, Δλ is the 
difference between the two wavelengths, and m is the 
order. What minimum number of slits must this grating 
have to resolve the lines in second order?

25.7 Diffraction by a Single Slit
 47. The central bright fringe in a single-slit diffraction pat-

tern from light of wavelength 476 nm is 2.0 cm wide on 
a screen that is 1.05 m from the slit. (a) How wide is the 
slit? (b) How wide are the first two bright fringes on 
either side of the central bright fringe? (Define the 
width of a bright fringe as the linear distance from min-
imum to minimum.)

 48. The first two dark fringes on one side of the central 
maximum in a single-slit diffraction pattern are 1.0 mm 
apart. The wavelength of the light is 610 nm, and the 
screen is 1.0 m from the slit. What is the slit width?

 49. Light of wavelength 630 nm is incident on a single slit 
with width 0.40 mm. The figure shows the pattern  
observed on a screen positioned 2.0 m from the slit. 
Determine the distance from the center of the central 
bright fringe to 
the second mini-
mum on one side.

 50. Light from a red laser passes through a single slit to form 
a diffraction pattern on a distant screen. If the width of 
the slit is increased by a factor of two, what happens to 
the width of the central maximum on the screen?

 51.  The diffraction pattern from a single slit is viewed 
on a distant screen. Using violet light, the width of the 
central maximum is 2.0 cm. (a) Would the central maxi-
mum be narrower or wider if red light is used instead? 
(b) If the violet light has wavelength 0.43 μm and the 
red light has wavelength 0.70 μm, what is the width of 
the central maximum when red light is used?

 52. Light of wavelength 490 nm is incident on a narrow slit. 
The diffraction pattern is viewed on a screen 3.20 m 
from the slit. The distance on the screen between the 
central maximum and the third minimum is 2.5 cm. 
What is the width of the slit?

 53.  One way to measure the width of a narrow object is 
to examine its diffraction pattern. When laser light is 
shone on a long, thin object, such as a straightened 
strand of human hair, the resulting diffraction pattern 

C CB BA A

15 10 5 0 5 10 15
Distance (cm)

Central
maximum
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has minima at the same angles as for a slit of the same 
width. If a laser of wavelength 632.8 nm directed onto a 
hair produces a diffraction pattern on a screen 2.0 m 
away and the width of the central maximum is 1.5 cm, 
what is the thickness of the hair?

25.8 Diffraction and the Resolution of  
Optical Instruments
 54. The Hubble Space Telescope (HST) has excellent re-

solving power because there is no atmospheric distor-
tion of the light. Its 2.4 m diameter primary mirror can 
collect light from distant galaxies that formed early in 
the history of the universe. How far apart can two star 
clusters be from each other if they are 10 billion light-
years away from Earth and are barely resolved by the 
HST using visible light with a wavelength of 400 nm?

 55. A beam of yellow laser light (590 nm) passes through a 
circular aperture of diameter 7.0 mm. What is the angu-
lar width of the central diffraction maximum formed on 
a screen?

 56. The radio telescope at Arecibo, Puerto Rico, has a  
reflecting spherical bowl of 305 m (1000 ft) diameter. 
Radio signals can be received and emitted at various fre-
quencies with appropriate antennae at the focal point of 
the reflecting bowl. At a frequency of 300 MHz, what is 
the angle between two stars that can barely be resolved?

 57.  An eagle can determine that two light brown shrews 
sitting 1.0 cm apart on a pathway 125 m below her are 
in fact two shrews rather than a small rat. Assuming that 
only diffraction limits her ability to resolve the two 
shrews, estimate the diameter of her pupil. Use 500 nm 
as the average wavelength.

 58.  The diffraction pattern of a small circular object has 
minima at the same angles as the diffraction pattern of a 
circular hole of the same diameter. By shining a laser on 
a sample of human blood, one can observe the diffrac-
tion pattern from red blood cells, which are roughly cir-
cular, and deduce the diameter of the cells. Light of 
wavelength 532 nm is diffracted from a sample of blood; 
the pattern is viewed on a screen 46 cm from the sample, 
and the central maximum is 7.5 cm in diameter. What is 
the diameter of the red blood cells in the sample?

Collaborative Problems

 59. Find the height h of the pits on a CD (Fig. 25.6a). When the 
laser beam reflects partly from a pit and partly from land 
(the flat aluminum surface) on either side of the pit, the two 
reflected beams interfere destructively; h is chosen to be 
the smallest possible height that causes destructive inter-
ference. The wavelength of the laser is 780 nm, and the 
index of refraction of the polycarbonate plastic is n = 1.55.

 60.   The photosensitive cells (rods and cones) in the 
retina are most densely packed in the fovea—the part of 

the retina used to see straight ahead. In the fovea, the 
cells are all cones spaced about 1 μm apart. Would our 
vision have much better resolution if they were closer 
together? To answer this question, assume two light 
sources are just far enough apart to be resolvable ac-
cording to Rayleigh’s criterion. Assume an average pu-
pil diameter of 5 mm and an eye diameter of 25 mm. 
Also assume that the index of refraction of the vitreous 
fluid in the eye is 1; in other words, treat the pupil as a 
circular aperture with air on both sides. What is the 
spacing of the cones if the centers of the diffraction 
maxima fall on two nonadjacent cones with a single in-
tervening cone? (There must be an intervening dark 
cone in order to resolve the two sources; if two adjacent 
cones are stimulated, the brain assumes a single source.)

Problems 61–62. Two radio towers are a distance d apart as 
shown in the overhead view. Each antenna by itself would 
radiate equally in all directions in a horizontal plane. The 
radio waves have the same wavelength λ and start out in 
phase. A detector is moved in a circle all the way around the 
towers (−180° < θ ≤ +180°) at a distance much greater than 
λ. The power P measured by the detector is found to vary 
with the angle θ.
 61.  (a) Is the power detected at θ = 0 a maximum or a 

minimum? Explain. (b) For what values of d (in terms 
of λ) would the power be minimum at θ = 90°?

 62.  Suppose d = 3.25λ. (a) In terms of λ, what is the 
difference in the path lengths traveled by the waves that 
arrive at the detector at θ = 0? (b) What is the difference 
in the path lengths traveled by the waves that arrive 
at  the detector at θ = 90°? 
(c)  At how many angles 
(−180° < θ ≤ +180°) would 
you expect to detect a maxi-
mum intensity? Explain. (It 
is not necessary to calculate 
the values of the angles.)

 63.  If you shine a laser with a small aperture at the Moon, 
diffraction makes the beam spread out and the spot on 
the Moon is large. Making the aperture smaller only 
makes the spot on the Moon larger. On the other hand, 
shining a wide searchlight at the Moon can’t make a tiny 
spot—the spot on the Moon is at least as wide as the 
searchlight. What is the radius of the smallest possible 
spot you can make on the Moon by shining a laser of 
wavelength 600 nm from Earth? Assume the light is per-
fectly parallel before passing through a circular aperture.

 64. A grating with 5550 slits/cm has red light of  
0.680 μm incident on it. The light shines through the 
grating onto a screen that is 5.50 m away. (a) What is the 
distance between adjacent slits on the grating? (b) How 
far from the central bright spot is the first-order  
maximum on the screen? (c) How far from the central 
bright spot is the second-order maximum on the screen? 

θ

d

Problems	61	and	62
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(d) Can you  assume in this problem that sin θ ≈ tan θ? 
Why or why not?

 65. A thin film of oil with index of refraction of 1.50 sits on 
top of a pool of water with index of refraction of 1.33. 
When light is incident on this film, a maximum is ob-
served in reflected light at 480 nm and a minimum is 
observed in reflected light at 600 nm, with no maxima 
or minima for any wavelengths between these two. What 
is the thickness of the film?

 66. When using a certain grating, third-order violet light 
of wavelength 420 nm falls at the same angle as sec-
ond-order light of a different wavelength. What is that 
wavelength?

 67. The radio telescope at Arecibo, Puerto Rico, has a re-
flecting spherical bowl of 305 m (1000 ft) diameter. 
Radio signals can be received and emitted at various 
frequencies with the appropriate antennae at the focal 
point. If two Moon craters 499 km apart are to be re-
solved, what wavelength radio waves must be used?

 68. Geraldine uses a 423 nm coherent light source and a 
double slit with a slit separation of 20.0 μm to display 
three interference maxima on a screen that is 20.0 cm 
wide. If she wants to spread the three bright fringes 
across the full width of the screen, from a minimum on 
one side to a minimum on the other side, how far from 
the screen should she place the double slit?

 69. Simon wishes to display a double-slit experiment for 
his class. His coherent light source has a wavelength of 
510 nm, and the slit separation is d = 0.032 mm. He 
must set up the light on a desk 1.5 m away from the 
screen that is only 10 cm wide. How many interference 
maxima will Simon be able to display for his students?

 70. Coherent green light with a wavelength of 520 nm and 
coherent violet light with a wavelength of 412 nm are 
incident on a double slit with slit separation of  
0.020 mm. The interference pattern is displayed on a screen 
72.0 cm away. (a) Find the separation between the m = 1 
interference maxima of the two colors. (b) What is the 
separation between the m = 2 maxima for the two beams?

Comprehensive Problems

 71. A beam of coherent light of 
wavelength 623 nm in air is 
incident on a rectangular 
block of glass with index of 
refraction 1.40. If, after 
emerging from the block, the wave that travels through 
the glass is 180° out of phase with the wave that travels 
through air, what are the possible lengths d of the glass 
in terms of a positive integer m? Ignore reflection.

 72.  If diffraction were the only limitation, what would 
be the maximum distance at which the headlights of a 
car could be resolved (seen as two separate sources) by 

the naked human eye? The diameter of the pupil of the 
eye is about 7 mm when dark-adapted. Make reasonable 
estimates for the distance between the headlights and for 
the wavelength.

 73.  In bright light, the pupils of the eyes of a cat narrow 
to a vertical slit 0.30 mm across. Suppose that a cat is 
looking at two mice 18 m away. What is the smallest 
distance between the mice for which the cat can tell  
that there are two mice rather than one using light of  
560 nm? Assume the resolution is limited by diffraction 
only.

 74. Light with a wavelength of 660 nm is incident on two 
slits and the pattern shown in the figure is viewed on a 
screen. Point A is directly opposite a point midway be-
tween the two slits. What is the path length difference of 
the light that passes through the two different slits for 
light that reaches the screen at points A, B, C, D, and E?

E A B C D

 75. A thin layer of an oil (n = 1.60) floats on top of water 
(n  = 1.33). One portion of this film appears green  
(λ = 510 nm) in reflected light. How thick is this portion 
of the film? Give the three smallest possibilities.

 76. The Very Large Array (VLA) is a set of 30 dish radio 
antennas located near Socorro, New Mexico. The dishes 
are spaced 1.0 km apart and form a Y-shaped pattern, as 
in the diagram. Radio pulses from a distant pulsar 
(a  rapidly rotating neutron star) are detected by the 
dishes; the arrival time of each pulse is recorded using 
atomic clocks. If the pulsar is located 60.0° above the 
horizontal direction parallel to the right branch of the Y, 
how much time elapses between the arrival of the pulses 
at adjacent dishes in that branch of the VLA?

Pulsar direction is 
60.0˚ above this
horizontal direction

10 of the 30 dishes
that form the Very
Large Array1.0 km

Problems 77–78.  Two narrow slits with a center-to-center 
distance of 0.48 mm are illuminated with coherent light at 
normal incidence. The intensity of the light falling on a 
screen 5.0 m away is shown in the figure, where x is the dis-
tance from the central maximum on the screen.
77. (a) What would be the maximum intensity of the light 

falling on the screen if only one slit were open? (b) Find 
the wavelength of the light.

Coherent
light
beam

d



 COMPREHENSIVE	PROBLEMS 989

 78. Sketch a graph of the intensity versus x if only one slit 
were open.
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Problems	77	and	78

 79. Sonya is designing a diffraction experiment for her stu-
dents. She has a laser that emits light of wavelength 
627 nm and a grating with a distance of 2.40 × 10−3 mm 
between slits. She hopes to shine the light through the 
grating and display a total of nine interference maxima 
on a screen beyond the grating. She finds that no matter 
how she arranges her setup, she can see only seven max-
ima. Assuming that the intensity of the light is not the 
problem, why can’t Sonya display the m = 4 interfer-
ence maxima on either side?

 80.  A lens (n = 1.52) is coated with a magnesium fluo-
ride film (n = 1.38). (a) If the coating is to cause de-
structive interference in reflected light for λ = 560 nm (the 
peak of the solar spectrum), what should its minimum 
thickness be? (b) At what two wavelengths closest to 
560 nm does the coating cause constructive interference in 
reflected light? (c) Is any visible light reflected? Explain.

 81. A thin soap film (n = 1.35) is suspended in air. The 
spectrum of light reflected from the film is missing two 
visible wavelengths of 500.0 nm and 600.0 nm, with no 
missing wavelengths between the two. (a) What is the 
thickness of the soap film? (b) Are there any other visi-
ble wavelengths missing from the reflected light? If so, 
what are they? (c) What wavelengths of light are stron-
gest in the transmitted light?

 82. Instead of an antireflective coating, suppose you wanted 
to coat a glass surface to enhance the reflection of visi-
ble light. Assuming that 1 < ncoating < nglass, what should 
the minimum thickness of the coating be to maximize 
the reflected intensity for wavelength λ?

 83. A mica sheet 1.00 μm thick is suspended in air. In 
 reflected light, there are gaps in the visible spectrum 
just at 450, 525, and 630 nm. Calculate the index of 
 refraction of the mica sheet.

 84. Parallel light of wavelength λ strikes a slit of width a at 
normal incidence. The light is viewed on a screen that 
is 1.0 m past the slits. In each case that follows, sketch 
the intensity on the screen as a function of x, the dis-
tance from the center of the screen, for 0 ≤ x ≤ 10 cm. 
(a) λ = 10a. (b) 10λ = a. (c) 30λ = a.

 85. About how close to each other are two objects on the 
Moon that can just barely be resolved by the 5.08 m di-
ameter Mount Palomar reflecting telescope? (Use a 
wavelength of 520 nm.)

 86. A grating in a spectrometer is illuminated with red light 
(λ = 690 nm) and blue light (λ = 460 nm) simultane-
ously. The grating has 10 000.0 slits/cm. Sketch the pat-
tern that would be seen on a screen 2.0 m from the 
grating. Label distances from the central maximum. La-
bel which lines are red and which are blue.

 87. Two slits separated by 20.0 μm are illuminated by light 
of wavelength 0.50 μm. If the screen is 8.0 m from the 
slits, what is the distance between the m = 0 and m = 1 
bright fringes?

 88. In a double-slit experiment, what is the linear distance 
on the screen between adjacent maxima if the wave-
length is 546 nm, the slit separation is 0.100 mm, and 
the slit-screen separation is 20.0 cm?

 89.  Roger is in a ship offshore and listening to a baseball 
game on his radio. He notices that there is destructive 
interference when seaplanes from the nearby Coast 
Guard station are flying directly overhead at elevations 
of 780 m, 975 m, and 1170 m. The broadcast station is 
102 km away. Assume there is a 180° phase shift when 
the EM waves reflect from the seaplanes. What is the 
frequency of the broadcast?

 90.   Some feathers of the ruby-throated hummingbird 
have an iridescent green color due to interference. A 
simplified model of the step structure of the feather is 
shown in the figure. If the strongest reflection for nor-
mal incidence is at λ = 520 nm, what is the step height 
h? Assume h has the smallest possible value.

h Air

 91. When a double slit is illuminated with light of wave-
length 510 nm, the interference maxima on a screen  
2.4 m away gradually decrease in intensity on either side 
of the 2.40 cm wide central maximum and reach a mini-
mum in a spot where the fifth-order maximum is  
expected. (a) What is the width of the slits? (b) How far 
apart are the slits?

 92.  As in Fig. 25.41, two coherent plane waves travel 
toward a photographic plate, one incident normally and 
the other incident at angle θ0. Show that the distance 
between fringes of constructive interference on the plate 
is given by d = λ/(sin θ0).

 93. A radio wave with a wavelength of 1200 m follows two 
paths to a receiver that is 25.0 km away. One path goes 
directly to the receiver and the other reflects from an 
airplane that is flying above the point that is exactly 
halfway between the transmitter and the receiver. As-
sume there is no phase change when the wave reflects 
off the airplane. If the receiver experiences destructive 
interference, what is the minimum possible distance 
that the reflected wave has traveled? For this distance, 
how high is the airplane?
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 94. A green laser has a wavelength of 532 nm. A grating 
and a lens are used to split the beam into three parallel 
beams spaced 1.85 cm apart. (a) What range of slit spac-
ings can the grating have to produce three and only three 
beams? (b) If the slit spacing is 1.0 μm, what focal 
length lens should be used?

 95. A refracting telescope is 36.4 cm long and has a 6.0 cm 
diameter aperture. The magnifying power is 90.0.  
(a) What are the focal lengths of the lenses? (b) What is 
the diffraction limit on the minimum angular separation 
of objects that the telescope can resolve in 500 nm light?

 96.   A pinhole camera doesn’t have a lens; a small cir-
cular hole lets light into the camera, which then exposes 
the film. For the sharpest image, light from a distant point 
source makes as small a spot on the film as possible. What 
is the optimum size of the hole for a camera in which the 
film is 16.0 cm from the pinhole? A hole smaller than the 
optimum makes a larger spot since it diffracts the light 
more. A larger hole also makes a larger spot because the 
spot cannot be smaller than the hole itself (think in terms 
of geometrical optics). Let the wavelength be 560 nm.

 97.   To understand Rayleigh’s criterion as applied to 
the pupil of the eye, notice that rays do not pass straight 
through the center of the lens system (cornea + lens) of 
the eye except at normal incidence because the indices of 
refraction on the two sides of the lens system are different. 
In a simplified model, suppose light from two point 
sources travels through air and passes through the pupil 
(diameter a). On the other side of the pupil, light travels 
through the vitreous fluid (index of refraction n). The fig-
ure shows two rays, one from each source, that pass 
through the center of the pupil. (a) What is the relationship 
between Δθ, the angular separation of the two sources, 
and β, the angular separation of the two images? [Hint: 
Use Snell’s law.] (b) The first diffraction minimum for 
light from source 1 occurs at angle ϕ, where a sin ϕ = 
1.22λ [Eq. (25-23)]. Here, λ is the wavelength in the vitre-
ous fluid. According to Rayleigh’s criterion, the sources 
can be resolved if the center of image 2 occurs no closer 
than the first diffraction minimum for image 1; that is, if  
β ≥ ϕ or, equivalently, sin β ≥ sin ϕ. Show that this is 
equivalent to Eq. (25-24), where λ0 is the wavelength in air.

Pupil Vitreous 
fluid (n)Δθ
β ϕ

Center of
image 1

Edge of
image 1

1

2

Center of
image 2

Retina

Answers to Practice Problems

25.1 Destructive interference is observed where the power 
at the receiver is minimum, which occurs at x = 4.55 cm and 
at x = 5.85 cm. The change in path length is 

2 Δx = 2(5.85 cm − 4.55 cm) = 2.6 cm

which is equal to the wavelength.
25.2 The mirror should be moved in (shorter path length). 
Since the number of wavelengths traveled in the arm with 
the vessel decreases, we must decrease the number of wave-
lengths traveled in the other arm.
25.3 560 nm and 458 nm
25.4 (a) 0, 0.020 rad, 0.040 rad; (b) 0.010 rad, 0.030 rad; 
(c) 4.0 cm
25.5 The intensity is maximum at the center (θ = 0) and 
gradually decreases to either side but never reaches zero.
25.6 4760 slits/cm; fourth-order maxima are present for 
wavelengths up to 525 nm.
25.7 No; the window is large compared with the wavelength 
of light, so we expect diffraction to be negligible. The Sun is 
not distant enough to treat it as a point source; rays from dif-
ferent points on the Sun’s surface travel in slightly different 
directions as they pass through the window.
25.8 If we assume the minimum is roughly halfway between 
the m = 1 and m = 2 maxima, the minimum is at x ≈ 3.9 cm. 
(From information given in the caption of Fig. 25.29(c), the 
actual location is x = 3.7 cm.)
25.9 9 m

Answers to Checkpoints

25.1 Yes, the phase difference between two coherent waves 
can be π/3 rad. The phase difference is not an integral mul-
tiple of π, so interference is neither constructive (maximum 
amplitude) nor destructive (minimum amplitude). It is in 
 between the two.
25.3 A 180° phase shift occurs when the wave reflects 
from a boundary with a slower medium (higher index of 
refraction). Ray 1 has a 180° phase shift due to reflection 
because nf > ni. Ray 2 has no phase shift due to reflection 
because nt < nf.
25.5 For the double slit, the intensity varies gradually be-
tween maxima and minima (see Fig. 25.17). The maxima 
due to a grating are much brighter (constructive interfer-
ence due to many slits rather than just two slits). The 
widths of the maxima are inversely proportional to the 
number of slits, so for a grating with many slits, the max-
ima are very narrow.
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SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Particle accelerators 
used in medicine 
(Problems 51–55)

Concepts & Skills to Review

•	 inertial	reference	frames	
(Sections	3.6	and	4.9)

•	 relative	velocity	
(Section 3.6)	

•	 kinetic	energy	
(Section 6.3)

•	 math skill:	binomial	
approximation		
(Appendix	A.9)

•	 energy	conservation	
(Section	6.1)

•	 conservation	of	
momentum;	collisions	in	
one	dimension	
(Sections 7.4	and	7.7)

Galactic core

Jet emitted by the core of galaxy NGC 6251.
©P.N. Werner, M. Birkinshaw & D.M. Worrall using the NRAO Very Large Array

The	centers	of	 some	galaxies	are	much	brighter	 than	 the	 rest	of	 the	
galaxy.	 These	 active	 galactic	 nuclei,	 which	may	 be	 only	 about	 as	 big	
as	 our	 solar	 system,	 can	 give	 off	 20	 billion	 times	 as	 much	 light	 as	
the	Sun.	The	core	of	the	galaxy	NGC	6251	emits	a	narrow,	extremely	
energetic	 jet	of	 charged	particles	 in	a	direction	 roughly	 toward	Earth.	
The	photo	shows	 the	 jet	as	 imaged	by	 the	Very	Large	Array	of	 radio-
telescopes	 in	New	Mexico;	 the	galactic	core	 is	at	 the	 lower	 right.
	 When	 scientists	 first	 measured	 the	 speed	 of	 the	 tip	 of	 this	 jet,	
they	used	 two	 radiotelescope	 images,	 taken	on	 two	successive	days.	
They	measured	how	 far	 the	 tip	of	 the	 jet	moved,	divided	by	 the	 time	
elapsed	between	the	two	 images,	and	came	up	with	a	speed	greater	
than	 the	speed	of	 light!	 Is	 it	possible	 for	 the	charged	particles	 in	 the	
jet	to	move	faster	than	light?	If	not,	what	was	the	scientists’	mistake?

PART FIVE Quantum	and	Particle	Physics	and	Relativity
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26.1 POSTULATES OF RELATIVITY

Reference Frames

The idea of relativity is not something entirely new; it goes all the way back to 
Galileo. Aristotle had previously said that an object continues to move only if a force 
continues to propel it; take away the force and the object comes to rest. The authority 
of Aristotle’s opinion prevailed for many centuries. Galileo turned this thinking around 
by saying that an object maintains a constant velocity (which can be zero or nonzero) 
in the absence of any external forces acting on it; this concept is the basis for the law 
of inertia as stated by Newton.

All motion must be measured in some particular reference frame, which we usu-
ally represent as a set of coordinate axes. Suppose two people walk hand-in-hand on 
a moving sidewalk in an airport. They might walk at 1.3 m/s with respect to a refer-
ence frame attached to the moving sidewalk and at 2.4 m/s with respect to a reference 
frame attached to the building. The two reference frames are equally valid.

An inertial reference frame is one in which no accelerations are observed in the 
absence of external forces. In noninertial reference frames, bodies have accelerations 
in the absence of applied forces because the reference frame itself is accelerating with 
respect to an inertial frame. For example, suppose two people sit across from each 
other on a rapidly rotating merry-go-round (Fig. 26.1). When one tosses a ball to the 
other, the ball is deflected sideways as viewed by observers on the merry-go-round. 
The sideways acceleration is not caused by any force acting on the ball; the reference 
frame attached to the merry-go-round is noninertial. The law of inertia does not hold 
in noninertial frames.

For many purposes, Earth’s surface can be considered to be an inertial reference 
frame, even though strictly speaking it is not. Earth’s rotation causes phenomena such 
as the rotary motion of hurricanes and trade winds, which, in a reference frame 
attached to Earth’s surface, involve accelerations not caused by applied forces.

Any reference frame that moves with constant velocity with respect to an inertial 
frame is itself inertial; if the acceleration of an object in one inertial frame is zero, 
its acceleration in any of the other inertial frames is also zero. In our earlier example, 
if a reference frame fixed to the airport terminal is inertial and the moving sidewalk 
moves at constant velocity with respect to the terminal, then a reference frame fixed 
to the moving sidewalk is also inertial.

CONNECTION:

The idea of relativity is not 
something new introduced by 
Einstein. It goes all the way 
back to Galileo and Newton.

Figure 26.1 A ball tossed 
across a merry-go-round. 
(a) Trajectory of the ball as 
viewed in the noninertial frame 
fixed to the platform. In this 
frame, the platform is at rest 
and the tree is moving. The ball 
is thrown straight toward the 
catcher but then is deflected 
sideways, even though no 
sideways force acts on it. 
(b) Straight-line trajectory of 
the ball as viewed in the 
inertial frame fixed to the 
ground. In this frame, the law 
of inertia holds and the ball is 
not deflected. The catcher 
rotates away from the path of 
the ball.

Noninertial frame
(a)

Inertial frame
(b)
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Principle of Relativity

Ever since Galileo and Newton, scientists have been careful to formulate the laws of 
physics so that the same laws hold in any inertial reference frame. Particular quantities 
(velocity, momentum, kinetic energy) have different values in different inertial refer-
ence frames, but the principle of relativity requires that the laws of physics (e.g., the 
conservation of momentum and energy) be the same in all inertial frames.

Principle of Relativity

The laws of physics are the same in all inertial frames.

The laws and equations in this chapter—just like those of all other chapters in 
this book—are only valid in inertial frames. The laws of physics must be modified if 
they are to apply in noninertial (accelerated) reference frames.

CHECKPOINT 26.1

You	 are	 in	 a	 special	 compartment	 on	 a	 train	 that	 admits	 no	 light,	 sound,	 or	
vibration.	 Is	 there	 any	way	 you	 can	 tell	 whether	 the	 train	 is	 at	 rest	 or	moving	
at	constant	nonzero	 velocity	with	 respect	 to	 the	ground?	Explain.

Apparent Contradictions with the Principle of Relativity

In the nineteenth century, James Clerk Maxwell used the four basic laws that describe 
electromagnetic fields (Maxwell’s equations, Section 22.1) to show that electromag-
netic waves travel through vacuum at a speed of c = 3.00 × 108 m/s. In fact, Maxwell’s 
equations show that EM waves travel at the same speed in every inertial reference 
frame, regardless of the motion of the source or of the observer.

This conclusion, that the speed of light is the same in any inertial reference frame, 
contradicts the Galilean laws of relative velocity (Section 3.6). Suppose a car travels 
at velocity v→CG with respect to the ground (Fig. 26.2). Light coming from the car’s 
headlights travels at velocity v→LC with respect to the car. Galilean velocity addition 
says that the speed of the light beam with respect to the ground is

 v→LG = v→LC + v→CG (3-28)

Thus, the speed of light would have two different values (vLG and vLC) in two different 
inertial reference frames.

vCG

vCG

vLC vLC

vLG

+

vLG

Speed of light relative to
the ground as predicted
by Galilean relativity

Observed speed of light
is the same in every

inertial frame

vLC

Figure 26.2 According to 
Galilean relativity, the speed of 
light would have different 
values in different inertial 
reference frames. If v→LC is the 
velocity of the light beam with 
respect to the car and v→CG is 
the velocity of the car with 
respect to the ground, Galilean 
relativity would predict the 
velocity of the light beam with 
respect to the ground to be 
v→LC + v→CG. However, the 
observed speed of light is the 
same in all inertial reference 
frames.
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A possible resolution to the contradiction would be if Maxwell’s equations give 
the speed of light with respect to the medium in which light travels. Nineteenth-
century scientists believed that light was a vibration in an invisible, elusive medium 
called the ether. If the speed of light c derived by Maxwell is the speed with respect 
to the ether, then in any inertial frame moving with respect to the ether, the speed of 
light should differ as predicted by Galilean relativity.

Does the speed of light as measured on Earth really depend on the motion of Earth 
through the ether? In 1881, the American physicist Albert Michelson designed a sensi-
tive instrument, now called the Michelson interferometer (Section 25.2), to find out. In 
a later, more sensitive version of the experiment, Michelson was joined by another 
American scientist, Edward Williams Morley (1838–1923). The Michelson-Morley 
experiment showed no observable change in the speed of light due to the motion of 
Earth relative to the ether (Fig. 26.3). This led to the conclusion that there is no ether.

Einstein’s Postulates

The German-born physicist Albert Einstein (1879–1955) resolved these contradictions 
in his theory of special relativity (1905), now recognized as one of the cornerstones 
of modern physics. Einstein started with two postulates. The first is identical to 
Galileo’s principle of relativity: the laws of physics are the same in any inertial refer-
ence frame. The second is that light travels at the same speed through vacuum in any 
inertial reference frame, regardless of the motion of the source or of the observer.

Einstein’s Postulates of Special Relativity

 (I) The laws of physics are the same in all inertial reference frames.
(II)  The speed of light in vacuum is the same in all inertial reference frames, 

regardless of the motion of the source or of the observer.

Figure 26.3 Simplified version of the Michelson-Morley experiment as seen from 
above. Assume the apparatus moves to the right at speed v with respect to the 
ether. With respect to the lab, the light beam in arm 1 moves at speed c − v to the 
right and at speed c + v to the left after reflecting from the mirror. The round-trip 
time in arm 1 is then Δt1 = L1/(c − v) + L1/(c + v) ≠ (2L1)/c. The number of 
cycles of the wave in arm 1 is Δt1/T = f  Δt1, where f is the frequency of the light. 
Thus, the number of cycles in arm 1 depends on the speed of the apparatus with 
respect to the ether. As the entire apparatus is rotated in a horizontal plane, the 
interference pattern viewed through the telescope should change as the difference 
in  the number of cycles in arms 1 and 2 changes. No change in the interference 
pattern was observed by Michelson and Morley.

L1Light source

Beam
splitter

Viewing
telescope

Mirror

Mirror

Arm 1

Arm 2
L2

v

CONNECTION:

In essence, the second postu-
late extends the principle of 
relativity to include electro-
magnetism. The basic laws of 
electric and magnetic fields 
are the same in all inertial 
reference frames.
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The consequences Einstein derived from these two postulates deliver fatal blows 
to our intuitive notions of space and time. Our intuition about the physical world is 
based on experience, which is limited to things moving much slower than light. If 
moving at speeds approaching the speed of light were part of our everyday experience, 
then relativity would not seem strange at all. The theory of relativity has been 
confirmed by many experiments—which is the true test of any theory.

Einstein’s theory of special relativity concerns inertial reference frames. In 1915, 
Einstein published his theory of general relativity, which concerns noninertial reference 
frames and the effect of gravity on intervals of space and time. In this chapter we 
study inertial reference frames only.

The Correspondence Principle

Galilean relativity and Newtonian physics do a great job of explaining and predicting 
motion at low speeds because they are excellent approximations when the speeds 
involved are much less than c. Therefore, the equations of special relativity must all 
reduce to their Newtonian counterparts for speeds much less than c.

The idea that a newer and more general theory must make the same predictions 
as an older theory, under experimental conditions that have proved the older theory 
successful, is called the correspondence principle.

26.2 SIMULTANEITY AND IDEAL OBSERVERS

The postulate that the speed of light is the same in all inertial reference frames leads 
to a startling conclusion: observers in different inertial reference frames disagree about 
whether two events are simultaneous if the events occur at different places. In Newtonian 
physics, time is absolute. That is, observers in different reference frames can use the 
same clock to measure time, and they all agree on whether or not two events are simul-
taneous. Einstein’s relativity does away with the notion of absolute time.

The idea of an event is crucial in relativity. The location of an event can be 
specified by three spatial coordinates (x, y, z); the time at which the event occurs is 
specified by t. Einstein’s relativity treats space and time as four-dimensional space-
time in which an event has four space-time coordinates (x, y, z, t).

Imagine two spaceships piloted by astronauts named Abe and Bea. Each ship has 
zero acceleration because external forces are negligible and they are not firing their 
engines. Then Abe and Bea are observers in inertial reference frames. Abe is at rest in 
his own reference frame and measures all velocities with respect to himself. The same 
can be said for Bea. They are not at rest with respect to each other, though. According 
to Abe, Bea moves past him at speed v; according to Bea, Abe moves past her at speed v.

CONNECTION:

Special relativity doesn’t 
require us to throw out 
Newtonian physics; it is just 
more general than Newtonian 
physics.

Albert Einstein in 1910. In 1921, 
he was awarded the Nobel Prize in 
physics. Although Einstein is best 
known for his work on relativity, 
the Nobel committee cited “his 
discovery of the law of the 
photoelectric effect,” which we 
study in Section 27.3.
©ullstein bild/Getty Images
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Abe and Bea observe two events: two space probes each emit a flash of light. 
Sitting in the cockpit at the nose of his ship, Abe sees the two flashes of light simul-
taneously. From the long measuring sticks in front of and behind his ship, which 
record the positions at which events occur, he finds that the flashes were emitted at 
equal distances from the nose of his ship. In Abe’s frame of reference (Fig. 26.4), the 
flashes travel the same distance at the same speed (c) and arrive at the same time, so 
they must have been emitted simultaneously. The nose of Bea’s ship happened to be 
alongside Abe’s at the instant the flashes were emitted, but the flash from the probe 
on our right reaches Bea before the flash from the probe on our left. In Abe’s reference 
frame, that happens because Bea is moving toward one probe and away from the other; 
the flashes do not travel equal distances to reach Bea.

In Bea’s reference frame (Fig. 26.5), the right flash arrives before the left flash. Bea 
has measuring sticks similar to those of Abe; when she consults them, she finds that the 
flashes were emitted at equal distances from the nose of her ship. Since the flashes from 
each probe travel equal distances at the same speed (c), the right flash must arrive first 
because it was emitted first. In Bea’s reference frame, the flashes are not emitted 
simultaneously. Bea’s explanation for why the flashes reach Abe at the same time is that 
Abe is moving away from the first flash and toward the second at just the right speed. 
In Bea’s reference frame, the flashes do not travel equal distances to reach Abe.

According to Einstein’s postulates, the two reference frames are equally valid and 
light travels at the same speed in each. The inescapable conclusion is that the events 
are simultaneous in one frame and are not in the other.

Ideal Observers
Since the high-speed jet of charged particles from the core of NGC 6251 moves 
toward Earth, the time it takes light to travel from the tip of the jet to Earth is 
continually decreasing. If we assume (incorrectly) that light arriving at Earth 1 day 

Figure 26.4 Events at three different times as viewed in Abe’s reference frame. 
In  this frame, Abe is at rest and Bea moves to the right at constant speed v. Abe’s 
clock shows the time for each frame. (a) Two space probes flash simultaneously. 
The probes are at equal distances from Abe when they flash. (b) Bea travels toward 
the probe on the right, so she will run into that flash before the flash from the left 
catches up to her. (c) The two flashes reach Abe simultaneously. The pulse from the 
right has already passed Bea, but the pulse from the left has not yet reached her.

v

Abe’s reference frame
(c)

(b)

(a)

A

A

A

B

B

B

v

v
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later was emitted 1 day later, then we calculate the apparent speed of the jet to be 
greater than c. The correct calculation recognizes that the light arriving 1 day later 
had a shorter distance to travel (Fig. 26.6), so it was emitted more than 1 day later. 
The jet is fast, but not as fast as light.

In Abe and Bea’s disagreement about simultaneity, we were careful not to make 
a similar mistake. Each of them sees two flashes that travel equal distances to reach 
them. To avoid the confusion of light signals traveling different distances, we can 
imagine ideal observers who have placed sensors with synchronized clocks at rest at 
every point in space in their own reference frames. Each sensor records the time at 
which any event occurs at its location. Even if Abe and Bea were ideal observers, the 
data recorded by their sensors would still show that they reach different conclusions 
about the time sequence of the two flashes.

Cause and Effect

Continuing with the same reasoning, an observer moving to the left with respect to 
Abe would say that the left flash occurs first. Thus, the time order of the two events 
is different in different reference frames. How can there possibly be any cause-effect 

Figure 26.5 Events at four 
different times as viewed in 
Bea’s reference frame. In this 
frame, Bea is at rest and Abe 
moves to the left at constant 
speed v. Bea’s clock shows the 
time for each frame. (a) The 
space probe on the right 
flashes. (b) The probe on the 
left flashes. The two flashes 
take place at equal distances 
from Bea, but they are not 
simultaneous. (c) The right 
flash reaches Bea, but since 
Abe is moving to the left, it 
hasn’t caught up with him yet. 
(d) The two flashes reach Abe 
simultaneously because he was 
moving away from the earlier 
flash and toward the later flash 
at just the right speed. The 
flash from the left still hasn’t 
reached Bea.

Bea’s reference frame

(d)

(c)

(b)

(a)

A

A

A

A

B

B

B

B

v
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v
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Figure 26.6 Calculating the 
speed of the jet. (a) Light 
emitted at ti = 0 travels a 
distance d to reach Earth, 
arriving at tf = d/c because it 
travels at speed c. (b) Light 
emitted at ti′  travels a shorter 
distance d − Δx and reaches 
Earth 1 day later, at tf′ =  
tf + 1 day. The speed of the  
jet is v = Δx/(ti′ −  ti), which  
is less  than c, rather than  
vapparent = Δx/(tf′ −  tf).

Light emitted at ti = Δx/v reaches Earth
at time tf = d/c + 1 day;

Distance traveled = d – Δx  
(b)

(a)

Light emitted at ti = 0 reaches Earth
at time tf = d/c;

Distance traveled = d

Δx
Jet moves a
distance Δx
at speed v ′

′
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relationships if the time order of events depends on the observer? What would it mean 
if, in some reference frames, the effect occurs before the cause?

In order for event 1 to cause event 2, some sort of signal—some information—must 
travel from event 1 to event 2. One conclusion of Einstein’s postulates is that no signal 
can travel faster than c. If there is enough time, in some reference frame, for a signal 
at light speed to travel from event 1 to event 2, then it can be shown—through a more 
advanced analysis than we can do here—that a signal can travel from event 1 to event 2 
in all inertial reference frames. The cause comes before the effect for all observers. On 
the other hand, if there is not enough time for a signal at light speed to travel from 
event 1 to event 2, then the two cannot have a causal relationship in any reference 
frame. For such events, some observers say that event 1 happens first, some say that 
event 2 happens first, and one particular observer says the events are simultaneous.

26.3 TIME DILATION

Since inertial observers in relative motion disagree about simultaneity, can two such 
observers agree about the time kept by clocks in relative motion? Two ideal clocks 
that are not moving relative to each other keep the same time by ticking simultane-
ously. However, if the clocks are in relative motion, the ticks are events that occur at 
different spatial locations, so two different inertial observers may disagree on whether 
the ticks are simultaneous, or about which clock ticks first.

The situation is easiest to analyze by imagining a conceptually simple kind of 
clock—a light clock (Fig. 26.7). A light clock is a tube of length L with mirrors at 
each end. A light pulse bounces back and forth between the two mirrors. One tick of 
the clock is one round-trip of the light pulse. The time interval between ticks for a 
stationary clock is Δt0 = 2L/c.

Imagine now that Abe and Bea have two identical light clocks. Bea holds the 
clock vertically as she flies past Abe in her spaceship at speed v = 0.8c. What is the 
time interval between ticks of Bea’s clock, as measured by Abe?

The velocity of the light pulse in Bea’s clock as measured in Abe’s reference 
frame has both x- and y-components (Fig. 26.8). The pulse must have an x-component 
of velocity if it is to meet up with the mirrors, which move to the right at speed v. 
During one tick, the light pulse moves along the diagonal paths shown.

Let us analyze one tick of Bea’s clock as observed in Abe’s reference frame. Suppose 
the time interval for one tick of Bea’s clock as measured by Abe is Δt. Then the distance 
traveled by the light pulse during one tick is c Δt. During this same time interval, the 
clock moves horizontally a distance v Δt. By the Pythagorean theorem (see Fig. 26.8):

 L2 + (
v Δt

2 )
2

= (
c Δt

2 )
2

 (26-1)

In Bea’s reference frame, the clock is at rest. The distance traveled by the light pulse 
during one tick is 2L, so the time interval for one tick as measured in Bea’s reference 
frame is Δt0 = 2L/c. We can therefore make the substitution

 L =
c Δt0

2
 (26-2)

into the Pythagorean equation:

 (
c Δt0

2 )
2

+ (
v Δt

2 )
2

= (
c Δt

2 )
2

 (26-3)

Solving for Δt (Problem 12) yields

 Δt =
1

√1 − v2/c2
  Δt0 (26-4)

The factor multiplying Δt0 in Eq. (26-4) occurs in many relativity equations, so 
we assign it a symbol (γ, the Greek letter gamma) and a name (the Lorentz factor, 
after Dutch physicist Hendrik Lorentz, 1853–1928).

Figure 26.7 A light pulse 
reflects back and forth between 
the two parallel mirrors in a 
light clock. The time interval 
for one “tick” of the clock is 
the round-trip time for the light 
pulse, Δt0 = 2L/c.

Mirror

Mirror

Light
pulse

L
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Lorentz factor

 γ =
1

√1 − v2/c2
 (26-5)

See Fig. 26.9 for a graph of γ as a function of v/c. Using γ, Eq. (26-4) becomes

Time dilation
 Δt = γ Δt0 (26-6)

Notice that when v ≪ c, γ ≈ 1. Thus, for an object moving at nonrelativistic speeds 
(speeds small relative to the speed of light), Δt = γ Δt0 ≈ Δt0.

Since γ > 1 for any v ≠ 0, the time interval between ticks as measured in the 
reference frame in which the clock is moving, Δt, is longer than the time interval Δt0 
as measured in the clock’s rest frame—the frame in which the clock is at rest. In a 
short phrase, moving clocks run slow. This effect is called time dilation; the time 
between ticks of the moving clock is dilated or expanded.

Abe’s and Bea’s reference frames are equally valid. Wouldn’t Bea say that it is 
Abe’s clock that runs slow? Yes, and they are both correct. Imagine that both of the 
clocks tick just as Abe and Bea pass each other—when they’re at the same place. 
They agree that the clocks tick simultaneously. To see which clock runs slow, we 
compare the time of the next tick of the two clocks. Since the clocks are then at dif-
ferent places, the two observers disagree about the sequence of the ticks. Abe observes 
his clock ticking first, while Bea observes hers ticking first. They are both correct: 
there is no absolute or preferred reference frame from which to measure the time 
intervals.

The time interval Δt0 measured in the rest frame of the clock is called the proper 
time interval; in that frame, the clock is at the same position for both ticks. When 
using the time dilation relation [Eq. (26-6)], Δt0 always represents the proper time 
interval—the time interval between two events measured in an inertial reference frame 
in which the events occur in the same place. The proper time interval is always shorter 
than the time interval Δt measured in any other inertial frame. The time dilation 

Figure 26.8 In Abe’s refer-
ence frame, Bea’s light clock 
moves to the right at speed 
v = 0.8c. The path of the light 
pulse in Bea’s clock is along 
the diagonal red lines. (Not 
to scale.)
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Figure 26.9 A graph of the 
Lorentz factor γ as a function 
of v/c. For low speeds, γ ≈ 1. 
For speeds approaching that 
of  light, γ increases without 
bound.

v/c0.20 0.4 0.6 0.8 1

1
0

2
3
4
5
6
7
8
9

10

γ



1000 CHAPTER	26 Relativity

equation does not apply to a time interval between events that occur at different loca-
tions for all inertial observers.

Although we have analyzed time dilation using light clocks, any clock must show 
the same effect; otherwise there would be a preferred reference frame—the one in 
which light clocks behave the same as other clocks. Furthermore, a clock can be 
anything that measures a time interval. Biological processes such as the beating of a 
heart or the aging process are subject to time dilation. The nature of space and time, 
not the workings of a particular kind of device, is responsible for time dilation.

Time dilation may seem strange, but it has been verified in many experiments. 
One straightforward one was done in 1971 by the American scientists J. C. Hafele and 
R. E. Keating using extremely precise cesium beam atomic clocks. The clocks were 
loaded onto airplanes and flown around for nearly 2 d. When the clocks were compared 
with reference clocks at the U.S. Naval Observatory, the clocks that had been in the 
air were behind those on the ground by an amount consistent with relativity.

Problem-Solving Strategy: Time Dilation

∙ Identify the two events that mark the beginning and end of the time interval 
in question. The “clock” is whatever measures this time interval.

∙ Identify the reference frame in which the clock is at rest. In that frame, the 
clock measures the proper time interval Δt0.

∙ In any other reference frame, the time interval is longer by a factor of γ =  
(1 − v2/c2)−1/2, where v is the speed of each frame relative to the other.

Speed and Distance Units Commonly Used in Relativity

∙ Speeds are usually written as a fraction times the speed of light (e.g., 0.13c).
∙ Distances are often measured in light-years (symbol ly). A light-year is the 

distance that light travels in 1 yr. Calculations involving light-years are 
simplified by writing the speed of light as 1 ly/yr.

Example 26.1

Slowing the Aging Process

A 20.0 yr old astronaut named Ashlin leaves Earth in a 
spacecraft moving at 0.80c. How old is Ashlin when he 
returns from a trip to a star 30.0 light-years from Earth, 
assuming that he moves at 0.80c relative to Earth during 
the entire trip?

Strategy and Solution According to an earthbound 
observer, the trip takes (60.0 ly)/(0.80 ly/yr) = 75 yr to com-
plete. Since the astronaut is moving at high speed relative to 
Earth, all clocks on board—including biological processes 
such as aging—run slow as observed by Earth observers. 
Therefore, when the astronaut returns he is less than 95 yr 
old. Maybe he’ll have time for another trip!

The two events that measure the time interval are the 
departure and return of the astronaut. Let the “clock” be the 
astronaut’s aging process. This “clock” measures a 75 yr 

time interval according to Earth observers, for whom the 
clock is moving. The proper time interval is that measured by 
the astronaut himself. Thus, Δt = 75 yr and we want to find 
Δt0. The Lorentz factor is calculated using the relative speed 
of the two reference frames, which is 0.80c.

γ = (1 − 0.802) −1/2 =
5
3

From the time dilation relation Δt = γ Δt0,

Δt0 =
1
γ

 Δt =
3
5

× 75 yr = 45 yr

If the astronaut ages 45 yr during the trip, he is 65 yr old on 
his return.
Discussion If the astronaut could travel 60.0 ly in 45 yr, 
then he would be traveling faster than light; his speed would 
be (60.0 ly)/(45 yr) = 1.3c. As we see in Section 26.4, the 

continued on next page
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astronaut has traveled less than 60.0 ly in his reference frame. 
Just as time intervals are different in different reference 
frames, so are distances.

Suppose that Ashlin has a twin brother, Earnest, who 
stays behind on Earth. When Ashlin returns, he is 65 yr old, 
but Earnest is 95 yr old. Why can’t Ashlin say that, in his 
reference frame, Earnest is the one who was moving at 
0.80c, and therefore Earnest’s biological clock should run 
slow so that Earnest is younger rather than older? This ques-
tion is sometimes called the twin paradox.

We analyzed the situation in the reference frame of 
Earnest, which is assumed to be inertial. The analysis from 
Ashlin’s point of view is much more difficult because Ashlin 
is not traveling at constant velocity with respect to Earnest 

for the entire trip—if he were, he could never return to Earth. 
Nevertheless, analysis of the trip from Ashlin’s perspective 
confirms that when he returns to Earth he is younger than 
Earnest.

Practice Problem 26.1 Journey to Newly Formed 
Stars near Earth

In 1998, using the Keck II telescope, scientists discovered 
some previously undetected, young stars that are only 150 ly 
from Earth. Suppose a space probe is flown to one of these 
stars at a speed of 0.98c. The battery that powers the com-
munications systems can run for 40 yr. Will the battery still 
be good when the space probe reaches the star?

Example 26.1 continued

26.4 LENGTH CONTRACTION

Suppose Abe has two identical metersticks, which he has verified to have precisely 
the same length. He gives one to Bea, the astronaut. As Bea flies past Abe with speed 
v = 0.6c, holding her meterstick in the direction of motion, they compare the lengths 
of the two metersticks (Fig. 26.10). Are they still equal?

No; Abe finds that Bea’s meterstick is less than 1 m in length. To measure the 
length of Bea’s moving meterstick, Abe might start a timer when the front end of her 
meterstick passes a reference point and stop the timer when the other end passes. The 
length L that Abe measures for Bea’s stick is the measured time interval Δt0 multiplied 
by the speed at which she is moving:
 L = v Δt0 (Abe; moving stick)  (26-7)
Since Abe measures the time interval between two events that occur at the same 
place—at his reference point—Δt0 is the proper time interval between the events.

Bea can measure the length of her own stick (L0) the same way—by recording 
the time interval Δt between when Abe’s reference point passes the two ends of her 
meterstick.
 L0 = v Δt (Bea; stick at rest)  (26-8)
The time interval Bea measures is dilated; it is longer than the proper time interval 
by a factor of γ:
 Δt = γ  Δt0 (26-9)
Therefore, the length of Bea’s meterstick as measured by Abe (L) is shorter than the 
length measured by Bea (L0 = 1 m):

 
L

L0
=

Δt0

Δt
=

1
γ

 (26-10)

Figure 26.10 In Abe’s refer-
ence frame, Bea moves to the 
right at speed 0.6c. Abe mea-
sures everything on board Bea’s 
ship—including the meterstick 
and even Bea herself—as short-
ened along the direction of 
motion.

v
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Length contraction

 L =
L0

γ
 (26-11)

In the length contraction relation L = L0/γ, L0 represents the proper length or rest 
length—the length of an object in its rest frame. L is the length measured by an 
observer for whom the object is moving.

Meanwhile, Bea can also measure Abe’s meterstick. Bea would say that Abe’s 
meterstick is the one that is shorter. How can they both be right? Which meterstick 
really is shorter?

To resolve the issue once and for all, they might want to hold the metersticks 
together, but they cannot: the metersticks are in relative motion. To compare the 
lengths, they could wait until the left ends of the two metersticks coincide (Fig. 26.11). 
They must compare the positions of the right ends of the metersticks at the same 
instant. Since Abe and Bea disagree about simultaneity, they disagree about which 
meterstick is shorter, but they are both correct. Just as an observer always finds that 
a moving clock runs slow compared with a stationary clock, an observer always finds 
that a moving object is contracted (shortened) along the direction of its motion. 
Lengths perpendicular to the direction of motion are not contracted.

Problem-Solving Strategy: Length Contraction

∙ Identify the object whose length is to be measured in two different frames. 
The length is contracted only in the direction of the object’s motion. If the 
length in question is a distance rather than the length of an actual object, 
it often helps to imagine the presence of a long measuring stick.

∙ Identify the reference frame in which the object is at rest. The length in 
that frame is the proper length L0.

∙ In any other reference frame, the length L is contracted: L = L0/γ. 
γ = (1 − v2/c2)−1/2, where v is the speed of each frame relative to the other.

CHECKPOINT 26.4

A	 sprinter	 crosses	 the	 start	 line	 (event	 1)	 and	 runs	 at	 constant	 velocity	 until	
she	crosses	the	finish	line	(event	2).	In	what	reference	frame	would	an	observer	
measure	the	proper	time	interval	between	these	two	events?	In	what	reference	
frame	would	an	observer	measure	the	proper	length	of	the	track	from	start	line	
to	 finish	 line?

Figure 26.11 Comparing 
two metersticks by lining up 
the left ends. (a) As seen in 
Abe’s rest frame. (b) As seen 
in Bea’s rest frame.
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Example 26.2

Muon Survival

Cosmic rays are energetic particles—mostly protons—that 
enter Earth’s upper atmosphere from space. The particles 
collide with atoms or molecules in the upper atmosphere and 
produce showers of particles. One of the particles produced 
is the muon, which is something like a heavy electron. The 
muon is unstable. Half of the muons present at any particular 
instant of time still exist 1.5 μs later; the other half decay into 
an electron plus two other particles. In a shower of muons 
streaming toward Earth’s surface, some decay before reach-
ing the ground. If 1 million muons are moving toward the 
ground at speed 0.995c at an altitude of 4500 m above sea 
level, how many survive to reach sea level?

Strategy Imagine a measuring stick extending from the 
upper atmosphere to sea level (Fig. 26.12). In the reference 
frame of Earth, the measuring stick is at rest; its proper 
length is L0 = 4500 m. In the reference frame of the muons, 
the muons are at rest and the measuring stick moves past 

them at speed 0.995c. 
In the muon frame, 
the measuring stick 
is contracted. In the 
muon frame, sea 
level is not 4500  m 
away when the upper 
end of the measuring 
stick passes by; the 
distance is shorter 

due to length contraction. Once we find the contracted dis-
tance L, the time the measuring stick takes to move past 
them at speed v is Δt = L/v. From the elapsed time, we can 
determine how many muons decay and how many are left.

Solution The contracted distance is L = L0/γ, where the 
Lorentz factor is

γ = (1 − 0.9952) −1/2 = 10

Therefore, the contracted distance is L = 1
10 × 4500 m =  

450 m. The elapsed time is

Δt = L/v = (450 m)/(0.995 × 3 × 108 m/s) = 1.5 μs

During 1.5 μs, half of the muons decay, so 500 000 muons 
reach sea level.

Discussion If there were no length contraction, the 
elapsed time would be

Δt =
4500 m

0.995 × 3 × 108 m/s
= 15 μs

This time interval is equal to ten successive intervals of 
1.5  μs. During each of those intervals, half of the muons 
present at the start of the interval decay. Therefore, the 
number that survive to reach sea level would be only

1 000 000 × (
1
2)

10

≈ 980 muons

The relative number of muons at sea level compared 
with the number at higher elevations has been 
studied experimentally; the results are consis-
tent with relativity.

Practice Problem 26.2 Rocket Velocity

An astronaut in a rocket passes a meterstick 
moving parallel to its long dimension. The 
astronaut measures the meterstick to be 
0.80 m long. How fast is the rocket moving 
with respect to the meterstick?

Figure 26.12
The muons’ trip as viewed by (a) an Earth observer and (b) the muons.

4.5 km

Earth’s view
(a)

Muon

0.995c

Muon’s view
(b)

450 m 0.995c

Muon (stationary)

26.5 VELOCITIES IN DIFFERENT REFERENCE FRAMES

Figure 26.13 shows Abe and Bea in their spaceships; in Abe’s reference frame, Bea 
moves at velocity vBA. Bea launches a space probe, which, in her reference frame, 
moves at velocity vPB. What is the velocity of the probe in Abe’s reference frame 
(vPA)? (Since we consider only velocities along a straight line—in this case, along a 
horizontal line—we write the velocities as components along that line.)

If vPB and vBA are small relative to c, time dilation and length contraction are 
negligible; then vPA is given by the Galilean velocity addition formula:

 vPA = vPB + vBA (3-28)

CONNECTION:

Velocities are relative even  
in classical physics (see 
Section 3.6). The Galilean 
velocity addition formula 
may seem correct intuitively, 
but it is only approximately 
correct when the speeds are 
much less than c.
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However, this cannot be correct in general because the probe cannot move faster than 
light in any inertial reference frame. (If vPB = +0.6c and vBA = +0.7c, the Galilean 
formula gives vPA = 1.3c.) The relativistic equation takes time dilation and length 
contraction into account and predicts ∣vPA∣ < c for any values of vPB and vBA whose 
magnitudes are less than c.

The relativistic velocity transformation formula is

Velocity transformation

 vPA =
vPB + vBA

1 + vPBvBA/c2  (26-12)

The denominator in Eq. (26-12) can be thought of as a correction factor to account 
for both time dilation and length contraction. When vPB and vBA are small compared 
to c, the denominator is approximately 1; then Eq. (26-12) reduces to the Galilean 
approximation. For example, if vPB = vBA = +3 km/s (fast by ordinary standards, but 
small compared to the speed of light), the denominator is

1 +
vPBvBA

c2 = 1 +
(3 × 103 m/s)2

(3 × 108 m/s)2 = 1 + 10−10

In this case the Galilean velocity addition formula is off by only 0.000 000  01%.
Next, we verify that Einstein’s second postulate holds—that light has the same 

speed in any inertial reference frame. Suppose that instead of launching a space probe, 
Bea turns on her headlights. The velocity of the light beam in Bea’s frame is vLB = +c. 
The speed of the light beam in Abe’s frame is

 vLA =
vLB + vBA

1 + vLBvBA/c2 =
c + vBA

1 + cvBA/c2 =
c(1 + vBA/c)

1 + vBA/c
= c (26-13)

Thus, even if the jet of charged particles from the active nucleus of a galaxy moves 
toward Earth at a speed close to that of light in an Earth observer’s reference frame, 
the light it emits travels at the speed of light in the Earth frame. In the calculation of 
the speed of the jet outlined in Section 26.2, it is correct to use c for the speed of 
light emitted by the jet.

Problem-Solving Strategy: Relative Velocity

∙ Sketch the situation as seen in two different reference frames. Label the 
velocities with subscripts to help keep them straight. The subscripts in vBA 
mean the velocity of B as measured in A’s reference frame.

∙ The velocity transformation formula [Eq. (26-12)] is written in terms of the 
components of the three velocities along a straight line. The components 
are positive for one direction (your choice) and negative for the other.

∙ If A moves to the right in B’s frame, then B moves to the left in A’s frame:
 vBA = −vAB (26-14)

∙ To get Eq. (26-12) right, make sure that the inner subscripts on the right 
side are the same and “cancel” to leave the left-side subscripts in order:

 vLA =
vLB + vBA

1 + vLBvBA/c2  (26-12)

vPA
vBABea’s ship

A

B

Abe’s ship

Probe
y

x

Figure 26.13 As viewed in 
Abe’s reference frame, Bea’s 
ship has velocity v→BA and the 
space probe has velocity v→PA. 
How can we find v→PA given 
v→BA and v→PB, the velocity of 
the probe with respect to Bea?
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the velocities of the ships are v1P = +0.90c and v2P = +0.70c. 
We want to find the velocity of ship 2 as seen by observers 
on ship 1 (v21), so we draw Fig. 26.14b in the reference 
frame of ship 1. Since ship 1 moves to the right in the 
planet frame, the planet moves to the left in ship 1’s frame: 
vP1 = −v1P = −0.90c.

Now we apply Eq. (26-12). Since we want to calculate 
v21, it goes on the left side of the equation. The two velocities 
on the right side are v2P and vP1 so that the P’s “cancel” to 
leave v21.

v21 =
v2P + vP1

1 + v2PvP1/c2

Substituting v2P = +0.70c and vP1 = −0.90c yields

v21 =
0.70c + (−0.90c)

1 + [0.70c × (−0.90c) ]/c2 =
−0.20c

1 − 0.63
= −0.54c

So according to observers on spaceship 1, spaceship 2 is 
moving to the left at speed 0.54c.

Discussion Note how important it is to get the signs cor-
rect. For instance, if we had made an error by writing 
vP1 = +0.90c, then we would have calculated v21 = +0.98c. 
This answer has spaceship 2 moving to the right relative to 
spaceship 1, which doesn’t make sense. In the planet frame, 
ship 1 is catching up to ship 2, so in ship 1’s frame, ship 2 
must move toward ship 1. In one dimension, the velocity is 
always in the same direction that you would expect in 
Galilean velocity addition; only the speed is different.

Practice Problem 26.3 Relative Velocity of 
Approaching Rocket

According to an observer on a space station, two rocket ships 
are moving toward each other in opposite directions along 
the x-axis, ship A with velocity 0.40c to the right and ship B 
with velocity 0.80c to the left. With what speed does an ob-
server on ship B observe ship A to be moving?

Figure 26.14
(a) An observer on the planet measures the velocities of 
the two spaceships. (b) The same events seen by an 
observer on spaceship 1.

(a)

Ship 1

Planet +0.90c +0.70c

Ship 2

v1P v2P

(b)

vP1

v21 = ?

–0.90c
Ship 2

Ship 1

Planet

Example 26.3

Observation in Space

Two spaceships travel at high speed in the same direction 
along the same straight line. As measured by an observer 
on a nearby planet, ship 1 is behind ship 2 and moves at 
speed 0.90c; ship 2 moves at speed 0.70c. According to an 
observer aboard ship 1, how fast and in what direction is 
ship 2 moving?

Strategy The two reference frames of interest are that of 
the planet and that of ship 1. Then a sketch of the planet and 
the two ships as seen in each of the reference frames helps 
us assign subscripts to the velocities. After choosing a posi-
tive direction, we carefully assign the correct algebraic 
signs to each velocity. Then we are ready to apply the veloc-
ity transformation formula.

Solution First we draw Fig. 26.14a showing the two 
ships moving to the right in the reference frame of the 
planet. Let the right be the positive direction. In this frame, 

26.6 RELATIVISTIC MOMENTUM

When a particle’s speed is not small relative to the speed of light, the nonrelativistic 
expressions for momentum and kinetic energy are not valid. If we try to use them for 
particles moving at high speeds, it appears that the momentum and energy conserva-
tion laws are violated. We must redefine momentum and kinetic energy so that the 
conservation laws hold for any speed. The nonrelativistic expressions p→ = mv→ and 
K = 1

2mv2 are good approximations as long as v ≪ c. The relativistic expressions are 
more general; they give the correct momentum and kinetic energy for any speed. Thus, 
the relativistic expressions must give the same momentum and kinetic energy as the 
nonrelativistic expressions when v ≪ c.

CONNECTION:

Relativity maintains 
conservation of momentum 
and energy as fundamental 
principles of physics, but 
requires modified definitions 
of momentum and kinetic 
energy. The classical definitions 
p→ = mv→ and K = 1

2mv2 are 
excellent approximations 
when v ≪ c.
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The relativistically correct expression for the momentum of a particle with mass 
m and speed v is

Momentum

 p→ = γ mv→ (26-15)

where γ is calculated using the particle’s speed v.
For speeds small relative to c, γ ≈ 1 and p→ ≈ mv→. For example, consider an 

airplane traveling at 300 m/s (670 mi/h), which is just under the speed of sound in 
air. Compared with the speed of light, 300 m/s is quite slow; it’s just one one-millionth 
of the speed of light. When v = 300 m/s, the Lorentz factor is γ = 1.000 000 000 000 5. 
In this case, using the nonrelativistic expression p→ = mv→ to find the momentum of 
the plane is a very good approximation! But for a proton ejected from the Sun at 
nine-tenths the speed of light, γ = 2.3. The proton’s momentum is more than twice 
as large as we would expect from the nonrelativistic expression p→ = mv→. Therefore, 
p→ = mv→ should not be used for a proton traveling at 0.9c.

What is the cutoff speed below which the nonrelativistic formula can be used? 
There’s no clear boundary. As a rule of thumb, the nonrelativistic formula is less than 
1% off as long as γ < 1.01. Setting γ = 1.01 and solving for v, we get 
v = 0.14c ≈ 4 × 107 m/s. As long as the speed of the particle is less than about 1

7 the 
speed of light, the nonrelativistic momentum expression is correct to within 1%.

The relativistic expression for momentum has some dramatic consequences. Consider 
the momentum of a particle as v gets close to the speed of light (Fig. 26.15). As 
v approaches the speed of light, the momentum increases without bound. The momentum 
can get as large as you want without the speed ever reaching the speed of light. Or, in 
other words, it is impossible to accelerate something to the speed of light. You can give 
something as much momentum as you like, but you can never get the speed up to c.

With relativistic momentum, it is still true that the impulse delivered equals the 
change in momentum (ΣF

→ 
Δt = Δp→), but ΣF

→
= ma→ is not true: the acceleration due 

to a constant net force gets smaller and smaller as the particle’s speed approaches c. 
The longer the force is applied, the larger the momentum, but the speed never reaches 
the speed of light. This fact is verified in the daily operation of particle accelerators, 
which are used in high-energy physics research. Particles such as electrons and protons 
are “accelerated” to larger and larger momenta (and kinetic energies) as their speeds 
get closer and closer to—but never equal or exceed—the speed of light.

Figure 26.15 A graph of 
momentum versus v showing 
the nonrelativistic and relativis-
tic expressions. At low speeds 
the two expressions are in 
agreement.
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Figure 26.16
A proton moving with speed vi collides head-on with a nitrogen 
atom at rest in the upper atmosphere. The nitrogen atom moves with 
speed vN after the collision, while the proton rebounds with speed vf.

N
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N

p

After

p
vi vf vN

Example 26.4

Collision in the Upper Atmosphere

Cosmic rays collide with atoms or molecules in the upper 
atmosphere (Fig. 26.16). If a proton moving at 0.70c makes 
a head-on collision with a nitrogen atom, initially at rest, and 

the proton recoils at 0.63c, what is the speed of the nitrogen 
atom after the collision? (The mass of a nitrogen atom is 
about 14 times the mass of a proton.)

Strategy We apply the principle of momentum conserva-
tion to solve this collision problem. The only change from 
the way we have analyzed collisions previously is that we 
must use the relativistic momentum expression for the pro-
ton. It remains to be seen whether the nitrogen atom is mov-
ing at relativistic speed after the collision. If it is not, we can 
simplify the calculations by using the nonrelativistic 
momentum expression. It is perfectly fine to “mix” the two; 
they aren’t different kinds of momentum. The nonrelativistic 

continued on next page



 26.7 MASS	AND	ENERGY 1007

expression is just an approximation—when it is a good 
approximation, we use it.

Solution Choose the direction of the proton’s initial 
velocity as the +x-direction. The initial momentum of the 
proton is

pix = γ mpvix

where vix = +0.70c and

γ = (1 − 0.702)−1/2 = 1.4003

Therefore, the x-component of the initial momentum is

pix = 1.4003mp × 0.70c = +0.9802mpc

After the collision, the proton’s momentum is

pfx = γ mpvfx

where vf = −0.63c since it moves in the −x-direction and

γ = (1 − 0.632) −1/2 = 1.288

The final momentum of the proton is

pfx = −0.8114mpc

The change in the proton’s x-component of momentum is

Δpx = −0.8114mpc − 0.9802mpc = −1.7916mpc

To conserve momentum, the nitrogen atom’s final momen-
tum is Px = +1.7916mpc. To find the velocity of the atom, we 
set Px = γ MvNx.

Since the mass of a nitrogen atom is about 14 times that 
of a proton,

1.7916mpc = γ × 14mp × vNx

Canceling mp from both sides and simplifying, we have

0.1280c = γ vNx = [1 − (vNx/c)2]−1/2 × vNx

This equation can be solved for vNx with some messy algebra, 
but it’s better to realize that an approximation is appropriate. 
Since γ is never less than 1, vNx cannot be greater than 0.1280c. 
Therefore, vNx is small enough to use the nonrelativistic 
 momentum expression Px = MvNx—or, in other words, to set 
γ  = 1. Then vNx = 0.1280c. Rounding to two significant 
 figures, the speed of the nitrogen atom is 0.13c.

Discussion Using the nonrelativistic momentum through-
out, for the proton as well as the atom, would have given:

0.70mpc = −0.63mpc + 14mpvNx

vNx =
1.33c

14
= 0.095c

which is 26% smaller than the correct value. On the other 
hand, you can verify (by doing a lot of algebraic manipula-
tion) that using the relativistic expression for the nitrogen 
without approximating would have given 0.1270c, rounding 
to 0.13c—the same answer (to within two significant fig-
ures). That extra algebra would have given a check on the 
approximation, but the same answer. It pays to decide 
whether it is necessary to use relativistic expressions or 
whether the nonrelativistic ones are perfectly adequate.

Practice Problem 26.4 A Change in Momentum

A chunk of space debris with mass 1.0 kg is moving with a 
speed of 0.707c. A constant force of magnitude 1.0 × 108 N, 
in the direction opposite to the chunk’s motion, acts on it. How 
long must this force act to bring the space debris to rest? [Hint: 
The impulse delivered is equal to the change in momentum.]

Example 26.4 continued

26.7 MASS AND ENERGY

A particle at rest has no kinetic energy, but that doesn’t mean it has no energy. Rela-
tivity tells us that mass* is a measure of rest energy. The rest energy E0 of a particle 
is its energy as measured in its rest frame. Thus, rest energy does not include kinetic 
energy. The relationship between rest energy and mass is

Rest energy

 E0 = mc2 (26-16)

The interpretation of mass as a measure of rest energy is confirmed by observations of 
radioactive decay, in which particles at rest decay into products of smaller total mass; 
the products carry off kinetic energy equal to the decrease in total mass times c2.

A kilogram of coal has a rest energy of (1 kg) × (3 × 108 m/s)2 = 9 × 1016 J. If 
the entire rest energy of the coal were converted into electric energy, it would be 
enough to supply the electricity needs of a typical American household for millions 

*In this book, mass is used exclusively to mean invariant mass or rest mass.
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of years. When coal is burned, only a tiny fraction (about one part in a billion) of the 
coal’s rest energy is released. The change in mass—the difference between the mass 
of the coal and the total mass of all the products—is immeasurably small. In chemi-
cal reactions it seems as if mass is conserved.

On the other hand, in nuclear reactions and radioactive decays, a much larger 
fraction of the mass of a nucleus is transformed into the kinetic energy of the reaction 
products. The total mass of the daughter particles (particles present after the reaction) 
is not the same as the total mass of the parent particles (particles present before the 
reaction). Mass is not conserved, but total energy (the sum of rest energy and kinetic 
energy) is conserved. If there is a decrease in mass, then energy is released by the 
reaction. Total energy is still conserved; it has just been changed from one form to 
another—from rest energy to kinetic energy or radiation (or both). If there is an increase 
in rest energy (i.e., if the daughter particles have more total mass than the parent 
particles), the reaction does not occur spontaneously. The reaction can occur only if 
the energy deficit is supplied by the initial kinetic energies of the parent particles.

The Electron-Volt

A unit of energy commonly used in atomic and nuclear physics is the electron-volt 
(symbol eV). One electron-volt is equal to the kinetic energy that a particle with 
charge ±e (e.g., an electron or a proton) gains when it is accelerated through a poten-
tial difference of magnitude 1 V. Since 1 V = 1 J/C and e = 1.60 × 10−19 C, the 
conversion between electron-volts and joules is:

 1 eV = e × 1 V = 1.60 × 10−19 C × 1 J/C = 1.60 × 10−19 J (26-17)

For larger amounts of energy, SI prefixes are used: keV, MeV, and GeV are pronounced 
kay-ee-vee, em-ee-vee, and ge-ee-vee, respectively. 1 keV = 103 eV, 1 MeV = 106 eV, 
and 1 GeV = 109 eV.

To facilitate calculations in electron-volts, momentum can be expressed in units 
of eV/c and mass can be expressed in eV/c2. Instead of multiplying or dividing by 
the numerical value of c, factors of c get carried in the units. For example, an electron’s 
rest energy is 511 keV. Using E0 = mc2, the electron’s mass is

m = E0/c2 = 511 keV/c2

The momentum of an electron moving at speed 0.80c (γ = 1.667) is

p = γmv = 1.667 × 511 keV/c2 × 0.80c = 680 keV/c

Example 26.5

Energy Released in Radioactive Decay

Carbon dating is based on the radioactive decay of a 
carbon-14 nucleus (a nucleus with 6 protons and 8 neutrons) 
into a nitrogen-14 nucleus (with 7 protons and 7 neutrons). 
In the process, an electron (e−) and a particle called an anti-
neutrino (ν) are created. The reaction is written as

14C → 14N + e− + ν
Find the energy released by this reaction. The masses of the 
nuclei are 13.999 950 u for 14C and 13.999 234 u for 14N. 
[The atomic mass unit (u) is commonly used in atomic and 
nuclear physics; 1 u = 931.494 MeV/c2 = 1.66 × 10–27 kg.] 
The antineutrino’s mass is negligibly small.

Strategy We compare the total masses of the particles 
before and after the decay. A decrease in total mass means that 
rest energy has been transformed into other forms: the kinetic 
energies of the nitrogen atom and electron and the energy of 
the antineutrino. The energy released by the reaction is equal 
to the change in the amount of rest energy.

Solution Before decay, the total mass is mi = 13.999 950 u. 
After decay, the total mass is the sum of the masses of the 
14N nucleus and the electron (511 keV/c2):

mf = 13.999 234 u + 511 keV/c2

continued on next page



 26.8 RELATIVISTIC	KINETIC	ENERGY 1009

The change in mass is

Δm = mf − mi = 13.999 234 u + 511 keV/c2 − 13.999 950 u

= −(0.000 72 u)(
931.494 MeV/c2

1 u ) + 0.511 MeV/c2

= –0.156 MeV/c2

Let Q be the quantity of energy released. Since total energy 
is conserved, the rest energy before decay is equal to the rest 
energy after decay plus the energy released:

mic
2 = mfc

2 + Q

Q = (mi − mf)c2 = −(Δm)c2

= (0.156 MeV/c2)c2 = 0.156 MeV

Discussion The rest energy of the 14C nucleus before 
decay was

(13.999 234 u)c2 × 931.494 
MeV/c2

u ≈ 13 GeV

The fraction of this rest energy that was released is 
(0.156 MeV)/(13 GeV) ≈ 10−5. This may seem like a tiny 
fraction, but it is about 104 times larger than the fractional 
decrease in mass that occurs when carbon is burned. In nuclear 
fusion, the fractional mass change approaches 10−2 or 1%.

Practice Problem 26.5 How Fast Is the Sun Losing 
Mass?

The Sun radiates energy at a rate of 4 × 1026 W. At what rate 
is the mass of the Sun decreasing?

Invariance

So far we have seen two quantities that are invariant—that have the same value as mea-
sured in all inertial frames. One is the speed of light; the other is mass. Distances and 
time intervals are not the same in different frames of reference, so they are not invariant.

Let us emphasize the difference between a conserved quantity and an invariant 
quantity. A conserved quantity maintains the same value in a given reference frame; 
the value may differ from one frame to another, but in any given frame its value is 
constant. An invariant is a quantity that has the same value in all inertial frames. 
Thus, momentum is conserved but is not invariant. Mass is invariant but is not con-
served; as in Example 26.5, the total mass can change in a radioactive decay or other 
nuclear reaction. The total energy is conserved in such a reaction; but total energy is 
not invariant, since particles have different kinetic energies in different frames.

CHECKPOINT 26.7

An	invariant	is	a	quantity	that	has	the	same	value	in	all	inertial	reference	frames.	
(a)	According	to	Galilean	relativity,	which	of	these	quantities	are	 invariant:	posi-
tion,	displacement,	length,	time	interval,	velocity,	acceleration,	force,	momentum,	
mass,	 kinetic	 energy,	 the	 speed	 of	 light	 in	 vacuum?	 (b)	 Which	 of	 them	 are	
invariant	according	 to	Einstein’s	special	 relativity?

26.8 RELATIVISTIC KINETIC ENERGY

A more general, relativistic expression for momentum is required in order to preserve 
the principle of momentum conservation for particles moving at relativistic speeds. 
We need to do the same for kinetic energy.

With the relation between force and momentum (ΣF
→

= Δp→/Δt)  and the concept 
of work as the product of force and distance, we can deduce a formula for the kinetic 
energy of a particle. As in the nonrelativistic case, the kinetic energy of an object is 
equal to the work done to accelerate it from rest to its present velocity. The result is

Kinetic energy
 K = (γ − 1)mc2 (26-18)

where γ is calculated using the particle’s speed v.

Example 26.5 continued
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Kinetic energy is energy of motion—the additional energy that a moving object 
has, compared with the energy of the same object when at rest. Einstein proposed 
identifying the kinetic energy expression above as the difference of two terms. The 
first term in Eq. (26-18), γmc2, is the total energy E of the particle, which includes 
both kinetic energy and rest energy. The second term, mc2, is the rest energy E0—the 
energy of the particle when at rest. Therefore, we can rearrange Eq. (26-18) as

 E = K + mc2 = K + E0 = γmc2 (26-19)

With total energy and kinetic energy defined in this way, we find that if any 
reaction conserves total energy in one inertial reference frame, the total energy is 
automatically conserved in all other inertial frames. In other words, energy conserva-
tion is restored to the status of a universal law of physics.

Recall that as v approaches c, γ increases without bound. Then from Eq. (26-19), 
we can conclude that no object with mass can travel at the speed of light since it 
would need to have an infinite total energy to do so.

At first it may look as if kinetic energy, K = (γ − 1)  mc2, doesn’t depend on speed, 
but remember that γ is a function of speed. As the speed of a particle increases, γ 
increases, and therefore so does the kinetic energy. There is no limit to the kinetic 
energy of a particle. As is true with momentum, the kinetic energy gets large without 
bound as the speed gets closer to c.

It’s not at all obvious that the relativistic expression for K approaches the non-
relativistic expression 1

2 mv2 for objects moving much slower than the speed of light, 
but it does. To show that, we make use of the binomial approximation (1 − x)n ≈ 1 − nx 
for x ≪ 1 (see Appendix A.9). If we let x = v2/c2 and n = −1

2 in the binomial 
approximation, γ becomes

 γ = (1 −
v2

c2)
−1/2

≈ 1 +
1
2(

v2

c2) (26-20)

The kinetic energy is then

 K = (γ − 1)mc2 ≈ [1 +
1
2(

v2

c2) − 1]mc2 =
1
2(

v2

c2)mc2 =
1
2

 mv2    (26-21)

The relativistic expression for K is valid for both relativistic and nonrelativistic motion. 
The nonrelativistic expression 1

2mv2 is an approximation that is only valid for 
speeds  much less than c. If K ≪ mc2, then γ is very close to 1; the particle is not 
moving at a relativistic speed, so nonrelativistic approximations can be used.

Example 26.6

An Energetic Electron

As shown in Example 25.5, the radioactive decay of carbon-14 
into nitrogen-14 (14C → 

14N + e− + v) releases 156 keV of 
energy (Fig. 26.17). If all of the energy released appears as the 
kinetic energy of the electron, how fast is the electron moving?

Strategy We are given the kinetic energy of the electron 
and need to find its speed. The electron-volt (eV) and its 
multiples, keV or MeV, are commonly used energy units for 
atomic, nuclear, and high-energy particle physics. How do 
we know whether it is appropriate to use the nonrelativistic 
expression for kinetic energy? We compare the kinetic 
energy of the electron (156 keV) to its rest energy (mc2).

Solution The rest energy of the electron is

E0 = mc2 = 9.109 × 10−31 kg × (2.998 × 108 m/s)2

= 8.187 × 10−14 J

Figure 26.17
Radioactive decay of 
carbon-14.

e–

14C

Before

v

After

14N

continued on next page
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Since we know K in keV, let us convert E0 to keV.

E0 = 8.187 × 10−14 J ×
1 eV

1.602 × 10−19 J
×

1 keV
1000 eV

= 511 keV

Thus, K is of the same order of magnitude as E0. Since the 
electron is moving at a relativistic speed, the relativistic 
equations must be used.

The Lorentz factor is

γ = 1 +
K

mc2 = 1 +
156 keV
511 keV

= 1.3053

From γ, we determine the speed. First we square γ:

γ2 =
1

1 − v2/c2

Now we solve for v/c to find the speed of the electron as a 
fraction of c.

1 −
v2

c2 =
1
γ2

v/c = √1 − 1/γ2 = 0.6427
v = 0.6427c

Example 26.6 continued

Discussion The Lorentz factor is not very close to 1, 
which is another indication that we cannot use K = 1

2mv2 for 
this electron. Doing so would give

v = (2K/m)1/2 = 2.342 × 108 m/s = 0.781c

A result this close to c should cause concern about using a 
nonrelativistic approximation.

The speed 0.6427c is an upper limit on the kinetic en-
ergy of the electron. The electron cannot carry off all of the 
energy released in the reaction; the kinetic energy must be 
divided among the three particles in such a way as to con-
serve momentum.

Practice Problem 26.6 Accelerating a Proton

How much work must be done to accelerate a proton from 
rest to 0.75c? Express the answer in MeV.

Momentum-Energy Relationships

In Newtonian physics, the relation between kinetic energy and momentum is 
K  =  p2/(2m) (Problem 56), but that relation no longer holds for particles moving at 
relativistic speeds. From the relativistic definitions of p→, E, and K, you can derive 
these useful relations (try it—see Problems 60 and 61):

 E2 = E2
0 + (pc)2 (26-22)

 (pc)2 = K2 + 2KE0 (26-23)

Equations (26-22) and (26-23) are valuable for calculating total energy or kinetic 
energy from momentum or vice versa without going through the intermediate step of 
calculating the speed of the particle. Since E = γmc2 and p→ = γmv→, another useful 
relationship is

 
v→

c
=

p→c

E
 (26-24)

Equation (26-24) makes it easier to calculate the velocity or momentum or total energy 
when any two of these three quantities are known. It also shows that pc can never 
exceed the total energy, but approaches E as v → c.

Momentum and Energy Units In particle physics, momentum is usually written 
in units of eV/c (or multiples such as MeV/c) to avoid repeated unit conversions. To 
convert into SI units, convert electron-volts to joules and replace c by the speed of 
light in meters per second. For example, if p = 1.00 MeV/c,

p = 1.00  

eV
c

×
1.602 × 10−19 J

eV
×

c

2.998 × 108 m/s
= 5.34 × 10−28 

kg·m
s

Masses are commonly written in units of eV/c2 (or multiples such as MeV/c2 or 
GeV/c2).



1012 CHAPTER	26 Relativity

Deciding When to Use Relativistic Equations

There are several ways of deciding when relativistic calculations are called for, 
depending on the information given in a particular problem. Section 26.6 suggested 
that for v = 0.14c, the nonrelativistic expression for momentum differs from the rela-
tivistic by about 1%. We may not need that degree of accuracy. Even for v = 0.2c, 
the differences between the nonrelativistic and relativistic expressions for momentum 
and kinetic energy are only about 2% and 3%, respectively. For speeds higher than 
about 0.3c, γ rises rapidly and the differences between nonrelativistic and relativistic 
physics become appreciable.

Comparing a particle’s kinetic energy with its rest energy is another way to decide 
whether to use relativistic or nonrelativistic expressions. If K ≪ mc2, then γ is very 
close to 1 and the particle’s speed is nonrelativistic.

A particle is nonrelativistic if any of the following equivalent conditions are true:
 v ≪ c (26-25)
 γ − 1 ≪ 1 (26-26)
 K ≪ mc2 (26-27)
 p ≪ mc (26-28)

Extremely Relativistic Particles

A particle is extremely relativistic when K ≫ E0 (or, equivalently, γ ≫ 1). The follow-
ing approximations are useful when dealing with extremely relativistic particles.

 K ≈ E (26-29)
 E ≈ pc (26-30)

 
v

c
≈ 1 −

1
2γ2  (26-31)

Equation (26-31) comes from applying the binomial approximation (Appendix A.9) to 
the definition of the Lorentz factor [Eq. (26-5)].

Example 26.7

Speed and Momentum of an Electron

An electron has a kinetic energy of 1.0 MeV. Find the elec-
tron’s speed and its momentum.

Strategy Use energy-momentum relations and momen-
tum units of MeV/c to simplify the calculation.

Solution In Example 26.6, we found that the rest energy 
of an electron is E0 = 0.511 MeV. Since the kinetic energy 
is almost twice the rest energy, we definitely must do 
relativistic calculations. The total energy of the electron is 
E = K + E0 = 1.511 MeV. We can immediately find the 
momentum:

 E2 = E2
0 + (pc)2

 (pc)2 = E2 − E2
0

pc = √(1.511 MeV)2 − (0.511 MeV)2 = 1.422 MeV

Dividing both sides of this equation by c gives the momen-
tum in units of MeV/c:

p = 1.4 MeV/c

Now that we know the momentum, we can find the speed:
v

c
=

pc

E
=

1.422
1.511

= 0.9411

v = 0.94c

Discussion A good check is to use the speed to calculate 
the kinetic energy. First we find the Lorentz factor:

γ = √
1

1 − 0.94112 = 2.957

Then the kinetic energy is

K = (γ − 1)mc2 = 1.957 × 0.511 MeV = 1.0 MeV
continued on next page
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The momentum in SI units can be obtained as

p = 1.422 
MeV

c
×

106 eV
MeV

×
1.60 × 10−19 J

eV
×

c

3.00 × 108 m/s
= 7.6 × 10−22 kg·m/s

Practice Problem 26.7 Protons and Antiprotons  
at Fermilab

The Tevatron at the Fermi National Accelerator Laboratory 
accelerates protons and antiprotons to kinetic energies of 

Example 26.7 continued

0.980 TeV (tera-electron-volts). Antiprotons have the same 
mass as protons (938.3 MeV/c2) but charge −e instead of +e. 
(a) What is the magnitude of the momentum of the protons 
and antiprotons in units of TeV/c? (b) At what speed are the 
protons and antiprotons moving relative to the lab? [Hint: 
Note that K ≫ E0.]

question. The “clock” is whatever measures this time 
interval. Identify the reference frame in which the clock 
is at rest. In that frame, the clock measures the proper 
time interval Δt0. In any other reference frame, the time 
interval is longer:
 Δt = γ Δt0 (26-6)

 ∙ In length contraction problems, identify the object 
whose length is to be measured in two different frames. 
The length is contracted only in the direction of the 
object’s motion. If the length in question is a distance 
rather than the length of an actual object, it often helps 
to imagine the presence of a long measuring stick. Iden-
tify the reference frame in which the object is at rest. 
The length in that frame is the proper length L0. In any 
other reference frame, the length L is contracted:

 L =
L0

γ
 (26-11)

10
Metric
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Stationary meterstick

Moving meterstick

10
Metric

20 30 40 50 60 70 80 90 100
B

A

v

 ∙ Velocities in different reference frames are related by

 vPA =
vPB + vBA

1 + vPBvBA/c2  (26-12)

  The subscripts in vBA mean the velocity of B as mea-
sured in A’s reference frame. Equation (26-12) is written 
in terms of the components of the three velocities along 
a straight line. The components are positive for one 
direction (your choice) and negative for the other. If A 
moves to the right in B’s frame, then B moves to the left 
in A’s frame: vBA = −vAB.

 ∙ The relativistic expression for momentum is
 p→ = γ mv→ (26-15)

Master the Concepts

 ∙ The two postulates of relativity are
   (I)  The laws of physics are the same in all inertial 

frames.
  (II)  The speed of light in vacuum is the same in all 

inertial frames.
 ∙ The speed of light in vacuum in any inertial reference 

frame is

 c = 3.00 × 108 m/s
 ∙ Observers in different reference frames disagree about 

the time order of two events (including whether the 
events are simultaneous) if there is not enough time for a 
signal at light speed to travel from one event to the other.

 ∙ The Lorentz factor occurs in many relativity equations.

 γ =
1

√1 − v2/c2
 (22-5)

  When γ is used in expressions for time dilation or length 
contraction, v in Eq. (26-5) stands for the relative speed of 
the two reference frames. When γ is used in expressions 
for the momentum, kinetic energy, or total energy of a 
particle, v in Eq. (26-5) stands for the particle’s speed.

v/c0.20 0.4 0.6 0.8 1

1
0

2
3
4
5
6
7
8
9

10

γ

 ∙ In time dilation problems, identify the two events that 
mark the beginning and end of the time interval in 

continued on next page
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With relativistic momentum, it is still true that the impulse 
delivered equals the change in momentum (ΣF

→
 Δt = Δp→), 

but ΣF
→

= ma→ is not true: the acceleration due to a constant 
net force gets smaller and smaller as the particle’s speed 
approaches c. Thus, it is impossible to accelerate something 
to the speed of light.
 ∙ The rest energy E0 of a particle is its energy as measured 

in its rest frame. The relationship between rest energy 
and mass is:

 E0 = mc2 (26-16)

Master the Concepts continued
  Kinetic energy is

 K = (γ − 1)mc2 (26-18)

  Total energy is rest energy plus kinetic energy:
 E = γmc2 = K + E0 (26-19)

 ∙ Useful relations between momentum and energy:

 E2 = E2
0 + (pc)2 (26-22)

 (pc)2 = K2 + 2KE0 (26-23)

 
v→

c
=

p→c

E
 (26-24)

Conceptual Questions

 1. A friend argues with you that relativity is absurd: “It’s 
obvious that moving clocks don’t run slow and that 
moving objects aren’t shorter than when they’re at rest.” 
How would you reply?

 2. An electron is moving at nearly light speed. A constant 
force of magnitude F is acting on the electron in the 
direction of its motion. Is the acceleration of the electron 
less than, equal to, or greater in magnitude than F/m? 
Explain.

 3. As you talk on a cell phone, does the mass of the phone’s 
battery change at all? If so, does it increase or decrease?

 4. A particle with nonzero mass m can never move faster 
than the speed of light. Is there also a maximum 
momentum that the particle can have? A maximum 
kinetic energy? Explain.

 5. An astronaut in top physical condition has an average 
resting pulse on Earth of about 52 beats per minute. 
Suppose the astronaut is in a spaceship traveling at 
0.87c (γ = 2) with respect to Earth when he takes his 
own resting pulse. Does he measure about 52 beats per 
minute, about 26 beats per minute, or about 104 beats 
per minute? Explain.

 6. A constant force is applied to a particle initially at rest. 
Sketch qualitative graphs of the particle’s speed, 
momentum, and acceleration as functions of time. 
Assume that the force acts long enough so the particle 
achieves relativistic speeds.

 7. Harry and Sally are on opposite sides of the room at a 
wedding reception. They simultaneously (in the frame 
of the room) take flash pictures of the bride and groom 
cutting the cake in the center of the room. What would 
an observer moving at constant velocity from Harry to 
Sally say about the time order of the two flashes?

 8. In an Earth laboratory, an astronaut measures the length 
of a rod to be 1.00 m. The astronaut takes the rod aboard 
a spaceship and flies away from Earth at speed 0.5c. Is 
the length of the rod measured by an observer on Earth 

greater than, less than, or equal to 1.00 m as measured 
by the astronaut in the spaceship? Explain. Does the 
answer depend on the orientation of the rod?

 9. In Section 26.2, suppose that another astronaut, Celia, 
moves in a spaceship to the left with respect to Abe (see 
Fig. 26.4). What would Celia conclude about the time 
order of the two flashes?

 10. Explain why it is impossible for a particle with mass to 
move faster than the speed of light.

 11. Does a stretched spring have the same mass as when it 
is relaxed? Explain.

 12. A quasar is a bright center in a far distant galaxy where 
some energetic action is taking place (probably due to 
energy being released as matter falls into a black hole at 
the center of the galaxy). Through her telescope Mavis 
observes a quasar 12 × 109 ly (light-years) away. She 
wishes she could travel to the quasar to observe it more 
closely. If she were able to travel that far in her lifetime, 
would she be able to observe the activity she sees 
through her telescope?

Multiple-Choice Questions

 1. Which of these statements are postulates of 
Einstein’s special relativity?

  (1)  The speed of light is the same in all inertial 
reference frames.

  (2) Moving clocks run slow.
  (3)  Moving objects are contracted along the direction 

of motion.
  (4)  The laws of nature are the same in all inertial 

reference frames.
  (5) E0 = mc2

  (a) 1 only (b) 2 and 3 only (c) all 5
  (d) 4 only (e) 1 and 4 only (f) 4 and 5 only
 2. An astronaut in a rocket moving with a speed v = 0.6c 

relative to Earth performs a collision experiment with 
two small steel balls and concludes that both momentum 
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and energy are conserved in his reference frame. 
What would an Earth observer conclude?

 (a) Momentum and energy are conserved.
 (b) Momentum is conserved, but energy is not.
 (c) Energy is conserved, but momentum is not.
 (d) The collision never takes place because the two balls 

are never at the same place at the same time.
 (e) Neither energy nor momentum is conserved.
 3. Which of these statements correctly defines an inertial 

frame?
 (a) An inertial frame is a frame in which there are no 

forces.
 (b) An inertial frame is one in which Newton’s second 

and third laws hold, but not his first.
 (c) An inertial frame is a frame of reference in which 

Newtonian mechanics holds true, but relativistic 
mechanics does not.

 (d) An inertial frame is a frame where there are no 
accelerations without applied forces.

 (e) An inertial frame is a frame of reference in which 
relativistic mechanics holds true, but Newtonian 
mechanics does not.

 4. A spaceship moves away from Earth at constant velocity 
0.60c, according to Earth observers. In the reference 
frame of the spaceship,

 (a) Earth moves away from the spaceship at 0.60c.
 (b) Earth moves away from the spaceship at a speed less 

than 0.60c.
 (c) Earth moves away from the spaceship at a speed 

greater than 0.60c.
 (d) The speed of Earth cannot be accurately measured 

because the reference frame is moving.
 (e) The speed of Earth is not constant.
 5. Which best describes the proper time interval between 

two events?
 (a) the time interval measured in a reference frame in 

which the two events occur at the same place
 (b) the time interval measured in a reference frame 

in which the two events are simultaneous
 (c) the time interval measured in a reference frame in 

which the two events occur a maximum distance 
away from each other

 (d) the longest time interval measured by any inertial 
observer

 6. A clock ticks once each second and is 10 cm long when 
at rest. If the clock is moving at 0.80c parallel to its 
length with respect to an observer, the observer mea-
sures the time between ticks to be _____ and the length 
of the clock to be _____.

 (a) more than 1 s; more than 10 cm
 (b) less than 1 s; more than 10 cm
 (c) more than 1 s; less than 10 cm
 (d) less than 1 s; less than 10 cm
 (e) equal to 1 s; equal to 10 cm

 7. Before takeoff, an astronaut measures the length of the 
spacecraft to be 37.24 m long using a steel rule. Once 
aboard the spacecraft with it traveling at 0.10c, he mea-
sures the length again using the same steel rule and 
finds a value of

 (a) 37.05 m.
 (b) 37.24 m.
 (c) 37.43 m.
 (d) Either 37.05 m or 37.24 m, depending on whether 

the ship’s length is parallel or perpendicular to the 
direction of motion.

 8. An observer sees an asteroid with a radioactive element 
moving by at a speed of 0.20c and notes that the half-life 
of the radioactivity is T. Another observer is moving 
with the asteroid and measures the half-life to be

 (a) less than T.
 (b) equal to T.
 (c) greater than T.
 (d) either (a) or (c) depending on whether the asteroid is 

approaching or receding from the first observer.
 9. Twin sisters become astronauts. One sister goes on a 

space mission lasting several decades while the other 
remains behind on Earth. Which of the following state-
ments concerning their relative ages is true?

 (a) The sister who was on the mission in space is older 
than her twin once they reunite on Earth.

 (b) The sister who remained on Earth is older than her 
traveling twin once they are reunited on Earth.

 (c) The sisters are the same age when the traveling twin 
returns to Earth because each sister was traveling at 
the same speed relative to the other as measured in 
each other’s reference frames.

 (d) This is a paradox so there is no possibility of com-
paring their ages.

Problems

  Combination conceptual/quantitative problem
  Biomedical application 
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

26.1 Postulates of Relativity
 1. An engineer in a train moving toward the station with a 

velocity v = 0.60c lights a signal flare as he reaches a 
marker 1.0 km from the station (according to a scale laid 
out on the ground). By how much time, on the station-
master’s clock, does the arrival of the optical signal 
precede the arrival of the train?

 2. The light-second is a unit of distance; 1 light-second is 
the distance that light travels in 1 second. (a) Find the 
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conversion between light-seconds and meters: 1 light-
second = ? m. (b) What is the speed of light in units of 
light-seconds per second?

 3. A spaceship traveling at speed 0.13c away from Earth 
sends a radio transmission to Earth. (a) According to 
Galilean relativity, at what speed would the transmis-
sion travel relative to Earth? (b) Using Einstein’s postu-
lates, at what speed does the transmission travel relative 
to Earth?

 4. Event A happens at the spacetime coordinates (x, y, z, t) = 
(2 m, 3 m, 0, 0.1 s) and event B happens at the spacetime 
coordinates (x, y, z, t) = (0.4 × 108 m, 3 m, 0, 0.2 s). (a) Is 
it possible that event A caused event B? (b) If event B 
occurred at (0.2 × 108 m, 3 m, 0, 0.2 s) instead, would it 
then be possible that event A caused event B? [Hint: How 
fast would a signal need to travel to get from event A to 
the location of B before event B occurred?]

26.3 Time Dilation
 5. An astronaut wears a new Rolex watch on a journey at a 

speed of 2.0 × 108 m/s with respect to Earth. According 
to mission control in Houston, the trip lasts 12.0 h. How 
long is the trip as measured on the Rolex?

 6. An unstable particle called the pion has a mean lifetime 
of 25 ns in its own rest frame. A beam of pions travels 
through the laboratory at a speed of 0.60c. (a) What is 
the mean lifetime of the pions as measured in the labora-
tory frame? (b) How far does a pion travel (as measured 
by laboratory observers) during this time?

 7. Suppose your handheld calculator will show six places 
beyond the decimal point. At what minimum speed 
would an object have to be traveling so that gamma can 
be seen to be different from 1 on your calculator display? 
That is, how fast should an object travel so that 
γ = 1.000 001? [Hint: Use the binomial approximation.]

 8. A spaceship is traveling away from Earth at 0.87c. The 
astronauts report home by radio every 12 h (by their 
own clocks). At what interval are the reports sent to 
Earth, according to Earth clocks?

 9. A spaceship travels at constant velocity from Earth to a 
point 710 ly away as measured in Earth’s rest frame. 
The ship’s speed relative to Earth is 0.9999c. A 
passenger is 20 yr old when departing from Earth. 
(a) How old is the passenger when the ship reaches its 
destination, as measured by the ship’s clock? (b) If the 
spaceship sends a radio signal back to Earth as soon as 
it reaches its  destination, in what year, by Earth’s 
calendar, does the signal reach Earth? The spaceship 
left Earth in the year 2000.

 10.  A clock moves at a constant velocity of 8.0 km/s with 
respect to Earth. If the clock ticks at intervals of one 
second in its rest frame, how much more than a second 
elapses between ticks of the clock as measured by an 

observer at rest on Earth? [Hint: Use the binomial 
approximation.]

 11.  A plane trip lasts 8.0 h; the average speed of the 
plane during the flight relative to Earth is 220 m/s. What 
is the time difference between an atomic clock on board 
the plane and one on the ground, assuming they were 
synchronized before the flight? (Ignore general relativ-
istic complications due to gravity and the acceleration 
of the plane.)

 12. Fill in the missing algebraic steps in the derivation of 
the time dilation equation [Eq. (26-4)].

26.4 Length Contraction
 13. A spaceship travels toward Earth at a speed of 0.97c. 

The occupants of the ship are standing with their torsos 
parallel to the direction of travel. According to Earth 
observers, they are about 0.50 m tall and 0.50 m wide. 
What are the occupants’ (a) height and (b) width 
according to others on the spaceship?

