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Preface
In recent years, mathematics has had an amazing growth in engineering sciences.
Everything would be possible with the addition of mathematics to the engineering.
Recent Advances in Mathematics for Engineering engrosses on a comprehensive
range of mathematics applied in various fields of engineering. The topics covered
are organized as follows.

Chapter 1 summarizes the current position of surveillance methods in public
health and focuses on the inferential part of the surveillance problem including sta-
tistical techniques and stochastic modeling for evaluating surveillance systems en-
gineering. Statistical change-point analysis-based methods have several appealing
properties compared to the current practice.

Chapter 2 reviews the methods for assessment of earthquake hazards based on
statistical models, probability theory, and nonlinear analysis. Also, the steps involved
in the assessment of seismic hazard, ground response analysis, and calculation of
liquefaction potential have been discussed.

Chapter 3 discusses the use of satellite data in multi-model approach. The main
idea is to use the inter-connected models of environment and disaster-forming ad-
vances to select the control variables and indicators for satellite observations.

Chapter 4 gives a review of some integral transforms, Parseval–Goldstein-type re-
lationships and its applications to integral transforms, and some well-known differ-
ential equations. Laplace transform has been used to generalize Stieltjes transform.

Chapter 5 provides the numerical solution of two kinds of singular integral equa-
tions. This chapter proposes the numerical methods to find the approximate solution
of Cauchy singular integral equations and hypersingular integral equations.

Chapter 6 discusses an iterative scheme known as generalized minimal residual
method (GMRES) to solve linear partial differential equations. This scheme has been
used here to solve a transient 2D heat equation with Dirichlet boundary conditions.

Chapter 7 represents the numerical simulation of (2 + 1) dimensional nonlin-
ear sine–Gordon soliton waves. For simulation, hybrid cubic B-spline differential
quadrature method has been used.

Chapter 8 presents a qualitative analysis of growth and development processes
that involves species distribution and their interplay of spatially distributed popu-
lace with diffusion and obtains the stipulations of Hopf and Turing bifurcation in a
spatiotemporal region.

Chapter 9 summarizes the contribution and development of Runge–Kutta methods
in the field of numerical analysis to solve the ordinary differential equations. The
different methods of this category are studied to discuss their applicability and to
compare their relative accuracies.

Chapter 10 provides a method to generate all non-dominated points for a tri-
objective integer problem. The proposed approach has an advantage: it reduces the
number of sub-problems solved and hence the central processing unit (CPU) time.

vii



viii Preface

Chapter 11 investigates a link-weight modification philosophy for solving net-
work optimization problems. The purpose and process of link-weight modification
have been examined to understand the philosophy behind these link-weight modifi-
cation approaches.

Chapter 12 discusses a system for the automatic detection of photorealistic
computer-generated images (PRCG). The proposed system utilizes rich models for
differentiating PRCG from photographic images (PIM) and achieves close to 99%
classification accuracy in many scenarios.

Chapter 13 investigates the flow characteristics of swirling subsonic annular jets
based on the swirler vane angle (0◦, 25◦, and 50◦). It has been concluded that the
increase in the swirl angle results in the linear increase of swirl number, length of the
recirculation zone, and streamwise mass entrainment rate.

Chapter 14 deliberates the reliable tool for solving all types of linear program-
ming problems of real world which would involve industrial and business problems.
C language has been used to solve typical problems of linear programming in con-
vergence of simplex method.

Chapter 15 explains the classical inventory control model with reliability influ-
ence demand and partially backlogged items. The primary motive of efficient inven-
tory management is to provide a suitable customer service, thereby keeping a low
cost of the inventory system. Thus, the aim of this chapter is to minimize the cost of
the inventory system.

Chapter 16 discusses a very sensible approach, namely, optimal replenishment
policy for non-instantaneous deteriorating items with two storage facilities, with
two more major parameters, i.e., multi variate demand and under shortages inflation,
which is partially backlogged.

This book will be very useful to the undergraduate and postgraduate students of
engineering; engineers; research scientists; and academicians involved in the mathe-
matics and engineering sciences.

Mangey Ram
Graphic Era (Deemed to be University), India
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1.1 INTRODUCTION
1.1.1 PRELIMINARIES

Population health is considered to be one of the most valuable commodities that
lies at the heart of interest of both the society and the health profession (Starfield
et al., 2005). Environmental changes, socioeconomic conditions, and changes in the
epidemiology of diseases, along with the burden they cause on humanity, are the
main axes that make public health surveillance necessary (see Teutsch and Thacker,
1995; Heath and Smeeth, 1999; Norbury et al., 2011). Public health surveillance
can be defined as the “ongoing, systematic collection, analysis, interpretation, and
dissemination of data regarding a health-related event that enables public health au-
thorities to reduce morbidity and mortality” (Sosin, 2003). Surveillance provides
services for various functions like the estimation of the burden of a disease, the iden-
tification of the probability distribution of an illness, the proposal of new research
problems, the support and evaluation of prevention and control measures, and fi-
nally, facilitating planning (Sosin, 2003). The most significant scope of surveillance
is the detection of an outbreak, namely the ability to identify an unusual increase
in the disease frequency. However, the syndromic surveillance which is analyzed
later is an approach for detecting early enough an outbreak by extending current
capabilities.

Along with the rapid advancements in the fields of computing, engineering, math-
ematics, statistics, and public health, a potentially powerful science of surveillance
known as biosurveillance is emerged. The primary challenges in this scientific field
are associated with early and accurate outbreak detection to ensure the implementa-
tion of effective control measures. The field dealing with these issues and specif-
ically with disease detection is known as biosurveillance (Shmueli and Burkom,
2010; Wagner et al., 2006; Dato et al., 2006). This chapter aims at providing a brief
overview of what is being done in the field and how it can be improved with future
research considerations.

1.1.2 DEFINITION OF BIOSURVEILLANCE

As indicated earlier, biosurveillance is a continuous process which monitors dis-
ease activity. By disease activity, it is meant to encompass not only the emergence
and/or manifestation of the disease, but also the preliminary processes involved in
the development and/or evolution of the disease. The operational definition of bio-
surveillance, given by Homeland Security Presidential Directive (HSPD-21, 2014),
is that it is “the process of active data-gathering with appropriate analysis and in-
terpretation of biosphere data that might relate to disease activity and threats to
human or animal health whether infectious, toxic, metabolic, or otherwise, and re-
gardless of intentional or natural origin in order to achieve early warning of health
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threats, early detection of health events, and overall situational awareness of disease
activity.”

It is worth to be noted that biosurveillance, as a science, is relatively young in
terms of its origin since the full-thrust of research in this field started only in the
early 1990s, along with the emergence of computers and automation. Biosurveillance
is a systematic and evolutionary integration of disease and public health surveillance
that finds similarities between them in the aspect of systematic data collection and
analytical processes for disease detection (Thacker and Berkelman, 1998; Teutsch
and Churchill, 2000; Rothman and Greenland, 1998). In this type of processes, case
detection is inherent; by case detection, it is meant to be the act of noticing the ex-
istence of a single individual with a disease. The evolution, however, is evident on
the broader scope of biosurveillance, in the sense that it includes outbreak detec-
tion and characterization at a higher rate compared to both disease and public health
surveillance. Outbreak detection is a collection of methods and techniques for the
identification of an outbreak, whereas outbreak characterization is the mechanism
used by researchers to elucidate the outbreak main characteristics. Outbreak detec-
tion together with outbreak characterization constitutes the two components of bio-
surveillance (Wagner et al., 2006). This chapter focuses on a range of statistical and
stochastic modeling techniques designed to serve the purposes of early and accurate
outbreak detection.

1.1.3 OBJECTIVES OF BIOSURVEILLANCE

As discussed in the previous section, biosurveillance is an evolutionary process
which combines disease and public health surveillance. Hence, one of the vital pro-
cesses in biosurveillance is epidemiological surveillance, defined to be “the process
of actively gathering and analyzing data related to human health and disease in a
population in order to obtain early warning of human health events, rapid character-
ization of human disease events, and overall situational awareness of disease activ-
ity in the human population” (HSPD-21, 2014). The main goals of epidemiological
surveillance are to monitor the distribution and trends of the diseases incidence as
well as to design, implement, and evaluate health policies and public health actions
after their further processing (Langmuir, 1995), with the ultimate objective to reduce
morbidity and mortality, and thus improve population health indicators (Macmahon
and Trichopoulos, 1996). Additionally, the present-day definition of epidemiolog-
ical surveillance includes some key aspects such as ensuring the validity of data,
implementing advanced statistical methods for data analysis, as well as deriving
scientifically and methodologically adequate conclusions (Fleming and Rotar-Pavlic,
2002). Again, as a result of an evolutionary process, a key difference between tra-
ditional epidemiological surveillance and the emerging science of biosurveillance
is the development of syndromic surveillance (Fricker, 2013). Sosin (2003) defines
syndromic surveillance as the “ongoing, systematic collection, analysis, interpreta-
tion, and application of real-time (or near-real-time) indicators of diseases and out-
breaks that allow for their detection before public health authorities would otherwise
note them.” From this definition, it should be noted that the latter process derives
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from the notion of syndromes, defined as “a set of non-specific pre-diagnosis medi-
cal and other information that may indicate the release of a natural disease outbreak
or a bioterrorism agent.” These syndromes serve as signals for detection of possible
high-impact disease-related events (e.g., outbreaks) in the context of biosurveillance
processes.

1.1.4 BIOSURVEILLANCE SYSTEMS AND PROCESSES

Biosurveillance is a multidisciplinary science traditionally involving expertise from
the fields of epidemiology, medicine, microbiology, veterinary, public health, and
health care. Nowadays, as part of the field’s evolution, the increased possibility of
more powerful biological threats and activities has led this new scientific area to
diversify its pool of expertise into a more computer-oriented approach. It has now
borrowed expertise from the fields of mathematics, (bio)statistics, computer sci-
ence, and systems and quality engineering, focusing on the idea of evidenced-based
surveillance processes. Moreover, the importance of the latter fields is reflected in
the need of conducting biosurveillance at real time and sometimes in forms of big
data; hence, a necessity for timely and efficient automation has emerged as pointed
out by Wagner et al. (2006).

In the 21st century, the advancements in the field of computing led to newer de-
velopments of automated biosurveillance systems. However, such systems, whether
automated, manual, or a mixture of both, must still be systematic in terms of its func-
tionality as emphasized by Wagner (2002). A biosurveillance system, as with any
engineering system, should be able to meet its functional requirements in order to be
considered operational. Such requirements involve specifications of the diseases to
be detected and the time frame within which detection occurs (Wagner et al., 2006).
It is worth to be noted that the main requirement of such systems is to be able to
recognize threat patterns.

1.1.5 OBJECTIVES, GOALS, AND CHALLENGES

According to the above discussion, biosurveillance can be considered as a dynamic
activity directly connected to developments and advances in the general area of bio-
sciences. The health community is constantly in search for the early and accurate
prediction of the time of an outbreak. As a result, further advances based on various
statistical models and methods have been developed in numerous countries in Europe
(European Centre for Disease Prevention and Control – ECDC) (Hulth et al., 2010)
and the States (Centers for Disease Control and Prevention – CDC). The main chal-
lenges in biosurveillance are related to data source, quality control, the monitoring
(follow-up), the evaluation of statistical methods for outbreak detection, anomalies
and/or outliers in the data, and extreme timeliness of detection.

The combination of a new requirement of timeliness, a high level of applied work
building early warning systems and a set of unaddressed research questions, suggests
that it may be beneficial to think about the theoretical foundations of this field, what
constitutes the relevant existing body of knowledge, and how this scientific field can
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accommodate the applied work. Towards this end, this chapter aims at the imple-
mentation and evaluation of several cutting-edge statistical and stochastic modeling
techniques for the automated, accurate, early detection of outbreaks in biosurveil-
lance systems. In particular, this chapter addresses the following issues: (i) a brief
literature review for the identification of the mathematical foundations of outbreak
detection and the investigation of open relevant research issues; (ii) the development
of a variety of novel periodic regression models (with emphasis on the best models
for monitoring); (iii) the proposal of guidelines for the implementation and effective
use of the change-point analysis mechanism for the detection of epidemics; (iv) the
analysis and comparison of the proposed methodologies in terms of several perfor-
mance metrics, via a retrospective analysis of real epidemiological data.

Conclusively, progress is expected to be facilitated as long as the scientific em-
phasis will be placed on the valid and very early outbreak detection. This perspec-
tive indicates the significance of putting forward the questions to be addressed and
identifying valuable prior knowledge and methods from related scientific fields. The
range of statistical and stochastic modeling techniques studied in this chapter clearly
shows that outbreak detection is an interdisciplinary field where statisticians, infor-
maticians, public health practitioners and experts, engineers, and bioscientists are
involved. Progress is also likely provided that outbreak detection is recognized as a
discipline with “big data” characteristics. This chapter will bring together the pub-
lic health community with researchers from Big Data Analysis, Epidemiology and
Statistical and Disease Modelling with the ultimate aim of furnishing, for a number
of infectious diseases, tools and techniques for situational awareness and outbreak
response.

The rest of this chapter is organized as follows. In Section 1.2, the current math-
ematical foundations of outbreak detection are presented in brief. In Section 1.3, the
statistical framework is introduced. In Section 1.4, an empirical comparative study is
performed. Finally, in Section 1.5, the main conclusions are presented together with
directions and ideas for future extensions and generalizations.

1.2 STATE OF THE ART
In recent years, numerous researchers focus on public health surveillance by consid-
ering and implementing advanced statistical tools and models including regression
and auto-regressive processes, Bayesian and Markovian processes, and spatio-
temporal models, among others. The interested reader is referred to the works
of Sonesson and Bock (2003), Farrington and Andrews (2004), Buckeridge et al.
(2005), Shmueli and Burkom (2010), and Unkel et al. (2012) for extensive reviews
of the relevant literature.

The model proposed by Stroup et al. (1989) although relatively simple it exhibits
some robust features due to the fact that the adjustment for seasonal effects is au-
tomatic as part of the design instead of the modeling. Although the seasonality is
handled automatically, the same is not true for the trend which is not incorporated
into the model. The classical fully parametric model for the detection of outbreaks
has been proposed by Serfling (1963). The model is based on historical baselines and
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consists of a linear function of time describing the trend and sine and cosine terms
for modeling the seasonality while the errors are assumed to be normally distributed
with constant variance. Costagliola et al. (1991, 1994) consider this model for the
detection of the onset of influenza epidemics. More recently, Pelat et al. (2007) con-
sidered a generalized version of Serfling’s model assuming a cubic function of time
representing the trend and three trigonometric (sine–cosine) terms for the model-
ing of the seasonality effect. The ideal model appropriate for both prospective and
retrospective surveillance was chosen by the model identification procedure due to
Akaike information criterion (AIC).