 14. While the spaceship in Problem 13 continues to travel in 
the same direction, one of the occupants lies on his side, 
so that now his torso is perpendicular to the direction of 
travel and his width is parallel to the travel direction. 
What are the (a) height and (b) width of this occupant 
according to an Earth observer?

 15. A cosmic ray particle travels directly over an American 
football field, from one goal line to the other, at a speed 
of 0.50c. (a) If the length of the field between goal lines 
in the Earth frame is 91.5 m (100 yd), what length is 
measured in the rest frame of the particle? (b) How long 
does it take the particle to go from one goal line to the 
other according to Earth observers? (c) How long does 
it take in the rest frame of the particle?

 16. A laboratory measurement of the coordinates of the ends 
of a moving meterstick, taken at the same time in the 
laboratory, gives the result that one end of the stick is 
0.992 m due north of the other end. If the stick is moving 
due north, what is its speed with respect to the lab?

 17. Two spaceships are moving directly toward each other 
with a relative velocity of 0.90c. If an astronaut mea-
sures the length of his own spaceship to be 30.0 m, how 
long is the spaceship as measured by an astronaut in the 
other ship?

 18. A spaceship is moving at a constant velocity of 0.70c 
relative to an Earth observer. The Earth observer mea-
sures the length of the spaceship to be 40.0 m. How long 
is the spaceship as measured by its pilot?

 19. A spaceship moves at a constant velocity of 0.40c rela-
tive to an Earth observer. The pilot of the spaceship is 
holding a rod, which he measures to be 1.0 m long. (a) 
The rod is held perpendicular to the direction of motion 
of the spaceship. How long is the rod according to the 
Earth observer? (b) After the pilot rotates the rod and 



 PROBLEMS 1017

holds it parallel to the direction of motion of the 
spaceship, how long is it according to the Earth 
observer?

 20. A rectangular plate of glass, measured at rest, has sides 
30.0 cm and 60.0 cm. (a) As measured in a reference 
frame moving parallel to the 60.0 cm edge at speed 
0.25c with respect to the glass, what are the lengths of 
the sides? (b) How fast would a reference frame have to 
move in the same direction so that the plate of glass 
viewed in that frame is square?

 21. A futuristic train moving in a straight line with a uni-
form speed of 0.80c passes a series of communications 
towers. The spacing between the towers, according to an 
observer on the ground, is 3.0 km. A passenger on the 
train uses an accurate stopwatch to see how often a 
tower passes him. (a) What is the time interval the 
passenger measures between the passing of one tower 
and the next? (b) What is the time interval an observer 
on the ground measures for the train to pass from one 
tower to the next?

 22. An astronaut in a rocket moving at 0.50c toward the Sun 
finds himself halfway between Earth and the Sun. 
According to the astronaut, how far is he from Earth? In 
the frame of the Sun, the distance from Earth to the Sun 
is 1.50 × 1011 m.

 23. The mean (average) lifetime of a muon in its rest frame 
is 2.2 μs. A beam of muons is moving through the lab 
with speed 0.994c. How far on average does a muon 
travel through the lab before it decays?

 24. The Tevatron is a particle accelerator at Fermilab that 
accelerates protons and antiprotons to high energies in 
an underground ring. Scientists observe the results of 
collisions between the particles. The protons are 
accelerated until they have speeds only 100 m/s slower 
than the speed of light. The circumference of the ring is 
6.3 km. What is the circumference according to an 
observer moving with the protons? [Hint: Let v = c − u 
where v is the proton speed and u = 100 m/s.]

26.5 Velocities in Different Reference Frames
 25. Kurt is measuring the speed of light in an evacuated 

chamber aboard a spaceship traveling with a constant 
velocity of 0.60c with respect to Earth. The light is 
moving in the direction of motion of the spaceship. 
Siu-Ling is on Earth watching the experiment. With 
what speed does the light in the vacuum chamber travel, 
according to Siu-Ling’s observations?

 26. Particle A is moving with a constant velocity 
vAE = +0.90c relative to an Earth observer. Particle B 
moves in the opposite direction with a constant velocity 
vBE = −0.90c relative to the same Earth observer. What 
is the velocity of particle B as seen by particle A?

 27. A man on the Moon observes two spaceships coming 
toward him from opposite directions at speeds of 0.60c 

and 0.80c. What is the relative speed of the two ships as 
measured by a passenger on either one of the spaceships?

 28. Rocket ship Able travels at 0.400c relative to an Earth 
observer. According to the same observer, rocket ship 
Able overtakes a slower moving rocket ship Baker that 
moves in the same direction. The captain of Baker sees 
Able pass her ship at 0.114c. Determine the speed of 
Baker relative to the Earth observer.

 29. Relative to the laboratory, a proton moves to the right 
with a speed of 4

5c, while relative to the proton, an elec-
tron moves to the left with a speed of 5

7c. What is the 
speed of the electron relative to the lab?

 30. As observed from Earth, rocket Alpha moves with speed 
0.90c and rocket Bravo travels with a speed of 0.60c. 
They are moving along the same line toward a head-on 
collision. What is the speed of rocket Alpha as measured 
from rocket Bravo?

 31. Electron A is moving west with speed 3
5c relative to the 

lab. Electron B is also moving west with speed 4
5c 

relative to the lab. What is the speed of electron B in a 
frame of reference in which electron A is at rest?

26.6 Relativistic Momentum
 32. A proton moves at 0.90c. What is its momentum?
 33. An electron has momentum of magnitude 2.4 × 

10−22 kg·m/s. What is the electron’s speed?
 34. By what factor is the momentum of a particle moving at 

0.60c greater than the momentum of the same particle 
moving at 0.30c?

 35. A particle is initially moving at 0.60c. If its momentum 
increases by a factor of 2.0, what is its speed?

 36. The International Space Station (ISS) has a mass of 
4.5 × 105 kg and orbits Earth at a speed of 7.7 km/s. By 
what percentage does the approximate momentum of 
the ISS calculated nonrelativistically differ from the 
relativistic momentum? [Hint: Use one of the approxi-
mations in Appendix A.9.]

 37. A spaceship of mass m is traveling away from Earth at 
speed v. Its momentum has magnitude 2.5mv. (a) Find v. 
(b) An astronaut on the spaceship has a watch that ticks 
once every second. How often does the watch tick as 
measured by an Earth observer?

 38. How much energy is released by a nuclear reactor if the 
total mass of the fuel decreases by 1.0 g?

 39. Two lumps of putty are moving in opposite directions, 
each one having a speed of 30.0 m/s. They collide and 
stick together. After the collision the combined lumps 
are at rest. If the mass of each lump was 1.00 kg before 
the collision, and no energy is lost to the environment, 
what is the change in mass of the system due to the 
collision?

 40. A white dwarf is a star that has exhausted its nuclear 
fuel and lost its outer mass so that it consists only of its 
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dense, hot inner core. It will cool unless it gains mass 
from some nearby star. It may form a binary system with 
such a star and gradually gain mass up to the limit of 
1.4 times the mass of the Sun. If the white dwarf were to 
start to exceed the limit, it would explode into a super-
nova. How much energy is released by the explosion of 
a white dwarf at its limiting mass if 80.0% of its mass is 
converted to energy?

 41. A lambda hyperon Λ0 (mass = 1115 MeV/c2)  at rest 
decays into a neutron n (mass = 940 MeV/c2) and a 
pion π0 (mass = 135 MeV/c2):

Λ0 → n + π0

  What is the total kinetic energy of the neutron and pion?
 42. Radon decays as follows: 222Rn → 

218Po + α. The mass 
of the radon-222 nucleus is 221.970 39 u, the mass of 
the polonium-218 nucleus is 217.962 89 u, and the mass 
of the alpha particle is 4.001 51 u. How much energy is 
released in the decay? (1 u = 931.494 MeV/c2.)

26.8 Relativistic Kinetic Energy
 43. The energy to accelerate a starship comes from combin-

ing matter and antimatter. When this is done, the total 
rest energy of the matter and antimatter is converted to 
other forms of energy. Suppose a starship with a mass of 
2.0 × 105 kg accelerates to 0.3500c from rest. How 
much matter and antimatter must be converted to kinetic 
energy for this to occur?

 44. A laboratory observer measures an electron’s energy to 
be 1.02 × 10−13 J. What is the electron’s speed?

 45. A muon with rest energy 106 MeV is created at an alti-
tude of 4500 m and travels downward toward Earth’s 
surface. An observer on Earth measures its speed as 
0.980c. (a) What is the muon’s total energy in the Earth 
observer’s frame of reference? (b) What is the muon’s 
total energy in the muon’s frame of reference?

 46. An object of mass 0.12 kg is moving at 1.80 × 108 m/s. 
What is its kinetic energy in joules?

 47. When an electron travels at 0.60c, what is its total 
energy in mega-electron-volts?

 48. An observer in the laboratory finds that an electron’s 
total energy is 5.0mc2. What is the magnitude of the 
electron’s momentum (as a multiple of mc) as observed 
in the laboratory?

 49. The rest energy of an electron is 0.511 MeV. What 
momentum (in MeV/c) must an electron have in order 
that its total energy be 3.00 times its rest energy?

 50. An electron has a total energy of 6.5 MeV. What is its 
momentum (in MeV/c)?

26.7 Mass and Energy
 51.  An electron accelerator used in a hospital for cancer 

treatment produces a beam of electrons with kinetic 
energy 25 MeV. (a) What is the speed of the electrons 

produced by this accelerator? (b) If the end of the elec-
tron accelerator is placed 15 cm from the patient, how 
long, in the reference frame of the electrons, do they 
take to travel this distance?

 52.  A typical hospital accelerator built for proton beam 
therapy accelerates protons from rest by passing them 
through an electric potential difference of magnitude 
75 MV. Find the speed of these protons.

 53.  PET scans involve the use of positron-emitting iso-
topes like carbon-11 and fluorine-18. These isotopes 
can be produced at hospital-based accelerators that first 
accelerate deuterons (hydrogen-2 nuclei) and then direct 
the deuterons onto a solid or gaseous target. Suppose a 
deuteron (rest energy 1875.6 MeV) is accelerated to a 
kinetic energy of 2.50 MeV. What is its speed in meters 
per second?

 54.  In a medical treatment known as fast-neutron 
therapy, neutrons of kinetic energy 25 MeV are directed 
toward a patient’s tumor. Neutrons are known to decay, 
when at rest, with an average lifetime of 886 s. What is 
the lifetime, as measured in the laboratory, of 25 MeV 
neutrons?

 55.  An experimental form of cancer therapy involves 
the use of a beam of highly ionized carbon atoms with a 
charge of +6e (all six electrons have been removed). 
The mass of the ions is 11.172 GeV/c2. If the accelerator 
is 7.50 m long and the ions are accelerated through a 
125 MV potential difference, what are (a) the ion’s 
kinetic energy, (b) the speed of the ions as measured in 
the lab frame, and (c) the length of the accelerator in the 
reference frame of the ions?

 56. For a nonrelativistic particle of mass m, show that 
K = p2/(2m). [Hint: Start with the nonrelativistic expres-
sions for kinetic energy K and momentum p.]

 57. Find the conversion between the momentum unit MeV/c 
and the SI unit of momentum.

 58. Find the conversion between the mass unit MeV/c2 and 
the SI unit of mass.

 59.  In a beam of electrons used in a diffraction experi-
ment, each electron is accelerated to a kinetic energy of 
150 keV. (a) Are the electrons relativistic? Explain. 
(b) How fast are the electrons moving?

 60.  Derive the energy-momentum relation
  E2 = E2

0 + (pc)2 (26-22)

  Start by squaring the definition of total energy (E = K + E0) 
and then use the relativistic expressions for momentum 
and kinetic energy [Eqs. (26-15) and (26-18)].

 61.  Starting with the energy-momentum relation 
E2 = E2

0 + (pc)2 and the definition of total energy, 
show that (pc)2 = K2 + 2KE0 [Eq. (26-23)].

 62.  Show that Eq. (26-23) reduces to the nonrelativistic 
relationship between momentum and kinetic energy, 
K ≈ p2/(2m) , for K ≪ E0.
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 63.  Show that each of these statements implies that 
v ≪ c, which means that v can be considered a non-
relativistic speed: (a) γ − 1 ≪ 1 [Eq. (26-26)]; 
(b) K ≪ mc2 [Eq. (26-27)]; (c) p ≪ mc [Eq. (26-28)]; 
(d) K ≈ p2/(2m) .

Collaborative Problems

 64. The rogue starship Galaxa is being chased by the battle 
cruiser Millenia. The Millenia is catching up to the 
Galaxa at a rate of 0.55c when the captain of the Millenia 
decides it is time to fire a missile. First the captain shines 
a laser range finder to determine the distance to the 
Galaxa and then he fires a missile that is moving at a 
speed of 0.45c with respect to the Millenia. What speed 
does the Galaxa measure for (a) the laser beam and 
(b) the missile as they both approach the starship?

 65.   Refer to Example 26.2. One million muons are 
moving toward the ground at speed 0.9950c from an 
altitude of 4500 m. In the frame of reference of an 
observer on the ground, what are (a) the distance trav-
eled by the muons; (b) the time of flight of the muons; 
(c) the time interval during which half of the muons 
decay; and (d) the number of muons that survive to 
reach sea level? [Hint: The answers to (a) to (c) are not 
the same as the corresponding quantities in the muons’ 
reference frame. Is the answer to (d) the same?]

 66.  Two atomic clocks are synchronized. One is put 
aboard a spaceship that leaves Earth at t = 0 at a speed 
of 0.750c. (a) When the spaceship has been traveling for 
48.0 h (according to the atomic clock on board), it sends 
a radio signal back to Earth. When would the signal be 
received on Earth, according to the atomic clock on 
Earth? (b) When the Earth clock says that the spaceship 
has been gone for 48.0 h, it sends a radio signal to the 
spaceship. At what time (according to the spaceship’s 
clock) does the spaceship receive the signal?

 67.  A spaceship passes over an observation station on 
Earth. Just as the nose of the ship passes the station, a 
light in the nose of the ship flashes. As the tail of the 
ship passes the station, a light flashes in the ship’s tail. 
According to an Earth observer, 50.0 ns elapses between 
the two events. In the astronaut’s reference frame, the 
length of the ship is 12.0 m. (a) How fast is the ship 
traveling according to an Earth observer? (b) What is 
the elapsed time between light flashes in the astronaut’s 
frame of reference?

Comprehensive Problems

 68. Octavio, traveling at a speed of 0.60c, passes Tracy and 
her barn. Tracy, who is at rest with respect to her barn, 
says that the barn is 16 m long in the direction in which 

Octavio is traveling, 4.5 m high, and 12 m deep. (a) What 
does Tracy say is the volume of her barn? (b) What 
volume does Octavio measure?

 69. A spaceship resting on Earth has a length of 35.2 m. As 
it departs on a trip to another planet, it has a length of 
30.5 m as measured by the Earthbound observers. The 
Earthbound observers also notice that one of the 
astronauts on the spaceship exercises for 22.2 min. How 
long would the astronaut herself say that she exercises?

 70. At the 10.0 km long Stanford Linear Accelerator, elec-
trons with rest energy of 0.511 MeV have been acceler-
ated to a total energy of 46 GeV. How long is the 
accelerator as measured in the reference frame of the 
electrons?

 71. Consider the following decay process: π+ → μ+ + ν.  
The mass of the pion (π+) is 139.6 MeV/c2, the mass of 
the muon (μ+) is 105.7 MeV/c2, and the mass of the 
neutrino (ν) is negligible. If the pion is initially at rest, 
what is the total kinetic energy of the decay products?

 72. A neutron (mass 939.565 MeV/c2) disintegrates into a 
proton (mass 938.272 MeV/c2), an electron (mass 
0.5110 MeV/c2), and an antineutrino (mass negligibly 
small). What is the sum of the kinetic energies of the 
particles produced, if the neutron was at rest?

 73. A starship takes 3.0 days to travel between two distant 
space stations according to its own clocks. Instruments 
on one of the space stations indicate that the trip took 
4.0 days. How fast did the starship travel relative to that 
space station?

 74. Two spaceships are observed from Earth to be approach-
ing each other along a straight line. Ship A moves at 
0.40c relative to the Earth observer, and ship B moves at 
0.50c relative to the same observer. What speed does the 
captain of ship A report for the speed of ship B?

 75. A neutron, with rest energy 939.6 MeV, has momentum 
935 MeV/c downward. What is its total energy?

 76. Suppose that as you travel away from Earth in a 
spaceship, you observe another ship pass you heading in 
the same direction and measure its speed to be 0.50c. As 
you look back at Earth, you measure Earth’s speed 
relative to you to be 0.90c. What is the speed of the ship 
that passed you according to Earth observers?

 77. (a) If you measure the ship that passes you in Problem 
76 to be 24 m long, how long will the observers on 
Earth measure that ship to be? (b) If there is a rod on 
your spaceship that you measure to be 24 m long, how 
long will the observers on Earth measure your rod to 
be? (c) How long do the observers on the passing ship 
measure your rod to be?

 78. Verify that the collision between the proton and the 
nitrogen nucleus in Example 26.4 is elastic.

 79. Muons are created by cosmic-ray collisions at an eleva-
tion h (as measured in Earth’s frame of reference) above 
Earth’s surface and travel downward with a constant 
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speed of 0.990c. During any time interval of 1.5 μs in 
the rest frame of the muons, half of the muons present at 
the beginning of the interval decay. If one fourth of the 
original muons reach Earth before decaying, about how 
big is the height h?

 80.  Refer to Example 26.1. Ashlin travels at speed 
0.800c to a star 30.0 ly from Earth. (a) Find the distance 
between Earth and the star in the astronaut’s frame of 
reference. (b) How long (as measured by the astronaut) 
does it take to travel this distance at a speed of 0.800c? 
Compare your answer to the result of Example 26.1 and 
explain any discrepancy.

 81. A starship is traveling at a speed of 0.78c toward Earth 
when it experiences a major malfunction and the crew is 
forced to evacuate. An escape pod that is 12.0 m long 
with respect to its passengers is ejected from the star-
ship and sent toward Earth at a speed of 0.63c with 
respect to the starship. How long is the escape pod as 
measured by people on Earth?

 82.  According to the special theory of relativity, no 
object that has mass can travel faster than the speed of 
light. Yoo Jin says she knows something that moves 
faster than the speed of light. She tells you to consider a 
rotating beacon on Earth with a powerful laser that can 
send a beam to the Moon. (a) If the beacon rotates with 
a period of 6.00 s, how fast will light from the laser 
travel across the Moon’s surface? (b) How do you 
explain to Yoo Jin that this does not violate the results of 
the theory of special relativity?

 83. Harvey claims that he annihilated a 1.00 lb bag of 
chocolate-chip cookies after playing basketball for 3 h. 
(a) If Harvey had truly annihilated the mass in the 
cookies, how much energy would be produced? (b) How 
many kilowatt-hours of electric energy is this?

 84. A laboratory observer measures an electron’s kinetic en-
ergy to be 1.02 × 10−13 J. What is the electron’s speed?

 85.  A spaceship is moving away from Earth with a con-
stant velocity of 0.80c with respect to Earth. The space-
ship and an Earth station synchronize their clocks, 
setting both to zero, at an instant when the ship is near 
Earth. By prearrangement, when the clock on Earth 
reaches a reading of 1.0 × 104 s, the Earth station sends 
out a light signal to the spaceship. (a) In the frame of 
reference of the Earth station, how far must the signal 
travel to reach the spaceship? (b) According to an Earth 
observer, what is the reading of the clock on Earth when 
the signal is received?

 86.  A charged particle is observed to have a total energy 
of 0.638 MeV when it is moving at 0.600c. If this 
particle enters a linear accelerator and its speed is 
increased to 0.980c, what is the new value of the 
particle’s total energy?

 87.  A particle decays in flight into two pions, each having 
a rest energy of 140.0 MeV. The pions travel at right 

angles to each other with equal speeds of 0.900c. Find 
(a) the momentum magnitude of the original particle, 
(b) its kinetic energy, and (c) its mass in units of MeV/c2.

 88.  A spaceship is traveling away from Earth at 0.70c. 
The astronauts report home by radio every 4.0 h (by their 
own clocks). (a) At what interval are the reports sent to 
Earth, according to Earth clocks? (b) At what interval 
are the reports received by Earth observers, according to 
their own clocks?

 89.  A cosmic-ray proton entering the atmosphere from 
space has a kinetic energy of 2.0 × 1020 eV. (a) What is 
its kinetic energy in joules? (b) If all of the kinetic 
energy of the proton could be harnessed to lift an object 
of mass 1.0 kg near Earth’s surface, how far could the 
object be lifted? (c) What is the speed of the proton? 
[Hint: Note that K ≫ E0.]

 90.  An astronaut has spent a long time in the Interna-
tional Space Station (ISS) traveling at 7.66 km/s. When 
he returns to Earth, he is 50 ms younger than his twin 
brother. How long was he on the ISS? [Hint: Use an 
approximation from Appendix A.9]

 91.  Radon decays as 222Rn → 
218Po + α. The mass of the 

radon-222 nucleus is 221.970 39 u, the mass of the 
polonium-218 nucleus is 217.962 89 u, and the mass of 
the alpha particle is 4.001 51 u. (1 u = 931.494 MeV/c2.) 
If the radon nucleus is initially at rest in the lab frame, at 
what speeds (in the lab frame) do the (a) polonium-218 
nucleus and (b) alpha particle move? Assume that the 
speeds are nonrelativistic. After you calculate the 
speeds, verify that this assumption is valid.

 92.  A lambda hyperon Λ0 (mass = 1115.7 MeV/c2)  at 
rest in the lab frame decays into a neutron n (mass = 
939.6 MeV/c2) and a pion π0 (mass = 135.0 MeV/c2):

 Λ0 → n + π0

  What are the kinetic energies (in the lab frame) of the 
neutron and pion after the decay? [Hint: Use Eq. (26-23) 
to find the momentum.]

Review and Synthesis

 93.  A constant force, acting for 3.6 × 104 s (10 h), 
brings a spaceship of mass 2200 kg from rest to speed 
0.70c. (a) What is the magnitude of the force? [Hint: 
Use the impulse-momentum theorem.] (b) What is the 
initial acceleration of the spaceship? Comment on the 
magnitude of the answer.

 94. An object has a mass of 12.6 kg and a speed of 0.87c. 
(a) What is the magnitude of its momentum? (b) If a 
constant force of 424.6 N acts in the direction opposite 
to the object’s motion, how long must the force act to 
bring the object to rest? [Hint: Use the impulse-
momentum theorem.]
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 95. The solar energy arriving at the top of Earth’s atmo-
sphere from the Sun has intensity 1.4 kW/m2. (a) How 
much mass does the Sun lose per day? (b) What percent 
of the Sun’s mass is this?

 96.  Derivation of the Doppler formula for light. A source 
and observer of EM waves move relative to each other at 
velocity v. Let v be positive if the observer and source 
are moving apart from each other. The source emits an 
EM wave at frequency fs (measured in the source frame). 
The time between wavefronts as measured by the source 
is Ts = 1/fs. (a) In the observer’s frame, how much 
time elapses between the emission of wavefronts by the 
source? Call this Ts′. (b) Ts′ is not the time that 
the observer measures between the arrival of successive 
wavefronts because the wavefronts travel different 
distances. Say that, according to the observer, one wave-
front is emitted at t = 0 and the next at t = Ts′. When the 
first wavefront is emitted, the distance between source 
and observer is d. When the second wavefront is emitted, 
the distance between source and observer is d + v Ts′. 
Each wavefront travels at speed c. Calculate the time To 
between the arrival of these two wavefronts as measured 
by the observer. (c) The frequency detected by the 
observer is fo = 1/To. Show that fo is given by Eq. (22-24):

fo = fs√
1 − v/c
1 + v/c

 97. An electron is accelerated through a potential differ-
ence of 25.00 MV. (a) What would you calculate for 
the speed of the electron if relativistic equations were 
not used? (b) What is the actual speed of the electron 
in this case?

98. A particle with charge +e has a total energy of 
0.638 MeV when it is moving at 0.600c. If this particle 

then enters a linear accelerator, what is its speed after it 
has been accelerated through a 2.6 MV potential 
difference?

Answers to Practice Problems

26.1 Yes. The trip takes 30 yr as measured in the rest frame 
of the battery.
26.2 0.60c

26.3 0.909c

26.4 3.0 s
26.5 4 × 109 kg/s
26.6 480 MeV
26.7 (a) 0.981 TeV/c; (b) 0.999 999 54c

Answers to Checkpoints

26.1 An observer on the train cannot tell whether he is at 
rest or moving at constant velocity with respect to the 
ground. The laws of physics would be the same in either 
case, so no experiment can be devised to distinguish the two.
26.4 The proper time interval is measured in a reference 
frame in which the two events occur at the same place. 
Therefore, an observer in the sprinter’s reference frame 
would measure the proper time interval. The proper length is 
measured in a reference frame in which the object is at rest. 
An observer at rest with respect to the track would measure 
the proper length.
26.7 (a) Length, time interval, acceleration, force, and mass; 
(b) mass and the speed of light in vacuum.
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•	 heat	transfer	by	radiation	
(Section	14.8)

•	 the	spectroscope	
	(Section	25.5)

•	 relativistic	momentum	
and	kinetic	energy	
	(Sections	26.6	and	26.8)

•	 rest	energy	(Section	26.7)

Concepts & Skills to Review

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Bioluminescence 
 (Section 27.7)

∙ Photodynamic therapy 
(Problem 52)

∙ Positron emission tomog-
raphy (Section 27.8; 
Problem 55)

∙ Response of the eye 
(Conceptual Question 19; 
Problems 60, 66, 92)

∙ Medical x-rays (Example 
27.4; Problem 67)

∙ Effects of UV exposure 
(Conceptual Question 2; 
Problems 65, 68)

©FBI/Science Source

During	a	training	exercise,	an	agent	with	the	FBI’s	Evidence	Response	
Team	 sprays	 a	 colorless	 liquid	 on	 the	 walls	 of	 a	 shower.	 The	 agent	
then	takes	a	long-exposure	photograph	to	document	the	blue	glow	she	
sees	from	the	walls.	How	would	this	blue	light	at	a	crime	scene	reveal	
that	a	crime	may	have	 taken	place?
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27.1 QUANTIZATION

As the nineteenth century ended, much progress had been made in physics—so much 
that some physicists feared that everything had been discovered. Newton had laid the 
foundations of mechanics in his Principia, the laws of thermodynamics were well 
established, and Maxwell had explained electromagnetism. Nevertheless, as scientists 
developed new experimental techniques and new kinds of equipment, questions arose 
that could not be explained by the set of physical laws that had seemed nearly complete 
until then—the laws now known as classical physics. The new laws that were devel-
oped in the first decades of the twentieth century were the foundation of what we now 
call quantum physics.

In classical physics, most quantities are continuous: they can take any value in a 
continuous range. As an analogy, Fig. 27.1a shows a crate resting on a ramp. The 
gravitational potential energy of the crate is continuous—it can have any value between 
the minimum and maximum. By contrast, a crate resting on a staircase can only have 
certain allowed values (Fig. 27.1b). A quantity is quantized when its possible values 
are limited to a discrete set. A salient feature of quantum physics is the quantization 
of quantities that were thought to be continuous in classical physics.

The staircase is an imperfect analogy of quantization. While a crate is being 
moved from one step to another, the gravitational potential energy passes through all 
the intermediate values. By contrast, something that is truly quantized does not pass 
through intermediate values; it changes suddenly from one value to another.

Standing waves provide an example of quantization in classical physics. The fre-
quency of a standing wave on a string fixed at both ends is quantized (Fig. 27.2). The 
allowed frequencies are integral multiples of the fundamental frequency (fn = nf1).

This chapter considers several experiments whose results are difficult or impos-
sible to explain with the laws of classical physics, but relatively easy to explain once 
electromagnetic waves are assumed to be quantized.

27.2 BLACKBODY RADIATION

A major problem vexing late-nineteenth-century physics was blackbody radiation (see 
Section 14.8). An ideal blackbody absorbs all the radiant energy that falls on it; the 
radiation emitted by an ideal blackbody is a continuous spectrum that depends only 
on its temperature. Figure 27.3 shows experimental blackbody radiation curves—
graphs of the relative intensity of the EM radiation as a function of the frequency—at 
three temperatures. As the temperature increases, the peak of the radiation curve shifts 
to higher frequencies. At 2000 K, almost all of the power is radiated in the infrared. 
At 2500 K, the object is red hot—it radiates significantly in the red and orange parts 
of the visible spectrum. An object at 3000 K, such as the filament of an incandescent 
lightbulb, radiates light that we perceive as white, but most of the radiation is still 
infrared. The total area under the curve, for any absolute temperature T, represents 
the total radiated power per unit surface area; the total power is proportional to T 4.

CONNECTION:

The quest to understand 
 thermal EM radiation 
 (Section 14.8) was a major 
step in the development of 
quantum physics.

(b)

(a)

Figure 27.1 (a) A crate 
 resting on a ramp; gravitational 
potential energy is continuous. 
(b) A crate resting on a stair-
case. Gravitational potential 
energy is quantized; it can have 
only one of a set of discrete 
values.

f4 = 4f1

f3 = 3f1

f2 = 2f1

f1 λ1 = 2L

λ2 = λ1
2

λ3 = λ1
3

λ4 = λ1
4

L

Figure 27.2 Quantization in 
classical physics: standing wave 
patterns for a string fixed at 
both ends. The frequencies and 
wavelengths are quantized.
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However, classical theory predicted that the blackbody radiation curve should 
continue to increase with increasing frequency (into the ultraviolet and beyond), 
instead of peaking and then decreasing to zero (see Fig. 27.3). As a result, classical 
theory predicted that a blackbody should radiate an infinite amount of energy, an 
impossibility dubbed the ultraviolet catastrophe.

In 1900, the German physicist Max Planck (1858–1947) found a mathematical 
expression that fit the experimental radiation curves. He then sought a physical model 
to be the basis for his mathematical expression. He proposed something revolutionary: 
that the energy emitted and absorbed by oscillating charges must occur only in discrete 
amounts called quanta (singular, quantum). He associated a fundamental amount of 
energy E0 with each oscillator; the oscillator could emit E0, or 2E0, or any integral 
multiple of E0, but nothing in between. As an analogy, imagine that the economy of 
the oscillator is limited to $10 bills; an oscillator can have in its bank $10, $20, $30, 
but no intermediate amounts such as $15 or $4. When it spends its capital, it can only 
give away multiples of $10.

Planck found that the theoretical expression based on quantization matched the 
experimental radiation curves if E0 is directly proportional to the frequency f of the 
oscillator:

 E0 = hf  (27-1)

where the constant of proportionality has the unique value h = 6.626 × 10−34 J⋅s.
Planck’s assumption of quantization was a bold break with the fundamental ideas 

of classical physics. No one knew it at the time, but Planck had launched a half cen-
tury of exciting developments in physics. He chose the value of h so that his theory 
would match the experimental data; now h is called Planck’s constant and is included 
among the fundamental physical constants such as the speed of light c and the elemen-
tary charge e.

CHECKPOINT 27.2

An	 incandescent	 lightbulb	 is	 connected	 to	 a	 dimmer	 switch.	 When	 the	 bulb	
operates	at	 full	power,	 it	appears	white,	but	as	 it	 is	dimmed	it	 looks	more	and	
more	 red.	Explain.

27.3 THE PHOTOELECTRIC EFFECT

In 1886 and 1887, Heinrich Hertz did experiments that confirmed Maxwell’s classical 
theory of electromagnetic waves. In the course of these experiments, Hertz discovered 
the effect that Einstein later used to introduce the quantum theory of EM waves. Hertz 
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Figure 27.3 Three blackbody 
curves showing the relative 
intensity of blackbody radiation 
as a function of frequency for 
three different temperatures: 
2000 K, 2500 K, and 3000 K. 
Also, the blackbody curve as 
predicted by classical theory 
before Max Planck’s proposal.
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produced sparks between two metal knobs by applying a large potential difference. 
He noticed that when the knobs were exposed to ultraviolet light, the sparks became 
stronger. He had discovered the photoelectric effect in which EM radiation incident 
on a metal surface causes electrons to be ejected from a metal.

Later experiments by another German physicist, Philipp von Lenard (1862–1947), 
found results that were puzzling in the framework of classical physics and were first 
explained by Einstein in 1905. Figure 27.4 shows an apparatus similar to one invented 
by Lenard to study the photoelectric effect. EM radiation (visible light or UV) falls 
on the metal plate; some of the emitted electrons make their way to the collecting 
wire, which completes the circuit.

An applied potential difference holds the collecting wire at a lower potential than 
the plate so that electrons lose kinetic energy as they move from the plate to the wire. 
The larger the potential difference, the smaller the number of electrons with enough 
kinetic energy to reach the wire. The stopping potential Vs is the magnitude of the 
potential difference that stops even the most energetic electrons. Therefore, the max-
imum kinetic energy of the electrons is equal to the increase in potential energy for 
an electron moving through a potential difference −Vs:

 Kmax = q ΔV = (−e) × (−Vs) = eVs (27-2)

Experimental Results

The photoelectric effect itself seems reasonable according to classical physics: the EM 
wave supplies the energy needed by the electrons to break free from the metal.  
Brighter light causes an increase in current (more electrons ejected). However, several 
details of the photoelectric effect were puzzling.

 1. Brighter light does not give the individual electrons higher kinetic energies. In other 
words, the maximum kinetic energy of the electrons is independent of the intensity 
of the light. Classically, more intense light has larger amplitude EM fields and thus 
delivers more energy. That should not only enable more electrons to escape from 
the metal; it should also give the electrons emitted more kinetic energy.

Photocell
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wire
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Top view
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Figure 27.4 Apparatus used to study the photoelectric effect. A photocell is 
made by enclosing a metal plate and a collecting wire in an evacuated glass tube. 
EM radiation (visible light or UV) falls on the metal plate; some of the emitted 
electrons make their way to the collecting wire, which completes the circuit. An 
ammeter measures the current in the circuit and thus the number of electrons per 
second that move from the plate to the collecting wire. An applied potential differ-
ence holds the collecting wire at a lower potential than the plate so that electrons 
lose kinetic energy as they move from the plate to the wire.
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 2. The maximum kinetic energy of the emitted electrons does depend on the fre-
quency of the incident radiation (Fig. 27.5). Thus, if the incident light is very 
dim (low intensity) but high in frequency, electrons with large kinetic energies 
are released. Classically, there is no explanation for a frequency dependence.

 3. For a given metal, there is a threshold frequency f0. If the frequency of the 
incident light is below the threshold, no electrons are emitted—no matter what 
the intensity of the incident light. Again, classical physics has no explanation 
for the frequency dependence.

 4. When EM radiation falls on the metal, electrons are emitted virtually instanta-
neously; the time delay observed experimentally is about 10−9 s, regardless of 
the light intensity. If the EM radiation behaves as a classical wave, its energy 
is evenly distributed across the wavefronts. If the intensity of the light is low, 
it should take some time for enough energy to accumulate on a particular spot 
to liberate an electron. Experiments have used intensities so low that, classically, 
there ought to be a time delay of hours before the first electrons escape the 
metal. Instead, electrons are detected almost immediately!

The Photon

Planck’s explanation of blackbody radiation said that the possible energies of the 
oscillating charges in matter are quantized; the energy of an oscillator at frequency f 
can only have the values E = nhf, where n is an integer and

 h = 6.626 × 10−34 J·s (27-3)

In 1905, the same year that he published his special theory of relativity, Einstein 
explained the photoelectric effect and correctly predicted the results of some experi-
ments that had not yet been performed. Einstein said that EM radiation itself is quan-
tized. The quantum of EM radiation—that is, the smallest indivisible unit—is now 
called the photon. The energy of a photon of EM radiation with frequency f is

f0 frequency, f
0
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Figure 27.5 Maximum 
kinetic energy of the electrons 
ejected from a metal as a 
 function of the frequency f of 
the incident light.

Incident photon
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Metal
surface

Electron ejected
from the metal

Photon is
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e–

After

Figure 27.6 In the photo-
electric effect, a photon is 
absorbed. If the energy of the 
photon is sufficient, an electron 
can be ejected from the metal.

Energy of a photon

 E = hf  (27-4)

According to Einstein, the reason a blackbody can only emit or absorb energy in 
integral multiples of hf is that the EM radiation emitted or absorbed by a blackbody 
is itself quantized. A blackbody can emit or absorb only an integer number of 
photons.

The key to understanding the photoelectric effect is that the electron has to absorb 
a whole photon (Fig. 27.6); it cannot absorb a fraction of a photon’s energy. The 
energy of a photon is proportional to frequency; thus, the photon theory explains 
the frequency dependence in the photoelectric effect that had mystified scientists.

Example 27.1

Energies of Visible and X-Ray Photons

Find the energy of a photon of visible red light of wavelength 
670 nm and compare it with the energy of an x-ray photon 
with frequency 1.0 × 1019 Hz.

Strategy The product of Planck’s constant with each 
 frequency gives the corresponding photon energy. For the 

670 nm photon, the frequency and wavelength are related by 
c = f λ.

Solution The frequency of the red light is

f =
c

λ
continued on next page
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Example 27.1 continued

To find the energy we multiply the frequency by Planck’s 
constant.

 E = hf =
hc

λ

 =
6.626 × 10−34 J·s × 3.00 × 108 m/s

670 × 10−9 m
= 3.0 × 10−19 J

For the x-ray photon,
E = hf = 6.626 × 10−34 J·s × 1.0 × 1019 Hz = 6.6 × 10−15 J

The energy of the x-ray photon is more than 20 000 times 
the energy of a photon of red light.

Discussion E = 3.0 × 10−19 J is the smallest amount of en-
ergy for red light of wavelength 670 nm that can be absorbed or 
emitted in any process. Similarly, 6.6 × 10−15 J is the energy of 
one quantum—one photon—of x-rays at the given frequency. 
The much larger energy of an x-ray photon is the reason that 
x-rays can be far more damaging to the human body and that 
exposure to x-rays should be minimized (Fig. 27.7).

Practice Problem 27.1 Energy of a Photon of  
Blue Light

Find the energy of one 
photon of visible blue 
light of frequency 6.3 × 
1014 Hz.

Figure 27.7 
The body of a person 
having an x-ray film 
taken for dental pur-
poses is protected by a 
lead apron. Lead is a 
good absorber of x-rays, 
so the apron minimizes 
the exposure of the rest 
of the body to x-rays.
©Cultura Creative/Alamy

Example 27.2

Photons Emitted by a Laser

A laser produces a beam of light 2.0 mm in diameter. The 
wavelength is 532 nm, and the output power is 20.0 mW. 
How many photons does the laser emit per second?

Strategy The photons all have the same energy since the 
beam has a single wavelength. The output power is the en-
ergy output per unit time. Then the energy output per second 
is the energy of each photon times the number of photons 
emitted per second.

Solution
energy per second = energy per photon × photons per second 
Since λ f = c, the energy of a photon of wavelength λ is

E = hf = h ×
c

λ
=

hc

λ

The energy of each photon emitted by the laser is

E =
6.626 × 10−34 J·s × 3.00 × 108 m/s

532 × 10−9 m
= 3.736 × 10−19 J

The number of photons emitted per second is

 photons per second =
energy per second
energy per photon

 =
0.0200 J/s

3.736 × 10−19 J/photon
 = 5.35 × 1016 photons/s

Discussion Notice that the diameter of the beam is irrel-
evant to the solution. If the power output were the same but 
the diameter of the beam were larger, the same number of 
photons per second would be emitted; they would just be 
spread across a wider beam. If the problem had stated the 
intensity (power per unit area) of the beam rather than the 
total power output, the diameter of the beam would have 
been relevant.

The quantization of light is not noticed in many 
 situations due to the extremely large numbers of photons. 
An ordinary 100 W incandescent lightbulb or a 23 W com-
pact fluorescent bulb both emit about 10 W of power as 
visible light. Thus, the number of photons per second in 
the visible range emitted by an ordinary lightbulb is around 
3 × 1019.

Practice Problem 27.2 Radio Wave Photons

A radio station broadcasts at 90.9 MHz. The power output of 
the transmitter is 50.0 kW. How many radio wave photons 
per second are emitted by the transmitter?
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The Electron-Volt

The energies of the photons in Examples 27.1 and 27.2 are small compared with energies  
of macroscopic bodies, so it is often convenient to express them in electron-volts (sym-
bol eV) rather than in joules. One electron-volt is equal to the kinetic energy that a 
particle with charge ±e (e.g., an electron or a proton) gains when it is accelerated through 
a potential difference of magnitude 1 V. Since 1 V = 1 J/C and e = 1.60 × 10−19 C, the 
conversion between electron-volts and joules is
 1 eV = e × 1 V = 1.60 × 10−19 C × 1 J/C = 1.60 × 10−19 J (27-5)
For larger amounts of energy, keV represents kilo-electron-volts (103 eV) and MeV 
represents mega-electron-volts (106 eV). Because the electron-volt is just a unit, it can 
be used to express the energy of anything—a falling eyelash (perhaps 10 GeV) or the 
energy of a photon. A particle or object does not need to have charge or even mass 
to have its energy given in electron-volts. The photon of red light in Example 27.1 
has energy 1.9 eV; the x-ray photon has energy 41 keV.

When finding the energy of a photon given its wavelength (or vice versa) using 
E = hc/λ, the energy of a photon is often expressed in electron-volts (eV) and wave-
lengths are often stated in nanometers (nm). For this reason, it is useful to express 
the constant hc in units of eV⋅nm:

 h =
6.626 × 10−34 J·s

1.602 × 10−19 J/eV
= 4.136 × 10−15 eV·s (27-6)

 c = 2.998 × 108 m/s × 109 nm/m = 2.998 × 1017 nm/s (27-7)

 hc = 4.136 × 10−15 eV·s × 2.998 × 1017 nm/s = 1240 eV·nm (27-8)

The Photon Theory Explains the Photoelectric Effect

The amount of energy that must be supplied to break the bond between a metal and 
one of its electrons is called the work function (ϕ). Each metal has its own charac-
teristic work function. According to Einstein, if the photon energy (hf) is at least equal 
to the work function, then absorption of a photon can eject an electron. If the photon 
energy is greater than the work function, some or all of the extra energy can appear 
as the ejected electron’s kinetic energy. The maximum kinetic energy of an electron 
is the difference between the photon energy and the work function.

Einstein’s photoelectric equation
 Kmax = hf − ϕ (27-9)

Equation (27-9) correctly predicts that a graph of Kmax versus f is a straight line 
with a slope of h and a vertical intercept of −ϕ. The intercept on the frequency axis 
is the threshold frequency f0. Setting
 Kmax = hf0 − ϕ = 0 (27-10)
we find that the threshold frequency is

 f0 =
ϕ

h
 (27-11)

The four puzzling results of photoelectric effect experiments are explained using 
the photon concept:

1. Light of greater intensity (but constant frequency) delivers more photons per unit 
time to the metal surface, so the number of electrons ejected per second increases 
as the intensity of the light increases. However, the energy of each photon remains 
the same. The maximum kinetic energy of the emitted electrons does not depend 
on the number of photons striking the metal per second because each emitted 
electron is the result of the absorption of one photon.

CONNECTION:

The photoelectric equation is 
an expression of energy 
 conservation.
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 2. Higher-frequency light has larger energy photons. As the frequency of the light 
increases, the photons have more excess energy that can potentially become the 
electron’s kinetic energy. Thus, Kmax increases with increasing frequency.

 3. Below the threshold frequency, a photon does not have enough energy to free 
an electron from the metal, so no electrons are emitted.

 4. At low intensities, the number of photons per second is small, but the energy 
is still delivered in discrete packets. Just after the light is turned on, some pho-
tons hit the surface; some of them are absorbed and eject electrons from the 
metal. There is no time delay because the electrons cannot gradually accumulate 
energy; each either absorbs a photon or does not.

CHECKPOINT 27.3

In	 the	photoelectric	effect,	why	are	no	electrons	emitted	 from	 the	metal	when	
the	 incident	 light	 is	below	 the	 threshold	 frequency?

Example 27.3

A Photoelectric Effect Experiment

Cesium has a work function of 1.8 eV. When cesium is illu-
minated with light of a certain wavelength, the electrons 
ejected from the surface have kinetic energies ranging from 
0 to 2.2 eV. What is the wavelength of the light?

Strategy The work function and the maximum kinetic en-
ergy (2.2 eV) are given. To eject an electron, the photon 
must supply 1.8 eV of energy. Some or all of the remainder 
of the photon’s energy (hf − ϕ) gives the electron its kinetic 
energy. The maximum kinetic energy occurs when all of the 
remainder goes to the electron’s kinetic energy.

Solution The energy of a photon is hf. The maximum ki-
netic energy of the photoelectrons is

Kmax = hf − ϕ = 2.2 eV

The problem asks for the wavelength, so we substitute f = c/λ 
and solve for λ:

Kmax =
hc

λ
− ϕ

λ =
hc

Kmax + ϕ

Substituting hc = 1240 eV⋅nm [Eq. (27-8)] yields

λ =
1240 eV·nm

2.2 eV + 1.8 eV
= 310 nm

Discussion The photon has energy 2.2 eV + 1.8 eV = 
4.0 eV; 1.8 eV raises the potential energy of the electron so 
that it is free to leave the metal. The remaining 2.2 eV does 
not necessarily all become the electron’s kinetic energy; 
some of it can be absorbed by the metal. Therefore, 2.2 eV is 
the maximum kinetic energy of a photoelectron. Since the 
wavelength is less than 400 nm, the photon is in the ultravio-
let part of the spectrum.

Practice Problem 27.3 Wavelength of Incident 
Light

A metal with a work function of 2.40 eV is illuminated with 
monochromatic light. If the stopping potential that prevents 
electrons from reaching the collecting wire is 0.82 V, what is 
the wavelength of the light? [Hint: What is the maximum 
 kinetic  energy of the electrons ejected from the surface in 
electron-volts?]

Applications of the Photoelectric Effect

Although our principal interest in the photoelectric effect is how clearly it illustrates the 
concept of the photon, many practical applications also exist. Devices such as garage 
door openers, burglar alarms, and smoke detectors often use a light beam and a photo-
cell as a switch. When the light beam is interrupted, the current through the photocell 
stops. A child walking underneath a garage door that is being closed interrupts a light 
beam; when the current stops, a switch stops the motion of the door. In some smoke 
alarms, particles of smoke in the air reduce the intensity of the light that reaches a 
photocell; when the current drops below a certain level, the alarm is activated.
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27.4 X-RAY PRODUCTION

Another confirmation of the quantization of EM radiation is found in the production 
of x-rays. Figure 27.8a shows an x-ray tube; it looks something like a photocell oper-
ated in reverse. In the photoelectric effect, EM radiation incident on a target causes 
the emission of electrons; in an x-ray tube, electrons incident on a target cause the 
emission of EM radiation. Electrons move through a large potential difference V to 
give them large kinetic energies K = eV. In the target, they are deflected as they pass 
by atomic nuclei (Fig. 27.8b). Sometimes an x-ray photon is emitted; the energy of 
the photon comes from the electron’s kinetic energy, so the electron slows down. This 
process for creating x-rays is called bremsstrahlung, from the German for “braking 
radiation,” since the x-rays are emitted as electrons slow down.

Cutoff Frequency The x-rays produced in this way do not all have the same frequency; 
there is a continuous spectrum of frequencies up to a maximum, called the cutoff 
 frequency (Fig. 27.9). Typically an electron emits many photons as it slows down; each 
of the photons takes away part of the electron’s kinetic energy. The maximum frequency 
occurs when all of the electron’s kinetic energy is carried away by a single photon:

 hfmax = K  (27-12)

CONNECTION:

Eq. (27-12) is once again a 
consequence of energy 
 conservation.

Tungsten target
(anode)

Electrons Heated
filament (cathode)

High-voltage source

X-rays

(a)

Tungsten
nucleus

(b)

An x-ray
photon is
emitted

The deflected electron
has less kinetic energy

Electron passes near
an atomic nucleus

e–

e–

Figure 27.8 (a) An x-ray tube. An electric current heats the filament to “boil off” electrons. The electrons are accel-
erated through a large potential difference between the filament and the target. When electrons strike the target, x-rays 
are emitted as the electrons lose kinetic energy. (b) An electron is deflected by an atomic nucleus. An x-ray photon is 
emitted, carrying away some of the electron’s kinetic energy.

Example 27.4

 Diagnostic X-Rays in Medicine

A potential difference of 87.0 kV is applied between the fila-
ment and target in the x-ray tube used at the local clinic to 
look for broken bones. What are the shortest wavelength x-
rays produced by this tube?

Strategy The shortest wavelength corresponds to the 
highest frequency. The highest frequency is produced when 
all of the electron’s kinetic energy is given up in the emission 
of a single photon.

The accelerating potential of 87.0 kV supplies the elec-
trons with kinetic energy before they hit the target. We do not 
need to use the numerical value of e to find the kinetic energy. 
An electron traveling through 1 V of potential difference gains 
an energy of 1 eV, so an electron traveling through a potential 

difference of 87.0 kV gains 87.0 keV of kinetic energy. The 
constants h and c can be looked up individually, but it is easier 
to use the combination hc = 1240 eV⋅nm [Eq. (27-8)].

Solution The maximum frequency occurs when the en-
ergy of the photon is equal to the electrons’ kinetic energy:

hfmax = K = 87.0 keV

fmax =
K

h

The minimum wavelength is

λmin =
c

fmax
continued on next page
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Characteristic X-Rays

Notice that an x-ray spectrum (see Fig. 27.9) includes some sharp, intense peaks 
superimposed on the continuous spectrum of x-rays produced by bremsstrahlung. 
These peaks are called characteristic x-rays because their frequencies are character-
istic of the material used as the target in the x-ray tube. Changing the voltage V 
applied to an x-ray tube changes the cutoff frequency fmax but does not change the 
frequencies of the characteristic peaks. The process that gives rise to the characteris-
tic x-rays is described in Section 27.7.

27.5 COMPTON SCATTERING

In 1922, American physicist Arthur Holly Compton (1892–1962) noticed that when 
x-rays of a single wavelength impinged on matter, some of the radiation was scattered 
in various directions. Further study showed that some of the scattered radiation had 
longer wavelengths than the incident radiation. The increase in the wavelength 
depended only on the angle between the incident radiation and the scattered radiation. 
According to classical theory, the incident radiation should induce vibration of the 
electrons in the target material at the same frequency as the incident wave. A scattered 
wave results when some of the incident energy is absorbed and reemitted in a differ-
ent direction. Thus, according to classical EM theory, the scattered radiation should 
have the same frequency and wavelength as the incident radiation.

In the photon picture, Compton scattering is viewed as a collision between a pho-
ton and an electron (Fig. 27.10). The scattered photon must have less energy than the 
incident photon since some energy is given to the recoiling electron. Thus, conservation 
of energy requires that
 E = Ke + E′  (27-13)
or

 
hc

λ
= Ke +

hc

λ′
 (27-14)

where E is the energy of the incident photon, Ke is the kinetic energy given to the 
recoiling electron, and E′ is the energy of the scattered photon. Since the scattered 
photon has less energy, its wavelength is longer. Although the scattered photon has 

Example 27.4 continued

Substituting for fmax yields

λmin =
hc

K
=

1240 eV·nm
87.0 × 103 eV

= 0.0143 nm = 14.3 pm

Discussion Notice how much simpler the calculation is 
made by using the electron-volt for energy. The electron-
volt saves physicists from having to constantly multiply 

and divide by the numerical value of the elementary 
charge e.

Practice Problem 27.4 Potential Difference Across 
an X-Ray Tube

If the shortest wavelength detected for x-rays from an x-ray tube 
is 0.124 nm, what is the potential difference applied to the tube?
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Figure 27.9 Spectrum of 
x-rays produced by an x-ray 
tube. The continuous spectrum 
is due to bremsstrahlung. The 
cutoff frequency fmax depends 
only on the voltage applied to 
the x-ray tube. The frequencies 
of the characteristic peaks 
depend only on the material 
used as the target in the tube.
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Figure 27.10 In Compton 
scattering, momentum and 
energy are transferred to the 
electron. Since momentum and 
energy are both conserved, the 
scattered photon has less 
energy—and therefore a longer 
wavelength—than the incident 
photon. The interaction can be 
analyzed as an elastic collision.
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less energy, it does not move any more slowly than the incident photons. All photons 
move at the same speed c.

Energy conservation alone does not explain why the wavelength of the photons 
scattered in a particular direction (at angle θ with respect to the incident photons) is 
always the same for a given incident wavelength λ. If energy conservation were the 
only restriction, photons of any energy E′ < E could be scattered at any angle θ. Just 
as in other collisions, we must consider conservation of momentum.

According to classical electromagnetic theory, EM waves carry momentum of 
magnitude E/c, where E is the energy of the wave and c is the speed of light. In the 
photon picture, each photon carries a little bit of that momentum in proportion to the 
amount of energy it carries. The momentum of a photon is

 p =
photon energy

c
=

hf

c
=

h

λ
 (27-15)

The direction of the photon’s momentum is in its direction of propagation.
In most cases the initial energy and momentum of the electron are negligible 

compared with the energy and momentum imparted by the collision. The energy of 
an x-ray photon is large relative to the work function of the target material, so we can 
ignore the work function and treat the electron as free. Compton’s explanation ignores 
the initial energy and momentum of the electron and the work function; the scattering 
process is viewed as a collision between a photon and a free electron initially at rest.

Conservation of momentum requires:

 p→ = p→e + p→′ (27-16)

Using the incident photon’s direction as the x-axis, we can separate this into two compo-
nent equations:

 
h

λ
= pe cos ϕ +

h

λ′
 cos θ (x-component)  (27-17)

and

 0 = −pe sin ϕ +
h

λ′
 sin θ (y-component)  (27-18)

From the equations for conservation of energy and momentum [Eqs. (27-14), (27-17), 
and (27-18)], Compton derived this relationship:

Compton shift

 λ′ − λ =
h

mec
 (1 − cos θ)  (27-19)

In Eq. (27-19), the incident photon has wavelength λ, the scattered photon has 
wavelength λ′, me is the mass of the electron, and θ is called the scattering angle. 
Equation (27-19) correctly predicts the wavelength shifts observed in the experiment.

In many cases, the electron’s recoil speed is fast enough that we cannot use the 
nonrelativistic equations Ke = 1

2mv2 and pe = mv for the kinetic energy and momentum 
of the electron. Compton used the relvativistic equations for the momentum [Eq. (26-15)] 
and kinetic energy [Eq. (26-18)] of the electron in his derivation, so Eq. (27-19) is valid 
for any recoil speed.

The quantity h/(mec) is known as the Compton wavelength because it has the 
dimensions of a wavelength.

 
h

mec
=

6.626 × 10−34 J·s
9.109 × 10−31 kg × 2.998 × 108 m/s

  = 2.426 × 10−3 nm = 2.426 pm  (27-20)

CONNECTION:

Calculation of the shift in the 
photon wavelength requires 
putting together just two 
 principles: conservation of 
energy and conservation of 
momentum.
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Since cos θ can vary between +1 and −1, the quantity (1 − cos θ) varies from 
0 to 2 and the wavelength change varies from zero to twice the Compton wavelength 
(4.853 pm). The Compton shift is difficult to observe if the wavelength of the incident 
photon is large compared to 4.853 pm.

CHECKPOINT 27.5

Why	does	a	photon	 that	 has	been	 scattered	 from	an	electron,	 initially	 at	 rest,	
have	a	 longer	wavelength	 than	 the	 incident	photon?

Example 27.5

Energy of a Recoiling Electron

An x-ray photon of wavelength 10.0 pm is scattered through 
110.0° by an electron. What is the kinetic energy of the re-
coiling electron?

Strategy Since we know the scattering angle, we can find 
the Compton shift [Eq. (27-19)]. The Compton shift and the 
wavelength of the incident photon enable us to find the wave-
length of the scattered photon; from the wavelength we can 
find the energy of the scattered photon. By energy conserva-
tion, the kinetic energy of the electron plus the energy of the 
scattered photon is equal to the energy of the incident photon.

Solution The Compton shift formula is

Δλ = λ′ − λ =
h

mec
 (1 − cos θ)

where h/(mec) = 2.426 pm. With λ = 10.0 pm and θ = 110.0°,

Δλ = λ′ − λ = 2.426 pm × (1 − cos 110.0°) = 3.256 pm

Then the scattered photon has wavelength

λ′ = λ + Δλ = 10.0 pm + 3.256 pm = 13.26 pm

The kinetic energy of the electron is

 Ke = E − E′ =
hc

λ
−

hc

λ′

 = 1240 eV·nm × (
1

0.0100 nm
−

1
0.01326 nm)

 = 30.5 keV

Discussion Avoid the common algebraic mistake of 
substituting hc/Δλ for hc/λ − hc/λ′. That error [see 
Eq.  (A-9)] would have given an answer of 380 keV for the 
kinetic energy of the electron—wrong by more than a 
 factor of 12.

Practice Problem 27.5 Change in Wavelength

In a Compton scattering experiment, x-rays scattered 
through an angle of 37.0° with respect to the incident  
x-rays have a wavelength of 4.20 pm. What is the wave-
length of the incident x-rays?

27.6 SPECTROSCOPY AND EARLY MODELS OF THE ATOM

Line Spectra

In 1853, the Swedish spectroscopist Anders Jonas Ångström (1814–1874) used spec-
troscopy to study the light emitted by various low-pressure gases in a discharge tube 
(Fig. 27.11a). The gas is kept at low pressure so that the atoms are far apart from one 
another; thus, the light is emitted by a collection of essentially independent atoms. Elec-
trons are injected into the gas, either by heating the electrodes or by applying a large 
potential difference between them. The electrons collide with gas atoms in the tube. 
Electric current flows between the electrodes; electrons move in one direction and posi-
tive gas ions in the other. As long as the current is maintained, the tube emits light. A 
neon sign (Fig. 27.11b) is a familiar example of a discharge tube. A fluorescent lamp is 
a mercury discharge tube with a phosphor coating on the inside of the glass. The phos-
phor absorbs ultraviolet radiation emitted by the mercury vapor and emits visible light.

In the spectroscopic analysis of the light emitted by a discharge tube, the light 
first passes through a thin slit. Then it passes through either a prism or a grating so 
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that light of different wavelengths emerges at different angles. Although the light 
emitted by a hot solid object forms a continuous spectrum, Ångström discovered that 
the light from a gas discharge tube forms a discrete spectrum (Fig. 27.12). A discrete 
spectrum is also called a line spectrum because each discrete wavelength forms an 
image of the slit; the spectrum appears as a set of narrow, parallel lines of different 
colors with dark space between the lines.

In addition to examining the light emitted by a gas, scientists also studied the 
light absorbed by a gas. A beam of white light is sent through the gas and the trans-
mitted light is analyzed with a spectrometer (Fig. 27.13). The resulting absorption 
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Figure 27.11 (a) A gas discharge tube. (b) A “neon sign” on Beale Street in Memphis consists of several gas discharge 
tubes. The glass tubing is heated and bent into shape by skilled craftsmen. In some cases the inner surface of the tubing is 
coated with a phosphor. The phosphor absorbs ultraviolet light that has been emitted by the gas and emits visible light. 
The color of the discharge is determined by which gases are inside the tube and by the composition of the phosphor coat-
ing, if there is one. The gas inside the tube is usually a noble gas such as neon, argon, xenon, or krypton. In some cases 
mercury, sodium, or a metal halide is mixed with the noble gas to change the color of the emitted light.
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Figure 27.12 Emission spectra for atomic hydrogen, helium, neon, and mercury. The intensities of the brightest spec-
tral lines have been reduced to enhance the visibility of the weaker spectral lines.
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Figure 27.13 Setup for 
obtaining an absorption spec-
trum. When white light passes 
through a gas, some wavelengths 
are absorbed. The missing wave-
lengths cause dark lines to 
appear in the otherwise continu-
ous spectrum on the screen.
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spectrum is the continuous spectrum expected for white light except for some dark 
lines. Most wavelengths are transmitted through the gas, but the dark lines show that 
a few discrete wavelengths are absorbed. The wavelengths absorbed are a subset of 
the wavelengths emitted by the same gas when in a discharge tube.

Each element has its own characteristic emission spectrum. For instance, the char-
acteristic red color of a neon sign is caused by the emission spectrum of neon. Scientists 
soon began to use spectroscopy to identify the elements present in substances. Many 
previously unknown elements were discovered through spectroscopy. Cesium was named 
for its bright blue spectral lines (in Latin, cesius = “sky blue”); rubidium was named 
for its prominent red lines (in Latin, rubidius = “dark red”). Turning their spectroscopes 
toward the Sun and stars, scientists identified elements such as helium, which had not 
yet been discovered on Earth. (The Greek word for the Sun is helios.)

The spectra of most elements show no obvious pattern, but hydrogen—the sim-
plest atom—does show a striking pattern. Figure 27.14 shows an emission spectrum 
for hydrogen that includes lines in the ultraviolet, visible, and near infrared. In 1885, 
the Swiss mathematician Johann Jakob Balmer (1825–1898) found a simple formula 
for the four wavelengths of the hydrogen emission lines in the visible range:

 
1
λ

= R(
1
n2

f
−

1
n2

i
) (27-21)

where nf = 2 and ni = 3, 4, 5, or 6. The experimentally measured quantity R = 1.097 × 
107 m−1 is called the Rydberg constant after Swedish spectroscopist Johannes Rydberg 
(1854–1919).

Subsequently, it was found that Eq. (27-21) gives the wavelengths of all of the 
hydrogen lines, not just the four visible lines. Each value of nf (1, 2, 3, 4, . . .) gives 
rise to a series of lines; each line in a series has a unique value of ni > nf. The ultra-
violet transitions with nf = 1 make up the Lyman series, named after U.S. physicist 
Theodore Lyman (1874–1954). The Balmer series (nf = 2) includes both visible and 
ultraviolet transitions. The infrared transitions with nf = 3 make up the Paschen series, 
named after German physicist Friedrich Paschen (1865–1947).

The experimental observation that individual atoms in a gas absorb and emit EM 
radiation only at discrete wavelengths was impossible to explain using early models 
of atomic structure.

Discovery of the Atomic Nucleus

At the beginning of the twentieth century, the most common model of the atom was 
the plum pudding model. The positive charge and most of the mass of the atom were 
thought to be spread evenly throughout the volume of the atom, with negatively 
charged electrons sprinkled here and there like plums in a pudding (Fig. 27.15). 
J. J. Thomson, who discovered the electron, accepted the uniform distribution of 
positive charge but said that the electrons in the atom were moving.

Rutherford Experiment In 1911, the New Zealander Ernest Rutherford (1871–1937) 
designed an experiment in which a thin gold foil was bombarded with alpha particles. 
(Alpha particles are emitted in the decay of some radioactive elements. They have 
charge +2e and approximately four times the mass of a hydrogen atom. We now know 
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Figure 27.14 Emission spec-
trum of atomic hydrogen. Four 
lines in the Balmer series are in 
the visible part of the spectrum. 
The rest of the Balmer series 
and the entire Lyman series are 
in the ultraviolet. The Paschen 
series and other series with 
higher values of nf are in the 
infrared. In each series, the 
wavelength that corresponds to 
ni = ∞ is called the series limit.
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that an alpha particle consists of 2 protons and 2 neutrons.) After striking the foil, the 
alpha particles were detected by observing the flashes of light produced when they hit 
a fluorescent screen (Fig. 27.16a).

In the plum pudding model of the atom, positive charge and mass are distributed 
evenly, with no points at which mass or charge are concentrated. Based on this model, 
Rutherford expected the alpha particles to pass through the atoms of the foil barely 
deflected at all. He was surprised to find alpha particles that were deflected through 
large angles—sometimes more than 90°, so they bounced back from the foil instead 
of passing through it. Rutherford expressed his surprise by saying, “it was almost as 
incredible as if you fired a fifteen-inch [artillery] shell at a piece of tissue paper and 
it came back and hit you.”

The alpha particles deflected through large angles must have collided with some-
thing massive; the massive object must be tiny since most of the alpha particles are 
deflected through much smaller angles. Based on the results of scattering experiments, 
Rutherford proposed a new model of the atom in which a central dense nucleus with a 
radius of about 10−15 m contains all of the positive charge and most of the mass of the 
atom (Fig. 27.16b). The positively charged nucleus repels the positively charged alpha 
particles that come near it. The radius of the nucleus is only one hundred-thousandth 
(10−5) times the radius of the atom; thus, most of the alpha particles pass right through 
the gold foil without significant deflection. The few alpha particles that pass near to the 
nucleus feel a large repulsive force and are deflected through large angles.

After the discovery of the nucleus, the planetary model of the atom replaced the 
plum pudding model: electrons were thought to revolve around the nucleus like a 
small solar system, with the electric force on the electrons due to the nucleus playing 
the role that gravity plays in the solar system.

–
–

–
–

–

–

–
–

Electrons

Positive charge

Figure 27.15 Thomson’s 
plum pudding model of the 
atom, in which the positive 
charge and most of the mass 
of the atom are spread out. 
The discovery of the atomic 
nucleus showed this model to 
be incorrect.
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Paths of
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Figure 27.16 Rutherford scattering experiment. (a) Alpha particles from a radioactive source are aimed at a thin 
gold foil. The foil is made as thin as possible to minimize the chance that an alpha particle might be scattered by 
more than one nucleus. The scattered particles are detected by light emitted when they hit a fluorescent screen. 
(b) Alpha particles that get close to a gold nucleus are deflected through large angles; alpha particles that do not pass 
near a nucleus are barely deflected at all.
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Serious Questions Unanswered by the Planetary Model of the Atom Two 
serious questions bothered scientists. First, in classical electromagnetic theory, an 
accelerating electric charge gives off EM radiation. An electron orbiting the nucleus 
has an acceleration—the direction of its velocity is always changing—so it ought 
to be continually radiating. As the radiation carries off energy, the electron’s energy 
should decrease, causing the electron to spiral into the nucleus. Thus, atoms ought 
to radiate for a short while—only about 0.01 μs—until they collapse; atoms could 
not be stable according to classical electromagnetism. The second question: when 
atoms do radiate, as in a discharge tube, why only at certain wavelengths? In other 
words, why are emission spectra from atoms seen as line spectra rather than as 
continuous spectra?

27.7 THE BOHR MODEL OF THE HYDROGEN 
ATOM; ATOMIC ENERGY LEVELS

In 1913, the Danish physicist Niels Bohr (1885–1962) published the first atomic 
model that addressed these questions. Bohr’s model is of the hydrogen atom—the 
simplest atom, with one electron and a single proton as the nucleus.

Assumptions of the Bohr Model

 1. The electron can exist without radiating energy only in certain circular orbits 
(Fig. 27.17). Bohr asserts that, since the accelerating electron does not radiate, 
some aspects of classical electromagnetic theory do not apply to an electron 
orbiting the nucleus at certain discrete radii. The electron is allowed to be in 
only one of a discrete set of orbits called stationary states. (The electron is not 
stationary; it orbits the nucleus. The state of the electron is stationary because 
the electron orbits at a fixed radius without radiating.) Each stationary state has 
a definite energy associated with it; the set of energies of the states are called 
energy levels. Thus, Bohr extends quantum theory to the structure of the atom 
itself: both the radii and energies of the orbits are quantized.

 2. The laws of Newtonian mechanics apply to the motion of the electron in any of 
the stationary states. The force on the electron due to the nucleus is given by 
Coulomb’s law. Newton’s second law (ΣF

→
= ma→) relates the Coulomb force to 

the radial acceleration of the electron in its circular orbit. The energy of the 
orbit is the electron’s kinetic energy plus the electric potential energy of the 
interaction between the electron and the nucleus.

 3. The electron can make a transition between stationary states through the emis-
sion or absorption of a single photon (Fig. 27.18). The energy of the photon is 
equal to the difference between the energies of the two stationary states:

 ∣ΔE∣ = hf  (27-22)

  Since the electron energy levels have only certain discrete values, emission and 
absorption spectra are made up of photons of discrete energies—they are line 
spectra. Bohr made no attempt to explain how an electron “jumps” from one 
orbit to another.

 4. The stationary states are those circular orbits in which the electron’s angular 
momentum is quantized in integral multiples of h/(2π).

 Ln = n 

h

2π
= nh (n = 1, 2, 3, . . .)  (27-23)

  The combination of constants h/(2π) is commonly abbreviated as h (“h-bar”). 
Bohr chose these values of angular momentum because they gave agreement 
with the experimental data on the hydrogen emission spectrum.

3 2 1

Proton Electron

r2
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a0

Figure 27.17 In the Bohr 
model of the hydrogen atom, 
the electron orbits the nucleus 
in a circle. The radius of the 
orbit must be one of a discrete 
(quantized) set of radii.
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–
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Figure 27.18 (a) A hydrogen 
atom in an allowed orbit. 
(b) The atom emits a photon 
and the electron drops down 
into a different allowed orbit 
with lower energy. Absorption 
of a photon is just the reverse: 
the photon “donates” its energy 
to the atom, moving the elec-
tron to a higher energy level.
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Radii of Bohr Orbits The radius of the smallest orbit is known as the Bohr radius.

Bohr radius

 a0 =
h2

meke2 = 52.9 pm = 0.0529 nm (27-24)

Ground state energy of the hydrogen atom

 E1 = − 

mek
2e4

2h2 = −2.18 × 10−18 J = −13.6 eV (27-27)

Hydrogen atom energy levels

 En =
E1

n2 , n = 1, 2, 3, . . . (27-28)

The allowed orbital radii of the electron are

 rn = n2a0 (n = 1, 2, 3, . . .)  (27-25)

Energy Levels of the Hydrogen Atom

The energy of a stationary state is the sum of the electron’s kinetic energy and the 
electric potential energy when the electron and nucleus are separated by a distance r:

 E = K + U =
1
2

mev
2 −

ke2

r
 (27-26)

The potential energy U is negative because we assume that the potential energy is 
zero at infinite separation; the potential energy decreases as the distance between the 
oppositely charged electron and proton decreases.

The energy E is negative because the energy of the atom with the electron bound 
to the nucleus is less than the energy of the ionized atom. In the ionized atom, the 
electron is at rest infinitely far from the nucleus, so E = 0 (both the kinetic and 
potential energies are zero). An electron in one of the bound states must be supplied 
with energy for it to escape from the nucleus and cause the atom to become ionized.

For the state n = 1, called the ground state, the orbit has the smallest possible 
radius and the lowest possible energy. The ground state energy is

The states with higher energies (n > 1) are called excited states. All of the energy 
levels are given by

Figure 27.19 is an energy level diagram for hydrogen. Each horizontal line repre-
sents an energy level. The vertical arrows show transitions between levels, accompanied 
by either the emission or absorption of a photon of the appropriate energy. The energy 
of the photon emitted when the electron goes from initial state ni to a lower-energy 
final state nf is

 E =
hc

λ
= Ei − Ef = E1(

1
n2

i
−

1
n2

f
) (27-29)

If we take the general form of the Balmer formula [Eq. (27-21)] and multiply both sides 
by hc, we get

 
hc

λ
= hcR (

1
n2

f
−

1
n2

i
) = −hcR(

1
n2

i
−

1
n2

f
) (27-30)
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where R is the Rydberg constant. Thus, Bohr’s theory is in perfect agreement with 
the spectroscopic data as long as E1 = −hcR. When Bohr did the calculation, he found 
the two in agreement to within 1%.

CHECKPOINT 27.7

What	 is	 the	 energy	 of	 the	 photon	 emitted	 when	 a	 hydrogen	 atom	 makes	 a	
transition	 from	 the	n	=	5	state	 to	 the	n	=	2	state?	 (Refer	 to	Fig.	27.19.)

–3.40

–1.51

2

1 Ground state

3

4
5

∞

–0.85
–0.54

0
Energy (eV)

–13.6

Balmer series

Paschen series

Excited states

Brackett series

Lyman series

n

Absorption of a photon 
with energy 13.6 eV 
(wavelength 91 nm) 
ionizes the hydrogen 
atom from its ground 
state

Figure 27.19 Energy level 
diagram for the hydrogen atom. 
Energy E = 0 at level n = ∞ 
corresponds to the ionized atom 
(electron and proton separated). 
Arrows represent transitions 
between energy levels. The 
length of an arrow represents 
the energy of the photon emit-
ted or absorbed. Compare with 
Fig. 27.14.

Example 27.6

Identifying Initial and Final States

One wavelength in the infrared part of the hydrogen  emission 
spectrum has wavelength 1.28 μm. What are the initial and 
final states of the transition that results in this wavelength 
being emitted?

Strategy The energy of the 1.28 μm photon must be the 
difference in two energy levels. Rather than trying to solve 
an equation with two unknowns (the initial and final values 
of n), we can use the energy level diagram to narrow down 
the choices first.

continued on next page
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Example 27.6 continued

Solution The energy of the photon emitted is

E =
hc

λ
=

1240 eV·nm
1280 nm

= 0.969 eV

Looking at the energy level diagram (see Fig. 27.19), the 
photon must be in the Paschen series. The smallest photon 
energy in the Balmer series is

(−1.51 eV) − (−3.40 eV) = 1.89 eV
The photons in the Lyman series have even larger energies. 
The largest energy photon in the Brackett series has energy 
0.85 eV. Only the Paschen series can include a photon around 
1 eV. Therefore, the final state is n = 3 and the final energy 
is E3 = −1.51 eV. Now we solve for the initial state n.

energy of photon = Ei − Ef

0.969 eV =
−13.6 eV

n2 − (−1.51 eV)

n = √
13.6 eV

1.51 eV − 0.969 eV
= 5

The 1.28 μm photon is emitted when the electron goes from 
n = 5 to n = 3.

Discussion For a photon in the hydrogen spectrum, 
identifying the lower of the two energy levels is simplified 
by noting that the various series do not overlap. All of the 
photons in the Lyman series (lower energy level n = 1) 
have larger energies than any of the photons in the Balmer 
series (lower energy level n = 2); all of the photons in the 
Balmer series have larger energies than any in the Paschen 
series; and so on.

Practice Problem 27.6 Fifth Balmer Line

The first four Balmer lines are easily visible. What is the 
wavelength of the fifth Balmer line?

Example 27.7

Thermal Excitation

Absorbing or emitting a photon is not the only way an atom can 
make a transition between energy levels. One of the other ways 
is called thermal excitation. If their kinetic energies are suffi-
ciently large, two atoms can undergo an inelastic collision in 
which one of them makes a transition into an excited state, 
leaving the atoms with less total translational kinetic energy 
after the collision than before. (a) What is the average transla-
tional kinetic energy of an atom in a gas at room temperature 
(300 K)? (b) Explain why, in atomic hydrogen gas at room 
temperature, almost all of the atoms are in the ground state.

Strategy In Section 13.6, we found the average transla-
tional kinetic energy of an ideal gas to be ⟨Ktr⟩ = 3

2kBT  
[Eq.  (13-36)]. To facilitate comparison with the energy 
 levels in hydrogen, we convert the average kinetic energy to 
electron-volts. The key is to see whether the translational 
kinetic energies of the hydrogen atoms are large enough that 
an inelastic collision can excite one of the atoms.

Solution and Discussion (a) At T = 300 K,

⟨Ktr⟩ =
3
2

 kBT

   =
3
2

× 1.38 × 10−23 J/K × 300 K ×
1 eV

1.60 × 10−19 J
        = 0.04 eV

(b) Suppose two atoms, both in the ground state, collide. To 
excite one of them into n = 2 (the transition from the ground 
state that requires the smallest energy) requires

ΔE = E2 − E1 = (−3.40 eV) − (−13.6 eV) = 10.2 eV

This is 260 times the average kinetic energy. At any given 
instant, some atoms have more than the average and some 
have less; very few have much more than average. The num-
ber of atoms with kinetic energies hundreds of times the av-
erage kinetic energy is extremely small. (See the 
Maxwell-Boltzmann distribution curves in Fig. 13.13.) The 
tiny number of atoms excited in this way quickly decay back 
to the ground state by emitting a photon. Thus, at any given 
instant, a negligibly small fraction of the atoms are excited; 
for all practical purposes they are all in the ground state.

Conceptual Practice Problem 27.7 Absorption 
Spectrum of Hydrogen Atoms

At room temperature, the absorption spectrum of atomic hy-
drogen has no black lines in the visible part of the spectrum. 
At high temperatures, the absorption spectrum of atomic hy-
drogen has four dark lines in the visible—at the same wave-
lengths as the four visible lines in the Balmer series of the 
emission spectrum. Explain.
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Successes of the Bohr Model

The Bohr model has been replaced by the quantum mechanical version of the atom 
(Chapter 28). Despite serious deficiencies, the Bohr model was an important step in 
the development of quantum physics. Some important ideas that carry over from the 
Bohr atom to the quantum mechanical atom include:

∙ The electron can be in one of a discrete set of stationary states with quantized 
energy levels.

∙ The atom can make a transition between energy levels by emitting or absorbing 
a photon.

∙ Angular momentum is quantized.
∙ Stationary states can be described by quantum numbers (n is now called the 

principal quantum number).
∙ The electron makes a discontinuous transition (“quantum jump”) between energy 

levels.
Bohr’s model gives the correct numerical values—even if for the wrong reasons—of 
the energy levels in the hydrogen atom. It also correctly predicts the size of the H 
atom: the Bohr radius a0 is now understood as the most likely distance between the 
electron and the nucleus when the H atom is in the ground state.

Problems with the Bohr Model

∙ The whole idea of the electron orbiting the nucleus—indeed, of the electron hav-
ing any kind of trajectory—is incorrect. Newtonian mechanics does not apply to 
the motion of the electron. Instead, the electron must be described by quantum 
mechanics, which predicts only the probabilities of the electron being located at 
various distances from the nucleus.

∙ Scattering experiments show that the electron moves in three dimensions, not in 
an orbital plane.

∙ Angular momentum is quantized, but not in integral multiples of h.
∙ The Bohr model gives no way to calculate the probabilities of an electron absorb-

ing or emitting a photon.
∙ The Bohr model cannot be extended to atoms with more than one electron.

Applications of the Bohr Model to Other One-Electron Atoms

The Bohr model can be applied to ions that have a single electron such as ionized 
helium (He+) and doubly ionized lithium (Li2+). Instead of having nuclear charge +e, 
these ions have a nuclear charge of +Ze, where Z is the atomic number (the number 
of protons in the nucleus). Every time e2 appears in equations for the hydrogen atom, 
one factor of e came from the electron’s charge and one from the charge of the 
nucleus. For a nucleus with charge Ze, we replace each factor of e2 with Ze2. Then 
the orbital radii are smaller by a factor of Z:

 rn =
n2

Z
 a0 (n = 1, 2, 3, . . .)  (27-31)

and the energy levels are larger by a factor of Z2:

 En = − 

Z2

n2 × 13.6 eV (n = 1, 2, 3, . . .)  (27-32)

Example 27.8

He+ Energy Levels

Calculate the first five energy levels for singly ionized 
helium. Draw an energy level diagram for singly ionized 
helium and compare it with that for hydrogen.

Strategy Helium has an atomic number Z = 2. We use the 
ground state energy for hydrogen along with Z and the vari-
ous values of n to find the energy levels.

continued on next page
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Applications: Fluorescence, Phosphorescence, and Chemiluminescence

Suppose atomic hydrogen gas is illuminated with ultraviolet radiation of wavelength 
103 nm. Some of the atoms absorb a photon and are excited into the n = 3 level. 
When one of the excited atoms decays back to the ground state, it does not neces-
sarily emit a 103 nm photon. It can decay first to n = 2 (by emitting a 656 nm 
photon) and then to n = 1 (by emitting a 122 nm photon). The presence of inter-
mediate energy levels enables the atom to absorb a photon of one wavelength and 
emit photons of longer wavelengths.

Fluorescent materials absorb ultraviolet radiation and decay in a series of steps; 
at least one of the steps involves the emission of a photon of visible light. In a mol-
ecule or solid, not all of the transitions involve the emission of a photon. Some of the 
transitions increase the vibrational or rotational energy of the molecule of the solid; 
this energy is ultimately dissipated into the surroundings.

A fluorescent lamp is a mercury discharge tube whose interior is coated with a 
mixture of fluorescent materials called phosphors. The phosphors absorb ultraviolet 
radiation emitted by the mercury atoms and in turn emit visible light. A “black 
light”—a source of ultraviolet radiation—makes fluorescent dyes glow brightly in the 
dark. Fluorescent dyes are also added to laundry detergents. The dyes absorb UV and 
emit blue light to “make whites whiter” (Fig. 27.21) by compensating for the yellow-
ing of a fabric as it ages.

Phosphorescence is similar to fluorescence but involves a time delay. Most excited 
states of atoms and molecules decay quickly (typically within a few nanoseconds), 
but certain metastable excited states last for several seconds or even longer before a 
transition occurs. Watch dials, wall switch plates, and toys that glow in the dark absorb 

Example 27.8 continued

Solution and Discussion The ground state energy 
for hydrogen is −13.6 eV. A one-electron atom in which the 
nucleus has charge +Ze has energy levels

En = − 

Z 
2

n2 × 13.6 eV (n = 1, 2, 3, . . .)

For He+, Z = 2:

En = − 

4
n2 × 13.6 eV = − 

1
n2 × 54.4 eV (n = 1, 2, 3, . . .)

The first five energy levels for He+ are

 E1 = −54.4 eV; E2 = −13.6 eV; E3 = −6.04 eV;

 E4 = −3.40 eV; E5 = −2.18 eV

Now we draw an energy level diagram (not to scale) for 
He+ next to one for hydrogen (Fig. 27.20). Due to the factor 
of Z2, each energy level in He+ is four times the energy level 
for the same value of n in hydrogen. The first excited state 
(n = 2) for He+ has the same energy as the ground state of 
hydrogen; the third excited state (n = 4) for He+ has the same 
energy as the first excited state (n = 2) of hydrogen. In gen-
eral, the energy of state 2n in He+ is the same as the energy 
of state n in hydrogen.

Conceptual Practice Problem 27.8 Ionization 
 Energy

The ionization energy is the energy that must be supplied to 
an atom in its ground state to separate the electron from the 
nucleus. (a) What is the ionization energy for H? (b) What is 
the ionization energy for He+? (c) Give a qualitative expla-
nation for why He+ has a larger ionization energy than H.
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Figure 27.20
Energy levels of 
H and He+.
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photons when illuminated and get stuck in a metastable state so that the emission of 
light occurs much later.

In Rutherford’s scattering experiment, alpha particles were detected by a phosphor 
screen. The phosphors were excited by a collision with an alpha particle rather than 
by absorbing a photon. The phosphor dots on an old CRT television screen are excited 
by a beam of high-speed electrons; the decay back to the ground state involves emit-
ting a visible photon. The screen uses three different phosphors to produce blue, green, 
and red.

The blue glow from the shower walls described at the beginning of this chapter is caused 
by chemiluminescence. The colorless liquid solution contains luminol (3-aminophthalhydra-
zide) and hydrogen peroxide. Traces of hemoglobin (which is found in blood) catalyze 
an oxidation reaction between the luminol and the hydrogen peroxide. The reaction 
leaves one of the products in an excited state, which then decays to the ground state 
by emitting a photon. The luminol test is effective even on clothing or surfaces that 
have been carefully washed. Thus, the blue glow reveals the location of possible 
bloodstains. Fireflies light up due to a similar process called bioluminescence. The 
reaction is controlled by enzymes (biological catalysts), allowing the firefly to turn 
the light on and off.

Energies of Characteristic X-Rays

The energies of the characteristic x-ray peaks superimposed on the continuous spec-
trum of bremsstrahlung (see Fig. 27.9) are determined by the energy levels of atoms 
in the target. When an incident electron strikes the target in an x-ray tube, it can 
supply the energy to free one of the tightly bound inner electrons from the atom. Then 
an electron in one of the higher energy levels will drop into the vacant energy level, 
emitting an x-ray photon whose energy is the difference in the two energy levels.

27.8 PAIR ANNIHILATION AND PAIR PRODUCTION

The Positron

In 1929, the British physicist Paul Dirac (1902–1984) made a theoretical prediction 
of the existence of a particle with the same mass as the electron but opposite charge 
(q = +e). Experiments later verified the existence of this particle, now called the 
positron. Some radioactive elements emit a positron spontaneously as they decay.

(a)

Figure 27.21 A freshly laundered blouse and the laundry detergent used viewed in (a) natural light and  
(b) ultraviolet light.
©Charles Mazel

(b)
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The positron was the first antiparticle discovered. Each of the particles that make 
up ordinary matter (electron, proton, and neutron) has an antiparticle (positron, anti-
proton, and antineutron). Cosmologists struggle with the question of why there is 
apparently more matter than antimatter in the universe. We introduce the positron here 
because two processes, the production of and the annihilation of an electron-positron 
pair, provide some of the clearest and most direct evidence for the photon model of 
EM radiation.

Pair Production

An energetic photon can create a positron and an electron where no such particles 
existed before. The photon is totally absorbed in the process. Energy must be con-
served in any process, so in order for pair production to occur,

 Ephoton = Eelectron + Epositron (27-33)

The total energy of a particle with mass is the sum of its kinetic energy and its 
rest energy (the energy of the particle when at rest). A particle of mass m has rest 
energy

 E0 = mc2 (26-16)

(see Section 26.7). Thus, a photon must have an energy of at least 2mec
2 in order to 

create an electron-positron pair. If the photon’s energy is greater than 2mec
2, the excess 

energy appears as kinetic energy of the electron and positron. A photon is massless 
and thus, has no rest energy; the total energy of a photon is E = hf = hc/λ.

Momentum must also be conserved. For the photon, p = E/c. For an electron or 
a positron,

 p =
1
c

√E 
2 − (mec

2)2 <
E

c
 (27-34)

An electron or positron with total energy E has a momentum less than E/c—that is, 
less than the momentum of a photon with the same energy. Even if the electron and 
positron move in the same direction, their total momentum cannot be as large as the 
momentum of the photon. Therefore, it is impossible for both the pair’s total momen-
tum and total energy to be equal to the photon’s momentum and total energy. Another 
particle must take part in the reaction: pair production can only occur when the pho-
ton passes near a massive particle such as an atomic nucleus (Fig. 27.22). The recoil 
of the massive particle satisfies momentum conservation without carrying off a sig-
nificant amount of energy, so our assumption that all of the energy of the photon goes 
into the electron-positron pair is a good approximation.

Pair Annihilation

Since ordinary matter contains plenty of electrons, sooner or later a positron gets 
near an electron. For a short while, the pair forms something like an atom; then—
poof!—both particles disappear by creating two photons (Fig. 27.23). Pair annihila-
tion cannot create just one photon; two photons are required to conserve both energy 
and momentum. The total energy of the two photons must be equal to the total 
energy of the electron-positron pair. Ordinarily the kinetic energies of the electron 
and positron are negligible compared with their rest energies, so for simplicity we 
assume they are at rest; then their total energy is just their rest energy, 2mec

2, and 
their total momentum is zero. Annihilation of the pair then produces two photons, 
each with energy E = hf = mec

2 = 511 keV, traveling in opposite directions. Anni-
hilation is the ultimate fate of positrons; the characteristic 511 keV photons are the 
sign that pair annihilation has taken place.

Before

Incident photon

Nucleus

(a)

After
(b)

e–

e+

Nucleus

Figure 27.22 Pair produc-
tion. (a) A photon passes near 
an atomic nucleus. (b) The 
photon vanishes by creating an 
electron-positron pair. The 
nucleus recoils with an insig-
nificant kinetic energy but, due 
to its large mass, with a signifi-
cant momentum.

Before

e–
e+

(a)

After
(b)

Figure 27.23 Pair annihila-
tion. (a) An electron and posi-
tron vanish, creating (b) a pair 
of photons.
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Application: Positron Emission Tomography

Positron emission tomography (PET) is a medical imaging technique based on pair 
annihilation that is used to diagnose diseases of the brain and heart as well as certain 
types of cancer. A tracer is first injected into the body. The tracer is a compound—
commonly glucose, water, or ammonia—that incorporates radioactive atoms. When 
one of the radioactive atoms emits a positron in the body, the positron annihilates 
with an electron, producing two 511 keV gamma-ray photons traveling in opposite 
directions. The two photons are detected by a ring of detectors around the body 
(Fig. 27.24a); then the atom that emitted the positron lies along the line between the 
two detectors. A computer analyzes the directions of many gamma rays and locates 
the regions of highest concentration of the tracer. Then the computer constructs an 
image of that slice of the body (Fig. 27.24b).

Other imaging techniques such as x-ray films, CT scans, and MRIs show the 
structure of body tissues, but PET scans show the biochemical activity of an organ 
or tissue. For example, a PET scan of the heart can differentiate normal heart tissue 
from nonfunctioning heart tissue, which helps the cardiologist determine whether the 
patient can benefit from bypass surgery or from angioplasty.

Because rapidly growing cancer cells gobble up a glucose tracer faster than 
healthy cells, PET scans can accurately distinguish malignant from benign tumors. 
They help oncologists to determine the best treatment for a patient with cancer as 
well as to monitor the efficacy of a course of treatment. A brain tumor can be precisely 
located without cutting into the patient’s skull for a biopsy. PET is used to evaluate 
diseases of the brain such as Alzheimer’s, Huntington’s, and Parkinson’s diseases, 
epilepsy, and stroke.

Example 27.9

Threshold Wavelength for Pair Production

Find the threshold wavelength for a photon to produce an 
electron-positron pair.

Strategy The photon must have at least enough energy to 
create the electron and positron, each of which has a rest 
energy of mec

2 = 511 keV. From the minimum photon en-
ergy, we find the threshold wavelength—the maximum 
wavelength, since larger wavelengths correspond to smaller 
photon energies.

Solution The minimum photon energy to create an 
 electron-positron pair is

E = 2mec
2 = 1.022 MeV

Now we find the wavelength of a photon with this energy.

E = hf =
hc

λ

Then the wavelength is

λ =
hc

E
=

1240 eV·nm
1.022 × 106 eV

= 0.001 21 nm = 1.21 pm

Discussion Quick check: a visible photon has a wavelength 
of about 500 nm and an energy of about 2 eV. Here, the photon 
energy is half a million times that of a visible photon, so the 
wavelength is about 500 nm/500 000 = 0.001 nm = 1 pm.

Practice Problem 27.9 Muon-Antimuon Pair 
 Production

What is the longest wavelength that a photon can have if 
it is to supply enough energy to create a muon and an anti-
muon? The rest energies of the muon and the antimuon are 
106 MeV.

Besides confirming the photon model of EM radiation, pair annihilation and pair 
production clearly illustrate Einstein’s ideas about mass and rest energy.
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Gamma ray

Gamma ray
detector

Gamma ray

(a) (b)

Figure 27.24 (a) A PET scan detects the gamma rays emitted when a positron and an electron annihilate within the 
body. (b) A PET scan of the brain. Color is used to distinguish regions with differing levels of positron emission.

Master the Concepts

 ∙ A quantity is quantized when its possible values are lim-
ited to a discrete set.

 ∙ Max Planck found an equation to match experimental 
results for blackbody radiation. The equation led him 
to postulate that the energy of an oscillator must be 
quantized in integral multiples of hf, where f is the 
frequency of the oscillator. Planck’s constant is now 
recognized as one of the fundamental constants in 
physics:

 h = 6.626 × 10−34 J·s (27-3)

 ∙ In the photoelectric effect, EM radiation incident on a 
metal surface causes electrons to be ejected from the 
metal. To explain the photoelectric effect, Einstein said 
that EM radiation itself is quantized. The quantum of 
EM radiation—that is, the smallest indivisible unit—is 
now called the photon. The energy of a photon with 
frequency f is

 E = hf  (27-4)

  The maximum kinetic energy of an electron is the 
 difference between the photon energy and the work 

function ϕ, which is the amount of energy that must 
be supplied to break the bond between an electron and 
the metal.

 Kmax = hf − ϕ (27-9)

f0 =  f
0

K
m

ax
 =

 e
V s

–ϕ

ϕ

h

Slope = h

Photoelectric effect

 ∙ One electron-volt is equal to the kinetic energy that a 
particle with charge ±e (such as an electron or a proton) 
gains when it is accelerated through a potential differ-
ence of magnitude 1 V.

 1 eV = 1.60 × 10−19 J (27-5)
continued on next page
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Master the Concepts continued  ∙ Emission and absorption of EM radiation by individual 
atoms form line spectra at discrete wavelengths. Each 
element has its own characteristic spectrum determined 
by its discrete (quantized) set of energy levels. The en-
ergy of the photon emitted or absorbed when an atom 
makes a transition between energy levels is equal to the 
difference between the atomic energy levels:

 ∣ΔE∣ = hf  (27-22)

 ∙ The energy levels of a hydrogen atom are

 En =
E1

n2  (27-28)

  where the ground state energy (lowest energy level) is

 E1 = −13.6 eV (27-27)

 ∙ The Bohr model of the hydrogen atom assumed that the 
electron moves in a circular orbit around the nucleus. 
The radii and energies of these orbits are quantized. Al-
though calculations using the Bohr model give the cor-
rect energy levels [Eqs. (27-27) and (27-28)], it has 
serious deficiencies and has been replaced by the quan-
tum mechanical description of the hydrogen atom 
(Chapter 28).

 ∙ Fluorescent materials absorb ultraviolet radiation and 
decay in a series of steps; one or more of the steps in-
volve the emission of a photon of visible light.

 ∙ In pair production, an energetic photon passing by a 
massive particle creates an electron-positron pair. In 
pair annihilation, an electron-positron pair is annihi-
lated and two photons are created.

 ∙ In an x-ray tube, electrons are accelerated to kinetic en-
ergy K and then strike a target. The maximum frequency 
of the x-ray radiation emitted occurs when all of the elec-
tron’s kinetic energy is carried away by a single photon:

 hfmax = K  (27-12)
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 ∙ In Compton scattering, x-rays scattered from a target 
have longer wavelengths than the incident x-rays; the 
wavelength shift depends on the scattering angle θ:

 λ′ − λ =
h

mec
 (1 − cos θ)  (27-19)

  Compton scattering can be viewed as a collision be-
tween a photon and a free electron at rest. The momen-
tum and kinetic energy of the incident photon must 
equal the total momentum and kinetic energy of the 
scattered photon and recoiling electron.

Incident photon

Original position
of the electron

Scattered
photon

Recoiling
electron

e–

e– ϕ

θ

y

x

λ ´

λ

Conceptual Questions

 1. Describe the photoelectric effect and four aspects of the 
experimental results that were puzzling to nineteenth-
century physicists. How does the photon model of light 
explain the experimental results in each case?

 2.  Use the photon model to explain why ultraviolet ra-
diation can be harmful to your skin, but visible light is not.

 3. An experiment shines visible light on a target and mea-
sures the wavelengths of light scattered at different an-
gles. Would the experiment show that the scattered 
photons are Compton-shifted? Explain.

 4. Some stars are reddish in color, others bluish, and others 
yellowish-white (like the Sun). How is the color related 

to the surface temperature of the star? What color are 
the hottest stars? What color are the coolest?

 5. How does the observation of the sharp lines seen in the 
hydrogen emission spectrum verify the notion that all 
electrons have the same charge?

 6. In the photoelectric effect, what is the relationship 
between the maximum kinetic energy of ejected elec-
trons and the frequency of the light incident on the 
surface?

 7. Describe the process by which a continuous spectrum of 
x-rays is produced. Does the spectrum have a maximum 
wavelength or a minimum wavelength? Explain.

 8. A darkroom used for developing black-and-white film 
can be dimly lit by red light without ruining the film. 
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Why is red light used rather than white or blue or some 
other color?

 9. List the assumptions of the Bohr theory of the hydrogen 
atom.

 10. If green light causes the ejection of electrons from a 
metal in a photoelectric effect experiment and yellow 
light does not, what would you expect to happen if red 
light were used to illuminate the same metal? Do you 
expect more intense yellow light to eject electrons? 
What about very faint violet light?

 11. In both Compton scattering and the photoelectric effect, 
an electron gains energy from an incident photon. What 
is the essential difference between the two processes?

 12. Why is the Compton shift more noticeable for an inci-
dent x-ray photon than for a photon of visible light?

 13. What process becomes especially important for photons 
with energies in excess of 1.02 MeV?

 14. Explain how Rutherford’s experiment, in which alpha 
particles are incident on a thin gold foil, refutes the 
plum pudding model of the atom.

 15. In a photoelectric effect experiment, how is the stopping 
potential determined? What does the stopping potential 
tell us about the electrons emitted from the metal surface?

 16. A fluorescent substance absorbs EM radiation of one 
wavelength and then emits EM radiation of a different 
wavelength. Which wavelength is longer? Explain.

 17. Explain why every line in the absorption spectrum of hy-
drogen is present in the emission spectrum, but not every 
line in the emission spectrum is present in the absorption 
spectrum. [Hint: The excited states are very short-lived.]

 18. A solar cell is used to generate electricity when sunlight 
falls on it. How would you expect the current produced 
by a solar cell to depend on the intensity of the incident 
light? How would you expect the current to depend on 
the wavelength of the incident light?

 19.  The photoresponse of the retina of the human eye at 
low light levels depends on individual photosensitive 
molecules in rod cells being excited by the incident 
light. When excited, these molecules change shape, 
leading to other changes in the cell that trigger a nerve 
impulse to the brain. How does the photon model of 
light do a better job than the wave model in explaining 
how these changes can happen even at low light levels?

 20. Explain why the annihilation of an electron and a posi-
tron creates a pair of photons rather than a single photon.

 21. In a photoelectric effect experiment, two different metals 
(1 and 2) are subjected to EM radiation. Metal 1 produces 
photoelectrons for both red and blue light; metal 2 pro-
duces photoelectrons for blue light but not for red. Which 
metal produces photoelectrons for ultraviolet radiation? 
Which might produce photoelectrons for infrared radia-
tion? Which has the larger work function?

 22. When a plot is made of x-ray intensity versus wave-
length for a particular x-ray tube, two sharp peaks are 
superimposed on the continuous x-ray spectrum. These 

sharp peaks are called “characteristic” x-rays. Explain 
the origin of this name. In other words, of what are these 
x-rays characteristic?

 23. What happens to the energies of the characteristic  
x-rays when the potential difference accelerating the 
electrons in an x-ray tube is doubled?

Multiple-Choice Questions

 1. An electron, passing close to a target nucleus, slows and 
radiates away some of its energy. What is this process 
called?

 (a) Compton effect (b) photoelectric effect
 (c) bremsstrahlung (d) blackbody radiation
 (e) stimulated emission
 2. How many emission lines are possible for atomic 

 hydrogen gas with atoms excited to the n = 4 state?
 (a) 1  (b) 2  (c) 4  (d) 5  (e) 6
 3. In the Compton effect a photon of wavelength λ and 

frequency f is scattered from an electron, initially at rest. 
In this process,

 (a) the electron gains energy from the photon so that the 
scattered photon’s wavelength is less than λ.