Regression methods can also be considered as an extension/generalization of She-
whart control charts. Statistical Process Control (SPC) is heavily relying on control
charts (Oakland, 2008; Montgomery, 2013) for monitoring the characteristics of a
process over time. The implementation of SPC methods to public health surveillance
has a very long history. In fact, there is a number of techniques for the detection
of outbreaks that are either related to or inspired by SPC methods (Woodall, 2006).
Although the Shewhart chart takes into consideration only the last observation, the
cumulative sum (CUSUM) chart and the exponentially weighted moving average
(EWMA) control chart, proposed by Page (1954), are based on past observations.
Adjustments of CUSUM and EWMA methodology for Poisson and binomial data
are available in the literature (Lucas, 1985; Gan, 1991; Borror et al. 1998). Exten-
sions, modifications, and variants of these charts were proposed over time to serve
the purposes of public health surveillance (Nobre and Stroup, 1994; Rossi et al.,
1999; Hutwagner et al., 2003; Rogerson and Yamada, 2004; Burkom et al., 2007;
Dong et al., 2008, Hohle¨ and Paul, 2008; Elbert and Burkom, 2009).

Outbreak detection consists of one of the most crucial parts of public health
surveillance, and traditionally, its performance is based on the investigation of his-
toric disease records. Having an accurate detection system is of high importance
since it helps the authorities to control the spread of outbreak and reduces the mor-
tality rate. There have been several works on outbreak detection methods (Long,
2012; Buehler et al., 2004; Ong et al., 2010; Shmueli and Burkom, 2010). Among
them lies change-point analysis which has been proved to be a reliable tool for iden-
tifying outbreaks in scientific fields such as medical, climate, public health, speech
recognition, and image analysis. There are two kinds of algorithms for change-point
detection, namely, offline and online algorithms. For the former, we look back in
time to identify the change point having available the entire dataset, while for the lat-
ter, the algorithm runs concurrently with the process under monitoring (see for more
details Mohsin et al., 2012; Aminikhanghahi and Cook, 2017).

There exist a variety of applications of change-point analysis in disease surveil-
lance data. Kass-Hout et al. (2012) applied various change-point detection meth-
ods to the active syndromic surveillance data to detect changes in the incidence of
emergency department visits due to daily influenza-like illness (ILI). Monitoring
in U.S.A. has a tendency on algorithm procedures like Early Aberration Report-
ing Systems (EARS) despite their limitation on detecting subtle changes and iden-
tifying disease trends. Hence, Kass-Hout et al. (2012) compared a combination of
CUSUM method and EARS, and concluded that EARS method in conjunction with
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change-point analysis is more effective in terms of determining the moving direction
in ILI trends between change points. Texier et al. (2016) made use of change-point
analysis for evaluating the ability of the method to locate the whole outbreak signal.
The use of the kernel change-point model led to satisfactory results for the identi-
fication of the starting and ending periods of a disease outbreak in the absence of
human resources. In addition, Christensen and Rudemo (1996) studied incidence
data by using tests that are modifications of well-known hypothesis tests for retro-
spective change-point detection. Specifically, they applied the methodology for mul-
tiple change points by means of a modification of the forward selection procedure
and concluded that the suggested method is an effective tool for exploratory data
analysis. Finally, Painter et al. (2012) used both offline and online algorithms for
monitoring the quality of aggregate data.

Based on all the above, we conclude that numerous statistical models and meth-
ods are available for the early epidemic detection (see Choi (2012), Groseclose and
Buckeridge (2017), and references therein). The aforementioned statement raises the
query “Which is the most appropriate methodology to use?” As expected, it is not
possible to characterize one single methodology as “best” due to the fact that the
choice of an ideal method depends on a variety of factors such as the application, the
implementation, the purpose, and the context of the analysis.

Some of the factors that may affect any assessment of the relative merits of avail-
able methods are (i) the scope and the field application of the public health surveil-
lance system, e.g., the number (from one to a few thousands) of parallel data series
to be monitored; (ii) the quality of the data which is related to the method of data
collection as well as possible delays between the time of occurrence to the time of
reporting; (iii) the spatio-temporal data features which may include the frequency,
the trend as well as the seasonality structure, the epidemicity, and finally the time
step and spatial resolution; (iv) the nonstationarity and the possible existence of cor-
relations in the distribution of frequency of data; (v) the possible existence of the
phenomenon of overdispersion; (vi) the outbreak specific characteristics such as ex-
plosive or gradual onset, brief or long duration, severity, or any mixture of the above;
(vii) the use for which the system is intended, including the post-signal processing
protocols; (viii) the support of the system in terms of processing power and human
resources; and (ix) the choice of metrics and measures for performance evaluation.

Therefore, in order to assess the effectiveness of statistical and stochastic model-
ing techniques for outbreak detection as well as the validity of their results which in
turn will result in safe conclusions, the use of appropriately adjusted evaluation crite-
ria is required in order to serve the purposes of public health surveillance. However,
in the scientific community, there are no widely accepted evaluation measures for
this type of systems (Fricker, 2011, 2013). Consequently, the issue which arises re-
garding the selection of the optimal statistical methodology for studying the changes
of epidemic activity, and thus the early and accurate outbreak detection, together
with the selection of the appropriate evaluation criteria of these methods, is a broad,
complex, and multifactorial research topic. This thematic area remains underdevel-
oped to a great extent, in spite of the advances that have been made as pointed out by
Buckeridge et al. (2005), Watkins et al. (2006), and Fraker et al. (2008), since it is
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highly affected by technical approaches associated with SPC and the more empirical
epidemiological perspective. In this spirit, this chapter focuses on open epidemiolog-
ical issues of the interrelated disciplines of (bio)statistics and biosurveillance, and
attempts to provide answers to open research issues, such as the fact that existing
statistical methods do not apply directly to public health surveillance and that there
is a lack of commonly accepted standards for evaluating detection algorithms as well
as a lack of common performance evaluation metrics. The description of these open
methodological issues, the mathematical formulation of the problem, and the statis-
tical methodology that will be developed for addressing and solving these issues are
presented below.

1.3 STATISTICAL FRAMEWORK
Before the statistical reference framework is introduced, it is essential to give a de-
tailed account of the dataset used for analysis purposes and the procedure that was
followed. In such a way, we will be able to have a clear aim and action plans on
how special cause data points will be analyzed and how the variability of a process
(of common and/or special cause) might be interpreted. In addition, it will become
possible to comprehend statistical and epidemiological concepts within.

1.3.1 SENTINEL EPIDEMIOLOGICAL SURVEILLANCE SYSTEM

The epidemiological sentinel surveillance system in Greece is in operation since
1999 and is based on voluntary participation of physicians, general practitioners, and
pediatricians of Primary Health Care. Such systems often constitute the main source
of epidemiological data. In addition, they offer the guidelines for the most effective
decision making via a process that includes registration, processing, analysis, and
inference. Thus, the frequency of certain diseases and/or syndromes is reported by
those health practitioners chosen exclusively for the purpose of making the clinical
diagnoses. More specifically, epidemiological data for the number of consultations
per syndrome are forwarded weekly to sentinel systems. Based on these data, the
National Public Health Organization in Greece provides the estimate of the weekly
syndrome cases per 1,000 visits, namely the so-called proportional morbidity reflect-
ing the activity of the syndrome under study (Parpoula et al., 2017).

The reorganization of the Hellenic sentinel system under the Operational Pro-
gramme “Human Resources Development” of the National Strategic Reference
Framework (NSRF) 2007–2013, action “Primary Health Care services (private and
public) networking for epidemiological surveillance and control of communicable
diseases,” took place in the period 2014–2015. The reorganization established that
the national priorities of syndromes of great interest include the ILI and gastroen-
teritis. The fact that both syndromes are traditionally monitored by most European
sentinel systems due to their potential for widespread transmission clearly shows that
their evolution is of great public health concern. Considering that ILI rate constitutes
a potential pandemic risk makes even more important its monitoring. Further note
that the surveillance of ILI rate allows not only the study of the seasonality but also
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the identification of the signaled starting and ending weeks together with the inten-
sity of epidemic waves. On the other hand, the surveillance of gastroenteritis is the
key for the determination of epidemic outbreaks.

1.3.2 TWO SEASON INFLUENZA HISTORICAL DATA

The historical data used in this retrospective analysis are the weekly ILI rate data
from September 29, 2014 (week 40/2014) to October 2, 2016 (week 39/2016) for
the purpose of determining the signaled starting and ending weeks for the past two
seasonal influenza outbreaks. Recall that ILI rate is defined as the frequency of
influenza-like syndrome cases per 1,000 consultations. The main objectives of the
analysis include the prediction of the time interval of influenza outbreak, the estima-
tion of the duration of the time interval, and the early detection of epidemics.

1.3.3 RESEARCH METHODOLOGY

1.3.3.1 The Standard CDC and ECDC Flu Detection Algorithm
(Serfling’s Model)

The typical approach to ILI rate surveillance (implemented by the ECDC and CDC)
is based on Serfling’s cyclic regression method by which epidemics are detected and
reported when morbidity/mortality exceeds the epidemic threshold. Serfling’s model
in Serfling (1963) can be described as

M11 : Xt = a0 +a1t + γ1 cos
π

m
+δ1 sin

π

m
+ εt , (1.1)

{
2 t

} {
2 t

}
where Xt is the observed weekly ILI rate, t are the errors terms with mean 0 and
variance σ2, m is the number of observations within 1 year, and model coefficients
are estimated by least squares method.

ε

1.3.3.2 An Extended Serfling’s Model
Parpoula et al. (2017) developed extended Serfling-type periodic regression mod-
els, and through an exhaustive search process, the best fitting model was selected.
In particular, four steps were executed: (i) determination of the training period—a
retrospective analysis was conducted, making use of all available 2-year historical
weekly ILI rate data, in order to estimate the baseline level; (ii) purge of the train-
ing period—the 15% highest observations were excluded from the training period
so that the baseline level is estimated from truly nonepidemic data (following the
suggestions of Pelat et al. (2007)); (iii) estimation of the regression equation—all
expressions for Xt were special cases of the model given by

M33 : Xt = a0 +a1t +a2t2 +a3t3 + γ1 cos
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The best fitting model was obtained by an exhaustive search and selection process
which was relied on analysis of variance (ANOVA) comparison (significance level
was chosen to be 0.05) to select between nested models, and on AIC or on Schwarz’s
Bayesian information criterion (BIC), to select between non-nested models; (iv)
epidemic alert notification—epidemic thresholds were obtained by taking the up-
per 95th percentile for the prediction distribution, and an epidemic was declared
when two weekly successive observations were above the estimated threshold. For a
more detailed explanation of the above-mentioned four-step procedure, see Parpoula
et al. (2017).

Through this exhaustive search process, the detected best fitting model M23 is
described as follows:

M23 : Xt = a0 +a1t +a2t2 + γ1 cos
2πt
m

+δ1 sin
2πt
m

+ γ2 cos
4πt
m

+δ2 sin
{
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m

}
+ γ3 cos
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8πt
m

}
+δ3 sin

{
8πt
m

}
+ εt . (1.3)
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Moreover, the aforementioned procedure allowed Parpoula et al. (2017) to correctly
identify the epidemics occurred, namely, sw01-ew13/2015, sw01-ew08/2016, where
sw and ew denote the start and end weeks of the epidemic period, respectively. Note
that the signaled start and end weeks were found to be identical considering either
Serfling’s model (M11) or extended Serfling’s model (M23).

1.3.3.3 A Mixed Model Including Auto-Regressive Moving Average
(ARMA) Terms

The above results motivated Kalligeris et al. (2018) to account for autocorrelation
in historical process data and incorporate into the full form of the model (M33)
described in Equation (1.2), Auto-Regressive Moving Average (ARMA) terms. Co-
variates related to weather (12 covariates related to wind speed, direction, and tem-
perature) were also included in the model structure and examined for their statistical
significance. Following the same four-step exhaustive search process (as previously
described), applied to the same 2-year historical weekly ILI rate data, the model
chosen as optimal was the simplest one, that is, a mixed model with a linear trend,
12-month seasonality, an ARMA(2,1) process, and the minimum temperature as the
only significant random meteorological covariate, described as follows:

MXM11 : Xt = a0 +a1t + γ1 cos
{

2πt
m

}
+δ1 sin

{
2πt
m

}
+ϕ1xt-1 +ϕ2xt-2 + εt +λ1εt-1 +ω1 mintemp. (1.4)

In this way, Kalligeris et al. (2018) identified two epidemic periods, namely, sw01-
ew12/2015, sw05-ew08/2016.

Recall that the modeling is focused on nonepidemic data after removal of extreme
values from the dataset. Both methodologies, based either on extended Serfling’s
model (M23) or on periodic ARMA (PARMA) modeling (MXM11), are considered
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to be sufficient for the modeling of the baseline part of the series, but have a seri-
ous drawback. By not considering the extreme values of the dataset, the resulting
model is considered unsuitable for predictive purposes. Moreover, these approaches
suffer from the absence of scientific justification for excluding nonextreme values to
model the baseline distribution. To that end, a variety of ad-hoc rules have been sug-
gested (dividing the time series into typical and non-typical periods) with the most
widely used being the removement of the top 15%–25% values from the training
period (Pelat et al., 2007). This approach although it has some merits relies on arbi-
trary pruning (lacking mathematical justification) which constitutes, in that sense, a
fundamental obstacle towards the development of an automated surveillance system
for influenza.

1.3.3.4 A Mixed Effects Periodic ARMA Model Based
on Change-Point Detection

For the aforementioned reasons, Kalligeris et al. (2019) provided a general and com-
putationally fast algorithm which consists of three steps: (i) identification of extreme
periods, (ii) modeling of non-extreme periods, and (iii) modeling of extreme pe-
riods and estimation accuracy. The goal of the above algorithmic procedure is to
simultaneously estimate the baseline level and the extreme periods of the time series
via change-point analysis. First, they adapted the segment neighborhood (SegNeigh)
algorithm (Auger and Lawrence, 1989) applied to time series data. In this way, sig-
nificant mean shifts were identified at particular, previously unknown time points.
Second, for modeling nonepidemic time series data, Kalligeris et al. (2019) excluded
from the analysis, based on change-point analysis, the observations leading to an epi-
demic. Then, using for comparative purposes among candidate models, the AIC and
the ANOVA procedure, the algorithm of Kalligeris et al. (2018) was executed for sev-
eral models with trend, periodicity, ARMA terms, as well as the average minimum
weekly temperature (the only covariate identified as significant among a plethora
of meteorological variables considered). Finally, the optimal model for baseline in-
fluenza morbidity was selected to be the one that includes a quadratic trend, 12- and
6-month seasonal periodicity, ARMA(1,1) terms, and minimum temperature, and is
described as follows:

SegNeigh : Xt = a0 +a1t +a2t2 + γ1 cos
2πt
m

+δ1 sin
2πt
m

+ γ2 cos
4πt
m

+δ2 sin
{

4πt
m

}
+ϕ1xt-1 + εt +λ1εt-1 +ω1 mintemp. (1.5)

{ } { } { }

Finally, Kalligeris et al. (2019) introduced a polynomial approximation of the behav-
ior of the time series in epidemic periods (identified by change-point analysis) and
evaluated the estimated ILI rate value of each epidemic time point by the polynomial
of each epidemic period. The chosen polynomial describes satisfactorily enough the
behavior of the epidemic period. Based on the proposed methodology, the estimation
of the epidemic time points (sw01-ew12/2015, sw01-ew08/2016) results by combin-
ing the polynomial approximation of the epidemic periods with the baseline model
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based exclusively on nonepidemic time points. The details of the above technique
can be found in Kalligeris et al. (2019).