 (b) the electron gives energy to the scattered photon so 
that the photon’s frequency is greater than f.

 (c) momentum is not conserved, but energy is conserved.
 (d) the photon loses energy so that the scattered photon 

has a frequency less than f.
 4. The number of electrons per second ejected from a 

metal in the photoelectric effect
 (a) is proportional to the intensity of the incident light.
 (b) is proportional to the frequency of the incident light.
 (c) is proportional to the wavelength of the incident light.
 (d) is proportional to the threshold frequency of the metal.
 5. Two lasers emit equal numbers of photons per second. If 

the first laser emits blue light and the second emits red 
light, the power radiated by the first is

 (a) greater than that emitted by the second.
 (b) less than that emitted by the second.
 (c) equal to that emitted by the second.
 (d) impossible to determine without knowing the time 

interval during which emission occurs.
 6. If a photoelectric material has a work function ϕ, the 

threshold wavelength for the material is given by

 (a) 
ϕ

hc
  (b) hf  (c) 

hc

ϕ
  (d) 

ϕ

e
  (e) 

ϕ

hf

 7. In analyzing data from a spectroscopic experiment, the 
inverse of each experimentally determined wavelength 
of the Balmer series is plotted versus 1/(n2

i ) , where ni is 
the initial energy level from which a transition to the 
n = 2 level takes place. The slope of the line is

 (a) the shortest wavelength of the Balmer series.
 (b) −h, where h is Planck’s constant.
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 (c)  one divided by the longest wavelength in the Balmer 
series.

 (d) −hc, where h is Planck’s constant.
 (e) −R, where R is the Rydberg constant.
 8. Electrons are accelerated through a potential difference 

V and then strike a dense target. In the x-rays that are 
produced, there is

 (a) a maximum wavelength.
 (b) a minimum wavelength.
 (c) a single wavelength.
 (d) neither a maximum nor a minimum wavelength.
 (e) both a maximum and a minimum wavelength.
 9. In a photoelectric effect experiment, light of a single 

wavelength is incident on the metal surface. As the in-
tensity of the incident light is increased,

 (a) the stopping potential increases.
 (b) the stopping potential decreases.
 (c) the work function increases.
 (d) the work function decreases.
 (e) none of the above.
 10. In a photoelectric effect experiment, the stopping poten-

tial is determined by
 (a) the work function of the metal.
 (b) the wavelength of the incident light.
 (c) the intensity of the incident light.
 (d) all three (a), (b), and (c). 
 (e) both (b) and (c).
 (f) both (a) and (b). 
 (g) both (a) and (c).

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

27.3 The Photoelectric Effect
 1. Find the (a) wavelength and (b) frequency of a 3.1 eV 

photon.
 2. What is the energy of a photon of light of wavelength 

0.70 μm?
 3. A rubidium surface has a work function of 2.16 eV. 

(a) What is the maximum kinetic energy of ejected elec-
trons if the incident radiation is of wavelength 413 nm? 
(b) What is the threshold wavelength for this surface?

 4. The photoelectric threshold frequency of silver is 
1.04 × 1015 Hz. What is the minimum energy required 
to remove an electron from silver?

 5. The minimum energy required to remove an electron 
from a metal is 2.60 eV. What is the longest wavelength 
photon that can eject an electron from this metal?

 6. A clean iron surface is illuminated by ultraviolet light. 
No photoelectrons are ejected until the wavelength of 
the incident UV light falls below 288 nm. (a) What is 
the work function (in electron-volts) of the metal? 
(b) What is the maximum kinetic energy for electrons 
ejected by incident light of wavelength 140 nm?

 7. Photoelectric experiments are performed with five differ-
ent metals. Given the work function of the metal ϕ and the 
energy of the incident photons E, rank the experiments 
in  order of the stopping potential, largest to smallest. 
(a) ϕ = 2.0 eV, E = 2.8 eV; (b) ϕ = 2.2 eV, E = 3.0 eV; 
(c) ϕ = 2.8 eV, E = 3.0 eV; (d) ϕ = 2.0 eV, E = 3.0 eV; 
(e) ϕ = 2.4 eV, E = 2.8 eV.

 8. A photoelectric experiment illuminates the same metal 
with six different ultraviolet sources. Both the wave-
length and the intensity vary from one source to another. 
Rank the six situations in order of the stopping poten-
tial, largest to smallest. (a) λ = 200 nm, I = 200 W/m2; 
(b) λ = 250 nm, I = 250 W/m2; (c) λ = 250 nm, I = 
200  W/m2; (d) λ = 300 nm, I = 100 W/m2; (e) λ = 
100 nm, I = 20 W/m2; (f) λ = 200 nm, I = 40 W/m2.

 9. Photons of wavelength 350 nm are incident on a metal 
plate in a photocell, and electrons are ejected. A stop-
ping potential of 1.10 V is able to just prevent any of the 
ejected electrons from reaching the opposite electrode. 
What is the maximum wavelength of photons that will 
eject electrons from this metal?

 10. Ultraviolet light of wavelength 220 nm illuminates a 
tungsten surface, and electrons are ejected. A stopping 
potential of 1.1 V is able to just prevent any of the 
ejected electrons from reaching the opposite electrode. 
What is the work function for tungsten?

 11. A 200 W infrared laser emits photons with a wavelength of 
2.0 × 10−6 m, and a 200 W ultraviolet light emits photons 
with a wavelength of 7.0 × 10−8 m. (a) Which has greater 
energy, a single infrared photon or a single ultraviolet 
 photon? (b) What is the energy of a single infrared photon 
and the energy of a single ultraviolet photon? (c)  How 
many photons of each kind are emitted per second?

 12. Photons with a wavelength of 400 nm are incident on 
an unknown metal, and electrons are ejected from the 
metal. However, when photons with a wavelength of 
700 nm are incident on the metal, no electrons are 
ejected. (a) Could this metal be cesium with a work 
function of 1.8 eV? (b) Could this metal be tungsten 
with a work function of 4.6 eV? (c) Calculate the 
maximum kinetic energy of the ejected electrons for 
each possible metal when 200 nm photons are inci-
dent on it.

 13.  Two different monochromatic light sources, one yel-
low (580 nm) and one violet (425 nm), are used in a pho-
toelectric effect experiment. The metal surface has a 
photoelectric threshold frequency of 6.20 × 1014 Hz. 
(a) Are both sources able to eject photoelectrons from the 
metal? Explain. (b) How much energy is required to eject 
an electron from the metal? (Use h = 4.136 × 10−15 eV⋅s.)
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 14. (a) Light of wavelength 300 nm is incident on a metal that 
has a work function of 1.4 eV. What is the maximum 
speed of the emitted electrons? (b) Repeat part (a) for 
light of wavelength 800 nm incident on a metal that has a 
work function of 1.6 eV. (c) How would your answers to 
parts (a) and (b) vary if the light intensity were doubled?

27.4 X-Ray Production
 15. What is the minimum potential difference applied to an 

x-ray tube if x-rays of wavelength 0.250 nm are produced?
 16. If the shortest wavelength produced by an x-ray tube is 

0.46 nm, what is the voltage applied to the tube?
 17. The potential difference in an x-ray tube is 40.0 kV. 

What is the minimum wavelength of the continuous 
 x-ray spectrum emitted from the tube?

 18. What is the cutoff frequency for an x-ray tube operating 
at 46 kV?

 19. In a color TV tube, electrons are accelerated through a 
potential difference of 20.0 kV. Some of the electrons 
strike the metal mask (instead of the phosphor dots be-
hind holes in the mask), causing x-rays to be emitted. 
What is the smallest wavelength of the x-rays emitted?

 20. You are given two x-ray tubes, A and B. In tube A, elec-
trons are accelerated through a potential difference of 
10 kV. In tube B, the electrons are accelerated through 
40 kV. What is the ratio of the minimum wavelength of 
x-rays in tube A to the minimum wavelength in tube B?

 21. Show that the cutoff frequency for an x-ray tube is pro-
portional to the potential difference through which the 
electrons are accelerated.

27.5 Compton Scattering
 22. X-rays of wavelength 10.0 pm are incident on a target. 

Find the wavelengths of the x-rays scattered at (a) 45.0° 
and (b) 90.0°.

 23. An x-ray photon of wavelength 0.150 nm collides with 
an electron initially at rest. The scattered photon moves 
off at an angle of 80.0° from the direction of the incident 
photon. Find (a) the Compton shift in wavelength and 
(b) the wavelength of the scattered photon.

 24. An incident beam of photons is scattered through 100.0°; 
the wavelength of the scattered photons is 124.65 pm. 
What is the wavelength of the incident photons?

 25. X-rays illuminate a target and the scattered x-rays are 
detected. Given the wavelength λ of the incident x-rays 
and the scattering angle θ, rank the scattered x-rays 
from largest wavelength to smallest wavelength. (a) λ = 
1.0 pm, θ = 90°; (b) λ = 1.0 pm, θ = 60°; (c) λ = 4.0 pm, 
θ = 120°; (d) λ = 1.6 pm, θ = 60°; (e) λ = 1.6 pm, θ = 
120°; (f) λ = 4.0 pm, θ = 2.0°.

 26. A photon of wavelength 0.148 00 nm, traveling due east, 
is scattered by an electron initially at rest. The wave-
length of the scattered photon is 0.149 00 nm, and it 

moves at an angle θ north of east. (a) Find θ. (b) What is 
the south component of the electron’s momentum?

 27. What is the velocity of the scattered electron in 
 Problem 26?

 28. An x-ray photon of initial frequency 3.0 × 1019 Hz collides 
with a free electron at rest; the scattered photon moves off 
at 90°. What is the frequency of the scattered photon?

 29. A photon is incident on an electron at rest. The scattered 
photon has a wavelength of 2.81 pm and moves at an angle 
of 29.5° with respect to the direction of the incident pho-
ton. (a) What is the wavelength of the  incident photon? 
(b) What is the final kinetic energy of the electron?

 30. A photon of energy 240.0 keV is scattered by a free elec-
tron. If the recoil electron has a kinetic energy of 190.0 keV, 
what is the wavelength of the scattered photon?

 31.  An incident photon of wavelength 0.0100 nm is 
Compton scattered; the scattered photon has a wave-
length of 0.0124 nm. What is the change in kinetic en-
ergy of the electron that scattered the photon?

 32.  A Compton scattering experiment is performed us-
ing an aluminum target. The incident photons have 
wavelength λ. The scattered photons have wavelengths 
λ′ and energies E that depend on the scattering angle θ. 
(a) At what angle θ are scattered photons with the small-
est energy detected? (b) At this same scattering angle θ, 
what is the ratio λ′/λ for λ = 10.0 pm?

27.6 Spectroscopy and Early Models of the 
Atom; 27.7 The Bohr Model of the Hydrogen 
Atom; Atomic Energy Levels
 33. Find the energy for a hydrogen atom in the stationary 

state n = 4.
 34. How much energy must be supplied to a hydrogen atom to 

cause a transition from the ground state to the n = 4 state?
 35. A hydrogen atom in its ground state absorbs a photon of 

energy 12.1 eV. To what energy level is the atom excited?
 36. Use the Bohr theory to find the energy necessary to re-

move the electron from a hydrogen atom initially in its 
ground state.

 37. How much energy is required to ionize a hydrogen atom 
initially in the n = 2 state?

 38. What is the smallest energy photon that can be absorbed 
by a hydrogen atom in its ground state?

 39. Find the wavelength of the radiation emitted when a 
hydrogen atom makes a transition from the n = 6 to the 
n = 3 state.

 40. The hydrogen atom emits a photon when making a tran-
sition between energy levels ni → nf. Rank the transi-
tions according to the wavelength of the emitted photon, 
largest to smallest. (a) 4 → 2; (b) 3 → 1; (c) 2 → 1;  
(d) 3 → 2; (e) 4 → 3; (f) 5 → 4.

 41. A hydrogen atom has an electron in the n = 5 level. 
(a) If the electron returns to the ground state by emitting 
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radiation, what is the minimum number of photons that 
can be emitted? (b) What is the maximum number that 
might be emitted?

 42. If an atom had only four distinct energy levels between 
which electrons could make transitions, how many spec-
tral lines of different wavelengths could the atom emit?

 43. The Paschen series in the hydrogen emission spectrum 
is formed by electron transitions from ni > 3 to nf = 3. 
(a) What is the longest wavelength in the Paschen se-
ries? (b) What is the wavelength of the series limit (the 
lower bound of the wavelengths in the series)? (c) In 
what part or parts of the EM spectrum is the Paschen 
series found (IR, visible, UV, etc.)?

 44. A fluorescent solid absorbs a photon of ultraviolet light 
of wavelength 320 nm. If the solid dissipates 0.500 eV 
of the energy and emits the rest in a single photon, what 
is the wavelength of the emitted light?

 45. By directly substituting the values of the fundamental 
constants, show that the Bohr radius a0 = h2/(meke2)  
has the numerical value 5.29 × 10−11 m.

 46. By directly substituting the values of the fundamental 
constants, show that the ground state energy for hydro-
gen in the Bohr model E1 = −mek

2e4/(2h2)  has the nu-
merical value −13.6 eV.

 47. What is the orbital radius of the electron in the n = 3 
state of hydrogen?

 48. (a) What is the difference in radius between the n = 1 
state and the n = 2 state for hydrogen? (b) What is the 
difference in radius between the n = 100 state and the 
n = 101 state for hydrogen? How do the neighboring 
orbital separations compare for large and small n  values?

 49. Find the Bohr radius of doubly ionized lithium (Li2+).
 50. Find the energy in electron-volts required to remove the 

remaining electron from a doubly ionized lithium (Li2+) 
atom.

 51. One line in the spectrum of the neutral helium atom 
(He) is bright yellow and has the wavelength 587.6 nm. 
What is the difference in energy (in electron-volts) 
 between two helium levels that produce this line?

 52.  Photodynamic therapy is used to treat skin cancer 
and some precancerous conditions. Treatment starts 
with the application of a photosensitizer that is selec-
tively taken up by cancerous or precancerous cells. Then 
the treated skin is exposed to light of the wavelength 
that is absorbed by the photosensitizer. Absorption of a 
photon initiates a series of chemical reactions that gen-
erate a reactive form of oxygen that destroys the cells. 
Cells that have not taken up the photosensitizer are not 
damaged. If a particular photosensitizer absorbs light at 
652 nm, what is the difference in energy between the 
excited state of the molecule and the ground state?

 53. (a) Find the energies of the first four levels of doubly ion-
ized lithium (Li2+), starting with n = 1. (b) What are the 
energies of the photons emitted or absorbed when the 

electron makes a transition between these levels? (c) Are 
any of the photons in the visible part of the EM spectrum?

 54. A photon with a wavelength in the visible region (be-
tween 400 and 700 nm) causes a transition from the n to 
the (n + 1) state in doubly ionized lithium (Li2+). What 
is the lowest value of n for which this could occur?

27.8 Pair Annihilation and Pair Production
 55.  A positron emission tomography (PET) scanner 

 detects 511 keV photons emitted when positrons and 
electrons annihilate each other. What is the wavelength 
of the photons?

 56. What is the maximum wavelength of a photon that can 
create an electron-positron pair?

 57. An electron-positron pair is created in a particle detec-
tor. If the tracks of the particles indicate that each one 
has a kinetic energy of 0.22 MeV, what is the energy of 
the photon that created the two particles?

 58. A photon passes near a nucleus and creates an electron 
and a positron, each with a total energy of 8.0 MeV. 
What was the wavelength of the photon?

 59. A muon and an antimuon, each with a mass that is 207 
times greater than an electron, were at rest when they 
annihilated and produced two photons of equal energy. 
What is the wavelength of each of the photons?

Collaborative Problems

 60.   A 100 W incandescent lightbulb radiates visible 
light at a rate of about 10 W; the rest of the EM radiation 
is mostly infrared. Assume that the lightbulb radiates uni-
formly in all directions. Under ideal conditions, the eye 
can see the lightbulb if at least 20 visible photons per 
second enter a dark-adapted eye with a pupil diameter of 
7 mm. (a) Estimate how far from the source the lightbulb 
can be seen under these rather extreme conditions. Assume 
an average wavelength of 600 nm. (b) Why do we not nor-
mally see lightbulbs at anywhere near this distance?

 61. Calculate the value of (a) Planck’s constant and (b) the 
work function of the metal from the data obtained by 
Robert A. Millikan in 1916, as shown in the graph. Mil-
likan was attempting to disprove Einstein’s photoelec-
tric equation; instead he found that his data supported 
Einstein’s prediction.
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 62.  Follow the steps outlined in this problem to estimate 
the time lag (predicted classically but not observed ex-
perimentally) in the photoelectric effect. Let the inten-
sity of the incident radiation be 0.01 W/m2. (a) If the 
area of the atom is (0.1 nm)2, find the energy per second 
falling on the atom. (b) If the work function is 2.0 eV, 
how long would it take (classically) for enough energy 
to fall on this area to liberate one photoelectron? (c) 
Explain briefly, using the photon model, why this time 
lag is not observed.

 63.   Suppose that you have a glass tube filled with 
atomic hydrogen gas (H, not H2). Assume that the atoms 
start out in their ground states. You illuminate the gas 
with monochromatic light of various wavelengths, rang-
ing through the entire IR, visible, and UV parts of the 
spectrum. At some wavelengths, visible light is emitted 
from the H atoms. (a) If there are two and only two vis-
ible wavelengths in the emitted light, what can you con-
clude about the wavelength of the incident radiation? (b) 
What is the largest wavelength of incident radiation that 
causes the H atoms to emit visible light? What 
wavelength(s) is/are emitted for incident radiation at 
that wavelength? (c) For what wavelengths of incident 
light are hydrogen ions (H+) formed?

 64.   A hydrogen atom in its ground state is immersed 
in a continuous spectrum of ultraviolet light with wave-
lengths ranging from 96 nm to 110 nm. After absorbing 
a photon, the atom emits one or more photons to return 
to the ground state. (a) What wavelength(s) can be ab-
sorbed by the H atom? (b) For each of the possibilities 
in (a), if the atom is at rest before absorbing the UV 
photon, what is its recoil speed after absorption (but 
before emitting any photons)? (c) For each of the pos-
sibilities in (a), how many different ways are there for 
the atom to return to the ground state? Find the wave-
length of each photon emitted and classify it as visible, 
UV, IR, x-ray, etc.

Comprehensive Problems

 65.  Exposure to ultraviolet light is one method used to 
sterilize medical equipment, disinfect drinking water, 
and pasteurize fruit juices. Microorganisms are typi-
cally small enough that UV light can penetrate to the 
cell nucleus and damage their DNA molecule. If it re-
quires a photon of energy 4.6 eV to damage a DNA 
molecule, what is the largest wavelength that can be 
used in UV sterilization?

 66.  Rhodopsin is the molecule responsible for the re-
ception of light in the rod cells of the mammalian retina. 
Absorption of a photon changes the 11-cis-retinal part 
of the molecule to all-trans-retinal. The molecule ab-
sorbs light most strongly at a wavelength of 510 nm, but 
can be excited by light of wavelength up to about 

630  nm. What is the minimum amount of energy re-
quired to change from one isomer to another?

H3C CH3

CH3

CH3 CH3 H
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of a photon
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H3C

H O

CH3
CH3

CH3

11-cis-Retinal

 67.  What is the shortest wavelength x-ray produced by 
a 0.20 MV x-ray machine?

 68.  One of the first signs of sunburn is the reddening of 
the skin (called erythema). As a very rough rule 
of thumb, erythema occurs if 13 mJ of ultraviolet light 
of approximately 300 nm wavelength (referred to as 
UVB radiation) is incident on the skin per square centi-
meter during a single exposure. How many photons are 
incident on 1.0 cm2 of skin in this amount of exposure?

 69. The Lyman series in the hydrogen emission spectrum is 
formed by electron transitions from an excited state to 
the ground state. Calculate the longest three wave-
lengths in the Lyman series.

 70. In a CRT television, electrons of kinetic energy 2.0 keV 
strike the screen. No EM radiation is emitted below a 
certain wavelength. Calculate this wavelength.

 71. An FM radio station broadcasts at a frequency of 
89.3  MHz. The power radiated from the antenna is 
50.0 kW. (a) What is the energy in electron-volts of each 
photon radiated by the antenna? (b) How many photons 
per second does the antenna emit?

 72.  A surgeon is attempting to correct a detached retina by 
using a pulsed laser. (a) If the pulses last for 20.0 ms and if 
the output power of the laser is 0.500 W, how much energy 
is in each pulse? (b) If the wavelength of the laser light is 
643 nm, how many photons are present in each pulse?

 73.  A thin aluminum target is illuminated with photons 
of wavelength λ. A detector is placed at 90.0° to the di-
rection of the incident photons. The scattered photons 
detected are found to have half the energy of the inci-
dent photons. (a) Find λ. (b) What is the wavelength of 
backscattered photons (detector at 180°)? (c) What (if 
anything) would change if a copper target were used 
instead of an aluminum one?
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 74. In a photoelectric experiment using sodium, when inci-
dent light of wavelength 570 nm and intensity 1.0 W/m2 
is used, the measured stopping potential is 0.28 V. 
(a) What would the stopping potential be for incident 
light of wavelength 400.0 nm and intensity 1.0 W/m2? 
(b) What would the stopping potential be for incident 
light of wavelength 570 nm and intensity 2.0 W/m2? 
(c) What is the work function of sodium?

 75. What potential difference must be applied to an x-ray 
tube to produce x-rays with a minimum wavelength of 
45.0 pm?

 76.  The photoelectric effect is studied using a tungsten 
target. The work function of tungsten is 4.5 eV. The 
 incident photons have energy 4.8 eV. (a) What is the 
threshold frequency? (b) What is the stopping potential? 
(c) Explain why, in classical physics, no threshold 
 frequency is expected.

 77. When photons with a wavelength of 120.0 nm are inci-
dent on a metal, electrons are ejected that can be stopped 
with a stopping potential of 6.00 V. (a) What stopping 
potential is needed when the photons have a wavelength 
of 240.0 nm? (b) What happens when the photons have 
a wavelength of 360 nm?

 78. (a) Light of wavelength 300 nm is incident on a metal 
that has a work function of 1.4 eV. What is the maxi-
mum speed of the emitted electrons? (b) If light of 
wavelength 800 nm is incident on a metal that has a 
work function of 1.6 eV, are any electrons ejected? 
(c) How would your answers to parts (a) and (b) change 
if the light intensity were doubled?

 79. A 220 W laser fires a 0.250 ms pulse of light with a wave-
length of 680 nm. (a) What is the energy of each photon in 
the laser beam? (b) How many photons are in this pulse?

 80. These data are obtained for photoelectric stopping po-
tentials using light of four different wavelengths. (a) Plot 
a graph of the stopping potential versus the reciprocal of 
the wavelength. (b) Read the values of the work func-
tion and threshold wavelength for the metal used di-
rectly from the graph. (c) What is the slope of the graph? 
Compare the slope with the expected value (calculated 
from fundamental constants).

Color Wavelength (nm) Stopping Potential (V)
Yellow 578 0.40
Green 546 0.60
Blue 436 1.10
Ultraviolet 366 1.60

 81. What is the ground state energy, according to Bohr theory, 
for (a) He+, (b) Li2+, (c) deuterium (an isotope of hydrogen 
whose nucleus contains a neutron as well as a proton)?

 82. Nuclei in a radium-226 radioactive source emit photons 
whose energy is 186 keV. These photons are scattered by 
the electrons in a metal target; a detector measures the 
energy of the scattered photons as a function of the angle 

θ through which they are scattered. Find the energy of 
the photons scattered through θ = 90.0° and 180.0°.

 83. A photoelectric effect experiment is performed with 
tungsten. The work function for tungsten is 4.5 eV. (a) If 
ultraviolet light of wavelength 0.20 μm is incident on 
the tungsten, calculate the stopping potential. (b) If the 
stopping potential is turned off (i.e., the cathode and 
anode are at the same voltage), the 0.20 μm incident 
light produces a photocurrent of 3.7 μA. What is the 
photocurrent if the incident light has wavelength 400 nm 
and the same intensity as before?

 84. An x-ray photon with wavelength 6.00 pm collides with 
a free electron initially at rest. What is the maximum 
possible kinetic energy acquired by the electron?

 85.  During a Compton scattering experiment, an elec-
tron that was initially at rest recoils at 180° (i.e., in the 
direction of motion of the incident x-ray photon). If the 
recoil electron has a kinetic energy of 0.20 keV, what is 
the wavelength of the incident x-ray? What is the wave-
length of the scattered x-ray?

 86. Consider the emission spectrum of singly ionized he-
lium (He+). Find the longest three wavelengths for the 
series in which the electron makes a transition from a 
higher excited state to the first excited state (not the 
ground state).

 87.  Photons of energy E = 4.000 keV undergo Compton 
scattering. What is the largest possible change in photon 
energy, measured as a fraction of the incident photon’s 
energy (E − E′)/E?

 88.  Compare the orbital radii of the He+ and H atoms for 
levels of equal energy (not the same value of n). Can 
you draw a general conclusion from your results?

Review and Synthesis

 89. A 640 nm laser emits a 1.0 s pulse in a beam with a di-
ameter of 1.5 mm. The rms electric field of the pulse is 
120 V/m. How many photons are emitted per second?

 90. The Bohr theory of the hydrogen atom ignores gravita-
tional forces between the electron and the proton. Make 
a calculation to justify this omission. [Hint: Find the 
ratio of the gravitational and electrostatic forces acting 
on the electron due to the proton.]

 91.  In gamma-ray astronomy, the existence of positrons 
(e+) can be inferred by characteristic gamma-ray pho-
tons that are emitted when a positron and an electron 
(e−) annihilate. For simplicity, assume that the electron 
and positron are at rest with respect to an Earth observer 
when they annihilate and that nothing else is in the vi-
cinity. (a) Consider the reactions e− + e+ → γ, where the 
annihilation of the two particles at rest produces one 
photon (symbol γ), and e− + e+ → 2γ, where the annihi-
lation produces two photons. Explain why the first reac-
tion does not occur, but the second does. (b) Suppose 
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the reaction e− + e+ → 2γ occurs and one of the photons 
travels toward Earth. What is the energy of the photon?

 92.  An owl has good night vision because its eyes can 
detect a light intensity as faint as 5.0 × 10−13 W/m2. 
What is the minimum number of photons per second 
that an owl eye can detect if its pupil has a diameter of 
8.5 mm and the light has a wavelength of 510 nm?

 93. The output power of a laser pointer is about 1 mW. 
(a)  What are the energy and momentum of one laser 
photon if the laser wavelength is 670 nm? (b) How many 
photons per second are emitted by the laser? (c) What is 
the average force on the laser due to the momentum 
 carried away by these photons?

 94.  UV light with a wavelength of 180 nm is incident on a 
metal and electrons are ejected. Instead of determining the 
maximum kinetic energy of the electrons with a stopping 
potential, the maximum kinetic energy is determined by 
injecting the electrons into a uniform magnetic field that is 
perpendicular to the velocity of the electrons. For a certain 
metal, the electrons with maximum kinetic energy follow 
a path with a radius of 6.7 cm in a magnetic field of 
7.5 × 10−5 T. (a) What is the work function for this metal? 
(b) Do electrons with maximum kinetic energy follow a 
path with the maximum or minimum radius?

 95.  Calculate, according to the Bohr model, the speed of 
the electron in the ground state of the hydrogen atom.

 96.  A particle collides with a hydrogen atom in the n = 2 
state, transferring 15.0 eV of energy to the atom. As a 
result, the electron breaks away from the hydrogen nu-
cleus. What is the kinetic energy of the electron when it 
is far from the nucleus?

Answers to Practice Problems

 27.1  4.2 × 10−19 J
27.2 8.30 × 1029 photons per second

27.3 385 nm (Kmax = 0.82 eV)
27.4 10.0 kV
27.5 3.71 pm
27.6 397 nm—difficult to see for most people
27.7 At room temperature, the atoms are almost all in the 
ground state. The absorption spectrum shows only transi-
tions that start from the ground state—the Lyman series; all 
of them are in the ultraviolet. At high temperatures, some of 
the atoms are excited into the n = 2 energy level by colli-
sions. These atoms can absorb photons in the Balmer series, 
causing a transition from n = 2 to a higher energy level.
27.8 (a) 13.6 eV; (b) 54.4 eV; (c) In He+, the electron is 
more tightly bound since the nucleus has twice the charge.
27.9 5.85 fm

Answers to Checkpoints

27.2 At full power, the filament is hot enough to emit EM 
radiation across the entire visible spectrum (plus even more 
infrared radiation), so the light looks white. At lower power, 
the filament temperature is lower. As a result, the peak of the 
emitted EM radiation is shifted toward lower frequencies, 
which increases the relative amount of red light in the mix-
ture relative to other colors.
27.3 The energy of a photon is proportional to its frequency. 
At the threshold frequency, a photon has just enough energy 
to liberate an electron from the metal. Below the threshold 
frequency, a photon has insufficient energy to liberate an 
electron.
27.5 The collision conserves both momentum and energy. 
The electron initially has zero kinetic energy. The electron 
recoils, moving off with some kinetic energy. Therefore, the 
scattered photon must have less energy (a longer wavelength) 
than the incident photon.
27.7 E = Ei − Ef = (−0.54 eV) − (−3.40 eV) = 2.86 eV



C H A P T E R

28
Quantum Physics

SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Electron microscopy 
(Section 28.3; Problems 
11–13, 73, 74)

∙ Lasers in medicine (Sec-
tion 28.9; Example 28.5; 
Practice Problem 28.5)

Concepts & Skills to Review

•	 quantization		
(Section	27.1)

•	 the	photon		
(Section	27.3)

•	 double-slit	interference	
experiment	(Section	25.4)

•	 diffraction	and	the	resolu-
tion	of	optical	instru-
ments	(Section	25.8)

•	 intensity	of	an	EM	wave	
(Section	22.6)

•	 x-ray	diffraction		
(Section	25.9)

•	 atomic	energy	levels		
and	the	Bohr	model		
(Section	27.7)

•	 wavelengths	and	frequen-
cies	of	standing	waves	
(Section	11.10)

In this colorized scanning electron micrograph, HIV-1 virions appear as small green 
spheres on the surface of a lymphocyte (pink). 
©CDC/C. Goldsmith, P. Feorino, E. L. Palmer, W. R. McManus

Biologists	 and	 medical	 researchers	 commonly	 use	 electron	 micro-
scopes	 instead	 of	 light	microscopes	when	 very	 fine	 detail	 is	 desired.	
What	enables	an	electron	microscope	to	achieve	a	greater	 resolution	
than	a	 light	microscope?	Are	 there	any	 limits	 to	 the	 resolution	of	an	
electron	microscope?
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28.1 THE WAVE-PARTICLE DUALITY

Classical physics maintains a sharp distinction between particles and waves; quantum 
physics blurs the distinction. Interference and diffraction experiments (see Chapter 25) 
demonstrate that light propagates as a wave. On the other hand, in the photoelectric 
effect, Compton effect, and pair production and annihilation (see Chapter 27), EM 
radiation interacts with matter as if it is composed of particles called photons. In 
quantum physics the two descriptions, particle and wave, are complementary. In some 
circumstances, light behaves more like a wave and less like a particle; in other 
 circumstances, more like a particle and less like a wave.

Double-Slit Interference Experiment

Imagine a double-slit interference experiment in which the screen is replaced by a set 
of photomultipliers—devices that can count individual photons. Each photomultiplier 
records the number of photons that arrive during a set time interval. Since the intensity 
is proportional to the number of photons counted, a graph of the number of photons as 
a function of position along the “screen” looks just like a graph of the intensity pattern 
that would be recorded by photographic film. The photomultiplier records alternating 
maxima and minima with smooth transitions between them (Fig. 28.1).

Now suppose the intensity of the incident light is reduced until only one photon at 
a time leaves the source. In the wave picture, the interference pattern arises from the 
superposition of EM waves from each of the slits. When only one photon at a time leaves 
the source, will there be an interference pattern? Common sense suggests that each photon 
reaching the detector must have gone through either one slit or the other, but not both.

What are the results of this experiment? At first, photons seem to appear at 
 random places (Fig. 28.2a); there is no way to predict where the next photon will be 
detected. As the experiment continues, the photons are clearly more numerous in some 
places than in others (Fig. 28.2b). We still cannot predict where the next photon will 
land, but the probability of detecting a photon is higher in some places than in others. 
If the experiment is allowed to run for a long time, the photons form distinct interfer-
ence fringes (Fig. 28.2c). After a very long time, the intensity pattern is just like 
Fig. 28.1—the double-slit interference pattern—even though only one photon at a time 
passes through the slits. Nevertheless, even after a clear interference pattern forms, 
we still cannot predict where the next photon will be detected.

If this wave-particle duality seems strange, rest assured that even the greatest 
physicists have felt the same way. Niels Bohr said: “Anyone who has not been shocked 
by quantum mechanics has not understood it.” Common sense is formed from obser-
vations in which quantum effects are not noticeable. While studying quantum mechan-
ics, don’t be discouraged when it seems confusing; quantum mechanics never seems 
obvious to anyone, but that’s partly what makes it fascinating. The U.S. physicist 
Richard P. Feynman (1918–1988) put it this way: “I am going to tell you what nature 
behaves like. If you will simply admit that maybe she does behave like this, you will 
find her a delightful, entrancing thing.”

Probability

In the double-slit experiment, we can never predict where any one photon will end 
up, but we can calculate the probability that it will fall in a given location. Two pho-
tons that are initially identical can end up at different places on the screen. The 
intensity pattern calculated by treating light as a wave is a statistical average that 
assumes a large number of photons.

The intensity of an EM wave is the energy flow per unit time per unit cross- 
sectional area:

 I =
energy

time · area
 (22-14)

CONNECTION:

For large numbers of pho-
tons, quantum physics pre-
dicts the same double-slit 
interference pattern as classi-
cal wave theory.

Position on screen

Intensity

Figure 28.1 Double-slit 
interference pattern: the inten-
sity as a function of position 
on  the screen. Compare with 
Fig. 25.17b.

(a)

(b)

(c)

Figure 28.2 A double-slit 
experiment in which only one 
photon at a time passes through 
the slits. The experiment repli-
cates the usual double-slit inter-
ference pattern once a large 
number of photons are 
recorded.
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In the wave picture, the intensity is proportional to the square of the electric field 
amplitude:
 I ∝ E2 (22-17)

In the photon picture, each photon carries a definite quantity of energy, so

 I =
number of photons

time · area
× energy of one photon (28-1)

The number of photons that cross a given area is proportional to the probability that 
a photon crosses the area:

 I ∝
number of photons

time · area
∝

probability of finding a photon
time · area

 (28-2)

Therefore, the probability of finding a photon is proportional to the square of the 
electric field amplitude. The electric field as a function of position and time can be 
regarded as the wave function—the mathematical function that describes the wave—
so the probability of finding a photon in some region of space is proportional to the 
square of the wave function in that region.

28.2 MATTER WAVES

In 1923, French physicist Louis de Broglie (1892–1987; his name is pronounced 
roughly lwee duh-broy) suggested that this wave-particle duality may pertain to par-
ticles with mass such as electrons and protons as well as to light. If light, which was 
so successfully established as a wave by Maxwell, could also have particle properties, 
why couldn’t an electron have wave properties? But what would the wavelength of an 
electron be? De Broglie proposed that the relationship between the momentum and 
wavelength of any particle is the same as that for a photon [see Eq. (27-15)]. It was 
not long before overwhelming experimental evidence confirmed de Broglie’s hypoth-
esis of the wave nature of electrons and other particles. The wavelength of the matter 
wave describing the behavior of a particle is now called its de Broglie wavelength.

CONNECTION:

The relationship between λ 
and p is the same for photons, 
electrons, neutrons, or any 
other particle.

Incident
beam of
electrons

Slit

Scattered
electrons

Sample

Electron
detector

ϕ

Figure 28.3 The Davisson-
Germer experimental setup.

de Broglie wavelength

 λ =
h

p
 (28-3)

For a particle with mass, Eq. (28-3) involves the relativistic momentum p = γmv 
[Eq.  (26-15)]. If v ≪ c, we can approximate the momentum as p ≈ mv.

Electron Diffraction

How can wave characteristics of particles such as electrons be observed? Hallmarks 
of a wave are interference and diffraction. In 1925, the American physicists Clinton 
Davisson (1881–1958) and Lester H. Germer (1896–1971) directed a low-energy elec-
tron beam toward a crystalline nickel target and observed the number of electrons 
scattered as a function of the scattering angle ϕ (Fig. 28.3). The maximum number 
of electrons was detected at ϕ = 130°. What could make the number of scattered 
electrons maximum at one particular angle? Could the maximum be due to interfer-
ence or diffraction? If so, then electrons must have wavelike properties.

Later analysis showed that the maximum occurred at the angle predicted by 
Bragg’s law for x-ray diffraction [see Eq. (25-25)] if the wavelength of the electrons 
is given by de Broglie’s relation (see Problem 83). The scattered electrons interfere 
just as scattered x-rays interfere, giving a maximum intensity at angles where the path 
difference is an integral number of wavelengths.
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Davisson and Germer observed a broad maximum. The low-energy electrons they 
used did not penetrate very far into the crystal, so the electrons were scattered from 
a relatively small number of planes. Just as a large number of slits in a grating makes 
the maxima narrow, if the electrons scatter from all of the planes in the crystal, the 
electron diffraction maxima become sharp. In 1927, the British physicist George Paget 
Thomson* (1892–1975) performed an electron diffraction experiment using higher-
energy electrons. Instead of a single crystal, his sample was polycrystalline—many 
small crystals with random orientations. In x-ray diffraction, a polycrystalline sample 
produces  maxima in a series of bright concentric rings due to constructive interfer-
ence. Thomson saw a ring pattern for electron diffraction that had maxima at the same 
angles as in an x-ray diffraction pattern when the x-rays had the same wavelength as 
the electrons. These experiments showed that de Broglie’s hypothesis was correct; 
electrons with a wavelength λ = h/p diffract just as do x-rays of the same wavelength.

CHECKPOINT 28.2

When	 an	 electron	 is	 accelerated	 to	 a	 higher	 speed,	 what	 happens	 to	 its	 de	
Broglie	wavelength?

*An interesting historical aside: J. J. Thomson is credited with the discovery of the electron in the 
late 1890s due to his measurement of the electron’s charge-to-mass ratio. His son, G. P. Thomson, 
performed groundbreaking experiments in electron diffraction. The experiments of the father 
showed that electrons are particles; those of his son demonstrated the wave nature of electrons.

Example 28.1

Electron Diffraction Experiment

An electron diffraction experiment is performed using elec-
trons that have been accelerated through a potential differ-
ence of 8.0 kV. (a) Find the de Broglie wavelength of the 
electrons. (b) Find the wavelength and energy of x-ray pho-
tons that would give a diffraction pattern with maxima at the 
same angles.

Strategy The relationship between wavelength and momen-
tum is the same for both electrons and photons, but the relation-
ship between wavelength and energy is not the same. The 
Bragg condition [see Eq. (25-25)] for diffraction maxima in  
x-ray diffraction requires the path difference between x-rays 
reflecting off adjacent planes to be an integral multiple of the 
wavelength. The conditions for interference and diffraction 
maxima and minima always relate path differences to wave-
lengths. So to give maxima at the same angles, the x-rays must 
have the same wavelength as the electrons. We expect the en-
ergy of the x-ray photons to be different from the kinetic energy 
of the electrons—the relationship between momentum and 
 energy is not the same for a photon as for a particle with mass.

Solution (a) If electrons are accelerated through a poten-
tial difference of magnitude 8.0 kV, they have a kinetic 

 energy of 8.0 keV. We need the kinetic energy in SI units to 
find the momentum in SI units:

K = 8000 eV × 1.6 × 10−19 J/eV = 1.28 × 10−15 J

The electron’s kinetic energy (8.0 keV) is small com-
pared with its rest energy (511 keV), so the electron is non-
relativistic—we can use p = mv and K = 1

2mv2. Solving for p 
in terms of K by eliminating the speed v yields

 p = √2mK = √2 × 9.11 × 10−31 kg × 1.28 × 10−15 J

 = 4.83 × 10−23 kg·m/s

The wavelength is then

λ =
h

p
=

6.626 × 10−34 J·s
4.83 × 10−23 kg·m/s

= 1.372 × 10−11 m = 13.7 pm

(b) The x-rays would need to have the same wavelength, 
13.7 pm. The energy of a photon with this wavelength is

E = hf =
hc

λ
=

1.24 keV·nm
0.013 72 nm

= 90.4 keV

Discussion An alternative solution to part (a) does not 
require conversion to SI units. Multiplying both sides of 

continued on next page
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Example 28.1 continued

p = √2mK  by c yields pc = √2mc2K . For an electron,  
mc2 = 511 keV. Then

λ =
h

p
=

hc

pc
=

hc
√2mc2K

=
1.24 keV·nm

√2 × 511 keV × 8.0 keV

 = 0.0137 nm = 13.7 pm

Practice Problem 28.1 A Neutron’s de Broglie 
Wavelength

Find the kinetic energy of a neutron with the same de  Broglie 
wavelength as a 22 keV photon.

Conceptual Example 28.2

Size of Diffraction Pattern and Electron Energy

An electron diffraction experiment is performed on a poly-
crystalline aluminum sample. The electrons produce a ring 
pattern. If the accelerating potential of the electrons is in-
creased, what happens to the radius of the rings? See 
Fig. 28.4, which shows the formation of one of the rings.

Strategy A ring is formed by constructive interference; 
the path difference between electrons reflecting from two 
successive planes is an integral number of wavelengths. As 
the accelerating potential is increased, the wavelength 
changes. Then we determine how ϕ must change to keep the 
extra path length equal to a fixed number of wavelengths.

Solution and Discussion A larger accelerating potential 
gives the electrons a larger kinetic energy and a larger momen-
tum. With a larger momentum, the de Broglie wavelength is 
smaller. For a smaller wavelength, it takes a smaller path dif-
ference to produce constructive interference since the path 

difference must remain equal to a fixed integer times a smaller 
wavelength. From Fig. 28.4b, a smaller path difference is pro-
duced by a smaller ϕ; from Fig. 28.4a, a smaller ϕ makes the 
radius of the ring smaller. Thus, the radius of each of the 
bright rings gets smaller as the electron energy is increased.

Conceptual Practice Problem 28.2 Double-Slit 
Pattern

In a double-slit experiment using a beam of monoenergetic 
electrons (electrons that all have the same kinetic energy) 
instead of light, the same interference pattern is obtained as 
for light. The interference maxima are found at angles satis-
fying d sin θ = mλ [see Eq. (25-17)], where d is the slit sepa-
ration and λ is the de Broglie wavelength of the electron 
beam. What happens to the interference pattern as the 
 accelerating potential is increased?

Screen

Incident
electrons

ϕ

Polycrystalline
sample

To ring at angle ϕ 
(constructive 
interference)

(b)(a)

Incident
beam

ϕ

ϕ

ϕ

To center of ring 
(straight-ahead beam)

Extra path length

Ring at angle ϕ
Plane of atoms

Figure 28.4
(a) One ring in the diffraction 
pattern is formed by electrons 
scattered at an angle ϕ from the 
incident beam. (b) Rays of elec-
trons reflected from two succes-
sive planes of atoms, showing 
the path length difference.

Later, neutron diffraction experiments were performed on crystals; again, the 
results confirmed de Broglie’s hypothesis that λ = h/p. Today, x-ray, electron, and 
neutron diffraction are commonly used tools for probing microscopic structures. There 
are some differences among them. Electrons do not penetrate as well as x-rays, so 
electrons are better for studying microscopic structures of surfaces. X-rays primarily 
interact with the atomic electrons. If a sample is made primarily of lighter elements, 
which have few electrons, x-ray diffraction studies are not as effective. In these cases, 
neutron diffraction is often used. Neutrons interact with the nuclei in the sample; since 
they are electrically neutral they hardly interact with electrons at all. Neutron diffraction 

Start from here



1060 CHAPTER	28 Quantum Physics

is especially useful in determining the position of hydrogen atoms within the structure 
of a protein or other biological macromolecule.

In recent years, interference and diffraction experiments have been performed 
using beams of atoms or molecules. Even beams of “buckyballs,” molecules composed 
of 60 tightly bound carbon atoms and shaped like a soccer ball, have been shown to 
interfere according to quantum theory.

Matter Waves and Probability

Consider a double-slit interference experiment using an electron beam rather than 
light. The interference pattern emerges even if we send only one electron at a time 
toward the slits. Each electron hits the screen as a localized particle and makes a small 
spot, just as a photon does. After many electrons have hit the screen, the interference 
pattern becomes evident—just as for photons (see Fig. 28.2). The interference of the 
matter waves emerging from the two slits determines the probability that an electron 
lands at a particular spot on the screen. Where the matter wave interferes construc-
tively, the probability is high; where it interferes destructively, the probability is low.

The interference pattern is evidence that the electron wave propagates through both 
slits. Suppose we add a detector to record which slit each electron passes through. Such 
a detector always finds that an electron goes through one slit or the other but never 
both. However, when this detector is in place, the interference pattern disappears!

28.3 ELECTRON MICROSCOPES

The resolution of a conventional light microscope is limited by diffraction (see Section 
25.8). Under ideal conditions, the smallest distance on the object that can be resolved 
(distinguished in the image formed by the microscope) is roughly half the wavelength 
of the light. Using 400 nm as the shortest wavelength in the visible part of the spec-
trum, a light microscope can resolve distances of about 200 nm. That’s a large distance 
on the scale of atoms and molecules; the distance between atoms in a solid is typically 
only about 0.2 nm.

To get better resolution, one possibility is to use an ultraviolet microscope. These 
microscopes use wavelengths down to about 200 nm. For wavelengths shorter than 
that, making effective lenses becomes too difficult.

A beam of electrons can easily be made to have a wavelength around 0.2 nm or 
smaller. To make electrons with a wavelength of 0.2 nm, we would need to acceler-
ate them through a potential difference of only 37.4 V. Typically the electrons used 
in an electron microscope are more energetic than that, and so have shorter wave-
lengths. However, the resolution of an electron microscope is also limited by lens 
aberrations— imperfections in the electromagnetic “lenses” used to focus the electron 
beam and form the image.

The workings of an electron microscope can be explained without talking explic-
itly about the wave nature of the electrons. We described light microscopes using 
geometric optics by tracing light rays. Similarly, we can follow the trajectories of 
electrons as they are bent by magnetic lenses and scattered by the sample being stud-
ied. The advantage of the electron microscope over the light microscope is the smaller 
wavelength of the electrons, which extends “geometric electron optics” to much 
smaller objects. A disadvantage is that the electron microscope requires a vacuum.

Transmission Electron Microscope Electron microscopes come in several forms. 
The one closest to the familiar light microscope is called the transmission electron 
microscope, or TEM (Fig. 28.5a,b). When a beam of parallel electrons passes through 
the sample, electrons that are scattered by a point within the sample are focused back 
to a point on a screen by magnetic lenses, forming a real image of the sample on the 
screen. The electrons must pass through the sample without being slowed down appre-
ciably, so the TEM works only for thin samples of less than about 100 nm of thickness. 

CONNECTION:

A double-slit experiment 
with electrons produces an 
interference pattern like the 
one for light.
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The TEM can resolve details as small as 0.2 nm—about 500 times better than an 
ultraviolet microscope with wavelength 200 nm.

Scanning Electron Microscope Another kind of electron microscope, the scan-
ning electron microscope (SEM), uses a magnetic lens to focus a beam of electrons 
onto one point on the sample at a time (Fig. 28.5c,d). These primary electrons knock 
secondary electrons out of the sample; an electron collector detects the number of 
secondary electrons produced. The primary electron beam is swept across the sample 
by a beam deflector. The number of secondary electrons emitted at each spot on the 
sample is measured and fed to a computer that constructs an image of the specimen. 
The resolution of the SEM is not as good as the TEM—about 10 nm at best. But the 

Photographic film,
fluorescent screen,

or CCD camera

(a) (c)

(d) (Image magnified 245x)(Image magnified 9500x)(b)

High-voltage source

Cathode

Objective lens

Vacuum chamber

Electron beam

Condensing lens
Aperture

Accelerating anode

Object
(specimen)

Object
(specimen)

Secondary
electrons

Projection lens

Beam deflector

Amplifier

Monitor

Image

Electron
collector

+

–

+

–

Figure 28.5 Two types of electron microscope. In both types, electrons emitted from a heated filament are acceler-
ated by the electric field between the cathode and the anode. (a) In a TEM, a condensing lens forms a parallel beam 
and an aperture restricts its diameter. After the beam passes through the specimen, the objective lens forms a real 
image. One or more projection lenses magnify the image and project it onto film, a fluorescent screen, or a CCD 
(charge-coupled device) camera (similar to a video camera). (b) Colored transmission electron micrograph of intestinal 
microvilli (green). These structures cover the absorptive surfaces of the cells lining the small intestine. (c) In an SEM, 
the condensing lens forms a narrow beam. The beam deflector is a series of coils that sweep the beam across the 
 sample. The objective lens focuses the electron beam into a small spot on the specimen. Secondary electrons knocked 
out of the specimen at that spot are detected by the electron collector and the electrical signal is fed to a monitor or 
computer. (d) Colorized scanning electron micrograph of the fruit fly claw and pulvillar pad.
©Science Photo Library/Alamy
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SEM doesn’t require thin samples and, since it is sensitive to the surface contour of 
the specimen, it is much better at imaging three-dimensional structures.

Other Electron Microscopes The scanning transmission electron microscope 
(STEM) scans the sample point by point, like the SEM, but it detects the electrons 
transmitted through the sample. Another kind of electron microscope, the scanning 
tunneling microscope (STM), is discussed in Section 28.10.

28.4 THE UNCERTAINTY PRINCIPLE

In the latter part of the nineteenth century, Newtonian mechanics, Maxwell’s equations 
of electromagnetism, and thermodynamics were thought to be so highly developed—
and so well confirmed by experiment—that some scientists thought no new basic laws 
were left to discover. Some people even became complete determinists. Their rationale 
was that the state of the universe at one instant of time (the position and velocity of 
every particle) determined the state at all later times. In principle, the future position 
and velocity of every particle could be calculated using Newton’s laws.

Quantum mechanics does not allow complete determinism. In the double-slit 
 experiments described in Sections 28.1 and 28.2, it is impossible to predict, even in prin-
ciple, where any one photon or electron will appear on the screen. In 1927, the German 
physicist Werner Heisenberg (1901–1976) formulated the Heisenberg  uncertainty 
 principle, which describes the nature of this indeterminacy. Suppose we design an exper-
iment to determine simultaneously the position and momentum of a particle. The uncer-
tainty principle says there are limits to how precisely they can be simultaneously measured, 
even in an ideal experiment. If Δx is the uncertainty in the x- coordinate of position and 
Δpx is the uncertainty in the x-component of the momentum, then

Position-momentum uncertainty principle

 Δx Δpx ≥
1
2

  h (28-4)

Rigorous application of the uncertainty principle requires precise definitions of the 
uncertainty in x and in px. Those definitions are beyond the level of this text. Instead, 
we apply the uncertainty principle only to make rough, order-of-magnitude estimates, 
which means we can get by with rough estimates of the uncertainties.

Why should the precise determination of position and momentum be incompat-
ible? It is a result of the wave-particle duality. In quantum physics a localized particle 
is represented as a wave packet—a wave with a finite extent in space (Fig. 28.6a). 
The momentum of a particle is related to the wavelength. To make a localized wave 
packet, we need to add waves with different wavelengths (Fig. 28.6b). These waves 
cancel one another everywhere except in the wave packet. The shorter the length of 

Figure 28.6 (a) A wave packet representing a localized particle. The uncertainty 
in the particle’s position is the width of the wave packet. (b) These six waves have 
slightly different wavelengths; they are all in phase at the center. Moving away 
from the center, phase differences accumulate due to the differing wavelengths. The 
sum of these six waves is the wave packet in (a). (Adding just these six actually 
produces a recurring packet like a beat pattern. To get a true localized wave packet 
that does not repeat, we need to add an infinite number of waves over a small 
range of wavelengths.) (c) A larger range of wavelengths—around the same average 
wavelength—is needed to form a narrower wave packet like this one. A particle 
with a smaller uncertainty in its position is represented as a wave packet with a 
larger range of wavelengths and therefore a larger uncertainty in its momentum.

(a)

(b)

(c)
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the wave packet, the larger the range of wavelengths that must go into the mix 
(Fig.  28.6c). Equivalently, the smaller the uncertainty in the particle’s position, the 
larger the uncertainty in the momentum. The superposition of waves with a smaller 
range of wavelengths produces a longer wave packet—since the wavelengths are close 
together, they stay in phase with one another over a longer distance. Therefore, the 
smaller the uncertainty in momentum, the larger is the uncertainty in the position.

In Newtonian mechanics, the forces acting on a particle determine the object’s 
motion. There is no fundamental limit to how precisely a particle’s trajectory can be 
calculated or measured. By contrast, the uncertainty principle places a fundamental limit 
on the precision with which the position and momentum can simultaneously be known. 
The more precisely we know the position of a particle at time t, the less precisely its 
momentum at the same instant can be known. Uncertainty in the momentum at time t 
means that we cannot predict precisely where the particle will be at time t + Δt. Thus, 
it is not possible, even in principle, to track the motion of a particle as a function of time.

CHECKPOINT 28.4

Why	is	the	Bohr	model	of	the	hydrogen	atom	incompatible	with	the	uncertainty	
principle?

Example 28.3

Uncertainty in a Single-Slit Experiment

An electron diffraction experiment is performed using a sin-
gle horizontal slit of width a (Fig. 28.7). Let the center of the 
slit be at y = 0. The y-coordinates of the electrons that pass 
through the slit are between y = −a/2 and y = +a/2. Thus, y 
is within ±a/2 of the average position (y = 0), so an estimate 
of the uncertainty in the y-coordinate (Δy) is a/2. (a) What is 
the y-component of the momentum of an electron that leaves 
the slit at angle θ? Write the answer in terms of p and θ. (b) 
Most of the electrons fall within the central diffraction maxi-
mum. Use this fact to estimate the uncertainty Δpy of the 
electrons as they pass through the slit. (c) Find the product 
Δy Δpy. How does it compare with the limiting value given by 
the uncertainty principle?

Strategy For a wide slit (a ≫ λ), we expect little diffrac-
tion; a large uncertainty in y allows for a small uncertainty in 
py, and the electrons travel straight ahead to form a geometric 
shadow. For a narrow slit, the electrons form a diffraction pat-
tern on the screen. The electrons spread out into the diffrac-
tion pattern because their y-components of momentum vary as 
the electrons pass through the slit. The wider the diffraction 
pattern, the greater is Δpy as they pass through the slit.

Solution (a) Figure 28.8 shows the momentum vector 
of an electron moving toward the screen at angle θ. The 
y-component is

py = p sin θ

(b) The angle of the first diffraction minimum is

 sin θ =
λ

a
 (25-22)

Thus, the range of momentum y-components for electrons 
that land in the central maximum is

− 

pλ

a
< py <

pλ

a

continued on next page

a

D

Screen

Electrons
y

x
Figure 28.7
A single-slit elec-
tron diffraction 
 experiment.

py

px

p
θ

Figure 28.8
An electron heading off at an angle θ has a momentum vector p→ 
as shown. Components of p→ are found using a right triangle.
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Example 28.3 continued

The uncertainty in the y-component of momentum is 
approximately

Δpy =
pλ

a

(c) The product of the uncertainties is

Δy Δpy =
a

2
×

pλ

a
=

pλ

2

Since λ = h/p,

Δy Δpy =
ph

2p
=

1
2

 h

This estimate of Δy Δpy is a factor of 2π larger than the 
minimum value required by the uncertainty principle 
(Δy Δpy ≥ 1

2 h) .

Discussion This rough calculation shows that the product 
Δy Δpy is on the order of Planck’s constant h, regardless of 
the width of the slit or the wavelength of the electrons. In ac-
cordance with the uncertainty principle, the two uncertain-
ties are inversely related. A wide slit (Δy large) produces 
little diffraction (Δpy small); a narrow slit (Δy small) pro-
duces a large diffraction pattern (Δpy large).

Practice Problem 28.3 Confined Electron

An electron is confined to a “quantum wire” of length 
150 nm. What is the minimum uncertainty in the electron’s 
momentum component along the length of the wire? What is 
the minimum uncertainty in the electron’s velocity compo-
nent along the length of the wire?

Energy-Time Uncertainty Principle

Another uncertainty principle has to do with energy. If a system (e.g., an atom) is in 
a quantum state for a time interval Δt, then the uncertainty in the energy of that state 
is related to the lifetime of that state (Δt) by

Energy-time uncertainty principle

 ΔE Δt ≥
1
2

 h (28-5)

28.5 WAVE FUNCTIONS FOR A CONFINED PARTICLE

An unconfined particle can have any momentum and energy. In an electron diffraction 
experiment or electron microscope, there is no theoretical restriction on the de Broglie 
wavelength of the electrons used. By contrast, electrons in atoms have only certain 
discrete or quantized energy levels available to them. The difference is due to the 
confinement of the electron. A confined particle has quantized energy levels.

A good analogy is that of a transverse wave on a string. Any wavelength is pos-
sible for a traveling wave on a long string. However, for a standing wave, in which 
the wave is confined to a length L of the string, only certain wavelengths are possible 
(see Section 11.10). If the string is fixed at both ends, the allowed wavelengths are

 λn =
2L

n
 (n = 1, 2, 3, . . .)  (11-23)

For the longest wavelength (λ = 2L), the string vibrates at its lowest possible fre-
quency (the fundamental). The standing wave is a classical example of quantization.

The same thing is true for particles such as electrons. If they are not confined, 
there is no restriction on their de Broglie wavelengths or energies. When they are 
confined, then only certain allowed values of the wavelength and energy are possible.

The wave function y(x, t) for a string wave is the displacement y as a function of 
position along the string (x) and time (t). For the quantum mechanical wave function 
of a particle in one dimension we write ψ(x, t), where ψ is the Greek letter psi. The 
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interpretation of the wave function for a transverse wave on a string is easy: it tells 
how far a certain point on the string is displaced from its equilibrium position. For 
now we defer the question of what ψ stands for.

Particle in a Box

The simplest model of a confined particle is a particle that can only move in one dimen-
sion and is confined by absolutely impenetrable “walls” to a length L. The particle is 
free in the region between x = 0 and x = L, but it cannot leave that region, no matter 
how much energy it has. That is, the potential energy U has a constant value, generally 
chosen to be 0, between x = 0 and x  = L. Outside the box (x < 0 and x > L), the 
potential energy is infinite. This model is called the particle in a box (but remember 
that the “box” is one-dimensional).

The wave function of the particle confined in this way is analogous to a transverse 
wave on a string fixed at both ends, so we obtain the same result for the possible 
wavelengths:

x
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0.2L 0.4L 0.6L 0.8L L

x
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0.2L 0.4L 0.6L 0.8L L

x
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n = 4

n = 3
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0

0

0

0

0

0

Figure 28.9 Wave functions 
for a particle in a box (n = 1, 
2, 3, and 4).

CONNECTION:

Wavelengths for the particle 
in a box are the same as for 
waves on a string fixed at 
both ends (see Section 11.10).

Wavelengths for the particle in a box

 λn =
2L

n
 (n = 1, 2, 3,  . . .)  (28-6)

The de Broglie wavelength of the particle is related to its momentum:

 pn =
h

λn

=
nh

2L
 (28-7)

Figure 28.9 shows the wave functions for the ground state (the quantum state of low-
est energy) and the first three excited states—that is, for n = 1, 2, 3, and 4.

What is the energy of the confined particle? The energy is the sum of the poten-
tial and kinetic energies. The potential energy is the same everywhere inside the box; 
for simplicity we choose U = 0 inside the box. The kinetic energy can be found from 
the momentum:

 K =
1
2

 mv2 =
(mv)2

2m
=

p2

2m
 (28-8)

 E = K + U =
p2

2m
+ 0 =

n2h2

8mL2  (28-9)

Just as the string wave has a fundamental mode with the lowest possible frequency, 
the confined particle has a minimum possible energy in its ground state (n = 1). The 
energy of the ground state is

 E1 =
h2

8mL2  (28-10)

The existence of a nonzero minimum energy has important ramifications. A con-
fined particle cannot have zero kinetic energy. A particle confined to a smaller box has 
a larger ground-state energy. This conclusion is supported by the uncertainty principle: 
a smaller box means a smaller uncertainty in position (Δx ≈ L/2) and therefore a greater 
uncertainty in momentum. Although the magnitude of the momentum is well defined 
for the particle in a box (p = h/λ), the momentum x-component can be either +p or −p. 
Thus, Δpx ≈ h/(2L) for the ground state. The product of the uncertainties is

 Δx Δpx ≈
1
2

 L ×
h

2L
=

1
4

 h =
π

2
 h (28-11)

If the uncertainty principle is used to estimate the ground-state energy for the particle in 
a box, using estimates for the two uncertainties, the result is only off by a factor of π.
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The energies of the excited states are

 En = n2E1 (28-12)

Just as for the H atom, the particle in a box can make a transition from an excited 
state n to a lower energy state m by radiating a photon with energy

 E = En − Em (28-13)

Note that the energy levels get farther apart as n increases. In contrast, the energy 
levels of the H atom get closer together as n increases. Why the difference? The 
particle in a box is confined to the same length L, no matter how much energy it has. 
The potential energy that confines the electron in the H atom changes gradually 
(Fig. 28.10). For electrons with higher energies, the box is longer.

Finite Box

A slightly more realistic model of a particle confined in one dimension is the particle 
in a finite box. In this model, the “walls” are not impenetrable; as shown in Fig. 28.11, 
the potential energy outside the box (U = U0) is higher than that inside the box  
(U = 0). For a particle in a finite box, the energies are still quantized for bound states 
(E < U0), but the number of bound states is finite. If the particle has an energy 
E greater than U0, then it is no longer confined to the box. For these states, since the 
particle is not confined to the box, a continuum of wavelengths and energies is 
 possible.

In a finite box, the wave functions for bound states do not have to be zero at the 
walls and everywhere outside; instead, they extend past the walls a bit, decaying 
exponentially as the distance from the wall increases (Fig. 28.12). According to clas-
sical physics, a particle with E < U0 can never be in the region outside the box since 
that would make the kinetic energy negative. Many experiments have verified that the 
wave function of a confined particle does extend outside the box, in accordance with 
the predictions of quantum mechanics.

Interpretation of the Wave Function

In 1925, Austrian physicist Erwin Schrödinger (1887–1961) obtained de Broglie’s 
thesis concerning the wavelike nature of particles. Within a few weeks, Schrödinger 
formulated a fundamental equation of quantum mechanics. Quantum-mechanical wave 
functions are solutions of the Schrödinger equation.

The statistical interpretation of the wave function is due to the German physicist 
Max Born (1882–1970):

x0
U

Length of box 
for electron with 
lower energy

Length 
of box for 
electron with 
higher energy

Figure 28.10 Potential 
energy of the electron in a 
hydrogen atom as a function of 
x; we assume for simplicity that 
the electron is confined in a 
one-dimensional box. The 
nucleus is at x = 0.
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Figure 28.11 Potential energy 
for a particle in a finite box.
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Figure 28.12 Wave functions 
for a particle in a finite box  
(n = 1, 2, and 3).

CONNECTION:

This statistical interpretation 
of the wave function is the 
same as for EM waves: the 
probability of finding a pho-
ton in some region of space is 
proportional to the square of 
the wave function (the electric 
field amplitude) in the region.

Born’s Law

The probability of finding a particle in a certain location is proportional to the 
square of the magnitude of the wave function: P ∝ ∣ψ∣2.

To be more precise, we can’t ever expect to find a particle exactly at a single 
 mathematical point; rather, we can calculate the probability of finding a particle in a 
small region of space. In one dimension, ∣ψ(x)∣2Δx is the probability of finding the 
particle between x and x + Δx.

Quantum physics is probabilistic in a way that classical physics is not. A particle’s 
future is not completely determined by its present. Two particles, even if identical and 
in identical environments, may not behave in the same way. Two hydrogen atoms in 
the same excited state may not return to the ground state in the same way or at the 
same time. One may stay in the excited state longer than the other, and they may take 
different intermediate steps. The best we can do is to find the probability per unit 
time that photons of various energies are radiated.
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Probability is central in nuclear physics (see Chapter 29). A collection of identical 
radioactive nuclei, for instance, decay at different times and possibly by different processes. 
We can predict and measure the half-life—the time interval during which half of the nuclei 
decay—but there is no way to know which nuclei will decay when, or by which process.

28.6 THE HYDROGEN ATOM: WAVE FUNCTIONS 
AND QUANTUM NUMBERS

The quantum picture of the hydrogen atom is quite different from Bohr’s model. The 
electron doesn’t orbit the proton in a circular orbit—or any other kind of orbit. The best 
we can expect is to calculate the probability of finding the electron in a given place.

You may have seen the electron depicted as an electron cloud similar to Fig. 28.13. 
The electron cloud is one way to represent the electron’s probability distribution. But the 
electron is not spread out into a fuzzy cloud; any measurement to locate the electron 
would find a point particle. (If the electron is not a point particle, experiments have shown 
that its size is less than 10−17 m, which is 1

100 the size of the proton and less than 
10−7 times the size of an atom.) Although the electron does not follow an orbit, it does 
have kinetic energy and can have angular momentum associated with its motion.

Since an electron bound to a nucleus is confined in space to the region surround-
ing the nucleus, its energies are quantized. A confined particle in a stationary state 
of definite energy is a standing wave. The wave function for the electron is a three- 
dimensional standing wave.

The potential energy for an electron at a distance r from the proton is

 U = −
ke2

r
 (17-3)

where k = 1/(4πϵ0) = 8.99 × 109 N·m2/C2 is the Coulomb constant. The electron in 
the ground state has energy E1 = −13.6 eV, just as in the Bohr model. As you can 
show in Problem 82, the electric potential energy is equal to E1 at a distance 2a0 from 
the nucleus (Fig. 28.14). (Recall that a0 = h2/(meke2) = 52.9 pm is the “Bohr radius” 
for the hydrogen atom.) Since E = K + U, the kinetic energy at r = 2a0 is zero. 
According to classical physics, the electron could never be found at distances r > 2a0; 
but the wave function of the electron extends into the region r > 2a0, just as the wave 
function extends past the walls of a finite box.

Since the potential energy is not constant, the wave function does not have a 
single, constant wavelength. The wave function ψ (r) for the ground state (n = 1) is 
shown in Fig. 28.15a. Although the wave function has its maximum value at r = 0, 
the distance from the nucleus at which the electron is most likely to be found is not 
0 but a0 (see Fig. 28.15b,c).

Quantum Numbers

It turns out that the quantum state of the electron is not determined by n alone. 
Specifying the quantum state requires four quantum numbers. The integer n is called 
the principal quantum number. The energy levels are the same as the Bohr energies:

 En =
E1

n2 , E1 = − 

mek
2e4

2h2 = −13.6 eV (28-14)

For a given principal quantum number n, the electron can have n different quan-
tized magnitudes of orbital angular momentum L

→
.

Figure 28.13 Electron cloud 
representation of the ground 
state of the hydrogen atom. 
The cloud represents the prob-
ability  density—the electron is 
more likely to be found where 
the cloud is darker. The cloud 
is centered on the nucleus 
(not  shown).

U

E1

r2a0

K = 0

a0

Figure 28.14 The graph 
shows the electric potential 
energy of the electron as a 
function of distance r from the 
nucleus (U = −ke2/r). E1 is the 
ground-state energy. Since  
E = K + U, the kinetic energy 
at any distance r is the differ-
ence between the horizontal 
line representing E1 and the 
curve representing U(r).

Orbital angular momentum quantum number

 L = √ℓ(ℓ + 1)h, ℓ = 0, 1, 2, . . . , n − 1 (28-15)
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For a given n, the orbital angular momentum quantum number ℓ can be any 
integer from 0 to n − 1. In the ground state (n = 1), ℓ = 0 is the only possible value; 
the angular momentum in the ground state must be L = 0. For higher n, there are 
states both with nonzero and zero L. Note that L is called the orbital angular momen-
tum because it is associated with the motion of the electron, but remember that the 
electron does not follow a well-defined orbit.

The orbital angular momentum quantum number ℓ determines only the magnitude 
L of the orbital angular momentum; what about the direction? The direction also turns 
out to be quantized. For a given n and ℓ, the component of L

→
 along some direction 

that we’ll call the z-axis can have one of 2ℓ + 1 quantized values:

Orbital magnetic quantum number

 Lz = mℓh, mℓ = −ℓ, −ℓ + 1, . . . , ℓ − 1, ℓ (28-16)

Spin magnetic quantum number

 Sz = msh, ms = ± 

1
2

 (28-17)

The orbital magnetic quantum number mℓ can be any integer from −ℓ to +ℓ.
Figure 28.16 shows the probability density ∣ψ∣2 for several quantum states of the 

hydrogen atom. Notice that the states with zero orbital angular momentum (ℓ = 0) 
are spherically symmetrical, whereas ℓ ≠ 0 states are not.

In addition to the angular momentum associated with its motion, an electron has 
an intrinsic angular momentum S

→
 whose magnitude is S = (√3/2)h. Originally, it was 

thought that the electron was spinning about an axis—we still call S the spin angular 
momentum—but it can’t be. The electron is, as far as we know, a point particle; to 
generate this angular momentum by spinning, the electron would have to be large and 
would have to violate relativity. The spin angular momentum is an intrinsic property 
of the electron, like its charge or mass.

Electrons always have the same magnitude spin angular momentum, but the 
z- component of S

→
 has two possible values:

P(r)

(c)
1 2 3 4 5 r/a0

4  r2

|   |2

(b)
1 2 3 4 5 r/a0

ψ

π

r/a0
(a)

10 0 02 3 4 5 

ψ

Figure 28.15 (a) Ground-state wave function of the electron in the H atom. (b) Graphs of ∣ ψ ∣2 and 4πr2, the two 
competing factors that determine the probability of finding the electron at a given distance from the proton. ∣ ψ ∣2 is the 
probability per unit volume. The volume of space at distances between r and r + Δr from the nucleus is the area of a 
thin spherical shell (4πr2) times its thickness Δr. (c) Graph of 4π  r2∣ ψ ∣2, which is proportional to the probability of find-
ing the electron at distances between r and r + Δr from the nucleus. The probability is maximum at r = a0.

The two values of the spin magnetic quantum number ms are often referred to as spin 
up and spin down. (The quantum numbers mℓ and ms are called magnetic because the 
energy of a state depends on their values when the atom is in an external magnetic field.)

The state of the electron in a hydrogen atom is completely determined by the 
values of the four quantum numbers n, ℓ, mℓ, and ms.

n = 2, � = m� = 0

n = 1, � = m� = 0

n = 3, � = m� = 0

n = 2, � = 1, m� = 0

n = 3, � = 1, m� = 0

Figure 28.16 Electron cloud 
representations of the probabil-
ity density ∣ ψ ∣2 for a few of the 
quantum states of the hydrogen 
atom. The sketches show the 
probability densities in a single 
plane. For an idea of what the 
electron clouds look like in 
three dimensions, imagine 
rotating each of the sketches 
about a vertical axis.
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CHECKPOINT 28.6

List	the	quantum	numbers	for	all	possible	electron	states	in	the	hydrogen	atom	
with	principal	quantum	number	n	=	2.

28.7 THE EXCLUSION PRINCIPLE; ELECTRON CONFIGURATIONS 
FOR ATOMS OTHER THAN HYDROGEN

According to the Pauli exclusion principle—named after the Austrian-Swiss physicist 
Wolfgang Pauli (1900–1958)—no two electrons in an atom can be in the same quantum 
state. The quantum state of an electron in any atom is specified by the same four quan-
tum numbers used for hydrogen: n, ℓ, mℓ, and ms (Table 28.1). However, the electron 
energy levels are not the same as those of hydrogen. In atoms with more than one elec-
tron, interactions between electrons must be taken into account. In addition, the nuclear 
charge varies from one element to another. Thus, the same set of four quantum numbers 
do not correspond to the same energy level from one species of atom to another.

Shells and Subshells The set of electron states with the same value of n is called 
a shell. Each shell is composed of one or more subshells. A subshell is a unique 
combination of n and ℓ. Subshells are often represented by the numerical value of n 
followed by a lowercase letter representing the value of ℓ. The letters s, p, d, f, g, and 
h stand for ℓ = 0, 1, 2, 3, 4, and 5, respectively (Table 28.2). For example, 3p is the 
subshell with n = 3 and ℓ = 1. The letters s, p, and d came from the appearance of 
the associated spectral lines long before the advent of quantum theory. The dominant 
or principal spectral lines came from the ℓ = 1 subshell; the spectral lines from the 
ℓ = 0 subshell were especially sharp in appearance; and those from the ℓ = 2 sub-
shell looked more diffuse than the others.

Since the orbital angular momentum quantum number ℓ can be any integer from 
0 to n − 1, with n possible values, there are n subshells in a given shell. Thus, there 
are three subshells in the n = 3 shell: 3s, 3p, and 3d. A superscript following the 
subshell label indicates how many electrons are present in that subshell. This compact 
notation represents the configuration of electrons in an atom. For example, the ground 
state of the nitrogen atom is 1s22s22p3; it has two electrons in the 1s subshell, two in 
the 2s subshell, and three in the 2p subshell.

Table 28.1 Quantum Numbers for Electron States in an Atom

Symbol Quantum Number Possible Values

n principal 1, 2, 3, . . .
ℓ orbital angular momentum 0, 1, 2, . . . , n − 1

mℓ orbital magnetic −  ℓ, −  ℓ + 1, . . . , ℓ − 1, ℓ

ms spin magnetic −1
2, +1

2

Table 28.2 Electron Subshells Summarized

ℓ = 0 1 2 3 4 5
Spectroscopic notation s p d f g h

Number of states in subshell 2 6 10 14 18 22
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Orbitals Each subshell, in turn, consists of one or more orbitals, which are speci-
fied by n, ℓ, and mℓ. Since mℓ can be any integer from −ℓ to +ℓ, there are 2ℓ + 1 
orbitals in a subshell. Therefore, s subshells have only one orbital, p subshells have 
three orbitals, d subshells have five orbitals, and so forth. Each orbital can accom-
modate two electrons: one spin up (ms = +1

2)  and one spin down (ms = − 
1
2) . It can 

be shown (Problem 72) that

the number of electron states in a subshell is 4ℓ + 2,  
and the number of states in a shell is 2n2 (28-18)

 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s (28-19)

Ground-State Configuration The ground-state (lowest energy) electronic con-
figuration of an atom is found by filling up electron states, starting with the lowest 
energy, until all the electrons have been placed. According to the exclusion principle, 
there can only be one electron in each state. Generally, the subshells in order of 
increasing energy are

However, there are some exceptions. The energies of the subshells are not the same 
in different atoms; different nuclear charges and the interaction of the electrons make the 
energy levels differ from one atom to another. So, for example, the ground state of chro-
mium (Cr, atomic number 24) is 1s22s22p63s23p64s13d5 instead of 1s22s22p63s23p64s23d  4. 
Similarly, the ground state of copper (Cu, atomic number 29) is 1s22s22p63s23p64s13d10 
instead of 1s22s22p63s23p64s23d  9. There are only 8 elements among the first 56 that 
are exceptions to the subshell order in Eq. (28-19):

 Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag (28-20)

Many more exceptions are found in the electron configurations of elements with 
atomic numbers greater than 56.

Example 28.4

Electron Configuration of Arsenic

What is the ground-state electron configuration of arsenic 
(atomic number 33)?

Strategy Arsenic has atomic number 33, so there are 33 
electrons in the neutral atom. Arsenic is not one of the above- 
mentioned exceptions for atomic numbers ≤ 56, so subshells 
are filled in the order listed in Eq. (28-19) until the total 
number of electrons reaches 33. A subshell can hold up to  
4ℓ + 2 electrons. Each s (ℓ = 0) subshell holds a maximum 
of 4 × 0 + 2 = 2 electrons, each p (ℓ = 1) subshell holds 
4 × 1 + 2 = 6, and each d (ℓ = 2) subshell holds 4 × 2 + 2 = 10.

Solution We fill up subshells and keep track of the total 
number of electrons: 1s22s22p63s23p64s23d10 has 2 + 2 + 6 + 
2 + 6 + 2 + 10 = 30 electrons. Then the remaining 3 go into 
the subshell with the next highest energy—4p. The ground-
state configuration of arsenic is therefore

1s22s22p63s23p64s23d104p3

Discussion To double-check an electron configuration 
for an element that is not one of the exceptions:

 ∙ Add up the total number of electrons.
 ∙ Check that the subshells go in the order of Eq. (28-19).
 ∙ Make sure that all subshells except the last are full 

(s2, p6, d10).

If the configuration passes those three tests, it is correct.

Practice Problem 28.4 Electron Configuration of 
Phosphorus

What is the electron configuration of phosphorus (atomic 
number 15)?
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Filling the Orbitals If a subshell is not full, how are the electrons distributed among 
that subshell’s orbitals? Recall that a subshell contains 2ℓ + 1 orbitals and each orbital 
contains two electron states. As a rule, electrons do not double up in an orbital until each 
orbital has one electron in it. The two electrons in an orbital have the same spatial 
 distribution—the same electron cloud. Thus, the two electrons in a single orbital are closer 
together, on average, than are two electrons in different orbitals. Due to the electrical 
repulsion, the energy is lower if the electrons are in different orbitals, since they are farther 
apart. For example, the three 4p electrons in arsenic (Example 28.4) are in different orbit-
als in the ground state: one has mℓ = 0, one has mℓ = +1, and one has mℓ = −1.

Application: Understanding the Periodic Table

The elements in the periodic table (see Appendix B) are arranged in order of increas-
ing atomic number Z. The nucleus of an element has charge +Ze and the neutral atom 
has Z electrons. Furthermore, the elements are arranged in columns according to the 
configuration of their electrons (Table 28.3). Elements with similar electronic con-
figurations tend to have similar chemical properties.

Although the energy level of a subshell differs from one atom to another, Fig. 28.17 
gives a general idea of the energies of the various atomic subshells. Note the larger than 
usual spacing between each s-subshell and the subshell below it. The s-subshell is the 

Table 28.3 The Periodic Table Organizes the Elements According to Electronic Configuration

1A 2A 3B–8B, 1B, 2B 3A 4A 5A 6A 7A 8A

Alkali Metals Alkaline Earths
Transition Elements,  

Lanthanides, and Actinides Halogens Noble Gases
s1 s2 d  ns2, d  ns1, or f    md  ns2 s2p1 s2p2 s2p3 s2p4 s2p5 s2p6 (except He)

The periodic table of the elements is arranged in columns by electronic configuration. Elements with similar electronic configurations tend to have 
similar chemical properties. The table lists only the subshells beyond the configuration of the previously occurring noble gas.

1s 2

2s 2

2p 6

3s 2
3p 6

4s 2
3d 10
4p 6

5s 2
4d 10
5p 6
6s 2
4f 14
5d 10
6p 6
7s 2
5f 14
6d 10

2

8

8

18

18

32

32

=

=

=

=

=

=

=

2
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18
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54

86

Helium

Neon

Argon

Krypton

Xenon

Radon
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+
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+
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Total number of electrons
in a stable noble 
gas configurationSubshell
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energy
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Figure 28.17 Energy level 
diagram for atomic subshells. 
The energies of the subshells 
differ from one atom to 
another, but this diagram gives 
a general idea of the relative 
spacing of the energies. The 
subshells are filled from the 
bottom (lowest energy) up.
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lowest energy subshell in a given shell. When starting a new shell (with a higher value 
of n), the electrons are farther from the nucleus and more weakly bound. The most 
stable electronic configurations—those that are difficult to ionize and are chemically 
 nonreactive—are those that have all the subshells below an s-subshell full. Elements with 
this stable configuration are called the noble gases (Group 8A). Helium has configuration 
1s2—the only subshell below 2s is full. The rest of the noble gases have a full p-subshell 
as their highest energy subshell: neon (all subshells below 3s full), argon (full below 4s), 
krypton (full below 5s), xenon (full below 6s), and radon (full below 7s).

The energy required to excite a helium atom into its first excited state (1s12s1) is 
quite large—about 20 eV—due to the large energy gap between the 1s and 2s subshells. 
The energy required to excite a lithium atom into its first excited state is much smaller 
(about 2 eV). Lithium and the other alkali metals (Group 1A) have one electron beyond 
a noble gas configuration. As a shorthand, we often write the spectroscopic notation 
only for the electrons in an atom that are beyond the configuration of a noble gas, since 
only those electrons participate in chemical reactions; thus, lithium’s configuration is 
[He]2s1, sodium’s is [Ne]3s1, and so on. The single electron in the s-subshell is quite 
weakly bound, so it can easily be removed from the atom, making the alkali metals 
highly reactive. They can easily give up their “extra” electron to achieve a noble gas 
configuration as an ion with charge +e. Valence is the number of electrons that an atom 
will gain, lose, or share in chemical reactions, so alkali metals have valence +1.

The alkali metals form ionic bonds with the highly reactive halogens (Group 7A), 
which are one electron shy of a noble gas configuration. For instance, chlorine  
(Cl, [Ne]3s23p5) needs to gain only one electron to have the electron configuration of the 
noble gas argon (Ar, [Ne]3s23p6). Thus, the halogens have valence −1. Sodium can give 
its weakly bound electron to chlorine, leaving both ions (Na+ and Cl−) in stable noble gas 
configurations. The electrostatic attraction between the two forms an ionic bond: NaCl.

The alkaline earths (Group 2A) all have a full s-subshell (s2) beyond a noble gas 
configuration. They are not as reactive as the alkali metals, since the full s-subshell 
lends some stability, but they can give up both s electrons to achieve a noble gas 
configuration, so alkaline earths usually act with valence +2.

Toward the middle of the periodic table, the chemical properties of elements are 
more subtle. Covalent bonds tend to form when two or more elements have unpaired 
electrons in orbitals that they can share. Carbon is particularly interesting. Its ground 
state is 1s22s22p2. The two 2p electrons are in different orbitals; then there are two 
unpaired electrons and carbon in the ground state has a valence of 2. However, it 
takes only a small amount of energy to raise a carbon atom into the state 1s22s12p3. 
Now there are four unpaired electrons (the 2s orbital and the three 2p orbitals each 
have one electron). Thus, carbon can have a valence of 4 as well.

In the groups numbered 1A, 2A, . . . , 7A, the numeral before the “A” represents 
the number of electrons beyond a noble gas configuration. In the transition elements, 
a d-subshell is being filled; their electronic configurations are usually [noble gas]d  ns2 
but sometimes [noble gas]d  ns1, where 0 ≤ n ≤ 10. In the lanthanides and the actinides, 
an f-subshell is being filled; their electronic configurations are [noble gas]   f   md  ns2, 
where 0 ≤ m ≤ 14 and 0 ≤ n ≤ 10. The d- and f-subshells participate less in chem-
ical reactions than the s- and p-subshells, so the chemical properties of the transition 
elements, lanthanides, and actinides are chiefly based on their outermost s-subshell.

28.8 ELECTRON ENERGY LEVELS IN A SOLID

An isolated atom radiates a discrete set of photon energies that reflect the quantized 
electron energy levels in the atom. Although a gas discharge tube contains a large 
number of gas atoms (or molecules), the pressure is low enough that the atoms are, 
on average, quite far apart. As long as the wave functions of electrons in different 
atoms do not overlap appreciably, each atom radiates photons of the same energies as 
would a single isolated atom.
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On the other hand, solids radiate a continuous spectrum rather than a line spec-
trum. What has happened to the quantization of electron energies? The energy levels 
are still quantized, but they are so close together that in many circumstances we can 
think of them as continuous bands of energy levels. A band gap is a range of ener-
gies in which no electron energy levels exist (Fig. 28.18).

Constructing the electronic ground state of a solid is similar to constructing the 
ground state of an atom: the electron states are filled up in order of increasing energy 
starting from the lowest energy states, according to the exclusion principle. A solid 
at room temperature isn’t in the ground state, but its electron configuration is not very 
different from the ground state; the extra thermal energy available promotes a small 
fraction of the electrons (still a large number, though) into higher energy levels, leav-
ing some lower energy states vacant. The energy range of electron states that are 
thermally excited is small—of the order of kBT, where kB is the Boltzmann constant 
(kB = 1.38 × 10−23 J/K = 8.62 × 10−5 eV/K).

Conductors, Semiconductors, and Insulators

The ground-state electron configuration (i.e., the configuration at absolute zero) of a 
solid determines its electrical conductivity. If the highest-energy electron state filled 
at T = 0 is in the middle of a band, so that this band is only partially filled, the solid 
is a conductor (Fig. 28.19). In order for current to flow, an electric field (perhaps due 
to a battery connected to the conductor) must be able to change the momentum and 
energy of the conduction electrons; this can only happen if there are vacant electron 
states nearby into which the conduction electrons can make transitions. Since the band 
is only partly full, there are plenty of available electron states at energies only slightly 
higher than the highest occupied.

On the other hand, if the ground-state configuration fills up the electron states 
right to the top of a band, then the solid is a semiconductor or an insulator. The dif-
ference between the two depends on how the size of the band gap Eg above the 
completely occupied band (the valence band) compares with the available thermal 
energy (≈ kBT) and thus depends on the temperature of the solid.

Most materials considered semiconductors at room temperature have band gaps 
between about 0.1 eV and 2.2 eV. The technologically most important semiconductor, 
silicon, has a gap of 1.1 eV, which is about 40 times the available thermal energy at 
room temperature (≈ 0.025 eV). The number of electrons excited to higher energy 
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Figure 28.18 Electron ener-
gies in a solid form bands of 
closely spaced energy levels. 
Band gaps are ranges of energy 
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Figure 28.19 Electron energy bands in (a) a conductor, (b) a semiconductor, and (c) an insulator. Horizontal lines 
indicate electron energy levels; the darker lines are those levels that are occupied by electrons. In a semiconductor at 
room temperature (b), the valence band is mostly full but a relatively small number of electrons are thermally excited 
into the conduction band, leaving some vacancies near the top of the valence band.
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states is much smaller than in a conductor, since there are no available energy levels 
nearby in the same band. The only electrons that can carry current are those promoted 
to the mostly empty band above the gap (the conduction band).

Because a relatively small number of electrons move into the conduction band, 
an equal number of vacant electron states exist near the top of the valence band. 
Electrons in nearby states can easily “fall” into these holes, filling one vacancy and 
creating another. The holes act like particles of charge +e that, in response to an 
external electric field, move in a direction opposite that of the conduction electrons. 
The electric current in a semiconductor has two components: the electron current and 
the hole current.

28.9 LASERS

A laser produces an intense, parallel beam of coherent, monochromatic light. The 
word laser is an acronym for light amplification by stimulated emission of radiation.

Stimulated Emission

When a photon has energy ΔE = E′ − E, where E′ is a vacant energy level in an 
atom and E is a lower energy level that is filled, the photon can be absorbed, kicking 
the electron up into the higher energy level (Fig. 28.20a). If the higher energy level 
is filled and the lower one is vacant, the electron can drop into the lower energy level 
by spontaneously emitting a photon of energy ΔE (Fig. 28.20b).

In addition to absorption and spontaneous emission, a third interaction between 
an atom and a photon was first proposed by Einstein in 1917. Called stimulated 
emission (Fig. 28.20c), this process is a kind of resonance. If the electron is in the 
higher energy level and the lower level is vacant, an incident photon of energy ΔE 
can stimulate the emission of a photon as the electron drops to the lower energy level. 
The photon emitted by the atom is identical to the incident photon that stimulates the 
emission: they have the same energy and wavelength, move in the same direction, and 
are in phase with each other.

If a cascade of stimulated emissions occur, the number of identical photons 
increases—the light amplification in the acronym laser. The beam is coherent because 
the photons are all in phase; the beam is monochromatic because the photons all have 
the same wavelength; and the beam is parallel because the photons all move in the 
same direction.

(c) Stimulated emission

E

(b) Spontaneous emission

E

(a) Absorption

E ˊ

E ˊ

E ˊ

E

Electron transitionIncoming photon Outgoing photon(s)Figure 28.20 Absorption, 
spontaneous emission, and 
stimulated emission of a photon 
by an atom. All of the photons 
have energy E′ − E (the differ-
ence between the two energy 
levels). For a photon to be 
emitted, either spontaneously or 
when stimulated by an incom-
ing photon, the electron must 
initially be in the higher energy 
level E′. In stimulated emis-
sion, an incident photon of 
energy E′ − E stimulates the 
atom to emit a photon. The two 
photons are identical in energy, 
phase, and direction.
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Metastable States

How can a cascade of stimulated emissions occur when most of the atoms are in their 
ground states, with the electrons populating the lowest energy levels? An atom in an 
excited state returns to the ground state quickly by spontaneous emission of a photon. 
In such circumstances, the probability that a photon of energy ΔE stimulates emission 
is extremely small, because very few of the atoms are in the excited state; the photon 
is overwhelmingly more likely to be absorbed by an atom in the ground state.

To produce a cascade of identical photons, stimulated emission must be more 
likely than absorption: more of the atoms must be in the higher-energy state than are 
in the lower-energy state. Since this is the reverse of the usual case, it is called a 
population inversion. A population inversion is difficult to achieve if the higher-
energy state is short lived—that is, if the atom quickly emits a photon. However, some 
excited states—called metastable states—last for a relatively long time before spon-
taneous emission occurs. If atoms can be pumped up into a metastable state fast 
enough, a population inversion can occur.

The Ruby Laser

One way to achieve a population inversion is called optical pumping. Incident light of 
the correct wavelength is absorbed, causing the atoms to make transitions into a short-
lived excited state, from which the atoms spontaneously decay to the metastable state. 
The ruby laser (Fig. 28.21a), developed in 1960, uses optical pumping. Ruby is an alu-
minum oxide crystal (sapphire) in which some of the aluminum atoms are replaced by 
chromium atoms. The energy levels of the chromium ion Cr3+ are shown in Fig. 28.21b. 
The state labeled Em is a metastable state of energy 1.79 eV above the ground state E0. 
At an energy of about 2.25 eV above the ground  state, a band of closely spaced energy 
levels E* exists. If an atom excited to one of the E* energy levels quickly decays to the 
metastable Em state, the atom remains in the metastable state for a relatively long time.

E0 = 0
Ground state of chromium ion

(a)

(b)

E* = 2.25 eV

Absorption

Electron

Stimulated
emission

2.25 eV

Em = 1.79 eV
Metastable state

Spontaneous transition

1.79 eV1.79 eV

Power
supply

High-intensity
xenon flash lamp Ruby rod

Fully silvered end Partially silvered endPolished aluminum casing
to reflect light inward

Laser beam 

Figure 28.21 (a) A ruby laser. (b) Energy level diagram for a ruby laser. Optical pumping occurs when incident 
2.25 eV photons are absorbed by the chromium ion, leaving it in one of the excited states E*. The ion can then decay 
to the metastable state Em. While the ion is in the metastable state, a 1.79 eV photon passing by can stimulate emission 
of an identical 1.79 eV photon.
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To make a laser, a ruby rod has its ends polished and silvered to become mirrors. 
One end is partially transparent. A high-intensity flash lamp coils around the rod. The 
lamp produces a series of rapid, high-intensity bursts of light. Absorption of light with 
wavelength 550 nm (photon energy 2.25 eV) pumps Cr3+ ions to the E* states, from 
which some spontaneously decay to the metastable state Em. (Others spontaneously 
decay right back to the ground state.) Strong optical pumping results in a population 
inversion in which the number of ions in the metastable state exceeds the number in 
the ground state. Eventually a few ions decay from the metastable state to the ground 
state by spontaneously emitting photons of wavelength 694 nm (energy 1.79 eV, in 
the red part of the spectrum). These photons then cause stimulated emission by other 
chromium ions in the metastable state. Only photons emitted parallel to the axis of 
the rod are reflected back and forth many times by the mirrors at the ends to continue 
stimulating emissions. Some of these photons escape through the end of the rod that 
is partially silvered to form a narrow, intense, coherent beam of light.

Other Lasers

Similar to the ruby laser, the Nd:YAG laser consists of an optically pumped rod. 
Nd:YAG is yttrium aluminum garnet (YAG), a colorless crystal once used to make 
imitation diamonds, into which some neodymium atoms (Nd) have been introduced 
as impurities. The Nd ions have a metastable state suitable for lasing. Unlike ruby, 
which can only operate as a pulsed laser, Nd:YAG can operate either as a continuous 
beam or as a pulsed beam (see Conceptual Question 11). The Nd:YAG laser can 
produce a high-power beam at wavelength 1064 nm (in the infrared); it is commonly 
used in industry and in medicine.

Helium-neon (He-Ne) lasers are commonly used in school laboratories and in 
older barcode readers. A gas discharge tube contains a low pressure mixture of helium 
and neon. The He-Ne laser is electrically pumped: the electrical discharge excites 
helium atoms into a metastable state with energy 20.61 eV above the ground state 
(Fig. 28.22). Neon has a metastable state 20.66 eV above its ground state—0.05 eV 
higher than the energy of the metastable state of helium. An excited helium atom can 
make an inelastic collision with a neon atom in the ground state, leaving the neon 
atom in its metastable state and returning the helium atom to its ground state; the 
extra 0.05 eV of energy comes from the kinetic energies of the atoms. Stimulated 
emission leaves the atom in an excited state of energy 18.70 eV; spontaneous transi-
tions quickly take it back to the ground state.

The carbon dioxide laser, which produces an infrared beam (10.6 μm wavelength), 
is similar in operation to the He-Ne laser. A gas discharge tube contains a low-pressure 
mixture of CO2 and N2. The N2 molecule is excited by the electrical discharge; the 
CO2 molecule is excited into a metastable state by colliding with an excited N2 mol-
ecule. The most powerful continuous wave lasers in common use are carbon dioxide 

Helium energy levels

Electrical
pumping

20.61 eV

Helium
ground state

Neon energy levels

Stimulated
emission

Spontaneous transition

Spontaneous
transition

20.66 eV
Metastable state

18.70 eV

Neon
ground state

Collision

Figure 28.22 Simplified 
energy level diagram for the 
He-Ne laser.
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lasers; the power of a single beam can exceed 10 kW. An almost perfectly parallel 
beam can be focused onto a very small spot, allowing CO2 lasers to cut, drill, weld, 
and machine the hardest metal with ease. CO2 lasers are also widely used in medicine.

Semiconductor lasers are small, inexpensive, efficient, and reliable. They are used 
in CD and DVD players, barcode readers, laser printers, and laser pointers. A semi-
conductor laser is electrically pumped: an electric current pumps electrons from the 
valence band to the conduction band. A photon is emitted when an electron jumps 
back from the conduction band to the valence band. Thus, the wavelength of the laser 
light depends on the band gap in the semiconductor.

Application: Lasers in Medicine

Lasers are widely used in surgery to destroy tumors, to cauterize blood vessels, and 
to pulverize kidney stones and gallstones. A detached retina can be “welded” back 
into place by a laser beam shone through the pupil of the eye. Laser surgery is used 
to reshape the cornea of the eye to correct nearsightedness. The laser beam can be 
guided by an optical fiber (see Section 23.4) in an endoscope to the site of a tumor; 
an optical fiber can also guide a laser beam into an artery to remove plaque from the 
artery walls. In photodynamic cancer therapy, a photosensitizing drug is injected into 
the bloodstream; the drug accumulates selectively in cancerous tissues. Laser light of 
the correct frequency is delivered to the tumor site by an endoscope. The light causes 
a chemical reaction that activates the drug; it becomes toxic, destroying tumor cells 
and the blood vessels that supply oxygen to the tumor.

Conceptual Example 28.5

 Photocoagulation

An argon ion laser is used to repair vascular abnormalities 
and fissures in the retina of the eye in a process known as 
photocoagulation. Laser light absorbed by the tissue raises 
its temperature until proteins become coagulated, forming 
the scar tissue that repairs the split. The principal wave-
lengths emitted by the argon laser are 514 nm and 488 nm. 
(a) What are the photon energies for these wavelengths? 
(b)  What are the colors associated with these two wave-
lengths? Are both wavelengths effective on blood vessels?

Strategy The energy of a photon is related to its wave-
length by E = hc/λ. Section 22.3 lists the colors of the visible 
spectrum and the associated wavelengths. A wavelength is 
effective if it is strongly absorbed.

Solution and Discussion (a) The photon energies are

E =
hc

λ
=

1240 eV·nm
514 nm

= 2.41 eV

and

E =
hc

λ
=

1240 eV·nm
488 nm

= 2.54 eV

(b) The color associated with 514 nm is green and with 
488  nm is blue. Both wavelengths are effective on blood 
vessels because red blood vessels reflect red and absorb 
radiation of other colors.

Conceptual Practice Problem 28.5  Ruby 
 Laser and Blood

Would red light from a ruby laser be effective on blood and 
thus useful in the treatment of vascular abnormalities?

28.10  TUNNELING

The wave function of a particle in a finite box extends into regions where, according 
to classical physics, the particle can never go because it has insufficient energy (see 
Section 28.5). In these classically forbidden regions, the wave function decays expo-
nentially. If the classically forbidden region is of finite length, a curious but significant 
phenomenon called tunneling can occur.
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Figure 28.23a shows a situation in which tunneling is possible. A particle is 
initially confined to a one-dimensional box. On the right side, the barrier is of finite 
thickness a. According to classical physics, if E <  U0, the particle can never get out 
of the box; it doesn’t have enough energy.

However, if U1 < E < U0, the classical prediction is wrong; instead, there is 
a nonzero probability of finding the particle outside the box at a later time. The 
wave function of the particle decays exponentially only from x = 0 to x = a; for 
x > a it becomes sinusoidal again, although with a reduced amplitude due to the 
exponential decay in the barrier (Fig. 28.23b). The amplitude of the wave function 
for x > a determines the probability per second that the particle is found outside 
the box.

Since the wave function decays exponentially in the barrier, the tunneling prob-
ability decreases dramatically as the barrier thickness increases. For a relatively wide 
barrier, the tunneling probability decreases exponentially with barrier thickness:

 P ∝ e−2κa (28-21)

In Eq. (28-21), P is the probability per unit time that tunneling occurs, a is the barrier 
thickness, and κ is a measure of the barrier height:

 κ = √
2m

h2 (U0 − E)  (28-22)

Equation (28-21) is an approximation valid when e−2κa ≪ 1. The tunneling probability’s 
dependence on barrier thickness is more complicated for an extremely thin barrier.

It is also possible for a particle to tunnel into a box. A particle initially to the 
right of the barrier in Fig. 28.23 can later be found inside the box (on the left side 
of the barrier).

Application: The Scanning Tunneling Microscope

The scanning tunneling microscope (STM) exploits the exponential dependence of 
tunneling probability on barrier thickness to produce highly magnified images of 
surfaces. In an STM, a very fine metal tip is placed very close to a surface of inter-
est. The tip must be much finer than an ordinary needle—it ideally should have a 
single atom at the tip. The distance between the tip and the sample is typically only 
a few nanometers. The apparatus must be isolated from vibrations, which under ordi-
nary circumstances have amplitudes of 1000 nm or more. The sample and tip are in 
an evacuated chamber.

A small potential difference ΔV ≈ 10 mV is applied between the tip and the 
sample. Electrons now tunnel between the tip and the sample. The barrier they 
tunnel through is due to the work functions of the tip and the sample (Fig. 28.24); 
an electron bound to the metal has a lower energy than one that is outside of the 
metal.

As the tip is scanned over the surface, its distance from the sample is adjusted 
to keep the tunneling current constant (Fig. 28.25). Since the current depends expo-
nentially on the distance a, the tip is moved to keep a constant. Thus, the movements 
of the tip accurately reflect the surface beneath. An STM is easily able to image 
individual atoms on a surface.

(b)

U1

a0 x–L

U

U0

(a)

a0

ψ

x–L

Figure 28.23 (a) A particle of energy E <  U0 is confined to a finite box of 
length L. The potential energy inside the box is taken to be zero; the potential 
energy on either side of the box is U0. To the right of the barrier, the potential 
energy is U1. For U1 < E < U0, the particle can tunnel out of the box. (b) Sketch 
of the wave function for a particle that can tunnel out of the box.

Tip SampleVacuum

Distance between 
tip and sample

U

y0

e ΔV

a

Figure 28.24 Simplified 
model of the potential energy 
of an electron that tunnels from 
the tip of an STM to a sample 
a distance a away. An applied 
potential difference ΔV causes 
a potential energy difference of 
magnitude e ΔV between tip and 
sample. Normally, an electron 
must be supplied with an 
energy equal to the work func-
tion of the metal—a few electron-
volts—to break free of the 
metal. Here, because the tip 
and sample are only a few 
nanometers apart, an electron 
can tunnel through the barrier 
presented by the work functions 
of the metals.
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(a)

(b)

Piezoelectric device
raises and lowers the stylus to

keep the tunneling current constant

Path followed by the tip
as it scans the surface

Feedback signal

Stylus so sharp
that tip is only
one atom thick

Tunneling current:
electrons tunnel through the vacuum
between the tip and the specimen

Specimen

Computer monitors the tunneling current,    
sends a feedback signal to the piezoelectric device
and records the motion of the stylus  

Figure 28.25 (a) Schematic of an STM. (b) Scanning tunneling micrograph of a section of a DNA molecule. The 
average distance between the coils of the helix (seen as yellow peaks) is 3.5 nm.

Example 28.6

Change in Tunneling Current

Suppose that an STM scans a surface at a distance of a = 
1.000 nm. Take the height of the potential energy barrier to 
be U0 − E = 2.00 eV. If the distance between the surface and 
the STM tip decreases by 1.0% (= 0.010 nm, which is about 
one fifth the radius of the smallest atom), estimate the per-
centage change in the tunneling current.

Strategy The tunneling current is proportional to the 
number of electrons that tunnel per second, which is in turn 
proportional to the tunneling probability per second [P in 
Eq. (28-21)]. Thus, the ratio of the probabilities per second 
is equal to the ratio of the tunneling currents.

Solution The tunneling probability per unit time is

 P ∝ e−2κa (28-21)
where

 κ = √
2m

h2 (U0 − E)

 = √
2 × 9.109 × 10−31 kg

[6.626 × 10−34 J·s/(2π)]2 × (2.00 eV × 1.602 × 10−19 J/eV)

 = 7.245 × 109 m−1

(28-22)

Since the tip moves 0.010 nm closer to the surface, the dis-
tance changes from a = 1.000 nm to a′ = 0.990 nm. The ratio 
of the tunneling probabilities is

Pa′

Pa

=
e−2κa′

e−2κa = e−2κ(a′−a)

The quantity in the exponent is

2κ(a′ − a) = 2 × 7.245 × 109 m−1 × (−0.010 × 10−9 m)

= −0.1449

The ratio of the probabilities per unit time is

Pa′

Pa

= e0.1449 = 1.16

Then the ratio of the currents is also 1.16. A 1.0% decrease 
in the distance between tip and sample causes a 16% increase 
in the tunneling current.

Discussion A decrease in distance means an increase in 
tunneling current, as expected. The large change in  current 
for a small change in distance is due to the exponential 

continued on next page
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Example 28.6 continued

 falloff of the wave function in the forbidden region; it makes 
the STM a very sensitive instrument.

Let us check the units in the calculation for κ:

√
kg

J2·s2 × J = √
kg
s2 ×

1
J

= √
kg
s2 ×

s2

kg·m2 = m−1

Practice Problem 28.6 Change in Tunneling 
 Current When Tip Moves Away

Estimate the percentage change in tunneling current if the tip 
moves away by 1.00% (from 1.0000 nm to 1.0100 nm).

Application: An Atomic Clock Based on Tunneling

Tunneling in the ammonia molecule (NH3) was exploited to make the first atomic 
clocks. The three-dimensional structure of the molecule has the three hydrogen atoms 
in an equilateral triangle. The nitrogen atom is equidistant from the three hydrogen 
atoms. The nitrogen atom has two possible equilibrium positions: it can be on either 
side of the plane of the H atoms.

The potential energy of the nitrogen atom is shown in Fig. 28.26. The equilib-
rium positions are the two minima in U(z). The barrier between the two is due to 
the Coulomb repulsion between the atoms. In the ground state of the NH3 molecule, 
the N atom does not have enough energy to move back and forth along the z-axis 
between the two equilibrium positions. However, it does oscillate back and forth 
between the two positions: the N atom tunnels back and forth through the potential 
energy barrier. The tunneling probability determines the frequency of oscillation, 
which is 2.4 × 1010 Hz. Since the oscillation depends on tunneling, this frequency 
is much lower than a typical molecular vibration frequency, making it easier to use 
as a time standard for the first atomic clocks.

0 z
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Figure 28.26 Potential 
energy of the nitrogen atom in 
the NH3 molecule as a function 
of its position along the z-axis, 
which is perpendicular to the 
plane of the three H atoms. For 
the lowest six vibrational energy 
levels, the nitrogen atom tunnels 
from one side to the other.
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Master the Concepts

 ∙ In quantum physics the two descriptions, particle and 
wave, are complementary. The wavelength of a particle 
is called its de Broglie wavelength:

 λ =
h

p
 (28-3)

 ∙ The uncertainty principle sets limits on how precisely 
we can simultaneously determine the position and mo-
mentum of a particle:

 Δx Δpx ≥
1
2

 h (28-4)

 ∙ If a system is in a quantum state for a time interval Δt, 
then the uncertainty in the energy of that state is related 
to the lifetime of that state by the energy-time uncer-
tainty principle:

 ΔE Δt ≥
1
2

 h (28-5)

 ∙ Confined particles have 
wave functions that 
are  standing waves. 
 Con finement leads to 
the quantization of de 
Broglie wavelengths and 
energies.

 ∙ A particle in a one- 
dimensional box has 
wavelengths analogous 
to those of a standing 
wave on a string:

 λn =
2L

n
 (n = 1, 2, 3,  . . .)  (28-6)

 ∙ The square of the magnitude of the wave function is 
proportional to the probability of locating the particle in 
a given region of space.

continued on next page
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Master the Concepts continued  ∙ In a solid, the electron states form bands of closely 
spaced energy levels. Band gaps are ranges of energy in 
which there are no electron energy levels. Conductors, 
semiconductors, and insulators are distinguished by 
their band structure.

 ∙ If an electron is in a higher energy level and a lower 
level is vacant, an incident photon of energy ΔE can 
stimulate the emission of a photon. The photon emitted 
by the atom is identical to the incident photon.

 ∙ Lasers are based on stimulated emission. In order for stim-
ulated emission to occur more often than absorption, a 
population inversion must exist (the state of higher energy 
must be more populated than the state of lower energy).

 ∙ The wave function of a confined particle extends into 
regions where, according to classical physics, the parti-
cle can never go because it has insufficient energy. If the 
classically forbidden region is of finite length,  tunneling 
can occur.

 ∙ The quantum state of the electron in an atom can be 
described by four quantum numbers:

  principal quantum number n = 1, 2, 3, . . .
  orbital angular momentum quantum number
  ℓ = 0, 1, 2, . . . , n − 1
  magnetic quantum number
  mℓ = −ℓ, −ℓ + 1, . . . , ℓ − 1, ℓ
  spin magnetic quantum number ms = −1

2, +
1
2

 ∙ According to the exclusion principle, no two electrons 
in an atom can be in the same quantum state.

 ∙ The set of electron states with the same value of n is 
called a shell. A subshell is a unique combination of n 
and ℓ. Spectroscopic notation for a subshell is the 
 numerical value of n followed by a letter representing 
the value of ℓ.

Conceptual Questions

 1. An electron diffraction experiment gives maxima at 
the same angles as an x-ray diffraction experiment 
with the same sample. How do we know the wave-
lengths of the electrons and x-rays are the same? 
Would they give the same pattern if their energies 
were the same?

 2. In the Bohr model, the electron in the ground state of the 
hydrogen atom is in a circular orbit of radius 0.0529 nm. 
How does the quantum mechanical picture of the H 
atom differ from the Bohr model? In what ways are the 
two similar?

 3. It is sometimes said that, at absolute zero, all molecular 
motion, vibration, and rotation would cease. Do you 
agree? Explain.

 4. The uncertainty principle does not allow us to think of 
the electron in an atom as following a well-defined tra-
jectory. Why, then, are we able to define trajectories for 
golf balls, comets, and the like? [Hint: How are the un-
certainties in momentum and velocity related?]

 5. We often refer to the state of the hydrogen atom as “the 
n = 3 state,” for example. Under what circumstances do 
we only need to specify one of the four quantum num-
bers? Under what circumstances would we have to be 
more specific?

 6. Why does a particle confined to a finite box have only a 
finite number of bound states?

 7. How should we interpret electron cloud representations 
of electron states in atoms?

 8. Describe some differences between the beam of light 
from a flashlight and from a laser.

 9. In an optically pumped laser, the light that causes opti-
cal pumping is always shorter in wavelength than the 
laser beam. Explain.

 10. Explain why a population inversion is necessary in a laser.
 11. The Nd:YAG laser operates in a four-state cycle as 

shown in the figure, and the ruby laser operates in a 
three-state cycle (compare with Fig. 28.21b). In which 
laser is it easier to maintain a population inversion? 
Why? Explain why the Nd:YAG laser can produce a 
continuous beam, but the ruby laser can produce only 
brief pulses of laser light.

Optical
pumping

(absorption)

Ground state

Stimulated
emission

Spontaneous
transition

Spontaneous
transition

Metastable 
state

 12. What do the ground-state electron configurations of the 
noble gases have in common? Why are the noble gases 
chemically nonreactive?

 13. Central to the operation of a photocopy machine (see 
Section 16.2) is a drum coated with a  photoconductor—a 
semiconductor that is a good insulator in the dark but 
allows charge to flow freely when illuminated with 
light. How does light allow charge to flow freely through 
the semiconducting material? How large should the 
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band gap be for a good  photoconductor? If the drum 
gets hot, is the contrast between light and dark areas on 
the image improved or degraded?

 14. Why does a confined particle have quantized energy 
levels?

 15. How can we demonstrate the existence of matter waves?
 16. When a particle’s kinetic energy increases, what hap-

pens to its de Broglie wavelength?
 17. Explain why the electrical resistivity of a semiconduc-

tor decreases with increasing temperature.
 18. When aluminum is exposed to oxygen, a very thin layer 

of aluminum oxide forms on the outside. Aluminum ox-
ide is a good insulator. Nevertheless, if two aluminum 
wires are twisted together, electric current can flow 
from one to the other, even if the oxide layer has not 
been cleaned off. How is this possible?

Multiple-Choice Questions

 1. Which one of these statements is true?
 (a)  The principal quantum number of the electron in a 

hydrogen atom does not affect its energy.
 (b)  The principal quantum number of an electron in its 

ground state is zero.
 (c)  The orbital angular momentum quantum number of 

an electron state is always less than the principal 
quantum number of that state.

 (d)  The electron spin quantum number can take on any 
one of four different values.

 2. Which of the lettered transitions on the energy level dia-
gram would be the best candidate for light amplification 
by stimulated emission?

Ground 
state

dc

a b e f

Metastable 
state

Excited
state

 3. Which of these statements about electron energy levels 
in hydrogen atoms is true?

 (a)  An electron in the hydrogen atom is best represented 
as a traveling wave.

 (b)  An electron with positive total energy is a bound 
electron.

 (c)  An electron in a stable energy level radiates electro-
magnetic waves because the electron is accelerating 
as it moves around the nucleus.

 (d)  The orbital angular momentum of an electron in the 
ground state is zero.

 (e)  An electron in state n can make transitions only to 
the state n + 1 or n − 1.

 4. An electron and a neutron have the same de Broglie 
wavelength. Which is true?

 (a)  The electron has more kinetic energy and a higher 
speed.

 (b)  The electron has less kinetic energy but a higher speed.
 (c)  The electron has less kinetic energy and a lower speed.
 (d)  The electron and neutron have the same kinetic en-

ergy but the electron has the higher speed.
 (e)  The neutron has more kinetic energy but the two 

have the same speed.
 5. Which one of these statements is true?
 (a)  The atomic spacing in crystals is too fine to produce 

observable diffraction effects with matter waves.
 (b)  Only charged particles have matter waves associated 

with them.
 (c)  Identical diffraction patterns are obtained when ei-

ther electrons or neutrons of the same kinetic energy 
are incident on a single crystal.

 (d)  Electrons, neutrons, and x-rays of appropriate ener-
gies can all produce similar diffraction patterns 
when incident on single crystals.

 (e)  Wave phenomena are not observed for macroscopic 
objects such as baseballs because the de Broglie 
wavelength associated with such macroscopic ob-
jects is too long.

 6. A particle is incident from the left on a slit of width w 
and the particle passes through the slit opening. The 
uncertainty principle restricts which of these quantities?

 (a)  the product of the width w and the minimum possi-
ble uncertainty in the y-component of the particle’s 
momentum

 (b)  the product of the width w and the minimum possi-
ble uncertainty in the x-component of the particle’s 
momentum

 (c)  the product of the width w and the minimum possi-
ble uncertainty in the z-component of the particle’s 
momentum

 (d)  the product of the width w and the minimum possi-
ble de Broglie wavelength of the particle

 (e)  the maximum possible width w

Particle

y

x

w

 7. The exclusion principle:
 (a)  Implies that in an atom no two electrons can have 

identical sets of quantum numbers.
 (b)  Says that no two electrons in an atom can have the 

same orbit.
 (c) Excludes electrons from atomic nuclei.
 (d) Excludes protons from electron orbits.
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 8. What happens to the energy level spacings for a particle 
in a box when the box is made longer?

 (a) The spacings decrease.
 (b) The spacings increase.
 (c) The spacings stay the same.
 (d) Insufficient information to answer this question.
 9. If a particle is confined to a three-dimensional, cubical 

region of length L on each side:
 (a)  The particle has a minimum uncertainty in each 

component of momentum of about h/(πL).
 (b)  The particle cannot have a wavelength less than 2L.
 (c)  The components of the particle’s momentum in the 

y- and z-directions can be determined exactly as long 
as there is a finite uncertainty in the x-component of 
momentum.

 (d)  The particle’s kinetic energy has an upper limit but 
no lower limit.

 10. A bullet is fired from a rifle. The end of the barrel is a 
circular aperture. Is diffraction a measurable effect?

 (a)  No, because only charged particles have de Broglie 
wavelengths.

 (b)  No, because a circular aperture never causes 
 diffraction.

 (c)  No, because the de Broglie wavelength of the bullet 
is too large.

 (d)  No, because the de Broglie wavelength of the bullet 
is too small.

 (e) Yes.

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

28.2 Matter Waves
 1. What is the de Broglie wavelength of a basketball of 

mass 0.50 kg when it is moving at 10 m/s? Why don’t 
we see diffraction effects when a basketball passes 
through the circular aperture of the hoop?

 2. A fly with a mass of 1.0 × 10−4 kg crawls across a table 
at a speed of 2 mm/s. Compute the de Broglie wave-
length of the fly and compare it with the size of a proton 
(about 1 fm, 1 fm = 10−15 m).

 3. An 81 kg student who has just studied matter waves is 
concerned that he may be diffracted as he walks through 
a doorway that is 81 cm across and 12 cm thick. (a) If 
the wavelength of the student must be about the same 
size as the doorway to exhibit diffraction, what is the 
fastest the student can walk through the doorway to ex-
hibit diffraction? (b) At this speed, how long would it 
take the student to walk through the doorway?

 4. What is the magnitude of the momentum of an electron 
with a de Broglie wavelength of 0.40 nm?

 5. What is the de Broglie wavelength of an electron mov-
ing at speed 3

5 c?
 6. The distance between atoms in a crystal of NaCl is 0.28 nm. 

The crystal is being studied in a neutron diffraction 
 experiment. At what speed must the neutrons be moving 
so that their de Broglie wavelength is 0.28 nm?

 7. An x-ray diffraction experiment using 16 keV x-rays is 
repeated using electrons instead of x-rays. What should 
the kinetic energy of the electrons be in order to produce 
a diffraction pattern with maxima at the same angles as 
the x-rays (using the same crystal)?

 8. What are the de Broglie wavelengths of electrons with the 
following values of kinetic energy? (a) 1.0 eV; (b) 1.0 keV.

 9. What is the ratio of the wavelength of a 0.100 keV pho-
ton to the wavelength of a 0.100 keV electron?

 10. What is the de Broglie wavelength of a proton with ki-
netic energy 1.0 TeV?

28.3 Electron Microscopes
 11.  To resolve details of a cell using an ordinary microscope, 

you must use a wavelength that is about the same size, or 
smaller, than the details of the cell you want to observe. 
Suppose you want to be able to see the ribosomes, which 
are about 20 nm in diameter. (a) To use an ultraviolet 
microscope, what minimum photon energy is required? 
(As a practical matter, lenses that are effective at such 
short wavelengths are not available.) (b) If you use an 
electron microscope, what is the minimum kinetic energy 
of the electrons? (c) Through what potential difference 
should the electrons be accelerated to reach this energy?

 12.   An image of a biological sample is to have a 
resolution of 5 nm. (a) What is the kinetic energy of a 
beam of electrons with a de Broglie wavelength of 5.0 nm? 
(b) Through what potential difference should the elec-
trons be accelerated to have this wavelength? (c) Why 
not just use a light microscope with a wavelength of 
5 nm to image the sample?

 13.  The phenomenon of Brownian motion is the random 
motion of microscopically small particles as they are 
buffeted by the still smaller molecules of a fluid in 
which they are suspended. For a particle of mass 1.0 × 
10−16 kg, the fluctuations in velocity are of the order of 
0.010 m/s. For comparison, how large is the change in 
this particle’s velocity when the particle absorbs a pho-
ton of light with a wavelength of 660 nm, such as might 
be used in observing its motion under a microscope?

28.4 The Uncertainty Principle
 14. An ultraviolet microscope locates an electron in an atom 

to within a distance of 0.5 nm. What is the order of mag-
nitude of the minimum uncertainty in the momentum of 
the electron located in this way?



1084 CHAPTER	28 Quantum Physics

 15. A particle traveling at a speed of 6.50 × 106 m/s has the 
uncertainty in its position given by its de Broglie wave-
length. What is the minimum uncertainty in the speed of 
the particle?

 16. An electron passes through a slit of width 1.0 × 10−8 m. 
What is the uncertainty in the electron’s momentum 
component in the direction perpendicular to the slit but 
in the plane containing the slit?

 17. If the momentum of the basketball in Problem 1 has a 
fractional uncertainty of Δp/p = 10−6, what is the uncer-
tainty in its position?

 18. At a baseball game, a radar gun measures the speed of a 
144 g baseball to be 137.32 ± 0.10 km/h. (a) What is the 
minimum uncertainty of the position of the baseball? 
(b) If the speed of a proton is measured to the same pre-
cision, what is the minimum uncertainty in its position?

 19. A hydrogen atom has a radius of about 0.05 nm. 
(a) Estimate the minimum uncertainty in any compo-
nent of the momentum of an electron confined to a 
region of this size. (b) From your answer to (a), esti-
mate the electron’s minimum kinetic energy. (c) Does 
the estimate have the correct order of magnitude? 
(The ground-state kinetic energy predicted by the 
Bohr model is 13.6 eV.)

 20.  A bullet with mass 10.000 g has a speed of 300.00 m/s; 
the speed is accurate to within 0.04%. (a) Estimate the 
minimum uncertainty in the position of the bullet, 
 according to the uncertainty principle. (b) An electron 
has a speed of 300.00 m/s, accurate to 0.04%. Estimate 
the minimum uncertainty in the position of the electron. 
(c) What can you conclude from these results?

 21. A radar pulse has an average wavelength of 1.0 cm and 
lasts for 0.10 μs. (a) What is the average energy of the 
photons? (b) Approximately what is the least possible 
uncertainty in the energy of the photons?

 22.  Nuclei have energy levels just as atoms do. An ex-
cited nucleus can make a transition to a lower energy 
level by emitting a gamma-ray photon. The lifetime of a 
typical nuclear excited state is about 1 ps. What is the 
uncertainty in the energy of the gamma-rays emitted by 
a typical nuclear excited state? [Hint: Use the energy-
time uncertainty principle, Eq. (28-5).]

 23.  The omega particle (Ω) decays on average about 
0.1 ns after it is created. Its rest energy is 1672 MeV. 
Estimate the fractional uncertainty in the Ω’s rest  energy 
(ΔE0/E0). [Hint: Use the energy-time uncertainty 
 principle, Eq. (28-5).]

28.5 Wave Functions for a Confined Particle
 24. An electron is confined to a box of length 1.0 nm. What 

is the magnitude of its momentum in the n = 4 state?
 25. What is the minimum kinetic energy of an electron con-

fined to a region the size of an atomic nucleus (1.0 fm)?

 26. The particle in a box model is often used to make rough 
estimates of energy level spacings. For a metal wire 10 cm 
long, treat a conduction electron as a particle confined to a 
one-dimensional box of length 10 cm. (a) Sketch the wave 
function ψ as a function of position for the electron in this 
box for the ground state and each of the first three excited 
states. (b) Estimate the spacing between energy levels of 
the conduction electrons by finding the energy spacing 
 between the ground state and the first excited state.

 27. The particle in a box model is often used to make rough 
estimates of ground-state energies. Suppose that you 
have a neutron confined to a one- dimensional box of 
length equal to a nuclear diameter (say 10−14 m). What 
is the ground-state energy of the confined neutron?

 28. An electron confined to a one-dimensional box has a 
ground-state energy of 40.0 eV. (a) If the electron makes 
a transition from its first excited state to the ground 
state, what is the wavelength of the emitted photon? 
(b)  If the box were somehow made twice as long, how 
would the photon’s energy change for the same transi-
tion (first excited state to ground state)?

 29.  An electron is confined to a one-dimensional box. 
When the electron makes a transition from its first ex-
cited state to the ground state, it emits a photon of en-
ergy 1.2 eV. (a) What is the ground-state energy 
(in electron-volts) of the electron? (b) List all energies 
(in electron-volts) of photons that could be emitted 
when the electron starts in its second excited state and 
makes transitions downward to the ground state either 
directly or through intervening states. Show all these 
transitions on an energy level diagram. (c) What is the 
length of the box (in nanometers)?

28.6 The Hydrogen Atom: Wave Functions and 
Quantum Numbers; 28.7 The Exclusion Principle; 
Electron Configurations for Atoms Other Than 
Hydrogen
 30. What is the ground-state electron configuration of a 

K+ ion?
 31. What are the possible values of Lz (the component of 

angular momentum along the z-axis) for the electron in 
the second excited state (n = 3) of the hydrogen atom?

 32. How many electron states of the H atom have the quan-
tum numbers n = 3 and ℓ = 1? Identify each state by 
listing its quantum numbers.

 33. What is the largest number of electrons with the same 
pair of values for n and ℓ that an atom can have?

 34. List the number of electron states in each of the sub-
shells in the n = 7 shell. What is the total number of 
electron states in this shell?

 35. What is the ground-state electron configuration of 
nickel (Ni, atomic number 28)?

 36. What is the ground-state electron configuration of bro-
mine (Br, atomic number 35)?
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 37. What is the maximum possible value of the angular mo-
mentum for an outer electron in the ground state of a 
bromine atom?

 38. What is the electronic configuration of the ground state 
of the carbon atom? Write it in the following ways: 
(a) using spectroscopic notation (1s2 . . .); (b) listing the 
four quantum numbers for each of the electrons. Note 
that there may be more than one possibility in (b).

 39. An electron in a hydrogen atom has quantum numbers: 
n = 8; mℓ = 4. What are the possible values for the or-
bital angular momentum quantum number ℓ of the 
 electron?

 40.  (a) What are the electron configurations of the 
ground states of fluorine (Z = 9) and chlorine (Z = 17)? 
(b) Why are these elements placed in the same column 
of the periodic table?

 41.  (a) What are the electron configurations of the 
ground states of lithium (Z = 3), sodium (Z = 11), and 
potassium (Z = 19)? (b) Why are these elements placed 
in the same column of the periodic table?

 42. (a) Find the magnitude of the orbital angular momen-
tum L

→
 for an electron with n = 2 and ℓ = 1 in terms of 

h. (b) What are the allowed values for Lz? (c) What are 
the angles between the positive z-axis and L

→
 so that the 

quantized components, Lz, have allowed values?

28.8 Electron Energy Levels in a Solid
 43. A light-emitting diode (LED) has the property that 

electrons can be excited into the conduction band by 
the electrical energy from a battery; a photon is emit-
ted when the electron drops back to the valence band. 
(a) If the band gap for this diode is 2.36 eV, what is the 
wavelength of the light emitted by the LED? (b) What 
color is the light emitted?

 44. A photoconductor (see Conceptual Question 13) allows 
charge to flow freely when photons of wavelength 
640 nm or less are incident on it. What is the band gap 
for this photoconductor?

28.9 Lasers
 45. What is the wavelength of the light usually emitted by a 

helium-neon laser? (See Fig. 28.22.)
 46. Many lasers, including the helium-neon, can produce 

beams at more than one wavelength. Photons can stimu-
late emission and cause transitions between the 20.66 eV 
metastable state and several different states of lower en-
ergy. One such state is 18.38 eV above the ground state. 
What is the wavelength for this transition? If only these 
photons leave the laser to form the beam, what color is 
the beam?

 47. In a ruby laser, laser light of wavelength 694.3 nm is 
emitted. The ruby crystal is 6.00 cm long, and the index 
of refraction of ruby is 1.75. Think of the light in the 

ruby crystal as a standing wave along the length of the 
crystal. How many wavelengths fit in the crystal? 
(Standing waves in the crystal help to reduce the range 
of wavelengths in the beam.)

28.10 Tunneling
 48.  A proton and a deuteron (which has the same charge 

as the proton but 2.0 times the mass) are incident on a 
barrier of thickness 10.0 fm and “height” 10.0 MeV. Each 
particle has a kinetic energy of 3.0 MeV. (a) Which par-
ticle has the higher probability of  tunneling through the 
barrier? (b) Find the ratio of the tunneling probabilities.

 49.  Refer to Example 28.6. Estimate the percentage 
change in the tunneling current if the distance between 
the sample surface and the STM tip increases 2.0%.

Collaborative Problems

 50. A marble of mass 10 g is confined to a box 10 cm long 
and moves at a speed of 2 cm/s. (a) What is the marble’s 
quantum number n? (b) Why can we not observe the 
quantization of the marble’s energy? [Hint: Calculate 
the energy difference between states n and n + 1. How 
much does the marble’s speed change?]

 51.  Before the discovery of the neutron, one theory of 
the nucleus proposed that the nucleus contains protons 
and electrons. For example, the helium-4 nucleus would 
contain 4 protons and 2 electrons instead of—as we now 
know to be true—2 protons and 2 neutrons. (a) Assuming 
that the electron moves at nonrelativistic speeds, find the 
ground-state energy in mega-electron-volts of an elec-
tron confined to a one-dimensional box of length 5.0 fm 
(the approximate diameter of the 4He nucleus). (The 
electron actually does move at relativistic speeds. See 
Problem 77.) (b) What can you conclude about the 
 electron-proton model of the nucleus? The binding energy 
of the 4He nucleus—the energy that would have to be sup-
plied to break the nucleus into its constituent particles—is 
about 28 MeV. (c) Repeat (a) for a neutron confined to the 
nucleus (instead of an electron). Compare your result with 
(a) and comment on the viability of the proton-neutron 
theory relative to the electron-proton theory.

 52. A free neutron (i.e., a neutron on its own rather than in a 
nucleus) is not a stable particle. Its average lifetime is 
15 min, after which it decays into a proton, an electron, 
and an antineutrino. Use the energy-time uncertainty 
principle [Eq. (28-5)] and the relationship between mass 
and rest energy to estimate the inherent uncertainty in 
the mass of a free neutron. Compare with the average 
neutron mass of 1.67 × 10−27 kg. (Although the uncer-
tainty in the neutron’s mass is far too small to be mea-
sured, unstable particles with extremely short lifetimes 
have marked variation in their measured masses.)
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 53.  An electron is confined to a one-dimensional box of 
length L. When the electron makes a transition from its 
first excited state to the ground state, it emits a photon of 
energy 0.20 eV. (a) What is the ground-state energy (in 
electron-volts) of the electron in this box? (b) What are 
the energies (in electron-volts) of the photons that can 
be emitted when the electron starts in its third excited 
state and makes transitions downward to the ground 
state (either directly or through the intervening state)? 
(c) Sketch the wave function of the electron in the third 
excited state. (d) If the box were somehow made longer, 
how would the electron’s new energy level spacings 
compare with its old ones? (Would they be greater, 
smaller, or the same? Or is more information needed to 
answer this question? Explain.)

Comprehensive Problems

 54. Mitch drops a 2.0 g coin into a 3.0 m deep wishing well. 
What is the de Broglie wavelength of the coin just be-
fore it hits the bottom of the well?

 55. A magnesium ion Mg2+ is accelerated through a poten-
tial difference of 22 kV. What is the de Broglie wave-
length of this ion?

 56. The energy-time uncertainty principle allows for the 
creation of virtual particles that appear from a vacuum 
for a very brief period of time Δt, then disappear again. 
This can happen as long as ΔE Δt = h/2, where ΔE is 
the rest energy of the particle. (a) How long could an 
electron created from the vacuum exist according to the 
uncertainty principle? (b) How long could a shotput 
with a mass of 7 kg created from the vacuum exist ac-
cording to the uncertainty principle?

 57. An electron moving in the positive x-direction passes 
through a slit of width Δy = 85 nm. What is the minimum 
uncertainty in the electron’s velocity in the y-direction?

 58. The neutrons produced in fission reactors have a wide 
range of kinetic energies. After the neutrons make several 
collisions with atoms, they give up their excess kinetic 
energy and are left with the same average kinetic energy 
as the atoms, which is 3

2kBT . If the temperature of the re-
actor core is T = 400.0 K, find (a) the average kinetic 
energy of the thermal neutrons, and (b) the de Broglie 
wavelength of a neutron with this kinetic energy.

 59. A double-slit interference experiment is performed with 
2.0 eV photons. The same pair of slits is then used for an 
experiment with electrons. What is the kinetic energy of 
the electrons if the spacing between maxima is the same?

 60. An electron is confined in a one-dimensional box of 
length L. Another electron is confined in a box of length 
2L. Both are in the ground state. What is the ratio of 
their energies E2L/EL?

 61. What is the ground-state electron configuration of tel-
lurium (Te, atomic number 52)?

 62. A beam of electrons is accelerated across a potential of 
15  kV before passing through two slits. The electrons 
form an interference pattern on a screen 2.5 m in front of 
the slits. The first-order maximum is 8.3 mm from the 
central maximum. What is the distance between the slits?

 63.  A bullet leaves the barrel of a rifle with a speed of 
300.0 m/s. The mass of the bullet is 10.0 g. (a) What is 
the de  Broglie wavelength of the bullet? (b) Compare λ 
with the diameter of a proton (about 1 fm). (c) Is it pos-
sible to observe wave properties of the bullet, such as 
diffraction? Explain.

 64. The particle in a box model is often used to make rough 
estimates of energy level spacings. Suppose that you 
have a proton confined to a one-dimensional box of 
length equal to a nuclear diameter (about 10−14 m). 
(a) What is the energy difference between the first ex-
cited state and the ground state of this proton in the box? 
(b) If this energy is emitted as a photon as the excited 
proton falls back to the ground state, what is the wave-
length and frequency of the electromagnetic wave emit-
ted? In what part of the spectrum does it lie?

 65. A beam of neutrons is used to study molecular structure 
through a series of diffraction experiments. A beam of 
neutrons with a wide range of de Broglie wavelengths 
comes from the core of a nuclear reactor. In a time-of-
flight technique, used to select neutrons with a small 
range of de Broglie wavelengths, a pulse of neutrons is 
allowed to escape from the reactor by opening a shutter 
very briefly. At a distance of 16.4 m downstream, a sec-
ond shutter is opened very briefly 13.0 ms after the first 
shutter. (a) What is the speed of the neutrons selected? 
(b) What is the de Broglie wavelength of the neutrons? 
(c) If each shutter is open for 0.45 ms, estimate the 
range of de Broglie wavelengths selected.

 66. An electron in an atom has an angular momentum quan-
tum number of 2. (a) What is the magnitude of the angu-
lar momentum of this electron in terms of h? (b) What 
are the possible values for the z-components of this 
electron’s angular momentum? (c) Draw a diagram 
showing possible orientations of the angular momen-
tum vector L

→
 relative to the z-axis. Indicate the angles 

with respect to the z-axis.
 67.  A beam of neutrons has the same de Broglie wave-

length as a beam of photons. Is it possible that the en-
ergy of each photon is equal to the kinetic energy of 
each neutron? If so, at what de Broglie wavelength(s) 
does this occur? [Hint: For the neutron, use the relativ-
istic energy-momentum relation E2 = E2

0 + (pc)2.]
 68.  (a) Make a qualitative sketch of the wave function for 

the n = 5 state of an electron in a finite box [U(x) = 0 for 
0 < x < L and U(x) = U0 > 0 elsewhere]. (b) If L = 1.0 nm 
and U0 = 1.0 keV, estimate the number of bound states 
that exist.

 69.   An electron is confined to a one-dimensional box 
of length L. (a) Sketch the wave function for the third 
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 excited state. (b) What is the energy of the third excited 
state? (c) The potential energy can’t really be infinite 
outside of the box. Suppose that U(x) = +U0 outside the 
box, where U0 is large but finite. Sketch the wave func-
tion for the third excited state of the electron in the finite 
box. (d) Is the energy of the third excited state for this 
finite box less than, greater than, or equal to the value 
calculated in part (b)? Explain your reasoning. [Hint: 
Compare the wavelengths inside the box.] (e) Give a 
rough estimate of the number of bound states for the 
electron in this finite box in terms of L and U0.

 70.  An electron in a one-dimensional box has ground-
state energy 0.010 eV. (a) What is the length of the box? 
(b) Sketch the wave functions for the lowest three 
energy states of the electron. (c) What is the wavelength 
of the electron in its second excited state (n = 3)? 
(d) The electron is in its ground state when it absorbs a 
photon of wavelength 15.5 μm. Find the wavelengths 
of the photon(s) that could be emitted by the electron 
subsequently.

 71.   A particle is confined to a finite box of length L. 
In the nth state, the wave function has n − 1 nodes. 
The  wave function must make a smooth transition 
from sinusoidal inside the box to a decaying exponential 
outside—there can’t be a kink at the wall. (a) Make some 
sketches to show that the wavelength λn inside the box 
must fall in the range 2L/n < λn < 2L/(n − 1). (b) Show 
that the energy levels En in the finite box satisfy 

(n − 1)2 E1 < En < n2E1

  where E1 = h2/(8mL2) is the ground-state energy for a box 
of length L with infinite potential energy outside the box.

 72.  (a) Show that the number of electron states in a sub-
shell is 4ℓ + 2. [Hint: First, how many states are in each 
orbital? Second, how many orbitals are in each subshell?] 
(b) By summing the number of states in each of subshells, 
show that the number of states in a shell is 2n2. Use the 
fact that the sum of the first n odd integers, from 1 to  
2n − 1, is n2. That comes from regrouping the sum in 
pairs, starting by adding the largest to the smallest:

1 + 3 + 5 + · · · + (2n − 5) + (2n − 3) + (2n − 1)

= [1 + (2n − 1)] + [3 + (2n − 3)] + [5 + (2n − 5)] + · · ·
  = 2n + 2n + 2n + · · · = 2n ×

n

2
= n2

Review and Synthesis

 73.  If diffraction were the only limitation on resolution, 
what would be the smallest structure that could be re-
solved in an electron microscope using 10 keV electrons?

 74.  A scanning electron microscope is used to look at 
cell structure with 10 nm resolution. A beam of elec-
trons from a hot filament is accelerated with a voltage of 

12 kV and then focused to a small spot on the specimen. 
(a) What is the wavelength in nanometers of the beam of 
incoming electrons? (b) If the size of the focal spot were 
determined only by diffraction and if the diameter of the 
electron lens is one fifth the distance from the lens to the 
specimen, what would be the minimum separation re-
solvable on the specimen? (In practice, the resolution is 
limited much more by aberrations in the magnetic lenses 
and other factors.)

 75. What is the de Broglie wavelength of an electron with 
kinetic energy 7.0 TeV?

 76. The beam emerging from a ruby laser passes through a 
circular aperture 5.0 mm in diameter. (a) If the spread of 
the beam is limited only by diffraction, what is the an-
gular spread of the beam? (b) If the beam is aimed at the 
Moon, how large a spot would be illuminated on the 
Moon’s surface?

 77. Repeat Problem 51(a), this time assuming the electron 
is ultra-relativistic (E ≈ pc). Is the assumption justified?

 78.  Neutron diffraction by a crystal can be used to make 
a velocity selector for neutrons. Suppose the spacing be-
tween the relevant planes in the crystal is d = 0.20 nm. A 
beam of neutrons is incident making an angle θ = 10.0° 
with respect to the planes. The incident neutrons have 
speeds ranging from 0 to 2.0 × 104 m/s. (a) What 
wavelength(s) are strongly reflected from these planes? 
[Hint: Bragg’s law, Eq. (25-25), applies to neutron dif-
fraction as well as to x-ray diffraction.] (b) For each of 
the wavelength(s), at what angle with respect to the inci-
dent beam do those neutrons emerge from the crystal?

 79. Electrons are accelerated through a potential difference 
of 8.95 kV and pass through a single slit of width 6.6 × 
10−10 m. How wide is the central maximum on a screen 
that is 2.50 m from the slit?

 80.  A beam of electrons passes through a single slit 40.0 nm 
wide. The width of the central fringe of a diffraction 
pattern formed on a screen 1.0 m away is 6.2 cm. What 
is the kinetic energy of the electrons passing through 
the slit?

 81.  Electrons are accelerated through a potential differ-
ence of 38.0 V. The beam of electrons then passes 
through a single slit. The width of the central fringe of a 
diffraction pattern formed on a screen 1.00 m away is 
1.13 mm. What is the width of the slit?

 82.   (a) Show that the ground-state energy of the hy-
drogen atom can be written E1 = −ke2/(2a0), where a0 is 
the Bohr radius. (b) Explain why, according to classical 
physics, an electron with energy E1 could never be found 
at a distance greater than 2a0 from the nucleus.

 83.  In the Davisson-Germer experiment (Section 28.2), 
the electrons were accelerated through a 54.0 V poten-
tial difference before striking the target. (a) Find the 
de Broglie wavelength of the electrons. (b) Bragg 
plane spacings for nickel were known at the time; they 
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had been determined through x-ray diffraction stud-
ies. The largest plane spacing (which gives the largest 
intensity diffraction maxima) in nickel is 0.091 nm. 
Using Bragg’s law [Eq. (25-25)], find the Bragg angle 
for the first-order maximum using the de Broglie 
wavelength of the electrons. (c) Does this agree with 
the observed maximum at a scattering angle of 130°? 
[Hint: The scattering angle and the Bragg angle are 
not the same. Refer to Figure 28.4 and make a clear 
sketch to show the relationship between the two 
 angles.]

 84.  The figure shows the lowest six energy levels of the 
outer electron in sodium. In the ground state, the elec-
tron is in the “3s” level. (a) What is the ionization en-
ergy of sodium? (b) What is the wavelength of the 
radiation emitted in the transition from the 3d to the 3p 
level? (c) What is the transition that gives rise to the 
characteristic yellow light of sodium at 589 nm?

Energy (eV)

 ______________ 0

5s ______________ –1.1
4p ______________ –1.4
3d ______________ –1.6
4s ______________ –1.9

3p ______________ –3.0

3s ______________ –5.1

Answers to Practice Problems

28.1 0.26 eV
28.2 Increasing energy ⇒ decreasing wavelength; decreas-
ing the wavelength decreases θ for a given fringe, so the 
spacing between fringes decreases (the pattern contracts).
28.3 We can estimate the uncertainty in position to be 
Δx ≈ 75 nm. Then the minimum uncertainties in momentum 
and velocity are Δpx ≈ 7 × 10−28 kg·m/s and Δvx ≈ 800 m/s.
28.4 1s22s22p63s23p3

28.5 A ruby laser would be ineffective. Blood appears red 
because it reflects red light; the red light emitted by a ruby 
laser would be largely reflected rather than absorbed.
28.6 −13.5% (a decrease)

Answers to Checkpoints

28.2 At higher speed, the electron’s momentum is larger and 
its de Broglie wavelength is smaller, according to λ = h/p. If 
it is moving nonrelativistically, its wavelength is inversely 
proportional to its speed.
28.4 In the Bohr model, the electron moves around the nu-
cleus in a well-defined trajectory (a circular orbit). Such a 
trajectory violates the uncertainty principle for reasons ex-
plained in the preceding text paragraph.
28.6 For n = 2, ℓ = 0 or 1. For ℓ = 0, mℓ = 0. For ℓ = 1, mℓ = 
−1, 0, or 1. For any mℓ, ms = +1

2 or −1
2. There are eight elec-

tron states: (n, ℓ, mℓ, ms) = (2, 0, 0, +1
2) , (2, 0, 0, −1

2),
(2, 1, −1, +1

2) , (2, 1, −1, −1
2) , (2, 1, 0, +1

2), (2, 1, 0, −1
2) , 

(2, 1, 1, +1
2), and (2, 1, 1, −1

2) .
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SELECTED 
BIOMEDICAL 
APPLICATIONS

∙ Radiocarbon dating 
 (Section 29.4;  
Example 29.9; Practice 
Problem 29.9;  
Problems 32, 33, 41)

∙ Biological effects of  
radiation (Section 29.5; 
Example 29.11;  
Conceptual Questions 
9–11; Problems 45–50, 66)

∙ Radioactive tracers  
(Section 29.5;  
Problems 42, 49, 79)

∙ Positron emission  
tomography (Section 29.5; 
Conceptual Question 12)

∙ Radiation therapy 
 (Section 29.5;  
Problems 36, 37, 55)

Concepts & Skills to Review

•	 Rutherford	scattering	ex-
periment;	discovery	of	the	
nucleus	(Section	27.6)

•	 fundamental	forces	
	(Section	4.12)

•	 mass	and	rest	energy	
(Section	26.7)

•	 exclusion	principle	
	(Section	28.7)

•	 math skill:	exponential	
functions	(Appendix	A.4,	
Section	18.10)

•	 tunneling	(Section	28.10)
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After	more	 than	 300	 yr,	 Rembrandt’s	 1653	 painting	Aristotle with a 
Bust of Homer	needed	to	be	cleaned.	Aristotle’s	black	apron	showed	
signs	of	damage;	 it	was	unclear	whether	any	of	the	original	paint	had	
survived	 underneath	 the	 apron.	 Conservators	 at	 the	 Metropolitan	
Museum	of	Art	(New	York)	needed	to	know	as	much	as	possible	about	
the	 damaged	 area	 before	 undertaking	 the	 painting’s	 restoration	 and	
cleaning.	 Art	 historians	 wanted	 to	 know	 whether	 Rembrandt	 altered	
the	 composition	 as	 he	worked	on	 the	 painting.	 To	 help	 provide	 such	
information,	 the	 painting	 was	 taken	 to	 a	 nuclear	 reactor	 at	 the	
Brookhaven	National	Laboratory.	How	can	a	nuclear	reactor	help	con-
servators	and	art	historians	 learn	about	a	painting?
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29.1 NUCLEAR STRUCTURE

In an atom, electrons are bound electrically to a positively charged nucleus. In 
Chapters 27 and 28, we generally treated the nucleus as a point charge so massive 
that it is not affected by electric forces on it due to the electrons. More precisely, 
the atomic nucleus is several thousand times more massive than the electrons in 
an atom and occupies only a tiny fraction of the atom’s volume (about 1 part in 
1012 or less). The finite mass and volume of the nucleus have subtle effects on the 
electronic configuration and thus on the chemical properties of atoms. However, 
the nucleus has a complex structure of its own that manifests itself in radioactive 
decay and nuclear reactions.

The nucleus is a bound collection of protons and neutrons. Together, protons and 
neutrons are referred to as nucleons (particles found inside the nucleus). The atomic 
number Z is the number of protons in the nucleus. Each proton has a charge of +e 
and the neutron is uncharged, so the electric charge of a nucleus is +Ze. The number 
of electrons in a neutral atom is also equal to Z. The number of protons determines 
to which element, or chemical species, an atom belongs.

Once it was thought that all atoms of a given element were identical. However, 
we now know that there exist different isotopes of a given element. The isotopes of 
an element all have the same number of protons in the nucleus, but they have differ-
ent masses because the number of neutrons (N) differs. The total number of nucleons 
therefore also differs from one isotope to another. The nucleon number A is the total 
number of protons and neutrons:

 A = Z + N  (29-1)

Any particular species of nucleus, called a nuclide, is characterized by the values of 
A and Z. The nucleon number A is also called the mass number. Since almost all of 
the mass of an atom is found in the nucleus, and since protons and neutrons have 
approximately the same mass, the mass of an atom is roughly proportional to the 
number of nucleons.

Since their masses differ, the isotopes of an element can be separated using a 
mass spectrometer (see Section 19.3). Sometimes the differing masses of isotopes 
have an effect on chemical reaction rates, but on the whole, the chemical properties 
of different isotopes are virtually identical. On the other hand, different nuclides 
have very different nuclear properties. The number of neutrons present affects how 
strongly the nucleus is held together, so that some are stable and others are unsta-
ble (radioactive). Nuclear energy levels, radioactive half-lives, and radioactive 
decay modes are all particular to a specific nuclide; they are very different for two 
isotopes of the same element.

Several notations are used to distinguish nuclides. The chemical symbol O 
stands for the element oxygen. To specify a particular isotope of oxygen, the mass 
number must also be specified. Oxygen-18, O-18, O18, and 18O all stand for the 
isotope of oxygen with A = 18. Sometimes it is helpful to include the atomic 
number as well, even though it is redundant; oxygen by definition has 8 protons. 
When including the atomic number, the preferred form is  8

18O, although 8O18 is 
found in some older texts.

CHECKPOINT 29.1

In	the	nuclide	2311Na,	how	many	protons	are	in	the	nucleus?	How	many	neutrons?	
What	 is	 the	mass	number?
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Atomic Mass Units It is usually more convenient to write the mass of a nucleus in 
atomic mass units instead of kilograms. The modern symbol for the atomic mass unit 
is “u”; in older literature it is often written “amu.” The atomic mass unit is defined as 
exactly 1

12 the mass of a neutral 12C atom. The conversion factor between u and kg is

 1 u = 1.660 539 × 10−27 kg (29-2)

Nucleons have masses of approximately 1 u, but the electron is much less massive 
(Table 29.1). Therefore, the mass of a nucleus (or an atom) is approximately A atomic 
mass units—which is why A is called the mass number.

The atomic mass of an element given in the periodic table is an average over the 
isotopes of that element in their natural relative abundances on Earth. In nuclear physics 
we must consult a table of nuclides (see Appendix B.8) for the mass of a specific nuclide.

Example 29.1

Finding the Number of Neutrons

How many neutrons are present in an 18O nucleus?

Strategy The superscript gives the number of nucleons 
(A). We consult the periodic table (see Appendix B.7) to find 
the atomic number (Z) for oxygen. The number of neutrons 
is N = A − Z.

Solution An 18O nucleus has 18 nucleons. Oxygen has 
atomic number 8, so there are 8 protons in the nucleus. That 
leaves 18 − 8 = 10 neutrons.

Discussion Different isotopes of oxygen have different 
numbers of neutrons but the same number of protons.

Practice Problem 29.1 Identifying the Element

Write the symbol (in the form A
ZX) for the nuclide with 

44 protons and 60 neutrons and identify the element.

Example 29.2

Estimating Mass

Estimate the mass in kilograms of 1 mol of 14C.

Strategy We can estimate 1 u of mass for each nucleon 
and ignore the relatively small mass of the electrons. One 
mole contains Avogadro’s number of atoms. Then we con-
vert atomic mass units to kilograms.

Solution A 14C nucleus has 14 nucleons, so the mass of 
the 14C atom is roughly 14 u. One mole contains Avogadro’s 
number of atoms; therefore the mass of 1 mol is roughly

M = NAm = 6.02 × 1023 × 14 u = 8.4 × 1024 u

Now we convert to kilograms:

8.4 × 1024 u × 1.66 × 10−27 kg/u = 0.014 kg

Discussion Note that the mass of 1 mol of an isotope 
with mass number 14 is approximately 14 g. The atomic 

mass unit is defined so that the mass of one atom in atomic 
mass units is numerically equal to the mass of 1 mol of at-
oms in grams.

The mass of a nucleus is not exactly equal to A atomic 
mass units for two reasons. The masses of the proton and 
neutron are not exactly 1 u. Even if they were, as we see in 
Section 29.2, the mass of a nucleus is less than the total 
mass of its individual protons and neutrons. Appendix B.8 
lists a more precise value for the mass of the 14C atom: 
14.003 242 0 u.

Practice Problem 29.2 Estimating the Mass of a 
Nucleus in u

Approximately what is the mass in atomic mass units of an 
oxygen nucleus that has nine neutrons?

Table 29.1  
Masses and Charges of 
the Proton, Neutron, and 
Electron

Particle Mass (u) Charge

Proton 1.007 276 5 +e

Neutron 1.008 664 9 0
Electron 0.000 548 6 −e
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Sizes of Nuclei

How do we know the sizes of nuclei? The first experimental evidence came from the 
Rutherford scattering of alpha particles from gold nuclei (see Section 27.6). From 
analysis of the number of alpha particles observed at different scattering angles, we 
can estimate the size of the gold nucleus. Similar experiments were performed on 
other nuclei. More recently, electron diffraction has been used to probe the structure 
of the nucleus. Using electrons of very short wavelength, we can determine not only 
the size of the nucleus but learn about its internal structure as well.

These and other experiments show that the mass density of all nuclei is approxi-
mately the same—the volume of a nucleus is proportional to its mass. Imagine a nucleus 
to be like a spherical container full of marbles (Fig. 29.1); each marble represents a 
nucleon. The nucleons are tightly packed together, as if touching one another. Both the 
mass and volume of the nucleus are proportional to the number of nucleons, so the mass 
per unit volume (density ρ) is approximately independent of the number of nucleons. If 
m is the mass of a nucleus, V is its volume, and A is its mass number, then

 m ∝ A and V ∝ A (29-3)

 ⇒   ρ =
m

V
 is independent of A (29-4)

Most nuclei are approximately spherical in shape, so

 V =
4
3

 πr3 ∝ A (29-5)

 ⇒  r3 ∝ A and r ∝ A1/3 (29-6)

The radius of a nucleus is proportional to the cube root of its mass number. Experiment 
shows that the constant of proportionality is approximately 1.2 × 10−15 m:

Proton Neutron

 Kr8
3
4
6

 He4 
2

 H1
1

Figure 29.1 Simplified 
model of the nucleus as a set 
of hard spheres (representing 
the nucleons) packed together 
into a sphere.

Radius of a nucleus
 r = r0A

1/3 (29-7)

 r0 = 1.2 × 10−15 m = 1.2 fm (29-8)

The SI prefix “f-” stands for femto; the fm is properly called a femtometer but is also 
called a fermi, after the Italian physicist Enrico Fermi (1901–1954). The nuclear radius 
ranges from 1.2 fm (for A = 1) to 7.7 fm (for A ≈ 260).

Although nuclei all have about the same mass density, atoms do not. More mas-
sive atoms are generally denser than lighter atoms. The increase in volume of an atom 
does not keep pace with the increase in mass. Although larger atoms have more 
electrons, these electrons are on average more tightly bound, due to the increased 
charge of the nucleus. Thus, some solids and liquids (in which the atoms are tightly 
packed) are denser than others.

Example 29.3

Radius and Volume of Barium Nucleus

What are the radius and volume of the barium-138 nucleus?

Strategy To find the radius of a nucleus, all we need to 
know is the mass number A, which in this case is 138. To 
find the volume, we assume that the nucleus is approxi-
mately spherical.

Solution To find the radius we apply Eq. (29-7), substitut-
ing A = 138:

 r = r0A
1/3

 = 1.2 fm × 1381/3 = 6.2 fm
continued on next page
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29.2 BINDING ENERGY

The Strong Force

What holds the nucleons together in a nucleus? Gravity is far too weak to do it; electric 
forces push protons away from one another. The nucleons are held together by the strong 
force, one of the four fundamental forces (along with gravity, electromagnetism, and the 
weak force). The strong force makes little distinction between protons and neutrons.

Unlike gravity and the electromagnetic forces, the strong force is extremely short 
range. The ranges of the gravitational and electromagnetic forces are infinite, with the 
magnitude of the force between point objects falling off with distance as 1/r2. By 
contrast, the strong force between two nucleons is significant only at distances of 
about 3.0 fm or less. Because the strong force is so short range, a nucleon is attracted 
only to its nearest neighbors in the nucleus. On the other hand, since electrical repul-
sion is long range, every proton in the nucleus repels all the other protons. These two 
competing forces determine which nuclei are stable.

Binding Energy and Mass Defect

The binding energy EB of a nucleus is the energy that must be supplied to separate 
a nucleus, a system of bound protons and neutrons, into individual, free protons and 
neutrons. Since the nucleus is a bound system, its total energy is less than the energy 
of Z protons and N neutrons that are far apart and at rest.

Example 29.3 continued

The approximate volume of the nucleus is

V =
4
3

 πr3

Cubing Eq. (29-7) yields
r3 = r3

0A

Therefore, the volume of a nucleus is approximately

V =
4
3

 πr3
0A

Now we substitute numerical values.

V =
4
3

 π × (1.2 × 10−15 m)3 × 138 = 1.0 × 10−42 m3

Discussion The radius (6.2 fm) is within the expected 
range of 1.2 fm to 7.7 fm. The equation V = 4

3πr3
0  

A says 
the volume of a nucleus is proportional to the number of 
nucleons (A), as expected; each nucleon occupies a volume 
of 4

3πr3
0.

Practice Problem 29.3 Volume of a Radium  
Nucleus

What is the volume of a radium-226 nucleus?

CONNECTION:

The concept of binding 
 energy is a way to look at 
how the nucleus is held 
 together in terms of energy 
instead of forces.Binding energy

EB = (total energy of Z protons and N neutrons) − (total energy of nucleus) (29-9)

The concept of binding energy applies to systems other than nuclei. The total 
energy of a proton and an electron far from each other is 13.6 eV higher than the 
energy when the two are bound together in a hydrogen atom (in its ground state). 
Thus, the binding energy of the hydrogen atom is 13.6 eV. In atoms with more than 
one electron, the binding energy is not the same as the ionization energy. The ioniza-
tion energy is the energy required to remove one electron; the binding energy is the 
energy required to remove all of the electrons.

The mass of a particle is a measure of its rest energy—its total energy in a refer-
ence frame in which it is at rest (see Section 26.7):

 E0 = mc2 (26-16)



1094 CHAPTER	29 Nuclear Physics

Since the rest energy of a nucleus is less than the total rest energy of Z protons and 
N neutrons, the mass of the nucleus is less than the total mass of the protons and 
neutrons. The difference, called the mass defect Δm, comes about because we would 
have to add energy to a nucleus to break it up into Z individual protons and N indi-
vidual neutrons. The mass defect is related to the binding energy via Eq. (26-16).

Mass defect and binding energy

 Δm = (mass of Z protons and N neutrons) − (mass of nucleus)  (29-10)

 EB = (Δm)c2 (29-11)

 c2 = 931.494 MeV/u (29-12)

The energy unit most commonly used in nuclear physics is the MeV (mega-
electron-volt). When using MeV for energy and atomic mass units for mass in 
Eq.  (29-11), it is convenient to know the value of c2 in units of MeV/u. It can be 
shown (Problem 18) that

Mass tables such as Appendix B.8 give the masses of neutral atoms, which 
include the masses of the electrons as well as the mass of the nucleus. To find the 
mass of a nucleus with atomic number Z, subtract the mass of Z electrons from the 
mass of the neutral atom. The binding energy of the electrons to the nucleus is much 
smaller than the rest energy of the electrons and can be ignored.

Example 29.4

Binding Energy of a Nitrogen-14 Nucleus

Find the binding energy of the 14N nucleus.

Strategy From Appendix B.8, the mass of the 14N atom is 
14.003 074 0 u. The mass of the N atom includes the mass of 
7 electrons. Subtracting 7me from the mass of the atom gives 
the mass of the nucleus. Then we can find the mass defect 
and the binding energy.

Solution

 mass of 14N nucleus = 14.003 074 0 u − 7me

 = 14.003 074 0 u − 7 × 0.000 548 6 u
 = 13.999 233 8 u

The 14N nucleus has 7 protons and 7 neutrons. The mass 
defect is

 Δm = (mass of 7 protons and 7 neutrons) − (mass of nucleus)
 = 7 × 1.007 276 5 u + 7 × 1.008  664 9 u − 13.999 233 8 u
 = 0.112 356 0 u

The binding energy is therefore,

 EB = (Δm)c2 = 0.112 356 0 u × 931.494 MeV/u
  = 104.659 MeV

Discussion Since the binding energy of the electrons in 
an atom is so small, we can assume that the mass of an atom 
is equal to the mass of its nucleus plus the mass of the elec-
trons. As a shortcut, we can calculate the mass defect using 
the mass of the nitrogen atom instead of the nitrogen nucleus 
and the mass of the hydrogen atom instead of the proton. 
Since each term contains the extra mass of 7 electrons, the 
masses of the electrons subtract out:

 Δm = (mass of 7 1H atoms and 7 neutrons) − (mass of 14N atom)
 = 7 × 1.007 825 0 u + 7 × 1.008 664 9 u − 14.003 074 0 u
 = 0.112 355 3 u

Practice Problem 29.4 Binding Energy of  
Nitrogen-15

Calculate the binding energy of the 15N nucleus.
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Binding Energy Curve

Figure 29.2 shows a graph of the binding energy per nucleon as a function of mass num-
ber. Recall that the strong force binds nucleons only to their nearest neighbors. In small 
nuclides there are not enough nucleons for all to fully bind since the average number of 
nearest neighbors is small. Increasing the number of nucleons leads to a larger binding 
energy per nucleon, up to a point, because the average number of nearest neighbors is 
increasing. Thus, we see a steep increase in the binding energy per nucleon as A increases.

Once nuclei reach a certain size, all nucleons except those on the surface have 
as many nearest neighbors as possible. Adding more nucleons doesn’t increase the 
average binding energy per nucleon due to the strong force very much, but the Cou-
lomb repulsion keeps adding up since it is long range. Thus, above A ≈ 60, adding 
more nucleons decreases the average binding energy per nucleon. The decrease is 
relatively gentle, compared to the steep increase for small A, since the Coulomb repul-
sion is weak compared to the strong force.

The binding energy per nucleon is within the range 7–9 MeV for all but the 
smallest nuclides. For example, in Example 29.4 we found that the binding energy of 
14N is 104.659 MeV. The binding energy per nucleon for 14N is

 
104.659 MeV
14 nucleons

= 7.475 64 MeV/nucleon (29-13)

The most tightly bound (and, therefore, the most stable) nuclides are around A ≈ 60, 
where the binding energy is about 8.8 MeV/nucleon.

Nuclear Energy Levels

Neutrons and protons obey the Pauli exclusion principle: no two identical nucleons 
in the same nucleus can be in the same quantum state. As for atomic energy levels, 
a group of closely spaced nuclear energy levels is called a shell. We can describe the 
quantum state of the nucleus by specifying how the proton and neutron states are 
occupied, much as we did for electron states in the atom (Fig. 29.3). Two protons can 
occupy each proton energy level (one spin up, one spin down) and two neutrons can 
occupy each neutron energy level. The energy levels for the proton and neutron are 
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Figure 29.2 Binding energy 
per nucleon (EB/A) for the most 
stable nuclide with nucleon 
number A. Individual data 
points are shown for A < 100; 
a smooth curve showing the 
general trend is shown in red. 
(Data points are omitted for 
A ≥ 100 since they differ little 
from the values given by the 
red curve.) 62

28Ni has the largest 
binding energy per nucleon of 
all the nuclides (8.795 MeV), 
followed by 58

26Fe and 56
26Fe 

(8.792 MeV and 8.790 MeV, 
respectively). Data points for 
4
2He,  6

12C, and 16
 8O lie signifi-

cantly above the red curve—
these nuclides are particularly 
stable compared with nuclides 
with similar values of A.

CONNECTION:

The Pauli exclusion principle 
applies to electrons in an 
atom (see Section 28.7) and 
to nucleons in the nucleus.
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similar; as far as the nuclear force is concerned, protons and neutrons are pretty much 
the same. The main difference is that the protons are affected by the Coulomb repul-
sion in addition to the strong force.

In Problem 88, an order of magnitude calculation shows that the energy level spac-
ings in nuclei are expected to be in the MeV range. The structure of the nucleus is 
complex; energy level spacings range from tens of keV to several MeV. A nucleus in an 
excited state can return to the ground state by emitting one or more gamma-ray photons. 
[The distinction between gamma rays and x-rays is based more on the source than the 
energy. A photon emitted by an excited nucleus or in pair annihilation (see Section 27.8) 
is called a gamma ray; a high-energy photon emitted by an excited atom, by an electron 
slowing down on striking a target (see Section 27.4), or by a circulating charged particle 
in a synchrotron is usually called an x-ray.] Just as the energy levels of atoms can be 
deduced by measuring the wavelengths of photons radiated by excited atoms, measure-
ment of the gamma-ray energies emitted by excited nuclei enables us to deduce the 
nuclear energy levels. Each nuclide has its own characteristic gamma-ray spectrum, which 
can be used to identify it. A gamma-ray spectrum usually identifies the energy of the 
photons, in contrast to a visible spectrum where the wavelength is usually specified. In 
both cases, the quantity used is the one that can be directly measured more precisely.

Energy level diagrams help explain why, in stable light nuclides, the number of 
neutrons and protons tends to be approximately equal. Figure 29.3 shows energy level 
diagrams for three different nuclides, each of which has 12 nucleons. The energy 
levels are not quantitatively correct, but serve to illustrate the general idea. A maxi-
mum of two protons can be in any proton energy level and a maximum of two neutrons 
can be in any neutron energy level. The proton and neutron energy levels are similar; 
the proton levels are slightly higher in energy than the neutron levels to account for 
the Coulomb repulsion between the protons. The energy is lower with 6 protons and 
6 neutrons than is possible with 5 of one and 7 of the other.

The story is more complicated for heavier nuclides. The Coulomb repulsion between 
protons favors more neutrons (N > Z) since the neutrons are immune to the Coulomb 
repulsion. For larger nuclides, the Coulomb repulsion becomes more and more important 
since it is long range: each proton repels every other proton in the nucleus. The proton 
energy levels get higher and higher with respect to the neutron energy levels as the 
electric potential energy of all those repelling protons adds up. Thus, large nuclides tend 
to have an excess of neutrons (N > Z). On the other hand, there is a limit to the neutron 
excess: neutrons are slightly more massive than protons, so if there is too much of a 
neutron excess, the mass (and therefore the energy) of the nucleus is higher than it would 
be if one or more neutrons were changed into protons.

Figure 29.4 shows the number of protons (Z) and number of neutrons (N) for the 
stable nuclides (represented as points in green). For the smallest nuclides, N ≈ Z. As 
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(a) 12C 6 (b) 12B 5 (c) 12N 7

(d) 12C* 6 (e) 12C* 6

Figure 29.3 Qualitative 
energy level diagrams for some 
nuclides with A = 12. Red 
spheres represent protons and 
gray spheres represent neutrons. 
Compare the atomic energy 
level diagram in Figure 28.17. 
 6
12C is stable, whereas 12

 5B and 
12
 7N are unstable. The asterisks 
in (d) and (e) indicate that 12

 6C* 
is in an excited state. 12

 6C* can 
return to the ground state (12

 6C) 
by emitting a photon whose 
energy equals the difference in 
the energy levels. 12

 5B and 12
 7N 

can emit an electron or posi-
tron, respectively, to change 
into 12

 6C (see Beta Decay, 
 Section 29.3).
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the total number of nucleons (A = Z + N) increases, the number of neutrons increases 
faster than the number of protons. The largest stable nuclides have about 1.5 times as 
many neutrons as protons.

29.3 RADIOACTIVITY

The French physicist Henri Becquerel (1852–1908) discovered radioactivity in 1896 
when, quite by accident, he found that a uranium salt spontaneously emitted radiation in 
the absence of an external source of energy, such as sunlight. The radiation exposed a 
photographic plate even though the plate was wrapped in black paper to keep light out.

Nuclides can be divided into two broad categories. Some are stable; others are unsta-
ble, or radioactive. An unstable nuclide decays—takes part in a spontaneous nuclear 
reaction—by emitting radiation. (The radiation may include but is not limited to electro-
magnetic radiation.) Depending on the kind of radiation emitted, the reaction may change 
the nucleus into a different nuclide, with a different charge or nucleon number or both.

Scientists studying radioactivity soon identified three different kinds of radiation 
emitted by radioactive nuclei; they were named alpha (α) rays, beta (β) rays, and 
gamma (γ) rays after the first three letters of the Greek alphabet. The initial distinction 
between the three was their differing abilities to penetrate matter (Fig. 29.5). Alpha 
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Figure 29.5 Alpha, beta, and gamma rays differ (a) in their abilities to penetrate matter, as well as (b) in their 
 electric charges.
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rays are the least penetrating; they can only make it through a few centimeters of air 
and are completely blocked by human skin, thin paper, and other solids. Beta rays can 
travel farther in air—about a meter typically—and can penetrate a hand or a thin metal 
foil. Gamma rays are much more penetrating than either alpha or beta rays. Later, the 
electric charge and mass were determined and used to distinguish the three types of 
radiation—and ultimately to identify them.

Of the approximately 1500 known nuclides, only about 20% are stable. All 
of  the largest nuclides (those with Z > 83) are radioactive. As far as we know, 
stable nuclei last forever without decaying spontaneously. Each radioactive nuclide 
decays with an average lifetime characteristic of that nuclide. The known lifetimes 
span an enormous range, from about 10−22 s (roughly the time it takes light to 
travel a distance equal to the diameter of a nucleus) to 10+28 s (1010 times the age 
of the universe).

Conservation Laws in Radioactive Decay

In a nuclear reaction, whether spontaneous or not, the total electric charge is con-
served. Another conservation law says that the total number of nucleons must stay 
the same. We balance a nuclear reaction by applying these two conservation laws. It 
is helpful to write symbols for electrons, positrons, and neutrons as if they were nuclei, 
with a superscript for the number of nucleons and a subscript for the electric charge 
in units of e (Table 29.2). Then the reaction is balanced with regard to nucleon num-
ber if the sum of the superscripts is the same on both sides; it is balanced with regard 
to charge if the sum of the subscripts is the same on both sides.

Another conservation law is important in radioactive decay: all nuclear reactions 
also conserve energy. How can a nucleus with little or no kinetic energy decay, leav-
ing products with significant kinetic energies? Where did this energy come from? In 
a spontaneous nuclear reaction, some of the rest energy of the radioactive nucleus is 
converted into kinetic energy of the products. The amount of rest energy that is con-
verted into other forms of energy is called the disintegration energy. In order for 
kinetic energy to increase, there must be a corresponding decrease in rest energy. The 
total mass of the products must be less than the mass of the original radioactive 
nucleus in order for that nucleus to decay spontaneously. In other words, the products 
must be more tightly bound than the original nucleus; the disintegration energy is the 
difference between the binding energy of the radioactive nucleus and the total binding 
energy of the products.

Table 29.2 Particles Commonly Involved in Radioactive Decay  
and Other Nuclear Reactions

Particle Name  Symbols Charge (in Units of e) Nucleon Number

Electron e−, β−, −1
 0e −1 0

Positron  e+, β+, 0
1e +1 0

Proton p, 1
1p, 1

1H +1 1
Neutron n, 1

0n 0 1
Alpha particle α, 4

2α, 4
2He +2 4

Photon γ, 0
0γ 0 0

Neutrino ν, 0
0 
ν 0 0

Antineutrino ν, 0
0 ν 0 0
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Alpha Decay

Alpha “rays” are now known to be 4He nuclei. The helium nucleus is a group of two 
protons and two neutrons, and it is very tightly bound. The mass of an alpha particle 
is 4.001 506 u, and its charge is +2e.

In alpha decay, the original (parent) nuclide is converted to a “daughter” by the 
emission of an alpha particle. Balancing the reaction shows that the daughter nuclide has 
a nucleon number reduced by four and a charge reduced by two. Using P for the parent 
nuclide and D for the daughter nuclide, the spontaneous reaction in which an alpha 
particle is emitted is

Alpha decay

 A
ZP → A−4

Z−2D + 4
2α (29-14)

Emission of an alpha particle is the most common type of radioactive decay for 
large nuclides (Z > 83). Since no nuclide with Z > 83 is stable, emitting an alpha 
particle moves toward stability most directly by decreasing both Z and N by 2. Emis-
sion of an alpha particle increases the ratio of neutrons to protons. For example, 238

 92U 
has a neutron-to-proton ratio of (238 − 92)/92 = 1.587. By emitting an alpha particle, 
238
 92U becomes 234

 90Th with a higher neutron-to-proton ratio: (234 − 90)/90 = 1.600. 
Thus, large nuclides with a smaller neutron-to-proton ratio are more likely to alpha 
decay than are similar nuclides with a greater neutron-to-proton ratio.

Example 29.5

An Alpha Decay

Polonium-210 decays via alpha decay. Identify the daughter 
nuclide.

Strategy First we look up the atomic number of polonium 
in the periodic table (see Appendix B.7). Next we write the 
nuclear reaction with an unknown nuclide and an alpha 
 particle as the products. Balancing the reaction gives us the 
values of Z and A of the daughter nucleus.

Solution Polonium is atomic number 84. Then the 
 reaction is

210
 84Po → AZ(?) + 4

2α

where A and Z are the nucleon number and atomic number of 
the daughter nucleus. To conserve charge,

84 = Z + 2

Thus, Z = 82. To conserve nucleon number,

210 = A + 4

and A = 206. Looking up atomic number 82 in the periodic 
table reveals that the element is lead. Thus, the daughter 
nucleus is lead-206 (206

 82Pb) .

Discussion Writing out the reaction makes it easy to 
check that the total number of nucleons and the total electric 
charge are both conserved by the reaction:

210
 84Po → 206

 82Pb + 4
2α

Practice Problem 29.5 Finding the Parent Given 
the Daughter

Radon-222, a radioactive gas that poses a significant health 
risk in some areas, is itself produced by the alpha  decay of 
another nuclide. Identify its parent nuclide.

Energy in Alpha Decay In alpha decay, the disintegration energy released is shared 
between the daughter nucleus and the alpha particle. Momentum conservation deter-
mines how the energy is shared. Therefore, the alpha particles released in a particular 
radioactive decay have a characteristic energy (assuming that the initial kinetic energy 
of the parent is insignificant and can be taken to be zero).
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Example 29.6

Alpha Decay of Uranium-238

The 238U nuclide can decay by emitting an alpha particle:

238U → 234Th + α

(a) Find the disintegration energy. (b) Find the kinetic en-
ergy of the alpha particle, assuming the parent 238U nucleus 
was initially at rest.

Strategy The calculations can be performed using atomic 
masses from Appendix B.8. The mass of the 238

 92U atom in-
cludes 92 electrons; the combined masses of the 234

 90Th and 
4
2He atoms also include 90 + 2 = 92 electrons.

We expect most of the kinetic energy to go to the alpha 
particle, since its mass is much smaller than that of the tho-
rium nucleus. Momentum conservation determines how the 
kinetic energy splits between the two particles.

Solution (a) The total mass of the products is

234.043 599 9 u + 4.002 603 3 u = 238.046 203 2 u

The change in mass is

Δm = 238.046 203 2 u − 238.050 787 0 u = −0.004 583 8 u

Δm stands for the change in mass: final mass minus  initial 
mass. (When we write the mass defect of a nucleus as Δm, 
we imagine a reaction that separates the nucleus into  its 
constituent protons and neutrons.) The decrease in mass for 
this reaction means that the rest energy decreases. Accord-
ing to Einstein’s mass-energy relation, the change in rest 
energy is

 E = (Δm)c2 = −0.004 583 8 u × 931.494 MeV/u

 = −4.2698 MeV

By conservation of energy, the kinetic energy of the prod-
ucts is 4.2698 MeV more than the kinetic energy of the 
parent. The disintegration energy is 4.2698 MeV.

(b) Assuming for the moment that the daughter nucleus and 
the alpha particle can be treated nonrelativistically, their ki-
netic energies are related to their momenta by

K =
p2

2m

Momentum conservation says that their momenta must be 
equal in magnitude and opposite in direction. Therefore, the 
ratio of the kinetic energies is

Kα

KTh
=

p2/(2mα)
p2/(2mTh)

=
mTh

mα
=

234.043 599 9
4.002 603 3

= 58.4728

The two kinetic energies must add up to 4.2698 MeV.

Kα + KTh = 4.2698 MeV

Now we substitute for KTh from the kinetic energy ratio.

Kα +
Kα

58.4728
= 4.2698 MeV

Solving yields Kα = 4.198 MeV.

Discussion The change in mass is negative: the total mass 
after the decay is less than the mass before. Some of the mass 
(or, more accurately, rest energy) of the U nucleus is converted 
into the kinetic energy of the products. The disintegration en-
ergy is positive because it is the quantity of energy released.

Since the alpha particle’s kinetic energy is much smaller 
than its rest energy (about 4 u × 931.494 MeV/u ≈ 3700 MeV), 
the nonrelativistic expression for kinetic energy was appropri-
ate. A relativistic calculation shows that our answer is correct 
to three significant figures.

Practice Problem 29.6 Alpha Energy in the Decay 
of Polonium-210

Find the kinetic energy of the alpha particle emitted by the 
decay of 210Po:

210
 84Po → 206

 82Pb + α

Beta Decay

Beta particles are electrons or positrons (sometimes still called beta-minus [β−] and 
beta-plus [β+] particles). In β− decay, an electron is emitted and a neutron in the 
nucleus is converted into a proton. Thus, the mass number does not change, but the 
charge of the nucleus increases by one:

Beta-minus decay
 A

ZP →   A
Z+1D +  0

−1e + 0
0 v (29-15)

The symbol v represents an antineutrino, an uncharged particle with negligible mass.



 29.3 RADIOACTIVITY 1101

In β+ decay, a positron is emitted and a proton in the nucleus is converted into a 
neutron. The positron is the antiparticle of the electron (see Section 27.8); it has the 
same mass as the electron but a positive charge of +e. This time the charge of the 
nucleus decreases by one:

Beta-plus decay
 A

ZP →   A
Z−1D +  0

+1e + 0
0ν (29-16)

The symbol  0
+1e represents the emitted positron and v is a neutrino with no charge 

and negligible mass. Before long, the positron will run into an electron and the pair 
will be annihilated producing a pair of photons (see Section 27.8).

Unlike alpha decay, beta decay of a radionuclide does not change the number of 
nucleons. In essence, beta decay changes a neutron into a proton or vice versa. Since 
the mass of the neutron is greater than the combined mass of a proton plus an electron, 
free neutrons decay spontaneously by β− emission. The half-life of this process is 
10.2  min. A free proton cannot spontaneously decay into a neutron plus a positron; 
that would violate energy conservation. But within a nucleus, a proton can change 
into a neutron by emitting a positron; the energy required to make this happen comes 
from the change in the binding energy of the nucleus. Thus, the basic beta decay 
reactions that take place inside the nucleus are

 β−:  1
0n → 11p +  0

−1e + 0
0ν (29-17)

 β+:  1
1p → 10n +  0

+1e + 0
0ν (29-18)

Beta decay does not change the mass number, but it does change the ratio of 
neutrons to protons. A nuclide that has too many neutrons to be stable is likely to decay 
via β−. By emitting an electron, a neutron is changed into a proton inside the nucleus. 
A nuclide that has too few neutrons is likely to decay by β+, emitting a positron and 
turning a proton into a neutron. In either case, total electric charge is conserved.

Prediction and Discovery of the Neutrino Beta decay was a puzzle at first 
because a continuous spectrum of electron (or positron) energies was observed. In 
alpha decay, the definite kinetic energy of the alpha particles emitted in a given decay 
reaction is understood to come from conservation of both energy and linear momen-
tum. For the same reasons, scientists thought that beta particles emitted in a given 
decay reaction should also be monoenergetic. However, when the kinetic energies 
were measured, the emitted beta particles had a continuous range of kinetic energies 
up to a maximum value (Fig. 29.6). The maximum kinetic energy was consistent with 
what scientists thought the beta particle’s kinetic energy should have been.

Why did many of the beta particles have lower energies than expected? Had scien-
tists found an exception to one of the conservation laws (energy or momentum)? Although 
some quite respectable scientists—including Niels Bohr—started to think that energy 
conservation had been violated, Wolfgang Pauli finally suggested another explanation, 
which turned out to be correct. Pauli speculated that not one, but two particles were being 
emitted, the beta particle and another, as yet undetected, particle. If a nucleus emits two 
particles instead of one, then they can conserve both energy and momentum while split-
ting up the kinetic energy in every possible way. Two momentum vectors that add to 
zero must be equal in magnitude and opposite in direction, but three momentum vectors 
can add to zero in an infinite number of ways and still share the same total kinetic energy.

Enrico Fermi named this hypothetical particle the neutrino. The symbol for the 
neutrino is the Greek letter “nu” (ν). An antineutrino is written with a bar over it (ν). 
For reasons that we study in Chapter 30, an antineutrino (ν) is emitted in β− decay, 
whereas a neutrino (ν) is emitted in β+ decay. Neutrinos are famously hard to detect 
because they do not interact via the electromagnetic or strong interactions. It took 
25  years after Pauli predicted their existence before one was actually observed. A 
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Figure 29.6 Typical continu-
ous energy spectrum of elec-
trons emitted in beta decay 
from a particular nuclide.
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neutrino can pass through the Earth with only about a 1 in 1012 chance of interacting. 
Enormous numbers of neutrinos, streaming toward us from the Sun, pass through your 
body every second but cause no ill effects.

Example 29.7

Beta Decay of Nitrogen-13

The isotope of nitrogen with mass number 13 (13N) is un-
stable to beta decay. (a) 14N and 15N are the stable isotopes of 
nitrogen. Do you expect 13N to decay via β− or β+? Explain. 
(b) Write the decay reaction. (c) Calculate the maximum 
 kinetic energy of the emitted beta particle.

Strategy The key in deciding between β− and β+ is 
whether the nucleus has too many or too few neutrons to be 
stable.

Solution (a) The stable isotopes of nitrogen have more 
neutrons than 13N, so 13N has too few neutrons to be stable. 
The beta decay should convert a proton into a neutron to in-
crease the neutron-to-proton ratio. That means the charge of 
the nucleus decreases by e, so a positron (charge = +e) must 
be created to conserve charge. We expect the isotope 13N to 
undergo β+ decay.

(b) Since a positron is emitted, it must be accompanied by 
a neutrino (not an antineutrino). Z decreases by 1, from 7 
(for nitrogen) to 6 (which is carbon). A is unchanged. The 
reaction is

13
 7N → 13

 6C +  0
+1e + 0

0ν

Both charge and nucleon number are conserved: 13 = 13 + 0 
and 7 = 6 + 1.

(c) From Appendix B.8, the atomic masses of 13
 7N and 13

 6C 
are 13.005 738 6 u and 13.003 354 8 u. To get the masses of 
the nuclei, we subtract Zme from each. The mass of the posi-
tron is the same as that of the electron: me = 0.000 548 6 u. 

The neutrino mass is negligibly small. If MN and MC repre-
sent atomic masses, then

 Δm = [(MC − 6me) + me] − (MN − 7me)
 = MC − MN + 2me

 = 13.003 354 8 u − 13.005 738 6 u + 2 × 0.000 548 6 u
 = −0.001 286 6 u

The mass decreases, as it must for a spontaneous decay. The 
disintegration energy is

E = ∣Δm∣c2 = 0.001 286 6 u × 931.494 MeV/u = 1.1985 MeV

This is the maximum kinetic energy of the positron, since it 
can get virtually all of the energy and leave the neutrino and 
daughter nucleus with a negligibly small amount.

Discussion It is usually possible to determine whether a 
radioactive nuclide decays via β+ or β−, but there are excep-
tions. For example, 40

19K can decay by either β+ or β−. The 
only way to be sure is to compare the masses of the products 
with the mass of the radionuclide to see whether the sponta-
neous decay is energetically possible.

Note that in β+ decay the electron masses (which are 
included in the atomic masses) do not automatically “cancel 
out” as they do for alpha decay.

Practice Problem 29.7 Maximum Electron Energy 
in the Decay of Potassium-40

Find the maximum energy of the electron emitted in the β− 
decay of 40

19K.

Electron Capture

Any nuclide that can decay via β+ can also decay by electron capture. Both processes 
convert a proton into a neutron. In electron capture, instead of emitting a positron, 
the nucleus absorbs one of the atom’s electrons.

Electron capture
 A

ZP +  0
−1e →   A

Z−1D + 0
0ν (29-19)

The basic reaction that takes place inside the nucleus is

 1
1p +  0

−1e → 10n + 0
0ν (29-20)

When a nucleus captures an electron, the only reaction products are the daughter 
nucleus and the neutrino. With only two particles, conservation of momentum and 
energy determine what fraction of the energy released is taken by each particle. The 
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neutrino, with its tiny mass, takes almost all of the kinetic energy, leaving the daugh-
ter to recoil with only a few electron-volts of kinetic energy. Some nuclides can decay 
by electron capture but not by β+ because the difference in mass between the parent 
and daughter is less than the mass of a positron.

Gamma Decay

Gamma rays are high-energy photons. Emission of a gamma ray does not change the 
nucleus into a different nuclide, since neither the charge nor the number of nucleons 
is changed. A gamma ray photon is emitted when a nucleus in an excited state makes 
a transition to a lower energy state, just as photons are emitted when electrons in 
atoms make transitions between energy levels.

Figure 29.7 shows some of the energy levels of the thallium-208 (208
 81Tl)  nucleus. 

The nucleus in an excited state can radiate a photon to jump to a state of lower energy. 
For instance, the third arrow from the right, from 492 keV to 40 keV, shows a transi-
tion that results in the emission of a 452 keV photon.

To emphasize that a nucleus is in an excited state, we put an asterisk as a super-
script after the symbol: 208

 81Tl*. The gamma decay of an excited Tl-208 nucleus by 
emitting one photon is written as

 208
 81Tl* → 208

 81Tl + γ (29-21)

Alpha and beta decay do not always leave the daughter nucleus in its ground 
state. Sometimes the daughter nucleus is left in an excited state that then emits one 
or more gamma ray photons until it reaches the ground state. In alpha decay, therefore, 
there may be different possible kinetic energies of the alpha particles emitted, depend-
ing on which excited state of the daughter nucleus is produced by the decay. For 
example, 212

 83Bi can alpha decay to form any of the five energy states of 208
 81Tl shown 

in Fig. 29.7 (the ground state and four excited states). The alpha particle spectrum in 
the decay of 212

 83Bi is still discrete, but there are five discrete values instead of one 
(see Problem 86). In beta decay, if the daughter nucleus can be left in an excited state, 
then the amount of kinetic energy shared by the electron (or positron), the antineutrino 
(or neutrino), and the daughter nucleus is smaller. The spectrum of electron (or pos-
itron) kinetic energies is still continuous.

Other Radioactive Decay Modes

Many other modes of radioactive decay exist. Here are a few examples of other 
decay modes:

8
6C → 75B + 1

1p (proton emission) (29-22)
10
 3Li → 93B + 1

0n (neutron emission) (29-23)
252
 98Cf → 137

 53I + 112
 45Rh + 31

0n (spontaneous fission) (29-24)
226
 88Ra → 212

 82Pb + 14
 6C (emission of a nucleus other than 4

2He) (29-25)
128
 52Te → 128

 54Xe + 2 0
−1e + 2ν (double beta emission) (29-26)

Note that all of these reactions conserve charge and nucleon number. Many nuclides 
can decay in more than one way, though generally not with equal probabilities.

29.4 RADIOACTIVE DECAY RATES AND HALF-LIVES

What determines when an unstable nucleus decays? Radioactive decay is a quantum-
mechanical process that can only be described in terms of probability. Given a 
 collection of identical nuclides, they do not all decay at the same time, and there is 
no way to predict which one decays when. The decay probability for one nucleus is 
independent of its past history and of the other nuclei. Each radioactive nuclide has 

492 keV

472 keV

327 keV

40 keV
0

Figure 29.7 An energy level 
diagram for 208

 81Tl. Downward 
arrows show the allowed transi-
tions for gamma decay.
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a certain decay probability per unit time, written λ (no relation to wavelength). The 
decay probability per unit time is also called the decay constant. Since probability is 
a pure number, the decay constant has SI units s−1 (probability per second).

 decay constant λ =
probability of decay

unit time
 (29-27)

The probability that a nucleus decays during a short time interval Δt is λ Δt.
In a collection of a large number N of identical radioactive nuclei, each one has 

the same decay probability per unit time. The nuclei are independent—the decay of 
one has nothing to do with the decay of another. Since the decays are independent, 
the average number that decay during a short time interval Δt is just N times the 
probability that any one decays:

 ΔN = −Nλ Δt (Δt ≪ 1/λ)  (29-28)

Equation (29-28) is only valid for a short time interval Δt ≪ 1/λ because it assumes 
that the number of nuclei is a constant N. The negative sign is necessary because as 
nuclei decay, the number of nuclei that remain is decreasing, so the change in N is 
negative. Equation (29-28) gives the average number that are expected to decay dur-
ing Δt. Since radioactive decay is a statistical process, we may not observe precisely 
that number of decays. If N is sufficiently large, then we expect Eq. (29-28) to be 
very close to what we observe; for small N, however, deviations from the expected 
number can be significant.

Activity The number of radioactive decays from a sample per unit time is called the 
decay rate or activity (symbol R). The SI unit of activity is the becquerel (Bq), named 
for Henri Becquerel. These three ways of writing the SI unit of activity are equivalent:

 1 Bq = 1 
decay

s = 1 s−1 (29-29)

Another unit of activity in common use is the curie (Ci) named for the Polish-French 
physicist Marie Sklodowska Curie (1867–1934) who discovered polonium and radium:

 1 Ci = 3.7 × 1010 Bq (29-30)

If the number of decays during a short interval Δt is ∣ΔN∣, then the activity is

 R =
number of decays

unit time
=

−ΔN

Δt
= λN  (29-31)

In Eq. (29-31), the rate of change of N (ΔN/Δt) is a negative constant (−λ) times 
N. The number of remaining nuclei N in radioactive decay (the number that have not 
decayed) is

 N(t) = N0e
− t/τ  (29-32)

A graph of N versus t is shown in Fig. 29.8. For radioactive decay, the time constant is

 τ =
1
λ

 (29-33)

and N0 is the number of nuclei at t = 0. The time constant is also called the mean lifetime 
since it is the average time that a nucleus survives before decaying. However, it would be 
a misconception to think that nuclei “get old.” A uranium-238 nucleus that has been sitting 
in rock for millions of years has the same probability per second of decay as one that has 
just been created seconds ago in a nuclear reaction; no more, no less. Equations such as 
(29-31) and (29-32) tell us how many nuclei are expected to decay, but not which ones.

Since the decay rate is proportional to the number of nuclei, the rate also decays 
exponentially:

 R(t) = R0e
− t/τ (29-34)

CONNECTION:

Whenever the rate of change 
of a quantity is a negative 
constant times the quantity, 
the quantity is an exponential 
function of time. We’ve seen 
this for RC circuits (Sec. 18.10) 
and LR circuits (Sec. 20.10).
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As for exponential decay in any other context, the time constant τ is the time for the 
quantity to decrease to 1/e ≈ 36.8% of its initial value. During a time interval τ, 63.2% 
of the nuclei decay, leaving 36.8%. After a time interval of 2τ, 1/e2 ≈ 13.5% of the 
nuclei still have not decayed, while 1 − 1/e2 ≈ 86.5% have decayed.

Half-life Radioactive decay is often described in terms of the half-life T1/2 instead 
of the time constant τ. The half-life is the time during which half of the nuclei decay. 
After two half-lives, one quarter of the nuclei remain; after m half-lives, (1

2)m remain.
To find the relationship between T1/2 and τ, we use Eq. (29.32). If N = 1

2N0 when 
t = T1/2, then

 e−T1/2/τ =
1
2

 (29-35)

Taking the natural logarithm of both sides (see Appendix A.4), we find that

 T1/2 = τ ln 2 ≈ 0.693τ (29-36)

An alternative form of Eq. (29-32) that uses T1/2 instead of τ is

 N(t) = N0(2− t/T1/2) = N0(
1
2)

t/T1/2

 (29-37)

CHECKPOINT 29.4

Manganese-54	has	a	half-life	of	312	d.	What	 fraction	of	nuclei	 in	a	sample	of	
Mn-54	decay	during	a	period	of	936	d	 (3	half-lives)?

T1/2

2.0τ 2.5τ0 t1.0τ0.5τ 1.5τ

1

0.5

N—
N0

0.25
0.125

0

2T1/2 3T1/2

Figure 29.8 Fraction of 
radioactive nuclei remaining 
(N/N0) as a function of time.

Example 29.8

Radioactive Decay of Nitrogen-13

The half-life of 13N is 9.965 min. (a) If a sample contains 
3.20 × 1012 13N atoms at t = 0, how many 13N nuclei are pres-
ent 40.0 min later? (b) What is the 13N activity at t = 0 and at 
t = 40.0 min? Express the activities in Bq. (c) What is the 
probability that any one 13N nucleus decays during a 5.00 s 
time interval?

Strategy (a, b) The number of nuclei at t = 0 is  
N0 = 3.20 × 1012 and the half-life is T1/2 = 9.965 min. The 
problem asks for N at t = 40.0 min and for R at both t = 0 and 
at t = 40.0 min. Since the time interval of 40.0 min is approxi-
mately four times the half-life, we can first estimate the solu-
tion: both N and R are multiplied by 1

2 during each half-life.
continued on next page
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Application: Radiocarbon Dating

The immensely useful radiocarbon dating technique (or carbon dating as it is fre-
quently called) is based on the radioactive decay of a rare isotope of carbon. Almost 
all of the naturally occurring carbon on Earth is one of the two stable isotopes—98.9% 
is 12C and 1.1% is 13C. However, there is also a trace amount of 14C—about one in 
every 1012 carbon atoms. The carbon-14 isotope, 14C, has a relatively short half-life 
of 5700 yr. Since Earth is about 4.5 × 109 yr old, we would expect to find no 
 carbon-14 at all if it were not continually being replenished.

The production of carbon-14 occurs because Earth’s atmosphere is bombarded by 
cosmic rays. Cosmic rays are extremely high-energy charged particles—mostly  protons—
from space. When one of these particles hits an atom in Earth’s upper atmosphere, a 
shower of secondary particles is created, which includes a large number of neutrons. 
Typically about 1 million neutrons are produced by each cosmic ray particle. Some of 
these neutrons then react with 14N nuclei in the atmosphere to form 14C:
 n + 14N  →  14C + p (29-38)
The 14C forms CO2 molecules and diffuses throughout the atmosphere. At the surface 
it is absorbed from the air by plants and incorporated into carbonate minerals. Animals 
take in the 14C by eating plants and other animals. The 14C in an organism or mineral 
decays via beta decay:
 14C  →  14N + e− + ν (29-39)

Example 29.8 continued

(c) The probability of decay during a time interval Δt is λ Δt 
only if Δt can be considered a short time interval. Since the 
half-life is 9.965 min = 597.9 s, 5.00 s is a tiny fraction of the 
half-life and therefore can be considered a short time interval.

Solution (a) Half of the nuclei are left after one half-life, 
1
2 × 1

2 = (1
2)2 after two half-lives, and (1

2)4 after four half-
lives. Therefore, the number remaining after four half-lives is

N = (
1
2)

4

× 3.20 × 1012 = 2.00 × 1011

Using Eq. (29-37) gives the precise result:

N(t) = N0(
1
2)

t/T1/2

= N0(
1
2)

40.0/9.965

= 1.98 × 1011

(b) The activity and number of nuclei are related by  
Eq. (29-31):

R = λN =
N

τ

The time constant τ is related to the half-life by Eq. (29-36):

τ =
T1/2

ln 2
=

9.965 min × 60 s/min
0.693 15

= 862.6 s

Next we substitute the number of nuclei N at t = 0 and at t = 
40.0 min to determine the rate of decay at those two times. The 
time constant does not change.

At t = 0,

R0 =
N0

τ
=

3.20 × 1012

862.6 s
= 3.71 × 109 Bq

At t = 40.0 min,

R =
N

τ
=

1.98 × 1011

862.6 s
= 2.30 × 108 Bq

(c) The probability of decay during a 5.00 s time interval is

P = λ Δt =
Δt

τ
=

5.00 s
862.6 s

= 0.0058

Discussion As a check, R after four half-lives should be 
1

16 of R0:

1
16

× 3.71 × 109 Bq = 2.32 × 108 Bq

Since 40.0 min is slightly more than four half-lives, the ac-
tivity at t = 40.0 min is slightly less than 2.32 × 108 Bq.

The probability of decay in 5.00 s would not be equal 
to λ Δt if the half-life were not much larger than 5.00 s.  
For a longer time interval, we find the decay probability as 
follows:

 probability of decay =
number expected to decay

original number

 =
∣ΔN∣
N0

=
N0 − N

N0
= 1 − e−Δt/τ

Practice Problem 29.8 Number Remaining After 
One Half of a Half-Life

How many 13N atoms are present at t = 5.0 min?
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Balance between the rate at which 14C is continually being created by cosmic rays 
and the rate at which the 14C decays results in an equilibrium ratio of 14C to 12C atoms 
in the atmosphere equal to 1.3 × 10−12. While an organism is alive, carbon is exchanged 
with the environment, so the organism maintains the same relative abundance of 14C 
as the environment. The carbon-14 activity in the atmosphere or in a living organism 
is 0.25 Bq per gram of carbon (see Problem 41). When an organism dies, or when 14C 
is incorporated into a mineral, carbon exchange with the environment stops. As the 14C 
present in the organism decays, the ratio of 14C to 12C decreases. The ratio of 14C to 
12C in a sample can be measured and used to determine the age of the sample. One 
way to do this is to measure the carbon-14 activity per gram of carbon.

Example 29.9

 Dating a Charcoal Sample

A piece of charcoal (essentially 100% carbon) from an ar-
chaeological site in Egypt is subjected to radiocarbon dating. 
The sample has a mass of 3.82 g and a 14C activity of 0.64 Bq. 
What is the age of the charcoal sample?

Strategy While a tree is alive, it maintains the same rela-
tive abundance of 14C as the environment. After a tree is cut 
down to make charcoal, the relative abundance of 14C de-
creases since 14C is no longer being replaced from the envi-
ronment. As the number of 14C nuclei decreases, so does 
the 14C activity. The activity decreases exponentially from 
its initial value with a half-life of 5700 yr. We assume the 
relative abundance in the environment in ancient Egypt 
was similar to today, so the initial activity is 0.25 Bq per 
gram of carbon.

Solution The activity of 14C decreases exponentially:

R = R0e
− t/τ

The initial activity is

R0 = 0.25 Bq/g × 3.82 g = 0.955 Bq

The present activity is R = 0.64 Bq. Now we solve for t from 
the values of R and R0.

R

R0
= e− t/τ

Taking the natural logarithm of each side gets t out of the 
exponent [Eq. (A-29)]:

ln 
R

R0
= ln e− t/τ = − 

t

τ

 t = −τ ln 

R

R0
= − 

T1/2

ln 2
 ln 

R

R0

 = − 

5700 yr
ln 2

× ln 
0.64 Bq
0.955 Bq

= 3300 yr

The charcoal is 3300 yr old.

Discussion As a check, we can test to see whether

R0(2− t/T1/2) = R

 R0(2− t/T1/2) = 0.955 Bq × 2−3300 yr/5700 yr = 0.955 Bq × 0.669

 = 0.64 Bq = R

Practice Problem 29.9  The Age of Ötzi

In 1991, a hiker found the frozen, naturally mummified re-
mains of a man protruding from a glacier in the Italian Alps. 
The man was called Ötzi by researchers and became popu-
larly known as the Iceman. The 14C activity of the Iceman’s 
remains was measured to be 0.131 Bq per gram of carbon. 
How long ago did the Iceman die?

Example 29.10

Yearly Decrease in Carbon-14 Activity of a 
Nonliving Sample

By what percentage does the 14C activity of a nonliving sam-
ple decrease in one year?

Strategy We are given neither the activity at the begin-
ning nor at the end of the one year period, but we only want 
to find the change expressed as a percentage of the  initial 
activity. The percentage change is a way to  express the 

 fractional change (the change in activity as a fraction of the 
initial activity). Let the initial activity be R0 and the activity 
one year later be R. The quantity to be determined is

ΔR

R0
=

R − R0

R0

expressed as a percentage.
continued on next page
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Carbon dating can be used for specimens up to about 60 000 yr old, which is 
about 10 half-lives of 14C. The older a specimen is, the smaller its 14C activity; for 
very old samples, it is difficult to measure the 14C activity accurately. The half-life 
also imposes constraints on the precision with which a sample can be dated. One year 
is only a small fraction of the half-life, so the activity changes very little during a 
year’s time (as shown in Example 29.10).

A major assumption of the simplest kind of carbon dating presented here is that 
the equilibrium ratio of 14C to 12C in Earth’s atmosphere has been the same for the 
past 60 000 yr. Is that a good assumption? How can we test it? One way to test it for 
relatively short times is by taking core samples from very old trees—or from the 
remains of ancient trees—and measuring 14C activities from various times. The tree 
rings give an independent way to determine the age of different parts of the sample.