1.3.3.5 A Distribution-Free Control Charting Technique Based
on Change-Point Detection

As discussed earlier, the classical approach used by ECDC and CDC for the ILI rate
surveillance is based on the implementation of Serfling’s cyclic regression model
which requires nonepidemic data for the modeling of the baseline distribution while
the observations are treated as being independent and identically distributed.

Towards this end, Parpoula and Karagrigoriou (2020) developed a distribution-
free control charting technique based on change-point analysis for detecting changes
in location of univariate ILI rate data. The main tool in this methodology is detection
of unusual trends, in the sense that the beginning of an unusual trend marks a switch
from a control state to an epidemic state. Therefore, it is considered of high impor-
tance to timely detect the change point for which an epidemic trend has begun since
in such a way the occurrence of a new epidemic could be predicted.

Let xi represent the ith observation, i = 1,2, . . . ,m, and let us consider the prob-
lem of testing the null hypothesis H0 that the process was in control (IC) against
the alternative hypothesis that the process mean experienced an unknown number
of step shifts. In such a case, a set of test (control) statistics are needed for de-
tecting 1,2, . . . ,K step shifts. Here, K denotes the maximum number of hypothet-
ical change points. The test statistics Tk,k = 1,2, . . . ,K were designed for testing H0
against the alternatives:

H1,k : E (xi) =

{{{{{{{{{{{
µ0, if 0 < i ≤ τ1

µ1, if τ1 < i ≤ τ2
...

µk, if τk < i ≤ m,

(1.6)

where the mean values µ0, . . . ,µk and the change points 0 < τ1 < .. . < τk < m are
assumed unknown. Further, defining τ0 = 0 and τk+1 = m, it was also assumed that
τr-τr-1 ≥ lmin, r = 1, . . . ,k+1, where lmin is a pre-specified constant giving the min-
imum number of successive observations allowed between two change points. For a
sequence of individual observations, the control statistics together with the change
points were obtained using a simple forward recursive segmentation and permuta-
tion (RS/P) approach as described in Capizzi and Masarotto (2013). The different
test statistics were standardized and aggregated, obtaining an overall control statistic.
Then, given a test statistic, its p-value was calculated, as the proportion of permu-
tations (fixed number, say L) under which the statistic value exceeds or is equal to
the statistic computed from the original sample of observations. Choosing an accept-
able false alarm probability (FAP), say α , then, for p-value < α , the null hypothesis
that the process was IC is rejected. This multiple change-point approach is advanta-
geous for epidemiological surveillance purposes for two reasons: (i) there is little to
no control over disease incidence, and thus, the distribution of disease incidence is
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usually nonstationary; (ii) outbreaks are transient, with disease incidence returning
to its original state once an outbreak has run its course.

Parpoula and Karagrigoriou (2020) performed the RS/P approach for both periods( ( [ ]))
under study executing L = 100,000 permutations with K = max 3,min 50 m, 15
and lmin = 5. The procedure signaled possible changes of the mean for both peri-
ods under study (p-value < 0.001 for a change in level), and the extracted signaled
epidemics were sw01-ew14/2015 and sw01-ew08/2016.

1.4 COMPARATIVE STUDY
This section deals with the analysis of weekly ILI rate data (provided from the
National Public Health Organization) for Greece, between September 29, 2014
(week 40/2014), and October 2, 2016 (week 39/2016).

Parpoula et al. (2019) examined the ability of the RS/P, SegNeigh, and MXM11
approaches to detect the true change points compared to the standard and extended
CDC and ECDC flu detection algorithm (models M11 and M23). Recall here that
the signaled start and end weeks (sw01-ew13/2015, sw01-ew08/2016) were found to
be identical considering either Serfling’s model (M11) or extended Serfling’s model
(M23).

The classic diagnostic test for discriminating between groups (here, epidemic
from nonepidemic) is typically evaluated using receiver operating characteristic
(ROC) curve analysis (Zweig and Campbell, 1993; Greiner et al., 2000). It is well es-
tablished that such curves, and the associated statistics/metrics (sensitivity – SENS,
specificity – SPEC, accuracy – ACC, area under the ROC curve – AUC) can fur-
ther be used for evaluating and comparing the performance of different diagnostic
tests (see for instance Griner et al., 1981). Thus, Parpoula et al. (2019) estimated
these metrics along with their 95% confidence interval (CI) (exact Clopper–Pearson
CIs for SENS, SPEC, and ACC, exact binomial CI for each derived AUC) for each
method considered (as shown in Table 1.1).

Table 1.1 indicates that RS/P and SegNeigh approaches (higher ACC, SENS, and
AUC values) outperform MXM11 and seem to detect successfully the true change
points compared to the standard approach to influenza surveillance. Both RS/P and
SegNeigh approaches are advantageous since they can be used for the analysis of his-
torical data without the need of identifying typical and non-typical data periods, and
single or multiple mean shifts can be detected, hence, opening the way for automated
surveillance systems.

1.5 CONCLUDING REMARKS
In this chapter, we studied the implementation of several periodic regression mod-
eling techniques (including standard CDC and ECDC flu detection algorithm) and
the mechanism of change-point analysis for the detection of epidemics. Further, we
discussed some of the statistical affairs concerning the evaluation and optimal se-
lection among these approaches for the early and accurate outbreak detection. The
comparative empirical study of ILI syndrome in Greece for the period 2014–2016
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Table 1.1
Performance Metrics for RS/P, SegNeigh, and MXM11 Approaches

Estimated Value 95% CI

Sensitivity (%)
RS/P
100.0 83.89–100.0

Specificity (%) 98.81 93.54–99.97
Accuracy (%) 99.05 94.81–99.98
AUC 0.988 0.944–0.999

Sensitivity (%)
SegNeigh

95.24 76.18–99.88
Specificity (%) 100.0 95.71–100.0
Accuracy (%) 99.05 94.81–99.98
AUC 0.976 0.926–0.996

MXM11
Sensitivity (%) 76.19 52.83–91.78
Specificity (%) 100.0 95.71–100.0
Accuracy (%) 95.24 89.24–98.44
AUC 0.881 0.803–0.936

provided evidence that RS/P and SegNeigh change-point analysis-based approaches
were found to be superior compared to their competitors in terms of all performance
evaluation metrics considered and seem to detect successfully the true change points
(RS/P and SegNeigh change points were compared with those derived after execut-
ing the standard CDC and ECDC flu detection algorithm). Thus, the mechanism of
change-point detection can be characterized as an excellent retrospective analysis
technique.

On the one hand, RS/P distribution-free change-point analysis method is able to
guarantee a prescribed FAP without any knowledge about the (in-control) underlying
distribution. Given these appealing properties, future research will investigate the ex-
tension of the RS/P approach for estimating the expected baseline level for the time
series, associated with a prediction interval. In such a manner, epidemic periods will
be obtained along with the estimation of the related morbidity burden. In addition,
alert epidemic thresholds could be used for performing online surveillance of ILI
syndrome.

On the other hand, SegNeigh algorithm in conjunction with periodic-type ARMA
time series modeling is capable of describing the behavior of the entire series, ex-
treme and nonextreme parts, without significant loss of accuracy and thus resulting
in a strong forecasting capability of the proposed method. The use of change-point
detection analysis along with time series modeling techniques seems to provide a
useful tool to identify and model outbreaks that may occur in incidence data. Simul-
taneously, it can be proved useful to the society since it could significantly contribute
in the early detection and prevention of any type of extreme/harmful events.
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Conclusively, the comparative study provided evidence that statistical methods
based on change-point analysis have several appealing properties compared to the
current practice for the detection of epidemics. It is worth noting that the purpose of
change-point analysis is the accurate identification of epidemic periods via splitting
the data into typical and non-typical periods. To that end, a variety of rules have been
suggested, as discussed earlier, such as excluding the 15% or 25% highest values
from the training period, removing all data above a given threshold, or excluding
whole periods known to be epidemic prone. One of the main contributions of this
chapter lies on the fact that it presents statistical and stochastic modeling techniques
which do not rely on arbitrary pruning and hence is filling up the gap in the rele-
vant literature.

Further, the change-point analysis approach for detecting outbreaks indicates the
need of building a flexible model that can adjust in either of the states of the time
series data. Thus, as for a future work we will consider Markovian mechanisms such
as Markov switching and hidden (semi-) Markov models. Moreover, we will try to
implement into those mechanisms, penalized likelihood techniques so that the com-
plexity involved in mixed periodic models, which were discussed throughout this
chapter, could be countered.
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2.1 INTRODUCTION

Earthquake is an unstoppable force of nature, and its occurrence cannot be
predicted. However, sound design of earthquake-resistant structures, planning of res-
cue arrangements and implementation of mitigation measures, can greatly reduce
the vulnerability to earthquakes. Therefore, in plain areas of high seismicity, assess-
ment of earthquake-induced hazards, i.e., wave amplification and soil liquefaction,
is crucial.

The chapter reviews methods for assessment of earthquake hazards based on sta-
tistical models, probability theory, and nonlinear analysis. This includes description
of steps involved in assessment of earthquake hazard, ground response investigation,
and calculation of liquefaction potential. The results can be formulated as earthquake
hazard maps based on peak ground acceleration (PGA), spectral acceleration (Sa), re-
sponse spectra, amplification factors for PGA and Sa, and liquefaction susceptibility
map. These results could be useful for engineers and town planners to obtain site-
specific design parameters for calculation of seismic loading for earthquake resistant
design of structures and identification of potentially liquefiable areas for planning of
mitigation measures.
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2.2 EARTHQUAKE HAZARDS
The world has withstood several great earthquakes documented from the times of
1652 BC Xia China Earthquake to the recent on 2019 Peru Earthquake that occurred
on May 26. The people have lost their lives, households, and relations in the earth-
quakes. Outdated structural design provisions, lax building by-laws, broad zoning of
earthquake hazard, and ignorance towards state-of-the-art practices in earthquake-
resistant design are some of the reasons behind the disasters that happened during
these earthquakes at many places. Many investigators have raised these issues and
suggested detailed assessment of earthquake hazard in line with local seismotectonic
setting for all important projects.

Some of the earthquake-induced hazards have been explained in upcoming sub-
sections.

2.2.1 STRONG GROUND MOTIONS

Earthquake is an event which can inflict severe damage to the infrastructure of
a region and take it back to a few decades. The recent example is the Canter-
bury earthquakes of 2010 and 2011 that caused heavy damages in the Christchurch
city. The estimated cost to rebuild is around 20% of total gross domestic prod-
uct (GDP) of New Zealand, i.e., NZ$40 billion approximately (Potter et al. 2015).
The Christchurch city is located near several active tectonic features developed due
to the clash of Australian plate and Pacific plate, and these features can generate
large-magnitude earthquakes in the area. It was the main reason behind such a big
earthquake in Christchurch and the subsequent mass destruction. The New Zealand
construction standards require a structure with a 50-year design period to withstand
loads estimated for a 475-year earthquake event (MacRae et al. 2011). However,
ground motions during 2011 Christchurch earthquake considerably exceeded even
2475-year design motion (Kaiser et al. 2012). Unfortunately, no structure was built
to take that high seismic loading which led to severe damage to structures (Figure
2.1). Some slope failure events were also observed (Figure 2.2). The city also experi-
enced hazards of liquefaction, which include significant ground movements, under-
mining of foundations, destruction of infrastructure, and gushing out of more than
200,000 ton of silt, making it the worst liquefaction event ever recorded anywhere in
a modern city (Figure 2.3). Hence, it is necessary for the areas located in the vicinity
of tectonically active sources to be ready with proper mitigation measures and rescue
arrangements for earthquake-induced hazards.

The mere estimation of seismic hazard would not help in full preparedness against
earthquake-induced hazards. Amplification of seismic waves and liquefaction of
soils could result due to earthquake in plain areas.

2.2.2 SEISMIC WAVE AMPLIFICATION

On surface of the Earth, an earthquake manifests itself as shaking of ground and
sometimes its displacement. Earthquake engineers are primarily concerned with the
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Figure 2.1 Destruction of the Pyne Gould building in Christchurch city. (Source:
en.wikipedia.org.)

Figure 2.2 A major landslide near Kaikoura (South Island). (Source: en.wikipedia.org.)

ground motions, which are strong enough to be felt during an earthquake. Earthquake
waves radiate from the point of rupture to travel rapidly towards surface and can pro-
duce minor to severe shaking lasting from seconds to minutes. Attributes of earth-
quake waves are modified as they propagate through different soil profiles as shown
in Figure 2.4.

Earthquake waves travel long distance in rock strata and a few meter in soil before
reaching the ground surface. The soil acts as a filter and has great influence on the
magnitude and time of shaking at location under consideration. This phenomenon
is called “local site effects.” The local soil conditions significantly affect amplitude,
frequency, and duration of ground motions during an earthquake. The degree of in-
fluence is controlled by thickness and properties of the soil layers, topography of the
site, and attributes of the ground motion itself.

http://en.wikipedia.org
http://Source:en.wikipedia.org
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Figure 2.3 Aerial view of liquefaction-affected areas in Christchurch city. (Source:
en.wikipedia.org.)

Figure 2.4 Site conditions and their possible effect on structures.

The soft soil sites intensify long-period bedrock motions to greater degree in com-
parison with stiff soil sites, and opposite trend is generally seen for low-period mo-
tions as reported from theoretical ground response analysis (GRA) performed by
Kramer (2013) (Figure 2.5). Also, the GRAs performed by Idriss (1990) show that
at low to moderate PGA levels of bedrock motion (<0.4 g), the amplification in soft
soils is likely to be on the larger side than observed in rocks. However, at high PGA
levels of bedrock motion, the low shear modulus and the nonlinearity of soft soils
generally intercept amplifications as high as those observed for rocks. The relation-
ship for PGA for soft soil sites and rock sites determined by Idriss (1990) is shown
in Figure 2.6.

http://en.wikipedia.org
http://en.wikipedia.org
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Figure 2.5 Amplification factors for soft site A and stiff site B. (After Kramer 2013.)