At present, scientists believe that the relative abundance of 14C in the atmosphere 
hasn’t changed much in the past 1000 yr (until the beginning of the twentieth century) 
although it has varied considerably during the past 60 000 yr, reaching peaks as much 
as 40% higher than at present. Fortunately, radiocarbon dating can be adjusted for the 
changes in the relative abundance of 14C in the atmosphere. Tree rings allow such 
adjustment going back about 11 000 yr. In Japan’s Lake Suigetsu, layers of dead algae 
sink to the bottom annually and are covered by a layer of clay sediment before the 
next algae layer. The alternating layers of light-colored algae and dark clay can be 
read like tree rings, allowing radiocarbon data to be adjusted for the varying abun-
dance of 14C in the atmosphere going back about 43 000 yr.

The relative abundance of 14C in the atmosphere began changing rapidly in the 
twentieth century due to human activity. An enormous increase in the burning of 
fossil fuels introduced large quantities of old carbon—that is, carbon with a low 
abundance of 14C—into the atmosphere. Beginning about 1940, open-air nuclear test-
ing, nuclear bombs, and nuclear reactors have increased the relative abundance of 14C 
in the atmosphere. In the distant future it will be difficult to use radiocarbon dating 
for artifacts from the twentieth century.

Other Isotopes Used in Radioactive Dating

Besides 14C, other radioactive nuclides are also used for radioactive dating. Isotopes 
commonly used to date geologic formations (with approximate half-lives in billions 
of years) include uranium-235 (0.7), potassium-40 (1.2), uranium-238 (4.5), 
 thorium-232 (14), and rubidium-87 (49). One direct way to calculate Earth’s age is 
based on the abundances of various lead isotopes in terrestrial samples and in 

Example 29.10 continued

Solution The activities R0 and R are related by
R(t) = R0(2− t/T1/2)

We choose this form rather than the exponential form R = R0e
−t/τ 

because we are given the half-life rather than the time constant. 
We don’t know R0 or R, but we can find the ratio of the two.

R

R0
= 2− t/T1/2 = 2−1/5700 = 0.999 878

Now we find the fractional change during 1 yr.
ΔR

R0
=

R − R0

R0
=

R

R0
− 1 = 0.999 878 − 1 = −0.000 122

The carbon-14 activity decreases 0.012% in a year.

Discussion The tiny change in activity illustrates one rea-
son why we do not expect carbon-14 dating to give dates 
precise to a specific year.

Practice Problem 29.10 Dating Precision

If the 14C activity of a shard of pottery can be determined 
to a precision of ±0.1%, to what precision can we expect 
to date the shard (assuming no other sources of impreci-
sion)? [Hint: In what time interval does the activity change 
by 0.1%?]
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 meteorites. Pb-206 and Pb-207 are the final products of long chains of radioactive 
decays that begin with U-238 and U-235, respectively.

Lead-210, with a half-life of only 22.20 yr, is used for geologic dating over the 
last 100 to 150 yr. It forms in rocks containing uranium-238 as a decay product of 
radon gas. After forming from radon in the atmosphere, the lead isotope falls to Earth, 
where it collects on the surface and is stored in the soil, or in the sediment of lakes 
and oceans, or in glacial ice. The age of a sediment layer can be determined by mea-
suring the amount of lead-210 present.

Quantum-Mechanical Tunneling Explains Radioactive  
Half-Lives for Alpha Decay

An early triumph of quantum mechanics was its explanation of the correlation between 
the half-life of a particular alpha decay and the kinetic energy of the alpha particle. 
The kinetic energies vary over a narrow range (4–9 MeV) but the half-lives range 
from 10−5 s to 1025 s (1017 yr). Despite this discrepancy in ranges, the two quantities 
are closely correlated (Fig. 29.9a); higher alpha particle energies consistently go with 
shorter half-lives.

The correlation arises because the alpha particle must tunnel (see Section 28.10) 
out of the nucleus. Think of an alpha particle in a nucleus as facing the simplified 
potential energy graph of Fig. 29.9b. Inside the nucleus, the potential energy of the 
alpha particle is roughly constant. Beyond the edge of the nucleus, where the strong 
attractive force no longer pulls the alpha particle toward the nucleus, the alpha par-
ticle feels only a Coulomb repulsion from the nucleus [which has charge +(Z − 2)e 
since it has lost two protons]. The potential energy barrier is higher than the energy 
E of the alpha particle. Since the barrier tapers off gradually, decreasing with distance 
as 1/r, lower energy alpha particles are not only farther below the top of the barrier; 
they face a much wider barrier as well. Higher energy alpha particles have much 
higher tunneling probabilities and therefore much shorter half-lives.

29.5 BIOLOGICAL EFFECTS OF RADIATION

We are all continually exposed to radiation. The biological effects of radiation 
depend on what kind of radiation it is, how much of it is absorbed by the body, 
and the  duration of the exposure. Ionizing radiation has enough energy to ionize 
an atom or  molecule—at least a few electron-volts. An alpha particle, beta particle, 
or gamma ray with a typical energy of about 1 MeV can potentially ionize tens of 
thousands of molecules. Molecules in living cells that are ionized due to radiation 
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Figure 29.9 (a) Correlation 
between half-life and the energy 
(E  ) of the alpha particle. Z is 
the atomic number of the parent 
nuclide. Note that the vertical 
scale is logarithmic and that 
increasing numbers on the hori-
zontal axis represent decreasing 
energies. (b) Simplified model 
of the potential energy U of an 
alpha particle as a function of 
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become  chemically active and can interfere with the normal operation and repro-
duction of the cell.

The absorbed dose of ionizing radiation is the amount of radiation energy 
absorbed per unit mass of tissue. The SI unit of absorbed dose is the gray (Gy):

 1 Gy = 1 J/kg (29-40)

Another common unit for absorbed dose is the rad:

 1 rad = 0.01 Gy (29-41)

The name “rad” stands for radiation absorbed dose.
Different kinds of radiation cause different amounts of biological damage, even 

if the absorbed dose is the same. The health effects also depend on what kind of tis-
sue is exposed. To account for these factors, a quantity called the relative biological 
effectiveness (RBE) is assigned to each type of radiation. The RBE is a relative 
measure of the biological damage caused by different kinds of radiation compared 
with 200 keV x-rays (which are assigned RBE = 1). The RBE varies depending on 
the kind of radiation, the energy of the radiation, the kind of tissue exposed, and the 
biological effect under consideration. Table 29.3 gives some typical RBE values.

To measure the biological damage caused by exposure to radiation, we calculate 
the biologically equivalent dose. The SI unit for biologically equivalent dose is the 
sievert (Sv).

biologically equivalent dose (in sieverts) = absorbed dose (in grays) × RBE (29-42)

Another commonly used unit for biologically equivalent dose is the rem:

 1 rem = 0.01 Sv = 10 mSv (29-43)

biologically equivalent dose (in rem) = absorbed dose (in rad) × RBE (29-44)

Table 29.3  
Typical Values of Relative 
Biological Effectiveness 
(RBE)

Gamma rays 0.5–1
Beta particles 1
Protons, neutrons 2–10
Alpha particles 10–20

Example 29.11

 Biologically Equivalent Dose in a Brain Scan

A 60.0 kg patient about to have a brain scan is injected with 
20.0 mCi of the radionuclide 99mTc (technetium-99m). (The 
“m” stands for metastable.  The metastable state 99mTc  decays 
to the ground state with a half-life of 6.0 h.) The 99mTc nucleus 
decays by emitting a 143 keV photon. Assuming that half of 
these photons escape the body without interacting, what 
 biologically equivalent dose does the patient receive? The 
RBE for these photons is 0.97. Assume that all of the 99mTc 
decays while in the body.

Strategy The activity (20.0 mCi) together with the half-life 
(6.0 h) enable us to calculate the number of 99mTc nuclei. Then 
we can determine how many photons are absorbed in the 
body; multiplying the number of photons absorbed by the en-
ergy of each photon (143 keV) gives the total radiation energy 
absorbed. The absorbed dose is the radiation energy absorbed 
per unit mass of tissue. The biologically equivalent dose is the 
absorbed dose times the relative biological effectiveness.

Solution The activity of the injected material in becquer-
els (Bq) is

R0 = 20.0 × 10−3 Ci × 3.7 × 1010 Bq/Ci = 7.40 × 108 Bq

The activity is related to the number of nuclei N by

R0 = λN0 =
N0

τ

Then the number of nuclei injected is

 N0 = τR0 =
T1/2

ln 2
  R0 =

6.0 h × 3600 s/h
ln 2

× 7.40 × 108 s−1

 = 2.306 × 1013

Each of these nuclei emits a photon, and half of the pho-
tons are absorbed by the body. The energy of each photon is 
143 keV. Therefore, the total energy absorbed in joules is

E =
1
2

× (2.306 × 1013 photons)

× 1.43 × 105 
eV

photon
× (1.60 × 10−19 

J
eV)

= 0.264 J

The absorbed dose is

0.264 J
60.0 kg

= 0.0044 Gy

continued on next page
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Average Radiation Doses due to Natural Sources The average radiation dose 
received by a person in one year is about 6.2 mSv, half from natural sources and half 
due to human activity (Fig. 29.10). On average, about 2/3 of the dose from natural 
sources is due to inhaled radon-222 gas and its decay products. Radon-222 is con-
stantly produced by the alpha decay of radium-226 present in soil and rocks. Radon 
gas usually enters houses through cracks in the foundation. When radon and its decay 
products are inhaled, they can give a significant dose of radiation to the lungs. The 
amount of radon gas that enters a building varies greatly from one place to another. 
In some localities, radon is not much of a problem. In other places, with large amounts 
of radium in the soil and geological formations that make it easy for radon gas to find 
its way into a basement, it is a major cause of lung cancer (second only to smoking). 
Fortunately, an inexpensive test can be used to determine the concentration of radon 
gas in the air. Where radon is a problem, sealing cracks in the basement and adding 
ventilation are often all that is needed.

Of the average annual dose, about 0.7 mSv is due to radioactive nuclides that 
enter the body in food and water (such as 14C and 40K) or are present in the soil and 

Example 29.11 continued

The biologically equivalent dose is the absorbed dose times 
the RBE:

0.0044 Gy × 0.97 = 0.0043 Sv

Discussion A quantity of radioactive material is often 
specified by its activity (“20.0 mCi of 99mTc”) rather than by 
mass, number of moles, or number of nuclei. As already 

shown, the number of radioactive nuclei can be calculated 
from the activity and the half-life.

Practice Problem 29.11 Determining Mass from 
Activity

What is the mass of 5.0 mCi of 60
27Co?

Space
(background)
(5%)

Terrestrial
(background)
(3%)

Computed
tomography
(medical)
(24%)

Nuclear medicine
(medical)
(12%) Interventional

fluoroscopy
(medical) (7%)

Conventional 
radiography/fluoroscopy
(medical) (5%)

Occupational (<0.1%)
Industrial (<0.1%)

Consumer (2%)

Internal
(background)
(5%)

222Rn and 220Rn
(background)
(37%)

Figure 29.10 Sources of 
radiation exposure for people 
living in the United States. 
About half the average dose 
comes from natural sources 
(radon gas, minerals, cosmic 
rays), and about half comes 
from medical diagnosis and 
treatment.
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in building materials (e.g., polonium, radium, thorium, and uranium). Another 0.3 mSv 
is due to cosmic rays. The cosmic ray dose is significantly higher for people living 
at high altitudes or who spend a lot of time in airplanes. In a commercial jet at  
35 000 ft, the dose received is about 0.007 mSv/h, so 40 h of flight doubles the aver-
age person’s cosmic ray dose.

Average Doses due to Human Activity Human activities have added an average 
annual dose about equal to the average dose from natural sources. Most of this addi-
tional radiation dose comes from medical and dental diagnosis and treatment. The 
average annual dose due to fallout from testing of nuclear weapons and due to nuclear 
reactors is about 0.01 mSv, but is much higher in some places (for instance in Ukraine, 
due to the Chernobyl disaster).

Short- and Long-Term Effects of Radiation A single large dose of radiation 
causes radiation sickness. Symptoms can include nausea, diarrhea, vomiting, and hair 
loss. Radiation sickness can be fatal if the dose is large enough. A single dose of about 
4–5 Sv is fatal about half of the time. Long-term effects of much smaller doses of 
radiation include increased risk of cancer and genetic mutations. In the United States, 
the Nuclear Regulatory Commission limits occupational radiation exposure for adults 
who work with radioactive material to less than 50 mSv/yr above background levels.

Penetration of Radiation

Different kinds of radiation have different abilities to penetrate biological tissue (or other 
materials). The range of an alpha particle in human tissue is about 0.03 mm to 0.3 mm, 
depending on the energy of the particle. Alpha particles are stopped by a few centime-
ters of air or by an aluminum foil only 0.02 mm thick. Alpha particles are potentially 
the most damaging form of radiation, since each can ionize large  numbers of molecules. 
On the other hand, they cannot penetrate the skin, so alpha emitters outside the body 
are not so dangerous. Alpha decay of inhaled radon gas exposes the lung tissue directly 
and is therefore dangerous. Similarly, if alpha emitters are present in food, they can 
deliver a significant dose of radiation to the digestive tract, and those with longer half-
lives may then be incorporated into other body tissue (e.g., radioactive iodine collects 
in the thyroid and radioactive iron collects in the blood).

Beta-minus particles (electrons) are more penetrating than alphas. Their range in 
human tissue can be as much as a few centimeters (again, depending on energy). They 
can penetrate several meters of air; it takes an aluminum plate about 1 cm thick to 
stop them. High-speed electrons not only ionize molecules, but also emit x-rays 
through bremsstrahlung (see Section 27.4); the x-rays are much more penetrating than 
are the electrons themselves. β+ particles (positrons) have a very limited range—they 
quickly annihilate with an electron, producing two photons.

Beta emitters are more dangerous when found inside the body, though the difference 
is not as striking as for alpha-emitters. Atmospheric tests of nuclear weapons in the 
1950s produced many dangerous radioactive nuclides. One of them, radioactive 
 strontium-90, is produced by the fission of 235U. Strontium is chemically similar to 
calcium. Both are alkali metals; Sr is directly below Ca in the periodic table. The 
 strontium-90 produced by atmospheric tests entered the human food supply and was 
incorporated into the bones and teeth of growing children. Strontium-90 undergoes beta 
decay with a half-life of 29 yr, but since calcium (and strontium) stays in the body for 
a long time, the presence of this radionuclide in the bones ends up delivering a  significant 
radiation dose and probably increases the incidence of leukemia and other cancers. 
Fortunately, atmospheric tests are now banned internationally, and the incidence of 
strontium-90 and other artificially produced radionuclides is smaller than it once was.

Both alphas and electrons have a fairly definite range for a given material and 
energy. They lose their energy through a large number of collisions with molecules. 
By contrast, a gamma ray photon can lose a large proportion or even all of its energy 
in a single interaction (via the photoelectric effect, Compton scattering, or pair 
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 production). The probability of one of these interactions occurring can be calculated 
using quantum mechanics. For photons of a certain energy, we can only predict the 
average distance traveled in a given material. For example, half of 5 MeV photons 
can penetrate 23 cm or more into the body. Half of 5 MeV photons can penetrate 
1.5 cm or more in lead. The penetrating ability of photons is measured as a half-value 
layer, which is the thickness of material that half of the photons can penetrate.

Medical Applications of Radiation

Radioactive Tracers in Medical Diagnosis There are many medical applications 
of radioactive materials and of radiation. Radioactive tracers are important diagnos-
tic tools. One example was mentioned in Example 29.11. Technetium-99m is the 
product of the beta decay of molybdenum-99. Most nuclear excited states decay to 
the ground state in very short times (typically 10−15 s to 10−8 s). Technetium-99m has 
a half-life of 6.0 h, perfect for use as a radioactive tracer. If the half-life were much 
shorter, much of the 99mTc would decay before it reached the tumor cells. If the half-
life were much longer, then the activity would be small and only a small fraction of 
the gamma rays could be detected within a reasonable length of time.

The blood-brain barrier prevents technetium-99m (which is injected as technetium 
oxide and attaches to red blood cells) from diffusing into normal brain cells, but the 
abnormal cells in a tumor do not have such a barrier. Therefore, the tumor can be 
located and imaged by observation of the gamma rays emitted from the brain.

One way to do the imaging is to use an Anger camera (pronounced ahn-zhay; 
Fig. 29.11). A lead collimating plate has parallel holes drilled in it. The lead absorbs 
gamma rays, so only photons emitted parallel to one of the holes can get through the 
plate. Behind the plate is a scintillation crystal; when a gamma photon hits this  crystal, 
a pulse of light is produced. Photomultiplier tubes, one for each hole in the collima-
tor, detect these light pulses. By moving the Anger camera around at different angles, 
we can “triangulate” back and figure out where the tumor is.

Similarly, TlCl (thallium chloride) tends to collect at the site of a blood clot. 
Thallium-201 has a half-life of 73 h. When thallium-201 undergoes beta decay in the 
body, gamma rays are also emitted as the daughter nucleus drops down into its ground 
state. An Anger camera can then be used to locate the clot.

Radioactive tracers are used in research as well as in clinical diagnosis. For 
example, radioactive iron-59 was used to determine that iron, unlike most other ele-
ments, is not constantly being eliminated from the body and then replaced. Rather, 
once an iron atom is incorporated into a hemoglobin molecule, it stays there for the 

Figure 29.11 (a) Simplified diagram of an Anger camera. A radioactive tracer has accumulated at the tumor site and 
emits gamma rays. A gamma ray photon that passes through a hole in the collimating plate is detected by the apparatus. 
(b) SPECT (single-photon emission computed tomography) uses one or more Anger cameras that are slowly rotated 
around the patient’s body.
©DR P. MARAZZI/Science Source
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entire life of the red blood cell. Even when a red blood cell dies, the iron is recycled 
for use in another cell.

Positron Emission Tomography (PET) In positron emission tomography (PET), 
positron-emitters (radioisotopes whose decay mode is β+) are injected into the body. 
The tracer most commonly used in PET is the sugar fluorodeoxyglucose. The fluorine 
nuclide in the molecule is a positron-emitter (18F). A positron emitted in the body 
quickly annihilates with an electron to produce two gamma rays traveling in opposite 
directions. The photons are detected by a ring of detectors around the body (see 
Fig.  27.24). Among the uses of PET are detecting tumors and metastatic cancer, 
assessing coronary artery disease, locating heart damage caused by a heart attack, and 
diagnosing central nervous system disorders.

Radiation Therapy Radiation therapy is used in cancer treatment. Cancer cells are 
more vulnerable to the destructive effects of radiation, in part because they are rapidly 
dividing. Thus, the idea of radiation therapy is to supply enough radiation to destroy 
the malignant cells without causing too much damage to normal cells. The radiation 
can be administered internally or externally. Internally applied radiation treatment uses 
radionuclides that are either injected into the tumor, or which collect at the tumor site 
(much as tracers do). In a promising new technique for targeting cancer cells with 
radiation, a single radioactive atom is enclosed in a microscopic cage made of carbon 
and nitrogen atoms. Attached to the cage is a protein that locks onto a specific protein 
on the surface of a cancerous cell, after which the cage moves inside the cell. The 
alpha particles emitted in a series of radioactive decays then kill the cell.

Externally applied radiation can be x-rays produced by bremsstrahlung or by other 
means. Cobalt-60 emits gamma rays that are also used for radiation therapy. The 
cobalt-60 is kept in a lead box with a small hole so that the gamma rays can be lim-
ited to the site of the tumor.

Gamma Knife Radiosurgery An advanced form of cobalt-60 therapy is called 
gamma knife radiosurgery. In this technique, a spherical lead “helmet” with hun-
dreds of holes (Fig. 29.12) enables the gamma rays to converge at a small region in 
the brain. In this way, the radiation dose to the tumor, where all the gamma rays 
converge, can be much larger than the dose to the surrounding tissue.

Particle Accelerators in Hospitals Some hospitals have cyclotrons (see Section 19.3) 
or other particle accelerators on site. Their purpose is twofold. The accelerator can be 
used to manufacture radionuclides that have short half-lives. Radionuclides with longer 
half-lives can be manufactured offsite at either an accelerator or at a nuclear reactor. 
Second, beams of accelerated charged particles are used in radiation therapy.

Figure 29.12 (a) Diagram  
of the lead “helmet” used in 
gamma knife radiosurgery. 
(b) The patient is carefully posi-
tioned in the helmet to ensure 
that the gamma rays converge at 
the desired point in the brain. A 
lead apron protects the body 
from exposure to radiation.
©BSIP SA/Alamy (a)

Tumor

Externally generated
gamma rays

Lead helmet

(b)
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29.6 INDUCED NUCLEAR REACTIONS

In radioactivity, an unstable nucleus decays in a spontaneous nuclear reaction, 
releasing energy in the process. An induced nuclear reaction is one that does not 
occur spontaneously; it is caused by a collision between a nucleus and something 
else. The other reactant can be another nucleus, a proton, a neutron, an alpha 
 particle, or a photon.

We have already seen an example of an induced nuclear reaction; carbon-14 
is  formed in a nuclear reaction induced when an energetic neutron collides with a 
nitrogen-14 nucleus:

 n + 14N  →  14C + p (29-38)

Equation (29-38) is an example of neutron activation, in which a stable nucleus is 
transformed into a radioactive one by absorbing a neutron.

A spontaneous nuclear reaction always releases energy, so that the total mass of 
the products is always less than the total mass of the reactants. By contrast, an induced 
reaction can convert some of the kinetic energy of the reactants into rest energy. Thus, 
the total mass of the products can be greater than, less than, or equal to the total mass 
of the reactants. A nucleus involved in such a reaction does not have to be radioactive; 
a stable nucleus can participate in a reaction when struck by some other particle. The 
first such reaction ever observed, by Rutherford in 1919, was

 α + 14N  →  17O + p (29-45)

A reaction takes place when the target nucleus absorbs the incident particle, forming 
an intermediate compound nucleus. In the reaction of Eq. (29-45), the compound 
nucleus is 18  F:

 4
2He + 14

 7N  →  18
 9F → 17

 8O + 1
1H (29-46)

CHECKPOINT 29.6

What	 is	 the	 intermediate	compound	nucleus	formed	 in	the	 induced	reaction	of	
Eq.	 (29-38)?

Example 29.12

A Neutron Activation

Consider the reaction

n + 24Mg → p + ?

(a) Determine the product nucleus and the intermediate 
compound nucleus. (b) Is this reaction exoergic or endoer-
gic? That is, does it release energy, or does it require the in-
put of energy to occur? Calculate either the energy released 
(if exoergic) or the energy absorbed (if endoergic).

Strategy The product nucleus and compound nucleus can 
be identified by balancing the reaction: the total charge and 
total number of nucleons must remain the same. The energetics 

are determined by whether the total mass of the products is 
greater or less than the total mass of the reactants.

Solution (a) Magnesium is atomic number 12. The reac-
tion, written out more fully, is

1
0n + 24

12Mg → 25
12(?) → 24

11(?) + 1
1p

where we have made sure that the total electric charge and 
the total number of nucleons remain unchanged. From the 
periodic table, atomic number 11 is Na and we already know 
that atomic number 12 is Mg. Therefore, the product nucleus 
is 24

11Na and the intermediate nucleus is 25
12Mg.

continued on next page
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Application: Neutron Activation Analysis

Neutron activation analysis (NAA) is a technique used to study precious works of 
art, rare archaeological specimens, geological objects, and the like. It is used to deter-
mine which elements are present in the sample being studied—even those present in 
only trace amounts. The great advantage of NAA over other methods of analysis is 
that it is minimally invasive. An entire painting can be analyzed without the need to 
scrape off some of the paint, as would have to be done to use a mass spectrometer. 
Art historians know that different paint pigments were used in different historical 
periods. Determination of the pigments used can help establish the date of a painting; 
it can also detect forgeries, repairs, and canvasses that have been painted over.

The elements present in a sample are identified by the characteristic gamma ray 
energies emitted by the activated nuclei when they decay. By taking gamma ray spec-
tra at different times, the half-lives can also be used for identification purposes. Quan-
titative analysis of the gamma ray spectrum yields the concentrations of various 
elements in the samples being studied. Neutron activation analysis of this type has 
been used to study lunar samples from the Apollo missions, bullets and gunshot 
residue swabs used as forensic evidence in criminal investigations, oceanographic 
fossils and sediments, textiles, and artifacts from archaeological excavations, just to 
name a few examples.

NAA enables the art historian to determine which pigments have been used on 
which parts of the painting, even in the underlying layers, without damaging the paint-
ing. In Aristotle with a Bust of Homer, NAA helped reveal the extent of the damage 
to the apron and to the hat. Art historians also drew some conclusions about how 
Rembrandt’s composition was altered as he worked, such as changes in Aristotle’s 
costume, changes in the positions of the arms and shoulders, a change in the position 
of the medal, and a change in the height of the bust of Homer. Historians knew that 
the canvas had lost 14 inches of its original height; the early position of the bust 
helped them conclude that most of the missing canvas was at the bottom.

Example 29.12 continued

(b) We compare the total mass of the reactants with the 
total mass of the products. From Appendix B.8, the atomic 
masses are

 mass of 24Mg = 23.985 041 7 u
 mass of 24Na = 23.990 963 0 u

  mass of 1H = 1.007 825 0 u
  mass of n = 1.008 664 9 u

Using atomic masses is fine, since both sides include the 
extra mass of the same number of electrons (12). Then the 
total mass of the reactants is

1.008 664 9 u + 23.985 041 7 u = 24.993 706 6 u

and the total mass of the products is

1.007 825 0 u + 23.990 963 0 u = 24.998 788 0 u

Thus, the total mass increases when this reaction takes place:

Δm = 24.998 788 0 u − 24.993 706 6 u = +0.005 081 4 u

Since the mass of the products is greater than the mass of the 
reactants, the reaction is endoergic; there is less kinetic 

 energy after the reaction than there was before. The energy 
absorbed is

 E = (Δm)c2 = 0.005 081 4 u × 931.494 MeV/u
 = 4.7333 MeV

Discussion We expect this reaction to be possible 
only if the total kinetic energy of the reactants is at least 
4.7333 MeV more than the total kinetic energy of the 
products. It is not necessarily the most likely outcome. 
Other reactions compete, such as the emission of one or 
more photons:

1
0n + 24

12Mg → 25
12Mg* → 25

12Mg + γ

In other cases, the competing reaction might include alpha 
decay, beta decay, or fission.

Practice Problem 29.12 The Reaction That  
Produces Carbon-14

Determine whether the reaction n + 14N → 14C + p is exoergic 
or endoergic. How much energy is released or absorbed?
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29.7 FISSION

As shown in Fig. 29.2, very large nuclei have a smaller binding energy per nucleon 
than do nuclides of intermediate mass. The binding energy of large nuclides is reduced 
by the long-range Coulomb repulsion of the protons. Each proton in the nucleus repels 
every other proton. The strong force, which holds the nucleons together in a nucleus, 
is short range. Each nucleon is bound only to its nearest neighbors. Among large 
nuclides the average number of nearest neighbors is approximately constant, so the 
strong force does not increase the binding energy per nucleon to compensate for the 
Coulomb repulsion, which decreases the binding energy per nucleon.

A large nucleus can therefore release energy by splitting into two smaller, more 
tightly bound nuclei in the process called fission. The term is borrowed from biology; a 
cell fissions when it splits into two. Nuclear fission was discovered in 1938 by German- 
and Austrian scientists Otto Hahn, Fritz Strassman, Lise Meitner, and Otto Frisch.

Some very large nuclei can fission spontaneously. Radioactive uranium-238, for 
instance, can break apart into two fission products, though it is much more likely to 
decay by emitting an alpha particle. Fission can also be induced by an incident neu-
tron, proton, deuteron (a 2H nucleus), alpha particle, or photon. Fission due to the 
capture of a slow neutron allows the possibility of a chain reaction. Uranium-235 is 
the only naturally occurring nuclide that can be induced to fission by slow neutrons.

Suppose that a slow neutron is captured by a 235U nucleus. The compound 
nucleus formed, 236U, is in an excited state since the neutron gives up energy when 
it becomes bound to the nucleus (Problem 56). The excited nucleus is elongated 
in shape (Fig. 29.13). The attractive force between nucleons tends to pull the 
nucleus back into a sphere, while the Coulomb repulsion between protons tends to 
push the ends apart. If the excitation energy is sufficient, a neck forms and the 
nucleus splits into two parts. The Coulomb repulsion then pushes the two fragments 
apart so they do not recombine into a single nucleus.

Figure 29.14 shows the potential energy of a nucleus as it elongates and splits 
into two. To form an elongated shape, the potential energy of the nucleus must increase 
about 6 MeV. In the absence of an incident particle to supply this energy, spontaneous 
fission can occur only by quantum-mechanical tunneling through the 6 MeV energy 
barrier (Section 28.10). The tunneling probability is much lower than the probability 
of alpha decay. If 238U decayed only by spontaneous fission, its half-life would be 
about 1016 yr (instead of 4 × 109 yr).

Many different fission reactions are possible for a given parent nuclide. Here are 
two examples of the induced fission of 235U after it captures a slow neutron:

 1
0n + 235

 92U → 236
 92U* → 141

 56Ba + 92
36Kr + 31

0n (29-47)

 1
0n + 235

 92U → 236
 92U* → 139

 54Xe + 95
38Sr + 21

0n (29-48)

235U 92
236U 

Compound
nucleus

92

1n 0

92Kr 36

141Ba 56

1n 0

1n 0

1n 0
Figure 29.13 Fission of 235U 
induced by the capture of a 
slow neutron. In addition to the 
two daughter nuclei, some neu-
trons are released.
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Figure 29.14 Potential 
energy as a function of separa-
tion of the two daughter nuclei 
in spontaneous fission.

Notice that the masses of the two daughter nuclei differ significantly in these two 
examples. The ratio of the masses of the two 235U fission fragments varies from 1 
(equal masses) to a little greater than 2 (one slightly more than twice as massive as 
the other). The most likely split is a mass ratio of approximately 1.4–1.5 (Fig. 29.15).

Besides the daughter nuclei, neutrons are released in a fission reaction. Large 
nuclei are more neutron-rich than are smaller nuclei; a few excess neutrons are released 
when a large nucleus fissions. As many as five neutrons can be released in the fission 
of 235U; the average number released in a large number of fission reactions is about 
2.5. The fission fragments themselves are often still too neutron-rich. The unstable 
fragments undergo beta decay one or more times, stopping when a stable nuclide is 
formed. In a fission chain reaction (Fig. 29.16), hundreds of different radioactive 
nuclides—most of which do not occur naturally—are produced.

Example 29.13 shows that the energy released in a fission reaction is enormous—
typically around 200 MeV for the split of a single nucleus. To get a macroscopically 
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tion of fission fragments from 
235U. Note that the vertical 
scale is logarithmic.
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Figure 29.16 A fission chain reaction. Neutrons released when fission occurs can go on to induce fission in other nuclei.
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significant amount of energy from fission, a large number of nuclei must split. A 
neutron can induce fission in 235U, and each fission produces an average of 2.5 neu-
trons, each of which can go on to induce other nuclei to fission in a chain reaction. 
An uncontrolled chain reaction is the basis of the fission bomb. To make constructive 
use of the energy released by fission, the chain reaction must be controlled.

Example 29.13

Energy Produced in a Fission Reaction

Estimate the energy released in the fission reaction of 
Eq. (29-47). Use Fig. 29.2 to estimate the binding energies 
per nucleon for 235

 92U, 141
 56Ba, and 92

36Kr.

Strategy The energy released is equal to the increase in 
binding energy. The binding energies are estimated by read-
ing the binding energy per nucleon from Fig. 29.2 and mul-
tiplying by the number of nucleons.

Solution From Fig. 29.2, the binding energies per nucleon 
of 235

 92U, 141
 56Ba, 92

36Kr are approximately 7.6 MeV, 8.25 MeV, 
and 8.75 MeV, respectively. We find the total binding energies 
by multiplying by the number of nucleons. Binding energy:

for 235
 92U ≈ 235 × 7.6 MeV = 1786 MeV

for 141
 56Ba ≈ 141 × 8.25 MeV = 1163 MeV

for 92
36Kr ≈ 92 × 8.75 MeV = 805 MeV

The increase in binding energy is

1163 MeV + 805 MeV − 1786 MeV = 182 MeV

The energy released by the fission reaction is about 
180 MeV.

Discussion The energy released doesn’t vary much from one 
fission reaction to another. A nuclide with A ≈ 240 has a bind-
ing energy of about 7.6 MeV/nucleon. The fission products 
have an average binding energy of about 8.5 MeV/nucleon. 
Thus, we expect the energy released to be a little less than 
1 MeV per nucleon.

To refine this estimate, we can do a precise calculation 
of the energy released in the reaction using the masses of the 
parent and daughter nuclides (Problem 58).

Conceptual Practice Problem 29.13 Can Smaller 
Nuclides Fission?

Suppose that a 54
24Cr nucleus captures a slow neutron:

1
0n + 54

24Cr → 55
24Cr*

Explain why fission does not occur. What might happen 
 instead?

Application: Fission Reactors

Most modern fission reactors (Fig. 29.17) use enriched uranium as fuel. Only 235U 
sustains the chain reaction; 238U can capture neutrons without splitting. Naturally occur-
ring uranium is 99.3% 238U and only 0.7% 235U; with so much 238U absorbing neutrons, 
it would be difficult to maintain a chain reaction. In enriched uranium, the 235U content 
is increased to a few percent. The neutrons produced in a fission reaction have large 
energies. These fast neutrons are equally likely to be captured by 238U nuclei or 235U 
nuclei. But if the neutrons are slowed down, then they are much more likely to be 
captured by 235U and induce fission. For this reason, a substance called a moderator 
is included in the fuel core. Moderators include hydrogen (in water or zirconium 
hydride), deuterium (2H, in molecules of heavy water), beryllium, or carbon (as graph-
ite). The moderator’s function is to slow down the neutrons by colliding with them 
without capturing too many. Light nuclei are most effective at slowing down the neu-
trons, since the fractional loss in kinetic energy decreases with increasing target mass.

To control the chain reaction, a substance that readily absorbs neutrons, such as 
cadmium or boron, is formed into control rods. The control rods are lowered into the 
fuel core to absorb more neutrons, or retracted to absorb fewer neutrons. In normal 
operation, the reactor is critical: on average one neutron from each fission goes on to 
initiate another fission. A critical reactor produces a steady power output. If the reac-
tor is subcritical, on average less than one of the neutrons produced by a fission 
reaction goes on to cause another fission. As fewer and fewer fission reactions occur, 



1120 CHAPTER	29 Nuclear Physics

the chain reaction dies out. A reactor is shut down by lowering the control rods to 
make the reactor subcritical. If the reactor is supercritical, then on average more than 
one neutron from each fission causes another fission. Thus, the number of fission 
reactions per second is increasing in a supercritical reactor. A reactor must be allowed 
to be supercritical for a brief time while it is starting up.

Fission reactors have purposes other than power generation. They also provide 
the neutron sources for neutron activation analysis and neutron diffraction experi-
ments. The neutrons from a reactor are also used to produce artificial radioisotopes 
for medical use. A by-product of the fission reactions in a breeder reactor is to pro-
duce more fissionable material (plutonium-239) from uranium-238 in its fuel core 
than is consumed. The 239Pu can be left in the core, to fission and generate power, or 
it can be extracted and used to make bombs. Thus, breeder reactors could contribute 
to the proliferation of nuclear weapons.

Problems with Fission Reactors

Although fission reactors do not contribute to global climate change because they do 
not produce “greenhouse” gases, they must be carefully designed to prevent the release 
of harmful radioactive materials into the environment. A major accident occurred in 
1986 at the Chernobyl reactor in Ukraine, then part of the Soviet Union (Fig. 29.18). 
Poor reactor design and a series of mistakes by the operators of the reactor resulted 
in two explosions, releasing radioactive fission products into the atmosphere and 
allowing the graphite moderator in the core to burst into flame. The graphite fire 
continued for 9 days. The estimated amount of radiation that escaped is of the order 
of 1019 Bq; winds dispersed radioactive material over Ukraine, Belarus, Russia, 
Poland, Scandinavia, and eastern Europe.

Pumps

Containment structure

Fuel
rods

Reactor
core

Control
rods

Reactor

Heat
exchanger

Steam line

Steam
turbine

Generator

Condenser

Cooling
tower

Power
plant

Power lines

Primary coolant

Figure 29.17 A pressurized water fission reactor. Water under high pressure is the primary coolant that carries heat 
from the core into a heat exchanger in a closed loop. (In some other reactors, liquid sodium is used as the primary 
coolant.) The heat exchanger extracts heat from the primary coolant to make steam; the steam drives a turbine connected 
to an electric generator. In essence, the fission reactions in the core act like a furnace to supply the heat needed to run 
a heat engine. As in all heat engines, waste heat must be exhausted to the environment. In this case, cool water is taken 
in from a nearby body of water. This water takes heat from the steam engine and then evaporates in the cooling tower 
so the waste heat goes into the air.

Figure 29.18 Aerial view of 
the exploded fourth reactor of 
the Chernobyl nuclear power 
plant.
©Stringer/Getty Images
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In 2011, damage caused by the earthquake and tsunami in the Tōhoku region of 
Japan led to a series of accidents at the six reactors of the Fukushima Daiichi nuclear 
power plant. The three reactors that were in operation were shut down automatically 
after the earthquake. The seawall protecting the plant was designed only to withstand 
a 5.7 m tsunami, far less than the 14 m tsunami that hit about an hour after the 
earthquake. The emergency cooling systems failed, and the reactor cores started to 
overheat. Core meltdowns, explosions, and fires damaged the buildings and contain-
ment structures, releasing radioactivity into the environment. Spent fuel rods stored 
in pools of water overheated, releasing additional radioactivity as the cooling water 
boiled away. The Japanese government evacuated people within a 20 km radius of the 
plant. The cleanup of the damaged reactors and surrounding areas is expected to take 
a decade or more to complete.

An ongoing problem is how to safely transport and store radioactive waste. 
Spent fuel rods, which are removed from the reactor core when the fissionable 
material is depleted, contain highly radioactive fission products that must be stored 
for thousands of years. In addition to the spent fuel, other parts of the reactor 
become radioactive by neutron activation. After about 30 yr of operation, the struc-
tural materials of the reactor have been weakened by radiation, requiring that the 
reactor be decommissioned.

Starting in 1978 and continuing until 2011, the U.S. government studied Yucca 
Mountain in Nevada to determine if a permanent repository for approximately 
77 000 tons of high-level radioactive waste from fission reactors could be con-
structed there. Subsequent studies showed that the desert site might not be as 
geologically stable as was originally thought. Despite considerable public and 
political opposition, the site was chosen by Congress in 2002 to be the nation’s 
permanent storage site for high-level radioactive waste. Opposition and legal battles 
continued and, in the 2011 budget, Congress eliminated funding for development 
of the site, leaving the United States without any plan for long-term storage of 
high-level radioactive waste. For now, the waste continues to be stored onsite at 
more than 120 reactors.

29.8 FUSION

The energy radiated by the Sun and other stars is produced by nuclear fusion. Fusion 
is essentially the opposite of fission. Instead of a large nucleus splitting into two 
smaller pieces, fusion combines two small nuclei to form a larger nucleus. Both fis-
sion and fusion release energy, since they move toward larger binding energies per 
nucleon (see Fig. 29.2). Due to the steep slope of the binding energy per nucleon 
curve at low mass numbers, fusion can be expected to release significantly more 
energy per nucleon than fission.

Here is an example of a fusion reaction:

 2H + 3H → 4He + n (29-49)

Two hydrogen nuclei fuse to form a helium nucleus. The reaction releases 17.6 MeV 
of energy, which is 3.52 MeV per nucleon—much more than the 0.75–1 MeV per 
nucleon typical of fission reactions. Although this reaction produces a tremendous 
amount of energy, it cannot occur at room temperature. The deuterium (2H) and tritium 
(3H) nuclei must get close enough to react. At room temperature, the two positively 
charged nuclei have kinetic energies much too small to overcome their mutual Cou-
lomb repulsion. However, in the Sun’s interior the temperature is about 2 × 107 K 
and the average kinetic energy of the nuclei is 3

2kBT ≈ 2.52 keV. This average kinetic 
energy is still far too small to allow a fusion reaction (see Example 29.14), but some 
of the more energetic nuclei do have enough kinetic energy to overcome the Coulomb 
repulsion. Fusion reactions are also called thermonuclear reactions because they 
depend on the large kinetic energies available at high temperatures.
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Proton-Proton Cycle The proton-proton cycle is the dominant source of energy in 
the Sun and in other stars with masses comparable to or smaller than the Sun’s mass.

 p + p → 2H + e+ + ν (29-50)

 p + 2H → 3He (29-51)

 3He + 3He → 4He + 2p (29-52)

 p + 12C → 13N (29-55)

 13N → 13C + e+ + ν (29-56)

 p + 13C → 14N (29-57)

 p + 14N → 15O (29-58)

 15O → 15N + e+ + ν (29-59)

 p + 15N → 12C + 4He (29-60)

The net effect of the proton-proton cycle is to fuse four protons into a 4He nucleus. 
(The first two reactions must each take place twice to form the two 3He nuclei needed 
for the third reaction.) The three steps can be summarized as

 4p → 4He + 2e+ + 2ν (29-53)

Each positron annihilates with an electron, so the overall reaction due to the proton- 
proton cycle is

 4p + 2e− → 4He + 2ν (29-54)

Carbon Cycles In stars with masses greater than about 1.3 times the Sun’s mass, 
the dominant sources of energy are various carbon cycles. One carbon cycle, known 
as CNO-I, consists of the following steps:

Here the carbon-12 nucleus acts as a catalyst; it is present in the beginning and at the 
end. After the annihilation of the two positrons, the net effect is the same as the 
proton-proton cycle:

 4p + 2e− → 4He + 2ν (29-54)

The total energy released by CNO-I is the same as the total energy released by the 
proton-proton cycle. By “total energy released” we mean the total energy of all the 
photons [not shown in Eqs. (29-50) through (29-60)] and neutrinos produced plus 
the kinetic energy of the 4He nucleus minus the initial kinetic energies of the protons 
and electrons.

Example 29.14

First Step of CNO-I

(a) Calculate the energy released in the first step  
[Eq. (29-55)] of the CNO-I cycle. (b) Estimate the minimum 
 kinetic energy of the proton and 12C nucleus required for this 
reaction to take place.

Strategy To calculate the energy released, we must deter-
mine the mass difference between reactants and products. 
For the minimum initial kinetic energy, we know that the 
two positively charged particles repel each other. We can 

continued on next page
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Application: Nuclear Fusion in Stars Stars act as factories to form heavier 
nuclides from lighter nuclides. In a star like our Sun, most of the fusion reactions 
produce helium from hydrogen. At higher core temperatures, heavier nuclides can take 
part in fusion reactions. Nuclides all the way up to the peak of the binding energy 
curve (see Fig. 29.2), around A = 60, are formed by fusion reactions in the interiors 
of stars. Once a star core is rich in iron and nickel, elements near the top of the bind-
ing energy curve, fusion reactions die out. Heavier nuclides are less tightly bound 
than iron and nickel, so fusion reactions no longer release energy. Eventually the large 
star implodes under its own gravity; the implosion provides the energy for the fusion 
of heavier nuclides. Ultimately the star may explode, an event called a supernova. 
Additional fusion and neutron capture reactions occur in the shock waves caused by 
the explosion, forming the heaviest nuclides. The nuclides formed in the supernova, 
plus the ones that had already been formed in the star’s core, are dispersed by the 
explosion into space. The atoms that make up all of us and our surroundings were 
distributed into space by one or more supernovae, to be included later in the formation 
of Earth. Other than hydrogen (and a small fraction of some of the other light ele-
ments), all of the elements found on Earth were either made in the core of a star or 
in a supernova (or are radioactive decay products of these elements).

Application: Fusion Reactors

In a thermonuclear bomb (or hydrogen bomb), a fission bomb creates the high tem-
peratures that enable an uncontrolled fusion reaction to take place. For decades, 
researchers have been trying to make possible a sustained, controlled fusion reaction. 
Fusion as an energy source would have several advantages over fission. The fuel for 
fusion is more easily obtained than the fuel for fission. The most promising reactions 
for controlled fusion are deuteron-deuteron fusion (2H + 2H) or deuteron-triton fusion 
[2H + 3H, as in Eq. (29-49)]. Deuterium is readily available in seawater; about 0.0156% 
of the water molecules in the ocean contain a deuterium atom. Tritium’s natural 
abundance is very small, but is not difficult to produce.

Example 29.14 continued

find the distance between the two when they just “touch,” 
and find the electric potential energy in that position.

Solution (a) The reaction in question is

p + 12C → 13N

We use atomic masses in the calculations since the extra 
mass of seven electrons is equally present in the atomic 
masses of the reactants and products. The initial mass is then

1.007 825 0 u + 12.000 000 0 u = 13.007 825 0 u

The mass change is

Δm = 13.005 738 6 u − 13.007 825 0 u = −0.002 086 4 u

The energy released is

E = 0.002 086 4 u × 931.494 MeV/u = 1.9435 MeV

(b) From Eq. (29-7), the radii of the proton and 12C nucleus are 
1.2 fm and

1.2 fm × 121/3 = 2.75 fm

For an estimate of the electric potential energy when the 
proton and 12C nucleus are just “touching,” we find the elec-
tric potential energy of two point charges, +e and +6e, at a 
separation of 3.95 fm.

 UE =
6ke2

r
=

6 × (9 × 109 N·m2/C2) × (1.60 × 10−19 C)2

3.95 × 10−15 m

 = 3.50 × 10−13 J = 2 MeV

The minimum total kinetic energy of the proton and 
12C nucleus that allows the reaction to take place is about 
2 MeV.

Discussion The energy released, 1.9435 MeV, includes 
both the increase in kinetic energy and the energy of the 
photon.

Practice Problem 29.14 Second Step of CNO-I

Calculate the energy released in the second step of CNO-I.
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One of the biggest problems associated with fission reactors is the radioactive 
waste that must be safely stored for thousands of years. A fusion reactor would pro-
duce less radioactive waste, and the waste would not have to be stored for as long.

However, a sustained, controlled fusion reaction has not yet been achieved. The 
main problem is containing the fuel at the extremely high temperatures (estimated to 
be about 108 K, which is higher than the temperature of the Sun’s interior) needed 
for fusion to take place, while maintaining a high density of nuclei so that they collide 
into one another. An ordinary container cannot be used; the nuclei would lose too 
much kinetic energy when they collide with the walls of such a container and the 
container would be vaporized by the high temperatures. Two principal confinement 
schemes are being tried. One is magnetic confinement (Fig. 29.19). The other is iner-
tial confinement, in which a small fuel pellet is heated rapidly by intense laser beams 
from all sides, causing the fuel pellet to implode and the fusion reactions to take place 
before the pellet is vaporized.

Plasma

Toroidal
magnets Protective

shielding

Access port

Figure 29.19 The tokamak 
is one of the most promising 
methods for containing a con-
trolled fusion reaction. At such 
high temperatures, the atoms  
in the fuel ionize to form a 
plasma—a mixture of electrons 
and positively charged nuclei. 
Magnetic fields confine the 
charged nuclei to the interior of 
a doughnut-shaped, evacuated 
chamber. The nuclei spiral 
around magnetic field lines and 
are confined without colliding 
with the walls of the vacuum 
chamber.

Master the Concepts

 ∙ A particular nuclide is characterized by its atomic num-
ber Z (the number of protons) and its nucleon number A 
(the total number of protons and neutrons). The isotopes 
of an element have the same atomic number but differ-
ent numbers of neutrons.

 ∙ The mass density of all nuclei is approximately the 
same. The radius of a nucleus is

 r = r0 A1/3 (29-7)

  where

 r0 = 1.2 × 10−15 m = 1.2 fm (29-8)

 ∙ The binding energy EB of a nucleus is the energy that 
must be supplied to separate a nucleus into individual 
protons and neutrons. Since the nucleus is a bound sys-
tem, its total energy is less than the energy of Z protons 
and N neutrons that are far apart and at rest.

 EB = (Δm)c2 (29-11)
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 ∙ In any nuclear reaction, the total electric charge and the 
total number of nucleons are conserved.

continued on next page
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Master the Concepts continued
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 ∙ The absorbed dose is the amount of radiation energy 
absorbed per unit mass of tissue, measured in grays 
(1 Gy = 1 J/kg) or rads (1 rad = 0.01 Gy).

 ∙ The relative biological effectiveness (RBE) is a relative 
measure of the biological damage caused by different 
kinds of radiation. The biologically equivalent dose is

 biologically equivalent dose =
 absorbed dose × RBE (29-42)

 ∙ A large nucleus can release energy by splitting into two 
smaller, more tightly bound nuclei in the process called 
fission. The energy released in a fission reaction is 
 enormous—typically around 200 MeV for the split of a 
single nucleus.

 ∙ Nuclear fusion combines two small nuclei to form a 
larger nucleus. Fusion typically releases significantly 
more energy per nucleon than fission.

 ∙ An unstable or radioactive nuclide decays by emitting 
radiation. The most common decay modes are:

 Alpha decay  AZP → A−4
Z−2D + 4

2α (29-14)

 Beta-minus decay  AZP →   A
Z+1D +  0

−1e + 0
0ν (29-15)

 Beta-plus decay  AZP →   A
Z+1D +  0

−1e + 0
0ν (29-16)

 Electron capture  AZP +  0
−1e →   A

Z−1D + 0
0ν (29-19)

 Gamma decay  P* → P + γ

 ∙ Each radioactive nuclide has a characteristic decay 
probability per unit time λ. The activity R of a sample 
with N nuclei is

R =
number of decays

unit time
=

−ΔN

Δt
= λN  (29-31)

  Activity is commonly measured in becquerels (1 Bq =  
1 decay per second) or curies (1 Ci = 3.7 × 1010 Bq).

 ∙ The number of remaining nuclei N in radioactive decay 
(the number that have not decayed) is an exponential 
function:

 N(t) = N0 e−t/τ  (29-32)

  where the time constant is τ = 1/λ. The half-life is the 
time during which half of the nuclei decay:

 T1/2 = τ ln 2 ≈ 0.693τ (29-36)

Conceptual Questions

 1. How could Henri Becquerel and other scientists deter-
mine that there were three different kinds of radiation 
before having determined the electric charges or masses 
of the alpha, beta, and gamma rays?

 2. What technique could Becquerel and others have used 
to determine that alpha rays are positively charged, beta 
rays negatively charged, and gamma rays uncharged? 
Explain how they could find that alpha rays have a 
charge-to-mass ratio half that of the H+ ion, and beta 
rays have the same charge-to-mass ratio as “cathode 
rays” (electrons). (See Chapter 19 for some ideas.)

 3. Why is a slow neutron more likely to induce a nuclear 
reaction (as in neutron activation and induced fission) 
than a proton with the same kinetic energy?

 4. Explain why neutron-activated nuclides tend to decay 
by β− rather than β+.

 5. Why can we ignore the binding energies of the atomic 
electrons in calculations such as Example 29.4? Isn’t there 
a mass defect due to the binding energy of the electrons?

 6. Why would we expect atmospheric testing of nuclear 
weapons to increase the relative abundance of carbon-14 
in the atmosphere? Why would we expect the wide-
spread burning of fossil fuels to decrease the relative 
abundance of carbon-14 in the atmosphere?

 7. Isolated atoms (or atoms in a dilute gas) radiate photons 
at discrete energies characteristic of that atom. In dense 
matter, the spectrum radiated is quasi-continuous. Why 
doesn’t the same thing happen with nuclear spectra: 
why do the gamma rays have the same characteristic 
energies even when emitted from a solid?

 8. Section 29.8 states that the total energy released by the 
proton-proton cycle is the same as that released by the 
carbon cycle CNO-I. Why must the total energy re-
leased be the same?

 9.  Iodine is eliminated from the body through biological 
processes with an effective half-life of about 140 days. 
The radioactive half-life of iodine-131 is 8 days. Suppose 
some radioactive 131I nuclei are present in the body. As-
suming that no new 131I nuclei are introduced into the 
body, how much time must pass until only half as much 
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131I is left in the body: less than 8 days, between 8 and 
140 days, or more than 140 days? Explain your reasoning.

 10.  Radon-222 is created in a series of radioactive decays 
starting with 238

 92U and ending with 206
 82Pb. The half-life of 

222Rn is 3.8 days. (a) If the half-life is so short, why hasn’t 
all the 222Rn gas decayed by now? (b) If the half-life of 
222Rn were much shorter, say a few seconds, would it be 
more dangerous to us or less dangerous? What if the half-
life were much longer, say thousands of years?

 11.  Radioactive alpha emitters are relatively harmless 
outside the body, but can be dangerous if ingested or 
inhaled. Explain.

 12.  Fission reactors and cyclotrons tend to produce differ-
ent kinds of isotopes. A reactor produces isotopes primar-
ily through neutron activation; thus, the isotopes tend to be 
neutron-rich (high neutron-to-proton ratio). A cyclotron 
can only accelerate charged particles such as protons or 
deuterons. When stable nuclei are bombarded with protons 
or deuterons, the resulting radioisotopes are neutron- 
deficient (low neutron-to-proton ratio). (a) Explain why a 
cyclotron cannot accelerate neutrons. (b) Suppose a hospi-
tal needs a supply of radioisotopes to use in positron- 
emission tomography (PET). Would the radioisotopes 
more likely come from a reactor or a cyclotron? Explain.

 13. Why would a fusion reactor produce less radioactive 
waste than a fission reactor? [Hint: Compare the products 
of a fission reaction with those from a fusion reaction.]

 14. Why does a fission reaction tend to release one or more 
neutrons? Why is the release of neutrons necessary in 
order to sustain a chain reaction?

Multiple-Choice Questions

 1. Solid lead has more than four times the mass density of 
solid aluminum. What is the main reason that lead is so 
much more dense?

 (a)  The Pb atom is smaller than the Al atom.
 (b) The Pb nucleus is smaller than the Al nucleus.
 (c) The Pb nucleus is more massive than the Al nucleus.
 (d) The Pb nucleus is more dense than the Al nucleus.
 (e)  The Pb atom has many more electrons than the Al 

atom.
 2. The activity of a radioactive sample (with a single ra-

dioactive nuclide) decreases to one eighth its initial 
value in a time interval of 96 days. What is the half-life 
of the radioactive nuclide present?

 (a) 6 days (b) 8 days (c) 12 days
 (d) 16 days (e) 24 days (f) 32 days
 3. For all stable nuclei,
 (a) the mass of the nucleus is less than Zmp + (A − Z)mn.
 (b)  the mass of the nucleus is greater than Zmp +  

(A − Z)mn.
 (c) the mass of the nucleus is equal to Zmp + (A − Z)mn.
 (d) none of the above have to be true.

 4. Of the hypothetical nuclear reactions listed here, which 
would violate conservation of charge?

 (a) 10
 5B + 4

2He → 13
 7N + 1

1H
 (b) 10

 5B + 1
0n → 11

 5B + β− + ν
 (c) 23

11Na + 1
1H → 20

10Ne + 4
2He

 (d) 14
 7N + 1

1H → 13
 6C + β+ + ν

 (e) none of them (f) all of them
 (g) all but (c) (h) (a) and (d)
 5. Of the hypothetical nuclear reactions listed in Multiple-

Choice Question 4, which would violate conservation of 
nucleon number?

 6. In a fusion reaction, two deuterons produce a helium-3 
nucleus. What is the other product of the reaction?

 (a) an electron (b) a proton (c) a neutron
 (d) an alpha particle (e) a positron (f) a neutrino
 7. For all stable nuclei
 (a) there are equal numbers of protons and neutrons.
 (b) there are more protons than neutrons.
 (c) there are more neutrons than protons.
 (d) none of the above have to be true.
 8. Radioactive 215

 83Bi decays into 215
 84Po. Which of these 

particles is released in the decay?
 (a) a proton (b) an electron (c) a positron
 (d) an alpha particle (e) a neutron (f) none of the above
 9. Which of these are appropriate units for the decay con-

stant λ of a radioactive nuclide?
 (a) s (b) Ci (c) rad
 (d) s−1 (e) rem (f) MeV
 10. Which of the units listed in Multiple-Choice Question 9 

are appropriate for the biologically equivalent dose that 
results when a person is exposed to radiation?

Problems

  Combination conceptual/quantitative problem
  Biomedical application
  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

29.1 Nuclear Structure
 1. Estimate the number of nucleons found in the body of a 

75 kg person.
 2. Calculate the mass density of nuclear matter.
 3. Rank these nuclides in decreasing order of the number 

of neutrons:
 (a) 4

2He (b) 3
2He (c) 2

1H (d) 63Li
 (e) 7

5B (f) 4
3Li

 4. Write the symbol (in the form A
ZX) for the nuclide with 

38 protons and 50 neutrons and identify the element.
 5. Write the symbol (in the form A

ZX) for the isotope of 
potassium with 21 neutrons.
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 6. How many neutrons are found in a 35Cl nucleus?
 7. How many protons are found in a 136Xe nucleus?
 8. Write the symbol (in the form A

ZX) for the nuclide that 
has 78 neutrons and 53 protons.

 9. Find the radius and volume of the 107
 43Tc nucleus.

29.2 Binding Energy
 10. What is the mass of an 16O atom in units of MeV/c2? 

(1  MeV/c2 is the mass of a particle with rest energy 
1 MeV.)

 11. What is the mass defect of the 14N nucleus?
 12. What is the binding energy of an alpha particle (a 4He 

 nucleus)? The mass of an alpha particle is 4.001 51 u.
 13. Find the binding energy of a deuteron (a 2H nucleus). 

The mass of a deuteron (not the deuterium atom) is 
2.013 553 u.

 14. What is the average binding energy per nucleon  
for 40

18Ar?
 15. (a) Find the binding energy of the 16O nucleus. (b) What 

is the average binding energy per nucleon? Check your 
answer using Fig. 29.2.

 16. Calculate the binding energy per nucleon of the 31
15P 

 nucleus.
 17. (a) What is the mass defect of the 1H atom due to the 

binding energy of the electron (in the ground state)? 
(b) Should we worry about this mass defect when we 
calculate the mass of the 1H nucleus by subtracting the 
mass of one electron from the mass of the 1H atom?

 18. Show that c2 = 931.494 MeV/u. [Hint: Start with the 
conversion factors to SI units for MeV and atomic 
mass units.]

 19.  Using a mass spectrometer, the mass of the 238
 92U+ 

ion  is found to be 238.050 24 u. (a) Use this result to 
calculate the mass of the 238

 92U nucleus. (b) Now find the 
binding energy of the 238

 92U nucleus.

29.3 Radioactivity
 20. Identify the daughter nuclide when 40

19K decays via β− 
decay.

 21. The isotope 12
 7N undergoes radioactive decay to form 

12
 6C. What charged particle is emitted in the decay 
 process, and what is its charge?

 22. Thorium-232 (232
 90Th) decays via alpha decay. Write out 

the reaction and identify the daughter nuclide.
 23. Write out the reaction and identify the daughter nuclide 

when 22
11Na decays by electron capture.

 24. Write out the reaction and identify the daughter nuclide 
when 22

11Na decays by emitting a positron.
 25. Radium-226 decays as 226

 88Ra → 222
 86Rn + 4

2He. If the 
226
 88Ra nucleus is at rest before the decay and the 226

 88Rn 
nucleus is in its ground state, estimate the kinetic 
 energy of the alpha particle. (Assume that the 222

 86Rn 

nucleus takes away an insignificant fraction of the 
 kinetic energy.)

 26. Which decay mode would you expect for radioactive 
31
14Si: α, β−, or β+? Explain. [Hint: Look at the neutron-
to-proton ratio.]

 27. Calculate the maximum kinetic energy of the beta 
 particle when 40

19K decays via β− decay.
 28. Calculate the energy of the antineutrino when 90

38Sr 
 decays via β− decay if the beta particle has a kinetic 
energy of 435 keV.

 29. Show that the spontaneous alpha decay of 19O is not 
possible.

 30.  An isotope of sodium, 22
11Na, decays by β+ emission. 

Estimate the maximum possible kinetic energy of the 
positron by assuming that the kinetic energy of the 
daughter nucleus and the total energy of the neutrino 
emitted are both zero. [Hint: Remember to keep track of 
the electron masses.]

29.4 Radioactive Decay Rates and Half-lives
 31. A sample containing I-131 has an activity of 6.4 ×  

108 Bq. How many days later will the sample have an 
activity of 2.5 × 106 Bq?

 32.  Some bones discovered in a crypt in Guatemala are 
carbon-dated. The 14C activity of the bones is measured 
to be 0.242 Bq per gram of carbon. Approximately how 
old are the bones?

 33.  Carbon-14 dating is used to date a bone found at an 
archaeological excavation. If the ratio of C-14 to C-12 
atoms is 3.25 × 10−13, how old is the bone? [Hint: Note 
that this ratio is one fourth the ratio of 1.3 × 10−12 that 
is found in a living sample.]

 34. A sample of radioactive 214
 83Bi, which has a half-life of 

19.9 min, has an activity of 0.058 Ci. What is its activity 
1.0 h later?

 35. The activity of a sample containing radioactive 108Ag 
is 6.4 × 104 Bq. Precisely 12 min later, the activity is 
2.0 × 103 Bq. Calculate the half-life of 108Ag.

 36.  Because iodine accumulates in the thyroid, radioac-
tive iodine-131 can be used to kill cancerous thyroid 
tissue with minimal damage to other tissue. Sometimes 
the dose is administered in an outpatient setting and the 
patient is allowed to go home, with instructions on how 
to protect others from radiation exposure. Ninety-five 
days after treatment, what percentage of the initial 
 iodine-131 in the thyroid remains, ignoring the relatively 
small amount that is excreted?

 37.  The radioisotope 131I, used to diagnose and treat 
 thyroid conditions, can be produced by neutron activation 
of tellurium inside a nuclear reactor. A hospital receives a 
shipment of 131I with an initial activity of 3.7 × 1010 Bq. 
After 2.5 days, several patients are to be given doses of 
1.1 × 109 Bq each. How many patients can be treated?
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 38. A certain radioactive nuclide has a half-life of 200.0 s. 
A sample containing just this one radioactive nuclide 
has an initial activity of 80 000.0 s−1. (a) What is the 
activity 600.0 s later? (b) How many nuclei were there 
initially? (c) What is the probability per second that any 
one of the nuclei decays?

 39. Calculate the activity of 1.0 g of radium-226 in Ci.
 40. What is the activity in becquerels of 1.0 kg of 238U?
 41.  In this problem, you will verify the statement 

(in  Section 29.4) that the 14C activity in a living 
 sample is 0.25 Bq per gram of carbon. (a) What is the 
decay constant λ for 14C? (b) How many 14C atoms are 
in 1.00 g of carbon? One mole of carbon atoms has a 
mass of 12.011 g, and the relative abundance of 14C is 
1.3 × 10−12. (c) Using your results from parts (a) and 
(b), calculate the 14C activity per gram of carbon in a 
living sample.

 42.  To perform a bone scan, 3.8 × 106 Bq of 85Sr is in-
jected into a patient. The half-life of 85Sr is 30.1 yr, and 
its mass is 84.9 u. What mass of 85Sr is injected into the 
patient?

 43.  A radioactive sample has equal numbers of 15O and 
19O nuclei. Use the half-lives found in Appendix B.8 to 
determine how long it will take before there are twice as 
many 15O nuclei as 19O. What percent of the 19O nuclei 
have decayed during this time?

 44. A sample of potassium-40 has an activity of 9.0 mCi. 
What is its mass?

29.5 Biological Effects of Radiation
 45.  An alpha particle produced in radioactive decay has 

a kinetic energy of typically about 6 MeV. When an al-
pha particle passes through matter (e.g., biological tis-
sue), it makes ionizing collisions with molecules, giving 
up some of its kinetic energy to supply the binding en-
ergy of the electron that is removed. If a typical ioniza-
tion energy for a molecule in the body is around 20 eV, 
roughly how many molecules can the alpha particle ion-
ize before coming to rest?

 46.  A 65 kg patient undergoes a diagnostic chest  
x-ray and receives a biologically equivalent dose of 
0.2 mSv distributed over 33% of the patient’s body 
mass. If the x-rays have a relative biological effec-
tiveness of 0.90, how much energy is absorbed by 
the patient’s body?

 47.  If meat is irradiated with 2000.0 Gy of x-rays, most 
of the bacteria are killed and the shelf life of the meat is 
greatly increased. (a) How many 100.0 keV photons 
must be absorbed by a 0.30 kg steak so that the absorbed 
dose is 2000.0 Gy? (b) Assuming steak has the same 
specific heat as water, what temperature increase is 
caused by a 2000.0 Gy absorbed dose?

 48.  Some types of cancer can be effectively treated by 
 bombarding the cancer cells with high energy protons. 
Suppose 1.16 × 1017 protons, each with an energy of 
950 keV, are incident on a tumor of mass 3.82 mg. If the 
RBE for these protons is 3.0, what is the biologically 
equivalent dose?

 49.  The greatest concentration of iodine in the body is 
in the thyroid gland, so radioactive iodine-131 is often 
used as a tracer to help diagnose thyroid problems. Sup-
pose the activity of 131I in a patient’s thyroid is initially 
1.85 × 106 Bq. 131I decays via beta radiation with an 
average energy of 180 keV per decay. Calculate the ab-
sorbed dose in sieverts the patient’s thyroid receives in 
the first hour of exposure. Assume that half of the radia-
tion is absorbed by the thyroid gland, which has a mass 
of 150 g.

 50.   Make an order-of-magnitude estimate of the 
amount of radon-222 gas, measured in curies, found in 
the lungs of an average person. Assume an average ex-
posure of 1 mSv/yr due to the alpha particles emitted by 
radon-222. The half-life is 3.8 days. You will need to 
calculate the energy of the alpha particles emitted.

29.6 Induced Nuclear Reactions
 51. A neutron-activated sample emits gamma rays at ener-

gies that are consistent with the decay of mercury-198 
nuclei from an excited state to the ground state. If the 
reaction that takes place is n + (?) → 198Hg* + e− + ν, 
what is the nuclide “(?)” that was present in the sample 
before neutron activation?

 52.  A certain nuclide absorbs a neutron. It then emits an 
electron, and then breaks up into two alpha particles. 
(a) Identify the original nuclide and the two intermedi-
ate nuclides (after absorbing the neutron and after emit-
ting the electron). (b) Would any (anti)neutrino(s) be 
emitted? Explain.

 53. Irène and Jean Frédéric Joliot-Curie, in an experiment 
that led to the 1935 Nobel Prize in chemistry, bom-
barded aluminum 27

13Al with alpha particles to form a 
highly unstable isotope of phosphorus, 31

15P. The phos-
phorus immediately decayed into another isotope of 
phosphorus, 30

15P, plus another product. Write out these 
reactions, identifying the other product.

 54. The reactions listed in Problem 53 did not stop there. To 
the surprise of the Curies, the phosphorus decay contin-
ued after the alpha bombardment ended with the phos-
phorus 30

15P emitting a β+ to form yet another product. 
Write out this reaction, identifying the other product.

 55.  An effective treatment for cancer takes advantage of 
the fact that boron readily captures slow neutrons. In the 
body, boron is much more likely to capture a neutron 
than are carbon, oxygen, or hydrogen. Because of the 
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chemical similarity of boron and carbon, a rapidly 
 dividing cellular structure like that of a tumor will take 
up boron that is delivered intravenously or by injection. 
When boron-10 captures a neutron nearly at rest, the 
resulting excited boron-11 nucleus decays rapidly, emit-
ting an alpha particle and a gamma-ray photon. Most of 
the energy released is deposited very near the capture 
site. (a) Write out this nuclear reaction, specifying the 
daughter nucleus. (b) The photon has an energy of 
0.48 MeV. What is the total kinetic energy of the alpha 
particle and daughter nucleus?

29.7 Fission
 56. A 235U nucleus captures a low-energy neutron to form 

the compound nucleus 236U*. Find the excitation energy 
of the compound nucleus. Ignore the small initial  kinetic 
energy of the captured neutron.

 57. Estimate the energy released in the fission reaction of 
Eq. (29-48) from the values of the binding energy per 
nucleon in Fig. 29.2.

 58. Calculate the energy released in the fission reaction of 
Eq. (29-47).

 59. One possible fission reaction for 235U is 235U + n → 
141Cs + 93Rb + ?n, where “?n” represents one or more 
neutrons. (a) How many neutrons? (b) From the graph 
in Fig. 29.2, you can read the approximate binding ener-
gies per nucleon for the three nuclides involved. Use 
that information to estimate the total energy released by 
this fission reaction. (c) Do a precise calculation of the 
energy released. (d) What fraction of the rest energy of 
the 235U nucleus is released by this reaction?

29.8 Fusion
 60. What is the total energy released by the proton-proton 

cycle [Eq. (29-54)]?
 61. How much energy is released in the fusion reaction 

2H + 3H → 4He + n?
 62. Consider the fusion reaction of a proton and a deuteron: 

1
1H + 2

1H → X. (a) Identify the reaction product X. 
(b)  The binding energy of the deuteron is about 
1.1 MeV per nucleon and the binding energy of “X” is 
about 2.6 MeV per nucleon. Approximately how much 
energy (in MeV) is released in this fusion reaction? 
(c)  Why is this reaction unlikely to occur in a room 
temperature setting?

 63. Estimate the minimum total kinetic energy of the 2H and 
3H nuclei necessary to allow the fusion reaction of 
Eq. (29-49) to take place.

 64. Compare the amount of energy released when 1.0 kg of 
the uranium isotope 235U undergoes the fission reaction 
of Eq. (29-47) with the energy released when 1.0 kg of 
hydrogen undergoes the fusion reaction of Eq. (29-49).

Collaborative Problems

 65. A neutron star is a star that has collapsed into a collec-
tion of tightly packed neutrons. Thus, it is something 
like a giant nucleus; but since it is electrically neutral, 
there is no Coulomb repulsion to break it up. The force 
holding it together is gravity. Suppose a neutron star has 
the same mass as the Sun. (a) What is its radius? As-
sume that the density is about the same as for a nucleus. 
(b) What is the gravitational field at its surface?

 66.  Radon gas (Rn) is produced by the alpha decay of 
radium 226

 88Ra. (a) How many neutrons and how many 
protons are present in the nucleus of the isotope of Rn 
produced by this decay? (b) The air in a student’s base-
ment apartment contains 1.0 × 107 Rn nuclei. The Rn 
nucleus itself is radioactive; it too decays by emitting an 
alpha particle. The half-life of Rn is 3.8 days. How 
many alpha particles per second are emitted by decay-
ing Rn nuclei in the room?

 67. The natural abundance of deuterium in water is 0.0156% 
(i.e., 0.0156% of the hydrogen nuclei in water are 2H). If 
the fusion reaction (2H + 2H) yields 3.65 MeV of energy 
on average, how much energy could you get from 1.00 L 
of water? (There are two reactions with approximately 
equal probabilities; one yields 4.03 MeV and the other 
3.27 MeV.) Assume that you are able to extract and fuse 
87.0% of the deuterium in the water. Give your answer 
in kilowatt hours.

 68.  Suppose that a radioactive sample contains equal 
numbers of two radioactive nuclides A and B at t = 0. 
A has a half-life of 3.0 h, whereas B has a half-life of 
12.0 h. Find the ratio of the decay rates or activities RA/RB 
at (a) t = 0, (b) t = 12.0 h, and (c) t = 24.0 h.

 69.  The last step in the carbon cycle CNO-I that takes 
place inside stars is p + 15N → 12C + (?). (a) Show that 
the reaction product “(?)” must be an alpha particle. 
(b) How much energy is released by this step of the cycle? 
(c) In order for this reaction to occur, the proton must 
come into contact with the nitrogen nucleus. Calculate the 
distance d between their centers when they just “touch.” 
(d) If the proton and nitrogen nucleus are initially far apart, 
what is the minimum value of their total kinetic energy 
necessary to bring the two into contact?

Comprehensive Problems

 70. Which of these unidentified nuclides are isotopes of each 
other? 175

 71(?) , 71
32(?) , 175

 74(?) , 167
 71(?) , 71

30(?) , and 180
 74(?) .

 71. What is the average binding energy per nucleon for 23
11Na?

 72. The carbon isotope 15C decays much faster than 14C. 
(a) Using Appendix B.8, write a nuclear reaction show-
ing the decay of 15C. (b) How much energy is released 
when 15C decays?
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 73. A radioactive sample of radon-222 has an activity of 
2050 Bq. How many kilograms of radon are present?

 74. Approximately what is the total energy of the neutrino 
emitted when 22

11Na decays by electron capture?
 75. 106

 52Te is radioactive; it decays to 102
 50Sn. 102

 50Sn is itself 
 radioactive and has a half-life of 4.6 s. At t = 0, a sample 
contains 4.00 mol of 106

 52Te and 1.50 mol of 102
 50Sn. At  

t = 25 μs, the sample contains 3.00 mol of 106
 52Te and  

2.50 mol of 102
 50Sn. How much 102

 50Sn will there be at  
t = 50 μs?

 76. In 1988 the shroud of Turin, a piece of cloth that some 
people believe is the burial cloth of Jesus, was dated us-
ing 14C. The measured 14C activity of the cloth was 
about 0.23 Bq/g. According to this activity, when was 
the cloth in the shroud made?

 77.  (a) What fraction of the 238U atoms present at the for-
mation of the Earth still exist? Take the age of the Earth to 
be 4.5 × 109 yr. (b) Answer the same question for 235U. 
Could this explain why there are more than 100 times as 
many 238U atoms as 235U atoms in the Earth today?

 78.  Once Rutherford and Geiger determined the charge-
to-mass ratio of the alpha particle (see Problem 93), 
they performed another experiment to determine its 
charge. An alpha source was placed in an evacuated 
chamber with a fluorescent screen. Through a glass 
window in the chamber, they could see a flash on the 
screen every time an alpha particle hit it. They used a 
magnetic field to deflect beta particles away from the 
screen so they were sure that every flash represented an 
alpha particle. (a) Why is the deflection of a beta parti-
cle in a magnetic field much larger than the deflection 
of an alpha particle moving at the same speed? (b) By 
counting the flashes, they could determine the number 
of alpha particles per second striking the screen (R). 
Then they replaced the screen with a metal plate con-
nected to an electroscope and measured the charge Q 
accumulated in a time Δt. What is the alpha particle 
charge in terms of R, Q, and Δt?

 79.  Radioactive iodine, 131I, is used in some forms of 
medical diagnostics. (a) If the initial activity of a sample 
is 64.5 mCi, what is the mass of 131I in the sample? 
(b) What will the activity be 4.5 d later?

 80. Strontium-90 (90
38Sr) is a radioactive element that is pro-

duced in nuclear fission. It decays by β− decay to yttrium 
(Y) with a half-life of 28.8 yr. (a) Write down the decay 
scheme for 90

38Sr. (b) What is the initial activity of 2.0 kg of 
90
38Sr? (c) What will be the activity in 1000 yr?

 81. A sample of gold, 198
 79Au, decays radioactively with an 

initial rate of 1.00 × 1010 Bq into 198
 80Hg. The half-life is 

2.70 days. (a) What is the decay rate after 8.10 days? 
(b)  What particle or particles are emitted during this 
decay process?

 82. An alpha particle with a kinetic energy of 1.0 MeV is 
headed straight toward a gold nucleus. (a) Find the 

 distance of closest approach between the centers of the 
alpha particle and gold nucleus. (Assume the gold nu-
cleus remains stationary. Since its mass is much larger 
than that of the alpha particle, this assumption is a fairly 
good approximation.) (b) Will the two get close enough 
to “touch”? (c) What is the minimum initial kinetic en-
ergy of an alpha particle that will make contact with the 
gold nucleus?

 83. A space rock contains 3.00 g of 147
 62Sm and 0.150 g  

of 143
 60Nd. 147

 62Sm decays to 143
 60Nd with a half-life of  

1.06 × 1011 yr. If the rock originally contained no 143
 60Nd, 

how old is it?
 84.  In naturally occurring potassium, 0.0117% of the 

nuclei are radioactive 40K. (a) What mass of 40K is found 
in a broccoli stalk containing 300 mg of potassium? 
(b) What is the activity of this broccoli stalk due to 40K?

 85.  The power supply for a pacemaker is a small amount 
of radioactive 238Pu. This nuclide decays by alpha decay 
with a half-life of 87.7 yr. The pacemaker is typically re-
placed every 10.0 yr. (a) By what percentage does the 
activity of the 238Pu source decrease in 10 yr? (b) The 
energy of the alpha particles emitted is 5.6 MeV. Assume 
an efficiency of 100%—all of the alpha particle energy is 
used to run the pacemaker. If the pacemaker starts with 
1.0 mg of 238Pu, what is the power output initially and 
after 10.0 yr?

 86.  212
 83Bi can alpha decay to the ground state of 208

 81Tl, or 
to any of the four excited states of 208

 81Tl shown in 
Fig.  29.7. The maximum kinetic energy of the alpha 
particles emitted by 212

 83Bi is 6.090 MeV. What other 
 alpha particle kinetic energies are possible? [Hint: Esti-
mate the atomic mass of 208

 81Tl.]
 87.   The first nuclear reaction ever observed (in 

1919  by Ernest Rutherford) was α + 14
 7N → p + (?) . 

(a) Identify the reaction product “(?).” (b) For this reac-
tion to take place, the alpha particle must come in con-
tact with the nitrogen nucleus. Calculate the distance 
d  between their centers when they just make contact. 
(c)  If the alpha particle and the nitrogen nucleus are 
initially far apart, what is the minimum value of their 
kinetic energy necessary to bring the two into contact? 
(d) Is the total kinetic energy of the reaction products 
more or less than the initial kinetic energy in part (c)? 
Why? Calculate this kinetic energy difference.

Review and Synthesis

 88.  To make an order-of-magnitude estimate of the 
 energy level spacings in the nucleus, assume that a 
 nucleon is confined to a one-dimensional box of width 
10 fm (a typical nuclear diameter). Calculate the energy 
of the ground state.

 89.  Calculate the kinetic energy of the alpha particle in 
Problem 25. This time, do not assume that the 222

 86Rn 
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nucleus is at rest after the reaction. Start by figuring out 
the ratio of the kinetic energies of the alpha particle and 
the 222

 86Rn nucleus.
 90.   A 208

 81Tl* nucleus (mass 208.0 u) emits a 452 keV 
photon to jump to a state of lower energy. Assuming the 
nucleus is initially at rest, calculate the kinetic energy of 
the nucleus after the photon has been emitted. [Hint: 
Assume the nucleus can be treated nonrelativistically.]

 91. Figure 29.7 is an energy level diagram for 208Tl. What 
are the energies of the photons emitted for the six transi-
tions shown?

 92.  The nucleus in a 12
 7N atom captures one of the atom’s 

electrons, changing the nucleus to 12
 6C and emitting a neu-

trino. What is the total energy of the emitted neutrino? 
[Hint: You can use the classical expression for the kinetic 
energy of the 12

 6C atom and the extremely  relativistic 
 expression for the kinetic energy of the  neutrino.]

 93.  The radioactive decay of 238U produces alpha parti-
cles with a kinetic energy of 4.17 MeV. (a) At what 
speed do these alpha particles move? (b) Put yourself in 
the place of Rutherford and Geiger. You know that al-
pha particles are positively charged (from the way they 
are deflected in a magnetic field). You want to measure 
the speed of the alpha particles using a velocity selector. 
If your magnet produces a magnetic field of 0.30 T, 
what electric field would allow the alpha particles to 
pass through undeflected? (c) Now that you know the 
speed of the alpha particles, you measure the radius of 
their trajectory in the same magnetic field (without the 
electric field) to determine their charge-to-mass ratio. 
Using the charge and mass of the alpha particle, what 
would the radius be in a 0.30 T field? (d) Why can you 
determine only the charge-to-mass ratio (q/m) by this 
experiment, but not the individual values of q and m?

 94. (a) Find the number of water molecules in 1.00 L of 
water. (b) What fraction of the liter’s volume is occu-
pied by water nuclei?

Answers to Practice Problems

29.1 104
 44Ru (ruthenium)

29.2 17 u
29.3 1.6 × 10−42 m3

29.4 115.492 MeV
29.5 226

 88Ra (radium-226)
29.6 5.3044 MeV
29.7 1.3111 MeV
29.8 2.26 × 1012

29.9 5300 yr ago
29.10 ±8 yr
29.11 4.4 μg
29.12 exoergic; 0.6259 MeV released
29.13 From Fig. 29.2, nuclides around A ≈ 60 are the most 
tightly bound; they have the highest binding energies per 
nucleon. Fission cannot occur because the total mass of the 
daughter nuclides, and any neutrons released would be 
greater than the mass of the 55

24Cr* compound nucleus. More 
likely, 55

24Cr* would emit an electron and one or more gamma 
rays, leaving a stable 55

25Mn nucleus as the final product.
29.14 1.1985 MeV

Answers to Checkpoints

29.1 23
11Na has 11 protons and 23 − 11 = 12 neutrons. The 

mass number is 23.
29.4 After 3 half-lives have passed, (1/2)3 = 1/8 of the 
 Mn-54 nuclei remain. Therefore, during 3 half-lives, 7/8 of 
them decay.
29.6 Balancing the charge and nucleon numbers reveals that 
the intermediate nucleus is 15

 7N:
1
0n + 14

 7N → 15
 7N → 11H + 14

 6C
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•	 antiparticles	(Section	27.8)
•	 fundamental	interactions;	

unification	(Section	4.12)
•	 mass	and	rest	energy	

(Section	26.7)

Concepts & Skills to Review

Geneva, Switzerland

The
Atlas

Detector

Alice
A Large Ion Collider Experiment

The LHCb DetectorCMS
Compact Muon Solenoid
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23
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The Large Hadron Collider (LHC) 
tunnel is about 100 m below 
ground and is 27 km in circum-
ference; it straddles the border 
of France and Switzerland near 
Geneva. The LHC has seven 
detectors. ATLAS, which is about 
the size of a five-story building, 
and CMS, which weighs almost 
14 000 tons, are general-purpose 
detectors. ALICE specializes in 
lead ion collisions. LHCb focuses 
on proton-proton collisions that 
produce the b quark. LHCf, 
TOTEM, and MoEDAL are 
smaller, specialized detectors 
located near ATLAS, CMS, and 
LHCb, respectively.
©CERN

The	 Large	 Hadron	 Collider	 (LHC)	 at	 the	 European	 Organization	 for	
Nuclear	Research	(CERN)	near	Geneva,	Switzerland,	achieves	collisions	
between	protons	with	kinetic	energies	up	to	6.5	TeV	(=	6.5	×	1012	eV).	
What	are	the	goals	of	studying	particle	collisions	with	higher	and	higher	
energies?
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30.1 FUNDAMENTAL PARTICLES

One of the overarching goals of physics is to find the fundamental building blocks of 
the universe and to understand their interactions. In the fifth century b.c.e., the Greek 
philosopher Democritus speculated that all matter was composed of indivisible units 
so tiny they could not be seen. (The word atom is derived from the ancient Greek 
word ατoμoς, which means “indivisible.”) However, what we now call atoms are not 
indivisible: they consist of one or more electrons bound to a nucleus. The nucleus, in 
turn, is a bound collection of protons and neutrons. Are electrons, protons, and neu-
trons the fundamental building blocks of matter?

Quarks

We now know that protons and neutrons have internal structures and thus are not 
fundamental particles. Each proton or neutron contains three primary quarks. As far 
as we know, quarks are fundamental particles. Their existence was proposed inde-
pendently in 1963 by Murray Gell-Mann (b. 1929) and George Zweig (b. 1937). 
Gell-Mann took the name quark from a line in Finnegan’s Wake by James Joyce: 
“Three quarks for Muster Mark.” Although three different kinds of quarks were 
originally proposed, subsequent experiments have shown that there are six altogether 
(Table 30.1). The quark masses are expressed in GeV/c2, a mass unit commonly used 
in high-energy physics. Since c2 = 0.931 494 GeV/u [see Eq. (29-12)],

 1 u = 0.931 494 GeV/c2 (30-1)

For each of the six quarks, there is a corresponding antiquark with the same mass 
and opposite electric charge. In Section 27.8, we saw that the electron and its anti-
particle, the positron, can annihilate, producing two photons to carry away the energy 
and momentum. Electron-positron pairs can also be created. Similarly, other particle-
antiparticle pairs can be created or annihilated. Annihilation does not always produce 
a pair of photons; it can, for instance, produce a different particle-antiparticle pair. 
The antiquarks are written with a bar over the symbol; for example, the antiparticle 
of the u quark is written u (read u-bar).

Quarks were first detected in a scattering experiment similar to the way the 
nucleus was discovered in Rutherford’s experiment (see Section 27.6). In 1968–1969, 
experiments led by the U.S. physicists Jerome I. Friedman (b. 1930) and Henry W. 
Kendall (1926–1999) in collaboration with the Canadian physicist Richard E. Taylor 
(b. 1929) at the Stanford Linear Accelerator Center (SLAC) studied the effects of 
scattering high-energy electrons from protons and neutrons. The experiment showed 
that the electrons scattered from pointlike objects inside each proton or neutron.

Although many experiments have looked for them, an isolated quark has never 
been observed. We now think that it is impossible, even in principle, to observe an 
isolated quark because of the unusual properties of the interaction between quarks—
the strong interaction (Section 30.2). A bound quark-antiquark pair is called a meson; 
a bound triplet of quarks or antiquarks is called a baryon (Fig. 30.1). Collectively, 
the mesons and baryons are called hadrons. The proton is a baryon containing two 
up quarks and one down quark (uud); the neutron is a baryon containing one up quark 
and two down quarks (udd).

Hundreds of hadrons have been observed, and to date every one is consistent with 
the quark model. Other than the proton and neutron, all of them have short half-
lives—less than 0.1 μs for the longest-lived ones. A neutron inside a nucleus can be 
stable, but an isolated neutron decays with a mean lifetime of 14.7 min into a proton, 
an electron, and an antineutrino (n → p + e− + ve) . The proton appears to be stable; 
experiments have shown that if it is unstable, its half-life is at least 1033 yr—roughly 
1023 times the age of the universe.

Table 30.1 organizes the quarks into three generations (indicated by roman numer-
als). Each generation has two quark flavors, one with charge +2

3e and one with charge −1
3e. 
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The quark charges are fractions of the elementary charge e, but they always occur in 
mesons or hadrons such that the smallest observable unit of charge is e. The quarks 
in each successive generation are more massive than those in the previous generation. 
Ordinary matter contains only quarks from the first generation (u and d).

Leptons

Although the proton and neutron are composed of quarks, no experiment has sug-
gested that the electron has any internal structure. The electron belongs to another 
group of fundamental particles called the leptons (Table 30.2).

The six leptons (and their antiparticles) are grouped into three generations like 
the quarks. Each generation has one particle with charge −e and an uncharged neu-
trino. The masses again increase from one generation to the next. As is true for the 
quarks, ordinary matter contains only first-generation leptons. The electron is a basic 
building block of atoms and is stable. Neither the muon nor the tau is stable; they 
can decay into other particles but are considered to be fundamental, or elementary, 
particles because they do not appear to have any substructure.

Muons were the first second-generation particles to be observed. Cosmic rays—
streams of energetic particles, mostly protons, traveling from outer space—continually 
bombard Earth’s upper atmosphere. The cosmic-ray particles usually have energies in the 
GeV range, but some have been observed with energies over 1011 GeV—more than 107 
times the energy of proton-proton collisions at the LHC. When cosmic ray particles col-
lide with atoms high in Earth’s atmosphere, the resulting shower of secondary particles—
including electrons, positrons, muons, and gamma rays—can be detected at Earth’s 
surface. The positron was first observed in cosmic-ray showers. Muons rain down on us 
at the rate of about 1 per minute per square centimeter of cross-sectional area.

Electron neutrinos and antineutrinos are emitted in beta decay (see Section 29.3) 
and in nuclear fusion (see Section 29.8). Earth is bathed in a steady stream of around 
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Figure 30.1 The quark con-
tent of a few hadrons. (The  
significance of the colors is 
discussed in Section 30.2.)

Table 30.1 The Six Quarks

Name Symbol Antiparticle Charge Mass (GeV/c2) Generation

Up u u ±2
3e 0.0022 I

Down d d ∓1
3e 0.0047

Strange s s ∓1
3e 0.095 II

Charm c c ±2
3e 1.28

Bottom b b ∓1
3e 4.18 III

Top t t ±2
3e 173

In the Charge column, the upper symbol in ± or ∓ is for the particle, and the lower is for the antiparticle. 



 30.2 FUNDAMENTAL	 INTERACTIONS 1135

1011 neutrinos per square centimeter of cross-sectional area per second from the fusion 
reactions taking place in the Sun’s interior.

Neutrinos are difficult to observe because they can pass through matter with only 
a small probability of interacting with anything (Fig. 30.2). There are more neutrinos 
in the universe than all of the other leptons and quarks combined. However, even with 
their large numbers, neutrinos do not make a significant contribution to the mass of 
the universe because their masses are so small.

A neutrino can transform from one type of neutrino to another. This effect, called 
neutrino oscillation, explains why the number of electron neutrinos reaching Earth 
from the Sun is smaller than had been predicted—some of the electron neutrinos are 
transformed into muon or tau neutrinos before they reach Earth.

CHECKPOINT 30.1

Which	quarks	and	 leptons	are	 found	 in	an	atom?

30.2 FUNDAMENTAL INTERACTIONS

Quarks and leptons are not the whole story; what about the interactions between them? In 
Section 4.12 we described the four fundamental interactions in the universe: strong, elec-
tromagnetic, weak, and gravitational. The interactions are sometimes called forces but in a 
sense much broader than in Newtonian physics (where force is the rate of change of 
momentum). The fundamental “forces” do much more than push or pull; they include every 
change that occurs between particles: annihilation and creation of particle-antiparticle pairs, 
decay of unstable particles, binding of quarks into hadrons, and all kinds of reactions.

Each interaction can be understood as the exchange of a particle called a mediator, 
or exchange, particle (Table 30.3). The exchange particle is emitted by one particle 
and absorbed by another; it can transfer momentum and energy from one particle to 
another. The photon mediates the electromagnetic interaction. The weak interaction 
is mediated by one of three particles (W+, W−, and Z0) whose existence was predicted 
in the 1960s by U.S. physicists Steven Weinberg (b. 1933) and Sheldon Glashow 
(b. 1932), along with the Pakistani physicist Abdus Salam (1926–1996). A team of 
scientists led by the Italian physicist Carlo Rubbia (b. 1934) first observed the three 
particles in 1982–1983. The strong interaction is mediated by gluons; gravity is 
believed to be mediated by a particle called the graviton, which has not yet been 
observed. Like the photon, the gluons and graviton have no electric charge and are 
massless. Like the quarks and leptons, the exchange particles are considered to be 
fundamental; they apparently have no substructure.

Name Symbol Antiparticle Charge Mass (GeV/c2) Generation

Electron e− e+ ∓e 0.000 511 0 I
Electron neutrino νe νe 0 < 0.000 000 002
Muon μ− μ+ ∓e 0.1057 II
Muon neutrino νμ νμ 0 < 0.00019
Tau τ− τ+ ∓e 1.777 III
Tau neutrino ντ ντ 0 < 0.0182

Table 30.2 The Six Leptons

The table gives the largest values of the neutrino masses that are consistent with experiments to date.
The upper symbol in ∓ is for the particle, and the lower is for the antiparticle. Note that the antiparticles 
of the negatively charged leptons are written with plus signs to indicate their positive charges but with-
out a bar over them.

Figure 30.2 Super- 
Kamiokande, the world’s  
largest underground neutrino 
observatory, is located 1 km 
under Mt. Ikenoyama, Japan. 
Some 11 200 photomultiplier 
tubes line the walls of the 
cylindrical inner detector. Dur-
ing operation, this inner detec-
tor is filled with 32 000 tons of 
ultrapure water. When charged 
particles move through the 
water at speeds greater than the 
speed of light in water, they 
emit blue light that is detected 
by the photomultiplier tubes. In 
1998, the Super-Kamiokande 
collaboration announced con-
clusive experimental evidence 
for nonzero neutrino masses 
and strong evidence for neutrino 
oscillation. Neutrino oscillation 
was later confirmed at the 
 Sudbury Neutrino Observatory 
in Ontario, Canada.
©The Asahi Shimbun/Getty Images
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Interaction Relative Strength Range (m)

Affects Which 
Fundamental  
Particles? Exchange Particles

Masses of Exchange 
Particles (GeV/c2)

Strong 1 10−15 Quarks Gluons (g) 0
Electromagnetic 10−2 ∞ Electrically charged Photon (γ) 0
Weak 10−6 10−17 Quarks and leptons W+, W−, Z0 80.4, 80.4, 91.2
Gravitational 10−43 ∞ All Graviton* 0

*Predicted but not observed (to date).
The relative strengths are for a pair of u quarks a distance of 0.03 fm apart.

Table 30.3 The Four Fundamental Interactions and Their Exchange Particles

EVERYDAY PHYSICS DEMO

To	get	a	feel	for	a	particle	that	mediates	a	force,	collect	a	friend	and	a	heavy	
medicine	ball.	Then	 toss	 the	heavy	ball	back	and	 forth.	The	ball	 is	 the	medi-
ating	or	exchange	particle	that	carries	momentum	and	energy	from	one	of	you	
to	the	other.	This	is	a	repulsive	force.	It	is	even	more	dramatic	if	you	are	both	
standing	on	skateboards	or	wearing	ice	skates.	Unfortunately,	this	analogy	can	
only	 illustrate	 a	 repulsive	 force,	 whereas	 actual	 exchange	 particles	 in	 nature	
participate	 in	all	 forces,	 including	 those	 that	are	attractive.

The Strong Interaction

The strong interaction holds quarks together to form hadrons. Quarks interact via the strong 
interaction but leptons do not. Quarks carry strong charge (or color charge) that deter-
mines their strong interactions, just as a particle’s electric charge determines its electro-
magnetic interactions. Electric charge comes in only one kind (positive) and its opposite 
(negative), but strong charge comes in three kinds (called red, blue, and green), each of 
which has an opposite (called antired, antiblue, and antigreen). Color charge has nothing 
to do with the colors of light that we perceive visually. Rather, they are based on an anal-
ogy: just as the red, blue, and green pixels on a TV screen combine to make white, a red 
quark, blue quark, and green quark combine to form a colorless (white) combination.

A baryon always contains one quark of each color, an antibaryon always contains 
one antiquark of each anticolor, and a meson always contains a quark of one color and 
an antiquark of the corresponding anticolor, such as a red quark and an antired antiquark 
(see Fig. 30.1). In each case, the strong force holds quarks together in colorless combi-
nations, similar to the way the electromagnetic force holds negative and positive charges 
together to form a neutral atom with zero net electric charge. Figure 30.1 depicts each 
hadron as a colorless combination of quarks and antiquarks. The color combinations 
shown in Fig. 30.1 are only examples. The d quark in the proton does not have to be 
blue. It can be any color as long as the three quarks make up a colorless combination.

Although it is possible to pull an electron from an atom, leaving an ion with a 
net electrical charge, the theory of quark confinement says that the strong force does 
not allow a quark to be pulled out of a colorless group—which is why isolated quarks 
are not observed. Just as two ions exert a much greater electromagnetic force on each 
other than do two neutral atoms, pulling a quark out of a colorless group would leave 
two groups of quarks with colors other than white; the force between the two groups 
would be extremely strong and, unlike the electromagnetic force, the strong force 
grows stronger with increasing distance within its short range.

Gluons, the mediators of the strong force, are the “glue” that holds the quarks together. 
Although photons, the mediators of the electromagnetic interaction, have no electric charge 
themselves, gluons carry strong charges (colors) so that emission or absorption of a gluon 
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changes the color of the quark. This leads to differences in the behavior of the electro-
magnetic and strong interactions. Quarks continually emit and absorb gluons, and gluons 
themselves emit and absorb gluons. If a quark is pulled out of a colorless combination, 
more and more gluons are emitted and so the force gets stronger as the distance between 
the quarks increases. If there is enough energy to pull the quarks apart, some of the energy 
is used to create a quark-antiquark pair. The newly created quark goes off with one group 
and the newly created antiquark goes with the other group in such a way that both groups 
remain colorless. Thus, even in high-energy collisions where hadrons are created and decay 
into other particles, quarks always end up in colorless combinations.

When we say that a proton contains three quarks (uud), we really mean that its 
net quantum numbers match that picture. Quarks are surrounded by clouds of gluons 
continually being emitted and absorbed; from these gluons quark-antiquark pairs are 
continually created and annihilated, all within the volume of the proton. The energy 
of the clouds of gluons and the quark-antiquark pairs contribute to the rest energy of 
the proton (0.938 GeV), which is much larger than the sum of the rest energies of 
two up quarks and one down quark (less than 0.02 GeV). The same fundamental 
interaction that holds three quarks together to form a nucleon also binds nucleons 
together to form a nucleus. However, the force between quarks is much stronger than 
the force between the colorless nucleons, just as the electromagnetic force between 
two ions is much stronger than the electromagnetic force between two neutral atoms.

CHECKPOINT 30.2

Why	are	there	no	observed	particles	composed	of	two	quarks	(qq)	or	four	quarks	
(qqqq)?	 [Hint:	Consider	 the	color	charges	of	 the	quarks.]

The Weak Interaction

The weak interaction proceeds by the exchange of one of three particles (W+, W−, Z0), 
two of which are electrically charged. All three of these particles have mass, which 
effectively limits the range of the weak interaction. Although leptons do not take part 
in the strong interaction because they have no color charge, both leptons and quarks 
have weak charge and thus can take part in weak interactions.

The weak interaction allows one quark flavor (u, d, s, c, b, t) to change into 
another. Since isolated quarks cannot be observed, the transformation of one quark 
flavor into another occurs within a hadron.

For example, the β − decay of a radioactive nucleus was described as the trans-
formation of a neutron into a proton within the nucleus (see Section 29.3):

 n → p + e− + νe (29-17)

Since a neutron is udd and a proton is uud, at a more fundamental level the d quark 
within the neutron is transformed into a u quark by emitting a W−:

 d → u + W−  (30-2)

The W− then quickly decays into an electron and an electron antineutrino.

The Standard Model

The successful quantum mechanical description of the strong, weak, and electromag-
netic interactions and the three generations of quarks and leptons is called the stan-
dard model of particle physics. The standard model, equipped with experimentally 
measured quantities (e.g., the masses and force charges of the particles), correctly 
predicts the results of decades of experiments in particle physics to a precision unpar-
alleled in any other theory.

In the standard model, fundamental particles acquire their masses by interacting 
with a Higgs field (named for British physicist Peter W. Higgs, born 1929) that 
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 permeates all of space. Without the Higgs field, quarks and leptons would be massless 
and the weak force would be long-range, like the electromagnetic force, because the 
W and Z would be massless, like the photon. The Higgs mechanism was proposed 
in the 1960s, but experimental evidence for it was lacking for four decades. Confir-
mation of the Higgs mechanism would come through observation of a new particle, 
called the Higgs boson. In 2012, the ATLAS and CMS experiments at LHC 
announced observation of a new particle consistent with the Higgs boson predicted 
by the standard model. Ongoing experiments continue to test the properties of this 
particle to confirm that it is a Higgs boson and to determine whether other Higgs 
bosons (with different masses and properties) might also exist.

Although it is a remarkable achievement, the standard model is most likely incom-
plete; it generates as many questions as it does answers. We introduce some of these 
questions in the remainder of the chapter.

30.3 BEYOND THE STANDARD MODEL

Unification

One of the main goals of physics is to understand how the world works at its most 
basic and fundamental level. Part of that goal is to describe the immense variety of 
forces in the universe in terms of the fewest number of fundamental interactions. 
Newton’s law of gravity is an early example of unification. Before Newton, scientists 
did not understand that the same force that makes an apple fall to the ground from a 
tree also keeps the planets in orbit around the Sun. In the nineteenth century, Maxwell 
showed that the electric and magnetic forces are aspects of the same fundamental 
electromagnetic interaction.

A more recent success of unification is the electroweak theory. In ordinary mat-
ter, the electromagnetic and weak interactions have entirely different ranges, strengths, 
and effects. Glashow, Salam, and Weinberg showed that at energies of about 1 TeV 
or higher, the differences between the two fade until they are indistinguishable; they 
merge into a single electroweak interaction.

The ultimate goal is to describe all the forces in terms of a single interaction. 
Many physicists believe that there was only one fundamental interaction immediately 
after the Big Bang—the event that gave birth to the universe (Fig. 30.3). As the 
universe cooled and expanded, first gravity split off; then the strong force split, leav-
ing three fundamental interactions (gravity, strong, and electroweak). Finally, the elec-
troweak split into the weak and electromagnetic interactions. The splitting apart of 
the interactions all took place in about the first 10−11 s after the Big Bang. Higher 
energy accelerators may tell us whether the electroweak and strong interactions are 
unified into a single interaction.

Gravity remains a major challenge, even though it has been a goal of physics 
since Einstein to unify gravity with other forces. The standard model does not include 
gravity; attempts to develop a quantum theory of gravity have led to some of the most 
exciting ideas in contemporary physics, such as string theory and the possible exis-
tence of more than four spacetime dimensions. Physicists working on the small scale 
can use quantum mechanics without worrying about general relativity, since gravita-
tional effects are negligible. Thus, the standard model has successfully explained 
experiments in particle physics even though it omits gravity.

Einstein’s remarkably successful theory of general relativity describes gravity in 
geometric terms. The local curvature of four-dimensional spacetime is determined by 
the energy and momentum of matter and radiation; this curvature is the cause of the 
gravitational effects we observe. General relativity has passed many experimental 
tests. An early confirmation came when Einstein used his new theory to explain the 
precession of Mercury’s orbit, which had been observed in 1859. Astronomers observe 
that the path followed by light is altered when it passes near a massive star, following 
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∙ Until about 10−43 s after the Big Bang, the fabric of 
spacetime itself may not yet exist. There may be just 
one fundamental interaction.

∙ At about 10−43 s, spacetime comes into existence. Gravity 
splits off from the other interactions, leaving two funda-
mental interactions (gravity and strong- electroweak). 
Particle-antiparticle pairs are created and annihilated. 
Quarks, leptons, and exchange particles exist, but radia-
tion dominates the universe: the total energy of the pho-
tons is much greater than the total energy of matter.

∙ Starting at about 10−36 s, a brief period of exponentially 
rapid expansion (called inflation) begins. By 10−32 s, 
inflation has increased the volume of the universe by a 
factor of at least 1078. During inflation, tiny quantum fluc-
tuations are magnified in size, giving rise to the large-
scale structure of the universe, eventually leading to the 
formation of galaxies. After the inflationary epoch, the 
universe continues to expand but at a much slower pace.

∙ At 10−34 s, the strong force splits off from the electroweak.
∙ At 10−11 s, the weak and electromagnetic interactions 

split, so there are now four fundamental interactions.
∙ At 10−5 s, quark confinement begins as hadrons are 

formed. As the universe continues to cool, the heavy 
hadrons annihilate or decay, leaving light hadrons (e.g., 
protons, neutrons, and pions), leptons, and photons.

∙ Nuclei begin to form at 10 s, but there are few if any 
atoms due to the large numbers of photons with more 
than enough energy to ionize an atom.

∙ At 3 × 105 yr, the temperature of the universe has cooled 
to about 3000 K. The energies of the photons in equilib-
rium at this temperature are mostly too small to ionize 
atoms, so atoms begin to form and the universe is for the 
first time transparent to photons. The cosmic microwave 
background radiation that we observe today is left over 
from this era, but the photon energies are much smaller 
now since the universe has cooled to only 2.7 K.

History of the Universe
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the curvature of spacetime as predicted by general relativity. The Global Positioning 
System (GPS) has to account for the gravitational time dilation predicted by general 
relativity to achieve accurate calculations of position.

Another prediction of general relativity, the existence of gravitational waves, was 
confirmed in 2015, when the Laser Interferometer Gravitational-Wave Observatory 
(LIGO) announced the observation of gravitational waves coming from the collision 
of two black holes. As of March 2018, gravitational waves have been detected by 
LIGO six times. LIGO’s two detectors, located 3000 km apart, use 4 km long laser 
interferometers similar in principle to the Michelson interferometer (Section 25.2). 
The interferometers are so sensitive that they can measure a change in the 4 km dis-
tance between mirrors as small as 10−4 times the diameter of a proton.

Supersymmetry

Some physicists have developed theories of supersymmetry that may help unify the 
strong and electroweak interactions with gravity and extend physics beyond the 
standard model. In the standard model, the fundamental particles are divided into 
two main groups. Fermions are the quarks and leptons that make up matter, and 
bosons are the exchange particles that mediate the forces acting on matter. Super-
symmetry is based on treating bosons and fermions on equal footing; it predicts 
equal numbers of fermions and bosons for each type of fundamental particle. For 
example, supersymmetry predicts a bosonic partner to the electron (the selectron) 
and a fermionic partner to the photon (the photino). To date there is no direct 
experimental evidence of the existence of supersymmetric particles; one of the goals 
of the LHC is to seek experimental evidence of their existence, if supersymmetry 
does indeed describe nature.

Higher Dimensions

Theorists have found that including extra dimensions (beyond our familiar three space 
dimensions and one time dimension) in their models of the universe may enable them 
to reconcile gravity with quantum mechanics and to unify gravity with the other 
fundamental forces. String theory and brane-world theory represent radical changes 
in our ideas about space and time and what a particle is.

According to string theory and M-theory, the various leptons and quarks are not 
fundamental entities; they are different vibrational patterns of a one-dimensional entity 
called a string that exists in a universe with 10 or 11 dimensions. The extra 6 or 7 
dimensions are so small that we cannot observe them directly. As a visual aid, imagine 
the surface of a thin wire: it is a two-dimensional surface, but one of the dimensions 
is very small. In a similar way, the extra dimensions proposed by string theory are 
“curled up” over a length scale of about 10−35 m. To probe distances so small requires 
accelerator energies of about 1016 TeV—not possible in the foreseeable future. Exper-
iments must look for indirect tests of string theory.

Other theories propose that the particles we can observe live in a four-dimensional 
membrane (the familiar three space dimensions and one time dimension) within a 
six- or seven-dimensional universe. In brane theory, the additional dimensions don’t 
have to be as small as in string theory. They could be as large as a fraction of a 
millimeter, while the brane in which we’re trapped extends only 1

1000 the radius of a 
proton into the additional dimensions. The strong and electroweak interactions only 
exist within the brane, whereas gravity extends out of the brane into the other dimen-
sions. This would help explain why gravity is so much weaker than the other forces—
the theory predicts that gravity would be stronger at very small distances than is 
predicted by the familiar inverse-square law, which holds for larger distances. Exper-
iments are underway to test this theory by measuring the strength of gravity at small 
distances.
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30.4 PARTICLE ACCELERATORS

Particle accelerators are machines designed to study fundamental particles and 
interactions by producing high-energy collisions. A synchrotron is a ring-shaped 
particle accelerator with many separate radio frequency (RF) cavities. Each time a 
bunch of particles passes through an RF cavity, an electric field gives the particles 
a little boost in kinetic energy. The machine is ring-shaped so that the particles 
can pass through the RF cavities many times. The particles also pass between the 
poles of strong magnets placed all around the ring to bend the paths of the particles 
approximately into a circle. Because charged particles radiate when they are accel-
erated, the particles lose energy each time a magnet changes their direction of 
motion. This lost kinetic energy must also be replenished by the RF cavities. The 
energy loss per revolution is inversely proportional to the radius of the synchrotron 
squared, so to achieve higher energies requires larger and larger machines. Once 
the particles reach the desired energy, they continue to circulate in a storage ring 
until they are made to collide inside a detector. A storage ring is similar to a syn-
chrotron; it has magnets to bend the paths of the particles and accelerating tubes 
to replenish the lost kinetic energy. In some cases, the same machine acts both as 
synchrotron and storage ring.

In a linear accelerator, the charged particles move in a straight line rather than 
around a circular ring. Therefore, much less energy is lost due to radiation because 
there is no radial acceleration. On the other hand, the same RF cavities cannot be 
used to repeatedly accelerate the charged particles, as can be done in a synchrotron. 
Small linear accelerators are used to feed particles into a synchrotron. The next 
large accelerator to be built after the LHC may be the proposed International  Linear 
Collider.

After increasing the kinetic energies of charged particles, particle accelerators 
then slam them together. The resulting cascade of decays proceeds until particles are 
formed that live long enough to be detected. By creating the high energies that existed 
in the early moments of the universe, unstable particles that once existed are created 
in the laboratory. Going to higher energies allows us to probe matter on shorter and 
shorter length scales; recall that a particle’s de Broglie wavelength is inversely pro-
portional to its momentum [λ = h/p, Eq. (28-3)]. Higher collision energies also allow 
the creation of particles with larger mass.

The Large Hadron Collider occupies a circular tunnel of circumference 27 km 
(Fig. 30.4). Thousands of superconducting magnets located along the circumference 
of the ring steer and focus the two particle beams, traveling in opposite directions, 
through high-vacuum tubes until the beams are made to collide. Large detectors are 
located at four crossing points of the beams. These collisions produce a mixture of 
quarks and gluons similar to one that existed one-millionth of a second after the Big 
Bang, before the quarks and gluons coalesced into hadrons.

30.5 UNANSWERED QUESTIONS IN PARTICLE PHYSICS

Particle physics is at the brink of a revolution, according to many physicists. The 
standard model is extremely successful so far, but it is incomplete. Some of the many 
questions that particle physicists are trying to answer include:

Are there other Higgs particles to be discovered? Some models predict the exis-
tence of a whole family of Higgs particles.

Are quarks and leptons truly fundamental? Probing smaller distances to reveal 
tinier structure requires higher particle energies, and thus more powerful accelerators. 
At the LHC, searches are ongoing for any hint of quark or lepton substructure, which 
would then guide the design of the proposed ILC.

Figure 30.4 Inside the LHC 
tunnel.
©xenotar/Getty Images
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Is the proton truly stable, or does it have a tiny probability of decaying into other 
particles? Even a tiny probability of proton decay might affect the ultimate fate of 
the universe.

What makes up the dark matter in the universe? In recent years, we have learned 
that the universe is made of approximately 5% ordinary matter (that makes up stars 
and planets), 27% dark matter, and 68% dark energy. There is more gravitational 
attraction between adjacent galaxies and between inner and outer parts of individual 
galaxies than can be accounted for by the mass of the ordinary matter making up the 
galaxies. What is the nature of the invisible (hence, dark) matter that supplies this 
extra gravitational force?

What is the nature of the dark energy that constitutes about 68% of the uni-
verse? Scientists have discovered that the expansion of the universe is speeding up 
rather than slowing down. The accelerating expansion of the universe is attributed 
to the presence of dark energy throughout the universe, but we know very little 
about what it is.

What happened to the antimatter? If there is a symmetry between matter and 
antimatter, why do we observe almost no antimatter in the universe? If the Big Bang 
created equal amounts of matter and antimatter, what happened to the antimatter? To 
help answer this question, experiments planned for the LHC will look for differences 
in the behavior of particles and antiparticles.

Can gravity be unified with the other fundamental interactions? In other words, 
can the four fundamental interactions be understood as aspects of a single interaction? 
Is supersymmetry involved in this unification?

Why is the universe four-dimensional (three spatial dimensions and one time 
dimension)? Or does it actually have more than four dimensions; if so, why does it 
appear to have four?

With these and many other open questions, particle physics appears to be poised 
at the brink of an exciting and revolutionary period of discovery.

Master the Concepts

 ∙ Protons and neutrons are not fundamental particles; 
they contain quarks and gluons.

 ∙ According to the standard model, the fundamental par-
ticles are the six quarks (up, down, strange, charm, bot-
tom, and top), the six leptons (electron, muon, tau, and 
the three kinds of neutrinos), the antiparticles of the 
quarks and leptons, and the exchange particles for the 
strong, weak, and electromagnetic interactions.

 ∙ Isolated quarks are not observed; quarks are always con-
fined by the strong force to colorless groups. Color 
charge plays a role in the strong interaction similar to, 
but more complicated than, that of electric charge in the 
electromagnetic interaction.

 ∙ Only the first generation of quarks and leptons (up, 
down, electron, and electron neutrino) are found in ordi-
nary matter.

 ∙ It is proposed that just after the Big Bang there was only 
a single interaction. First gravity split off, then the 
strong interaction; finally the weak and electromagnetic 
interactions split, giving the four fundamental interac-
tions we now recognize.

 ∙ New particle accelerators at higher energies will put the 
standard model, as well as theories competing to be its 
successor, to the test.

Baryons

p

Antired

Antiblue

Antigreen

u uu u s
d

d
d

n–

– –
–

–

K–

Meson

Red

Blue
Green



 MULTIPLE-CHOICE	QUESTIONS 1143

Conceptual Questions

 1. What fundamental particles make up an atom?
 2. What tool enabled scientists to create hundreds of dif-

ferent hadrons in the latter half of the twentieth century?
 3. Why is the number of electron neutrinos reaching Earth 

from the Sun smaller than had originally been pre-
dicted?

 4. How many different hadrons are stable (as far as we 
know)?

 5. What particles are in the lepton family?
 6. Why is the muon sometimes called a “heavy electron”?
 7. Is e the smallest fundamental unit of charge? The small-

est observable unit of charge? [Hint: Try to come up 
with a meson or baryon with a charge that is not an inte-
gral multiple of e.] Explain.

 8. Describe the use of “color” as a quantum number for the 
quarks.

 9. Why do we not notice the effects of 1014 neutrinos pass-
ing through our bodies every second?

 10. In a synchrotron, charged particles are accelerated as 
they travel around in circles; in a linear accelerator they 
move in a straight line. What are some of the advantages 
and disadvantages of each design?

 11. In a fixed-target experiment, high-energy charged par-
ticles from an accelerator are smashed into a stationary 
target. By contrast, in a colliding beam experiment, two 
beams of particles are accelerated to high energies; par-
ticles moving in opposite directions suffer head-on col-
lisions when the two beams are steered together. 
Describe one advantage of each type of experiment 
over the other. [Hint: For an advantage of the colliding 
beam experiment, consider not only the total kinetic 
energy of the particles involved in the collision, but 
also how much of that energy is available to create new 
particles. Remember that momentum must be con-
served in the collision.]

 12. Why can a neutron within a nucleus be stable, whereas 
an isolated neutron is unstable? What determines 
whether a neutron within a nucleus is stable? [Hint: 
Consider conservation of energy.]

Multiple-Choice Questions

 1. A baryon can be composed of
 (a) any odd number of quarks.
 (b) three quarks with three different colors.
 (c) three quarks of matching color.
 (d) a colorless quark-antiquark pair.

 2. Mesons are composed of
 (a) any odd number of quarks.
 (b) three quarks with three different colors.
 (c) three quarks of matching color.
 (d) a colorless quark-antiquark pair.
 3. Quark flavors include
 (a) up, down. 
 (b) red, green.
 (c) muon, pion.
 (d) cyan, magenta.
 (e) lepton, gluon.
 4. Hadrons that contain one or more strange quarks 

are  called strange particles. The particles were origi-
nally called strange—before quark theory had been 
 formulated—due to their anomalously long lifetimes of 
10−10 to 10−7 s (compared with about 10−23 to 10−20 s for 
the other hadrons known at the time). When a strange 
hadron decays into particles that are not strange, the 
decay is a manifestation of the

 (a) strong interaction.
 (b) weak interaction.
 (c) electromagnetic interaction.
 (d) gravitational interaction.
 5. The weak interaction is mediated by
 (a) leptons. (b) photons. (c) gluons.
 (d) W+, W−, Z0. (e) mesons.
 6. The exchange particle that mediates the electromagnetic 

interaction is the
 (a) graviton. (b) photon. (c) gluon.
 (d) hadron. (e) neutrino.
 7. The exchange particle that mediates the strong interac-

tion is the
 (a) graviton. (b) photon. (c) gluon.
 (d) hadron. (e) neutrino.
 8. The exchange particle that mediates the gravitational 

interaction is called the
 (a) graviton. (b) photon. (c) gluon.
 (d) hadron. (e) neutrino.
 9. Which of the following particles interact via the strong 

interaction?
 (a) quarks (b) gravitons (c) electrons
 (d) leptons (e) neutrinos
 10. The strong force is ___________, and over that  

range it ___________ as the distance between quarks 
increases.

 (a) short range; becomes weaker
 (b) short range; becomes stronger
 (c) short range; does not vary
 (d) long range; becomes weaker
 (e) long range; becomes stronger
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 7. Three types of sigma baryons can be created in accel-
erator collisions. Their quark contents are given by uus, 
uds, and dds, respectively. What are the electric charges 
of each of these sigma particles, respectively?

Problems 8–11.  Determine the quark content of these  
particles:
 8. A meson with charge +e composed of up and/or strange 

quarks and/or antiquarks.
 9. A meson with charge −e composed of up and/or down 

quarks and/or antiquarks.
 10. A baryon with charge 0 composed of up and/or strange 

quarks and/or antiquarks.
 11. An antibaryon with charge +e composed of up and/or 

strange quarks and/or antiquarks.
 12. (a) A particle is made up of the quarks su. Is this a  

meson or a baryon? What is the charge of this particle? 
(b) A particle is made up of the quarks udc. Is this a  
meson or a baryon? What is the charge of this particle? 
(c) The particle in (b) can decay to Λ + e+ + νe. Through 
what fundamental force did this decay occur?

 13. A pion (mass 0.140 GeV/c2) at rest decays by the weak 
interaction into a muon of mass 0.106 GeV/c2 and  
a muon antineutrino: π− → μ− + νμ. What is the total 
kinetic energy of the muon and the antineutrino?

 14. In the Cornell Electron Storage Ring, electrons and pos-
itrons circulate in opposite directions with kinetic ener-
gies of 6.0 GeV each. When an electron collides with a 
positron and the two annihilate, one possible (though 
unlikely) outcome is the production of one or more 
 proton-antiproton pairs. What is the maximum possible 
number of proton-antiproton pairs that could be formed?

 15. The K  0 meson can decay to two pions: K  0 → π+ + π−. 
The rest energies of the particles are: K  0 = 497.7 MeV, 
π+ = π− = 139.6 MeV. If the K  0 is at rest before it de-
cays, what are the kinetic energies of the π+ and the π− 
after the decay?

 16. A proton in Fermilab’s Tevatron is accelerated through 
a potential difference of 2.5 MV during each revolution 
around the ring of radius 1.0 km. In order to reach an 
energy of 1 TeV, how many revolutions must the proton 
make? How far has it traveled?

 17. A neutral pion (mass 0.135 GeV/c2) decays via the elec-
tromagnetic interaction into two photons: π  0 → γ + γ. 
What is the energy of each photon, assuming the pion 
was at rest?

 18. A proton of mass 0.938 GeV/c2 and an antiproton, at rest 
relative to an observer, annihilate each other as described 
by p + p → π− + π+ . What are the kinetic energies of 
the two pions, each of which has mass 0.14 GeV/c2?

 19. In an accelerator, two protons with equal kinetic ener-
gies collide head-on. The following reaction takes place: 
p + p → p + p + p + p. What is the minimum possible 
kinetic energy of each of the incident proton beams?

Collaborative Problems

  Challenging
 Blue # Detailed solution in the Student Solutions Manual
 1, 2  Problems paired by concept

 1. Two factors that can determine the distance over which 
a force can act are the mass of the exchange particle that 
carries the force and the Heisenberg uncertainty princi-
ple [Eq. (28-5)]. Assume that the uncertainty in the en-
ergy of an exchange particle is given by its rest energy 
and that the particle travels at nearly the speed of light. 
What is the range of the weak force carried by the Z 
particle that has a mass of 92 GeV/c2? Compare this 
with the range of the weak force given in Table 30.3.

 2.  When a proton and an antiproton annihilate, the an-
nihilation products are usually pions. (a) Suppose three 
pions are produced. What combination(s) of π+, π−, and 
π  0 are possible? (b) Suppose five pions are produced. 
What combination(s) of π+, π−, and π  0 are possible? 
(c) What is the maximum number of pions that could 
be produced if the kinetic energies of the proton and 
antiproton are negligibly small? The mass of a charged 
pion is 0.140 GeV/c2 and the mass of a neutral pion is 
0.135 GeV/c2.

 3. At the Stanford Linear Accelerator, electrons and posi-
trons collide together at very high energies to create 
other elementary particles. Suppose an electron and a 
positron, each with rest energies of 0.511 MeV, collide to 
create a proton (rest energy 938 MeV), an electrically 
neutral kaon (498 MeV), and a negatively charged sigma 
baryon (1197 MeV). The reaction can be written as:

e+ + e− → p+ + K0 + Σ −

  What is the minimum kinetic energy the electron and 
positron must have to make this reaction occur? Assume 
they each have the same energy.

Comprehensive Problems

Note: a particle is extremely relativistic when its rest energy 
is negligible compared to its kinetic energy. Then

E = K + E0 ≫ E0 and E = √(pc)2 + E2
0 ≈ pc

 4. What is the quark content of an antiproton? [Hint: Re-
place each of the three quarks that compose a proton 
with its corresponding antiquark.]

 5. Show that the charge of the neutron and the charge of the 
proton are consistent with their constituent quark content.

 6. Which fundamental force is responsible for each of the 
decays shown here? [Hint: In each case, one of the 
decay products reveals the interaction force.] (a) π+ → 
μ+

 + νμ, (b) π  0 → γ + γ, (c) n → p+ + e− + νe.
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 20. According to Figure 30.3, higher energies correspond 
with times that are closer to the origin of the universe, 
so particle accelerators at higher energies probe condi-
tions that existed shortly after the Big Bang. At Fermi-
lab’s Tevatron, protons and antiprotons are accelerated 
to kinetic energies of approximately 1 TeV. Estimate the 
time after the Big Bang that corresponds to proton- 
antiproton collisions in the Tevatron.

 21. A charged pion can decay either into a muon or an elec-
tron. The two decay modes of a π− are: π− → μ− + νμ 
and π− → e− + νe. Write the two decay modes for the 
π+. [Hint: π+ is the antiparticle of π−. Replace each par-
ticle in the decay reaction with its corresponding anti-
particle.]

 22.  A sigma baryon at rest decays into a lambda baryon 
and a photon: Σ0 → Λ0 + γ. The rest energies of Σ0 and 
Λ0 are 1192 MeV and 1116 MeV, respectively. What is 
the photon wavelength?

 23.  A lambda particle (Λ) decays at rest to a proton and 
pion through the reaction Λ → p + π−. The rest energies 
of the particles are: Λ, 1115.7 MeV; p, 938.3 MeV; and 
π−, 139.6 MeV. Use conservation of energy and mo-
mentum to determine the kinetic energies of the proton 
and pion.

 24. A muon decay is described by μ− → e− + νμ + νe. 
What is the maximum kinetic energy of the electron, if 
the muon was at rest? Assume that the electron is ex-
tremely relativistic and ignore the small masses of the 
neutrinos.

 25.  In Problem 13, what is the kinetic energy of the 
muon? [Hint: The muon is nonrelativistic, so its kinetic 
energy-momentum relationship is K = p2/(2m). The an-
tineutrino is extremely relativistic.]

Review and Synthesis

 26. The energy at which the fundamental forces are ex-
pected to unify is about 1019 GeV. Find the mass (in SI 
units) of a particle with rest energy 1019 GeV.

 27. Estimate the magnetic field required at the LHC to 
make 7.0 TeV protons travel in a circle of circumfer-
ence 27 km. Start by deriving an expression, using 
Newton’s second law, for the field magnitude B in 
terms of the particle’s momentum p, its charge q, and 
the radius r. Even though derived using classical phys-
ics, the expression is relativistically correct. (The esti-
mate will come out much lower than the actual value 
of 8.33 T. In the LHC, the protons do not travel in a 
constant magnetic field; they move in straight-line 
segments between magnets.)

 28. In the LHC, protons are accelerated to a total energy of 
7 TeV. (a) What is the speed of these protons? (b) The 
LHC tunnel is 27 km in circumference. As measured by 
an Earth observer, how long does it take the protons to 
go around the tunnel once? (c) In the reference frame of 
the protons, how long does it take? (d) What is the de 
Broglie wavelength of these protons in Earth’s reference 
frame? (e) How fast would a mosquito of mass 1.0 mg 
be moving if its kinetic energy is 7 TeV?

Answers to Checkpoints

 30.1 Two quarks (u and d) and one lepton (the electron).
 30.2 Bound systems of quarks exist only in colorless combi-
nations. No observed particles contain two quarks or four 
quarks because such a combination cannot be colorless.
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A.1 ALGEBRA

In algebraic notation, exponents and roots have higher precedence than multiplication 
and division, which in turn have higher precedence over addition and subtraction. For 
example,
 a + bcd = a + [b × (cd) ]  (A-1)

There are two basic kinds of algebraic manipulations.

∙ The same operation can always be performed on both sides of an equation.
∙ Substitution is always permissible (if a = b, then any occurrence of a in any 

equation can be replaced with b).

Products distribute over sums

 a(b + c) = ab + ac (A-2)

The reverse—replacing ab + ac with a(b + c)—is called factoring. Since dividing by c 
is the same as multiplying by 1/c,

 
a + b

c
=

a

c
+

b

c
 (A-3)

Equation (A-3) is the basis of the procedure for adding fractions. To add fractions, 
they must be expressed with a common denominator.

 
a

b
+

c

d
=

a

b
×

d

d
+

c

d
×

b

b
=

ad

bd
+

bc

bd
 (A-4)

Now applying Eq. (A-3), we end up with

 
a

b
+

c

d
=

ad + bc

bd
 (A-5)

To divide fractions, remember that dividing by c/d is the same as multiplying by d/c:

 
a

b
÷

c

d
=

a

b

c

d

=
a

b
×

d

c
=

ad

bc
 (A-6)

A product in a square root can be separated:

 √ab = √a × √b (A-7)

Pitfalls to Avoid

These are some of the most common incorrect algebraic substitutions. Don’t fall into 
any of these traps!
 √a + b ≠ √a + √b (A-8)

 
a

b + c
≠

a

b
+

a

c
 (A-9)

 
a

b
+

c

d
≠

a + c

b + d
 (A-10)

 (a + b)2 ≠ a2 + b2 (A-11)

Appendix A
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The correct expansion of (a + b)2 is:

 (a + b)2 = a2 + 2ab + b2 (A-12)

A.2 GRAPHS OF LINEAR FUNCTIONS

If the change in y is proportional to the change in x, we say that y is a linear function 
of x. The relationship can be written in the standard form

 y = mx + b (A-13)

where m and b must be independent of x. The graph of y versus x is a straight line; 
m is called the slope and b is the y-intercept (i.e., the value of y where the line crosses 
the y-axis). The slope measures how steep the line is. It tells how much y changes for 
a given change in x:

 m =
Δy

Δx
=

y2 − y1

x2 − x1
 (A-14)

By substituting y = 0 into Eq. (A-13), we find that the x-intercept (the value of x 
where the line crosses the x-axis) is

 x = − 

b

m
 (A-15)

See Section 1.9 for more information on graphs.

Example A.1

What is the equation of the line graphed in Fig. A.1?

Solution The line crosses the y-axis at y = −2, so the  
y-intercept is −2. To find the slope, we choose two points on 

the line and then divide the “rise” (Δy) by the “run” (Δx). 
Using the points (0, −2) and (18, 4),

m =
rise
run =

y2 − y1

x2 − x1
=

4 − (−2)
18 − 0

=
1
3

Then y = mx + b = 1
3x − 2.

Quick check: the x-intercept should be

x = − 

b

m
= − 

−2
1/3

= 6

which is correct according to the graph.

y

x15 205 10

5

0

–5

0

Figure A.1

A.3 SOLVING EQUATIONS

Solving an equation means using algebraic operations to isolate one variable. Many 
students tend to substitute numerical values into an equation as soon as possible. In 
many cases, that’s a mistake. Although at first it may seem easier to manipulate 
numerical quantities than to manipulate algebraic symbols, there are several advan-
tages to working with symbols:

∙ Symbolic algebra is much easier to follow than a series of numerical calculations. 
Plugging in numbers tends to obscure the logic behind your solution. If you need 
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to trace back through your work (to find an error or review for an exam), it’ll be 
much clearer if you have worked through the problem symbolically. It will also 
help your instructor when grading your homework papers or exams. When your 
work is clear, your instructor is better able to help you understand your mistakes. 
You may also get more partial credit on exams!

∙ Symbolic algebra lets you draw conclusions about how one quantity depends on 
another. For instance, working symbolically you might see that the horizontal 
range of a projectile is proportional to the square of the initial speed. If you had 
substituted the numerical value of the initial speed, you wouldn’t notice that. In 
particular, when an algebraic symbol cancels out of the equation, you know that 
the answer doesn’t depend on that quantity.

∙ On the most practical level, it’s easy to make arithmetic or calculation errors. The 
later on in your solution that numbers are substituted, the fewer number of steps 
you have to check for such errors.

When solving equations that contain square roots, be careful not to assume that 
a square root is positive. The equation x2 = a has two solutions for x,

 x = ±√a (A-16)

(The symbol ± means either + or −.)

Solving Quadratic Equations

An equation is quadratic in x if it contains terms with no powers of x other than a squared 
term (x2), a linear term (x1), and a constant (x0). Any quadratic equation can be put into 
the standard form:
 ax2 + bx + c = 0 (A-17)

The quadratic formula gives the solutions to any quadratic equation written in 
standard form:

 x =
−b ± √b2 − 4ac

2a
 (A-18)

The symbol “±” (read “plus or minus”) indicates that in general there are two solu-
tions to a quadratic equation; that is, two values of x will satisfy the equation. One 
solution is found by taking the + sign and the other by taking the − sign in the 
quadratic formula. If b2 − 4ac = 0, then there is only one solution (or, technically, 
the two solutions happen to be the same). If b2 − 4ac < 0, then there is no solution 
to the equation (for x among the real numbers).

The quadratic formula still works if b = 0 or c = 0, although in such cases the 
equation can be solved without recourse to the quadratic formula.

Example A.2

Solve the equation 5x(3 −x) = 6.

Solution First put the equation in standard quadratic 
form:

15x − 5x2 = 6

−5x2 + 15x − 6 = 0

We identify a = −5, b = 15, c = −6. Then

 x =
−b ± √b2 − 4ac

2a

 =
−15 ± √152 − 4 × (−5) × (−6)

−10

 ≈
−15 ± 10.25

−10
= 0.475 or 2.525
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Solving Simultaneous Equations

Simultaneous equations are a set of N equations with N unknown quantities. We wish 
to solve these equations simultaneously to find the values of all of the unknowns. We 
must have at least as many equations as unknowns. It pays to keep track of the num-
ber of unknown quantities and the number of equations in solving more challenging 
problems. If there are more unknowns than equations, then look for some other rela-
tionship between the quantities—perhaps some information given in the problem that 
has not been used.

One way to solve simultaneous equations is by successive substitution. Solve one 
of the equations for one unknown (in terms of the other unknowns). Substitute this 
expression into each of the other equations. That leaves N − 1 equations and N − 1 
unknowns. Repeat until there is only one equation left with one unknown. Find the 
value of that unknown quantity, and then work backward to find all the others.

Example A.3

Solve the equations 2x − 4y = 3 and x + 3y = −5 for x and y.

Solution First solve the second equation for x in terms of y:

x = −5 − 3y

Substitute −5 − 3y for x in the first equation:

2 × (−5 − 3y) − 4y = 3

This can be solved for y:

 −10 − 10y = 3
 −10y = 13

 y =
13

−10
= −1.3

Now that y is known, use it to find x:

x = −5 − 3y = −5 − 3 × (−1.3) = −1.1

It’s a good idea to check the results by substituting into the 
original equations.

2x − 4y = 2(−1.1) − 4(−1.3) = −2.2 + 5.2 = 3 ✓

x + 3y = −1.1 + 3(−1.3) = −1.1 − 3.9 = −5 ✓

A.4 EXPONENTS AND LOGARITHMS

These identities show how to manipulate exponents.

 a−x =
1
ax  (A-19)

 (ax) × (ay) = ax+y (A-20)

 
ax

ay = (ax) × (a−y) = ax−y (A-21)

 (ax) × (bx) = (ab)x (A-22)

 (ax)y = axy (A-23)

 a1/n = √n a (A-24)

 a0 = 1 (for any a ≠ 0) (A-25)

 0a = 0 (for any a ≠ 0) (A-26)

A common mistake to avoid:

 (ax) × (ay) ≠ axy (A-27)
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Logarithms

Taking a logarithm is the inverse of exponentiation:

 x = logb y means that y = bx (A-28)

Thus, one undoes the other:

 logb bx = x (A-29)

 blogb  x = x (A-30)

The two commonly used bases b are 10 (the common logarithm) and e = 2.71828 . . . 
(the natural logarithm). The common logarithm is written “log10,” or sometimes just “log” 
if base 10 is understood. The natural logarithm is usually written “ln” rather than “loge.”

These identities are true for any base logarithm.

 log xy = log x + log y (A-31)

 log 
x

y
= log x − log y (A-32)

 log xa = a log x (A-33)

Here are some common mistakes to avoid:

 log (x + y) ≠ log x + log y (A-34)

 log (x + y) ≠ log x × log y (A-35)

 log xy ≠ log x × log y (A-36)

 log xa ≠ (log x)a (A-37)

Semilog Graphs

A semilog graph uses a logarithmic scale on the vertical axis and a linear scale 
on the horizontal axis. Semilog graphs are useful when the data plotted is thought 
to be an exponential function. Note that y = ax3 is not an exponential function 
of  x. An exponential function of x must have the x in the exponent, as in this 
example:

 y = y0e
ax (A-38)

Taking the natural logarithm of both sides of this exponential function yields

 ln y = ax + ln y0 (A-39)

Therefore, a graph of ln y versus x will be a straight line with slope a and vertical 
intercept ln y0.

Rather than calculating ln y for each data point and plotting on regular graph 
paper, it is convenient to use special semilog paper. The vertical axis is marked so 
that the values of y can be plotted directly, but the markings are spaced proportional 
to the log of y. (If you are using a plotting calculator or a computer to make the graph, 
log scale should be chosen for the vertical axis from the menu of options.) The slope 
a on a semilog graph is not Δy/Δx since the logarithm is actually being plotted. The 
correct way to find the slope is

 a =
Δ(ln y)

Δx
=

ln y2 − ln y1

x2 − x1
 (A-40)

Note that there cannot be a zero on a logarithmic scale.
Figures A.2 and A.3 are graphs of the function y = 3e−2x on linear and semilog 

axes, respectively.
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Log-Log Graphs

A log-log graph uses logarithmic scales for both axes. Log-log graphs are useful when 
the data plotted is thought to be a power function

 y = Axn (A-41)

For such a function,

 log y = n log x + log A (A-42)

so a graph of log y versus log x will be a straight line with slope n and y-intercept 
log A. The slope (n) on a log-log graph is found as

 n =
Δ(log y)
Δ(log x)

=
log y2 − log y1

log x2 − log x1
 (A-43)

Figures A.4 and A.5 are graphs of the function y = 130x3/2 on linear and log-log axes, 
respectively.

x

y

21.50 10.5

3.5

3

2.5

2

1.5

1

0.5

0

Figure A.2 Graph of the exponential function y = 3e−2x 
on linear graph paper.

x

y

21.50 10.5

10

1

3

0.1

0.3

0.01

0.03

Figure A.3 Graph of the exponential function y = 3e−2x 
on semilog graph paper. Any power of ten can be chosen 
for the top line. In this case, the top line is 10, and the hor-
izontal lines from top to bottom represent: 10, 9, 8, . . . , 3, 
2, 1, 0.9, 0.8, . . . , 0.2, 0.1, 0.09, 0.08, . . . , 0.02, 0.01.
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y

1020 1 43 65 87 9

4000
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0

Figure A.4 Graph of the power function y = 130x3/2 on 
linear graph paper.
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y

100.1 1

10 000

1000
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1

Figure A.5 Graph of the power function y = 130x3/2 on 
log-log graph paper.
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A.5 PROPORTIONS AND RATIOS

The notation
 y ∝ x (A-44)

means that y is directly proportional to x. A direct proportion can be written as an 
equation
 y = kx (A-45)

where constant of proportionality k must be independent of x. Be careful: an equation 
can look like a proportionality without being one. For example, V = IR means that  
V ∝ I if and only if R is constant. If R depends on I, then V is not proportional to I.

The notation

 y ∝
1
x
  or  y =

k

x
 (A-46)

means that y is inversely proportional to x. The notation

 y ∝ xn  or  y = kxn (A-47)

means that y is proportional to the nth power of x.
A good technique for solving problems that involve proportions is to write out 

the proportion as a ratio and then solve for the unknown quantity. For example if 
y ∝ xn, we can write

 
y1

y2
= (

x1

x2)
n

 (A-48)

Percentages

Percentages require careful attention. Look at these four examples:

 “B is 30% of A” means B = 0.30A (A-49)

 “B is 30% larger than A” means B = (1 + 0.30)A = 1.30A (A-50)

 “B is 30% smaller than A” means B = (1 − 0.30)A = 0.70A (A-51)

 “A increases by 30%” means Δ  A = +0.30A, so Afinal = 1.30Ainitial (A-52)

 “A decreases by 30%” means ΔA = –0.30Ainitial, so Afinal = 0.70Ainitial (A-53)

Example A.4

If P ∝ T  4, and T increases by 10.0%, by what percentage 
does P  increase?

Solution

ΔT = +0.100Ti

Tf = Ti + ΔT = 1.100Ti

Pf

Pi
= (

Tf

Ti)
4

= 1.1004 ≈ 1.464

Therefore, P increases by about 46.4%.
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A.6 GEOMETRY

Geometric Shapes

Table A.1 shows the geometric shapes that most commonly appear in physics prob-
lems. It is often necessary to determine the area or volume of one of these shapes to 
solve a problem. The formulas for the area, volume, and other properties associated 
with each shape are listed in the column to the right.

Interior Angles of a Triangle

Various triangles are shown in Fig. A.6. The sum of the interior angles of any  triangle 
is 180°. Right triangles have one right angle, 90°; and the sum of the other two angles 
is 90°. An equilateral triangle has all three sides of equal length; all three angles are 
60°. An isosceles triangle has two sides of equal length; the angles opposite to the 
equal sides are equal angles.

If two angles of one triangle are equal to two angles of the other, the third angles 
are necessarily equal and the triangles are similar (Fig. A.7). The ratio of any two 
corresponding sides of similar triangles are equal.

Angles Between Intersecting Lines

When two lines intersect, the opposite angles are equal and the adjacent angles add 
to 180°, as shown in Fig. A.8(a). Figure A.8(b) shows two right triangles as well as 
a larger triangle encompassing them. Because α + β = 90°, the large triangle is a 
right triangle and is similar to the other two.

α

β

γ

α + β + γ = 180°

α

β

b

c a

Right triangle
α + β = 90°

60°

60° 60°

Equilateral
triangle

a

aa

α α

β

Isosceles
triangle

a a

b

Figure A.6 Interior angles of 
triangles always sum to 180°. 
In a right triangle, the right 
angle is 90°, so the other two 
add to 90°. An equilateral 
 triangle has equal length sides 
and equal interior angles (60°). 
An isosceles triangle has two 
sides of equal length; the two 
opposite angles are also equal.

Table A.1 Properties of Common Geometric Shapes

Geometric Shape Properties Geometric Shape Properties

d

r

Circle

Diameter d = 2r

Circumference C = πd = 2πr

Area A = πr2

r

Sphere

Surface area A = 4πr2

Volume V = 4
3πr3

b

h

Rectangle

Perimeter P = 2b + 2h

Area A = bh
b

c
a

Parallelepiped

Surface area 
A = 2(ab + bc + ac)

Volume V = abc

b

c a

Right triangle

Perimeter P = a + b + c

Area A = 1
2 
base × height = 1

2 
ba

Pythagorean theorem c2 = a2 + b2

Hypotenuse c = √a2 + b2

h

r

Right circular
cylinder

Surface area A = 2πr2 + 2πrh

Volume V = πr2h

b

h

Triangle

Area A = 1
2bh
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Angular Measure in Radians For many physics problems it is convenient to use 
angles measured in radians rather than in degrees; the symbol for radian is rad. The 
arc length s measured along a circle is proportional to the angle between the two radii 
that define the arc, as shown in Fig. A.9. One radian is defined as the angle subtended 
when the arc length is equal to the length of the radius.

For θ measured in radians,
 s = rθ (A-54)

When the angle subtended is 360°, the arc length is equal to the circumference of the 
circle, 2πr. Therefore,
 360° = 2π rad (A-55)

 1 rad =
360°
2π

≈ 57.3°  and  1° =
2π

360°
≈ 0.01745 rad (A-56)

Angles can be larger than 2π rad. Such an angle can, for instance, describe the rota-
tion of an object that turns through more than one revolution.

Note that the radian has no physical dimensions; it is a ratio of two lengths so it 
is a pure number. We use the symbol rad to remind us of the angular unit being used.

A.7 TRIGONOMETRY

The trigonometric functions most frequently used in physics are shown in Fig. A.10. 
Note that each is defined as a ratio of two lengths, so the sine, cosine, and tangent 
functions are dimensionless.

The side opposite and the side adjacent to either of the acute angles in the right 
triangle are shorter than the hypotenuse, according to the Pythagorean theorem. There-
fore, the absolute values of the sine and cosine cannot exceed 1. However, the abso-
lute value of the tangent can exceed 1.

Figure A.11 shows the signs (positive or negative) associated with the trigono-
metric functions for an angle θ located in each of the four quadrants. The hypotenuse 
r is positive, so the sign for the sine or cosine is determined by the signs of x or y 
as measured along the positive or negative x- and y-axis. The sign of the tangent then 
depends on the signs of the sine and cosine. The angle θ is measured in a 

θ1
θ2

θ3α

β

γ

b

e
d

f

c
a

If α = θ1 and β = θ2, then γ = θ3  
and

a_
d
b_
e
c_
f

= =

Figure A.7 Similar tri-
angles have equal interior 
angles. The lengths of their 
sides are proportional.

β

β

α

α

Two parallels
cut by a

transversal

(b)

α + β = 90°
(a)

α + β = 180°

α

αβ

β

90°

90°

α

α

β

β

Figure A.8 (a) When two lines intersect, the adjacent angles add to 180°. The ver-
tically opposite angles are equal. When two parallel lines are cut by a third line, the 
alternate interior angles are equal. (b) These three right triangles are similar.

θ
s r

r

If s = r, θ = 1 radian

Figure A.9 Radian measure.

θ

ϕ = 90° – θ

ϕ

90°
b

c

a

Right triangle _____________sin θ = = = cos ϕ
hypotenuse

side opposite θ _
c
b

_____________cos θ = = = sin ϕ
hypotenuse

side adjacent θ _
c
a

_____________tan θ = =
side adjacent θ
side opposite θ _

a
b = ____

cos θ
sin θ = ____

tan ϕ
1

Figure A.10 Trigonometric 
functions used in physics 
 problems; angles θ and ϕ are 
complementary angles.
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counterclockwise direction starting from the positive x-axis, which represents 0°. 
Angles measured from the x-axis going in a clockwise direction (below the x-axis) 
are negative angles; an angle of −60°, which is located in the fourth quadrant, is the 
same as an angle of +300°. Figure A.12 shows graphs of y = sin θ and y = cos θ as 
functions of θ in radians. Also graphed are two functions that are useful approxima-
tions for the sine and cosine functions when ∣θ∣ is sufficiently small.

Table A.2 lists some of the most useful trigonometric identities.

y

xx

Quadrant II:  90° < θ < 180°
  sin θ = y/r is positive
  cos θ = x/r is negative
  tan θ = y/x is negative

θ
r

x

III

III IV

y

y

Quadrant I:  0 < θ < 90°
  sin θ = y/r is positive
  cos θ = x/r is positive
  tan θ = y/x is positive

θ
r

x

III

III IV

y

y

x

θ

r

x

III

III IV

y

y

x

Quadrant IV:  270° < θ < 360°
  sin θ = y/r is negative
  cos θ = x/r is positive
  tan θ = y/x is negative

Quadrant III:  180° < θ < 270°
  sin θ = y/r is negative
  cos θ = x/r is negative
  tan θ = y/x is positive

θ

r

x

III

III IV

y

Figure A.11 Signs of trigonometric functions in various quadrants.

y

3π__
2

2π θ (radians)

1

–1

3π__
2

π_
2

π_π_2π π_
2

 
_  

 
_   

y = sin θ
y = θ

y

3π__
2

2π θ (radians)

1

–1

3π__
2

π_
2

π_π_2π

π_
2

 
_  

 
_   

y = cos θ
y = 1 –    θ 2

(a) (b)

1_
2

Figure A.12 (a) Graphs of y = sin θ and y = θ. Note that sin θ ≈ θ for small θ. (b) Graphs of y = cos θ and 
y = 1 − 1

2θ
2. Note that cos θ ≈ 1 − 1

2θ
2 for small θ.

sin2 θ + cos2 θ = 1
tan 2θ =

2 tan θ
1 − tan2 θsin (–θ ) = −sin θ

cos (–θ ) = cos θ sin (α ± β ) = sin α cos β ± cos α sin β

tan (–θ ) = −tan θ cos (α ± β ) = cos α cos β ∓ sin α sin β

sin (180° ± θ ) = ∓ sin θ

cos (180° ± θ ) = −cos θ
tan (α ± β) =

tan α ± tan β
1 ∓ tan α tan β

sin α + sin β = 2 sin [1
2(α + β) ] cos [1

2(α − β) ]

sin α − sin β = 2 cos [1
2(α + β) ] sin [1

2(α − β) ]
tan (180° ± θ ) = ± tan θ

sin (90° ± β ) = cos β

cos (90° ± β ) = ∓ sin β cos α + cos β = 2 cos [1
2(α + β) ] cos [1

2(α − β) ]
cos α − cos β = −2 sin [1

2(α + β) ] sin [1
2(α − β) ]sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ  − sin2 θ
         = 2 cos2 θ  − 1 = 1 − 2 sin2 θ

Table A.2 Useful Trigonometric Identities
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Inverse Trigonometric Functions The inverse trigonometric functions can be writ-
ten in either of two ways. To use the inverse cosine as an example: cos−1 x or arccos x. 
Both of these expressions mean an angle whose cosine is equal to x. A calculator 
returns only the principal value of an inverse trigonometric function (Table A.3), 
which may or may not be the correct solution in a given problem.

Law of Sines and Law of Cosines These two laws apply to any triangle labeled 
as shown in Fig. A.13:

 Law of sines: 
sin α

a
=

sin β
b

=
sin γ

c
 (A-57)

 Law of cosines: c2 = a2 + b2 − 2ab cos γ  (A-58)
(where γ is the angle opposite side c)

A.8 SINUSOIDAL FUNCTIONS OF TIME

A quantity y that varies sinusoidally with time and has its maximum value at t = 0 
can be written

 y(t) = A cos ωt (A-59)

This function is graphed in Fig. A.14(a). The constant A is called the amplitude. The 
maximum and minimum values of y are A and –A, respectively. The constant ω (Greek 
letter omega) is called the angular frequency and has SI units of rad/s. The time for one 
complete cycle T is called the period and is related to by the angular frequency by

 T =
2π

ω
 (A-60)

α γ
βc a

b

Figure A.13 The law of sines 
and the law of cosines apply to 
any triangle.

Table A.3 Inverse Trigonometric Functions

Function Principal Value To Find Value in a Different Quadrant
 Range (Quadrants)

sin−1  − 

π

2
 to 

π

2
 (I and IV) Subtract principal value from π

cos−1    0 to π (I and II) Subtract principal value from 2π

tan−1 − 

π

2
 to 

π

2
 (I and IV) Add principal value to π

–A

A

T/4 T/2 3T/4 T
t

ωA

–ωA

t

(a)

(b)

y = A cos ωt

Δy /Δt = –ωA sin ωt

Figure A.14 (a) Graph of the 
function y(t) = A cos ωt, where 
A and ω are positive constants. 
The period (time for one com-
plete cycle) is T = 2π∕ω. (b) A 
graph of Δy∕Δt, the rate of 
change of y, as a function of t. 
At any time, the value of this 
graph is equal to the slope of 
the graph of y(t).
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The rate of change of y(t) = A cos ωt is

 
Δy

Δt
= −ωA sin ωt (A-61)

Notice in Fig. A.14(b) that the value of Δy/Δt at any time corresponds to the slope 
of the graph of y versus t at that same time.

If, instead, y = 0 at t = 0 and y is initially increasing, then y(t) can be written

 y(t) = A sin ωt (A-62)

The relationship between ω and T is the same [Eq. (A-60)]. The rate of change of 
y(t) = A sin ωt is

 
Δy

Δt
= ωA cos ωt (A-63)

Again, the value of Δy/Δt at any time corresponds to the slope of the graph of  
y versus t at that same time.

A.9 APPROXIMATIONS

In an algebraic expression, if two terms are added or subtracted and the magnitude 
of one is small compared to the other, then we can obtain a simplified, approximate 
expression by ignoring the smaller term:

 If ∣b∣ ≪ ∣a∣,  a + b ≈ a (A-64)

When a binomial (the sum of two terms) is raised to a power n, then rather than 
ignoring the small term altogether, we can use the binomial approximation:

 If ∣nb∣ ≪ ∣a∣,  (a + b)n ≈ an + nan−1b (A-65)

The power n does not have to be positive and does not have to be an integer. In the 
special case a = 1, the binomial approximation takes this simpler form:

 If ∣nb∣ ≪ 1,  (1 + b)n ≈ 1 + nb (A-66)

A useful approximation for the exponential function ex when ∣x∣ ≪ 1 is

 If ∣x∣ ≪ 1,  ex ≈ 1 + x (A-67)

Small-Angle Approximations

These approximations are written for θ in radians and are valid when ∣θ∣ ≪ 1 rad.

 sin θ ≈ θ (A-68)

 cos θ ≈ 1 − 1
2θ 

2 (A-69)

 tan θ ≈ θ (A-70)

See Fig. A.14 for a graphical comparison of the sine and cosine functions along with 
their small-angle approximations. The sizes of the errors involved in using these 
approximations are roughly 1

6θ 
3, 1

24θ 

4, and 2
3θ 

3, respectively. In some circumstances it 
may be a sufficiently good approximation to ignore the 1

2θ 
2 term and write

 cos θ ≈ 1 (A-71)

The origin of these approximations can be illustrated using a right triangle of 
hypotenuse 1 with one very small angle θ (Fig. A.15). If θ is very small, then the 
adjacent side (cos θ ) will be nearly the same length as the hypotenuse (1). Then we 
can think of those two sides as radii of a circle that subtend an angle θ. The relation-
ship between the arc length s and the angle subtended is

 s = θr (A-72)
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Since sin θ ≈ s and r = 1, we have sin θ ≈ θ. To find an approximate form for cos 
θ (but one more accurate than cos θ ≈ 1), we can use the Pythagorean theorem:

 sin2 θ + cos2 θ = 1 (A-73)

 cos θ = √1 − sin2 θ ≈ √1 − θ 
2 (A-74)

Now, using a binomial approximation,

 cos θ ≈ (1 − θ2)1/2 ≈ 1 − 1
2θ 

2 (A-75)

A.10 VECTORS

The distinction between vectors and scalars is discussed in Section 3.1. Scalars have 
magnitude, whereas vectors have magnitude and direction. A vector is represented 
graphically by an arrow of length proportional to the magnitude of the vector and 
aligned in a direction that corresponds to the vector direction.

In print, the symbol for a vector quantity is sometimes written in bold font, or in 
roman font with an arrow over it, or in bold font with an arrow over it (as done in 
this book). When writing by hand, a vector is designated by drawing an arrow over 
the symbol: A→. When we write just plain A, that stands for the magnitude of the 
vector. We also use absolute value bars to stand for the magnitude of a vector, so

 A = ∣A
→

∣ (A-77)

Addition and Subtraction of Vectors

When vectors are added or subtracted, the magnitudes and directions must be taken into 
account. Details on vector addition and subtraction are found in Sections 3.1 and 3.2. 
Here we provide a brief summary.

The graphical method for adding vectors involves placing the vectors tip to tail 
and then drawing from the tail of the first to the tip of the second, as shown in 
Fig.  A.16. To subtract a vector, add its opposite. In Fig. A.16, −B

→
 has the same 

magnitude as B
→

 but is opposite in direction. Then,

 A
→

− B
→

= A
→

+ (−B
→

) (A-78)

Figure A.17 shows both the graphical and component methods of vector addition.

cos θ
sin θ

θ 1 Figure A.15 Illustration of 
the small angle approximations 
sin θ ≈ θ and  cos θ ≈ 1 − 1

2θ 
2 

(for θ in radians) using a right 
triangle with θ ≪ 1 rad.

A

A

A + B = C

A – B = D

D –B

B
C

(a)

(b)

Figure A.16 Graphical  
(a) addition and (b) subtraction 
of two vectors.

ϕ

A + B = C

Graphical method

Component method
Ax + Bx = Cx

Ay + By = Cy

Bx

Ax

By

Ay

Ax

Cx
Cx

Cy

CyAy

ByBx

tan ϕ =

A

B

A

B C

A

B

C

= –A cos α
= –A sin α

Ax 
Ay 

= B sin β
= B cos β

Bx 
By 

||Cy ||
||Cx||

___

√Cx
2 + Cy

2C =

α

β

Figure A.17 Adding two 
arbitrary vectors by two  
different methods.
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Product of a Vector and a Scalar

When a vector is multiplied by a scalar, the magnitude of the vector is multiplied by 
the absolute value of the scalar, as shown in Fig. A.18. The direction of the vector 
does not change unless the scalar factor is negative, in which case the direction is 
reversed.

 ∣cA
→

∣ = ∣c∣∣A
→

∣ (A-79)

Scalar Product of Two Vectors

One type of product of two vectors is the scalar product (also called the dot product). 
The notation for it is

 C = A
→

· B
→

 (A-80)

As its name implies, the scalar product of two vectors is a scalar quantity; it can be 
positive, negative, or zero but has no direction.

The scalar product depends on the magnitudes of the two vectors and on the angle 
θ between them. To find the angle, draw the two vectors starting at the same point 
(Fig. A.19). Then the scalar product is defined by

 A
→

· B
→

= AB cos θ (A-81)

Reversing the order of the two vectors does not change the scalar product: B
→

· A
→

= A
→

· B
→

. 
The scalar product can be written in terms of the components of the two vectors

 A
→

· B
→

= AxBx + AyBy + AzBz (A-82)

Cross Product of Two Vectors

Another type of product of two vectors is the cross product (also called the vector 
product), which is introduced in Chapter 19. It is denoted by

 A
→

× B
→

= C
→

 (A-83)

The cross product is a vector quantity; it has magnitude and direction. A
→

× B
→

 is read 
as “A

→
 cross B

→
.”

For two vectors, A
→

 and B
→

, separated by an angle θ (with θ chosen to be the smaller 
angle between the two as in Fig. A.19), the magnitude of the cross product C

→
 is

 ∣C
→

∣ = ∣A
→

× B
→

∣ = AB sin θ (A-84)

The direction of the cross product C
→

 is one of the two directions perpendicular to 
both A

→
 and B

→
. To choose the correct direction, use the right-hand rule explained in 

Section 19.2. In Fig. A.l9, A
→

× B
→

 is out of the page (perpendicular to the page and 
toward the reader).

The cross product depends on the order of the multiplication.

 A
→

× B
→

= −B
→

× A
→

 (A-85)

The magnitude is AB sin θ in both cases, but the direction of one cross product is opposite 
to the direction of the other.

A
3A B –2B

Figure A.18 Multiplication of 
a vector by a scalar.

Figure A.19 Two vectors are 
drawn starting at the same point. 
The angle θ between the vectors 
is used to find the scalar prod-
uct and the cross product of the 
vectors.

A

B

θ
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A.11 SYMBOLS USED IN THIS BOOK

Table A.4 Selected Mathematical Symbols

× or · multiplication
≈ is approximately equal to
≠ is not equal to
< is less than
> is greater than
≤ is less than or equal to
≥ is greater than or equal to
≪ is much less than
≫ is much greater than
∝ is proportional to
|Q| absolute value of Q
∣a→∣ magnitude of vector a→

⊥ perpendicular
|| parallel
∞ infinity
′ prime (used to distinguish different values of the same variable)
Qav, Q, or ⟨Q⟩ average of Q
logb  x the logarithm (base b) of x
ln x the natural (base e) logarithm of x
± plus or minus
∓  minus or plus
. . . ellipsis (indicates continuation of a series or list)
∠ angle
⇒ implies
∴ therefore
lim
Δt→0

 Q  the limiting value of the quantity Q as the time interval Δt 
approaches zero

· or ⊙  a vector arrow pointing out of the page
× or ⊗  a vector arrow pointing into the page

Table A.5 Greek Letters Used in this Book

Symbol Name Principal Uses

α alpha (lowercase)  an angle, angular acceleration, linear thermal expansion 
coefficient, thermal coefficient of resistivity, attenuation 
constant, an alpha particle (helium-4 nucleus)

β beta (lowercase)  an angle, sound intensity level, volumetric thermal 
expansion coefficient, rotational inertia coefficient, a 
beta particle (electron or positron)

Γ gamma (uppercase) number of microstates
γ gamma (lowercase)  an angle, ratio of heat capacities, surface tension, 

Lorentz factor, a gamma ray or other photon
Δ delta (uppercase) difference, change, uncertainty
δ delta (lowercase) an angle
ϵ epsilon (lowercase) electrical permittivity
η eta (lowercase) viscosity
θ theta (lowercase) an angle



A-16 APPENDIX A Mathematics Review

κ kappa (lowercase) dielectric constant, thermal conductivity
Λ lambda (uppercase) mean free path
λ lambda (lowercase)  wavelength, decay constant, linear mass or charge  

density
μ mu (lowercase)  micro- (SI prefix), coefficient of friction, mass per unit 

length, magnetic permeability, magnetic dipole moment, 
a muon

ν nu (lowercase) a neutrino
π pi (lowercase)  the ratio of a circle’s circumference to its diameter, a 

pion
ρ rho (lowercase)  density (mass or charge per unit volume), electrical 

resistivity
Σ sigma (uppercase) summation
σ sigma (lowercase)  Stefan–Boltzmann constant, electrical conductivity,  

surface charge density
τ tau (lowercase) torque, exponential time constant, a tau lepton
Φ phi (uppercase) electric or magnetic flux
ϕ phi (lowercase) an angle, work function
ψ psi (lowercase) wave function (in quantum mechanics)
Ω omega (uppercase)  ohm (SI unit of electrical resistance), number of  

microstates
ω omega (lowercase) angular velocity, angular frequency
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Reference Information

Appendix B

Table B.1 Physical Constants

Quantity Symbol Value

Universal gravitational constant  G 6.674 × 10−11 m3/(kg·s2)

Speed of light in vacuum c 2.998 × 108 m/s

Elementary charge e 1.602 × 10−19 C

Planck’s constant h 6.626 × 10−34 J·s
  4.136 × 10−15 eV·s
 ℏ = h/(2π) 1.055 × 10−34 J·s
  6.582 × 10−16 eV·s
Planck’s constant times the speed of light hc 1240 eV⋅nm

Universal gas constant R = NAkB 8.314 J/(mol·K)

Avogadro constant NA 6.022 × 1023 mol−1

Boltzmann constant  kB 1.381 × 10−23 J/K

  8.617 × 10−5 eV/K 
Coulomb force constant  k = 1/(4πϵ0) 8.988 × 109 N·m2/C2

Permittivity of vacuum (electric constant) ϵ0 = 1/(µ0c
2) 8.854 × 10−12 C2/(N·m2)

Permeability of vacuum (magnetic constant)  µ0 4π × 10−7 T·m/A 

Electron mass  me 9.109 × 10−31 kg

  0.000 548 580 u

Electron rest energy mec
2 0.5110 MeV

Proton mass mp 1.673 × 10−27 kg

  1.007 276 5 u

Proton rest energy mpc
2 938.272 MeV

Neutron mass mn 1.675 × 10−27 kg

  1.008 664 9 u

Neutron rest energy mnc
2 939.565 MeV

Compton wavelength of electron λC = h/(mec) 2.426 × 10−12 m

Stefan-Boltzmann constant σ 5.670 × 10−8 W/(m2·K4) 

Rydberg constant R = −E1/(hc) 1.097 × 107 m−1

Bohr radius of hydrogen atom a0 = ℏ2/(meke2) 5.292 × 10−11 m

Ionization energy of hydrogen atom −E1 = mek
2e4/(2ℏ2) 13.61 eV
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Table B.2 Unit Conversions

Factors in boldface are exact by definition.

Length
1 in = 2.54 cm
1 cm = 0.3937 in
1 ft = 30.48 cm
1 m = 39.37 in = 3.281 ft
1 mi = 5280 ft = 1.609 km
1 km = 0.6214 mi
1 ly = 9.461 × 1015 m

Time
1 yr = 365.24 d = 3.156 × 107 s
1 d = 24 h = 1440 min = 8.64 × 104 s

Speed
 1 mi/h = 1.467 ft/s 
 = 1.609 km/h = 0.4470 m/s
 1 km/h = 0.2778 m/s 
 = 0.6214 mi/h = 0.9113 ft/s
1 ft/s = 0.3048 m/s = 0.6818 mi/h
1 m/s = 3.281 ft/s = 3.600 km/h = 2.237 mi/h

Volume
1 L = 1000 cm3 = 1 × 10−3 m3 
1 cm3 = 0.06102 in3 = 1 mL = 1 × 10−6 m3

1 m3 = 1 × 106 cm3 = 35.31 ft3

1 gal (U.S.) = 3.785 L

Mass
1 kg = 1000 g
1 u = 1.6605 × 10−27 kg
1 u = 931.494 MeV/c2

Force
1 N = 0.2248 lb (pound used as force unit)
1 lb = 4.448 N (pound used as force unit)

Energy
1 J = 0.7376 ft·lb = 6.242 × 1018 eV
1 ft·lb = 1.356 J 
1 cal = 4.186 J
1 Calorie = 1 kcal
1 Btu = 1055 J
1 kW·h = 3.6 MJ 
1 eV = 1.602 × 10−19 J

Temperature
Celsius to Fahrenheit: TF = (1.8°F/°C)TC + 32°F
Kelvins to Celsius:      TC = T − 273.15

Power
1 W = 1 J/s
1 hp = 550 ft·lb/s = 745.7 W
1 Btu/h = 0.2931 W

Pressure
1 Pa = 1 N/m2 = 1.450 × 10−4 lb/in2 
1 atm = 0.1013 MPa = 14.70 lb/in2 
1 lb/in2 = 6895 Pa
1 mmHg = 133.3 Pa
1 inHg = 3386 Pa

Angle
1 rad = 57.30°
1° = 0.01745 rad
360° = 2π rad
1 rad/s = 9.549 rev/min
1 rev/min = 0.1047 rad/s

Table B.3 SI Prefixes

Power Prefix Symbol
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da

Power Prefix Symbol
10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro μ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a
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Table B.4 SI Derived Units

Quantity Name Symbol Equivalents
Force newton N J/m kg·m/s2

Angle radian rad m/m 1
Energy, work, heat joule J N·m kg·m2/s2

Power watt W J/s kg·m2/s3

Pressure, stress pascal Pa N/m2 kg/(m·s2) 
Frequency hertz Hz cycle/s s−1 
Electric charge coulomb C  A·s
Electric potential volt V J/C kg·m2/(A·s3)
Electric resistance ohm Ω V/A kg·m2/(A2·s3)
Capacitance farad F C/V A2·s4/(kg·m2)
Magnetic field tesla T N·s/(C·m) kg/(A·s2)
Magnetic flux weber Wb T·m2  kg·m2/(A·s2)
Inductance henry H V·s/A kg·m2/(A2·s2)
Activity becquerel Bq decay/s s−1

Absorbed dose gray Gy J/kg m2/s2

Refractive power diopter D  m−1

Table B.5 Useful Physical Data

Standard temperature (T of STP) 0°C = 273.15 K
Standard pressure (P of STP) 1 atm = 101.325 kPa
Water
  Density (4°C) 1.000 × 103 kg/m3

  Heat of fusion 333.7 kJ/kg
  Heat of vaporization 2256 kJ/kg
  Specific heat capacity (15°C) 4.186 kJ/(kg·K)
  Index of refraction 1.33
Speed of sound in dry air (20°C, 1 atm) 343 m/s
Speed of sound in dry air (at STP) 331 m/s
Density of dry air (at STP) 1.29 kg/m3

Average molar mass of dry air 28.98 g/mol
Molar volume of ideal gas (at STP) 0.02241 m3/mol

Table B.6 Astrophysical Data

 Earth Moon Sun
Mass 5.972 × 1024 kg 7.348 × 1022 kg 1.989 × 1030 kg
Mean radius 6.371 × 106 m 1.737 × 106 m 6.957 × 108 m
Mean density 5514 kg/m3 3344 kg/m3 1408 kg/m3

Orbital period 365.24 d 27.3 d
Period of rotation 23.934 h 27.3 d 25.38 d
Surface temperature 288 K (average) 125 K to 375 K 5800 K
Surface gravitational field 9.80 N/kg 1.62 N/kg 274 N/kg
Mean distance from Earth  3.844 × 108 m 1.50 × 1011 m
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Table B.8 Properties of Selected Nuclides

 Atomic    Mass of Percentage Abundance Half-life 
 Number Z Element Symbol Mass Number A Neutral Atom (u) (or Principal Decay Mode) (if unstable)

 0 (Neutron) n 1 1.008 664 9 β− 10.23 min
 1 Hydrogen H 1 1.007 825 0 99.9885 
 (Deuterium) (D) 2 2.014 101 8 0.0115 
 (Tritium) (T) 3 3.016 049 3 β− 12.32 yr
 2 Helium He 3 3.016 029 3 0.000 134 
   4 4.002 603 3 99.999 866 
 3 Lithium Li 6 6.015 122 9 7.6 
   7 7.016 003 4 92.4 
 4 Beryllium Be 7 7.016 928 7 EC 53.22 d
   8 8.005 305 1 2α 8.18 × 10−17 s
   9 9.012 183 1 100 
 5 Boron B 10 10.012 936 9 19.9 
   11 11.009 305 2 80.1 
 6 Carbon C 11 11.011 432 6 β+ 20.364 min
   12 12.000 000 0 98.93 
   13 13.003 354 8 1.07 
   14 14.003 242 0 β− 5730 yr
   15 15.010 599 3 β− 2.449 s
 7 Nitrogen N 12 12.018 613 2 β− 11.00 ms
   13 13.005 738 6 β+ 9.965 min
   14 14.003 074 0 99.636 
   15 15.000 108 9 0.364 
 8 Oxygen O 15 15.003 065 6 β+ 122.24 s
   16 15.994 914 6 99.757 
   17 16.999 131 8 0.038 
   18 17.999 159 6 0.205 
   19 19.003 578 0 β− 26.88 s
 9 Fluorine F 19 18.998 403 2 100 
10 Neon Ne 20 19.992 440 2 90.48 
   22 21.991 385 1 9.25 
11 Sodium Na 22 21.994 437 4 β+ 2.6018 yr
   23 22.989 769 3 100 
   24 23.990 963 0 β− 14.997 h
12 Magnesium Mg 24 23.985 041 7 78.99 
13 Aluminum Al 27 26.981 538 4 100 
14 Silicon Si 28 27.976 926 5 92.223 
15 Phosphorus P 31 30.973 762 0 100 
   32 31.973 907 6 β− 14.268 d
16 Sulfur S 32 31.972 071 2 94.99 
17 Chlorine Cl 35 34.968 852 7 75.76 
18 Argon Ar 40 39.962 383 1 99.6035 
19 Potassium K 39 38.963 706 5 93.2581 
   40 39.963 998 2 0.0117; β− 1.248 × 109 yr
20 Calcium Ca 40 39.962 590 9 96.94 
24 Chromium Cr 52 51.940 505 0 83.789 
25 Manganese Mn 54 53.940 356 4 β+ 312.20 d
   55 54.938 043 2 100 
26 Iron Fe 56 55.934 935 6 91.754 

(continued)
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27 Cobalt Co 59 58.933 193 7 100 
   60 59.933 815 7 β− 5.271 yr
28 Nickel Ni 58 57.935 341 8 68.077 
   60 59.930 785 3 26.223 
29 Copper Cu 63 62.929 597 2 69.15 
30 Zinc Zn 64 63.929 141 8 49.17 
36 Krypton Kr 84 83.911 497 7 56.987 
   86 85.910 610 6 17.279 
   92 91.926 173 1 β− 1.840 s
37 Rubidium Rb 85 84.911 789 7 72.17 
   93 92.922 039 3 β− 5.84 s
38 Strontium Sr 88 87.905 612 3 82.58 
   90 89.907 730 9 β− 28.79 yr
39 Yttrium Y 89 88.905 841 2 100 
   90 89.907 144 8 β− 64.00 h
47 Silver Ag 107 106.905 091 5 51.839 
50 Tin Sn 120 119.902 201 9 32.58 
53 Iodine I 131 130.906 126 4 β− 8.0252 d
55 Cesium Cs 133 132.905 452 0 100 
   141 140.920 045 1 β− 24.84 s
56 Barium Ba 138 137.905 247 2 71.698 
   141 140.914 403 5 β− 18.27 min
60 Neodymium Nd 143 142.909 819 9 12.174 
62 Samarium Sm 147 146.914 904 1 14.99; α 1.06 × 1011 yr
79 Gold Au 197 196.966 570 1 100 
82 Lead Pb 204 203.973 043 4 1.4; α ≥1.4 × 1017 yr
   206 205.974 465 1 24.1 
   207 206.975 896 7 22.1 
   208 207.976 651 9 52.4 
   210 209.984 188 3 β− 22.20 yr
   211 210.988 735 4 β− 36.1 min
   212 211.991 896 0 β− 10.64 h
   214 213.999 803 8 β− 27.06 min
83 Bismuth Bi 209 208.980 398 5 100 
   211 210.987 268 7 α 2.14 min
   214 213.998 710 9 β− 19.9 min
84 Polonium Po 210 209.982 873 6 α 138.376 d
   214 213.995 201 2 α 164.3 μs
   218 218.008 971 5 α 3.098 min
86 Radon Rn 222 222.017 576 3 α 3.8235 d
88 Radium Ra 226 226.025 408 5 α 1600 yr
   228 228.031 068 7 β− 5.75 yr
90 Thorium Th 228 228.028 739 8 α 1.91 yr
   232 232.038 053 7 100; α 1.40 × 1010 yr
   234 234.043 599 9 β− 24.10 d
92 Uranium U 235 235.043 928 2 0.7204; α 7.04 × 108 yr
   236 236.045 566 2 α 2.342 × 107 yr
   238 238.050 787 0 99.2742; α 4.468 × 109 yr
   239 239.054 292 0 β− 23.45 min
93 Neptunium Np 237 237.048 171 7 α 2.144 × 109 yr
94 Plutonium Pu 239 239.052 161 7 α 2.411 × 104 yr
   242 242.058 741 0 α 3.75 × 105 yr
   244 244.064 204 4 α 8.00 × 107 yr

 Atomic    Mass of Percentage Abundance Half-life 
 Number Z Element Symbol Mass Number A Neutral Atom (u) (or Principal Decay Mode) (if unstable)

EC = electron capture; β+ = both positron emission and electron capture are possible.
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Answers to Selected Questions  
and Problems

CHAPTER 1

Multiple-Choice Questions

1. (b) 3. (a) 5. (d) 7. (b) 9. (b)

Problems

1. 2.5 m 3. 7.7% 5. 7.2 7. 10−8 9. 8.53 cm 11. 36.0% 
13. 4.0 15. 11.8 yr 17. (a) 1.29 × 108 kg (b) 1.3 × 108 m/s
19. (a) 3.63 × 107 g (b) 1.273 × 102 m 21. 1.6 × 10−10 m3

23. (a) 3; 5.74 × 10−3 kg (b) 1; 2 m (c) 3; 4.50 × 10−3 m  
(d) 3; 4.50 × 101 kg (e) 4; 1.009 × 105 s (f) 4; 9.500 × 103 mL
25. 459 m/s 27. 2.8 × 10−7 in. 29. (b), (a), (e), (d), (c) 
31. 483.61 m span and 1834 m total length 
33. (a) 180 mi/h (b) 8.0 cm/ms 35. 0.12 or 12% 37. 4.9 L/min
39. 1.7 × 10−10 km3 41. (a) 2.7 × 10−3 ft/s (b) 1.9 × 10−3 mi/h 
43. kg·m2·s−2 45. kg·m·s−1 47. (a) [L3] (b) volume 
49. 30 to 40 cm 51. 10 kg 53. 100 m 55. 104.5°F
57. (a) a (b) +v0 59. (a) 1.6 km/h; 3.0 km
 (b) speed; starting position 61. x = (25 m/s4)t4 + 3 m
63. (a) plot v versus r2 (b) set the value of the slope equal to  
2g(ρ − ρf)/(9η) and solve for η 65. v ∝ ωr 67. estimates will vary
69. 105 hairs 71. 104 viruses 73. (a) 33.5 m (b) 4.2 bus 
lengths 75. 5 L 77. 434 m/s 79. (2.24 mi/h)/(1 m/s)
81. kg·m/s2 83. $59 000 000 000 85. (a) 2.4 × 105 km/h
 (b) 10 min 87. 2.6 N 89. 1011 gal/yr 91. (a) √hG/c5

 (b) 1.3 × 10−43 s 93. 0.46 s−1 95. by a factor of 4.9
97. (a) 

To
ta
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f

Y
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ls

 (g
)

10
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0 5 10 15
Time (h)

20 25

20
30
40
50
60
70
80
90

100

 (b) about 100 g
(c) 

t (h)

1

0
0

2

2 4 6

ln (m/m0)

r ≈ 0.3 h−1

CHAPTER 2

Multiple-Choice Questions

1. (c) 3. (a) 5. (c) 7. (b) 9. (a) 11. (a) 13. (d) 15. (d)
17. (b) 19. (d) 21. + 23. −x 25. − 27. − 29. −x

Problems

1. 16 cm, east 3. (a) −80 m, or 80 m west (b) −20 m, or 20 m 
west (c) +80 m, or 80 m east (d) 240 m 5. 30 km/h east  
7. 98 m/s or 220 mi/h due north 9. 32 s 11. 4–5 s; 2–3 s;  
0–1 s, 1–2 s, and 3–4 s are equal; 5–6 s 13. 5–6 s; 0–1 s, 1–2 s, 
and 3–4 s are equal; 2–3 s; 4–5 s 15. 91.5 mi/h 17. 27 m/s west 
19. (a) 1.5 m/s (b) 1.2 m/s
21. 

t (s) 105

5

0

–5

vx (m/s)

23. (a) 170 cm to the left (b) 28 cm/s (c) 9.4 cm/s to the left 
25. 1.05 m/s to the north 27. 13 s 29. a(5.5 s), a(0.5 s),  
a(1.5 s) = a(2.5 s), a(3.5 s) = a(4.5 s) 31. (a) 4.4 m/s2 forward
33. 

t (s)0 1 2 3 4 5 6 7 8
0

5

10

vx
(m/s)

15

20

Instantaneous
acceleration
at t = 2.0 s

ax ≈ = –4.3 m/s20 m/s – 20.5 m/s
4.8 s – 0 s

aav,x = = –3.0 m/s2–24 m/s
8.0 s

Slope at
t = 2.0 s=

(a) aav,x = −3.0 m/s2

(b) ax ≈ −4.0 m/s2



AP-2 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS

Problems

1. (a) 10.00 km west (b) 4.88 km east (c) 4.88 km west
3. (a) same direction (b) perpendicular (c) opposite 
 directions; 1.0
5. 

x

20 km20 km

60°

60°

20 km in the +x-direction
7. B = C, A 9. 14 N to the east 11. (a) about 1.4 cm (b) about  
7.9 cm 13. 2.0 km at 20° east of south 15. Bx, Cx, Ax  
17. Bx + Cx, Ax + Bx, Ax + Cx 19. 8.7 units 21. (a) 5.0 m/s2

(b) 37° CCW from the +y-axis 23. 7.9 cm 25. They both 
double, without changing sign. 27. (a) 31.0 m/s (b) 58.1° 
with the +x-axis and 31.9° with the −y-axis 29. Ax = −14.3 cm 
and Ay = 17.0 cm 31. 0.283 mi at 45.0° north of west 33. 2.0 km  
at 70° south of east 35. 4.4 mi at 58° north of east 37. (a) 6.7 m/s
(b) 0 39. (a) 70 mi/h (b) 59 mi/h at 14° south of west  
41. (a) 110 km/h (b) 97 km/h at 35° north of east 43. (a) 21 m/s
(b) 16 m/s 45. 0.70 m/s2 south 47. (a) 3.33 m/s at 45° north 
of east (b) 1.84 m/s2 at 45° south of east (c)  Changing the 
direction of the velocity requires an acceleration.
49. (a) 

EW

N

S

45°
240 km/h

192 km/h

vf

vi

(b) 170 km/h at 7° south of west (c) 57 km/h2 at 7° south of 
west 51. 44.7 m/s at 26.6° south of east 53. 15°, 30°, 45°, 
60°, 75° 55. It is on the ground after 1.32 s, so the horizontal 
distance along the ground is 26.3 m. 57. (a) 5.9 m (b) 17.0 m/s  
59. 12.5 m/s 61. (a) 37 m (b) 170 m (c) 32 m/s; −27 m/s 
63. 21 m/s 71. 254 s 73. 0.42 km/h 75. (a) 39.0 m/s  
(b) 7.4° south of west 77. 27° upstream 79. (a) 1.80 mi/h  
(b) 48.0 min (c) 0.800 mi upstream (d) 32.2° upstream  
81. (a) 1.00 m/s (b) 1.12 m/s 83. (a) 3.49 s (b) 2.01 s  
(c) 80.6 m 85. (a) 27.6 m/s at 25.0° above the horizontal  
(b) 37.5 m (c) 44.4 m above the ground 87. 23 m 

35. (a) 1.4 m/s2 in the +x-direction (b) 220 m in the +x-direction 
(c) 55 m/s in the +x-direction 37. (a) 2 m/s2 (b) 9.0 m/s  
(c) 9.8 m/s (d) 2 m/s (e) 69 m 39. (a) −10 m/s2 (b) 0
(c) 

t (s) 

0 4 862 10 1412

0

5

ax (m/s2)

–5

–10

(d) 5.0 m
41. (a), (d), (b) = (c) 43. (a) 5.7 s (b) 2.6 km 
45. 1.5 m/s2 northeast  

t (s)
403020100

60

20

40

vx (m/s)

47. (a) 9.20 s (b) 212 m
49. You will not hit the tractor. 52.1 m, 11.5 m 51. No; it takes 
236 m for the train to stop. 53. 80 m
55. (a) vx (m/s)

t (s)
10

0 2 4 6 8

14

18

22

(b) 11 m/s (c) 130 m
(d) 

0 x (m)1208040

t = 0 t = 6.0 st = 4.0 st = 2.0 s t = 8.0 s

57. 85.0 m/s down 59. 5.0 m/s 61. 1.22 s 63. (a) 44 m  
(b) 7.0 m/s (c) 29 m/s 65. (a) 120 m/s2 toward Lois  
(b) 170 m/s 67. 46 m 69. 2v 71. 9th floor  
73. (a) 1.7 m/s (b) The swimmer pushes off from each  
end of the pool and he goes faster during the push-off than  
when swimming. 75. 40 m/s2 in the direction of motion  
77. (a) 330 m/s up (b) 16 m/s2 up 79. (a) 17.6 m/s downward  
(b) 97.0 m 81. (a) 181 s (b) 2.76 m/s 83. (a) 0.30 s  
(b) 0.05 s (c) 0.45 m (d) 10 m/s2 down (e) 120 m/s2 
up 85. (a) t3 and t4 (b) t0, t2, t5, and t7 (c) t1 and t6  
(d) t0, t3, and t7 (e) t6

CHAPTER 3

Multiple-Choice Questions

1. (d) 3. (d) 5. (c) 7. (d) 9. (a) 11. (c) 13. (e)  
15. (a)



 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS AP-3

39.  (a) 50 N upward (b) 650 N upward  
(c) Contact force

on the chair
and the
woman’s feet
due to the floor

Gravitational
force on the
woman and the
chair due to
Earth

41. 82 kg
43. (a)

FAB

aA aB

FBA
(The forces have equal magnitudes.)

(The acceleration of the less massive
star is 4.0 times the acceleration of
the more massive star.)

(a)

(b)

45. 1.1 47. 640 N on Earth (a) 240 N (b) 580 N  
(c) 100 N His weight on Earth is 2.6, 1.1, and 6.1 times 
his weight on Mars, Venus, and the Moon, respectively.  
49. 4 km 51. 32.1 kg 53. (a) 1.98 × 1020 N (b) the same  
55. (a) 6.00 × 102 N directed along the 8.00 × 102 N force 
(b) 0.0414 m/s2 in the same direction as the net force 57. 22.7 kN 
upward 59. 2.26 m/s 61. 20 N 63. (a) 6.29 × 1020 N  
(b) 2.37 × 1020 N 67. The normal force is perpendicular to 
and away from the ramp in all three cases. The frictional force 
is upward along the ramp for (a) and (c) and downward along 
the ramp for (b). 69. (a) 160 N up the slope (b) 0.19  
71. 88 N up the ramp 73. 61 N down the ramp 75. (a) yes  
(b) unnecessary 77. (a) zero (b) T/(mg) 79. 17°  
81. 850 N, due west 83. 400 N 85. Both scales read 120 N.  
87. Scales A and B both read 120 N. 89. (a) 34 N (b) 39 N  
91. T15 = 30 N; T25 = 18 N 93. 19 N toward the back of 
the mouth

95.   
 m  1  ________  m  1  +  m  2 

   97. 3.5 N 99. (a) m1: 2.5 m/s2 up; 

m2: 2.5 m/s2 down (b) 37 N 101. 2.1 m/s2 in the  direction  
of motion 103. T1 = 3.2 kN, T2 = 1.1 kN 105. 642 N 
107. 960 N upward 109. (a) 1.4 m/s2 downward (b) no 
111. 620 N
113. 

Ffb

Ffu
Ffo

FfE

89. (a) 
Case (1):

vaw

vws

vas

Case (3):

vawvws

vas

Case (2):
vaw

vas
vws

(b) 1 and 2 (c) all three cases 91. (a) 6.33 km at 29.6°  
north of east (b) 22.1 min 93. (a) 68.5 km/h at 12.5° north 
of east (b) 68.5 km/h at 12.5° south of west 95. (a) 4.5 s  
(b) 81 m 97. 200 km 99. 12 m east and 40 m north  
101. (a) 28.6 cm (b) smaller (c) larger (d) H = 21.3 cm; 
R = 85.1 cm 103. (a) 7.67 m (b) 13.9 m/s (c) 12.5 m/s  
105. 0.13 ms, 3.0 × 106 m/s2 107. 32.0° 109. (a) 2.02 s  
(b) 2.02 s (c) 1.5 s 111. (a) 1.3 m (b) 0.2 m (c) 2 m/s  
(d) 0.6 m/s

CHAPTER 4

Multiple-Choice Questions

1. (b) 3. (a) 5. (b) 7. (b) 9. (b) 11. (e) 13. (a)  
15. (c) 17. (a) 19. (a) 21. (b) 23. (a) 25. (b)

Problems

1. 4.45 lb 3. 20 N in the positive x-direction 5. yes; FS > FB

10°
15°

FS

FB

7. 157 N, 57° below the +x-axis 9. 2 N to the east 
11. 120 N north 13. 13° from the vertical
15. (a) 30 N to the right (b) 0 (c) 18 N downward 
17. 1550 N away from the racquet 19. 80 N up  
21. (c) = (d), (a) = (b) = (e) 23. 0.30 N 25. 2.40 m/s2 forward  
27. 40 kg 29. 2980 N down 31. (1) and (2) are third-law 
partners in the interaction of two objects, bike and Earth. (1) and 
(3) act on the same object, the bike, and are equal in magnitude 
and oppositely directed because the bike is in equilibrium (first law).  
33. (a) 543 N (b) downward contact force on the scale exerted by 
Margie’s feet (c) 588 N (d) downward contact force on the floor 
exerted by the scale 35. Downward contact force on the rod by 
the line (interaction partner = upward contact force on the line 
by the rod); downward gravitational force on the rod by Earth 
(interaction partner = upward gravitational force on Earth by the 
rod); upward contact force on the rod by the fisherman’s hands 
(interaction partner = downward contact force on the fisher-
man’s hands by the rod).
37. Total drag

Total weight

Subscripts: 
f = forearm, E = Earth, b = biceps, 
o = object, u = upper arm bone



AP-4 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS

(e) vx (m/s)

t (s)
0

0 0.25 0.5 0.75 1

4

8

12 

1.25

165. (a) 1.8 m/s2 down (b) 8.7 m/s 167. 36 m  
169. 700 kN 171. (a) 19 m (b) 3.6 m/s
173. 2.02 s, 1.65 m to the left of B’s initial position
175. (a) 88 N (b) 2 s (c) 70 N (d) 10 kg 

CHAPTER 5

Multiple-Choice Questions

1. (f) 3. (b) 5. (b) 7. (b) 9. (b) 11. (c)

Problems

1. 17 m 3. 0.105 rad/s; 0.52 rad 5. (a) 160 rad (b) 4700 cm/s  
(c) 25 Hz 7. 26 rad/s  9. 4.6 km 11. c = d, a = b = e 
13. c, d, a, b, e 15. 3.37 cm/s2 17. (a) 890 m (b) 490 m
19. (a) 

30.0°
30.0°

y

x

TA

TB

mg

(b) TA = 3.64 N, TB = 1.68 N

21. (a)  
mg

cos ϕ
 (b) 2π√

L cos ϕ

g

23. (a) 3900 N inward at 53° above the horizontal (b) 53°  
25. (a) 5.08° 27. (a) 3500 N (b) No. μsN would be the frictional 
force if the car were traveling at the maximum speed without 
 skidding. 29. 11.5 m/s 31. (a) 2300 N (b) 19 m/s 
33. 2.99 × 104 m/s 35. rIo = 420 000 km; rEuropa = 670 000 km  
37. 130 h  39. 17.0 m/s 41. 438 N 43. 0.39 rad/s2 
45. 190 rad/s2 47. (a) 73 rad/s2 (b) 23 rev 49. (a) 17.7 m/s  
(b) 6.28 m/s2 (c) 6.59 m/s2 at an angle of 17.7° east of south  
51. (a) 170 rad/s2 (b) 2.2 m/s2 53. (a) 1.3 × 106 s 
(b) 5.0 × 1010 rev 55. at = 2.54 m/s2; ar = 2.45 m/s2; 11.9 N  
57. 16g 59. 7.0 rad/s 61. (a) m(g − ω 2R) (b) m(g + ω 2R)  
63. 2.04 × 107 m 65. (a) 7.3 × 10−5 rad/s (b) about 0.02 rad
(c) about 5 min 67. (a) 14 m/s2 (b) 1.4g (c) 33 m/s  
69. 464 m/s 71. 1.80 × 106 degrees 73. (a) 0.48 m/s 
(b) 12 rad/s clockwise 75. 200 km/s 77. 3.8 N; 2.0 N 
79. 110 μm/s 81. 8.1 cm 83. 1.04 rad/s 85. (a) 3.6 × 107 m  
(b) 55 N; above the car 87. 1.4 rev/s 89. (a) 180 rad/s  
(b) 8.6 × 103 rev 91. (a) 0.034 m/s2 (b) less (c) 0.34% smaller  
(d) at the poles 93. 42 200 km 95. (a) 17.3 N (b) 10.0 N  
(c) tension 10.0 N, radial accel 0, tangential accel 8.49 m/s2

115. (a) 16 N (b) the block will accelerate (c) 1.3 m/s2

117. 18 kN up the slope 119. (a) 15 N (b) 8.8 N
121. (a) a→1 = 3.9 m/ s 2  to the right; a→2 = 3.9 m/ s 2  downward 
(b) 4.7 m/s to the right (c) 2.8 m to the right (d) block 1: 
0.31 m to the right; block 2: 0.31 m down
123. 

Wce

FcrFca

Ncr

125. (a) zero (b) 2.6 × 104 N
127. (a) 

Nsi

Wse

  (b) 

fsi

Nsi

Wse

(c) 

fsi

Nsi

Fso
Wse

129. 0.49% 131. mg/(cos θ) 133. F/3 to the right
135. (a) 22° with respect to the horizontal  (b) 0.9 m/s2 down 
the incline 137. 120 N 139. 90.0% of the Earth-Moon distance
141. (a) 110.0 N (b) TA = 115.0 N = TC and TB = 110.0 N = TD.
143. (a) 1) the gravitational forces between the magnet and  
Earth 2) the contact forces, normal and frictional, between the 
magnet and the photo 3) the magnetic forces between the magnet 
and the refrigerator
(b) 

fmp

Wme

NmpFmr

(c) The long-range forces are gravity and magnetism. The  contact 
forces are friction and the normal force. (d) Wme  =  0.14  N,   
Fmr = 2.10 N, fmp = Wme = 0.14 N, and Nmp = Fmr = 2.10 N
145. (a) A = 137 N; B = 39 N (b) A = 147 N; B = 39 N
147. (a) 15.1 N (b) 34.3 N 149. 480 N 151 (a) mg tan θ
(b) mg tan θ (c) mg tan θ +   ma _____ cos θ    153. (a) 1.10mg

(b) 1.10mg 155. (a) 2.60 × 108 m from Earth (b) away from
157. (a) 5.0° from the vertical (b) 0.52 m/s2 (c) 0.02 m/s2

159. 2.7 km 161. 4.22 km 163. (a) 80 N directed down the 
incline (b) 8.0 m/s2 directed down the incline (c) 1.2 s
(d) t = 0

0 1 2 4 5 63

1/2 s

x (m)

1 s1/4 s 3/4 s 5/4 s
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59. 5.0 m/s 61. 170 m/s 63. (a) Δp1x = −1.00m1vi; 
Δp1y = 0.751m1vi (b) Δp2x = m1vi; Δp2y = −0.751m1vi; the 
momentum changes for each mass are equal in magnitude and 
opposite in direction. 65. 1.73v1f 67. 8.7 kg·m/s 69. 6.0 m/s 
at 21° south of east 71. 1.7 m/s at 30° below the x-axis 
73. 0.64 m/s at 73° above the +x-axis 75.  20 m/s at 18° W of N  
77. 29 m/s 79. The lighter car was speeding. 81. 0.83 m/s  
83. 37 m/s in the +x-direction 85. (a) 11 kg·m/s (b) 11 kg·m/s  
(c) 3.8 kN 87. (5.00 cm, 6.67 cm) 89. 410 N in the direction 
of water flow 91. (a) 0.01 kg·km/h opposite the car’s motion  
(b) 0.01 kg·km/h along the car’s velocity (c) 105 flies 93. 2.8 m/s  
95. (a) 2.5 m (b) 4.0 m 97. 10−18 N 99.  h∕9 101. Glider 1 is 
at rest; glider 2 moves to the right at 0.20 m/s. 103. (a) 111∕2 (b) 1 
(c) 111∕2 105. 1.0 m 107. 1.27 m 109. 13 m/s 111. 0.73 m

CHAPTER 8

Multiple-Choice Questions

1. (d) 3. (a) 5. (e) 7. (a) 9. (c)

Problems

3. (a) reduced by a factor of 8 (b) reduced by a factor of 32
5. (b), (a) = (c) 7. 0.0512 J 9. 0.019 11. 570 J 13. 4.5 N·m
15. 0.30 N·m 17. (e), (a) = (b) = (d), (c) 19. (a) 0 (b) 790 N·m
21. (a) 58.5 N·m (b) 39.9 N·m (c) 0 23. 5.83 m
25. (0.42s, 0.58s) 27. (a) 3.14 m (b) 15.7 J (c) 2.50 N·m
(d) 6.28 rad (e) τ Δθ = (2.50 N·m)(6.28 rad) = 15.7 J = W
29. (a) 53.0 kJ (b) 1.51 MN·m 31. 200 N 33. (a) 540 N
(b) 390 N 35. left support: 2.2 kN downward; right support:  
3.4 kN upward 37. (a) 730 N (b) 330 N at 19° above the  horizontal
39.  (mg/2 + W)/(tan θ); for θ = 0, T → ∞, and for θ = 90°, T → 0.
41. 1.3 m 43. 640 N 45. 7.0 kN 47. (a) 330 N (b) 670 N
51. 0.0012 N·m 53. (a) 13 rad/s (b) 16 N·m (c) 15 m to the 
same height, plus about another meter if released 1 m above the ground
55. 1.5 N·m 57. (a) 48 N·m (b) 19 N
59. (a) a = Rα (b) (T1 − T2)R, CCW (c) If m1 ≠ m2, a and α are 
nonzero. Therefore, a nonzero net torque must act on the pulley, 
which implies that T1 ≠ T2.

(d) a =
(m1 − m2)g

M∕2 + m1 + m2
    T1 = m1(g − a)   T2 = m2(g + a)

61. 4.0 m/s2 63. solid sphere: K = 7
10 

mv2; solid cylinder:  
K = 3

4 
mv2; hollow cylinder: K = mv2 65. 1.79 m 67. (a) 3.0 m/s 

(b) 8.4 N (c) 5.6 m/s2 down 69. (a) 5r∕2 (b) 27r∕10 
71. 0.0864 kg·m2/s 73. 1.4 × 107 kg·m2/s 75. 1.60 s
77. 1.5 rev/s 79. 70.3 J 81. 0.125 rad/s 83. (a) 3.0 (b) 1.6  
85. 2.10 × 106 N·m 87. 3.0 kN; about 4.7 times larger
89. (a) 2.6 × 1029 J (b) The length of the day would increase by 
7.3 minutes. (c) 2.6 million years 91. (a) 9.6 m/s (b) 3.1 m/s
(c) 21 m/s 93. 0.44 N·m 95. √3gL  97. T1 = 67 kN;  
T2 = 250 kN; F

→
p = 380 kN at 51° with the horizontal 

99. (a) 6.53 m/s2 down (b) 4.2 N 101. 1.79 m/s 
103. The vertical force exerted by the door on each hinge is 27.4 N 
down. The upper and lower horizontal forces are 14.2 N toward the 
door and 14.2 N away from the door, respectively. 105. 1.84 m/s
107. (a) 0.96 m from the RH edge (b) 0.58 m from the LH edge
111. 110 N 113. (a) 1.35 × 10−5 kg·m2 (b) 524 N 

CHAPTER 6

Multiple-Choice Questions

1.  (c) 3. (b) 5. (c) 7. (c) 9. (b) 11. (f)

Problems

1. 75 J 3. No work is done. 5. 210 kJ 7. (a) 0 (b) 8.8 J
9. 153 J 11. +224 J 13. +53 J 15. 6.09 kJ; 0 J 17. 720 kJ
19. Murphy: 27.2 kJ; Howard: 163 kJ 21. 15 m/s 23. −550 J
25. (a) −50 MJ (b) 600 kN opposite the plane’s direction of 
motion 27. 54.8 kJ 29. E, C, B = D, A 31. A = B = C =  
D = E 33. 11 h 35. (a) 0 (b) −2.9 J 37. (a) 1.88 kJ 
(b) 1.88 kJ (c) 8.00 m 39. (a) 14.3 m/s (b) Yes, the  
cart will reach position 4. 41. 8.42 m/s 43. −52 kJ 
45. (a) √v2 + 2gh (b) The final speed is independent  
of the angle. 47. 2.6 m/s 49. 60.0 km/s 51. 22.4 km/s
53. 11.2 km/s 55. 55 km/s 57. 7410 m/s 59. 1.6 J 61. 5.2 J
63. (a) 4.9 cm (b) 1.4 N/cm (c) 88 mJ 65. (a) 1.9 N/cm 
(b) 0.49 J (c) 2.4 kg 67. zero 69. (a) 1.1 kN (b) 4.2 J 
71. 4h 73. 8.7 cm 75. (a) 0.21 m (b) 0.50 m 77. 13.0 s 
79. 4.08 min 81. 150 W 83. 5.2 W 85. (a) 510 W
(b) No, the body would have to be 100% efficient. 87. (a) 8.0 kW
(b) 6.4 kW 89. (a) −490 J (b) 2.7 GW (c) 300 000 households
91. No 93. 27 N 95. (a) 10 kW (b) 5.8° 97. 43.5 km/s
99. (a) 0.15 N/cm (b) 12 cm 101. 53 kJ 103. 2.3 m
105. 6.1 m 107. 16 m/s 109. 6.0 m/s 111. 1.5 m/s
113. (a) 124 J (b) 10 300 fastballs 115. 5.8 m/s
117. 1.3 cm, 32 J 119. The kinetic energy cannot be negative so, 
it must remain in the x < 3 cm region. 121. (a) U = −550 J,  
K = 450 J (b) E = −100 J, U = −200 J, K = 100 J (c) It moves 
back and forth between x = 1 cm and x = 13.5 cm. The greatest speed 
is between x = 5.5 cm and x = 11 cm. 123. 0.89 m/s 125. (a) k∕2 
(b) 2k 127. (a) k = k1 + k2 (b) 0.16 J 129. (b) Larger during the 
first 2.0 h by a factor of 1.2 131. v ∝ 1∕L 133. (a) 1.7 m/s 
(b) 0.76 m/s2, 1.7 m/s 135. (a) 6.0 m/s (b) 0.40 s 137. 20 m/s 
for each one of the three 139. 2R∕3 141. (a) √gr  (b) 2r  
(c) 5r∕2

CHAPTER 7

Multiple-Choice Questions

1. (d) 3. (c) 5. (b) 7. (f) 9. (d) 11. (d)

Problems

1. 0 5. 3 kg·m/s north 7. (b),(a) = (e), (c), (d), (f) 9. 20 kg·m/s 
in the −x-direction 11. 1.0 × 102 kg·m/s downward
13. (d), (b) = (c), (a), (e) 15. 320 s 17. 6.0 × 103 N opposite 
the car’s direction of motion 19. (a) 750 kg·m/s upward
(b) 990 N·s downward (c) 2500 N downward 21. 0.12 m/s
23. 1.8 m/s 25. 0.010 m/s 27. 100 m/s (224 mi/h). Dash will 
not succeed. 29. 0.10 m/s 31. (8.0 cm, 20 cm) 33. 1.9 cm
35. 4.0 cm in the positive x-direction 37. (0.900 m, −2.15 m)
39. 98.0 m/s downward 41. 5.0 m/s west 45. −0.15 m/s
47. 3.0 m/s east 49. 350 m/s 51. 0.066 m/s 53. The 300 g 
ball moves at 2.50 m/s in the +x-direction, and the 100 g ball  
moves at 2.50 m/s in the −x-direction. 55. 4.8 m/s 57. 0.49 m
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61. 