Figure 2.6 Relationship of PGA on soft soil sites and rock sites. (After Idriss 1990.)

2.2.3 LIQUEFACTION HAZARD

Liquefaction is a phenomenon observed during an earthquake due to which the effec-
tive stress is reduced to zero, and the sand–water mixture acts as a viscous material,
and consolidation starts followed by surface settlement resulting in denser packing of
sand particles. It is demonstrated in the form of sand ejecta and soil spouts at the sur-
face created due to seepage of water, or in some circumstances by the development
of quicksand. Structures may settle substantially into the surface or tilt excessively,
and lightweight constructions and foundations may get displaced laterally causing
structural failures and the conventional measure of reinforcing the upper part of the
structure in such a situation is entirely useless.

2.3 PROBABILISTIC SEISMIC HAZARD ANALYSIS
2.3.1 ASSESSMENT

Earthquake hazard manifests itself in severe ground shaking or subsidence that
can severely damage the structures build under and over the surface. The main
aspects in seismic hazard assessment for site are magnitude, source-site distance,
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recurrence interval, and time-span of ground shaking. Assessment of seismic haz-
ard is the initial step towards mitigation. The purpose of assessment is to estimate
potential damage and loss due to possible earthquakes by estimating the proba-
ble ground quaking at a site. Hence, the purpose of maintaining desired level of
serviceability of structures to withstand a given level of ground shaking can be
achieved. Macrozonation and microzonation are two scales at which these kinds
of studies are carried out to develop earthquake hazard maps which are useful
for the design and construction of earthquake-resistant structures, planning of land
use, planning of emergency rescue and relief, and estimation of probable economic
loss.

2.3.2 METHODS FOR SEISMIC HAZARD ANALYSIS

A probabilistic seismic hazard analysis (PSHA) or a deterministic seismic hazard
analysis (DSHA) approach is generally adopted for seismic hazard assessment. In
DSHA, a specific earthquake scenario is presumed based on earthquake data and
tectonics of the seismic study region, and hazard is calculated based on attenuation
characteristics of the region. DSHA provides the worst-case scenario earthquake that
can occur in the region, and the hazard characteristics are obtained for the largest ex-
pected earthquake magnitude supposed to occur at the smallest distance from the
location under consideration. This is done without taking into account the possibility
of occurrence of the earthquake for a definite exposure period during the design life
of the structure. It is used extensively for the design of nuclear power stations, large
bridges, big dams, facilities for harmful waste containment, and as an upper limit for
PSHA. On the other hand, PSHA rectifies several problems inherent in its determin-
istic precursor, namely, lack of quantification of uncertainties in magnitude, location
of an earthquake, and probability of its occurrence. The detailed procedure for prob-
abilistic approach was originally given by Cornell (1968) and explained in detail
by Baker (2008). It quantitatively represents the association between seismogenic
sources, related ground motion parameters, and respective chances of occurrence.
It also computes the likelihood of exceedance of a definite intensity of earthquake
ground motion at a particular location, which is represented as function of recurrence
interval and fault displacement. PSHA has now become a necessity for earthquake
resistant design across the globe due to its capability to accommodate uncertainties.
The detailed process for the calculation of seismic hazard using both approaches has
been explained below.

2.3.2.1 Deterministic Seismic Hazard Analysis (DSHA)
DSHA is a simple analysis, often carried out at an initial stage for the assessment
of earthquake hazard for a specific location or an area. It was used widely in the
initial stages in geotechnical earthquake engineering, nowadays, used for worst-case
situation. For this, all the probable sources associated with seismic activities must be
recognized and their potential for generating earthquakes assessed. A typical DSHA
consists of four stages as described by Kramer (2013):
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1. Identification and characterization of all the tectonic sources with the
potential to generate strong ground motion at a location.

2. Estimation of source to site distances (R).
3. Determination of a controlling earthquake.
4. Description of hazard with reference to a ground motion parameter (Y),

usually expressed in terms of PGA and Sa.

The DSHA procedure has been shown schematically in Figure 2.7. The steps in
DSHA are very simple to carry out and do not require any specialized computer
program or software.

DSHA seems to be a simple procedure as expressed in these four steps but
involves many subjective decisions, particularly regarding estimation of max-
imum earthquake magnitude. It requires collective knowledge and judgment

Figure 2.7 Steps involved in DSHA.
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Figure 2.8 Case 1: Study area with more than one active tectonic feature.

of seismologists, geophysicists, engineers, hazard analysts, economists, and
administrative officers. Even when it worked out from the consensus amongst the
above, there is never a single “worst-case” event when there is more than one active
tectonic feature in the study area (Figure 2.8). In such a case, a smaller magnitude
event nearby can produce a larger spectral acceleration amplitude at shorter period,
while a larger magnitude event can produce a larger amplitude at longer period
(Baker 2008).

Much greater challenge arises in DSHA when there are lot of epicenters, but
the faults are not obvious, or when the faults are diffused together. These sources
are then together considered as an area source likely to generate earthquakes at
any location (Figure 2.9). In such a situation, the worst-case earthquake is with the
largest possible magnitude for location right underneath place under consideration at
the ground surface, i.e., with zero distance. Clearly, it is a worst-case earthquake,
no matter how improbable is its chance of occurrence. Hence, in DSHA, uncer-
tainty in size, location, as well as occurrence of an earthquake event cannot be
accounted for.

2.3.2.2 Probabilistic Seismic Hazard Analysis (PSHA)
PSHA offers a framework in which the uncertainties in seismic occurrences can be
identified, allocated values, and combined in a logical manner to provide a clearer
representation of seismic hazard. PSHA, broadly, can be carried out in five stages
(Baker 2008):
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Figure 2.9 Case 2: Study area with an area source of earthquake.

1. Identification and characterization of tectonic sources capable of generating
harmful seismic waves.

2. Calculation of recurrence periods at which various magnitudes of earth-
quake in a region are likely to occur.

3. Calculation of source to site distances corresponding to possible seismic
events and their distribution.

4. Distribution of ground motion usually as PGA and Sa for particular earth-
quake magnitude and distance.

5. Integration of uncertainties in various attributes of an earthquake ground
motion using total probability theorem.
The PSHA procedure is shown schematically in Figure 2.10.

PSHA can also accommodate the uncertainty in the choice of a model by using logic
tree approach that allocates weighting factor for probability of a model to be accurate.
Decision of assigning weights to models is quite subjective as it is difficult to rate
models one over another and hence requires an expert opinion. The outcome of these
computations would be a complete allocation of ground motion intensities to each
site with their respective probabilities of exceedance. These outcomes can be used
to find a ground-shaking intensity with an acceptable minor chance of exceedance
instead of a “worst-case” scenario.

The accuracy of PSHA relies on the precision with which uncertainties in mag-
nitude, place, and occurrence of an earthquake are characterized. A wise engineer-
ing judgment is necessary for the interpretation of PSHA results. The procedure for
PSHA is quite complex as compared to DSHA. It is difficult to use it in an area where
statistically significant earthquake catalogue is not available. In addition, PSHA can-
not be used for areas where tectonic sources are not properly delineated. The method
was initially evolved by Cornell in 1968. The first computer form EQRISK was
developed by McGuire in 1976, and it is referred to as Cornell-McGuire method.
The computer form was further modified as FRISK in the year 1978. Till now,
many programs have been developed for carrying out PSHA, e.g., FRISK 88M
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Figure 2.10 Steps involved in PSHA.

(McGuire 2001), OpenSHA (Field et al. 2003), OPENQUAKE (Pagani et al. 2014),
and R-CRISIS (Ordaz and Salgado-Galv´ ez 2017).

2.3.3 DEVELOPMENT OF A COMPREHENSIVE EARTHQUAKE CATALOGUE

Comprehensive earthquake catalogue is a prerequisite for seismic hazard estimation.
Reliable seismic hazard assessment of a region strongly depends upon the data
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statistics of the events. There are two types of database accessible for analysis: pre-
instrumental and instrumental. Instrumental data can be collected from various seis-
mological agencies. Non-instrumental measurements of pre-instrumental events are
of immense importance and are required for compiling earthquake catalogue. The
catalogue is then homogenized, cautiously inspected to eliminate matching events,
de-clustered, and tested for completeness.

2.3.4 CATALOGUE HOMOGENIZATION

The seismic data are generally collected from various repositories. A wide range
of magnitudes are reported by these repositories in terms of moment (Mw), body
wave (mb), surface wave (Ms), local (ML), duration (Md), etc. The Mw is extensively
used as it does not saturate. All the magnitudes are changed to Mw, by empirical
relationships taken from the work done by various investigators.

2.3.5 DE-CLUSTERING OF CATALOGUE

An accurate estimation of earthquake hazard requires a Poisson model, which has
a random set of earthquake occurrences. The instrumental catalogues include a lot
of dependent events like foreshocks and aftershocks with the mainshock, leading
to a major deviation from the Poisson model. It gives false information about the
seismicity giving wrong assessment of seismic hazard. De-clustering is the process
of elimination of dependent events from the catalogue. This gives an approximate
Poisson or random dataset to achieve more reliable and accurate calculation of the
recurrence intervals of earthquakes. This can be done by taking help of time and
space windows as suggested in the work done by Gardner and Knopoff (1974).

1. Considering all the events in a chronological order, if an ith event (smaller
magnitude event) is in the window of a preceding larger shock that has not
been removed, then ith event is removed from the catalogue.

2. If a larger shock is in the window of ith event, then ith event is deleted;
otherwise, the ith event is retained.

The other methods can also be used, e.g., given by Savage (1972), Reasenberg
(1985), Davis and Frohlich (1991a,b), and Molchan and Dmitrieva (1992).

2.3.6 CHECK FOR COMPLETENESS

Instrumental recording of earthquakes started in 1900 outside India and in 1960 in
India. It is very important to compile a catalogue comprising of sufficient number of
seismic events covering a reasonable span of time. Use of an inadequate catalogue
will lead to incorrect calculations of earthquake parameters. Therefore, catalogue
is scrutinized for completeness. For this purpose, catalogue is divided into several
magnitude classes, and completeness periods are calculated by cumulative visual
inspection (CUVI) technique (Tinti and Mulargia 1985) and Stepp (1972) technique.
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The CUVI method assesses the span of the time for which magnitude class is
complete. It is an easy criterion for testing completeness of the data. In this method,
catalogue is divided into several magnitude classes, e.g. 4 ≤ Mw < 5, 5 ≤ Mw < 6,
6 ≤ Mw < 7, 7 ≤ Mw < 8 and 8 ≤ Mw < 9, with a class taken as point process in
time. The total events in a year are plotted versus time of occurrence for a magnitude
range. The completeness is estimated from a year with sharp rise in plot. Figure 2.11
depicts completeness analysis using CUVI method. It is observed that for the range
of the earthquake events of magnitude between 4.0 and 4.9 Mw, there is a big gap
before year 1962 as no record is available. Beyond the year 1962, there is a steep rise
in the plot indicating that the catalogue is complete for this range of magnitude for a
duration between the years 1962 and 2015.

In Stepp (1972) method, earthquake data is also grouped into several magnitude
classes and each magnitude class is considered as a point process in time. The av-
erage number of events per year in each magnitude range is determined for a time
interval of 10 years. The mean rate (λ ) for this sample is calculated by the following
equation:

λ =
1
n

n

∑
i=1

xi (2.1)

The variance (σ2
λ

) and standard deviation (σλ ) are calculated by the following
equations:

σ
2
λ
=

λ

T
(2.2)

σλ =
λ

T
(2.3)

√
where T is the sample length.

Figure 2.11 Completeness analysis using CUVI technique.
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If λ is to be a constant, then σλ would vary as 1
T . The standard deviation of the

mean rate of the magnitude intervals is plotted as a function of sample length along√
with nearly tangent lines with slope 1

T . The deviation of plot from the tangent line
indicates completeness of magnitude range in terms of the time duration. Figure 2.12
gives completeness check using the Stepp (1972) method.

√

It is observed that for the range of earthquake events of magnitude between 4.0
and 4.9 Mw, standard deviation of the estimate of the mean deviates from the tangent
line of the plot beyond 1963– 2015. This shows that the catalogue is complete for this
range of magnitude for a period between the years 1963 and 2015. The completeness
for greater earthquake magnitudes cannot be verified, as recurrence interval may be
greater and therefore, catalogue is taken as complete for whole period.

2.3.7 SEISMOGENIC SOURCE CHARACTERIZATION

It comprises preparation of a tectonic map, identification of tectonic features hav-
ing potential of causing significant ground motions, calculation of highest perceived
magnitude (Mobs), estimating fault length and focal depth, and calculating maximum
magnitude (Mmax).

2.3.8 SEISMICITY PARAMETERS

These can be calculated by linear least squares regression analysis by exponential
distribution of magnitudes with the following equation.

λm = 10a−bMw = exp(α −βMw) (2.4)

where λ m = mean annual rate of exceedance, a = coefficient, ath power of ten gives
mean yearly number of earthquakes of magnitude ≥0, α = 2.303a, b = coefficient

Figure 2.12 Completeness analysis using the Stepp (1972) technique.
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Figure 2.13 Seismicity parameters for Himalayan Thrust System.

for possibility of large and small earthquakes and β = 2.303b. Figure 2.13 shows
a typical plot for Himalayan Thrust System. The reciprocal λ m is taken as return
period (TR) of earthquake exceeding a magnitude.

2.3.9 GROUND MOTION PREDICTION EQUATION (GMPE)

The earthquake-resistant design of a structure is based on an approximation of prob-
able strong ground motion. The ground motion model is generally developed based
on strong motion characteristics of the region; plate boundary, subduction and in-
traplate, and accelerogram records of different magnitude of earthquakes at various
epicentral distances. A regression analysis is then carried out to get the mean value
of PGA with minimum variance, and subsequently, site coefficients are estimated at
different periods. However, a sufficient number of strong ground motion records are
rarely available for direct estimation. Therefore, selection can be made from globally
available GMPEs (Douglas 2019).

2.3.10 FORMULATION OF PSHA

The accuracy of a PSHA demands vigilant consideration to the problems of charac-
terization of seismogenic sources and prediction of ground motion parameters and
probability calculations. Characterization of seismogenic source requires consider-
ation to spatial characteristics of the source, distribution of earthquakes within the
source, distribution of earthquake size for the source, and distribution of earthquakes
with time. These characteristics, however, involves some level of uncertainty. The
hazard is generally calculated for recurrence intervals in years with percent proba-
bility of exceedance.
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2.3.10.1 Spatial Uncertainty
Uncertainty in source-site distance may be given as probability distribution function
(PDF).

Figure 2.14 illustrates the spatial uncertainty associated with an area source of
earthquake. This can be done by assuming that there is an equal possibility of occur-
rence of an earthquake anywhere within the area source by using Equation 2.5.

FR (r) = P(R ≤ r) =
Area of circle with radius r

Area of circle with a radius of 100 km
=

r2

10,000
(2.5)

where FR (r) is the cumulative distribution function (CDF) and r between
0 and 100 km.

The following equation gives a more complete description as it accounts for other
ranges as well.

FR(r) =
{{

0 if r < 0
r2

10,000 if 0 ≤ r < 100
1 if r ≥ 100

(2.6)

{

The PDF for a distance can be calculated as follows:

fR(r) =
d
dr

FR(r) =
r

5,000 if 0 ≤ r < 100
0 otherwise

(2.7)
{

2.3.10.2 Size Uncertainty
The uncertainty in size of an earthquake can be described by PDF of Gutenberg–
Richter law (Gutenberg and Richter 1954). For a known maximum and minimum
magnitude for a source, CDF is given by the following equation

Figure 2.14 Illustration of spatial uncertainty of an area source.
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Fm (m) =
1−10−b(m−mmin)

1−10−b(mmin−mmax)
mmin < m < mmax (2.8)

and the PDF as

fm (m) =
b ln(10)10−b(m−mmin)

1−10−b(mmax−mmin)
mmin < m < mmax (2.9)

2.3.10.3 Temporal Uncertainty
The Poisson model can be combined with Gutenberg–Richter recurrence law to pre-
dict the probability of at least one exceedance in a period of t years by the following
expression:

P [N ≥ 1] = 1− e−λmt (2.10)

where λ m = mean annual rate of exceedance that can be calculated using seismicity
parameters.

2.3.10.4 Uncertainty in GMPE
This can be calculated by the following equation:

P(PGA > x|m,r) = 1−Φ
lnx− lnPGA

σlnPGA
(2.11)

{ }
where Φ () is the standard normal CDF.

2.3.10.5 Hazard Calculation Using Total Probability Theorem
This can be determined by the following equation:

λ (PGA > x)=
nsources

∑
i=1

λ (Mi > mmin)
{ mmax

mmin

{ rmax

0
(PGA > x|m,r) fMi (m) fRi (r)dr dm

(2.12)
where nsources is the number of sources considered, and Mi/Ri denotes the
magnitude/distance distributions for source i.

2.3.10.6 Disaggregation
Disaggregation analysis helps in segregating a magnitude and/or distance combina-
tion that gives the largest contribution towards the ground motion. Disaggregation
is useful in the analysis for which value of magnitude and/or distance correspond-
ing to the most likely earthquake is essential, e.g., GRA and liquefaction analysis.
The possibility of having earthquake of magnitude m is calculated by the following
equation:

P(M = m| PGA > x) =
λ (PGA > x,M = m)

λ (PGA > x)
(2.13)
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The denominator of above equation is exactly the same as the Equation 2.12. The
numerator can be calculated by omitting the integration over M in Equation 2.12 and
is given by

λ (PGA > x,M = m) =
nsources

∑
i=1

λ (Mi > mmin)
{ rmax

0
P(PGA > x|m,r)

× fMi (m) fRi (r)drdm (2.14)

2.4 GROUND RESPONSE ANALYSIS (GRA)
The most crucial as well as frequently required investigation in soil dynamics is the
estimation of ground response during earthquakes. GRA is often carried out for the
assessment of seismic wave amplification/de-amplification, development of response
spectra, determination of peak accelerations and corresponding resonant frequencies,
evaluation of deformation characteristics to assess liquefaction hazard, and calcula-
tion of earthquake loads to be imposed on embankment dams.

There are a number of approaches available to estimate the degree of wave am-
plification, e.g., linear, equivalent linear, and nonlinear analysis offering varying di-
mensionality (1-D, 2-D, and 3-D). Schnabel et al. (1972) approximated the nonlinear
hysteretic behavior of soils by an equivalent linear model and developed SHAKE
program. The computer program is now widely used for 1-D equivalent linear GRA.
The soil shows nonlinear behavior; therefore, shear modulus of soil would vary con-
stantly during cyclic loading. The incapability of equivalent linear model to rep-
resent true variation in soil stiffness that actually occurs during cyclic loading has
been highlighted by many investigators, e.g., Finn et al. (1978), Arslan and Siyahi
(2006), Hosseini and Pajouh (2012), and Kramer (2013). The nonlinear models have
been found to better represent the response of soils to earthquake ground motions
(Hosseini and Pajouh 2012). Also, for the sites with deep soft soils or sites where
strong earthquakes are expected, the use of equivalent linear model is not considered
as good practice (Hashash et al. 2010). Hence, nonlinear approach is preferred by
most of the investigators. The standard nonlinear models that are being popularly
used for analysis have been developed by Ramberg and Osgood (1943), Matasovic
and Vucetic (1993), and Hashash and Park (2001). Generally, amplification of seis-
mic waves is computed by 1-D model that assumes that the horizontal shear waves
originating from bedrock propagate in a vertical direction through several layers of
the soil profile. For the rare cases, dealing with 2-D or 3-D problems, constitutive
models proposed by Mroz (1967), Momen and Ghaboussi (1982), Dafalias (1986),
Kabilamany and Ishihara (1990), Gutierrez et al. (1993), and Cubrinovski and Ishi-
hara (1998) are generally preferred.

2.4.1 METHODS FOR NONLINEAR GROUND RESPONSE ANALYSIS

The present DSHA and PSHA methodologies account for the earthquake hazard for
rock sites only, and the effect of wave amplification is rarely considered in ground
motion models. Therefore, estimation of ground motion amplification for soil sites
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is an important task for accurate assessment of seismic hazard in earthquake-prone
areas. The development of site-specific ground motion characteristics involves analy-
sis of both seismic hazard and seismic wave amplification. Over the years, nonlinear
method has greatly evolved to give a more precise characterization of nonlinear be-
havior of the soil (Stewart and Kwok 2008). The description of various approaches
offering different levels of dimensionalities for carrying out nonlinear GRA is as
follows.

2.4.1.1 One-Dimensional Approach
When a fault ruptures, body waves are produced, which radiate in various directions
in the continuum. These waves are reflected and refracted at the interface of vari-
ous geological materials. The shear wave velocity of top layer is usually lesser than
lower layer, and therefore, the incident waves are reflected more vertically. As the
waves arrive at the surface, they become nearly vertical due to several refractions
(Figure 2.15), giving 1-D wave propagation. One-dimensional approach assumes
that the geological margins are parallel and that the response of ground is mainly
produced by horizontal seismic shear waves traveling vertically from bedrock. Also,
strata along with bedrock are supposed to extend infinitely in the horizontal. 1-D
GRA is based on these assumptions. The methods developed based on above assump-
tions have been generally observed to predict response quite close to the observed
values for various events. The problems in which a single dimension is unable to pro-
vide an appropriate assessment of ground response are usually solved by adopting
2-D and 3-D approaches.

2.4.1.2 Two-Dimensional Approach
The 1-D GRA predicts accurately the response for level or slightly sloping sites
with horizontal material boundaries and hence is extensively used in most of the
ground response problems. For some specific problems, the assumptions of 1-D wave
propagation are not applicable; for example, for steep or uneven ground surfaces,
sites with large structures, buried structures, or walls and tunnels or pipelines, all
require 2-D GRA. The cases where one dimension is significantly greater are solved
as 2-D problem. Figure 2.16 shows some cases of 2-D ground response problems.

Figure 2.15 Multiple refractions produce practically a vertical wave near the ground surface.
(After Kramer 2013.)
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Figure 2.16 Typical problems analyzed by 2-D approach: (a) cantilever retaining wall, (b)
terrain dam, and (c) pipeline. (After Kramer 2013.)

Ground response problems involving 2-D and 3-D are most generally resolved using
a finite-element analysis or shear beam approach.

2.4.1.3 Three-Dimensional Approach
The situations where soil conditions vary in 3-D and boundaries change in 3-D,
e.g., earthfill dam in a narrow valley, soil–structure interaction problems, and where
response of one building may affect response of another, a 3-D approach is more
appropriate (Figure 2.17).

Three-dimensional GRA is carried out just like 2-D analysis. Programs based
on finite-element methods (FEM) offering both equivalent linear and nonlinear ap-
proach are available. Several 3-D analyses are available to solve soil–structure inter-
action problems such as direct method and multistep method. For approximating the
response of terrain dam in narrow valleys, shear beam analysis can be used.

2.4.2 PROCEDURE OF GRA

A typical GRA requires a standard set of data and input. The procedure involves
of the following steps (Yoshida 2015): (i) collection of data, (ii) modeling of
data in computer programs, (iii) executing the program, and (iv) interpretation of
results.

Figure 2.17 Situations requiring 3-D GRA: (a) soil conditions change in 3-D, (b) problem
boundaries change in 3-D, and (c) problem of soil–structure interaction. (After Kramer 2013.)
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The inputs are classified into following:

i. Geological or geotechnical vertical profiles
ii. Engineering properties of soil layers

iii. Recorded/scaled/artificial input ground motions
iv. Parameters to regulate the working of the software.

More state-of-the-art analyses need additional soil properties, e.g., permeability (K),
dry and saturated density of soil; model, i.e., shear modulus degradation curves,
damping ratio curves, and curve-fitting parameters; and hysteretic and viscous damp-
ing formulation. These input parameters may have different effects on the output of
the GRA. Generally, the characteristics of input ground motions significantly affect
the results. The low strain shear modulus and nonlinear behavior at high strains
largely govern ground response represented by the response spectrum (Roblee et al.
1996).

Several computer programs are available for carrying out GRA. All these pro-
grams estimate tangent shear modulus which depicts true nonlinear behavior of
soil and solve the dynamic equation of motion in time domain by a step-by-step
time integral scheme. However, they may simulate the nonlinear behavior and mate-
rial damping of soil differently. The widely used nonlinear computer programs are
D-MOD2000 (Matasović and Ordónez˜ 2007), DEEPSOIL (Hashash et al. 2016),
OpenSees (Mazzoni et al. 2006), SUMDES (Li et al. 1992), TESS (Pyke 2000), etc.
All can compute 1-D nonlinear ground response, while OpenSees and SUMDES can
simulate 2-D and 3-D shaking.

The D-MOD2000 and DEEPSOIL programs simulate the stiffness and damping
of soil with nonlinear hysteretic springs connected to lumped masses. The equation
of motion is solved in time domain using dynamic response scheme developed by
Lee and Finn (1978). Viscous dashpots are used for additional viscous damping. The
nonlinear soil behavior is simulated by coupling, (i) a backbone curve which can
be curve-fitted to match G/Gmax-γ curves and D-γ input by the user, and (ii) the
extended Masing rules that govern unload–reload behavior and develop hysteretic
damping. The initial backbone curve in D-MOD2000 is defined by modified Konder–
Zelasko (MKZ) constitutive model (Matasovic and Vucetic 1993, 1995), whereas in
DEEPSOIL, the extended MKZ model is used for this purpose. Both codes offer
the use of simplified as well as full Rayleigh damping formulations, which match a
target damping ratio at one or two frequencies. Additionally, DEEPSOIL also offers
extended Rayleigh damping for four matching frequencies, which can be useful for
deep profiles (Park and Hashash 2004).

OpenSees and SUMDES programs utilize nonlinear finite-element analyses that
can solve the multi-directional earthquake shaking problem with full coupling of
wave propagation and pore water pressure generation and dissipation effects. Both
have total stress as well as effective stress analysis capabilities. SUMDES utilizes
a bounding surface hypo-plasticity model (Wang et al. 1990), whereas OpenSees
utilizes a multi-surface plasticity model (Yang et al. 2003). Both programs utilize
Rayleigh damping. SUMDES utilizes simplified Rayleigh damping with the match-
ing frequency set at 1 Hz, and OpenSees utilizes full Rayleigh damping.
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TESS is a 1-D nonlinear ground response assessment program that uses an ex-
plicit finite difference method to solve the dynamic equation of motion. In line
with D-MOD2000 and DEEPSOIL, the backbone curve is fit using coefficients,
but instead of Masing rules, the Cundall–Pyke hypothesis is used to model un-
loading and reloading behavior (Pyke 1979). The viscous damping formulation is
not included in this program. However, the program introduces a low strain damp-
ing for which a parameter VT is used to quantify the rate of loading effect on
shear stress.

On comparison of approaches available for performing GRA, it is useful to adopt
1-D nonlinear ground response approach to estimate the effect of local site conditions
on ground motions considering the following facts (Govindaraju et al. 2004):

a. This approach is believed to provide conservative results, and many com-
mercial software applications with different constitutive models are avail-
able. Moreover, the approach is time-tested, and most structures designed
by this approach have survived earthquakes.

b. When a fault ruptures, body waves are produced that radiate in various di-
rections and get reflected and refracted at the boundaries of different ge-
ological materials. The shear wave velocity in top soil is usually lesser
than the soil below, and therefore, the incident waves are refracted more
vertically.

c. Earthquake ground motions in vertical direction are not as significant from
the viewpoint of structural design as horizontal earthquake ground motions.

d. Soil properties generally change much rapidly in the vertical path than in
the horizontal path.

2.4.3 GEOTECHNICAL SITE CHARACTERIZATION

2.4.3.1 Site Class
The sites can be classified on the basis of provisions of NEHRP (FEMA 450 2003)
using average standard penetration test (SPT) value of the profile. The existing
NEHRP provisions organize the strata into the classes for average SPT value (N30)
of the profile for 30 m depth as per following:

N30 =
∑

n
i=1 di

∑
n
i=1

di
Ni

(2.15)

where Ni is SPT value for the ith stratum, di is thickness of the stratum.

2.4.3.2 Bedrock Definition
The location of bedrock needs to be defined as it sets a boundary condition. The
boundary condition implies that behavior of strata below the bedrock does not have
any impact on the result of GRA. This also means that an earthquake motion at the
engineering bedrock can be assumed as an incident wave, and it cannot be affected
by the behavior of strata below. The wave can reflect back into the bedrock, and the
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boundary condition can also consider radiation damping. An engineering bedrock
following such a boundary condition is called as an elastic bedrock.

2.4.4 ESTIMATION OF DYNAMIC SOIL PROPERTIES

The dynamic soil characteristics essential for modeling the cyclic behavior of soils
are (i) maximum shear modulus or low strain shear modulus (Gmax), (ii) modulus
degradation curves (G/Gmax-γ), and (iii) damping ratio curves (D-γ).

2.4.4.1 Low Strain Shear Modulus (Gmax)

Characterization of the stiffness of an element of soil requires consideration of both
maximum shear modulus (Gmax), and the way the modulus ratio G/Gmax varies
with cyclic strain amplitude and other parameters. Hence, Gmax plays a fundamental
role in the estimation of the ground response parameters in seismic microzonation
studies. The field value of Gmax is generally computed using shear wave velocity by
the following equation:

Gmax = ρV 2
s (2.16)

where ρ = density of soil layer and Vs = shear wave velocity. The value of shear
modulus based on shear wave velocity is very reliable, as most of the geophysical
tests conducted to determine Vs induce shear strain <3 × 10−4 %.