0

U (mJ)
K (mJ)
E (mJ)

0 250

116

t (ms)500

(d) U, K, and E would gradually be reduced to zero.
63. 4.0 s 65. 1.5 s 67. (c), (a) = (b), (d) = (e) 69. 0.25 m
71. (a) less (b) 5.57 m/s2 73. 1.3 s 75. (a) 2.01 s (b) 11.3%
77. (a) 6.1 mJ (b) 1.1% 79. −9.75% 81. (a) more, because 
now the period is longer (b) 56 N 83. (a) 3.42 s (b) No, the 
greater initial potential energy means the cord would stretch more.
85. 2.16 Hz 87. 0.994 m, assuming g = 9.80 m/s2 89. 13 s
91. (a) 42.2° (b) 48 g (c) 9.1 cm 93. 2.1 m/s; 370 m/s2 
95. (a) 98.0 N/m (b) 0.472 m/s (c) 0.409 m/s (d) 3.33 s 
99. 2.0° 101. (a) 8 × 10−4 (b) 8.0 kN (c) 5 × 10−5 m2 
(d) No 103. (a) 1.64 s (b) 1.53 s (c) 1.94 s 105. 0.63 Hz
107. 0.45% 109. (a) √2gL (b) (π∕2)√gL; larger
111. 0.88 m/s 113. (a) 5.13 × 10−2 N (b) 2.69 s

CHAPTER 11

Multiple-Choice Questions

1. (c) 3. (d) 5. (c) 7. (d) 9. (d) 11. (d)

Problems

1. 52 W/m2 3. 260 m 5. 31 kW 7. (d), (c) = (e), (a), (b)
9. (a) 6.0 m (b) 1.7 s 11. 168 m/s 13. (a) The pulse moves 
faster on the second string. (b) 6.9 ms 15. 250 m/s 17. 400 Hz
19. 33 cm 21. 0.33 Hz 23. (a) 1.05 m (b) 0.126 s
(c) 8.33 m/s (d) −x (e) 1.75 cm/s 25. (a) 0.35 mm 
(b) 6.0 m (c) 11 Hz (d) +x (e) 2.4 cm/s 27. (a) y(x, t) = 
(1.20 mm) sin [(134 rad/s)t + (20.9 rad/m)x] (b) 16.1 cm/s
29. y(x, t) = (2.50 cm) sin [(8.00 rad/m) x − (2.90 rad/s)t]
31. (b) = (e), (a), (c) = (d)
33. (a) 2.6 cm (b) 14 m (c) 20 m/s (d) 1.4 Hz (e) 0.70 s
35. vm = 0.063 m/s; am = 0.79 m/s2

0.25 0.5

0.063

0

0.063

vy (m/s)

t (s)

x = 0

37. 

0.80

0.80

x (cm) 

y (mm) 

10

t=0

t=0.96 s
0

The wave travels in the −x-direction.

115. (a) 6.28 rad/s (b) 0.955 kg·m2/s (c) friction (d) 0.300 N 
117. (b) L = Iω = mr2ω (c) A = 1

2 
r2ω Δt  (d) A/Δt = L/(2m) = 

constant 119. 230 N 121. 23 N 123. 1.3 rev/s 125. 1.5 kN
127. 0.792 m 129. (a) 62 N (b) 4.8 rad/s2 (c) 0.76 N·m  
(d) 35 N 131. (a) 55 rad/s2 (b) 83 N·m (c) 7.3 rad 
(d) 0.52 m/s 133. (a) 52 m/s (b) The stone hits the window.

CHAPTER 9

Multiple-Choice Questions

1. (d) 3. (b) 5. (a) 7. (a) 9. (d)

Problems

1. 49 atm 3. (a) 1.0 × 105 N (b) 2.2 × 104 lb (c) The pressure 
of the air under the desktop pushes upward, counteracting the down-
ward force. 5. (a) 420 N (b) No force is needed. 7. 88.0 kPa  
9. 31 m 11. 0.126 13. (b) = (e), (a) = (c), (d) 15. 35 kPa
17. 25 MPa  19. 10 km 21. 114.0 cmHg 23. (a) 5.6 cm 
(b) 0.37 cm 25. 211 mmHg 27. (a) 2.2 × 105 Pa 
(b) 1700 mmHg (c) 2.2 atm 29. c = d, a = b, e = f 31. 1.5 m 
33. (a) 140 kg/m3 (b) 18% 35. 0.74 g/cm3 37. (a) 0.910
(b) 1.28 cm (c) 0.13 cm 39. 0.17 cm3  41. 1.2 × 10−3 m3 
43. yes 45. (a) 9.8 m/s2 upward (b) 3.3 m/s2 upward 
(c) 68.6 m/s2 upward 47. 50 m/s 49. (a) 39.1 cm/s 
(b) 78.5 cm3/s (c) 78.5 g/s 51. 1.12 × 105 Pa 53. 1.9 × 105 N 
55. 310 kPa 57. 8.6 m 61. (a) 6850 Pa (b) 0.685 N 
63. 12 m/s 65. 17 atm 67. (a) 50 Pa (b) 1100 Pa 
(c) approximately 13 kPa 69. 290 Pa 71. 0.4 Pa·s 
73. 1.5 cm/s 75. (a) 120 m/s (b) too fast to be reasonable 
77. 5 Pa 81. 230 kg 83. (a) 26 m/s (b) 2.6 m/s 
85. (a) 220% (b) 0.68 87. (a) 81.1 g (b) 55.6 g and 485.5 g 
89. For the pine, the scale reading doesn’t change. For the steel, the 
scale reading will increase by 0.538 N. 91. 19 m/s 93. 23.0 m 
95. 110 m 97. 270 Pa 99. (a) 2.2 m/s up (b) 22 kPa/s 
101. (a) 0.600W (b) 0.64W 103. 8.7 kg 105. No 
107. 0.83 g/cm3 109. 0.116 m/s 111. 1.0 m 
113. (a) 1.3 × 10−10 N (b) 2.6 × 10−14 W 115. 12.5 N/m 
117. (a) 41.7 cm/s, 118 kPa (b) 5.98 cm

CHAPTER 10

Multiple-Choice Questions

1. (c) 3. (b) 5. (a) 7. (c) 9. (c) 11. (f) 13. (e)
15. (f) 17. (c) 19. (j)

Problems

1. 0.097 mm 3. (a) 0.0046 cm (b) −4.6 × 10−5 5. 76.9 GPa
7. 0.80 mm 9. (a) 5.1 N (b) 7.7 × 10−2 J 11. 5.0 mm
13. tension: 15 GPa; compression: 9.0 GPa 15. 3.2 mm 
17. human: 3 cm2; horse: 7.1 cm2 19. 630 N 21. 4.0 × 108 Pa
23. (a) 1.3 mm; 84 MPa (b) 570 N 25. decrease by 57 × 10−6 cm3

27. 3.3 × 10−5 29. −6.71 cm3 31. (a) 2.8 mm (b) 20 kPa
33. 7.0 cm/s 35. 0.63 m/s 37. (c), (a) = (b), (d) = (e)
39. 2.5 μm/s 41. (a) y = 0 (b) y = +A (c) y = −A
(d) y = 0 45. (a) 2kx (b) √2k/m 47. 2.5 Hz
49. vm = 0.157 m/s, am = 24.7 m/s2 51. (a) g (b) 0.78 m
53. −0.031 J 55. (a) 0.90 s (b) 0.56 m/s 57. 0.250 Hz  
59. 2.0 mJ
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83. (a) left (b) 7.00 cm (c) 10.0 Hz (d) 0.333 cm
(e) 3.33 cm/s (f) oscillates sinusoidally along the y-axis about  
y = 0 with an amplitude of 7.00 cm (g) transverse
85. (a) 27.7 cm (b) 50 cm (c) 27.7 cm 87. (a) Eq. I; 1.50 cm/s
(b) Eq. II; 2.09 cm (c) Eq. II; 13.5 cm/s (d) Eq. II
89. (a) 

10

10

0

10

y (cm)

x (cm)

t = 0

5

t = 1.0 s

t = 2.0 s

(b) standing wave
91. 2.4 km 93. v ∝ √γ/(λρ) , dispersive 
95. (a) 1.5 m/s (b) 21 cm/s
97. (a) 6.17 × 10−4 m (b) 8.61 J (c) 0.0536 s
99. 
t = 40 ms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 y (mm)

t = 30 ms t = 20 ms t = 10 ms t = 0

101. 1.4 kHz

CHAPTER 12

Multiple-Choice Questions

1. (c) 3. (c) 5. (c) 7. (d) 9. (c) 11. (a)

Problems

1. 364.1 m/s 3. for 10 Hz, 34 m; for 20 kHz, 1.7 cm 5. 6.1 mm
7. (a) 338 m/s (b) 2.8 km 9. 3.5 km/s 13. (e), (d) = (f), (a), 
(b), (c) 15. (a) 28.7 N/m2 (b) 1.58 mN 17. 97.0 dB
19. (a) 0.0510 Pa (b) 0.151 μm 21. 95 dB, not much different 
than with only one machine running 23. 26.0% 25. (a) 125.0%
(b) 3.522 dB 27. (e), (b), (c), (a) = (d) 29. (a) 32.8 cm
(b) 252.4 Hz 31. 396 Hz 33. 33°C 35. 3/4 37. (a) 438.0 Hz
(b) tighten 39. 2 Hz 41. 0.2 Hz 43. −69 Hz
45. (a) 2.0 kHz (b) 670 Hz 47. 346 Hz 51. (a) 670 m
(b) 2.8 s 53. 403 m 55. 83.6 kHz 57. 640 Hz
59. (a) closed at one end (b) 78.0 Hz (c) 1.10 m
61. (a) 5.05 m (b) 16.35 Hz 63. (a) 6.7 × 10−8 m/s
(b) 1 × 10−19 J (c) The ear is about as sensitive as possible.
65. 9.8 m 67. f1 = 3.4 kHz, f3 = 10 kHz, and f5 = 17 kHz;  
3.4 kHz enhances the sensitivity of the ear 69. 2.3 kHz
71. (a) 9.9 m (b) 1.8 ms (c) No 73. 0.0955 s 75. 15 m
77. 29.0 dB 79. 8.4 m/s 81. (a) 1.28 m (b) 141 m/s
(c) 6.71 g/m (d) 1.59 m/s (e) 110.0 Hz (f) 3.120 m

CHAPTER 13

Multiple-Choice Questions

1. (e) 3. (c) 5. (b) 7. (d) 9. (c)

Problems

1. (a) 29°C (b) 302 K 3. (a) −40 (b) 575
5. TC = (TJ − 85.5°J)/(0.750°J/°C) 7. 2.7 mm 9. 8.8 mm
11. 113°C 13. 0.6364 cm 15. 650 K 17. 15.8 cm3

19. (a) 1.44 mL (b) 14% less water is predicted to be  
spilled when the expansion of the glass is included. 

39. 

10 20 30 40

1.5

1

0.5

0

y (cm)

x (cm)

t = 0.25 s

10 20 30 40

1.5

1

0.5

0

y (cm)

x (cm)

t = 0.15 s

41. The amplitude of the superposition is about 1.7A.

1
6 T 1

3 T 1
2 T 2

3 T 5
6 T 7

6 TT

y = y1 + y2

y

A

A

y2 y1

43. 375 nm
45. 

6

8

4

2

0
0 2 4 6 8 10 12 14 16 x (cm)

y (mm)

47. 5.3 s
49. 

10

0

5

y (cm)

x = 3.9 m

x = 4.0 mx = 0

51. 2.28 m, 2.94 m, and 3.59 m 53. (a) 8.0 cm
(b) 2.0 cm (c) 4.0 55. 79 mW/m2 57. (a) 0.25 W/m2

(b) 0.010 W/m2 (c) 0.130 W/m2 59. (d), (a), (b) = (c), (e)
61. f2 = (6/5)f1 63. f1 = 10 Hz, f2 = 20 Hz, f3 = 30 Hz 65. 7.8%
67. (a) 33 Hz (b) 300 N 69. 4.5 × 10−4 kg/m
71. 1.0 N, 0.26 N, and 0.11 N 73. 3.64 cm, 7.07 cm, 10.32 cm
75. (a) Hooke’s law: T = k(x − x0) ≈ kx for x ≫ x0. (b) 4.00 s
77. 12 79. 190 m 81. 930 Hz
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CHAPTER 15

Multiple-Choice Questions

1. (b) 3. (d) 5. (c) 7. (c) 9. (e) 11. (b) 13. (d)

Problems

1. 2.9 J 3. 100 J of heat flows out of the system. 5. 108 kJ
7. (a) 10.8 K (b) 56 kJ 9.  −203 J 11. (a) 98.0 kPa; 
1180 K (b) −200 J (c)  −66 J (d) ΔU = 0 because ΔT = 0  
in a cycle. 13. (a) 8.87 kPa; 1200 K (b) 23 kJ (c) 20.0 kJ
(d) 0 15. 15 kJ 17. −5.00 kJ; out of the gas and into the 
 reservoir 19. (a) −1216 J (b) ΔU = 1216 J; Q = 2431 J
21. (a) −1934 J (b) ΔU = 1216 J; Q = 3149 J
23. (a) D, B; cycle moves clockwise. (b) A, C, E; cycle moves 
counterclockwise. (c) A, C, E; heat pumps and refrigerators work 
the same way. 25. 0.628 27. (a) 3.00 kJ (b) 2.00 kJ
29. (a) 1.2 × 1017 J (b) 1.4 × 1013 kg 31. 0.182
33. $2.4 35. 171 K 37. 25.0 kJ 39. 14 W 41. (a) 7.8 kJ  
(b) 6.8 kJ 43. 31 kg 45. 2.1 pW 47. (a) 0.3436 (b) 275.7 kJ 
49. 4.2% 51. 0.0174 53. 110 kJ 55. (a) 0.300 (b) 2.7 kJ
59. (c), (a), (b), (d) 61. +6.05 kJ/K 63. (a) 3.4 × 10−3 J/K 
(b) −2.8 × 10−3 J/K (c) 6 × 10−4 J/K 65. 0.102 J/(K·s) 
67. (a) 97 W (b) 0.33 W/K 69. (a) 0.72 J 
(b) 8.8 × 10−19 J per molecule  
71. coal: 4.3 × 1013 J; nuclear: 6.0 × 1013 J 73. 4.5 GW
75. 0.12 J/K 77. 3.8 kJ 79. 250 W 81. 350 J/K
83. 87.1 kJ 85. (a) 6.2 mJ (b) 22 mJ (c) 1.2 mK
87. (a) Step A: 0; Step B: −2080 J; Step C: 0; Step D: +2080 J
89. P (atm)

V (m3)

4.00

0.421
0 0.0400 0.380

91. (a) Step 1: 36.5 kJ; Step 2: −36.3 kJ; Step 3: 21.8 kJ
(b) 56.2 J/K (c) Entropy is a state variable, so ΔSgas = 0 for a 
complete cycle. No: not a reversible engine, so ΔSenvironment > 0.
93. high temperature: 2.6 × 105 W; low temperature: 1.9 × 105 W
95. (a) 15.9°C (b) −0.03 J/K (c) The entropy of the universe 
cannot decrease. 97. (a) 39.6% (b) 498 MW (c) 33.0 m3/s 
99. (a) 2350 K (b) er = 0.800 = 1.80e

CHAPTER 16

Multiple-Choice Questions

1. (j) 3. (e) 5. (c) 7. (d) 9. (b)

Problems

1. 9.6 × 105 C 3. (a) added (b) 3.7 × 109 5. 12.0 μC
7. 3Q/8 on spheres A and C; Q/4 on sphere B 9. pairs AB, AD, 
AE, CB, CD, CE, BE, and DE attract; pairs AC and BD repel
11. 30 km 13. 2.268 × 1039 15. (a) 6.0 × 10−5 N toward the 
−3.0 nC charge (b) 6.0 × 10−5 N toward the 2.0 nC charge
17.  kq2/(2d2) to the left 19. 2.8 × 10−12 N toward the Cl− ion
21. 1.6 N at 24° above the postive x-axis 23. 6.21 μC and 1.29 μC
25. 2.5 mN 27. 0.72 N to the east 29. 3.2 × 1012 m/s2 up
31. 1.5 × 108 N/C directed toward the −15 μC charge

21. 26.8°C 23. 520°C 27. l u = (1 × 10−3 kg)/(6.022 × 1023)  
= 1.66 × 10−27 kg 29. 7.31 × 10−26 kg
31. 1.7 × 1027 33. 2.650 × 1025 atoms 35. 8.9985 mol
37. 2.5 × 1019 molecules 39. 1018 atoms 41. 400°C
43. (b) = (d), (a) = (c) = (e) = (f) 45. (a) 2.55 m3 (b) 5.3 h
47. (a) 1.3 kg/m3 (b) 1.2 kg/m3 49. 1.3 × 103 m3

51. 4 × 10−17 Pa 53. 0.38 m3 55. 2.1 mm 57. 1550 K
59. (a) 1.52 × 105 J/m3 (b) 4.559 × 107 J/m3 61. (b), (a) = (c) = 
(d), (e) = (f) 63. 370 m/s 65. 3.00 cm/s 67. He: 1360 m/s; 
N2: 515 m/s; H2: 1920 m/s; O2: 482 m/s 69. 2220 K
73. 0.14°C 75. 1.3 × 10−19 J 77. 1.25 × 106 s 79. 80 s
81. 1.3 × 10−5 s 83. (a) The number of moles decreases by 25%.
(b) −48° C 85. (a) 52 cm (b) 12 m 87. 467 mol
89. 140 atm 91. 165°C 93. HNO3 95. (a) 6.42 × 10−21 J
(b) 0.3% 97. 80 cm3 99. 13.2 inches 101. (a) 50.9 cm3

(b) increases by a factor of 1.675 105. (a) 4.2 nm (b) the gas 
is dilute 107. (a) 44°C (b) −21°C 109. (a) 27.4°C
(b) 4.5 kN 111. (a) 3170 lb (b) −3.18 ft 113. −1.5 × 10−4

115. 1.50 117. (a) 1.6 atm (b) −10% 119. (a) 0.1 μm
(b) 5 × 109 (c) 500 m (d) 1 cm

CHAPTER 14

Multiple-Choice Questions

1. (a) 3. (d) 5. (b) 7. (c) 9. (c) 11. (d)

Problems

1. (a) 34 J (b) Yes; the increase in internal energy increases the 
average kinetic energy of the water molecules, so the temperature  
is slightly increased. 3. 4.90 kJ 5. (a) 250 J (b) all three
7. 5.4 J 9. 6.40 × 10−4 kJ/K 11. 2430 kJ/K 13. 82°C
15. (a) 0.38 kJ/K (b) 32 kJ/K 17. 250 kJ 19. 1.34 kg
21. 0.50 MJ 23. 700 m 25. 28.4°C 27. 80 s 29. 44°C
31. (a) 6.5 J (b) 1.5 W, about 2% of the total
33. B to C, solid to liquid; D to E, liquid to gas 35. 330 J/g
37. 10.4 g 39. 3100 kJ 41. 179 g 43. 24 g 45. 371°C, yes
47. 23.2 W 49. The ice will melt completely; 32°C. 51. 110 W
53. 36 g 55. (a) 2.0 cm (b) 29 m 57. (a) 0.12 K/W 
(b) 2.5 × 10−4 K/W (c) 5.0 × 10−5 K/W 59. (a) 320 W 
(b) 18 kW 61. reduced to 75% of the original 63. −37°C 
65. (a) 300 W (b) 4500 W 67. (a) the skier with the down jacket 
(b) The person with the down jacket can stay outside 6.4 times 
longer. 69. 6.67 W/m2 71. reduced to 0.019 times its original 
value 73. 2.9 × 10−3 m·K 75. 0.60 77. 4.8 × 10−5 m2

79. 170 kcal/h 81. 28 kJ 83. (a) 0.0089 °C/s
(b) 9.4 min 85. (a) 39°C (b) 182 W/m2 87. 1090 K
89. coffeepot: 4.5 W; teapot: 24 W
91. (a) true; in (kcal/d)/kg: mouse, 210; dog, 51; human, 32; horse, 11 
(b) in (kcal/d)/m2: mouse, 1200; dog, 1000; human, 1000; horse, 960 
(c) Rate of heat flow from the body is proportional to surface area. 
93. (a) 0.32 W (b) 800 K/m (c) 0.16 W (d) 0.64 W 
(e) 64°C 95. 320 s 97. (a) 180°C (b) 20.9°C 99. 480 g
101. (a) 9.9 kJ (b) 360 g 103. 0°C 105. 0.010°C 
107. 6.3 kg 109. 35°C 111. 0.32 kg 113. (a) 103.81°C 
(b) 0.565 g/s 115. (a) 1.7 m/s (b) 7.83 g 117. (a) Nitrogen; 
at the same temperature they have the same average KE, so the less 
massive molecule has a higher rms speed. (b) 62°C 
(c) 180 J 119. 3.1 × 10−4 g
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81. (a) 

(b) For r ≤ a, E = 0; for a < r < b, E = 2kλ∕r, for r ≥ b, E = 0.
83. (a) 4.0 × 104 N/C up (b) positive 85. (a) 2 mN
(b) Coulomb’s law is valid for point charges or if the sizes of  
the charge distributions are much smaller than their separation.
(c) smaller 87. −2.41d 89. 4 × 10−13 N at 60° above the 
 negative x-axis 91. 1.3 m 93. 3.20 × 10−14 N upward
95. (a) 2.5 × 107 N/C at 24° below the −x-axis
(b) 1.0 × 104 m/s2 at 24° above the +x-axis 97. y-component, 
+24 μm; x-component, −100 m 99. 1/2 
101. (a) 8.4 × 107 m/s (b) 6.6 ns

103. (a)  E =
kq

(y − d∕2)2 −
kq

(y + d∕2)2; +y-direction

(c) No. The net charge of the dipole is zero; the small electric field 
at a point far away from the dipole is due to the two charges being 
at slightly different distances from that point.
105. −1.45 × 10−5 C 107. (a) 670 N/C (b) 1000 s = 17 min
(c) A smaller charge results in a smaller electric force, which results 
in a smaller terminal speed. Since vt   /E is smaller, the mobility must be 
smaller. 109. 6.8 m/s 111. 150 rad/s2 113. 2.6 × 10−27 N⋅m

115. (a)  √
9ηvt

2(ρoil − ρair)g
 (b)  

4πR3(ρoil − ρair)g

3E

CHAPTER 17

Multiple-Choice Questions

1. (f) 3. (e) 5. (d) 7. (f) 9. (b) 11. (b)

Problems

1. (a) = (d), (b) = (e), (c) 3. (a) −4.36 × 10−18 J (b) The force 
each charge exerts on the other is attractive; the potential energy is 
lower than if the two were separated by a larger distance. 
5. 2.3 × 10−13 J 7. −11.2 μJ 9. −11.2 μJ 
11. 2.8 mJ 13. 1.80 μJ 15. −1.80 μJ 17. 1.92 × 10−17 J
19. 7.6 × 108 N/C straight down; V = 7.6 MV 21. (a) positive 
(b) 10.0 cm 23. 8.0 μC on the smaller sphere and 16 μC on the 
larger sphere 25. (a)  √3R0 (b) 3R0 27. (a) Va = +270 V;  
Vb = −160 V (b) +430 V (c) +6.5 × 10−7 J
29. (a) Va = 1350 V; Vb = −899 V (b) −4.49 μJ
31. (a) 7.35 × 104 V (b) 5.04 × 104 V (c) 1.04 × 10−3 J
33. A, B, E, D, C 35. (a) 1.0 μN to the right (b) +60 V
(c) +0.25 μJ (d) −0.25 μJ 37. (a) upper plate is positive, 
lower plate is negative (b) 1.67 × 10−13 V 39. 1.0 cm

33. A, B, C, D, E 35. 7k∣q∣∕(4d2) to the left 37. 0 < x < 3d

39. 

+ +–

41. 1.00 × 106 N/C up 43. 9.78 × 105 N/C at 14.6° CCW  
from a vertical axis through the left side of the square 
45. 1.61 N in the +x-direction 47. −0.43q 49. 400 N/C 
51. (−0.108 mm, 0) 53. (a) The electric field is directed from 
the top plate to the bottom plate. (b) 1.77 × 10−7 C/m2 
(c) 0.44 mm 55. (a) Fg = 1.64 × 10−26 N; FE = 1.04 × 10−15 N; 
Yes, gravity can be neglected because the electrical force is about  
10 orders of magnitude larger. (b) 1.09 m 57. 0.78 mm 
toward the positive plate 59. 9.1° below the horizontal
61. (a) 

(b) −6 μC; 0
(c) 

Er r

63. 

65. (a) 7 μC (b) −11 μC

67. 

+Q −Q

69. (a) 6.8 × 106 N/C (b) 0 (c) 2.3 × 106 N/C
71. (a) ΦE∥ = 0, ΦE⊥out = Ea2, and ΦE⊥in = −Ea2. (b) 0
73. 1.68 × 104 N·m2/C 77. −3.72 × 10−23 C/m 
79. (a) 0 (c) No



AP-10 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS

71. (a) 36.5 Ω (b) 0.657 A (c) 7.58 V (d) 0.505 A 
(e) 3.83 W 73. (a) 35.0 Ω (b) 0.686 A (c) 16.5 W 
(d) 6.9 V (e) 0.34 A (f) 2.4 W 75. (a) 81 W (b) less
77. (a) 

 B

12 24 

15 

276 V

 A A

(b) 

 B

12 24 

15 

276 V

 A
A

79. (a) 9.00 V

83.0 k

16.0 k
1.40 k

35 

A

(b) 6.27 mA (c) 5.79 mA
81. (a) 120 Ω; in parallel (b) The meter readings should be 
 multiplied by 1.20 to get the correct current values. 83. 5.5 V
85. 8.04 kΩ 87. (a) 632 V (b) 63.2 mC (c) 6.7 Ω 89. 0.80 ms
91. (a) I1 = I2 = 0.30 mA; V1 = V2 = 12 V (b) I1 = I2 = 0.18 mA; 
V1 = 12 V; V2 = 7.3 V 93. (a) 4.6τ (b) 6.9τ (c) 4.6τ 
95. 0.44 A; 5.3 V 97. (a) 8.7 × 10−4 s (b) 1.2 Ω (c) 74 kW
99. (a) 2.4 × 10−4 C; 140 μF; 18 Ω (b) 1.7 ms
101. (a) 50 mA (b) 7.4 mA
103. (a) 6.5 Ω (b) 18 A (c) 0.86 mm (d) 21 A
105. (a) 250 MΩ (b) 640 kΩ (c) 0.50 mm
107. (a) 1.9 × 105 W (b) copper: 1.2 cm; aluminum: 1.5 cm
(c) copper: 1.0 kg/m; aluminum: 0.48 kg/m
109. 6.5 kJ 111. (a) 2.00 A (b) 1.00 A 
113. 9.3 A 115. ℰ2∕(2R) 117. (a) 16% (b) smaller 
119. (a) 350 Ω (b) no 121. (a) 9.6 Ω
(b) 13 A (c) 1.3 cents (d) 6.0 kW (e) 25 A 
123. (a) 175 μJ (b) Q2f = 16.0 μC; Q3f = 24.0 μC; Utotal = 160 μJ 
(c) The “missing” or “dissipated” energy becomes internal energy 
in the connecting wires.
125. (a) 

6.0 V
− + −+

1.5 V

(b) The 1.5 V battery is not meant to be recharged.
127. 7.22 V 129. (a) 30 μA (b)  3.0 V, 0.86 V, 0.86 V
131. (a) 8.00 V (b) Since no current passes through  
the source, its internal resistance is irrelevant. 
133. (a) The positive ions move down and the negative ions  

41.  Cylinders 

43. (a) 3.6 kW (b) 5.4 J 45. 1.6 × 10−19 C = e 47. 150 V 
49. (c), (b), (e), (d), (a) = (f) 51. 4.6 × 107 m/s 53. 2.4 × 10−19 J 
55. 4.85 × 10−14 m 57. 2.563 × 10−17 J 59. (a) 50 mV 
(b) the +0.75 μC plate 61. (a) 3 kV (b) 6 mC 
63. (a) 24 kV/m, 0.76 nC (b) E halved, Q halved 
65. 1500 km 67. 4.51 × 106 m/s 69. 300 m 71. 83 pF 
73. (a) 3.7 nF (b) 21 pF 75. 5.0 77. (a) 7.1 μF (b) 1.1 × 104 V 
79. The energy increases by 50%. 81. (a) 0.18 μF (b) 8.9 × 108 J
83. (a) 556 pC, 2.00 kV/m, 5.56 nJ (b) 172 nC, 2.00 kV/m, 
20.0 V, 1.72 μJ 85. (a) 630 V (b) 0.063 C 87. 0.27 mJ
89. (a) 0.14 C (b) 0.30 MW 91. 4 × 10−20 J 93. (a) upward
(b)  vymd/(e ΔV) (c) decreases 95. (a) 1.25 μm (b) 1600 m2

97. 3.204 × 10−17 J 99. 9.0 mV 101. 3.0 ns
103. (a) 4.9 × 10−11 C (b) 3.1 × 108 ions 105. 1.44 × 10−20 J
107. 5 × 10−14 F 109. (a) 7.0 × 106 m/s upward (b) 7.0 mm
111. (a) The electric force is 2500 times larger than the gravita-
tional force. (b) vx = 35.0 m/s; vy = 7.00 m/s 113. (a) 83 pF
(b) 3.8 × 10−3 m2 (c) 1.2 kV 115. (a) 2.7 kV (b) 6.8 μJ
117. (a) 6.24 N at 16.1° below the +x-axis (b) −2.40 J
119. 3.53 pm 121. (a) 10.0 GJ (b) 390 kg (c) 0.69 month
123. 3.44 mK 125. (a) 220 V (b) 0.60 m/s (c) 1.2 nN
(d) It is not realistic to ignore drag since FE ≪ FD.
The potential difference should be larger. 127. 0.011 N 129. 0.57 s

CHAPTER 18

Multiple-Choice Questions

1. (a) 3. (f) 5. (c) 7. (b) 9. (b)

Problems

1. 4.3 × 104 C 3. (a) from the anode to the filament
(b) 0.96 μA 5. 2.0 × 1015 electrons/s 7. 22.1 mA
9. 810 J 11. (a) 264 C (b) 3.17 kJ 13. (b), (d), (a) = (e), (f), (c)
15. 5.86 × 10−5 m/s 17. 8.1 min 19. 12 mA 21. 50 h
23. 1.3 A 25. 0.794 27. (a) 50 V (b) to avoid becoming 
part of the circuit 29. 2 × 1019 ions/cm3 31. 2.5 mm
33. 1750°C 35. 4.0 V; 4.0 A 37. (a) 1.1 (b) 0.48
(c) aluminum 39. R, ρ, E, vD, and P change by factors of 1/78, 
1/78, 1, 78, and 78, respectively. 41. (a) 7.0 V (b) 18 Ω 
43. (a) 23.0 μF (b) 368 μC (c) 48 μC 45. (a) 5.0 Ω 
(b) 2.0 A 47. (a) 1.5 μF (b) 37 μC 49. (a) 8.0 μF (b) 17 V 
(c) 1.0 × 10−4 C 51. 2.0 A through 1.0 Ω and 3.0 Ω; 1.3 A 
through 12.0 Ω; 0.67 A through 8.0 Ω and 16.0 Ω 53. (a) R/8 
(b) 0 (c) 16 A 55. (a) 2.00 Ω (b) 3.00 A (c) 0.375 A 
57. R1 = 45.6 Ω; R2 = 7.1 kΩ 59. 75 V; 8.1 Ω 61. alternator: 
22.1 A, up; battery: 7.9 A, down; R: 14.3 A, down; terminal voltage 
is 12.1 V; charging 63. 20 W 65. 360 Ω 67. 1.13 W 
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81. 2.2 × 104 turns 83. 80 μT to the right 85.  96 μT to the right 
87. (a) 4.9 cm (b) opposite (c) Yes 89. (a) 5I out of the page 
(b) 2I into the page 91. n depends upon r; B = μ0NI/(2πr) ; the 
field is not uniform since B ∝ r−1. 93. 21 cm 95. (a) 180 km 
(b) 2.4 × 106 m 97. (a) graph (I) (b) graph (III) 99. 3.4 cm 
101. South 103. (a) 1.7 × 10−8 N (b) up 105. 20.1 cm/s 

107. tan−1 
μ0NI

2rBH
 109. (a) 3.1 × 10−5 T along the +y-axis 

(b) 9.0 × 10−17 N along the −x-axis 111. (a) 0.166 mT in the 
+x-direction (b) out of the page (c) 8.84 A 113. 6.4 × 10−14 N 
at 86° below west 115. 8.94 × 10−5 T at 26.6° south of east 
117. (a) 8.6 × 10−15 N at 68° below west (b) No, since F

→
E and 

F
→

B are perpendicular 119. 4.9° 121. (a) 1.1 mm/s (b) 17 μV 
(c) left side 123. 74 A 125. (a) vB north 
(b) 

B
EIon trajectory

  

127. eBD/(2v)

CHAPTER 20

Multiple-Choice Questions

1. (c) 3. (c) 5. (d) 7. (b) 9. (b)

Problems

1. (a) top (b) 0.31 V 3. (a) 33 μA (b) 0.20 μW (c) 1.3 μN to 
the left
5. 

1 2 3 4
–0.2

–0.2

–1

–0.4
–0.6

Fx

 (μN)

t (s)

7. (a)  vBL/R toward the upper rail (b) left (c) vB2L2/R
9. (a) vB2L2/R  (b) v2B2L2/R (c) v2B2L2/R (d) Energy is 
conserved since the rate at which the external force does work is 
equal to the power dissipated in the resistor. 11. 18.0 V
13. 390 rad/s 15. 5.2 × 10−5 Wb 17. (a) 0.090 Wb (b) 0.16 Wb  
(c) −z 19. to the right 21. (a) CCW (b) 3.5 × 10−3 Wb/s
23. (a) CCW (b) 28.8 mV 25. (a) 70 mA (b) CCW
27. (a) to the right (b) to the left
(c) 

t opened

t closed

I

t

29. (a) to the right (b) I ∝ N (c) I ∝ v (d) yes
31. (a) CW (b) for a brief moment (c) to the right
(d) to the left 33. (a) 0.750 A (b) 3.00 A; Tim should shut the 
trimmer off because the wires in the motor were not meant to sus-
tain this much current. The wires will burn up if this current flows 
through them for very long. 35. 110 V 37. (a) 1/20

move up. (b) down (c) 0.014 m/s (d) 1.3 kA 135. 14 Ω 
137. (a) 29 Ω (b) 30 Ω (c) 82°C (d) No, for a 62°C change 
in temperature the fractional length change is less than 0.1%.
139. 51 s

CHAPTER 19

Multiple-Choice Questions

1. (g) 3. (e) 5. (c) 7. (c) 9. (b) 11. (d)

Problems

1. (a) F (b) A; highest density of field lines at point A and lowest 
density at point F
3. 

NN SS

NN SS

5. 

S N N S

7. 1.6 × 10−12 N east 9. 7.4 × 10−12 N east 11. a, b = d, c, e
13. 4.8 × 10−14 N into the page 15. 7.2 × 10−21 N north
17. 1.8 × 10−17 N out of the plane of the paper in the  
side view (or to the right in the end on view) 
19. (a) 3.1 × 107 m/s (b) 4.0 × 107 m/s (c) 38° 21. Two 
possibilities: 21° E of N and 21° E of S 23. (c), (a) = (e), (d),  
(b), (f) 25. 8.0 × 10−13 N 27. 0.21 m 29. 2.6 × 10−25 kg
31. 13.0 u 33. 14 u 35. 2πm∕(qB)
37. 

V

39. 8.4 × 1028 m−3 41. (a) upward (b) 0.20 mm/s
43. (a) 0.34 m/s (b) 6.7 × 10−6 m3/s (c) top
45. (a) 2.2 N (b) Only the maximum possible force can be 
calculated because the directions of   B

→
 and   L

→
 are unknown.

47. 0.072 N north 49. 0.33 A to the left 51. (a) F
→

top = F
→

bottom = 0; 
F
→

left = 0.50 N out of the page; F
→

right = 0.50 N into the page (b) 0
53. (a) 18° below the horizontal with the horizontal component 
due south (b) 42 A 55. (e), (b) = (f), (a) = (d), (c) 
57. 0.0013 N·m 59. 9.3 × 10−24 N·m 63. For a distance of 1 μm, 
B = 0.6 μT, which is about 1% of Earth’s. For a distance of 1 mm, 
B = 0.6 nT (0.001%). 65. 1.73 × 10−7 T 67. 9.5 × 10−8 N out 
of the page  69. 1.6 × 10−5 T out of the page 71. 8.0 × 10−5 T 
down 73. 1.5 × 10−17 N in the −y-direction 75. at C, 2.0 × 10−5 T 
into the page; at D, 5.9 × 10−5 T out of the page 77. 5.4 mT 
79. (a) B

→
1 = μ0I1/(2πd), ⊥ to the plane of the wires 

(b) μ0I1I2L/(2πd) toward I1 (c)  B
→

2 = μ0I2/(2πd), ⊥ to the plane 
of the wires and opposite to B

→
1 (d) μ0I1I2L/(2πd) toward I2 

(e) attract; repel (f) yes, because the forces are equal and opposite
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31. 

i(t)

i not changing
emf = 0

i = 0
increasing
emf at max

i = 0
decreasing
emf at min

i not changing
emf = 0

i not changing
emf = 0

i increasing

emf

i increasing

emf

i decreasing

emf

i decreasing

emf

vL(t)

T
T

0
1
4 T

1
2 T 3

4 T

33. 71.2 mH 35. 2 kΩ 37. (a) ϕ = −40°, VL = 3.4 V, VC = 9.2 V, 
VR = 6.9 V. (b) 

VR
VL

VC

VL – VC
40˚

m

39. (a) 0.71 (b) 44° 41. (a) 65° (b) R = 25 Ω; L = 0.29 H; 
C = 4.9 × 10−5 F 43. Z = 20.3 Ω, cos ϕ = 0.617, ϕ = 51.9° 
45. (a) VL = 919 V, VR = 771 V (b) no, because the voltages are 
not in phase
(c) VL

VR

m

47. (a) 32 Hz (b) 1/√2 (c) ℰ leads I by π/4 rad = 45° 
(d) 210 Ω
49. (a) 15.7 Ω (b) 18.6 Ω (c) 53.7 mA (d) 57.5°
51. decreases by a factor of 1/√2 53. ω0 = 22.4 rad/s, 
f0 = 3.56 Hz 55. (a) 210 μF (b) 210 pF
57. (a) 180° (b) 2.4 V (c) Irms decreases.
59. (a) 745 rad/s (b) 790 Ω (c) VR = ℰm = 440 V; VC = VL = 
125 V 61. (a) 0°
(b) VL

VR = 

VC

VL VC = 0

7.3 V

7.3 V

m

 (c) 98.7 Hz

63. (a) 8.1 Ω (b) 8.1 Ω (c) 7 × 10−4 H (d)  fco =
1

2π√LC
65. (a) 750 rad/s
(b) VL

VR

VC

  (c) Vab = 440 V; Vbc = 1.1 kV; Vcd = 1.1 kV; 
Vbd = 0; Vad = 440 V (d) 750 rad/s (e) 3.5 A
67. (a) 0.51 Ω (b) 2.2 MW (c) 150 000 (d) 14 A 
(e) 98 W 69. (a) 27.3 Ω (b) 8.74 V (c) 320 mA
71. 120 times per second 73. (a) 5.9 kW 
(b) cheaper and less dense 75. (a) 4.53 kΩ 
(b) 24 mA 77. 1.0 mA 79. (a) 69.8 Ω
(b) 185 mH 81. (a) 20 A (b) 26 A

(b) 1000 39. 2.00 41. 28 V; 0.53 A 43. (a) CW (b) CCW
(c) 

t

v

vt

45. (a) (μ0N1N2πr2Im/𝓁) sin ωt  (b) (μ0N1N2πr2ωIm/𝓁) cos ωt
47. 1.8 × 10−7 Wb 49. increased to 2.0 times its initial value
51. (a) B = μ0nI (b) Φ = Bπr2 (c) NΦ = NBπr2

(d) L = μ0n
2πr2𝓁 53. Leq = L1 + L2 55. (a) 0 (b) 6.0 V

(c) 0.60 A 57. (a) 0 (b) 12 V 59. (a) 1.7 mA, 0, 45 V, 0,  
75 mW, 45 V (b) 1.7 mA, 15 mA, 45 V, 45 V, 0.75 W, 0  61. 22.0 Ω; 
0.160 H 63. (a) 0.27 W (b) 0.27 W (c) 0.55 W 65. 69 ms
67. (a) 180 mA (b) 2.5 mJ (c) 1.1 W (d) 0 69. (a) 91 H  
(b) 19 V 71. (a) Lx (b) BLx (c) BLv (d) BLv (e)  BLv/R
(f) Because the magnetic flux through the loop is increasing, the 
induced current flows counterclockwise to create its own magnetic 
flux in the opposite direction. 73. The current in loop B flows 
clockwise; the current in loop C flows counterclockwise.
75. (a) current is CCW, forces are repulsive (b) current and forces 
are zero (c) current is CW, forces are attractive 77. CCW as viewed 
from the left 79. 2500 rad/s 81. 68 nWb 83. (a) 0.64 GJ/m3  
(b) 1.2 × 1010 V/m 85. (a) 120 (b) 0.48 A in the primary and 
4.1 mA in the secondary 87. 0.035 mT 89. 85 

91. (a) 0.31 V (b) eastern wingtip 93.  
μ0N1N2πr2

1

ℓ2
 
ΔI2

Δt
 

95. UE = 10−6UB  97. (a) 1300 rev/min (b) 0.044 N·m,
0.087 N·m (c) 1.4 m/s 99. (a) no magnetic force; ℰ = 0; 
I = 0 (b) ℰnet = 32 nV; Iloop = 400 pA clockwise; 
F
→

= 2.9 × 10−17 N to the left (c) 1.3 × 10−17 W

CHAPTER 21

Multiple-Choice Questions

1. (i) 3. (d) 5. (a) 7. (c) 9. (c)

Problems

1. 120 times per second 3. 18 A 5. 6000 W; the heating ele-
ment of the hair dryer will burn out because it is not designed to 
convert this amount of power. 7. (a) 35 A (b) 3.2 kW
9. −5.7 V and 5.7 V 13. 27 Hz 15. (a) 12.7 kΩ (b) 17 mA
19. (a) 2.0 μF, 6.0 V; 3.0 μF, 4.0 V; 6.0 μF, 2.0 V (b) 0.48 A
21. 

iC(t) iR(t)
I

–I

t

23. 150 Hz 25. (a) 430 Ω (b) 3.1 cm
27. (a) 

L (H) V (V)
0.10 0.83
0.50 4.2

 (b) 11 mA

29. (a) 180° (b) 4.0 V
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Problems

1. 

New
wavefront

Incident
wavefront

Reflecting
wall

New wavefront

Wavelet

3. (a) 55° (b) 55° (c) 35° above the surface of the pond to the 
east 5. 40.0° 7. 100° 9. 63.1° 11. 17.46° 13. 23.3° 
15. 10° 17. 16.5° 19. 44.1° ≤ θ ≤ 45.9° 21. 34.4° 
23. (a) 1.556 (b) No; for 0 ≤ θi ≤ θc, 0 ≤ θt ≤ 90°  25. The 
minimum index of refraction is 1.41. 27. (a) 0.82 (b) 37° 
29. No 31. 1.41 33. (a) 36.88° (b) perpendicular to the 
plane of incidence (c) 53.12° 35. 4.8 mm 37. 11 m/s 
39. 0.82 m 41. 2.25 m 43. 20°
47. 6.67 cm in front of the mirror

Object
C

Image
F

49. 1.0 cm
51. 18.8 cm in front of the mirror

Object
Image C

F
18.8 cm

83. (a) 0.95 (b) 470 Ω (c) 4.2 A (d) 4.0 kW
85. (a) The power is cut in half. (b) The power is 4/5 of its original 
value. 87. 0.67Ii 89. (a) 48 A (b) 56 A (c) The power dissi-
pated in transmission is greater. 91. (a) a capacitor (b) 0.396 A
(c) 37 μF 93. (a) 4.0 A; VR,rms = 80 V; VL,rms = 140 V; VC,rms = 
80 V (b) The current lags the voltage.
(c) VL

VR

VC

VL VC 37°

m

 (d) 320 W

95. (a) 13 Ω (b) 18 A (c) −27° (d) The current leads the voltage.
(e) VR rms = 210 V; VL rms = 4.3 kV; VC rms = 4.4 kV
97. (a) 17 A (rms) (b) 3.3 kW; 0.42% (c) 25 99. 190 kA; 
930 MW

CHAPTER 22

Multiple-Choice Questions

1. (f) 3. (b) 5. (d) 7. (b) 9. (c)

Problems

1. east-west 3. in the vertical plane defined by the vertical elec-
tric dipole antenna and the direction of wave propagation 5.  with 
its axis vertical 7. 2.5 GHz 9. 1.67 ns 11. (a) 1.5 × 1018 Hz   
(b) x-rays 13. (a) about one octave (b) approximately 8 octaves 
15. 85 ms  17. 1.62 19. (a) 9.462 min (b) 11.05 min
21. (a) 455 nm (b) 4.34 × 1014 Hz 23. (a) 5.2 × 1014 Hz
(b) 2.00 × 108 m/s; 390 nm; 5.2 × 1014 Hz 25. Em =  
1.20 × 10−2 V/m; 120 GHz 27. (a) 8.3 × 10−13 T; 1.47 MHz
(b) 5.0 × 10−13 T in the −z-direction 29. +y direction; 
Bx = (Em/c) sin(ky − ωt + π/6) , By = Bz = 0 31. 260 V/m
33. 2.4 s 35. 9 × 1026 W 37. (a) 7.3 × 10−22 W
(b) 1.3 × 10−12 W (c) Erms = 1.9 × 10−12 V/m, Brms = 6.5 × 10−21 T
39. (b), (a) = (e), (d), (c) 41. 0.25 43. 65.7 W/m2

45. (a) I1 = I0 cos2 90.0° = 0 (b) 0.250I0 (c) 0.531I0
47. (a) 0.125I0 (b) 0 49. yes; up-down 51. 45.0 m/s
53. 1440 nm 55. (a) f2 (b) 1.2 kHz 57. 5 × 107 m/s
59. (a) f1 (b) −10.3 kHz 61. (a) 530 m (b) 390 pF (c) 380 μV
63. (a) 5.0 × 1012 Hz (b) 3.3 × 106 Hz (c) 23.5 Hz 
(d) 2.00 × 10−3 Hz 65. 2.56 s 67. 1.58 69. (a) 2.2 mJ 
(b) 4.3 × 1014 W/m2 71. 100 73. (a) 0.233I0 (b) 0.375I0 
75. 0.927 W 77. 36 kHz 79. 2.2 × 104 rad/s, 4.4 × 104 rad/s, 
6.6 × 104 rad/s 81. (a) 0.92 kW (b) 1.0 × 105 W/m2 
(c) 6.3 kV/m; 2.1 × 10−5 T 85. Ey = Em cos (kx − ωt), 
Ex = Ez = 0, Bz =  (Em/c)  cos (kx − ωt) , 
Bx = By = 0, where ω = 1/√LC  and k = 1/(c√LC)

CHAPTER 23

Multiple-Choice Questions

1. (b) 3. (d) 5. (d) 7. (b) 9. (a)



AP-14 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS

73. (a)

p (cm) q (cm) m
Real or 
virtual Orientation

Relative 
size

5.00 −13.3 2.67 virtual upright enlarged
14.0 18.7 −1.33 real inverted enlarged
16.0 16.0 −1.00 real inverted same
20.0 13.3 −0.667 real inverted diminished

(b) 10.7 cm; −2.67 cm 75. (a) virtual (b) 2.4 cm, concave
(c) smaller (d) p < f 77. (a) 50.1° (b) 47.8° (c) path A 
(d) 39.9° 79. (a) 9.1 cm (b) convex (c) f = −7.1 cm; 
R = 14 cm 81. 32 cm in front of the mirror 83. (a) concave 
(b) inside the focal length (c) 144 cm 85. (a) 1.42  
(b) 2.11 × 108 m/s (c) 44.6° 87. Pin-mirror distance is 10.0 cm; 
pin-image distance is 40.0 cm.

ImageObjectFC

40.0 cm10.0cm

89. (a) virtual (b) 180 cm behind the lens (c) 4.6 cm; 
converging 91. α = 34° ; β = 56°  93. nliquid < 1.3 95. 19.2°
99. (a) 37.38° (b) horizontal and perpendicular to the plane 
of incidence (c) 37.38° from the vertical, in the plane of 
incidence and perpendicular to the reflected ray (d) 52.62° 
101. 8.0 km/h

CHAPTER 24

Multiple-Choice Questions

1. (d) 3. (b)  5. (b)  7. (d) 9. (c)

Problems

1. (a) 2.5 cm past the 4.0 cm lens; real (b) −0.27 3. (a) 11.8 cm
(b) 0.0793 5.  q1 = 12.0 cm; q2 = −4.0 cm; h1′ = −4.00 mm; 
h2 ′ = 4.0 mm 7. (a) 4.05 cm (b) converging (c) 1.31 (d) 15.8 cm
9. 15.6 cm to the left of the diverging lens 11. minimum: 20.00 cm; 
maximum: 22.2 cm 13. (a) 50.8 mm (b) −0.0169 (c) 20.3 mm
15. 360 m 17. 280 mm 19. (a) 12.0 cm right of the converg-
ing lens (b) 3.3 cm right of the diverging lens 23. 2.2 mm
25. (a) farsighted (b) 70 cm to infinity 27. −0.50 D
29. (a) 30 cm (b) 3.3 D 31. (a) 56 D (b) 61 D (c) 4.0 D 
33. (b) = (c), (a) = (e), (d) 35. (a) 3.1 cm (b) 3.1 cm  
37. (a) 4.2 cm (b) 6.0 39. (a) 4.2 mm (b) 3.3 cm
41. (c), (d), (a), (b) = (e) 43. (a) 31.5 cm (b) −50
45. (a) −10.7 (b) −53.3 (c) 1.64 cm 47. (a) 5.9 mm
(b) 340 49. (a) 19.0 cm (b) −318 (c) 5.16 mm
51. (a) 18 cm (b) −150 53. 4.52 cm 55. 19.8 m
57. objective: 43.5 cm, eyepiece: 1.45 cm 59. (a) 2.56 m
(b) 2.17 cm (c) −15 61. 8.5 ft 63. (a) 1.6 m
(b) −0.63 D (c) −0.63 D and 3.3 D 65. 3.8 m
67. (a) 10.4 cm (b) −24 (c) 86 cm 69. (a) the lens with 

53. −210 cm 55. (a) 3.9 m (b) The height of the image is the 
same as the diameter of the mirror, but the image appears to be 
smaller since it is 1.4 m behind the mirror. So, the image of the 
woman does not fill the mirror. 59. (a) 11.7 cm

Object

Image

Converging
lens

f f

11.7 cm

(b) real (c) −0.429
61.

Object

Converging lens

Image
2F

2F

F

F

ffff

63. 

Object

Converging lens

2F

2F

F

F

ffff

65. 

The image is located 6.00 cm from the lens on the same side as the 
object and has a height of 1.50 cm.
67. virtual; upright; 13.3 cm in front of the lens; 2.00 cm tall
69. (a) 3.24 m (b) closer 71. (a) converging
(b) 2.00 m from the lens on the same side of the lens as the object
(c) 5 times the height of the object (d) upright

Object

Virtual
image

12.0 cm 12.0 cm
6.00 cm

Diverging
lens

F F

3.
00

 c
m
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23. 6.0 km 25. 3.00 × 108 m/s 27. 0.946c 29. c/5  
31. 5c/13 33. 0.66c 35. 0.83c 37. (a) 0.917c

(b) once every 2.5 s 39. increased by 1.00 × 10−14 kg
41. 40 MeV 43. 1.4 × 104 kg 45. (a) 530 MeV (b) 106 MeV
47. 0.64 MeV 49. 1.45 MeV/c 51. (a) 0.999 80c (b) 0.010 ns
53. 1.546 × 107 m/s 55. (a) 750 MeV (b) 0.349 08c (c) 7.03 m
57. 1 MeV/c = 5.344 × 10−22 kg·m/s 59. (a) The electrons are 
relativistic. (b) 0.63c 65. (a) 4500 m (b) 15 μs (c) 15 μs
(d) 500 000 67. (a) 1.87 × 108 m/s = 0.625c (b) 64.0 ns
69. 19.2 min 71. 33.9 MeV 73. 0.66c 75. 1.326 GeV
77. (a) 7.2 m (b) 10 m (c) 21 m 79. 6.3 km 81. 3.91 m
83. (a) 4.09 × 1016 J (b) 1.13 × 1010 kW·h 85. (a) 1.2 × 1013 m
(b) 5.0 × 104 s 87. (a) 409 MeV/c (b) 147 MeV 
(c) 495 MeV/c2 89. (a) 32 J (b) 3.3 m (c) (1 − 1.1 × 10−23)c  
= 0.999 999 999 999 999 999 999 989c 91. (a) 2.98 × 105 m/s 
(b) 1.63 × 107 m/s 93. (a) 1.8 × 107 N (b) 8200 m/s2; this is 
much larger than any human could survive. 95. (a) 3.8 × 1014 kg
(b) 1.9 × 10−14 % 97. (a) 2.965 × 109 m/s
(b) 0.999 799c = 2.997 40 × 108 m/s

CHAPTER 27

Multiple-Choice Questions

1. (c) 3. (d) 5. (a) 7. (e) 9. (e)

Problems

1. (a) 400 nm (b) 7.5 × 1014 Hz 3. (a) 0.84 eV (b) 574 nm
5. 477 nm 7. (d), (a) = (b), (e), (c) 9. 510 nm
11. (a) ultraviolet (b) infrared: 9.9 × 10−20 J; ultraviolet: 
2.8 × 10−18 J (c) infrared: 2.0 × 1021 photons/s; ultraviolet: 
7.0 × 1019 photons/s 13. (a) No; violet light (b) 2.56 eV
15. 4.96 kV 17. 31.0 pm 19. 62.0 pm 23. (a) 2.00 pm
(b) 152 pm 25. (c), (e), (f), (a), (d), (b) 27. 4.45 × 106 m/s at 
62.6° south of east 29. (a) 2.50 × 10−12 m (b) 55.6 keV
31. 2.4 × 104 eV 33. −0.850 eV 35. n = 3 37. 3.40 eV
39. 1.09 μm 41. (a) one (b) four 43. (a) 1874 nm
(b) 820.0 nm (c) infrared 47. 0.476 nm 49. 17.6 pm
51. 2.11 eV 53. (a) E1 = −122 eV; E2 = −30.6 eV; E3 = −13.6 eV; 
E4 = −7.65 eV (b) 4 → 1: 115 eV; 4 → 2: 23.0 eV; 
4 → 3: 6.0 eV; 3 → 1: 109 eV; 3 → 2: 17.0 eV; 2 → 1: 92 eV
(c) None is in the visible region. 55. 2.43 pm 57. 1.46 MeV 
59. 1.17 × 10−14 m 61. (a) 6.66 × 10−34 J·s (b) 1.82 eV
63. (a) λ = 97.3 nm (b) 102.6 nm; 102.6 nm, 121.5 nm, and 
656.3 nm (c) λ ≤ 91.2 nm 65. 270 nm 67. 6.2 pm
69. 121.5 nm, 102.6 nm, 97.23 nm 71. (a) 3.69 × 10−7 eV
(b) 8.45 × 1029 photons/s 73. (a) 2.426 pm (b) 7.278 pm
(c) no change 75. 27.6 kV 77. (a) 0.83 V (b) No electrons are 
emitted. 79. (a) 1.8 eV (b) 1.9 × 1017 81. (a) −54.4 eV
(b) −122 eV (c) −13.6 eV 83. (a) 1.7 V (b) 0
85. scattered: 176 pm, incident: 171 pm 87. 0.015 41
89. 2.2 × 1014 photons/s 91. (a) conservation of momentum
(b) 511 keV 93. (a) 1.9 eV; 9.9 × 10−28 kg·m/s
(b) 3 × 1015 photons/s (c) 3 × 10−12 N 95. 2.19 × 106 m/s

CHAPTER 28

Multiple-Choice Questions

1. (c) 3. (d) 5. (d) 7. (a) 9. (a)

the 30.0 cm focal length (b) −10 (c) 30.0 cm 71. (a) real 
(b) converging (c) 51 mm (d) 17 mm (e) 2.6 mm
73. 3.8 m and 2.6 m for 24 mm and 36 mm, respectively
75. (a) 17 cm (b) −14 (c) 7.4 cm 77. −0.0068
79. (a) real and inverted (b) 22.5 cm to the left of the lens (c) −3.0 
81. (a) 5.3 cm to the left of the converging lens (b) 3.4 cm  
(c) upright 83. Image 1: 6.33 cm behind the lens, inverted and 
virtual. Image 2: 7.69 cm behind the lens, upright and virtual.  
87. (a) 0.090 35 rad (b) 0.018 mm (c) 33.0 W/m2

CHAPTER 25

Multiple-Choice Questions

1. (a) 3. (a) 5. (e) 7. (d) 9. (e)

Problems

1. 1.48E0 3. 2.34I0 5. 10.9I0 7. 5I0 9. 147 m
11. 86.7 μm 13. 100 nm 15. 480 nm 17. 497 nm
19.  (a) 546 nm and 447 nm (b) 614 nm, 491 nm, and 410 nm 
21. (a) touching; zero (b) 140 nm (c) 280 nm 23. 667 
27. m = 3; d = 2.7 × 10−5 m 29. 1.46 mm 31. 1.64 mm 
33. 711 nm 35. 8.0 × 10−5 m 37. 31.1° 39.  between 3850 
and 5130 slits per centimeter.
41. (a) 5 (b)

Second-order
maximum

4.0 m
1.3 m

Central
maximum

First-order
maximum

43. (a) 2; 449.2 nm and 651 nm (b) 18 lines
45. (a) 3 (b) θb1 − θa1 = 0.04°, θb2 − θa2 = 0.11°, θb3 − θa3  
= 0.91°  (c) third-order 47. (a) 0.050 mm (b) 1.0 cm
49. 6.3 mm 51. (a) wider (b) 3.3 cm 53. 170 μm
55. 0.012° 57. 7.6 mm 59. 0.13 μm 61. (a) maximum
(b) λ/2, 3λ/2, 5λ/2, ... 63. 12 m 65. 400 nm 67. shorter than 
32.4 cm 69. five 71. (m − 1/2)(1.6 μm) 73. 3.4 cm  
75. t = 79.7 nm, t1 = 239 nm, t2 = 398 nm 77. (a) 0.50 mW/m2 
(b) 480 nm 79.  sin  θ = 4λ/d = 1.05. This is impossible because 
sin θ ≤ 1. 81. (a) 1.11 μm (b) 429 nm (c) 429 nm, 500.0 nm, 
600.0 nm 83. 1.6 85. 48 m 87. 20 cm 89. 1530 kHz 
91. (a) 0.10 mm (b) 0.51 mm 93. 25.6 km, 3 km
95. (a) 0.400 cm and 36.0 cm (b) 0.010 mrad 
97. (a) sin Δθ = n sin β

CHAPTER 26

Multiple-Choice Questions

1. (e) 3. (d) 5. (a) 7. (b) 9. (b)

Problems

1. 2.2 μs 3. (a) 0.87c (b) c 5. 8.9 h 7. 0.001c
9. (a) 30 years old (b) 3420 11. 7.7 ns 13. (a) 2 m
(b) 0.50 m 15. (a) 79 m (b) 610 ns (c) 530 ns 17. 13 m
19. (a) 1.0 m (b) 0.92 m 21. (a) 7.5 μs (b) 13 μs
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CHAPTER 29

Multiple-Choice Questions

1. (c) 3. (a) 5. (d) 7. (d) 9. (d)

Problems

1. 4.5 × 1028 3. (d), (a) = (e), (b) = (c) = (f) 5. 40
19K 7. 54

9. 5.7 fm; 7.7 × 10−43 m3 11. 0.112 355 3 u 13. 2.225 MeV
15. (a) 127.619 MeV (b) 7.976 19 MeV/nucleon
17. (a) 1.46 × 10−8 u (b) no 19. (a) 238.000 32 u
(b) 1.801 69 GeV 21. Positron with charge +e
23. 22

11 
Na + 0

−1e → 22
10Ne + 0

0 
ν;  

22
10 

Ne 25. 4.8707 MeV
27. 1.3109 MeV 31. 64 d 33. 11 500 yr 35. 2.4 min
37. 27 patients 39. 0.99 Ci 41. (a) 3.83 × 10−12 s−1

(b) 6.5 × 1010 atoms (c) 0.25 Bq/g 43. 34.46 s; 58.87%
45. 3 × 105 molecules 47. (a) 3.7 × 1016 photons (b) 0.48°C
49. 6.4 × 10−4 Sv 51. 197

 79Au 53. 27
13Al + 4

2He → 31
15P → 30

15P + 1
0n

55. (a)  10
5 B + 10 n → 11

5 B* → 73 Li + 42 He + γ
(b) 2.31 MeV 57. 200 MeV 59. (a) 2 (b) 200 MeV
(c) 179.944 MeV (d) 0.000 822 61. 17.5893 MeV
63. 0.44 MeV 65. (a) 13 km (b) 8.2 × 1011 N/kg
67. 737 kW·h 69. (b) 4.9654 MeV (c) 4.2 fm (d) 2.4 MeV
71.  8.1115 MeV 73. 3.60 × 10−16 kg 75. 3.25 mol
77. (a) 0.50 (b) 0.012, yes 79. (a) 5.2 × 10−7 g (b) 44 mCi
81. (a) 1.25 × 109 Bq (b) an electron and an antineutrino
83. 7.67 × 109 yr 85. (a) 8% (b) P0 = 0.57 mW; P10.0 = 0.52 mW
87. (a) 17

8 O (b) 4.8 fm (c) 4.2 MeV (d) less, 1.1918 MeV
89. 4.7844 MeV 91. From left to right, the energies are
492 keV, 472 keV, 40 keV, 452 keV, 432 keV, 287 keV.
93. (a) 1.42 × 107 m/s (b) 4.3 × 106 V/m (c) 98 cm
(d) Both m and q affect the radius of the trajectory.

CHAPTER 30

Multiple-Choice Questions

1. (b) 3. (a) 5. (d) 7. (c) 9. (a)

Problems

1. 1.1 × 10−18 m, which compares favorably (for a rough estimate) 
with the value 1 × 10−17 m given in Table 30.3 3. 1.316 GeV
5. neutron: u + d + d = (2/3)e − (1/3)e − (1/3)e = 0 proton: 
u + u + d = (2/3)e + (2/3)e − (1/3)e = +e 7. uus: +e; uds: 0; 
dds: −e 9.  ud 11.  s s s 13. 34 MeV 15. 109.3 MeV 
17. 67.5 MeV 19. 938 MeV 21. π+ → μ+ + νμ and π+ → e+ + νe
23. proton: 5.4 MeV; pion: 32.4 MeV 25. 4.2 MeV 27. 5.4 T

Problems

1. 1.3 × 10−34 m; the wavelength is much smaller than the diameter 
of the hoop—a factor of 10−34 smaller! 3. (a) 1.0 × 10−35 m/s
(b) 3.8 × 1026 yr 5. 3.24 pm 7. 250 eV 9. 101 11. (a) 62 eV 
(b) 0.0038 eV (c) 0.0038 V 13. 1.0 × 10−11 m/s in the direction 
of motion of the photon 15. 5.17 × 105 m/s 17. 1 × 10−29 m
19. (a) 1 × 10−24 kg·m/s (b) 4 eV (c) yes 21. (a) 1.2 × 10−4 eV 
(b) 3 × 10−9 eV 23. 2 × 10−15 25. 380 GeV 27. 2 MeV 
29. (a) 0.40 eV (b) E31 = 3.2 eV, E32 = 2.0 eV, E21 = 1.2 eV 
(c) 0.97 nm 31. −2ℏ, −ℏ, 0, ℏ, 2ℏ 33. 2(2ℓ + 1)   
35. 1s22s22p63s23p64s23d 8 37. √2h 39. 4, 5, 6, 7 
41. (a) Li: 1s22s1; Na: 1s22s22p63s1; K: 1s22s22p63s23p64s1 
(b) The outermost electron is alone in an s subshell. 
43. (a) 525 nm (b) green 45. 633 nm 47. 151 000 wave-
lengths 49. −25% 51. (a) 15 GeV (b) The nucleus would 
be unstable because the helium-4 nucleus would emit an elec-
tron. (c) 8.2 MeV; this energy is less than the binding energy of 
the helium-4 nucleus, so the proton-neutron theory is viable, but 
the electron-proton theory is not. 53. (a) 0.067 eV (b) 0.20 eV, 
0.33 eV, 0.47 eV, 0.53 eV, 0.80 eV, and 1.0 eV

(c) 

L0 x

(d) smaller 55. 2.8 × 10−14 m 57. 680 m/s
59. 3.9 × 10−6 eV 61. 1s22s22p63s23p64s23d104p65s24d105p4

63. (a) 2.21 × 10−34 m (b) about a factor of 10−19 smaller  
(c) No, the wavelength is so much smaller than any aperture  
that diffraction is negligible. 65. (a) 1.26 km/s (b) 314 pm  
(c) 303 to 324 pm 67. no

69. 
(a) 

L x0

 (b) 
2h2

mL2  (c) 

L x0

(d) The energy for the box of finite depth is less. The graphs for  
(c) and (a) show that the wavelength is longer in this case than for 
an infinitely deep box, and a longer wavelength corresponds to less 
momentum and less kinetic energy. (e) (2L/h)√2mU0

73. 12 pm 75. 1.8 × 10−19 m 77. 120 MeV; the assumption is 
justified. 79. 9.8 cm 81. 352 nm 83. (a) 167 pm  
(b) 66.5° (c) yes
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Index
A
Aaron, Hank, 279
Aberration, 938–939
Absolute temperature, 445–446
Absolute zero

definition of, 488
third law of thermodynamics and, 572

Absorbed dose, 1110
Absorption spectrum, 1034–1035
AC. See Alternating current
Acceleration

angular, 182–184
average, 36–37
connected objects, 126–129
constant, 40–46 (See also Constant acceleration)
definition of, 36
direction of, 37–38
free-fall, 46
instantaneous, 37, 70
linear motion, 36–38
Newton’s second law of motion and, 103–105
planar motion, 70–78
projectile motion, 72–78 (See also  

Projectile motion)
radial, 166–171 (See also Radial acceleration)
rolling objects, 305–306
of sailboat, 72
in simple harmonic motion, 385–387
SI units of, 37
of skater, 71
sliding on flat surface, 125–126
sliding on incline, 43–44
tangential, 169, 179, 182
as vector, 70–72
velocity and, 36–46

Accommodation, 926
Acoustic energy, 199
Actinide element, 1072
Action potential, 639
Activation energy, 496
Active transport, 639
Addition

of displacements, 29
significant figures and, 7
of vectors, 61

Adhesive, 591–592
Adiabatic process, 555
Agriculture, protection from freezing, 511, 522–523
Air

index of refraction, 956–957
as thin film, 961

Air bag, 245–246
Airplane

banking angles, 174
gliders, 94, 130–131
momentum and, 252
net force on, 98–99
relative velocity of, 79–80
wings, Bernoulli’s principle, 354

Air resistance
free fall, 46
hill-climbing car, 226–227
on rifle bullet, 311

Airspeed, 79–80
Air table

angular momentum of puck, 310
colliding pucks, 262–264

ALEKS Math Prep for College Physics, 3
Algebra review, A1–A2
ALICE detector, 1132
Alkali earth element, 1072
Alkali metal element, 1072
Alpha decay, 1099–1100, 1103, 1109

Alpha particle
as particle involved in radioactive decay, 

1098–1099
penetration of, 1112
scattering experiments, 1035–1037

Alpha ray, 1097–1099
Alternating current (AC)

conversion to direct current, 823–824
crossover networks, 824
diodes, 823
filters, 823–824
generators, 771–774, 808
rectifiers, 823
sinusoidal emf, 777–778, 808
transformers and, 779, 783–785

Alternating current (AC) circuit. See also  
Household wiring

capacitors, 811–814
ground fault interrupter, 779
inductors, 815–816
resistors, 808–810

Alveoli, 359–360
Amber, 584
Ammeter, 695
Ampère, André-Marie, 670, 748
Ampere (A), 9, 670
Ampère-Maxwell law, 837
Ampère’s law

comparison to Gauss’s law, 748–749
electromagnetic waves and, 836
overview, 748–750

Amplitude
definition of, 385, 419
of emf, 772
reduction in building swaying, 398–399
sinusoidal emf, 808

Aneurism, 353
Anger camera, 1113
Angle

Brewster’s, 888–889
small angle trigonometric approximations, A12
types and properties of, A8–A9

Angle of deviation, 900
Angle of incidence, 878
Angle of reflection, 878
Ängström, Anders Jonas, 1033
Angular acceleration

constant, 183
definition of, 182
London Eye, 184
potter’s wheel, 183–184
torque and, 302–303

Angular displacement, 160–161
Angular frequency

of pendulum, 394
in simple harmonic motion, 388–389

Angular magnification
of astronomical telescope, 935
of microscope, 933
of simple magnifier, 931–932

Angular momentum
classic demonstration of, 312–313
conservation of, 307
definition of, 306–307
Earth’s orbital speed, 310
figure skaters, 307–308
gyroscope, 311
hurricanes, 308
vs. linear momentum, 307
mouse on rotating wheel, 308–309
orbital quantum number, 1067–1068
planetary orbits, 309–310
pulsars, 308
rifle bullet, 311

right-hand rule, 311
spinning top, 311
student holding spinning bicycle wheel, 312–313
as vector quantity, 310–313

Angular size, 929
Angular speed, 162–166
Angular velocity

definition of, 160–161
of Earth, 162
figure skaters, 307–308
of pendulum, 394

Antenna
electric dipole antenna, 837–839
limitations, 839

Antimatter, 1142
Antineutrino

in beta-minus decay, 1100
from fusion in Sun, 1134–1135
as particle involved in radioactive decay, 1098

Antinode
displacement, 452–454
pressure, 452–455
standing wave, 430

Antiquark, 1133
Antireflective coating, 961
Aperiodic waves, 418
Aperture, 922, 975–978
Apparent weight, 134–136, 184–186
Approximation

binomial, A12
techniques for, 15–16
trigonometric, for small angles, A12

Aqueous fluid, 824
Archery

arrows, maximum height, 77
bows (See Bow)

Archimedes’ principle, 343–345
Area expansion, 483
Arecibo radio telescope, 938
Argon-ion laser, 1077
Argon nuclides, B5
Aristotle, 100
Aristotle with a Bust of Homer (Rembrandt),  

1089, 1116
Armadillo, buoyancy of, 345
Armature, 771
Arrows, maximum height, 77
Arsenic, electron configuration, 1070
Arterial blockage, 357
Arterial flutter, 353
Artificial gravity, 185
Artist use of pinhole camera, 923
Astigmatism, 929
Astronaut

apparent weight, 184–186
playing shuffleboard, 105
slowing aging process, 1000–1001

Astronomical telescope, 934–936
ATLAS detector, 1132, 1138
Atmosphere (planetary), 495–496
Atmosphere (unit of pressure), 333, 334
Atmospheric pressure, 334, 340–341
Atom

Bohr model, 1037–1042
collision in air, 258–259
contact force, 95
electromagnetic force, 138
fundamental particles and, 1133
magnetic dipole moment of, 750
mass relationships, 1092
nucleus (See Nucleus)
planetary model, 1036–1037
plum pudding model, 1035–1036
quantum mechanical model, 1041, 1067–1068
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Rutherford experiment, 1035–1036
stimulated emission and, 1074
strong force, 138, 1093
weak force, 138

Atomic clock, 1080
Atomic mass unit, 1091
Atomic number, 1041, 1071, 1090
Atwood’s machine, 128, 281–282
Audible range, 444–445
Audio speaker

crossover networks, 824
generation of sound waves, 443–444
phase difference, 954
torque and, 742–743
tweeters, 646
vibrating, 393

Auditory canal, 458
Auditory ossicle, 458
Aurora, 732
Automobile. See Car
Automobile engine

efficiency, 550, 567–568
four-stroke, 563

Average acceleration, 70
Average angular acceleration, 182
Average angular velocity, 160
Average density, 336
Average power, 225
Average pressure, 333
Average speed, 31
Average velocity

vs. average speed, 31
calculation of, 30–31
definition of, 30
linear motion, 30–31
planar motion, 68

Avogadro’s number, 485
Axis of rotation

in equilibrium problems, 289
of physical pendulum, 395–397
rotational inertia and, 278–279

Axle rolling without slipping, 164–166
Axon, 638–639, 699–700

B
Back emf, 782
Back-of-the-envelope estimate, 8
Bacteria, power output, 225
Ball

acceleration of rolling objects, 305–306
bowling ball, internal energy of, 513
charge of, hanging in equilibrium, 595–596
on incline, rotational inertia of, 304–306

Ballistocardiography, 251
Balloon

heating at constant pressure, 557–558
hot air, buoyancy of, 347
molecules in, 486–487

Balmer, Johann Jakob, 1035
Balmer series, 1035, 1038–1040
Band gap, 1073
Band of energy levels, 1073
Banked curve, 171–174
Barbells, rotational inertia, 280
Barium

nucleus radius and volume, 1092–1093
nuclides, B6

Barometer, 341
Barometric pressure, 334, 340–341
Barrel length, 934
Baryon, 1113, 1136
Baseball bat, rotational inertia, 279
Base SI unit, 9
Basilar membrane, 458
Battery

car, 669, 683
charging a capacitor, 653
in a circuit, 671–674
emf (See Emf)
ideal, 644, 671–672

internal resistance, 682
overview, 673
voltaic pile, 633

Battery-powered lantern, electric potential  
difference, 634

Beat, 460–462
Beat frequency, 461
Becquerel, Henri, 1097, 1104
Bee, navigation by, 835, 862
Beetle, diving, 346
Bel, 449
Bell, Alexander Graham, 449, 873
Bernoulli, Daniel, 351
Bernoulli effect, 350
Bernoulli’s equation, 350–354
Beryllium nuclides, B5
Best-fit line, graphing of, 17
Beta decay, 1100–1103
Beta particle, 1100, 1112
Beta ray, 1097–1098
Bicycle wheel

angular momentum demonstration, 312–313
torque, 282, 284–285

Big Bang
cosmic microwave background radiation, 843
expansion of universe, 864
fundamental forces and, 1138

Big Dipper, 975–976
Bimetallic strip, differential expansion, 482–483
Binary star, 975–976
Binary star system, center of mass, 255
Binding energy

curve, 1095
mass defect and, 1093–1094
nitrogen-14 nucleus, 1094
strong force, 1093

Binoculars, 885
Binomial approximation, A12–A13
Biologically equivalent dose, 1110–1111
Biological systems. See also Human body;  

Medical applications
animal communication by seismic waves, 416
bacteria, power output, 225
Brown Creeper song, 448
buffalo, speed and acceleration of, 27, 37
diving beetle, 346
echolocation, 466–467
ejection of moss spores, 43
electric eels, 672
electric potential differences in, 638–639
electrolocation, 583, 604
evolution and entropy, 571
fish swim bladders, 346–347
flea, jumping mechanics, 223
frequency ranges of animal hearing,  

444–445
hippopotamus, buoyancy of, 331, 345
homeothermic animals, 477, 497–498
hydrogen bonds in macromolecules, 588
infrared detection by animals, 842
insects, surface tension and, 359
iridescence of animals, 950, 961–963
jet propulsion in squid, 252
kangaroo, jumping mechanics, 223–224
kingfisher looking for prey, 891
leg as physical pendulum, 396–397
magnetotactic bacteria, 717, 721
moss spores, ejection of, 43
neuron capacitance, 651
poikilothermic animals, 497–498, 533
polarized light detection by bees, 835, 862
radiation, effects of, 1109–1114
RC circuits in neurons, 699–700
roaring lion, sound intensity level, 450
seagull’s lunch, 59, 74–75, 81–82
size limitations on organisms, 379–380
UV exposure, effects of, 842

Biomechanics, tensile forces, 122–123
Bird

Brown Creeper song, 448
kingfisher looking for prey, 891
seagull’s lunch, 59, 74–75, 81–82

Bismuth nuclides, B6

Blackbody
ideal, 533–534
radiation spectrum, 534, 1023–1024

Blind spot, 925
Blood

electromagnetic flowmeter, 735–736
flow speed, 349–350, 468
flow through artery, 43
force convection, 531
oxygen diffusion, 499–500
pressure, 334, 342, 356–357
specific gravity, 344

Blu-ray disc, reading of, 955
Boat

Archimedes’ principle, 344–345
change in velocity of, 72
displacement of, 45–46
relative velocity of, 79, 80–81

Body temperature
homeothermic animals, 477, 497–498
poikilothermic animals, 497–498
as scalar quantity, 60
scale conversions, 480

Bohr, Niels, 1037, 1056
Bohr model

application to one-electron atoms,  
1041–1042

assumptions, 1037
energy levels and, 1038–1040
orbits, 1037–1038
problems with, 1041
successes of, 1041

Bohr radius, 1038
Boiling point. See Phase transition
Boltzmann, Ludwig, 572
Boltzmann’s constant, 488
Bomb calorimeter, 518–519
Bone

compression of femur, 376–377
density, 4
elastic properties, 378
heavy lifting, 301–302
osteoporosis, 4, 378
size limitations on organisms, 379
spiral fractures, 382
strength of, 376
structure of, 299–301, 379

Boomerang, center of mass, 254
Born, Max, 1066
Born’s law, 1066
Boron nuclides, B5
Boson

as exchange particle, 1140
Higgs, 1138

Bow
compound, work done in drawing, 218–219
simple, work done in drawing, 219
tension in bowstring, 120–121

Bowling ball, internal energy of, 513
Boyle’s law, 488
Brackett series, 1039–1040
Bragg, William Lawrence, 978
Bragg’s law, 978–979, 1057
Brakes, hydraulic, 335
Braking, eddy currents, 785–786
Brane theory, 1140
Breaking point, 377
Breeder reactor, 1120
Bremsstrahlung, 1030–1031, 1043, 1112
Brewster, David, 888
Brewster’s angle, 888–889
Brick, sliding with constant acceleration, 43–44
Bridge

expansion joints, 481
resonance, 398–399

Brittle substance, 377
Bubble, 359–360
Bubble chamber, 728
Buffalo, speed and acceleration of, 27, 37
Buildings

expansion joints, 481
resonance, 398–399
R-factors, 530

Atom—(Cont.)
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Bulk modulus
definition of, 382
of various materials, 381, 383

Bullet
angular momentum of, 311
shock waves from, 466

Bungee jumping, 208–209
Buoyant force

Archimedes’ principle, 343–345
definition of, 342–343
freshwater vs. seawater, 346
gravity and, net force, 343–344
hovering fish, 346–347
icebergs, 345–346
objects in gas, 346–347

Burglar alarm, 1029
Butterfly wing, iridescence of, 950, 961–963

C
Calcium nuclides, B5
Calorie, 514
Calorimetry, 518–519
Camera

Anger camera, 1113
aperture, 922
on astronomical telescope, 934
depth of field, 923
exposure regulation, 922–923
fixed-focus, 922
obscura, 923
overview, 921–922
pinhole, 923
shutter, 922
single-lens reflex, 885, 921–922

Camera flash, 647, 698–699
Candela (cd), 9
Cantilever, 291–292
Capacitance

neurons, 651
overview, 645–646
parallel plate capacitor with dielectric, 648, 650

Capacitor. See also Parallel plate capacitor; RC 
circuit; RLC series circuit

in ac circuit, 811–814
definition of, 644
energy storage, 653–655
as filter, 823–824
parallel circuit, 690
reactance, 813–814
in series, 697–698
series circuit, 685–686

Car
acceleration of, 38–39
air resistance and, 226–227
battery jumping, 669, 683
change of momentum, 243–244
collision damage, 208
collision on entry ramp, 261–262
collision with tree, 246–247
collision with wall, 248–249
contact forces and, 116
curves and, 171–174
Doppler shift of engine noise, 465
electric and hybrid cars, 773
engine, 562–564
headlights, 896
injury protection features, 246
mechanical power, 224–227
passenger side mirror, 899–900
shock absorbers, 398
speeder caught by radar, 863–864
speed of from horn frequency, 465

Carbon
fusion cycle, 1122–1123
nuclides, B5

Carbon-14
induced nuclear reaction, 1115
radioactive dating (See Radiocarbon dating)

Carbon dioxide laser, 1076–1077
Cardinal direction, specifying vectors with, 61
Carnot, Sadi, 566

Carnot cycle, 567
Cart, motion diagram, 32, 40
Cassegrain, Laurent, 937
Cassegrain arrangement, 937
Catapult, 73, 76–77
Cathode ray, 735
Cathode ray tube

electron beam, 606–607
electron gun, 643
oscilloscope, 647

Causation, in relativity, 997–998
Cavity, expansion of, 484
CD

reading of, 955–956
as reflection grating, 970
semiconductor laser and, 1077
tracking of, 968

Cell phone charger, 784
Celsius, Anders, 479
Celsius scale, 479
Center of gravity

definition, 287
touching toes and, 296–297

Center of mass
of binary star system, 255
center of gravity and, 287
definition of, 253–254
locating, 255
location of, 253–254
motion of, 256–258

Centi- (prefix), 10
Central bright fringe, 972
Central maximum, 972
Centrifuge

artificial gravity, 185
radial acceleration, 168
sedimentation velocity and, 358–359
speed of, 164

Centripetal acceleration. See Radial acceleration
CERN (European Organization for Nuclear 

Research), 1132
Cesium

emission spectrum, 1035
nuclides, B6
photoelectric effect experiment, 1029

Cesium beam atomic clock, 1000
Chain reaction, 1118–1121
Characteristic x-ray, 1031, 1043
Charge, electric. See Electric charge
Charge density, 614
Charged particle. See Point charge
Charge reservoir, 589
Charles, Jacques, 487
Charles’s law, 487–488
Chemical energy, 199
Chemical reaction, temperature and, 496–498
Chemiluminescence, 1022, 1043
Chernobyl reactor disaster, 1120
Chest, contact forces with floor while sliding, 

102–103
Chlorine nuclides, B5
Chromatic aberration, 938–939
Chromium nuclides, B5
Circle of confusion, 923
Circuit. See Electric circuit
Circuit breaker, 701–702
Circular motion

angular acceleration, 182–184
curves, 171–174
gravitational force, 202
nonuniform circular motion, 178–184
orbits of satellites and planets, 174–178
radial acceleration, 166–171
rolling (See Rolling)
uniform, 160–178 (See also Uniform circular 

motion)
Circular polarization, 856
Circulation, 749
Clarinet, 455, 457
Classical physics

blackbody radiation, 1024
photoelectric effect, 1024–1026
quantum physics vs., 1023–1046, 1056

special relativity and, 995
uncertainty principle vs., 1063

Clausius, Rudolf, 569
Climate change

convection and, 531–532
fission reactors and, 1120
thermal radiation and, 537–538

Clock
atomic, 1000, 1080
current in, 670–671

Closed cycle, work done, 554
Closed surface, 612
CMS detector, 1132, 1138
CNO-I cycle, 1122–1123
Cobalt nuclides, B6
Cochlea, 458
Cochlear partition, 458
Coefficient of expansion

inverse relation to bond strength, 516
linear, 480–481

Coefficient of kinetic friction, 113, 114
Coefficient of performance, 565–566
Coefficient of static friction, 113, 119
Coefficient of volume expansion, 483–484
Coherence, 428–429
Cold-blooded animal, 497–498, 533
Collision

of cars (See Car)
conservation of momentum, 258–259
definition of, 258
elastic, 259–260
inelastic, 260
kinetic energy and, 208
momentum and, 242–244, 258–264
one-dimensional, 258–262
of particles, 1132, 1141
perfectly inelastic, 260
superelastic, 260
two-dimensional, 262–264

Column height
hydrostatic pressure and, 339
limits, 379–380
manometers and, 341

Commutator, 741–742
Compass, 718–719
Compass heading, specifying vectors with, 61
Complementary angle, A9
Component of vector

adding vectors using, 65–66
direction from, 64–65
equations, 69
expression of, 63
finding, 64–65
magnitude from, 64–65
resolving into, 64
unit vector notation, 67–68

Compound microscope
angular magnification, 933–934
eyepiece, 932
magnification by, 933
objective, 932
ocular, 932
resolution, 934
tube length, 932

Compressed air, pressure, 490–491
Compression, in waves, 415, 443–444, 453–454
Compressive force. See Tensile and  

compressive forces
Compton, Arthur Holly, 1031–1033
Compton scattering, 1031–1033
Compton shift, 1032
Compton wavelength, 1032–1033
Computed tomography (CT), 844
Computer

keyboard, 646
laptop power supply, 820
magnetic storage devices, 752, 779

Concave mirror, 896–897
Concrete

prestressed, 378
strength of, 376

Condenser microphone, 646–647
Conduction, thermal. See Thermal conduction
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Conductivity
definition of, 678
electron configuration and, 1073–1074
thermal, 527–530

Conductor
charging by contact, 589–590
charging by induction, 590–591
definition of, 588
eddy currents in, 785–786
electric potential difference, 642
electric potential due to spherical conductor, 

636–638
electron energy levels, 1073–1074
electrostatic equilibrium, 609–612
equilibrium charge distribution, 611
grounding, 589–590
Hall effect, 736
motional emf and, 768–770

Confined electron, 1064
Confined particle

in a box, 1065–1066
definition of, 1064
in a finite box, 1066, 1077–1078
interpretation of wave function, 1066–1067
wave functions, 1064–1067

Conservation in radioactive decay, 1098
Conservation of angular momentum, 307, 310
Conservation of charge, 584
Conservation of energy

constant force, work done by, 199–207
in cyclical engine, 560–561
elastic potential energy, 221–224
forms of, 199
gravitational potential energy, 209–218
historical development of principle, 198–199
irreversibility and, 560
jumping, 222–224
kinetic energy, 207–209
law, 198
law of, 198–199
mechanical energy, 211–212
moving charges, 643
potential energy, 221–222
power, 224–227
rotating objects, 281
in simple harmonic motion, 385
variable force, work done by, 218–221

Conservation of momentum, 242, 250–253, 1032
Conservative electric field, 787
Conservative force, 211, 215
Constant acceleration

angular, 183–184
free fall, 46–48
graphs, 40–41
kinematic equations, 41–46
linear motion, 40–46
motion along a line, 40–46
motion diagrams, 40
planar motion, 72–78
projectile motion, 72–78 (See also  

Projectile motion)
spaceships, 44–45

Constant angular acceleration, 183–184
Constant force, work done by, 199–207
Constant pressure gas thermometer, 488
Constant-pressure process, 554–558
Constant-pressure system, 553–554
Constant-temperature process, 555, 558–559
Constant volume gas thermometer, 488–489
Constant-volume process, 555, 556
Constructive interference, 426, 951–953
Contact force

deformation and, 374
as distributed force, 295
friction, 113–119 (See also Friction)
kinetic friction, 113–119
normal force, 111–112
overview, 95
static friction, 113

Continuity equation, 348–349
Continuous spectrum, 1034–1035, 1073, 1101
Controlled fusion, 1123–1124
Control rod, 1119
Convection, thermal, 530–532

Converging lens
compound microscope, 932–934
simple magnifier, 930–932
two-lens combination, 920–921

Converging mirror, 896–897
Convex mirror, 894–896
Copper

as conductor, 589, 674
ground state, 1070
nuclides, B6
thermal expansion, 484

Cord, ideal, 120, 127–128
Cornea, 824
Cosines, law of, A11
Cosmetic mirror, 896–897
Cosmic microwave background radiation, 843
Cosmic ray

aurorae and, 732
collisions in upper atmosphere, 1006–1007
deflection of, 725
muon survival, 1003
as natural radiation, 1112
particles generated by, 1134

Coulomb (C), 585
Coulomb repulsion

fusion and, 1121
nuclear energy levels, 1095–1096
tunneling and, 1080, 1109

Coulomb’s law, 593–596
Coupling force, 126–127
Course, 79
Crane, stretching of steel cable, 378–379
Crick, Francis, 979
Critical angle, 883
Critical point, 526
Critical reactor, 1119
Cross product of vectors, 284, 722–727, A14
CRT. See Cathode ray tube
Crystal

structure of, determining, 979
x-ray diffraction by, 978–979

Crystalline lens, 824
CT scan (computed tomography), 844
Curie, Marie Sklodowska, 1104
Curie temperature, 751
Curiosity, 1
Current. See Alternating current (AC); Direct current 

(DC); Electric current
Current loop. See Loop
Current ratio, 784
Curve, radial acceleration in, 171–174
Cutoff frequency, 1030
Cyclical engine, 561–562
Cyclotron

function and use of, 730–731
in hospitals, 1114

D
Damped oscillation, 397–398
Damping, eddy currents, 785–786
Dark energy, 1142
Dark matter, 1142
Dart gun, 222
Data

precision of, estimating, 15–16
recording, 16–17

Data table, making, 16–17
Daughter particle, 1008, 1099, 1118
Davisson, Clinton, 1057
DC. See Direct current
de Broglie, Louis, 1057
de Broglie wavelength, 1057
Decay constant, 1104
Decibel (dB), 449, 451
Deci- (prefix), 10
Defibrillator, 654
Deformation. See also Tensile and  

compressive forces
definition of, 374
elastic (See Elastic deformation)
shear, 380–382
volume, 382–383

Degree, converting to/from radians, 161, A9
Delta (∆), 17
Democritus, 1133
Density

of common substances, 337
definition of, 336
specific gravity and, 344

Dependent variable, 16
Depolarization of cells, 639
Depth of field, 923
Derived unit, 9
Descartes, René, 100
Destructive interference, 426, 953
Deuterium, 1123, B5
Deuteron-deuteron fusion, 1123
Deuteron-triton fusion, 1123
Diamagnetic substance, 751
Diamond, 886
Diastolic pressure, 342
Dielectric

capacitor with, 650–651
definition of, 647–648
neuron capacitance, 651
polarization of molecules, 649–650
thundercloud as, 651–652

Dielectric breakdown, 648, 651–652
Dielectric constant, 648–650
Dielectric strength, 648
Differential expansion, 482–483
Diffraction

definition of, 429
of electromagnetic waves, 970–975
of electrons, 1057–1060
by grating (See Grating)
and Huygen’s principle, 970–971
of neutrons, 1059–1060
photolithography, 971
Poisson spot, 972
resolution and, 975–978
by single slit, 972–974
of x-rays, 978–979

Diffuse reflection, 877
Diffusion

constants, 499
mean free path, 498–499
oxygen through cell membranes, 499–500

Dilute gas, 488. See also Ideal gas
Dimensional analysis, 12–14
Dimensions, of unit, definition, 12
Diode, 823
Diopter, 926
Dip meter, 720
Dipole

antenna, 837–839
electric (See Electric dipole)
magnetic (See Magnetic dipole)
oscillating, 836–837

Dirac, Paul, 1043
Direct current (DC)

conversion from alternating current, 823–824
generators, 773
motor as generator, 773

Direct current (DC) circuit. See RC circuit
Direction

of acceleration, 37–38
of vector, 60, 64–65

Discharge tube, 1033–1034
Discrete spectrum, 1034
Disintegration energy, 1098
Dispersion, 848–849, 883
Displacement

addition of, 29
angular, 160–161
average velocity and, 30–31
in changing velocity, 35–36
in constant velocity, 35
definition of, 28–29
vs. distance, 29
graphical relationship with velocity, 33–36
instantaneous velocity and, 31–32
successive, 62–63
as vector, 61–63

Displacement node and antinode,  
452–454
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Dissipation
attenuation of sound waves, 445
damped oscillations, 397–398
definition of, 207
of electricity, 784–785
of energy by friction, 512–513
resistors and, 809
transformers and, 784–785
waves, 413–414

Distance
dimensional analysis for distance equation, 12
vs. displacement, 29
variation in sound intensity level and,  

451–452
Distributed force, 295–297
Diver

air pressure and, 490–491
pressure on eardrum, 338

Diverging lens, 901
Diverging mirror, 894–896
Diving beetle, buoyancy of, 346
Diving board, as cantilever, 291
DNA

hydrogen bonds in, 588
structure of, 979

Domain of ferromagnetic substances, 750
Doping of semiconductors, 589, 678–679
Doppler, Johann Christian Andreas, 462
Doppler echocardiography, 43
Doppler effect

determining speed from, 465
echolocation and, 467
electromagnetic waves, 862–864
nature of, 462–464
shock waves, 465–466
train whistle and, 464–465
ultrasound applications, 468

Doppler radar, 467, 864
Doppler ultrasound, 468
Dot product, 201
Double-slit experiment

visible light, 963–966, 974–975
wave-particle duality, 1056

Double-slit maximum, 964–965
Double-slit minimum, 965
Drag, 136–137, 357
Drift speed, 674, 676
Drift velocity, 674–676
Drinking straw, pressure in, 342
Driven oscillation, 398–399
Ductile material, 377
DVD

reading of, 955
as reflection grating, 970
as rigid object, 160
semiconductor laser and, 1077
tracking of, 968

E
Ear

animal communication by seismic waves, 416
frequency ranges of animal hearing, 444–445
human ear, 458–460
localization of sound, 460
loudness, 459–460
pitch, 459–460
sound sensitivity of, 413, 448
structure of, 458–459

Earth
angular momentum, 311–312
angular speed, 162
apparent weight of orbiting objects, 184–186
astrophysical data, B3
aurorae, 732
axis of rotation, 311–312
climate change and convection, 531–532
deflection of cosmic ray, 725
escape speed, 217–218
gravitational force of, 95, 108
magnetic field, 719–720, 725
north magnetic pole, 720
orbital speed, 310

radiative equilibrium, 537
rotation and apparent weight, 186
rotation on axis, 78
satellite as interaction partner, 106–107
thermal radiation and, 532
variations in gravitational field, 110

Earth-centric model, 78
Earthquake. See also Seismic wave

damage reduction, 426, 431–432
Fukushima Daiichi nuclear power plant  

disaster, 1121
Hanshin, Japan, 411, 432

ECG (electrocardiograph), 387, 628, 639
Echocardiography, 43
Echolocation, 466–467
Eddy current, 785–786
Edison, Thomas, 783
EEG (electroencephalograph), 639
Efficiency of engine, 562–564, 566–567
Einstein, Albert

on photoelectric effect, 1026, 1028–1029
on stimulated emission, 1074
theory of general relativity, 1138–1140
theory of special relativity, 994–995

Elastic, definition of, 374
Elastic collision

definition of, 260
description of, 259–262
reversible process, 559

Elastic deformation. See also Tensile and 
compressive forces

bones, 378
breaking point, 377
brittle substances, 377
crane with steel cable, 378–379
definition of, 374
ductile materials, 377
elastic limit, 377
reinforced concrete, 378
ultimate strength, 377

Elastic energy, 199
Elastic limit, 377
Elastic modulus. See Young’s modulus
Elastic potential energy, 211, 221–224

jumping, 223
Electrically neutral, 584
Electrical resistance. See Resistance
Electrical safety

ground fault interrupter, 779
overview, 700–702

Electric charge
balls hanging in equilibrium, 595–596
conductors, 588–593, 609–612
conservation of, 584
Coulomb’s law, 593–596
density, 614
electrically neutral, 584
electroscope and, 591
elementary charge, 585–586
equilibrium distribution on two  

conductors, 611
insulators, 588–593
laser printers and, 592–593
magnitude, 585
measurement, 358
net charge, 584
overview, 584–588
photocopiers and, 592–593
point charge, 605–609
polarization, 586–588
reservoir, 589
semiconductors, 589
separation, 589–592
types of, 584–585

Electric circuit. See also Alternating current 
(AC) circuit

analysis using Kirchhoff’s rules, 690–693
capacitors in parallel, 690
capacitors in series, 686
complete, 673–674
direct current circuit, 674
emf and, 671–674
emfs in parallel, 690
emfs in series, 685–686

inductors in, 788–789
Kirchhoff’s rules, 683–684
motional emf in, 768–770
network in series and parallel, 689
in parallel, 686–690
power, 693–695
RC circuits (See RC circuit)
resistors in ac circuits, 808–810
resistors in parallel, 686–688
resistors in series, 684–685
in series, 684–686
tuning, 822–823
two-loop circuit, 691–693

Electric current (l). See also Alternating current 
(AC); Direct current (DC)

car battery jumping, 669, 683
conventional current, 670
definition of, 670
drift velocity and, 675–676
effects on human body, 700
electron energy levels in a solid, 1073–1074
free-electron model, 674–678
fuses and circuit breakers, 701–702
ground fault interrupter, 779
grounding, 589–590, 700–701
in liquids and gases, 671
magnetic field due to, 743–750
magnetic force on current-carrying wire, 737–739
measurement, 695
in metals, 674–676
resistors and, 682
root mean square, 809
safety measures, 700–702

Electric dipole
antenna, 837–839
electric field lines, 602–603
force on, 609
oscillating, 836–837
torque on, 609

Electric dipole antenna
as receiver, 838
as transmitter, 837–839

Electric fence, 700
Electric field

at center of square, 635–636
closed surface, 612–613
conservative vs. nonconservative, 787
crossed with magnetic field, motion of charged 

particle, 733–737
electric charge and, 612–613
electric potential and, 639–642
electrolocation, 583, 604
electrostatic precipitators, 612
electrostatic shielding, 611
energy storage, 654–655
equipotential surfaces, 640–641
flux, 613–614
force and torque on dipole, 609
Gauss’s law, 612–616
gel electrophoresis, 608–609
induced, 786–787
from long thin wire, 615
between oppositely charged metal plates, 605, 