2.4.4.2 Standard G/Gmax-γ and D-γ Curves

The shear modulus of clays degrades much slowly than that of sands. The plasticity
of clays has profound influence on the shape of shear modulus degradation curves,
and it was first reported by Zen et al. (1978). Many other investigators (e.g., Sun
et al. 1988, Vucetic and Dobry 1991) have also reported considerable influence of the
plasticity index in comparison with void ratio, on the shape of G/Gmax-γ curve. On
the other hand, for the soils of low plasticity, effective confining stress influences the
degradation behavior of shear modulus (Iwasaki et al. 1982). The damping behavior
is also influenced by plasticity characteristics as observed by Kokusho et al. (1982).
The damping ratio decreases with the increase in plasticity index for the same cyclic
shear strain amplitude. However, damping behavior of the low plastic soils depends
upon effective confining pressure. The damping behavior of gravels is quite similar
to that of sands (Seed et al. 1986).

The G/Gmax-γ and D-γ curves are extremely important for GRA as they influence
extent of attenuation of seismic waves in a deposit. Many investigators, e.g., Seed and
Idriss (1970), Seed et al. (1986), Sun et al. (1988), Vucetic and Dobry (1991), Daren-
deli (2001), Menq (2003), and Vardanega and Bolton (2011), have developed stan-
dard curves for different types of soils. Often due to time and practical constraints,
ground response studies are carried out using the standard curves, as developing the
site-specific curves for soils is a tedious process which requires advanced dynamic
soil tests.
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2.4.5 SELECTION OF INPUT EARTHQUAKE MOTION

The last step in wave amplification analysis is generating or getting an acceleration
time history, which is compatible with the maximum dynamic loading expected at
the site of interest. This time history is then used, as an input motion assuming it
to be originating from the engineering bedrock as an incident wave. As per the rec-
ommendations of Pacific Earthquake Engineering Research Center (PEER), a rock
outcropping motion should be applied without any modification, for an elastic base,
for time-domain analyses, or a within motion be used with no change with rigid
bedrock (Stewart and Kwok 2008).

Modern seismic codes, e.g., UBC 1997 and IBC 2000, motivate the use of real
records, at the same time allowing the design engineer to supplement these with
simulated motions where sufficient suitable real records are not available (Bommer
and Acevedo 2004). Suitable acceleration time histories can be selected on the basis
of PGA value, magnitude of controlling earthquake, and source to site distance and
site class.

2.4.6 NONLINEAR GROUND RESPONSE

A comprehensive GRA requires an accurate characterization of sites, reliable esti-
mates of various dynamic soil properties, and an input motion representing charac-
teristics of the expected ground motion. Nonlinear analysis can be carried out using
DEEPSOIL v.6.1 (Hashash et al. 2016). The pressure-dependent hyperbolic model
(MKZ) relates shear modulus and damping ratio of the soil layers to shear strains
developed during earthquakes. For each layer of the soil deposit, reference strain (γr),
stress–strain curve parameter-β , stress–strain curve parameter-s, pressure-dependent
parameter-b, reference stress (σ ref), and pressure-dependent parameter-d need to
be defined. A curve-fitting procedure, MRDF-UIUC, is then adopted for each
layer to find the above parameters. For sandy soils, effective vertical stress is re-
quired for defining the variation of shear modulus with shear strain at a particular
depth from modulus reduction curves, whereas for clayey soils, effective vertical
stress and plasticity index are required. The hysteretic behavior is governed by
Masing and extended Masing criteria. The number of iterations in the software is
kept 15.

2.4.6.1 Formulation of Ground Response

All the sites are assumed to have horizontal soil layers, which extend infinitely. The
soil profiles have been modeled as a series of lumped masses connected by springs
and dashpots making a multiple degree of freedom system (MDOF) as shown in
Figure 2.18.

The following incremental dynamic equation of motion is solved to carry out the
nonlinear dynamic analysis of the soil column.

M∆ü+C∆u̇+K∆u =−M∆üg (2.17)
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Figure 2.18 Representation of horizontally layered soil column as MDOF. (After Hashash
et al. 2010.)

where the coefficients M, C, and K represent mass, viscous damping, and stiffness,
respectively, and ü, u̇, u, and üg represent acceleration, velocity, displacement, and
exciting acceleration at the elastic base, respectively.

The soil response is estimated from a constitutive model that defines the cyclic be-
havior of soil. For modeling the hysteretic behavior, most widely used software uses
the variation of hyperbolic model, to represent the backbone curve of the soil, with
the extended unload–reload Masing rules (Masing 1926). The loading and unloading
equations of MKZ model (Matasovic 1993), further modified by Hashash and Park
(2001) used in DEEPSOIL software, are, respectively, as follows:

τ =
γGmax

1+β

(
γ

γr

}S (2.18)

τ =
2Gmax

γ−γrev
2

1+β

(
γ−γrev

2γr

}S + τrev (2.19)

( )

where τ = shear strength, Gmax = low strain shear modulus, γ = shear strain,
γr = reference shear strain, τrev = shear stress at reversal, γrev = shear strain at reversal,
and β and S = model fitting parameters.

Loading and unloading (cyclic loading) are introduced by extended Masing rules,
which are as follows (Kramer 2013) (Figure 2.19):
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Figure 2.19 Extended Masing rules (after Kramer 2013). (a) Variation of shear stress with
time and (b) resulting stress–strain behavior.

1. The backbone curve is used for initial loading.
2. Stress–strain plot tracks a path given by Equation 2.19, as stress reversal

occurs at a point B. This means that the unloading, reloading curves would
have the same shape as the backbone curve, and the origin is shifted to load
reversal point. The path is twice expanded.

The above rules (Masing 1926) are insufficient for describing the soil response.
Hence, following additional guidelines are required:

1. If unloading or reloading curve exceeds maximum previous strain and inter-
sects backbone curve, it follows backbone curve until next stress reversal.

2. The stress–strain curve follows the stress–strain curve of previous cycle, if
unloading or reloading curve of the present cycle intersects unloading or
reloading curve of previous cycle.

The modification in MKZ model allows the effect of confining pressure on secant
shear modulus of soil. The coupling of confining pressure and shear stress is intro-
duced by making reference shear strain (γr) dependent on effective stress by using
the following equation:

γr = a
σ

'
v

σref

b

(2.20)

{ }
where a and b are curve-fitting parameters, σ

'
v = vertical effective stress, and σref =

reference shear stress of 0.18 MPa.
Low strain damping (ξ ) is induced separately by the following equation:

ξ =
c(

σ
'
v
)d (2.21)

where c and d are curve-fitting parameters.
It is observed that overestimation of damping at large strain can result, when the

hysteretic damping (ξ Masing) is calculated using unload–reload cycles as per using

(a) (b)
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Masing rules based on modulus reduction curves. This overestimation can be avoided
by multiplying ξ Masing with F(γm) which is as follows:

F (γm) = p1 − p2

{
1−

Gγm

Gmax

}p3

(2.22)

where Gγm = shear modulus at maximum strain, and p1, p2, and p3 are fitting pa-
rameters. The reduction factor modifies the reloading cycle, and the expression is as
follows:

τ = F (γm)
[] 2Gmax

(
γ−γrev

2

)
1+β

(
γ−γrev

2γr

}S − Gmax (γ − γrev)

1+β

(
γm
γr

}S
[[+ Gmax (γ − γrev)

1+β

(
γm
γr

}S + τrev (2.23)

[ ]

where γm = maximum shear strain. The β method (Newmark 1959) is then used to
get response of the soil column.

2.5 LIQUEFACTION POTENTIAL
Based on the type of data available, liquefaction hazard mapping can be carried out
by different methods, e.g., susceptibility mapping based on geological and geomor-
phological characteristics and assessment based on geotechnical criteria using deter-
ministic or probabilistic approach. The simplified procedure based on SPT value is
described next.

2.5.1 SIMPLIFIED PROCEDURE BASED ON SPT

Two approaches, deterministic and probabilistic, are available for the assessment
of factor of safety against liquefaction. A number of generalized assumptions and
approximations regarding dominant sources of uncertainty and their distributions
across the case history database have been taken for developing the probabilistic
model. This is due to the reason that the majority of liquefaction case histories lack
sufficient information for quantifying various sources of uncertainty in magnitudes
or distributions (Boulanger and Idriss 2012). Therefore, the deterministic approach is
generally used for the assessment of liquefaction potential. The simplified procedure
is summarized as follows:

1. Using compositional criteria, it is ascertained, whether or not, the soil
would liquefy during an earthquake.

2. The observations for the position of ground water table must be available
from the geotechnical data to ensure that liquefaction analysis is done on
submerged soil. The possibility of rise in water table at a future date must
also be accounted for in the liquefaction analysis.

3. The cyclic stress induced by the earthquake normalized for the effective
overburden pressure (cyclic stress ratio or CSR) is calculated.
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4. The cyclic strength of the soil, assessed using field test data, normalized
for the effective overburden pressure (cyclic resistance ratio or CRR) is
calculated.

5. Factor of safety (FS) = CRR/CSR is calculated. The higher FS would imply
that the soil is more resistant to liquefaction.

6. Based on the factor of safety (FS) values, liquefaction potential index (LPI)
is calculated using FS values of all the liquefiable layers of a soil column.

For liquefaction susceptibility mapping, PGA values obtained from PSHA for rock
sites are revised appropriately using results of GRA. The corresponding expected
earthquake magnitudes (Mw) are determined from disaggregation of PSHA results.
The procedure for the assessment of liquefaction potential of a soil deposit, as given
by Idriss and Boulanger (2006) using SPT N-value, is described in detail next.

2.5.1.1 Cyclic Stress Ratio (CSR)

The value of CSR is adjusted for equivalent uniform shear stress induced by earth-
quake ground motions having a moment magnitude of 7.5 and equivalent overburden
pressure of 1 atmosphere by following equation:

(CSR)M=7.5,σ=1 = 0.65
σvo

σ
'
vo

(amax)(rd)
1

MSF
1

Kσ
(2.24)

{ } { }{ }
where, σvo = total overburden stress, σ

'
vo = effective overburden stress, amax = PGA

corresponding to 475-year return period, rd = stress reduction coefficient,
MSF = magnitude scaling factor, and Kσ = overburden correction factor.

Stress reduction coefficient (rd) accounts for the flexibility and dynamic response
of the soil and represents the variation of shear stress amplitude with depth.

rd = exp(α +βM) (2.25)

α =−1.012−1.126sin
z

11.73
+5.133 (2.26)

( }
β = 0.106+0.118sin

( z
11.28

+5.142
}

(2.27)

These equations are applicable for depth z ≤ 34 m.
For z > 34 m.

rd = 0.12exp(0.22M) (2.28)

Magnitude scaling factor (MSF) is used to adjust the CSR induced by an earthquake
magnitude (M).

MSF ≤ 1.8 for Mw ≤ 5.4 and is given as follows:{ }
MSF = 6.9exp

−M
4

−0.058 ≤ 1.8 (2.29)
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For an equivalent overburden pressure of one atmosphere, correction factor (Kσ ) is
used to adjust CSR values and computed as follows:

Kσ = 1−Cσ ln σ
'
vo/Pa ≤ 1.0 (2.30)

( }
Cσ =

1
18.9−2.55

√
(N1)60

(2.31)

where Pa is the reference pressure.

2.5.1.2 Cyclic Resistance Ratio (CRR)

CRR = (CRRσ=1,α=0)Kσ Kα (2.32)

where Kσ = overburden correction factor and Kα = static shear stress correction
factor.

The SPT N-values need to be normalized to an equivalent effective vertical over-
burden pressure σ '

vo of about 101 kPa to obtain blow count values that are more
uniquely dependent on relative density (DR) rather than on the overburden pressure
coming from the above soil layers. The corrected blow count can be expressed as
follows:

(N1)60 =CN (N)60 (2.33){ }
CN =

Pa

σ
'
vo

α

≤ 1.7 (2.34)

α = 0.784−0.0768 (N1)60 (2.35)
√

where N1 = CN (Nm), Nm = SPT value at field, CN = overburden correction factor
to normalize SPT value, and N60 = SPT value after correction to an equivalent 60%
hammer efficiency. The value of (N1)60 is limited to 46. The calculation of CN is
iterative as both CN and (N1)60 depend on each other. The expression for N60 is as
follows:

N60 = NmCRCSCBEm/0.60 (2.36)

where CR = rod length correction, CS = sampling method correction, CB = borehole
diameter correction, and Em = hammer efficiency (0.45). The value of correction
factors for N60 can be adopted from Youd et al. (2001).

Fine content (FC) correction has to be applied to (N1)60, if FC > 5%, to convert
it into equivalent clean sand value. The description of correction factor is as follows,
for FC ≤ 35:

(N1)60CS = (N1)60 +∆(N1)60 (2.37)

where

∆(N1)60 = exp 1.63+
9.7

FC+0.1
−
{

15.7
FC+0.1

}2

(2.38)

{ }



50 Recent Advances in Mathematics for Engineering

These (N1)60cs values are further used to compute CRR by using the following for-
mulation:

CRRσ=1,α=0 = exp
(N1)60cs

14.1
+

{
(N1)60cs

126

}2

−
{
(N1)60cs

23.6

}3

+

{
(N1)60cs

25.4

}4

−2.8

}
(2.39)

{

However, the layers with FC > 35% are considered non-liquefiable.

2.5.1.3 Factor of Safety (FS) and Liquefaction Potential Index (LPI)
The FS shows the potential of a given layer of soil against liquefaction.

The factor of safety (FS) against liquefaction is determined as follows:

FS =
CRR
CSR

(2.40)

On the other hand, LPI quantifies the severity of liquefaction at a given location for
down to a depth of 20 m (Iwasaki et al. 1978, Luna and Frost 1998). It is computed
by taking integration of one minus the factors of safety (FS) against liquefaction, for
liquefiable layers, along the entire depth of soil column below the ground surface,
at a specific location. The LPI value is considered zero for a layer with FS ≥1. A
weighting function has also been added to give more weight to the layers closer to
the ground surface. The LPI is calculated using the following expression:

LPI =
n

∑
i=1

wiFiHi (2.41)

and
Fi = 1−FS (2.42)

where wi is the weighting factor = 10–0.5zi, and zi is the depth of ith layer (m).
The liquefaction severity level with respect to LPI is given in Table 2.1.

Table 2.1
Severity of Liquefaction Based on LPI

LPI Severity of Liquefaction

LPI = 0 Little to none
0 < LPI < 5 Minor
5 < LPI < 15 Moderate
LPI > 15 Major

Source: After Luna and Frost (1998).
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3.1 INTRODUCTION: ON THE METHODOLOGY OF SATELLITE
DATA UTILIZATION IN MULTI-MODELING APPROACH FOR
SOCIO-ECOLOGICAL RISKS ASSESSMENT TASKS – A PROBLEM
FORMULATION

A multi-modeling approach for socio-ecological risks assessment is a quite new re-
search field. There is lack of formalizations, decisions, and approaches in this area.
Also the utilization of the data of satellite observations in framework of the multi-
modeling approach is enough new. Developed methods and algorithms are required
in this field. Besides, new complex challenges and interlinked threats in field of eco-
logical and socio-ecological security require new approaches to decision-making. So
current and future graduates, professionals, practitioners, and researchers still need
more books on these issues.

The proposed multi-modeling approach has methodological advantages: it is
wider than that used in the listed books, i.e., multi-level and multi-objects models.
Second, the proposed approach includes the utilization of the remote sensing data,
and it is illustrated by the number of important examples in field of socio-ecology.
So the proposed chapter has a number of theoretical and practical advantages.

For at least past 40 years, since its origin, remote sensing demonstrates a striking
evolution (Elachi and Van Zyl, 2006; Lillesand, Kiefer, and Chipman, 2014), first
of all in field of methodology of remote sensing, which developing, basing on the
models of signal formation, models of individual indicators, and natural processes
studying (Elachi and Van Zyl, 2006).

Development of natural sciences and ecology is also rapid, which leads to more
comprehensive understanding of ecosystems structure and functioning: now, it is
possible to understand and model complex interactions between the processes and
phenomena, to simulate the feedbacks in multi-agent environment, model the in-
tegrated dynamics of the processes, and predict the behavior of multi-component
systems (Suter, 2016). In this analytic context, the satellite observation technology
is a source of information about behavior of the variables in these complex, inter-
linked models; remote sensing should be tooled not only for monitoring, but also for
predictions and forecasts.

So, it requires a further development of remote sensing methodology, in particu-
lar, development of new methods of processing and interpretation of satellite data,
harmonized with models and measurements, in the context of new foundation to se-
lect the sets of interrelated indicators, based on the environmental models (Campbell
and Wynne, 2011). Further, application of satellite data-based indicators will also
require other approaches to environmental risk assessment: this kind of risk assess-
ment approaches should not be based on assessments of deviations of observed val-
ues from the mean and will be focused on optimal decision-making in a complex
multi-component and multi-physics environment (Ermoliev, Makowski, and Marti,
2012). Therefore, this chapter is aimed to the formal task definition of the utilization
of satellite data in the multi-model approach for socio-ecological risk assessment
tasks.
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3.2 ON THE METHODOLOGY OF MODELING: SELECTION OF
VARIABLES TO ASSESSING RISKS

3.2.1 DATA UTILIZATION APPROACH TO VARIABLES SELECTION

The problem of the models’ application to selection of the optimal set of remote sens-
ing indicators in risk assessment tasks should be considered (Kostyuchenko et al.,
2015; Kostyuchenko, 2018).

Let the set of a priori assumptions observed or measured values described the( ( ))
state of the system studied is captured in a vector x x = x1,x2, . . . ,xs at the initial
stage of the process of forecast generation.

Hereafter, the model recalculates these values in a group of core hydrological,( )
bio-physical, and climatological series with F(x,ε,y) = 0, (x,ε)→ y , collected in
a vector y, and, based on the information from the pair (x,y), calculates values for
a list of parameters, grouped into what referred as the vector of satellite indicator-( ) ( )
based models: z 1 s= z ,z2 s, . . . ,z with z = gs(x,y), (x,y)→ zs . As the result, the
parameters summarized in triplet (x,y,z) will be obtained. This combined vector is an
input data for the modeling of socio-economic, socio-ecological, and risk parameters
as shown in Figure 3.1.

In the group of S developed satellite data-based models, labeled s ∈ {1,2, . . . ,s},
each equation is such that the endogenous variables zs can be obtained as an explicit
mapping of the core variables zs s= g (x,y) (Kostyuchenko, 2018). So, developed
satellite model may be presented as time series of (x,y,z), which will determine the
behavior of zs

t , with a residual term “µs
t ”:

Figure 3.1 Multi-model approach to socio-ecological risks assessment.
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zs
t = f

(
xt ,xt−1, . . . ,xt−L,yt ,yt−1, . . . ,yt−L,zs

t−T ,µ
s
t
)
. (3.1)

As we can see this relationship is unidirectional, this simple time-series satellite data-
based model formally allows no interactions with other satellite variables nor any
feedback between zs

t and the core assumptions in (x,y) (Campbell and Wynne, 2011;
Kostyuchenko, 2018), so we can use any methodology utilizing as separate as well-
interlinked indicators.

Further, it can utilize any traditional time-series models such as autoregressive
moving average models to find the most usable model of the data-generating process
for a given risk metric Zt :

Zt = c+
N

∑
l=0

βlXt−l +
P

∑
l=0

ρlYt−l +
L

∑
l=1

∂lZt−l +
K

∑
k=0

θkεt−k, (3.2)

where Zt is a satellite variable, Xt is a row vector of initial exogenous core vari-
ables, Yt is a row vector of the layer of core parameters series, and εt is the value
of the stochastic error term. The parameters c, β , ρ , ∂ are unknown and should be
estimated.

Herein, it should be noted that including autoregressive terms into the model may
result in a muted impact of core drivers on a target variable (Engle and Russell, 1998).
Therefore, depending on risk metric Zt and on type of supplementary variable may
be applied different forms of Equation (3.2); for example, for the analysis of climate-
related risk, an approach based on copulas utilization may be used (Kostyuchenko
et al., 2013).

According to modern developments of Earth sciences, the approach proposed is
based on the analysis of variables, which reflect a combination of ecology, clima-
tology, hydro-geology, hydrology, and geostatistics as consideration of the statistical
properties of the estimated model (Kostyuchenko, 2015). So a variable selection to
identify which core drivers best explain the dynamic behavior of the studied socio-
ecological risk variable as a key aspect of satellite model development is based on
the models both physical and statistical (Kostyuchenko et al., 2013). Separately, it
should be stated that models built using data-mining techniques (such as machine
learning and neural network) may fit the existing data well, but more likely to fail
in a changing external environment because they lack theoretical underpinnings. So
the best analytical and prediction models should employ a combination of statistical
rigors with physical principles, combine geo-ecological models with statistical opti-
mization (see Figure 3.2) (Kostyuchenko, 2018). Additional benefit of models built
this way is easiness of interpretation.

To develop a satellite model, the set of optimal exogenous potential drivers Xt
should be selected from a set of Yt in Equation (3.2). On the base of the selected
and estimated final model, the conditional dynamic forecasts of Zt can be generated,
taking into account the estimated sets of final parameter and the forecasts of the core
variables from the initial stage (Figure 3.2). The final step is to validate the final
model.

The optimal drivers can be selected according to the following procedure. Initial
set of potential drivers are identified based on relevant theory and ensuring with
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Figure 3.2 Data utilization in framework of multi-modeling approach for socio-ecological
risk assessment.

calibration measurements; this ensures that the most robust and predictive model
available from the tested variables will be obtained. The selected drivers should be
significant at a conventional level and have the analyzed parameters of distribution; to
obtain a required distribution, a regularization procedure should be applied; the final
models selected by the search procedure are reviewed for consistency with initial
assumptions (Kostyuchenko, 2018).

Therefore, formally, there is a problem with the selection of variables for each
model type (x,ε) → y, the search of the relevant type of formal relationship
(x,y)→ zs between the physical and observable variable parameter, and the devel-
opment of the total distribution for each type of risk investigated Equation (3.2). The
problem of regularization of initial distributions of variables should also be sepa-
rately considered (Kostyuchenko et al., 2015). Besides, after we obtain distributions
of parameters that determine the state of the system, we need to estimate the distri-
bution of risk and make the management decisions.

3.2.2 FORMAL MODELS OF RISK ASSESSMENT AND DECISION SUPPORT

Utilizing the obtained collection of indicators, the methodology of risk assessment,
based on the optimal decisions, can be proposed (Ermoliev, Makowski, and Marti,
2012).

A key assumption in the framework of task of risk assessment and risk manage-
ment was formulated as the reducing or non-increasing of losses should be used as
quantitative characteristics. In real cases, variables that affect the characteristics of
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the management and/or decision-making system may be controlled or unmanage-
able. The controlled variables are used as the parameters of decision-making under
the influence of information (input data) to the behavior of unmanageable variables.

Analysis of the effectiveness of full process of collecting, processing, interpreting
information about the system studied, decision-making, and of system’s response to
decisions may be considered as the “information-response” formalization. This type
of formalization was presented as follows (Schlaifer and Raiffa, 1961): I(x,y,z) –
stochastic information obtained from direct measurements, observations, and model
forecasts; and HI(i |θ ) – probability distribution function, where θ is a state of the
studied natural system. In the majority of cases, the state of the system cannot be de-
termined accurately, so the appropriate probability distribution p(θ ) and distribution
HI(i |θ ) should be defined, which describes a priori incompleteness of information
available.

Management decision-making and implementation may be formalized as a re-
sponse to incoming information as decision function d(I). Proposed approach as-
sumes that in the case of certain specific strategy of decision-making in conditions
of constant or slow changing state of natural systems, θ , the losses will be defined
as function l(d(I), θ ). Thus, for the decision function d, the expected losses (of risks)
associated with the dangerous processes, and connected with the management deci-
sions, can be described as

R(I,d) = R [HI(.),d),d] =
∫∫

l(d(i),θ)dHI(i |θ)p(θ)dθ . (3.3)

These risks can be minimized by optimal decision function d*, entitled as Bayes
decision function, which are determined by information I:

R(I (zs) ,d*) = min
d(i)

l(d(i),θ(x,y))dHI(i |θ)p(θ)dθ . (3.4)
∫∫

Therefore, the risk can be presented in the form of a simple functional of decision
function.

In the proposed approach, the minimization of losses requires an intention to com-
pleteness of information about the studied system, i.e., determination of θ states, for
each of which can be defined a solution –a˝, which builds up the set of possible de-
cisions A. Let’s consider the realization of the set of data i*, which optimizes the
decision function d* and minimizes appropriate risk and therefore nominally makes
information (I) formally completed (I*). This set of data can be presented as the in-
formation obtained from direct ground measurements, remote observations, archive
statistics, and model forecasts.

Completeness formally means that there is a single state of studied natural object
or system that meets all of the set of data—a separate realization of information I, or
from a formal viewpoint, information is nominally full, I* ≡ I, if there exists a func-
tion φ (i), that HI(i |θ ) = 0, θ = φ(i). Therefore, it means that we have to develop a
set of models (x,ε)→ y that have operated the set of parameters x y s( , )→ z , which
can be controlled by certain technological tools within the framework of a sustain-
able methodology of measurement. In our case, these requirements correspond to the

/
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data and methods of satellite observation of the Earth’s surface zs
t . In the described

case, an optimal decision function may be presented as follows:

d* (i*) = b, l (b,φ (i*)) = min
a

l (a,φ (i*)) . (3.5)

Then, using the before-presented form of optimal decision function and with respect
to the nominally complete information about the studied system, the risk may be
defined as

R(I*,d*) = min
a∈A

l(a,θ)p(θ)dθ . (3.6)
∫

In every separate case, depending on the task, data availability and properties of their
distributions, as the optimal decision function in this approach, may use stochastic
(Kopachevsky et al., 2016), Bayesian (Kostyuchenko et al., 2019), or fuzzy operators
(Kostyuchenko et al., 2017).

Besides, models aimed to analyze the behavior of the distribution of HI(i |θ) and
p(θ ), and to determine the realization of i* of set I should be described . Complex
analytical models should be aimed to calculate a unique set of parameters that will
be obtained from determined observation systems, using defined tools of processing
and interpretation of data.

Equation (3.6) allows to estimate the distributions of risk of disasters and also to
develop a basement for a system of risk management decision-making.

3.3 GENERALIZED STOCHASTIC MODEL OF HYDROLOGICAL
THREATS

3.3.1 ANALYSIS OF KEY PROCESSES FORMING FLOOD EMERGENCY

Determination of the parameters of the flood hazard is based on the system model
of the river bed, which includes the catchment basin and channel runoff. The basic
equations of the model can be represented in the following general form.

Formation of the channel flow is directly determined by the characteristics of the
catchment basin. The model of the drainage basin with a variable supply area can be
presented in general form as (Laurenson, 1964)

q(t) =
[

A1(t)k
dH
dx

]
+[A2(t)R(t)]+ [A3P(t)] , (3.7)

where A1(t) is the square of total saturation zone, A2 is the horizontal projection
of the total saturation zone within the basin, A3 is impenetrable for water area, R(t)
is the precipitation intensity, k is the filtration coefficient for full saturation, and H is
the hydraulic pressure.

Such a representation allows us to correctly formulate the forecasting of dan-
gerous natural phenomena, in particular, floods and induced phenomena (such as
landslides) in order to determine the characteristics of a basin catchment. To clarify
the presented equations, consider some detailed individual processes. A separate but
very important case of the considered catchment process is the sloping runoff.
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In the general case on the slope under the conditions of minimal influence of
inertial forces, the equation of the kinematic wave can be used to describe the surface
runoff of a single small slope:

∂h
∂ t +

∂q
∂x = R− f ;

q = αhβ ;
h(0, t) = h(x,0) = 0

(3.8)

Here, x – spatial coordinates, t – time, h – depth of the surface runoff stream,
q – volume of flowing water, R – precipitation intensity, f – filtration intensity, α and
β – empiric coefficients. For the laminar flow α = 8gi/kγ , β = 3, and for turbulent
α = i0,5/ni β = 5/3, where g – gravitational constant, i – slope angle, γ – coefficient
of kinematic viscosity, and k i n – coefficients of roughness.

In addition, in the context of the formation of the channel flow, the model of the
subsurface runoff on the water-tight surface should be considered. Such a process
may be responsible for the transfer of certain, in some cases a significant, amount
of water and for the formation of an extreme channel flow, i.e., for the formation of
flood:

m ∂hg
∂ t +

∂qg
∂x = f ,

qg = k f hg

(
ig −

∂hg
∂x

)
,

qg(0, t) = 0,hg (Ls, t) = hr,hg(x,0) = h0
g(x).

(3.9)

where m – soil porosity, hg – the distance between the surface of groundwater de-
pression and the runoff surface (subsurface runoff power), qg – volume of subsurface
runoff, ig – runoff angle, k f – coefficient of horizontal filtration, Ls – length of slope,
hr – river water level, and h0

g – the initial power of subsurface runoff.
The difference between the entry of water onto the surface of the catchment and

the replenishment of the water reserve of the surface layer of the soil can be described
using a water-absorbing layer y, which is given in a simple formula:

y =

{{{ 0, w < wmin,
(I −∂w)∆t, wmin ≤ w ≤ wmax,
I, w > wmax,

(3.10)

Here, I – water extraction layer on the surface of the catchment (depending on the
intensity of precipitation and/or snow melting), w – surface soil layer moisture, δw –
replenishment of the water reserve of the surface layer of soil during the time ∆t;
wmin and wmax – minimum and maximum value of soil moisture.