644–645
of point charges, 599–601
representation by lines, 601–604
superposition, 599–601
three point charges, 600–601
two point charges, 599–600
uniform, 605–609, 642, 644

Electric field line
dipole, 602–603
echolocation, 604
interpretation, 601–602
point charge, 602–603
representation of electric field, 601
sketching, 602
thin spherical shell, 603–604

Electric force
direction, 594
electric field and, 597
as long-range force, 95
magnitude, 593
on point charge, 594–595, 597
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Electric generator
ac generator, 771–774
dc generator, 773
Faraday’s law and, 778
van de Graaff, 637–638

Electricity supply and distribution
alternating current, 807–824
coal-burning power plant, 568–569
fission reactors, 1119–1121
fusion reactors, 1123–1124
to homes, 810–811 (See also Household wiring)
transformers and, 784–785, 810

Electric monopole, 719
Electric motor

back emf, 782
as dc generator, 773
direct current, 741–742

Electric potential. See also Voltage
at center of square, 635–636
definition of, 632
electric field and, 639–642
equipotential surfaces, 640–641
point charge, 634–636
as scalar quantity, 633
spherical conductor, 636–638
superposition of, 634
uniform electric field, 642
van de Graaff generator, 637–638

Electric potential difference
magnitude, 644–645
medical applications, 639
overview, 633–634
in uniform electric field, 642
van de Graaff generator, 637–638

Electric potential energy
conservation of energy, 643
due to point charges, 631–632
similarities with gravitational potential energy, 

629–630
storage (See Capacitor)
in thunderclouds, 630–631

Electric power. See Electricity supply and 
distribution

Electrocardiograph (ECG), 387, 628, 639
Electroencephalograph (EEG), 639
Electrolocation, 583, 604
Electromagnet, 751

switching on and off, 793–794
Electromagnetic blood flowmeter,  

735–736
Electromagnetic energy, 199
Electromagnetic field, 787. See also Electric field; 

Magnetic field
Electromagnetic induction

back emf, 782
changing magnetic field and, 774–776
eddy currents, 785–786
electric generators, 771–774
Faraday’s law, 774–781
ground fault interrupter, 779
induced electric fields, 786–787
inductance, 787–791
in inductor, 788
Lenz’s law and, 779–782
magnetic flux, 775–777, 779–782
magnetoencephalography, 779
motional emf, 768–770
moving coil microphone, 779
mutual inductance, 787–788
self-inductance, 788–791
stovetop, 767, 786
technology based on, 779
transformers, 783–785

Electromagnetic radiation
light (See Light)
thermal (See Thermal radiation)
waves (See Electromagnetic wave)

Electromagnetic spectrum
blackbody radiation, 534, 1023–1024
gamma rays, 844
infrared, 841–842
microwaves, 843
radio waves, 842–843

ultraviolet, 842
visible light, 840–841 (See also Light)
x-rays, 844

Electromagnetic wave. See also Light
antennas and, 837–839
characteristics, 849–851
Doppler effect, 862–864
energy density, 851–852
energy transport, 851–854
frequency of, 849 (See also  

Electromagnetic spectrum)
intensity, 852–853
pair production and annihilation, 1043–1046
in phase, 849–851
polarization of (See Polarization)
production of, 836–837
quantization of, 1023–1031
speed of, 845–849, 993–994
as transverse wave, 850
traveling in vacuum, 849–851
wave-particle duality, 1056–1057

Electromagnetism
brane theory and, 1140
electroweak theory, 1138
as fundamental force, 138
Maxwell’s equations, 837
overview, 584

Electromotive force. See Emf
Electron

Compton scattering and, 1031–1033
confined, 1064
deflection in uniform electric field, 607
discovery of, 734–735
electric charge, 585
energy level, 1037–1040, 1071–1074
free electrons, 589, 674–676
ground-state configuration, 1070–1071
kinetic energy, 1010–1011
as magnetic dipole, 750
in magnetic field, 727
mass, 585
measurement of charge, 358
momentum of, 1012–1013
orbitals, 1070–1071
pair annihilation and, 1044–1045
pair production and, 1044
as particle involved in radioactive decay, 1098
Pauli exclusion principle, 1069–1072
as point charge, 593
potential energy for, 1025, 1067
quantum numbers, 1067–1069
recoiling, energy of, 1033
shells, 1069
speed of, 1012–1013
subshells, 1069
transfer as shock, 584, 586
wave functions, 1057–1060, 1067–1068

Electron beam, 606–607
Electron capture, 1102–1103
Electron diffraction, 1057–1060
Electron gun, 643
Electronic synthesizer, 457–458
Electron microscope, 1055, 1060–1062
Electron-volt (eV), 10, 1008, 1028
Electrophoresis, 608–609
Electroplaque, 672
Electroretinograph (ERG), 639
Electroscope, 591
Electrostatic equilibrium, 609–612
Electrostatic precipitator, 612
Electrostatic shielding, 611
Electroweak theory, 1138
Element

emission spectra, 1033–1035
nuclides, properties of, B5–B6
periodic table, 1071–1072, B4

Elementary charge, 585–586
Elevator, apparent weight in, 134–136
Elliptical orbit

angular momentum, 309–310
gravitational force, 202
overview, 175–176
planetary, 309–310

Emf
back, 782
batteries and, 673
circuits and, 671–674
electric eel, 672
induction (See Electromagnetic induction)
internal resistance and, 682
magnetism of, intrinsic, 750
motional (See Motional emf)
parallel circuit, 690
power supplied by, 693–694
series circuit, 685–686
sinusoidal, 777–778, 808
terminal voltage, 682

Emission spectrum, 1033–1034
Emissivity, 533–534
Endoscopy, 888
Energy

in alpha decay, 1099
Compton scattering and, 1031–1033
conservation of, 197–227 (See also  

Conservation of energy)
constant force, work done by, 199–207
density, 655, 789–790, 851–852
disintegration, 1098
dissipation of (See Dissipation)
elastic potential energy, 221–224
electric potential (See Electric potential energy)
fission reactions, 1119
fusion reactions, 1121–1123
gravitational potential energy, 209–218
heat as (See Heat)
internal (See Internal energy)
ionization, 1042
kinetic (See Kinetic energy)
law of, 198–199
magnetic, 789–790
mechanical energy (See Mechanical energy)
of photon, 1026–1027
potential (See Potential energy)
power, 224–227
in radioactive decay, 1008–1009
relativistic momentum and, 1011
in simple harmonic motion, 385
special relativity and, 1007–1009
storage in capacitor, 653–655
total, 1010
transfer by waves (See Wave)
transport by electromagnetic waves,  

851–854
variable force, work done by,  

218–221
of visible light photon, 1026–1027
of x-ray photon, 1027

Energy conservation
vs. conservation of energy, 198
second law of thermodynamics and, 571

Energy level
Bohr orbits, 1037–1040
of nucleons, 1095–1097
in a solid, 1072–1074
subshells, 1071–1072

Energy-time uncertainty principle, 1064
Engine. See Heat engine
Enriched uranium, 1119
Entropy, 569–572
Environment

climate change (See Climate change)
fission reactors, 1120–1121
thermal pollution, 568–569

Equation. See also Solving equations
Bernoulli’s equation, 350–354
continuity equation, 348–349
dimensional analysis of, 12–13
kinematic, constant acceleration,  

41–46
Maxwell’s equations, 837
mirror equation, 898–900
relativistic, when to use, 1012
straight line, slope-intercept form, 17
thin lens equation, 904–905
vector components, 69

Equilateral triangle, A8
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Equilibrium
conditions, 289
on incline, 116–119
phase diagrams, 526
rotational, 289–302
translational, 102, 289

Equipartition of energy, 521
Equipotential surface, 640–641
ERG (electroretinograph), 639
Escalator, relative velocity and, 81
Escape speed

atmospheric molecules, 496
of Earth, 217–218

Estimation
of mass, 1091
precision of data, 15–16
techniques, 8

Ether, 994
Euler, Leonhard, 351
European Organization for Nuclear Research 

(CERN), 1132
Evolution, entropy and, 571
Exchange particle, 1135–1136
Excited state, 1038
Expansion, thermal. See Thermal expansion
Exponent, review of, A4
Exposure time, 922–923
Extension cord, resistance of, 679–680
External force, 107–108
Extremely relativistic particle, 1012
Eye

accommodation, 926
anatomy of, 924–926
astigmatism, 929
hyperopia correction, 927–928
myopia correction, 926–927
presbyopia, 928
resolution of, 977–978
UV effects on, 842
wavelength change of light in, 848

Eyepiece, 932

F
Factor, definition of, 3
Fahrenheit, Daniel Gabriel, 479
Fahrenheit scale, 479
Faraday, Michael, 774
Faraday’s law, 774–781, 837
Far point, 926
Farsightedness, 927–928
FBD. See Free-body diagram (FBD)
Femto- (prefix), 10, 1092
Fermi, Enrico, 16
Fermion, 1140
Fermi problem, 16
Ferris wheel, 184
Ferromagnetic substance, 750–751
Fetal imaging, 442, 467–468
Feynman, Richard P., 1056
Fiber optics, 887–888, 1077
Figure skater, 307–308
File cabinet, toppling, 295–296
Film, thin

air, 961
antireflective coatings, 961
overview, 957–958
phase shift due to reflection, 958–959
soapy water, 960–961

Filter, 823–824
Finnegan’s Wake (Joyce), 1133
First law of motion (Newton),  

99–103, 282
First law of thermodynamics

heat engine efficiency, 564
overview, 551–552

Fish
buoyancy, 346–347
electrolocation, 583, 604

Fission, 1117–1121
Fission bomb, 1123
Fizeau, Armand Hippolyte Louis, 845

Flashlight
power dissipation, 694–695

Flavor of quark, 1137
Flea, jumping mechanics, 223
Flow. See Fluid, flow of
Fluid

buoyant force (See Buoyant force)
definition of, 332
pressure (See Pressure)
static, 332
surface tension, 359–360
viscosity, 354–357
viscous drag, 357–359

Fluid, flow of, 347–354
ideal fluid, 348
laminar flow, 347
steady, 347
streamline, 347
turbulence, 347
types of flow, 347
unsteady, 347
viscosity, 354–359
viscous force, 347

Fluorescent dye, 1042–1043
Fluorescent lamp, 1042
Fluorescent light, 671
Fluorescent material, 1042–1043
Fluorine nuclides, B5
Flute, 455
Flux

electric field, 613–614
electromagnetic, 853
magnetic, 775–777

Flux linkage, 776
Focal length

of lens, 901
of mirror, 898

Focal plane
of lens, 905
of mirror, 895

Focal point
concave mirror, 896–897
convex mirror, 894–895
thin lens, 901

Foci of ellipse, 175
Football player, momentum of, 242
Force

buoyant, 342–347 (See also  
Buoyant force)

compressive (See Tensile and  
compressive forces)

contact forces (See Contact force)
definition of, 95
distributed, 295–297
electric force (See Electric force)
electromagnetism, 138
external, 107–108
free-body diagrams (See Free-body diagram)
friction (See Friction)
fundamental forces (See Fundamental force)
gravitational (See Gravitational force)
interaction pairs, 106–108
internal, 107–108
long-range forces, 95
magnetic (See Magnetic force)
magnetic force (See Magnetic force)
magnetic torque (See Magnetic torque)
measurement of, 96
momentum and (See Momentum)
net (See Net force)
normal (See Normal force)
restoring, 384
SI units of, 96
on spring scale, 96, 103
strong force, 138, 1093
surface tension, 359–360
tensile (See Tensile and compressive forces)
torque and (See Torque)
vector addition, 96–99
as vector quantities, 96–97
viscous, 347
viscous drag, 357–359
weak force, 138

weight as, 95
work and (See Work)

Forced convection, 531
Forced oscillation, 398–399
Fourier’s law of heat conduction, 527–528
Fournier, Jean Baptiste Joseph, 457
Fournier analysis, 457
Fovea centralis, 925
Frame of reference. See Reference frame
Franklin, Benjamin, 584, 612, 670
Franklin, Rosalind, 979
Free-body diagram (FBD)

airplane, 99
apparent weight, 135, 136
ball rolling downhill, 306
bowstring, 121
car on unbanked curve, 172
charged balls, hanging in equilibrium, 596
charged sphere hanging in uniform electric  

field, 598
conical pendulum, 170–171
cord holding beam, 294
coupling force on freight cars, 126–127
definition of, 98
electric force on point charge, 595
equilibrium on inclined plane, 116–117
hammer throw, 170
hauling crate to third-floor window, 129
horse-sleigh system, 114–115
ideal pulleys, 127–128
moving a chest, 203–204
pendulum bob, 181–182
plane towing glider, 130
pulley, incline, and two blocks, 132
pulling a sled, 205–206
pulling suitcase, 125
pushing safe up incline, 118
rock climber, 213
skier, 215
sliding block and hanging block, 132
sliding chest, 102–103, 114
slipping ladder, 292
spring scale, 220
steps for drawing, 98
toppling file cabinet, 296
two-pulley system, 123–124
vertical loop-the-loop, 180

Free electron, 589
Free-electron model, 674–676
Free fall

apparent weight, 134–136
generally, 46–48
gravitational field and, 110
projectile motion, 72–78 (See also  

Projectile motion)
Frequency

angular, 388–389, 394
beats and, 460–462
cutoff, 1030
definition of, 387
Doppler effect and, 462–466
of electromagnetic waves, 850 (See also 

Electromagnetic spectrum)
fundamental, 430
hearing and, 459–460
of ideal mass-spring system, 389–391
resonance and, 398–399, 430, 431–432
of simple harmonic motion, 387–391
of sound waves, animal hearing, 444–445
of standing sound waves, 454–455
of uniform circular motion, 163
of violin string, 13–14
of wave, 418–419

Fresnel, Augustin-Jean, 972
Friction

air resistance, 136–137
cars on curves, 171–174
conservation of energy, 199
direction of, 114
dissipation of energy, 512–513
as distributed force, 295
equilibrium on inclined plane, 116–119
finding force of, 125–126
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horse-sleigh system, 114–115
irreversible process, 559–560
kinetic, 113–119
on molecular level, 116
pushing safe up incline, 118–119
on rolling ball, torque provided by, 305–306
sliding, 113
sliding a chest, 114
static, 113
viscosity, 354–357
work done by, 207

Frisch, Otto, 1117
Fukushima Daiichi power plant disaster, 1121
Full-wave rectifier, 823
Function, linear, A1–A2
Fundamental force

electromagnetism, 138
exchange particle, 1135–1136
gravity, 138
mediator particle, 1135–1136
strong force, 138, 1093, 1136–1137
unification, 137
weak force, 138, 1137

Fundamental frequency, 430, 454–455, 457
Fundamental particle, 1133–1135. See also  

specific particle
interaction of (See Fundamental force)

Fuse, 701–702
Fusion

latent heat of, 522–523
nuclear, 1121–1124

G
Gabor, Dennis, 979
Galilean telescope, 936
Galilei, Galileo, 100, 936, 992
Galvanometer, 742
Gamma decay, 1103
Gamma knife radiosurgery, 1114
Gamma ray

Anger camera, 1113
discovery of, 844
nuclear energy levels and, 1096
positron emission tomography and, 1045–1046
radiactivity, 1097–1098
radioactive decay, 1103

Garage door opener, 1029
Garden hose

continuity equation, demonstration of, 349–350
projectile motion of water, 77

Gas
buoyant force, 346–347
definition of, 332
diffusion, 498–500
electric current in, 671
ideal (See Ideal gas)
mean free path, 498–499
molecular behavior, 484–487, 494–495
temperature dependence of speed of sound, 

445–446
thermal expansion, 487–491

Gauge pressure, 340
Gauss, Karl Friedrich, 612
Gauss’s law

comparison to Ampère’s law, 748–749
magnitude of electric field outside conductor, 644
Maxwell’s equations and, 837
overview, 612–616

Gay-Lussac’s law, 488
Gel electrophoresis, 608–609
Gell-Mann, Murray, 1133
General Conference of Weights and Measures, 9
General relativity, 1138–1139
Generator, electric. See Electric generator
Geometric optics, 876, 951
Geometric shapes

properties of, A8
rotational inertia, 279

Geometry review, A8–A9
Geostationary orbit, 176–178
Germer, Lester H., 1057

GFI (ground fault interrupter), 779
Giga- (prefix), 10
Glaser, Donald, 728
Glashow, Sheldon, 1135, 1138
Glider, 94, 130–131
Global Positioning System (GPS), 1140
Global warming. See Climate change
Gluon, 1135–1137
Gold

density of, 345
medal making, 523
nuclides, B6

GPS (Global Positioning System), 1140
Graph

acceleration, 40–41
acceleration and velocity, 38–39
binding energy curve, 1095
dependent variable of, 16
displacement vectors, 62–63
displacement with changing velocity, 35–36
displacement with constant velocity, 35
impulse, calculation of, 247–249
independent variable of, 16
instantaneous velocity, 33–34
of linear functions, A1–A2
log-log, A6
position and velocity, 33–36
procedure for, 16–17
projectile motion, 75–76
semilog, A4–A5
simple harmonic motion, 391–393
stress-strain, 377–378
vector addition, 61, 62–63, 65–66
waves, 419, 421–423

Grating, 966–970, 978–980
Grating maximum, 967
Grating spectroscope, 968–969
Gravimeter, 110
Gravitation, universal law of, 108, 215
Gravitational constant, 108
Gravitational energy, 199
Gravitational field, 109–110
Gravitational field strength

definition of, 109
at high altitude, 109
on other planets, 111
variations in, 110

Gravitational force
brane theory and, 1140
of Earth (See Earth)
as fundamental force, 138
as long-range force, 95
magnitude, 108
overview, 108–111
torque and, 287
unification challenges, 1138–1140

Gravitational lensing, 938
Gravitational potential energy

constant gravitational force, 209–210
of fluid, 351
hill-climbing car, 226–227
jumping, 223
negative algebraic sign, 210
orbiting objects, 215–218
similarities with electric potential energy, 629–630
zeroing of potential energy, 212

Gravitational wave, 1140
Graviton, 1135
Gravity

apparent weight, 134–136, 184–186
artificial, 185
buoyancy and, net force, 343–344
center of, 287, 296–297
on Earth (See Earth)
fluid pressure and, 336–339
free fall, 46–48, 110
as long-range force, 95
projectile motion, 72–78 (See also  

Projectile motion)
specific, 344–346

Gray (Gy), 1110
Greek letters, A15–A16
Greenhouse gas, 537–538
Grinding wheel, torque in, 303

Ground fault interrupter (GFI), 779
Grounding

appliances, 700–701
conductors, 589–590
power lines, 810–811

Groundspeed, 79
Ground state

definition of, 1038
electron configuration, 1070
of a solid, 1073

Guitar string, 416
Gun

angular momentum of bullet, 311
recoil, 251, 253

Gymnarchus niloticus, 583, 604
Gymnastics

iron cross, 276, 299–300
pike position, 296

Gyroscope, 311

H
Hadron, 1113
Hafele, J. C., 1000
Hahn, Otto, 1117
Half-life, 1105–1109, B5–B6
Half-wave rectifier, 823
Hall, Edwin Herbert, 736
Hall effect, 736
Hall field, 736
Hall probe, 736
Hall voltage, 736
Halogen, 1072
Hammer throw, 159, 169–170
Hancock Tower (Boston), 373, 399
Hang gliding, 201
Hanshin earthquake (Japan), 411, 432
Harmonic analysis, 457
Harmonic motion, simple. See Simple  

harmonic motion
Harmonic synthesis, 457–458
Harmonic wave. See also Simple harmonic motion

standing, 429–432
traveling, 419–423

Heading, 79
Hearing. See Ear
Heat

adiabatic processes, 555
calorimetry, 518–519
definition of, 478, 514
direction of flow, 515
heat capacity, 516
internal energy, 512–513
latent, 522–523
molar specific, 520
overview, 514–516
phase transitions, 521–527
specific (See Specific heat)
thermal conduction, 527–530
thermal convection, 530–532
thermal expansion (See Thermal expansion)
thermal radiation, 532–538
work and, 515

Heat capacity, 516
Heat engine

algebraic sign conventions, 561, 565
cyclical, 561–562
efficiency, 562–564

Heat flow. See also Thermodynamics
conduction (See Thermal conduction)
cooling a drink, 524–525
direction of, 515
heat engine, 561–564
heat pump, 564–567
irreversibility, 560–561
radiation (See Thermal radiation)
thermal convection, 530–532

Heating element, 808
Heat pump

algebraic sign conventions, 565
coefficient of performance, 565–566
overview, 564–565
reversible, 567

Friction—(Cont.)
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Heat reservoir, 555
Height limit, 379–380
Heisenberg, Werner, 1062–1064
Heisenberg uncertainty principle, 1062–1064
Helium

balloon, molecules in, 486–487
Bohr model, 1041–1042
emission spectrum, 1034–1035
heating of, 521
nuclides, B5

Helium-neon laser, 1076
Henry, Joseph, 788
Herschel, William, 841
Hertz, Heinrich, 837, 843, 1024–1025
Hertz (Hz), 163
Higgs, Peter W., 1137
Higgs boson, 1138
Higgs field, 1137–1138
Higgs particles, 1141
High-pass filter, 824
Hippopotamus, buoyancy of, 331, 345
Hockey puck, 250, 262–264
Hole in valence band, 1074
Homeothermic animal, 477, 497–498
Hooke, Robert, 219
Hooke’s law

ideal strings and, 219–220
shear deformation, 380
simple harmonic motion, 385
tensile and compressive forces, 374–377
volume deformation, 383

Horsepower, 225
Household wiring

drift speed in, 676
European wall outlet, 810
magnetic field due to, 745–746
overview, 810–811
power supply, 807

Hubble, Edwin, 864
Hubble’s law, 864
Hubble Space Telescope, 175, 917, 937–938
Human body. See also Medical applications

air pressure on diver, 490–491
alveoli, 359
aneurisms, 353
arterial blockage, 357
arterial flutter, 353
ballistocardiography, 251
blood (See Blood)
bones (See Bone)
ear (See Ear)
electric current, effects on, 700
eye (See Eye)
foot in traction apparatus, 97
heavy lifting, 301–302
jumping mechanics, 222
lungs (See Lung)
nerve impulses, 638–639, 699–700
pressure on diver’s eardrum, 338
protection from injury, 245–246
sensitivity of ear, 413
skeleton (See Bone)
skin emissivity, 534
spinal column, 378
surface area approximation, 15–16
temperature (See Body temperature)
tendons, 122–123, 374
tensile forces in, 122–123
thermal radiation from, 536
touching toes, 296–297
urine, specific gravity, 344
walking speed, 397
withstanding acceleration, 168, 185–186

Humidity, speed of sound and, 446
Hurricane, angular momentum of, 308
Huygens, Christiaan, 875
Huygens’s principle, 875–879, 970–971
Hydraulic system, 335–336
Hydrogen

Bohr model of atom, 1037–1041
bonds, 587–588
emission spectrum, 1034–1035
energy levels of atom, 1038–1040
nuclear fusion, 1121–1122

nuclides, B5
quantum mechanics model of atom, 1067–1068
quantum numbers for electron, 1067–1068
speed of sound in, 447
wave functions for electron, 1067–1068

Hydrostatic paradox, 338–339
Hydrostatics, 332
Hyperopia, 927–928

I
Ice

making, 524
melting, 525

Iceberg, depth of, 345–346
Ideal ammeter, 695
Ideal battery, 644, 671–672
Ideal blackbody, 533–534
Ideal cord, 120, 127–129
Ideal diode, 823
Ideal engine, 566–569
Ideal fluid

Bernoulli’s equation, 350–354
continuity equation, 348–349
definition of, 348
Torricelli’s theorem, 352
Venturi meter, 352–353

Ideal gas
entropy change during expansion, 570–571
isobaric processes, 556–558
isochoric processes, 556
isothermic processes, 558–559
kinetic theory, 491–496
specific heat, 520–521
thermal expansion, 488–491
thermodynamic processes, 556–559

Ideal gas law, 488–491
Ideal observer, 996–997
Ideal polarizer, 857–858
Ideal pulley, 123, 127–129, 199–200
Ideal solenoid, 747–748
Ideal spring

elastic potential energy, 221
Hooke’s law, 219–220
simple harmonic motion, 384, 386–387
work done by, 221

Ideal spring-mass system, 389–391
Ideal transformer, 783–784
Ideal voltmeter, 696
Igloo, heat flow, 529
Image, formation of

by lenses, 900–905
by mirror, 890–892 (See also Mirror)

Image distance, 898
Impedance, 817–818
Impulse

definition of, 244–245
graphical calculation, 247–249
when forces are not constant, 245

Impulse-momentum theorem, 244–250
Incidence

angle of, 853, 878
normal, 852
plane of, 878

Incline
dissipation of energy by friction, 512–513
equilibrium on, 116–119
moving a chest, 203–205
normal force on, 112
pulley with two blocks, 131–133
pushing object up, 118–119
rolling ball, 295–296
rotational inertia of balls on, 304–306
sliding brick, 43–44
toppling file cabinet, 295–296

Incoherent wave, 428, 450–451
Incompressible, definition of, 332
Incompressible fluid, continuity equation,  

348–349
Independent variable, 16
Index of refraction

of air, 956–957
common materials, 880

definition of, 847
human eye, 925

Induced electric field, 786–787
Induced nuclear reaction, 1115–1116
Inductance, 787–791
Induction

charging a conductor, 590–591
electromagnetic, 767–794 (See also 

Electromagnetic induction)
polarization by, 587

Inductor. See also LR circuit; RLC series circuit
in ac circuits, 815–816
in circuits, 788–789
reactance, 815

Inelastic collision, 260
Inertia

definition of, 100
law of, 100
mass and, 104–105
rotational, 278–282, 311
in snow shoveling, 101

Inertial confinement, 1124
Inertial reference frame

definition of, 992
Newton’s first law and, 133–134
Newton’s laws of motion and, 133–134
principle of relativity and, 993 (See also  

Special relativity)
Inflation of universe, 1140
Infrared radiation, 841–842
Infrasound, 444–445
In phase, constructive interference, 426, 951
Insect, surface tension and, 359
Instantaneous acceleration, 70
Instantaneous angular acceleration, 182
Instantaneous angular velocity, 160
Instantaneous power, 225
Instantaneous velocity

definition of, 31–32
displacement and, 31–32
graphical representation, 33–35
linear motion, 31–35
planar motion, 68–69

Insulator, 588–593
charging by rubbing, 589
electron energy levels, 1073–1074

Intensity
amplitude and, 447–448
attenuation of sound waves, 445
electromagnetic waves, 852–853
interference and, 427–428
of sound waves, 447–452
of waves, 413–414

Interaction, fundamental. See Fundamental force
Interaction pair, 106–108
Interaction partner, 106–108
Interference

beats, 460–462
coherent waves, 951–953
constructive, 426, 951–953
destructive, 426, 953
double-slit experiment, 963–966, 974–975
due to path difference, 427, 953–955
in films (See Film, thin)
gratings and, 966–970
in holography, 979–980
incoherent waves, 951
intensity and, 427–428
iridescence of butterfly wings, 961–963
light, 951–970
Michelson interferometer, 955–957
microwave beams, 954–955
sound intensity and, 450
of sound waves, 460–462
sources of, 951

Interference microscope, 957
Internal combustion engine, 562–564
Internal energy

definition of, 512–513
description, 199
equipartition of energy, 521
first law of thermodynamics,  

551–552
Internal force, 107–108
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Internal reflection, total, 883–888
Internal resistance, 682, 694
International Linear Collider, 1141
International Space Station, 184
Invariance, 1009
Inverse trigonometric function, A11
Io, 101
Iodine nuclides, B6
Ion

definition of, 585
magnetic force on, 726

Ionization energy, 1042
Ionizing radiation, 1109–1110
Iron

as ferromagnetic substance, 750–751
nuclides, B5

Iron cross, 276, 299–300
Irreversible process, 559–561, 569–570
Ischoric process, 555
Isobaric process, 554–558
Isochoric process, 556
Isosceles triangle, A8
Isotherm, 555
Isothermal process, 555, 558–559, 569
Isotope, 1090

J
Jewelry making, silver in, 523
Joule, James Prescott, 199, 200, 514
Joule (J)

conversion to electron-volt, 1008, 1028
as unit of energy, 10, 514

Joyce, James, 1133
Jumping, 222–224
Junction rule, 683–684
Jupiter, aurorae, 732

K
Kangaroo, jumping mechanics, 197, 223–224
Keating, R. E., 1000
Keck telescope, 937
Kelvin, Lord (William Thomson), 479
Kelvin (K), 9, 446, 479
Kelvin scale, 479
Kepler, Johannes, 175
Kepler laws of planetary motion, 175–176
Keyboard, 646
Kilogram (kg), definition of, 9
Kilogram-meters per second, 243
Kilo- (prefix), 10
Kilowatt-hour, 225
Kinematic equation, constant acceleration, 41–46
Kinetic energy

bungee jumping and, 208–209
collision damage and, 208
in collisions, 259–260
definition of, 199, 1009–1010
escape speed and, 217–218
of fluid, 351
ideal gas, 491–496
increase in, 14
overview, 207–209
proton cyclotron, 731
rock climbing, 213
in rolling object, 303–304
rotational (See Rotational kinetic energy)
in simple harmonic motion, 385
skiing, 214–215
special relativity and, 1009–1013
temperature and reaction rates, 496–498
translational, 199, 303–304

Kinetic (sliding) friction
definition of, 113
direction of, 114
dissipation, 207
force of, 113
on molecular level, 116

Kinetic theory of ideal gas
Maxwell-Boltzmann distribution, 495–496
microscopic basis of pressure, 491–493

rms speed, 494
temperature and translational energy, 493–494

Kirchhoff, Gustav, 683
Kirchhoff’s rules

circuit analysis, 690–693
description, 683–684

Krypton nuclides, B6

L
Ladder, rotational equilibrium, 292–293
La grève du Bas Butin à Honfleur (Seurat), 977
Laminar flow, 347
Lantern, electric potential difference, 634
Lanthanide element, 1072
Large Hadron Collider (LHC), 1132, 1138, 

1140–1141
Laser

argon-ion laser, 1077
carbon dioxide laser, 1076–1077
helium-neon laser, 1076
medical applications, 1077
metastable states, 1075
Nd:YAG laser, 1076
overview, 1074
photon emission, 1027
ruby laser, 1075–1076
semiconductor laser, 1077
stimulated emission, 1074

Laser Interferometer Gravitational-Wave Observatory 
(LIGO), 1140

Laser printer, 592–593, 976–977, 1077
Latent heat of fusion, 522–523
Latent heat of vaporization, 522–523
Lathe, sound intensity level, 450–451
Law of cosines, A11
Law of inertia, 100
Law of sines, A11
Law of universal gravitation (Newton), 108, 215
Lawrence, Ernest O., 730
Laws of conservation

angular momentum, 307, 310
charge, 584
energy (See Conservation of energy)
momentum, 242, 250–253, 1032
radioactive decay, 1098

Laws of motion. See Newton’s laws of motion
Laws of planetary motion (Kepler), 175–176
Laws of reflection, 878
Laws of refraction, 879
Laws of thermodynamics. See Thermodynamics
LCD (liquid crystal display), 859
Lead

nuclides, B6
radioactive dating and, 1108–1109

Length
contraction, 1001–1003
as dimension, 12
proper, 1002

Lens. See also Refraction
algebraic sign conventions, 904
in combination, 918–921
focal length, 901
focal point, 901
image formation, 900–905
magnetic coil as, 934
magnification, 903–905
objects and images at infinity, 905
optical center, 900
orientation of virtual image, 903
paraxial rays, 901
principal axis, 900
principal rays, 902
refracting telescopes, 934–936
refractive power, 926
thin lens equation, 904–905
zoom lens, 904–905

Lenz, Henrich Friedrich Emil, 779
Lenz’s law, 779–782
Lepton

as fundamental particle, 1134–1135, 1141
string theory and, 1140
weak force and, 1137

Lever, 297
Lever arm, 285–287
LHC. See Large Hadron Collider
LHCb detector, 1132
LHCf detector, 1132
Lift

banking angles and, 174
Bernoulli’s principle, 354
constant acceleration and, 130–131
momentum and, 252
net force and, 98–99

Light
diffraction, 970–975 (See also Diffraction)
double-slit experiment, 963–966, 974–975
as electromagnetic radiation, 840–841
geometric optics, 876
gratings and, 966–970
holography, 979–980
Huygens’s principle, 875–877
interference, 951–970
Michelson interferometer, 955–957
polarization of (See Polarization)
quanta of (See Photon)
rays, 874–876
reflection of (See Reflection)
refraction of (See Refraction)
resolution and, 975–978
sources, 874
speed of (See Speed of light)
thin film interference, 957–963
transmission of, 878
travel time from nearby supernova,  

846–847
wavefronts, 874–876

Lightbulb
electromagnetic fields, 853
power dissipated by, 5
resistance in, 810

Lightning, 651–652
Lightning rod, 612
Light-year, 1000
LIGO (Laser Interferometer Gravitational-Wave 

Observatory), 1140
Linear accelerator, 1141
Linear expansion, 480–482
Linear function, graphing of, A1–A2
Linear magnification. See Transverse magnification
Linear mass density, 415
Linear momentum

vs. angular momentum, 307
bodily injury protection and, 245–246
car collision with tree, 246–247
center of mass, 253–258
collision of cars on entry ramp, 261–262
collisions and, 258–264
conservation law for vector quantity, 242
conservation of, 242, 250–253, 258–259
definition of, 242–243
elastic collisions, 259–260
impulse-momentum theorem, 244–250
inelastic collisions, 260
jet propulsion in squid, 252
molecular collision in air, 258–259
one-dimensional collisions, 258–262
perfectly inelastic collisions, 260
restatement of Newton’s second law,  

249–250
rifle recoil, 251
superelastic collisions, 260
two-dimensional collisions, 262–264
as vector quantity, 242

Linear motion
acceleration, 36–48
constant acceleration, 40–48
with constant acceleration, 40–46
displacement, 28–30
free fall, 46–48
position and displacement, 28–30
velocity, 30–36

Linear polarization, 855
Linear relations, graphing of, 17
Linear speed, 162–164
Line of action, 285–286
Line spectrum, 1033–1035
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Measurement
of electric current, 695
of forces, 96
precision of, 15
of pressure, 339–342
of temperature, 478 (See also Thermometer)
of voltage, 695–696

Mechanical advantage, 297
Mechanical energy

escape speed and, 217–218
jumping, 223
orbiting objects, 216–217
overview, 211–212
rock climbing, 213
in simple harmonic motion, 385
skiing, 214–215

Mechanics, definition of, 95
Mediator particle, 1135–1136
Medical applications

ballistocardiography, 251
Bernoulli’s principle, 353
blood flowmeter, 735–736
brain scan, biologically equivalent dose, 

1110–1111
centrifuges, 164, 358–359
CT scans, 844
cyclotron, 731
defibrillator, 654
dental x-rays, 1027
diagnostic x-rays, 1030–1031
Doppler echocardiography, 43
electrocardiogram, 387
electrocardiograph, 628, 639
electroencephalograph, 639
electroretinograph, 639
endoscopy, 888
fission reactors, 1120
gel electrophoresis, 608–609
lasers, 1077
magnetic resonance imaging (MRI), 2, 748, 

790–791
magnetoencephalography, 779
photocoagulation, 1077
positron emission tomography, 1045–1046
of radiation, 1113–1114
specific gravity, 344
structure of biological molecules,  

determining, 979
thermal radiation, 536
traction apparatus, 97
ultrasound, 425–426, 442, 467–468
viscous drag, 358–359
x-rays, 844

Mega- (prefix), 10
Meitner, Lise, 1117
Melting point. See Phase transition
Mercury (element)

emission spectrum, 1034
manometer containing, 339–341
speed of sound in, 447
as superconductor, 681

Mercury (planet)
orbital precession, 1138
orbital speed around Sun, 216–217

Merry-go-round, rotational inertia, 280
Meson, 1113
Metal

differential expansion, 482–483
electric current in, 674–676
linear expansion, 482
parallel plate capacitor (See Parallel plate 

capacitor)
photoelectric effect in (See Photoelectric effect)
specific heat determination, 519

Metastable state, 1075
Meter (m), definition of, 9
Metric system, 9–10
Michelson, Albert, 994
Michelson interferometer, 955–957, 994
Michelson-Morley experiment, 994
Microphone

condenser microphone, 646–647
moving coil microphone, 779

Micro- (prefix), 10

Lion
sound intensity of roar, 450
speed and acceleration of, 27, 37

Liquid
definition of, 332
electric current in, 671

Liquid crystal display (LCD), 859
Lithium nuclides, B5
Localization of sound, 460
Lodestone, 718, 721
Logarithms, review of, A5–A6
Log-log graphs, A6
London Eye, 184
Longitudinal wave, 414–416
Long-range force, 95
Loop

Ampère’s law and, 748
electromagnetic induction, 770, 774–776,  

779–782
Faraday’s law, 774–776, 780–781
induced electric field, 786–787
Lenz’s law, 779–782
as magnetic dipole, 741
magnetic field due to, 746–747
torque on, 739–743

Loop rule, 683–684
Loop-the-loop, vertical, 179–181
Lorentz, Hendrik, 998
Lorentz factor, 998
Loudspeaker. See Audio speaker
Low-pass filter, 823–824
LR circuit

comparison to RC circuit, 792–793
large electromagnet, switching on and off, 

793–794
overview, 791–794
time constant, 792

Luminol test, 1022, 1043
Lung

alveoli, area of, 11
pressure, 359
surfactant in, 359

Lyman, Theodore, 1035
Lyman series, 1035, 1039–1040

M
Macrostate, 571–572
Macula lutea, 925
Magnesium nuclides, B5
Magnet

electromagnet, 751–752
permanent, 718–719

Magnetic confinement, 1124
Magnetic dipole

antenna, 839
current loop as, 741
electron as, 750
oscillating, 836–837
overview, 718–719
torque on, 741

Magnetic dipole moment, 741, 750–751
Magnetic energy, 789–790
Magnetic field

Ampère’s law, 748–750
bubble chamber, 728
crossed with electric field, motion of charged 

particle, 733–737
cyclotron, 730–731
definition of, 718
dipoles, 718–719
due to circular current loop, 746–747
due to electric current, 743–748
due to long straight wire, 744–746, 749–750
due to solenoid, 747–748
of Earth, 719–720
general movement of charged particle, 732
Hall probe, 736
induction by (See Electromagnetic induction)
magnetic navigation, 721
magnetic resonance imaging (MRI), 748
mass spectrometer, 728–730
permanent magnets, 718–719

perpendicular movement of charged particle, 
727–731

uniform, 727–732
Magnetic field line, 718–720
Magnetic flux

Faraday’s law and, 775–777, 780–781
Lenz’s law and, 779–782

Magnetic force
cross product of two vectors, 722–727
on current-carrying wire, 737–739
deflection of cosmic ray, 725
direction, 724, 727
on ion in air, 726
as long-range force, 95
on loop, 781
on particle moving in uniform magnetic field, 

727–732
on point charge, 721–727
work done by, 724

Magnetic material, 750–752
Magnetic monopole, 719
Magnetic resonance imaging (MRI), 2, 748,  

790–791
Magnetic storage, 752, 779
Magnetic torque

audio speaker and, 742–743
on current loop, 739–743
on dipole, 741
electric motor and, 741–742
galvanometer and, 742

Magnetism, 750–751
Magnetite, 718, 721
Magnetotactic bacteria, 717, 721
Magnetron, 843
Magnification

mirrors, 897–898
resolution and, 934
thin lenses, 903–905
transverse (See Transverse magnification)
two-lens combination, 919–920

Magnifying glass, 931–932
Magnifying power, 929
Magnitude

of gravitational force, 95
radial acceleration, 167–168
of vector, 64–65, 97

Malus, Étienne-Louis, 857
Malus’s law, 857
Manganese nuclides, B5
Manometer, 339–342
Mars Climate Orbiter, 1, 10
Mass

center of, 253–258
definition of, 3, 105
as dimension, 12
estimation of, 1091
as invariant quantity, 1009
momentum and, 243
of nuclides, 1091
of quark, 1133
special relativity and, 1007–1009
weight and, 105, 110

Mass defect, 1094
Mass flow rate, 348
Mass number, 1090, 1091
Mass spectrometer, 728–730, 733–734
Mass-spring system. See Spring-mass system
The Mathematical Principles of Natural Philosophy 

(Newton), 99
Mathematics. See also Equation

harmonic analysis, 457
need for, 3
review of, A1–A14

Matter
phases, 332
speed of light in, 847–849
states, 332
wave nature of, 1057–1060

Maxwell, James Clerk, 836–837, 993
Maxwell-Boltzmann distribution,  

495–496
Maxwell’s equations, 837, 993–994
Mean free path, 498–499
Mean lifetime, 1104
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Microscope
compound, 932–934
interference, 957
scanning tunneling microscope, 1078–1080
transmission electron, 934

Microstate, 571
Microwave

definition of, 842–843
home satellite dish, 938
interference, 954–955

Microwave oven, 843
Millibar, 339
Millikan, Robert, 358
Milli- (prefix), 10
Mirage, 882
Mirror

algebraic sign conventions, 899, 904
concave, 896–897
convex, 894–896
focal length, 898
focal point, 894–897
image distance, 898
object distance, 898
plane, 892–894
reflecting telescopes, 936–937
transverse magnification, 897–898

Mirror equation, 898–900
Mizar, 975–976
Moderator, 1119
MoEDAL detector, 1132
Molar mass, 486
Molar specific heat, 520
Molecular/atomic level. See also Atom; Molecule; 

Particle physics; Quantum physics
Avogadro’s number, 485
collisions, 258–259
electric current in metals, 674–678
fluid pressure, 332–333
friction, 116
gases, 484–487
internal and external forces, 107
magnetic materials, 750–751
molar mass, 486
molecular mass, 485
moles, 485
normal force, 112
number density, 484–485
phase changes, 523
polarization in dielectrics, 649
pressure of ideal gas, 491–493
specific heat of ideal gas, 520–521
states of matter, 332
thermal expansion, 516
water, 332
waves, 415

Molecular mass, 485
Molecule

activation energy, 496
behavior at room temperature, 494–495
magnetic dipole moment of, 750
Maxwell-Boltzmann distribution, 495–496

Mole (mol), 9, 485
Moment, magnetic dipole, 741
Moment arm, 285–287
Moment of inertia, 278. See also Rotational inertia
Momentum

angular, 306–313 (See also Angular momentum)
of electron, 1012–1013
linear, 241–264 (See also Linear momentum)
relativistic, 1005–1007, 1011

Momentum-position uncertainty principle, 
1062–1064

Monochromatic aberration, 939
Monopole, 719
Moon

acceleration on, 105
astrophysical data, B3
gravitational force, exerted by  

Earth, 108
pendulum on, 395
weight on, 111

Morley, Edward Williams, 994
Moss spores, ejection of, 43

Motion
acceleration (See Acceleration)
of center of mass, 256–258
circular, 159–186 (See also Circular motion)
with constant acceleration, 40–46 (See also 

Constant acceleration)
displacement and (See Displacement)
Doppler effect and, 462–466
harmonic (See Simple harmonic motion)
linear (See Linear motion)
Newton’s laws of (See Newton’s laws of motion)
orbit (See Orbit)
projectile motion, 72–78 (See also  

Projectile motion)
rolling (See Rolling)
rotational (See Rotation)
velocity (See Velocity)

Motional emf
electric generators and, 771–774
Faraday’s law and, 777
overview, 768–770

Motion diagram
constant acceleration, 40
definition of, 32
pendulum bob, 181
projectile motion, 73
rotation of rigid object, 160
uniform circular motion, 167

MRI. See Magnetic Resonance Imaging
M-theory, 1140
Multiplication

significant figures and, 7–8
of vectors (See Vector)

Muon
cosmic rays and, 1134
survival of, 1003

Muscle
holding arm horizontal, 298–299
jumping, 223
rotational equilibrium, 298–302
structure, 299–301
tensile forces in, 122–123

Mutual inductance, 787–788
Myopia, 926–927

N
Nano- (prefix), 10
NASA, 1, 10, 168
Natural convection, 531
Natural frequency, 430
Natural philosophy, study of, 2
Natural sources of radiation, 1111–1112
Navigation

compass and, 718–719
echolocation, 467
magnetic, 721

Nd:YAG laser, 1076
Near point, 926
Nearsightedness, 926–927
Negative work, 201–202
Neodymium nuclides, B6
Neon

emission spectrum, 1034–1035
nuclides, B5

Neon sign, 671, 1034–1035
Neptunium nuclides, B6
Nerve impulse, 638–639
Net charge, 584
Net force

on airplane, 98–99
buoyancy and gravity, 343
definition of, 98
free-body diagrams, 98

Net work, 205
Network

crossover networks, 824
in series and parallel, 689

Neuron, 638–639
Neutrino

in beta-plus decay, 1101
discovery of, 1101–1102

from fusion in Sun, 1134–1135
as particle involved in radioactive decay, 1098

Neutrino oscillation, 1135
Neutron

electric charge, 585
energy levels, 1095–1097
as hydrogen nuclide, B5
magnetism of, intrinsic, 750
mass, 585
nuclear structure and, 1090
number in atom, 1091
as particle involved in radioactive decay,  

1098, 1103
Neutron activation, 1115–1116
Neutron activation analysis, 1089, 1116
Neutron diffraction, 1059–1060
Neutron emission, 1103
Newton, Isaac, 9, 99, 555
Newtonian physics. See Classical physics
Newton-meter (N·m), 220, 283
Newton (N)

conversion to pounds, 96
definition of, 96, 104
naming of, 9

Newton’s law of universal gravitation, 108, 215
Newton’s laws of motion

application of, 124–133
first, 99–103, 282
overview, 99
reference frames and, 133–134
second, 103–105 [See also Second law of  

motion (Newton)]
third, 106–108 [See also Third law of  

motion (Newton)]
NGC 6251, 991, 996–997
Nickel nuclides, B6
Nitrogen-13

beta decay of, 1102
decay rate, 1105

Nitrogen nuclides, B5
Nobel Prize in physics, 844, 995
Noble gas, 1072
Node

displacement, 452–454
pressure, 452–455
standing wave, 430

Nonconservative electric field, 787
Nonconservative force, 211
Nondispersive medium, 849
Nonlinear relations, graphing of, 17
Nonrelativistic equation, use of, 1012
Nonrelativistic particle, 1012
Nonuniform circular motion

angular acceleration, 182–184
Ferris wheel, 184
overview, 178–179
pendulum bob, 181–182
potter’s wheel, 183–184
vectors, 178
vertical loop-the-loop, 179–181

Normal force
apparent weight, 134–136
banked curves, 171–174
as distributed force, 295
dragging a suitcase, 125–126
overview, 111–112
vertical loop-the-loop, 179–181
work done by constant force, 201–202

Normal incidence, 852
North pole, 718
North Star, 311
Notation, change in value (∆), 17
Nuclear energy

fission, 1117–1121
as form of energy, 199
fusion, 1121–1124

Nuclear physics. See also Nucleus
biological effects of radiation, 1109–1114
decay rates and half-lives, 1103–1109
radioactivity and, 1097–1103

Nuclear reactor
fission, 1119–1121
fusion, 1123–1124
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Perfectly inelastic collision, 260
Period

definition of, 387
of ideal mass-spring system, 389–391
of simple harmonic motion, 387–391
of uniform circular motion, 163
of wave, 418–419

Periodic motion
simple harmonic motion (See Simple  

harmonic motion (SHM))
uniform circular motion (See Uniform  

circular motion)
Periodic table, 1071–1072, B4
Periodic wave, 418–419
Periscope, 885
Permeability, relative, 751
Permeability of vacuum, 745
Permittivity of vacuum, 605
Peta- (prefix), 10
PET (positron emission tomography),  

1045–1046, 1113
Phase constant, 420
Phase diagram, 525–527
Phase difference in waves, 428, 953–955
Phase of matter, 332
Phase transition

evaporation, 525
ice, 524–525
jewelry making with silver, 523
latent heat, 522–523
phase diagrams, 525–527
sublimation, 526–527

Phasor, 817
Phasor diagram, 817
Philosophiae Naturalis Principia Mathematica 

(Newton), 99
Phosphor, 1043
Phosphorescence, 1042–1043
Photino, 1140
Photocoagulation, 1077
Photoconductor, 593
Photocopier, 592–593
Photoelectric effect

experimental results, 1024–1025
overview, 1024–1025
photon theory, 1026–1029
quantization of energy and, 1026–1029

Photolithography, 971
Photon

Bohr model of atom and, 1037
chemiluminescence, 1022, 1043
Compton scattering and, 1031–1033
deflection in uniform electric field, 607
double-slit interference experiment, 1056
emission in lasers, 1027
energy of, 1026
fluorescence, 1042–1043
gamma ray (See Gamma ray)
laser emission, 1027
momentum, 1032
pair annihilation, 1044–1045
pair production, 1044
as particle involved in radioactive decay, 1098
phosphorescence, 1042–1043
photoelectric effect and, 1026–1029
positron emission tomography, 1045–1046
probability and, 1056–1057
stimulated emission and, 1074
wave-particle duality, 1056–1057
x-ray (See X-ray)

Photophone, 873, 888
Physical constant, B1
Physical data, B3
Physical pendulum, 395–397
Physics

nuclear (See Nuclear physics)
particle (See Particle physics)
purpose and value of, 2
quantum (See Quantum physics)
terminology, precision of, 2

Piano tuning, 461–462
Pico- (prefix), 10
Pilots, withstanding acceleration, 168, 185–186

Nucleon
definition of, 585
energy levels, 1095–1097
nuclear structure and, 1090

Nucleon number, 1090
Nucleus

binding energy, 1093–1097
discovery of, 1035–1037
energy levels, 1095–1097
fission of, 1117–1121
fusion of, 1121–1124
induced nuclear reactions, 1115–1116
mass of, 1091
radius of, 1092–1093
size of, 1092–1093
structure of, 1090–1093

Nuclide
daughter, 1099
definition of, 1090
parent, 1099
properties of selected, B5–B6
stability, 1098

Number density, 484–485

O
Object distance, 898
Objective, 932
Ocean wave

motion of, 416
refraction of, 426

Ocular, 932
Oersted, Hans Christian, 718, 743, 774
Ohm, Georg, 676
Ohm’s law, 676–678
Ommatidia, 862
One-dimensional collision, 258–262
Onnes, Kammerlingh, 681
Optical center of thin lens, 900
Optical instrument

aberrations in, 938–939
angular magnification, 929–930
cameras, 921–924 (See also Camera)
compound microscopes, 932–934
human eye, 924–929 (See also Eye)
lenses in combination, 918–921
resolution, 934, 975–978
simple magnifier, 930–932
telescopes, 934–938 (See also Telescope)
total internal reflection, 885–886

Optical pumping, 1075
Optics

fiber, 887–888, 1077
geometric, 876

Orbit
angular momentum in planetary orbits, 309–310
apparent weight in, 184–186
Bohr model of atom, 1037–1038
circular, 174–178
elliptical, 175–176
geostationary, 176–178
gravitational potential energy, 215–218
radial acceleration, 174–178
satellites, 174–175
of satellites, 106–107
speed of Mercury, 216–217

Orbital, 1070–1071
Orbital angular momentum quantum number, 

1067–1068
Orbital magnetic quantum number, 1068
Order-of-magnitude solution, 8–9
Oresme, Nicole, 78
Organ of Corti, 459
Organ pipe, 453
Origin, 28
Oscillation. See also Simple harmonic motion

damped, 397–398, 431–432
forced, 398–399
neutrino, 1135
physical pendulum, 395–397
resonance, 398–399, 431–432, 821–822
seismic waves (See Seismic wave)

simple pendulum, 393–395
waves (See Wave)

Oscilloscope, 647
Osteoporosis, 378
Ötzi, age of, 1107
Oval window, 458
Overtone, 457
Oxygen nuclides, B5

P
Paddle wheel, internal energy, 515
Paintings

conservation of, 1089, 1116
resolution in, 977

Pair annihilation
electron-positron pair, 1044–1045
quark-antiquark pair, 1133

Pair production, 1044
Parabolic mirror, 939
Parachute, 136–137
Parallel circuit, 686–690
Parallel plate capacitor

capacitance with dielectric, 648, 650
computer keyboard, 646
condenser microphone, 646–647
definition of, 644
dielectrics of (See Dielectric)
energy storage, 653–655
with one movable plate, 646–647
overview, 644–645

Paramagnetic substance, 750
Parent particle, 1008, 1099
Partially polarized wave, 859–862
Particle. See also specific particle

in a box, wave functions, 1065–1067
confined, 1064–1067
extremely relativistic, 1012
fundamental interaction of (See  

Fundamental force)
physical world model, 412
point, 108
tunneling, 1077–1080
as wave packet, 1062–1063

Particle accelerator
in hospitals, 1114
Large Hadron Collider (See Large  

Hadron Collider)
types of, 1141

Particle physics
brane theory, 1140
bubble chamber, 728
fundamental forces, 1135–1138
fundamental particles, 1133–1135
higher dimensions and, 1140
leptons, 1134–1135
M-theory, 1140
muons, 1134
particle accelerators, 1141
quarks, 1133–1134
standard model, 1137–1138
string theory, 1140
supersymmetry, 1140
unanswered questions, 1141–1142
unification of fundamental forces, 1138–1140

Pascal, Blaise, 333
Pascal (Pa), 333, 351, 375
Pascal’s principle, 334–336
Paschen, Friedrich, 1035
Paschen series, 1035, 1039–1040
Pauli, Wolfgang, 1069
Pauli exclusion principle, 1069–1072, 1095–1096
Peak value of sinusoidal emf, 808
Pendulum

acceleration of bob, 181–182
conical, 170–171
physical, 395–397
simple, 393–395
simple harmonic motion of, 393–397
tension in string, 202

Penzias, Arno, 843
Percentage, A7
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Piñata, 417–418
Pinna, 458
Pipe, standing waves in, 452–456
Pitch, 459–460
Planck, Max, 1024
Planck’s constant, 1024
Plane of incidence, 878
Plane of vibration, 855
Plane polarization, 855
Plane-polarized wave, 855
Planet

atmospheric composition, 495–496
gravitational field strength on other, 111
orbits, 175–176, 309–310 (See also Orbit)

Planetary model of atom, 1036–1037
Plasma, 1124
Plum pudding model of atom, 1035–1036
Plutonium-239, 1120
Plutonium nuclides, B6
Poikilothermic animal, 497–498, 533
Point charge

definition of, 593
electric field due to, 599–601
electric field lines, 602–603
electric force on, 594, 597
electric potential, 634–636
electric potential energy, 631–632
equipotential surfaces for two charges, 641
magnetic force on, 721–727
motion in uniform electric field, 605–609
production of electromagnetic waves, 836–837
speed of in galactic jet, 991, 996–997

Pointillism, 977
Point of application, torque and, 283
Point particle, 108
Poise (P), 355
Poiseuille, Jean Léonard Marie, 355
Poiseuille’s law, 355–356
Poisson, Siméon Denis, 972
Poisson spot, 972
Polaris, 311
Polarization

circular polarization, 856
detection by bees, 835, 862
electric force and, 586–588
LCDs, 859
linear polarization, 855
muscle cells and, 639
plane-polarized, 855
polarizers, 856–858
random polarization, 856
by reflection, 888–889
scattering, 859–862

Polarizer, 856–858
Pole vaulter, center of mass, 254
Polonium-210

alpha decay in, 1099–1100
Polonium nuclides, B6
Popsicle, 524
Population inversion, 1075
Position. See also Displacement

constant acceleration and, 40–41
definition of, 28
velocity and, 33–36

Position-momentum uncertainty principle, 
1062–1064

Positive streamer, 651–652
Positive work, 201–202
Positron

in beta-plus decay, 1101
discovery of, 1043–1044
pair annihilation and, 1044–1045
pair production and, 1044
as particle involved in radioactive decay, 1098

Positron emission tomography (PET), 1045–1046, 1113
Postulates of relativity, 992–995
Potassium-40, 1102
Potassium nuclides, B5
Potential. See Electric potential
Potential difference. See Electric potential difference
Potential energy

algebraic sign conventions, 630
change in, 629

conservation of, 221–222
conservative forces, 211, 215
definition of, 199, 209
elastic, 211, 221–224
electric (See Electric potential energy)
escape speed and, 217–218
gravitational, 209–210, 212–218
orbiting objects, 216–217
rock climbing, 213
skiing, 214–215
zeroing, 212

Potter’s wheel, 183–184, 288–289
Pound, converting to newton, 96
Power

average, 225
bacteria flagella as motor, 225
capacitor in ac circuit, 814
charging capacitor, 697
circuits and, 693–695
constant torque and, 288
definition of, 224
dissipation by lightbulb, 5
dissipation by resistor, 693–694
by emf (See Emf)
hill-climbing car, 226–227
inductor in ac circuit, 816
instantaneous, 225
internal resistance and, 694
isotropic source of waves, 414
from Sun, 854

Power factor, 819–820
Power flux density, 843
Power plant

coal-burning, 568–569
fission reactors, 1119–1121
fusion reactors, 1123–1124

Precision
of data, estimating, 15–16
of measurement, 5, 15

Presbyopia, 928
Pressure

atmospheric, 333–334
average, 333
barometer, 341
blood, 334, 342
bubbles and, 359–360
buoyant force and, 342–347
definition of, 333
on diver’s eardrum, 338
in drinking straw, 342
fluid flow and, 350–354
gauge pressure, 340
gravity effects on, 336–339
hydraulic systems, 335–336
hydrostatic, 338–339
ideal gas and, 488–496
isobaric processes, 554–555
manometer, 339–341
measurement, 339–342
microscopic origin of, 332–333
Pascal’s principle, 334–336
stiletto-heeled shoes on floor, 333–334
units of, 333, 339
variation with depth, 336–338

Pressure gradient, 355
Pressure node and antinode, 452–455
Pressure versus volume curve, 552–557
Principal axis

concave mirror, 896
convex mirror, 894
thin lens, 900

Principal quantum number, 1067
Principal ray, 895–896, 902
Principia (Newton), 99
Principle of relativity, 993–994
Principle of superposition. See Superposition
Prism

dispersion in, 883
light and, 849
total internal reflection, 884–885

Probability
electrons and, 1060
photons and, 1056–1057

radioactive decay, 1067
wave function for confined particle, 1066

Problem-solving strategies
alternate solution methods, 198
angular frequency, 389
antennas, 839
apparent weight, 135
axes, choice of, 66
circuit analysis using Kirchhoff’s rules, 691
collisions, 260
Coulomb’s law, 594
Doppler effect, 464
finding an image, 891
guidelines, 14–15
ideal gas law, 489
ideal polarizers, 857–858
length contraction, 1002
magnetic force on current-carrying wire, 738
magnetic force on point charge, 724
mechanical energy, 212
nonuniform circular motion, 179
polarization by scattering, 861
relative velocity, 1004
rotational equilibrium, 290
rotational inertia, 278
second law of motion, 124, 169
standing waves, 456
thin films, 959
time dilation, 1000
torque, using lever arm, 286
uniform circular motion, 169
vectors, 64–66
work done by constant force, 203

Projectile, 72–73
Projectile motion

constant acceleration and, 72–78
escape speed of Earth, 217–218
generally, 72–78
graphs, 75–76
hammer throw, 169–170

Proper length, 1002
Proper time interval, 999
Proportion, 4, A7
Proportional limit, Hooke’s law, 376
Protein, hydrogen bonds in, 588
Proton

electric charge, 585
energy levels, 1095–1097
magnetism of, intrinsic, 750
mass, 585
as particle involved in radioactive decay,  

1098, 1103
as point charge, 593
stability, 1142

Proton beam radiosurgery, 731
Proton-proton cycle of fusion, 1122
Puck, collision of, 250, 262–264
Pulley

Atwood’s machine, 127–129, 281–282
block and tackle, 129–130
ideal (See Ideal pulley)
incline and two blocks, 131–133
sliding block and hanging block, 131–133
in traction apparatus, 97
two-pulley system, 123–124
work done by constant force, 199–200

Pulsar, angular momentum of, 308
Pupil, 925
PV diagram, 552–557

Q
Quadratic equations, solving, A3
Quanta, 1024
Quantization, 1023
Quantum mechanical model of atom

Bohr model vs., 1041
electron configurations, 1069–1072
ground-state configuration, 1070
hydrogen, 1067–1068
nucleus, 1095–1097
orbitals, 1070–1071
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of light, 877–878 (See also Mirror)
phase shift due to, 958–959
polarization by, 888–889
specular, 877
total internal, 883–888
transmission and, 878
waves, 424–426

Reflection grating, 969–970
Refracting telescope, 934–936
Refraction

definition of, 426
dispersion in prism, 883
image formation, 890–892
index of, 847, 880, 925
mirages, 882
rainbows, 883–884
Snell’s law, 878–883
at water-air boundary, 880–881
window pane, 881

Refractive power, 926
Refrigerator

algebraic sign conventions, 565
coefficient of performance, 565–566
reversible, 567

Relative biological effectiveness (RBE), 1110
Relative permeability, 751
Relative velocity

practical applications, 79–81
reference frames, 78–82
in two-dimensions, 80–82
vectors, 78–82

Relativistic equation, use of, 1012
Relativistic momentum, 1005–1007, 1011
Relativity

apparent contradictions with principle,  
993–994

correspondence principle, 995
general relativity, 1138–1140
postulates, 992–995
principle of, 993–994
reference frames, 992
special relativity (See Special relativity)
unification of electric and magnetic fields, 787

Rembrandt Harmenszoon van Rijn, 1116
Repetition distance of wave, 418
Repetition time of wave, 418
Resilin, 223
Resistance

of extension cord, 679–680
internal resistance of battery, 682
Ohm’s law and, 676–678
resistivity and, 678–679
voltmeters and, 695–696

Resistance heating, 808
Resistivity

definition of, 678
temperature dependence, 678, 680–681
of water, 678–679, 681

Resistor. See also RC circuit; RLC series circuit
in ac circuits, 808–810
filter, 823–824
network in series and parallel, 689
overview, 681–682
parallel circuit, 686–688
power dissipated by, 693–694
power dissipation, 809
series circuit, 684–685

Resolution
diffraction and, 975–978
electron microscopes, 1055, 1060
optical instruments, 934

Resonance
air column in tube, 455–456
in auditory canal, 458
mechanical oscillations, 398–399,  

821–822
natural frequency and, 430–432
RLC series circuit, 821–823

Resonance curve, 821
Resonant angular frequency, 821
Rest energy, 199, 1007
Rest frame, 999
Rest length, 1002

periodic table and, 1071–1072
shells, 1069
subshells, 1069

Quantum number, 1067–1069
Quantum physics

blackbody radiation and, 1023–1024
Bohr model and, 1037–1043
chemiluminescence, 1022, 1042–1043
classical physics vs., 1023–1046, 1056
Compton scattering and, 1031–1033
double-slit interference experiment, 1056
early developments in, 1023–1046
electron diffraction, 1057–1060
electron energy levels in a solid, 1072–1074
fluorescence, 1042–1043
matter waves, 1057–1060
model of atom, 1067–1068
pair production and annihilation, 1043–1046
Pauli exclusion principle, 1069–1072
phosphorescence, 1042–1043
photoelectric effect and, 1024–1029
probability and, 1056–1057, 1060
quantization, 1023
tunneling, 1077–1078
uncertainty principle, 1062–1064
wave-particle duality, 1056–1057
x-ray production and, 1030–1031

Quark
as fundamental particle, 1133–1134, 1141
internal structure of proton, 593
string theory and, 1140
strong force and, 1136–1137
weak force and, 1137

R
Radar, 467, 863–864
Radial acceleration

apparent weight on Earth’s surface, 186
artificial gravity, 185
circular orbits, 174–178
curves and, 171–174
definition of, 166
magnitude of, 167–168
nonuniform circular motion, 179
pendulum bob, 181–182
stunt pilots and, 185–186
vertical loop-the-loop, 179–181

Radian, 161, A9
Radiation. See also Cosmic ray

absorbed dose, 1110
biological effects of, 1109–1114
biologically equivalent dose, 1110
dose due to human activity, 1112
electromagnetic (See Electromagnetic spectrum; 

Electromagnetic wave)
fission reactor accidents and, 1120–1121
medical applications, 1113–1114
natural sources, 1111–1112
penetration of, 1112–1113
quanta of (See Photon)
relative biological effectiveness, 1110
short- and long-term effects, 1112
Stefan’s law, 533
thermal (See Thermal radiation)
types of, 1097–1098

Radiation spectrum, 534
Radiation therapy, 1114
Radio, tuning, 822–823
Radioactive dating, 1106–1109
Radioactive decay. See also Radiation

activity, 1104–1105
alpha decay, 1099–1100
beta decay, 1100–1102
conservation laws, 1098
constant, 1104
definition of, 1097
electron capture, 1102–1103
energy released, 1008–1009
gamma decay, 1103
half-life, 1105–1109
kinetic energy and, 1010–1011

mean lifetime, 1104
neutron emission, 1103
particles commonly involved in, 1098
proton emission, 1103
rates of, 1104–1105

Radioactive tracer, 1113–1114
Radioactive waste, 1121, 1124
Radioactivity

definition of, 1090
discovery of, 1097–1098
particles commonly involved in, 1098

Radiocarbon dating
activity, 1107–1108
charcoal, 1107
energy released in decay, 1008–1009
kinetic energy in decay, 1010–1011
overview, 1106–1108

Radiosurgery, 731, 1114
Radio telescope, 938
Radio wave, 842–843
Radius

of Bohr orbits, 1038
of sphere, proportionality to volume, 4–5

Radon-222, 1111–1112
Radon nuclides, B6
Rad (radiation absorbed dose), 1110
Rainbow, 883–884
Random-access memory (RAM) chip

capacitors in, 646–647
Random polarization, 856, 858
Rarefaction, 415, 443–444, 453–454
Ratio, 4, A7
Ray diagram

astronomical telescope, 935
of concave mirror, 896–897
construction of, 891
of convex mirror, 895
passenger side mirror, 900
phase shift due to reflection, 958
of plane mirror, 893
principal rays, 895, 896
soap film, 961
thin film, 958
thin lenses, 902
two-lens combination, 919
zoom lens, 905

Rayleigh, Baron (John William Strutt), 976
Rayleigh’s criterion, 976–977
Ray of light

overview, 874–876
paraxial rays, 901
principal ray, 895–896
total internal reflection, 883–884
traveling through window pane, 881

RBE (relative biological effectiveness), 1110
RC circuit

camera flash, 698–699
charging, 696–698
comparison to LR circuit, 792–793
discharging, 698–699
neurons as, 699–700
overview, 696
two capacitors in series, 697–698

RC filter, 823–824
Reactance

capacitor, 813–814
inductor, 815

Real image, 890, 920
Recoil, 251
Rectifier, 823
Red-shift, 864
Reference frame

definition of, 78
inertial (See Inertial reference frame)
relative velocity and, 78–82
relativity and, 992

Reflecting telescope, 936–937
Reflection

angle of, 878
change at boundary, 425–426
diffuse, 877
image formation, 890–892
laws of, 877–878
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Restoring force
definition of, 384
in simple pendulum, 393
sound waves, 445
in transverse waves, 415

Resultant, 61
Retina, 824
Return stroke, 651
Reversible engine, 566–569
Reversible process, 559–561
R-factor, 530
Rifle recoil, 251, 253
Right angle, A8
Right-hand rule

angular momentum, 311
cross product direction, 723
magnetic field, 744–747
magnetic force, 724–726, 738–739
torque on current loop, 740–741

Right triangle, A8–A9
Rigid object, 160
RLC series circuit

impedance, 817–818
laptop power supply, 820
overview, 816–817
phasor diagrams, 817
power factor, 819–820
resonance in, 821–823

rms speed, 494
RNA, hydrogen bonds in, 588
Rock climbing, 213
Rocket

engines, 250, 252
exploding, 256–257
spring-launched, 386–387

Rod and cone, 924–925
Roller coaster

equilibrium points, 384
speed of, 215
vertical loop-the-loop, 179–180

Rolling
acceleration, 305–306
bowling ball, internal energy of, 513
hollow and solid balls, 304–305
translational and rotational kinetic energy  

in, 303–304
without slipping, 164–166

Röntgen, Wilhelm Konrad, 844
Root mean square

current, 809
speed, 494

Rotation
angular displacement, 160–161
angular momentum, 306–313 (See also  

Angular momentum)
angular speed, 162–166
angular velocity, 160–162
artificial gravity and, 185
frequency, 163
indication of direction, 160, 161
Newton’s first law for, 282
Newton’s second law for, 302–303, 306–307
nonuniform circular motion, 183–184
period, 163
rigid object, 160
torque, 282–289 (See also Torque)
with translation, 164–166

Rotational equilibrium
axis of rotation, choosing, 289
cantilevers, 291–292
carrying beam by two persons, 290–291
center of gravity and, 296–297
conditions, 289
cord holding beam, 294–295
distributed forces, 295–297
holding arm horizontal, 298–299
mechanical advantage, 297
musculoskeletal system, 298–302
problem-solving techniques, 290
slipping ladder, 292–293
toppling file cabinet, 295–296

Rotational inertia
Atwood’s pulley, 281–282
of barbell, 280

of baseball bat, 279
gyroscopes, 311
overview, 278–282

Rotational kinetic energy
definition of, 277
as form of energy, 199
mouse on a wheel, 308–309
of rolling object, 303–304

Round window, 458
Rubbia, Carlo, 1135
Rubidium

emission spectrum, 1035
nuclides, B6

Ruby laser, 1075–1076
Rumford, Count (Benjamin Thompson), 514
Ruska, Ernst, 934
Rutherford, Ernest, 1035–1036
Rutherford experiment, 1035–1036, 1092
Rydberg, Johannes, 1035
Rydberg constant, 1035

S
Sailplane, 94, 130–131
Salam, Abdus, 1135, 1138
Samarium nuclides, B6
Satellite

circular orbits, 174–178
geostationary, 176–178
gravitational forces and, 106–107

Saturn
aurorae, 732

Scalar
multiplication of vector by, A14
vs. vectors, 60

Scalar product, 201, A14
Scala tympani, 458
Scala vestibuli, 458
Scale. See Spring scale
Scanning electron microscope (SEM),  

1061–1062
Scanning transmission electron microscope  

(STEM), 1062
Scanning tunneling microscope (STM), 1078–1080
Scattering

Compton, 1031–1033
polarization by, 859–862
quark, discovery of, 1113
Rutherford experiment, 1035–1037
size of nucleus and, 1092

Schrödinger, Erwin, 1066
Scientific notation, 5–7
Scissors, cutting paper, 380–382
Screen door closer, 286–287
Scuba diver

air pressure and, 490–491
pressure on eardrum, 338

Second, definition of, 9
Secondary focal point, 902
Second law of motion (Newton)

acceleration and, 103–105
acceleration in simple harmonic motion,  

385–387
angular momentum and, 306–307
application of, 124–133
biologic evolution and, 571
for center of mass, 253–254
electron beam and, 606–607
hot air balloon, 347
mass and, 104–105
momentum, 249–250
particle moving in uniform magnetic field, 

727–728
pressure variation with depth, 337
problem-solving strategies for, 124
restatement, 249–250
reversible processes, 559
rotational form of, 302–303, 306–307
statement of, 104
uniform circular motion, 168–169

Second law of thermodynamics, 560–561, 570
Sedimentation velocity, 358–359
Seismic energy, 199

Seismic wave
animal communication by, 416
echolocation and, 467
motion of, 415–416
refraction of, 426

Selectron, 1140
Selenium as photoconductor, 592–593
Self-inductance, 788–791
Semiconductor

description, 589
electron energy levels, 1073–1074
resistivity, 680

Semiconductor laser, 1077
Semilog graph, A5–A6
SEM (scanning electron microscope), 1061–1062
Series circuit, 684–686
Seurat, Georges, 977
Shear deformation, 380–382
Shear modulus

definition of, 380
speed of sound in a solid, 447
of various materials, 380

Shear strain, 380
Shear stress

cutting paper and, 380–382
definition of, 380
spiral fractures in bone, 382

Sheet polarizer, 856–857
Shell

electron, 1069
nucleon, 1095

SHM. See Simple harmonic motion
Shock absorber, 398
Shock wave, 465–466
Short circuit, 700
Shuffleboard, 105
Shutter, 922
Sidereal day, 177
Sievert (Sv), 1110
Significant figures

in calculations, 7–8
in data recording, 16
definition of, 5
rules for identifying, 6

Silicon nuclides, B5
Silver

in jewelry making, 523
nuclides, B6

Similar triangles, A8–A9
Simple harmonic motion (SHM)

acceleration, 385–387
amplitude, 385
angular frequency, 388–389
definition of, 384
energy analysis, 385
frequency, 387–391
graphical analysis, 391–393
pendulum at small amplitudes, 393–397
period, 387–391
relation to uniform circular motion, 387–389
restoring force, 384
stable equilibrium, 384

Simple magnifier, 930–932
Simultaneity, 995–998
Simultaneous equations, solving, A4
Sines, law of, A11
Single lens reflex (SLR) camera, 885, 921–922
Single-slit diffraction minimum, 972–974
Single-slit experiment

diffraction of light, 972–974
uncertainty and, 1063

Sinusoidal emf
as function, 777–778
overview, 808

Sinusoidal function
emfs, 777–778
harmonic wave as, 419
simple harmonic motion as, 387, 389
of time, A11–A12

Siren, Doppler effect, 462–466
SI (Système International) unit

absolute temperature, 446
absorbed dose, 1110
acceleration, 37
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escape, 217–218, 496
of light (See Speed of light)
linear vs. angular, 162–164
molecules, Maxwell-Boltzmann distribution, 

495–496
orbiting satellites, 175, 177–178
root mean square, 494
of sound waves, 445–447
transverse wave on a string, 415–418
walking, 396–397

Speed of light
apparent exceedance of, 991, 996–997
contradiction with principle of relativity, 993–994
as invariant quantity, 1009
in matter, 847–849
relative velocity and, 1003–1005
relativistic momentum and, 1005–1007
in vacuum, 845–847

Sphere, radius of, 4–5
Spherical aberration, 939
Spherical mirror

concave, 896–897
convex, 894–896

Sphygmomanometer, 342
Spinal column, compressive strength, 378
Spin magnetic quantum number, 1068
Spontaneous nuclear reaction. See Radioactive decay
Spools, winding, 294
Sports applications

baseball bat, rotational inertia, 279
figure skaters, 307–308
football player, momentum of, 242
pole vaulter, center of mass, 254
puck, collision of, 250, 262–264
rock climbing, 213
shuffleboard, 105
skating uphill, 71
skiing, 214–215
water skiing, work done by towrope, 201

Spring
dart guns, 222
demonstration of waves, 414–415
elastic potential energy, 221–222
ideal (See Ideal spring)
length with varying weight, 17–18

Spring constant, 17, 220
Spring-mass system

damped oscillations, 397
ideal, 389–391
length with varying weights, 17–18
tuned mass damper, 398–399

Spring scale
forces on, 96, 103
stretch of spring, 220

Squid, jet propulsion, 252
SQUIDs (superconducting quantum interference 

devices), 779
Stable equilibrium, 384
Standard model of particle physics, 1137–1138
Standing wave, 429–432, 452–457
Stanford Linear Accelerator Center (SLAC), 1133
Star, fusion as source of energy, 1121–1123
States of matter, 332
State variable, 552
Static friction, 113
Stationary state, 1037
Statistics

interpretation of entropy, 571–572
probability (See Probability)

Steady flow, 347
Steam engine, 562
Stefan, Joseph, 533
Stefan’s law of radiation, 533
STEM (scanning transmission electron  

microscope), 1062
Stephenson, Arthur, 10
Stepped leader, 651
Stiletto-heeled shoes, pressure on floor, 333–334
Stimulated emission, 1074
STM (scanning tunneling microscope), 1078–1080
Stokes’s law, 357
Stone throwing, 47–48, 75
Stopping potential, 1025
Storage ring, 1141

activity, 1104
angular momentum, 307
base units of, 9
biologically equivalent dose, 1110
derived units, B2
electric charge, 585
electric current, 670
electric field, 597, 616
electric potential, 633
electron-volt (eV), 1008, 1028
energy, 200, 225
energy density, 851
entropy, 569
force, 96, 104
frequency, 163
heat, 514
impulse, 245
internal energy, 514
magnetic field, 722
magnetic flux, 775
mole, 485
momentum, 243
power, 225
prefixes, 10, B2
pressure, 333, 351
resistivity, 678
shear modulus, 380
shear stress, 380
spring constant, 220
stress, 375
temperature coefficient of resistivity, 680
torque, 283
viscosity, 355
wave intensity, 413
work, 200

Skating
average acceleration in, 71
figure skating, 307–308

Skiing, 214–215
Skin emissivity, 534
Sky, color of, 860
SLAC (Stanford Linear Accelerator Center), 1133
Sled

Newton’s third law and, 114–115
work done by constant force, 205–206

Sleigh, Newton’s third law and, 114–115
Sliding friction. See Kinetic (sliding) friction
Slinky, demonstration of waves, 414–415
Slope

of chord, 33
of displacement curve, 33–35
interpretation of, 17
of straight-line graph, 17
velocity and, 33–34

SLR (single lens reflex) camera, 885,  
921–922

Smoke alarm, 1029
Snell, Willebrord, 879
Snell’s law, 879, 883–884
Snow shoveling and inertia, 101
Sodium

emission spectrum, 969
nuclides, B5

Solar eclipse, viewing of, 924
Solenoid

inductance, 788
magnetic field due to, 747–748
magnetic resonance imaging (MRI),  

790–791
Solid

definition of, 332
elastic deformation of, 374 (See also Tensile and 

compressive forces)
electron energy levels, 1072–1074
speed of sound in, 446–447

Solving equations
consistency of units, 10
mathematical review, A3–A4
methods, 8
quadratic, A3
simultaneous, A4

Solving problems, strategies for. See  
Problem-solving strategies

Sonar, 467

Sound intensity level
definition of, 449
incoherent sources, 450–451
lion’s roar, 450
loudness and, 448, 451
variation with distance, 451–452

Sound wave
amplitude, 447–448
attenuation, 445
beats, 460–462
Doppler effect, 462–466
echolocation, 466–467
vs. electromagnetic waves, 843
frequency ranges of animal hearing, 444–445
generation of, 443–444
harmonics, 457
human ear and, 458–460
intensity, 413–414, 447–452
longitudinal nature, 415
loudness, 447–452, 459
overtones, 457
overview, 443–444
pitch, 459–460
radar, 467
resonance, 455–456
sonar, 467
speed of, 445–447
standing, 452–457
timbre, 457–458
tuning a piano, 461–462
ultrasound applications, 425–426, 442

South pole, 718
Spaceship

collision, 242–243
constant acceleration, 44–45
length contraction, 1001
simultaneity, 995–997
time dilation, 997–1001
velocity in different reference frames, 1003–1005

Space Shuttle, 250
Spacetime

curvature of, 1140
simultaneity in, 995
theory of supersymmetry, 1140

Speaker. See Audio speaker
Special relativity. See also Relativity

cause and effect, 997–998
classical physics and, 995
Einstein’s postulates, 994–995
energy and, 1007–1009
energy-momentum relationships, 1011
extremely relativistic particles, 1012
ideal observer, 996–997
invariance, 1009
kinetic energy, 1009–1013
length contraction, 1001–1003
mass and, 1007–1009
momentum, 1005–1007
relativistic calculations, 1012
simultaneity, 995–998
time dilation, 998–1001
velocity in different reference frames, 1003–1005

Specific gravity, 344–346
Specific heat

calorimetry, 518–519
definition of, 517
equipartition of energy, 521
heat flow with more than two objects, 518
ideal gas, 520–521
molar, 520
overview, 516–519

Spectroscope, grating, 968–969
Spectroscopy

diffraction and, 968–969
line spectra, 1033–1035

Specular reflection, 877
Speed

angular, 162–166
average, vs. average velocity, 31
banked and unbanked curves, 173
definition of, 2
determining from Doppler shift, 465
of electromagnetic waves, 993–994
of electron, 1012–1013
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Stored energy. See Potential energy
Stovetop, induction, 767, 786
Straight line

in data graphing, 17–18
equation, slope-intercept form, 17

Strain
compression of femur, 376–377
definition of, 375
Hooke’s law, 375
shear, 380
volume, 382

Strassman, Fritz, 1117
Streamline, 347, 349
Strength, ultimate, 377
Stress

definition of, 375
Hooke’s law, 375
proportional limit, 376
shear, 380
volume, 382

String
bowstring, 120–121, 218–219
frequency, 13–14
harmonic traveling wave, 419–421
as ideal cord, 120
reflected wave, 425
as source of sound wave, 443
standing wave, 429–431
superposition of waves, 423–424
of swinging pendulum, 202, 393–394
transverse harmonic wave, 421–422
transverse wave, speed of,  

416–418, 445
tuning, 379, 461–462

String theory, 1140
Strong force

binding energy, 1093
brane theory and, 1140
fission and, 1117
as fundamental force, 138, 1136–1137

Strontium-90, 1112
Strontium nuclides, B6
Strutt, John William (Baron Rayleigh), 976
Stuntman landing on air bag, 245–246
Subcritical reactor, 1119–1120
Sublimation, 526–527
Submarine, limits on depth, 338
Subshell

definition of, 1069
energy level, 1071–1072

Subtraction of vectors, 61, A13
Subway, inertia on, 101
Suitcase, pulling, 125–126
Sun

astrophysical data, B3
fusion as source of energy, 1121–1123
gravitational force exerted on Earth, 95
temperature of, 535

Superconducting quantum interference devices 
(SQUIDs), 779

Superconductor, 681
Supercritical fluid, 526
Supercritical reactor, 1120
Superelastic collision, 260
Superior mirage, 882
Super-Kamiokande, 1135
Supernova, 1123
Supernova SN1987a, 846
Superposition

of electric field, 599
of electric potential, 634
of magnetic field, 744
of waves, 423–424 (See also Interference)

Supersymmetry, 1140
Surface charge density, 644
Surface tension, 359–360
Surface wave, 415
Swim bladder, 346–347
Swimming and Newton’s third law, 107
Symbols, mathematical, A15
Symmetry

location of center of mass, 255
supersymmetry, 1139–1140

Synchrotron, 1141
System

definition of, 107–108, 512
external forces of, 107–108
internal forces of, 107–108
state variables, 552

Système International d’Unités. See SI  
(Système International) unit

Systolic pressure, 342

T
Tacoma Narrows Bridge, 398–399
Tangent, of displacement curve, 33–35
Tangential acceleration, 169, 179, 182
Tape adhesive, 591–592
Telescope

astronomical, 934–936
Cassegrain arrangement, 937
Hubble Space Telescope, 937–938
radio, 938
reflecting, 936–938
refracting, 934–936
terrestrial, 936
Very Large Array, 991

Television
screen, phosphor dots on, 1043

Temperature. See also entries beginning  
with Thermal

absolute, 445–446
absolute zero, 488
Curie, 751
definition of, 478
heat (See Heat)
heat flow and, 515
ideal gas and, 488–496
isothermal processes, 555
magnetism, 751
measurement of (See Thermometer)
reaction rates and, 496–498
reference temperatures, 479
resistivity dependence on, 678, 680–681
scales, 478–480
speed of sound in gas and, 445–446
translational kinetic energy and, 493–495

TEM (transmission electron microscope), 934, 
1060–1061

Tendon, tensile forces in, 122–123, 374
Tensile and compressive forces

in body, 122–123
in bone, 378
height limits, 379–380
Hooke’s law, 374–377
on human vertebra, 378
stress vs. strain, 374–375, 377–380
volume deformation, 382–383
Young’s modulus, 375–376

Tension
bowstrings, 120–121
definition of, 119–120
ideal pulleys, 123, 127–129
pendulum string, 202
tensile forces in body, 122–123
tightropes, 122
two-pulley systems, 123–124
wave speed and, 416

Tera- (prefix), 10
Terminal velocity, 137, 357–358
Terminal voltage, 682–683
Terminology, precision in, 2
Terrestrial telescope, 936
Tesla, Nikola, 722, 783
Tesla (T), 722
Thallium-208, 1103
Theorem

equipartition of energy, 521
Torricelli’s, 352
work-kinetic energy, 207
work-mechanical energy, 212

Thermal conduction
air, 529–530
overview, 527

R-factors, 530
through two or more materials in series, 528–529

Thermal contact, 478
Thermal convection, 530–532
Thermal equilibrium, 478
Thermal excitation, 1040, 1073
Thermal expansion

area expansion, 483
cause of, 516
differential expansion, 482–483
gases, 487–491
linear expansion, 480–482
solids and liquids, 480–484
volume expansion, 483–484

Thermal pollution, 568–569
Thermal radiation

electromagnetic spectrum, 534, 841–842
emissivity, 533–534
global warming and, 537–538
from human body, 536
medical applications, 536
overview, 532
poikilothermic animals and, 533
simultaneous emission and absorption, 535–537
Stefan’s law, 533–534

Thermal resistance, 528
Thermal stress, 481
Thermodynamics

adiabatic processes, 555
algebraic sign conventions, 551–552
definition of, 478
entropy, 569–572
first law, 551–552
heat engines, 561–564
heat pumps, 564–567
ideal gas, processes, 556–559
irreversible processes, 559–561
isobaric processes, 554–558
isochoric processes, 555–556
isothermal processes, 558–559
macrostate, 571–572
microstate, 571
processes, 552–561
PV diagram, 552–554
refrigerators, 564–566
reversible engines, 566–569
reversible processes, 559–561
second law, 560–561
statistical basis of entropy, 571–572
third law, 572

Thermodynamic temperature, 445–446
Thermometer

gas, 488–489
resistance thermometer, 680
temperature scales, 478–480
volume expansion in, 484

Thermonuclear bomb, 1123
Thermostat, 483
Thin film. See Film, thin
Thin lens. See Lens
Third law of motion (Newton)

airplane wing lift, 354
buoyant force, 343
gas pressure, 491
interaction pairs and, 106–108
momentum, 243

Third law of planetary motion (Kepler), 176
Third law of thermodynamics, 572
Thompson, Benjamin (Count Rumford), 514
Thompson, J. J., 1035
Thomson, George Paget, 1058
Thomson, Joseph John, 735
Thomson, William (Lord Kelvin), 479
Thorium nuclides, B6
Threshold frequency, 1026, 1028
Threshold of hearing, 448–449
Thundercloud

dielectric breakdown of air, 651–652
electric potential energy in, 630–631

Tightrope
balancing of walker, 302–303
tension of cable, 122

Timbre, 457–458
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Time
as dimension, 12
instantaneous velocity and, 33
in relativity, 995

Time constant
LR circuit, 792
RC circuit, 696

Time dilation, 998–1001, 1138
Time-energy uncertainty principle, 1064
Timing, RC circuits and, 696–700
Tin nuclides, B6
Tire

air pressure, 490
air temperature, 489–490

Tokamak, 1124
Tone quality, 457
Toner, 593
Top, spinning, 311
Torque

algebraic sign in calculations, 283–284
center of gravity, 287
definition of, 282–283
on electric dipole, 609
force and, 283
friction and, 305–306
lever arms, 285–287
magnetic (See Magnetic torque)
point of application of force, 283
potter’s wheel, 288–289
rotational equilibrium and, 289 (See also 

Rotational equilibrium)
screen door closers, 286–287
spinning bicycle wheel, 284–285
work and, 287–289

Torr, 339
Torricelli, Evangelista, 341
Torricelli’s theorem, 352
Total energy, 1010
Total internal reflection

binoculars, 886
cameras, 886
diamonds, 887
endoscopy, 888
fiber optics, 887–888
overview, 883–885
periscopes, 886
triangular glass prism, 885–886

Total momentum, 243
Total transverse magnification, 919–920,  

929–930
Total work, 205
TOTEM detector, 1132
Traction apparatus, 97
Train

average velocity of, 30–31
coupling force on freight cars, 126–127
displacement of, 28–29
Doppler shift of whistle, 464–465
instantaneous velocity of, 34–35
relative velocity and, 78–79
track expansion joints, 481

Trajectory
hammer throw, 169–170
projectile motion, 72–78

Transformer, 779, 783–785
Transition element, 1072
Translation

conservation of energy, 199
rotation with, 164–166

Translational equilibrium, 102, 289
Translational kinetic energy, 199, 303–304
Transmission electron microscope (TEM), 934, 

1060–1061
Transmission grating, 966–969
Transmission of light, 889
Transverse magnification, 897–898, 919–920, 

929–930
Transverse wave

combined longitudinal motion, 415–416
definition of, 414
electromagnetic waves, 850
harmonic, 422
speed on a string, 415–418

Trigonometry
inverse trigonometric functions, A11
small angle approximation, A12
trigonometric functions, A9–A11
trigonometric identities, A10

Triple point, 526
Tritium, 1123, B5
Tube length, 932
Tuned mass damper, 398–399
Tuning circuit, 822–823
Tuning of strings, 379, 461–462
Tunneling, 1077–1080, 1109
Turbulence, 347
Turns ratio, 783
Two-dimensional collision, 262–264
Two-pulley system, 123–124
Tympanum, 458

U
Ultimate strength, 377
Ultrasound

definition of, 444
echolocation, 467
fetal imaging, 442
medical applications, 467–468
wavelength in, 425–426

Ultraviolet catastrophe, 1024
Ultraviolet radiation (UV), 842
Unbanked curve, 171–173
Uncertainty principle, 1062–1064
Unification

fundamental forces and, 137, 1138–1140
gravity with other fundamental forces, 1142
supersymmetry, 1140

Uniform circular motion
angular displacement, 160–161
angular speed, 162–166
angular velocity, 160–161
conical pendulum, 170–171
curves, 171–174
frequency, 163
generally, 160–166
hammer throw, 159, 169–170
Newton’s second law, 168–169
orbits of satellites and planets, 174–178
period, 163
radial acceleration, 166–171
radian measure, 161
relation to simple harmonic motion, 387–389
rolling without slipping, 164–166
rotation and translation combined, 164–166
rotation of rigid object, 160
vectors, 167

Uniform electric field
in a capacitor, 644
motion of point charge, 605–609
potential difference, 642

Uniform magnetic field
general motion of charged particle, 732
perpendicular movement of charged particle, 

727–731
torque on current loop, 739–743

Unit. See also SI (Système International) unit
consistency of, 10

in solving equations, 10
conversion of, 10–11, B2
derived, 9
electron-volt (eV), 1008, 1028
importance of, 3
metric system, 9–10
speed and distance used in relativity, 1000
U.S. Customary Units, 10

Unit vector notation, 67–68
Universal gravitational constant, 108
Universe

Big Bang (See Big Bang)
brane theory, 1140
cosmic microwave background radiation, 843
dark energy, 1142
dark matter, 1142
higher dimensions and, 1140, 1142

history of, 1139
M-theory, 1140
proof of expansion of, 864
string theory, 1140
supersymmetry theory and, 1140

Unpolarized wave, 856
Unstable equilibrium, 384
Uranium-235, 1117–1119
Uranium-238

alpha decay in, 1099–1100
fission of, 1117, 1119

Uranium nuclides, B6
Urine, specific gravity, 344
U.S. customary unit, 10
UV (ultraviolet radiation), 842

V
Vacuum

permittivity of, 605
speed of light in, 845–847

Valence, 1072
Valence band, 1073
van de Graaff generator, 637–638
Vapor, definition of, 526
Vaporization, latent heat of, 522–523
Variable, 16, 552
Variable force, work done by, 218–221
Vector

addition of, 61, A13
angular momentum, 310–313
component equations, 69
components of, 63–67
cross product, 284, 722–727, A14
definition of, 60
direction of, 60, 64–65
displacement, 61–63
electric forces as, 594–595, 599–601
force as, 96–99
graphical addition of, 61, 62–63, 65–66
hill-climbing car, 226
magnetic dipole moment, 741
magnetic field, 744
magnitude of, 60, 64–65
momentum, 242–244
multiplication by scalar, A14
nonuniform circular motion, 178
position, 61–63
relative velocity, 78–82
resolving, 64
scalar product, A14
vs. scalars, 60
subtraction of, 61, A13
symbols, 724
uniform circular motion, 167
unit vector notation, 67–68
work done by constant force, 200–202

Velocity
acceleration and, 36–46
angular (See Angular velocity)
average, 30–31, 68
constant acceleration and, 40–41
constant velocity, 35
definition of, 2, 30
displacement and, 30–31
fluid flow and, 347–349
graphical relationship with position, 33–36
instantaneous, 31–33, 68–69
linear motion, 30–36
momentum and, 243
motion diagrams, 32
planar motion, 68–69
relative, 78–82, 1003–1005
of sailboat, 72
terminal, 137
wave pulse on a string, 417–418

Velocity selector, 733–735
Velocity transformation, 1004
Ventricular fibrillation, 700
Venturi meter, 352–353
Venus, angular speed of, 162
Vertex of convex mirror, 894
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Vertical loop-the-loop, 179–181
Very Large Array, 991
Vibration

animal communication by seismic waves, 416
human ear and, 458–459
resonance, 398–399, 431–432
simple harmonic motion, 384–397

Vibrational energy, 199
Violin string, frequency of, 13–14
Virtual image

definition of, 890
as object, 920
orientation of, 903
in plane mirror, 892

Viscosity
of common fluids, 356
definition of, 354–355
drag, 357–359
high blood pressure and, 356–357
Poiseuille’s law, 355–356

Viscous drag
centrifuge and, 358–359
damped oscillations, 397–398
definition of, 357
terminal velocity and, 357–358

Viscous flow, 354–357
Visible light. See Light
Vitreous fluid, 925
Volta, Alessandro, 633
Voltage

capacitors and, 811–814
Hall voltage, 736–737
inductors and, 815–816
measurement, 695–696
phasor diagrams, 817
in RC circuits, 686–698
resistors and, 681–682, 808–810
in RLC series circuits, 816–820
terminal voltage, 682–683
transformers and, 783–785, 810

Voltage drop across resistor, 681–682
Voltaic pile, 633
Voltmeter, 695–696
Volume

isochoric processes, 555
of sphere, proportionality to radius, 4–5

Volume deformation, 382–383
Volume expansion, 483–484
Volume flow rate, 348
Volume strain, 382
Volume stress, 382
von Frisch, Karl, 862
von Laue, Max, 978
von Lenard, Philipp, 1025
von Mayer, Julius Robert, 198–199
Voyager space probes, 101

W
Wagon, displacement of, 29
Walking, physical pendulum model, 396–397
Warm-blooded animal, 477, 497–498
Water

as conductor or insulator, 589
hydrogen bonds, 587–588
molecular structure, 332
phase diagram, 527
resistivity of, 678–679, 681
temperature change, 515
volume expansion, 484

Water skiing, work done by towrope, 201
Water strider, surface tension and, 359
Watson, James, 979
Watt, James, 225
Watt (W), 225
Wave

amplitude of (See Amplitude)
antinodes of (See Antinode)

coherence, 428–429
coherent, 428
combined transverse and longitudinal motion, 

415–416
diffraction of (See Diffraction)
distance from source, intensity and,  

413–414
Doppler effect, 462–466
electromagnetic (See Electromagnetic wave)
energy transport, 412–413
examples of, 412
frequency of, 418–419 (See also Frequency)
graphing, 421–423
guitar string, 416
harmonic, 419–421 (See also Simple  

harmonic motion)
incoherent, 428
intensity, 413–414
interference of (See Interference)
isotropic source, 414
light (See Light)
longitudinal, 414–415
mathematical description of, 419–421
matter as, 1057–1060
nodes of (See Node)
ocean waves, 416, 426
periodic, 418–419
phase constant, 420
phase difference, 428, 953–955
physical world model, 412
polarization (See Polarization)
reflection, 424–426
refraction (See Refraction)
shock waves, 465–466
sound (See Sound wave)
standing, 429–432
standing wave, 452–457
superposition of, 423–424  

(See also Interference)
transverse, 414–415
wavelength of (See Wavelength)
wavenumber, 420

Wavefront, 874–876, 970–971, 980
Wave function

for confined particle, 1064–1067
for hydrogen atom, 1067–1068
interpretation of, 1066
tunneling and, 1077–1078

Wavelength
change at boundary, 425–426
Compton wavelength, 1032–1033
of confined particle, 1064–1066
de Broglie wave, 1065–1066
definition of, 418
Doppler effect and, 462–464
electromagnetic waves, 840 (See also 

Electromagnetic spectrum)
gamma rays, 844
gratings and, 967
infrared radiation, 534, 841–842
microwaves, 843
pair production and, 1045
radio waves, 842–843
of standing sound waves, 454
of standing wave, 431
transverse wave, 1064–1065
ultraviolet radiation, 534, 842
visible light, 534, 840–841
x-rays, 844

Wavenumber, 420
Wave packet, 1062–1063
Wave-particle duality

position-momentum uncertainty principle  
and, 1062–1063

probability and, 1056–1057
Weak force

brane theory and, 1140
electroweak theory, 1138
as fundamental force, 138, 1137

Weather. See also Climate change
atmospheric pressure and, 334
Doppler radar, 467, 864
hurricanes, angular momentum of, 308

Weight 
apparent, 134–136
definition of, 3
gravitational force and, 95
at high altitude, 109
mass and, 104–105, 110
on Moon, 111
near Earth’s surface, 110

Weightlessness, 184–185
Weinberg, Steven, 1135, 1138
Westinghouse, George, 783
Wheelbarrow, 297
Wien, Wilhelm, 534
Wien’s law, 534
Wilson, Robert, 843
Window panes, heat flow, 529–530
Work

algebraic sign in calculations, 201–202, 210, 
552–553

constant force and, 199–207
definition of, 200
dissipative forces and, 207
drawing bows, 218–219
force not parallel to displacement, 200–201
heat and, 515
heat engines and, 561–564
ideal spring, 221
moving a chest, 203–205
potter’s wheel, 288–289
pulling a sled, 205–206
PV diagram, 553–554
torque, 287–289
total work, 205
variable forces and, 218–221

Work function, 1028
Work-kinetic energy theorem, 207
Work-mechanical energy theorem, 212
Wrench rule, 723–724

X
Xenon gas, heating of, 521
X-ray

characteristic, 1031, 1043
Compton scattering, 1031–1033
cutoff frequency, 1030
diffraction, 978–979
electromagnetic spectrum, 844
production of, 1030–1031
ultrasound techniques vs., 468

X-ray diffraction maximum, 978

Y
Yerkes telescope, 936
Young, Thomas, 951, 963
Young’s modulus

definition of, 375
speed of sound in a solid, 447
for various substances, 376

Yttrium aluminum garnet (YAG), 1076
Yttrium nuclides, B6
Yucca Mountain repository, 1121

Z
Zero, absolute

definition of, 488
third law of thermodynamics and, 572

Zeroth law of thermodynamics, 478
Zoom lens, 904–905
Zweig, George, 1133
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