Technically, drainage can be divided into two components. The, first, so-called
“fast” consists of surface and subsurface drains, and “slow” is a ground runoff. The
next step is to recalculate the runoff into a hydrographic network, which is described
in the following equation: ∫1 t

Q(t) = q(η)dη , (3.11)
τ t−τ
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where Q – water flow in the river channel, q – the flow of water falling into the
channel from the catchment area, and τ – flood wave parameter.

Thus, the task is to determine the parameters of the in- and out-flow of water to
the basin and the parameters of the basin (terrain, location of infrastructure, and pop-
ulation, etc.), which will allow to assess the risks of flooding and to determine the
methods of losses reducing. However, the correct calculation of the parameters of
income and expenditure of water in the area of the basin is the most uncertain. Even
the most simple basic process models show the need to operate spatially distributed
data and take into account the inherent errors of the definition of individual vari-
ables. To demonstrate this, the general view of the models of individual processes,
in particular, soil moisture and infiltration processes, should be considered.

The following diffusion equations have been successfully used for the descrip-
tion of the moisture transfer in the aeration zone of the soil (under saturated and
unsaturated groundwater) for many years (Parker, 2014):

∂w
∂ t

=
∂

∂ z

[
D(w)

∂w
∂ z

−K(w)
]
,

D(w) = K(w)
∂Ψ

∂ z
, (3.12)

w(z,0) = w0(z),w(Hs, t) = const,
w(0, t) = m,R ≥ f

Here, z – vertical coordinate oriented to the down, w – volumetric soil moisture,
D – coefficient of soil moisture diffusion, K – hydraulic conductivity of soil, Ψ – soil
moisture potential, and Hs – lower boundary of the calculated layer.

In the simplest case, the simplified formulas can be used:

K = k f Mµ ,

Ψ= Ψ0Mν , (3.13)

M =
w−w0

m−w0

where k f – vertical filtration coefficient, w0 – the initial value of soil moisture, and
µ and ν – calculation parameters. The given model describes the movement of the
front of full saturation of soil pores with water.

A general description of the processes of water intake with precipitation, for in-
stance, due to the melting of snow, compared to rainfall, should be proposed.

Based on the general equation of conservation of mass of water in the simulated
area (e.g., dM/dt = fin − fout, where M is the water mass, and f in, f out are the water
input and output respectively), it can be written as

dX
dt

= R−hm, (3.14)

where X – water equivalent of snow cover, R – precipitation intensity, and
hm – intensity of water return of the snow.
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To calculate the dynamics of snow deposits and water return, the various solutions
of this balance equation can be used, for example, based on the daily averaging:

hm =
[zn − γn (1− zn)]X − [zn−1 − γn−1 (1− zn−1)]X

0,zn ≤ z0
, (3.15)

{
Here, zn and zn−1 – relative amounts of melting snow for given and previous intervals
of time, z0 – the value of the relative reduction of snow, at which water return begins,
and γn

To estimate the relative intensity of snow melting, the following equation can be
used:

n

zn =

∑
i=1

hci

X
, (3.16)

– current humidity of snow.

where hci = aT i – layer of snow melting during the time interval i, a – average
coefficient of melting, T i – air temperature at the time i, and n – calculation step
number from the beginning of the snow melting.

Relative reduction of snow reserves z0 at which the return of water begins can be
determined by the following equation:{

0.34γ +0.059,γ ≤ 0.28
z max max

0 = , (3.17)0.25γmax +0.083,γmax > 0.28

where γmax – maximum water content of snow (γmax = exp(−4ρ)−0.04), ρ – snow
density before melting. Current water content of snow γn at each time interval can
be estimated as

γn =

{
(γmax −0.06)exp(−4zn)+0.06

0,γm < 0.063 , (3.18)

Layer of water supply to the catchment surface I during the time ∆t can be deter-
mined by taking into account the distribution of snow cover, which varies during the
melting period from 100% to 0%:

I = (1− f )hm +R. (3.19)

Here, R – layer of liquid precipitation over time ∆t, and f – relative square of the
basin, which has been released from the snow in steps since the beginning of melting:

f =
n

∑
i−1

{∆zi exp [α0 lnα0 − lnΓ(α0)+(α0 −1) lnzi −α0z0]} . (3.20)

Here, α0 – parameter, which is equal to 1/C2
v , Cν – is the coefficient of variation of

distribution on the area of basin of water reserves in the snow cover, ∆zi = zi − zi−1 –
change in the relative loss of snow in time ∆t, and Γ – the gamma function.
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With the monthly averaging, the other model can be applied:

dX
= r

dt 1 − r2,{
R,T < 0,

r1 = (3.21)0,T ≥ 0,{
0,T < 0,

r2 = X ,T ≥ 0

where r1 – input from the precipitation, r2 – water output from the snow cover,
R – precipitation layer, and T – mean air temperature.

Describing the formation of a runoff, we can define the key natural processes that
determine the characteristics of the water catchment and form the flood potential of
the territories.

3.3.2 DETAILED MODELS OF MOISTURE AND SOIL WATER CONTENT

Method of hydrological risk assessment using satellite data should be based on the
model of dangerous processes. Hazardous dynamics (floods and swamping) might
be described as the variation of moisture and water content in the accumulation zone
s1 and in the discharge zone s2, according to Kostyuchenko et al. (2019):

ds1 = A(s1,s2)dt +B(s1,s2)dWt (3.22)
ds2 =C (s1,s2)dt +D(s1,s2)dWt (3.23)

Here, dWt – is the Wiener increment: 〈dWt〉= 0,〈dWtdW '
t '〉= 1 if t = t , and dWt = 0

for all any cases. This increment is used for the description of long-term fluctuations
of evapotranspiration and precipitation, or describes the parameter:

α = LEp/2wu, (3.24)

where L – the total size of studied area, Ep – evapotranspiration, w – average volume
of atmospheric humidity, and u – average wind speed.

Functions A(si), B(si), C(si) i D(si) can be determined as (Rodriguez-Iturbe et al.,
1991)

A(s1,s2) =
Pa

nzr

{
1+ 〈α〉 [(1− fg)sc

1 + fgsc
2]
}
(1− εsr

1)−
Epsc

1 − kssb
1

nzr
, (3.25)

B(s1,s2) =
Pa

nzr
[(1− fg)sc

1 + fgsc
2] (1− εsr

1)σ , (3.26)

c
C (s1,s2) =

Pa

nzr

{
1+ 〈α〉 [(1− fg)sc

1 + fgsc
2]
}
(1− εsr

2)−
Eps2 −Q2(t)

nzr
, (3.27)

D(s1,s2) =
Pa

[(1− fg)sc
1 + fgsc

2] (1− εsr
2)σ . (3.28)

nzr

Here, Pa – precipitation; f g – partition of territory, covered by discharge zone; ε , r,
c, – empirical coefficients; n – porosity; and zr – thickness of the active root layer.
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The flows of underground water Qi may be described as (Entekhabi et al., 1992;
Kostyuchenko et al., 2019)

Q1 (s1) = kssb
1, (3.29)

Q2(t) =
1− fg

fg

ks

J

∫ t

−∞

sb
1(t − τ)e−τ/Jdτ, (3.30)

( )
where ks – permeability with the total saturation, t, τ – time, b – empirical coefficient,
and J – average groundwater delay, described as J = Syl2/ 2π T, where Sy – debit of
saturated zone, T – average permeability, and l – average distance between discharge
zones (drainage density). Parameters J and f g describe the hydro-geological (param-
eters of water table) and geo-morphological (location and size of discharge zones)
features of the surface.

Combined Penman–Monteith equation could be used to calculate average daily
evapotranspiration on the level on the top of vegetation (Kostyuchenko et al., 2019):

Ep =
[ f (A)+1] [Rn −G]∆

[σ f (A)+1]Cpρ
+[ f (A)+1]

*
2 − 2

ra

ra + rx

ra
+

[ f (A)+1]Lv∆

[σ f (A)+1]Cpρ

−1

(3.31)

{
ρ ρ

}{ }

Here, ∆ – derivative of saturated vapor pressure; Cp – specific heat of air at the con-
stant pressure; Lv – latent heat of transformation of water into vapor; σ – the ratio
of the area of convection to the area of evapotranspiration; ra – resistance from the
atmosphere to vapor motion from the vegetation surface; Rn – amount of solar heat
entering to the surface of evapotranspiration; G – the amount of energy that goes
from vegetation to the soil for a certain time; rx – resistance from the surface of
the evaporator to the exit of water vapor; ρ – air density calculated with average
pressure and actual humidity; ρ*

2 – vapor density with full saturation at daily aver-
age temperature; ρ2 – actual vapor density in the atmosphere over the vegetation
cover; f (A) – effective area of vegetation per unit of the total area of the investigated
territory.

Thus, the task of control of hydrological and hydro-geological risks (in particular,
flooding and swamping) using satellite data may be reduced to determination of the
methodology for analyzing the set of surface indicators corresponding to the vari-
able of Equations (3.22)–(3.31), and thus to control of changes in indicators of the
reaction of local ecosystems to changes in the water and heat balance according to
certain types of terrestrial cover.

3.4 SATELLITE MODELS: SPECTRAL RESPONSE MODELS
3.4.1 SPECTRAL MODEL OF SURFACE RESPONSE TO THE HEAT AND

WATER STRESS

The surface reflection spectra, detected using satellite sensors, are forming by inte-
grating energy input from large areas. This essentially distinguishes them from the
spectra obtained by ground measurements and should be taken into account the com-
parative analysis. In some narrow spectral bands, these effects may not be essential.
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However, when the bandwidth is considerable, or when the composition of spectral
bands (spectral indices) should be analyzed, the spatial and temporal variability of
the energy fluxes from the surface should be taken into account.

The energy balance of surface site Rn may be described as follow (Gupta et al.,
1999):

Rn (Taero,P,W) = H (Taero,P,W)+LH (Taero,P,W,Θ)+G(Taero,P,W,T,Θ)
(3.32)

Here, Taero – aerodynamic surface temperature, LH – latent heat (the residual heat
energy that came with radiation after absorption by vegetation and soil); parametric
description of soils and vegetation (P), precipitation and solar radiation (W), thermal
(T), and hydrological (Θ) parameters of surface.

Variations of thermal and hydrological parameters may be described as (Castelli
et al., 1999)

dT
dt

= f (Taero,Θ,T,P,W) , (3.33)

dΘ

dt
= f (LH,Θ,T,P,W) . (3.34)

Based on these general equations and taking into account evaporation and evapotran-
spiration, Kostyuchenko et al. (2019) proposed a general equation for the description
of energy flux from the surface site:

gT = fvgv + fsgs, (3.35)

where f v and f s – sites of studied area covered by vegetation or with bare soils.
In the most common case, with no ground verification of hydro-geological and
geo-morphological parameters, Kostyuchenko et al. (2019) proposed fs = (1− fv).
For more accurate calculation of f v and f s, the satellite-based indices may be used
(Kostyuchenko et al., 2019):

fv = 1− NDVI−NDVImin

NDVImax −NDVImin
, (3.36)

( )p

fs = g
NDWI−NDWImin

NDWImax −NDWImin

q

. (3.37)
( )

In these equations, algorithm values of Normalized Difference Vegetation Index
(NDVI) and Normalized Difference Water Index (NDWI) indices were calculated
according to Jackson et al. (1983) and Gao (1995) in the framework of the observa-
tion interval; g, p, q – empirical coefficients.

There are two ways to consider a variability of the energy flux: (i) construction
of a special algorithm for spectral indices calculation, which takes into account fea-
tures of energy balance of the surface, and (ii) application of statistical procedures
to ground measurement data analysis aimed to data regularization toward satellite
observations. Besides, all data should be temporally regularized.
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The task of qualitative and quantitative definition and determination of the spec-
tral inter-calibration procedure requires the detailed analysis and processing of huge
massive of lab, ground, and remote data. Our overview will be limited by analysis of
two spectral indices: NDVI and NDWI, which correspond to our task.

Classic equations for calculating these indices, based on lab experiments, were
proposed in the study of Jackson et al. (1983) for NDVI and in the study of Gao
(1995) for NDWI:

NDVIlab =

(
r800 − r680

r800 + r680

)
, (3.38)( )

NDWIlab =
r857 − r1241

r857 + r1241
. (3.39)

Here, rλ – reflectance in corresponding band λ , nm.
Based on the balance Equations (3.32)–(3.35) and taking into account usual bands

of satellite sensors, Kostyuchenko et al. (2010 proposed algorithms for the calcula-
tion of these indices using specific sensors:

NDVIMSS =
∫ 800

700
Idλ −

∫ 700

600
Idλ

∫ 800

700
Idλ +

∫ 700

600
Idλ g. (3.40)

([ ]/[ ])/
For data from MSS sensor of Lansat USGS satellite and for data from TM and ETM
sensors of Lansat satellite,

NDVIETM =
∫ 900

760
Idλ −

∫ 690

630
Idλ

∫ 900

760
Idλ +

∫ 690

630
Idλ g, (3.41)

([ ]/[ ])/

NDWIETM =

([∫ 900

760
Idλ −

∫ 1750

1550
Idλ

]/[∫ 900

760
Idλ +

∫ 1750

1550
Idλ

])/
g. (3.42)

Application of reduced spectral intervals equations allows to obtain distributions of
spectral indices reflecting both the specificity of the used sensors and the spatial vari-
ations of the energy balance of the earth’s surface. Thus, more correct comparison of
the results of satellite observations and ground spectrometric measurements may be
provided.

Further regularization may be provided in different ways. In the framework of the
task solving, the relatively simple way may be proposed. It is based on the deter-
mination of distribution of studied parameters over the whole area f x,y toward the
distribution on studied sites f m (Kostyuchenko, 2015):

fx,y =
n

∑
m=1

wx,y
(

f̃m
)

fm, (3.43)

( )
where wx,y f̃m – weighting coefficient, determined as the minimum:

min

{
n

∑
m=1

∑
fm∈F

wx,y
(

f̃m
)(

1− fm

f̃m

)2
}
. (3.44)
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In this equation, m – number of measurement points, n – number of measurement
series, f m – distribution of measurement results, F – set of measurement data, and
f̃m – average distribution of measured parameters.

Application of the regularization procedure allows to obtain distributions of
the measured parameters, which with controlled reliability correspond to spatial
and temporal parameters of satellite data. Comparison of two regular datasets
from ground measurements and satellite observations may be carried out with the
approach (Acarreta and Stammes, 2005) according to the following equation:

R = R(
→
r )d

→
r . (3.45)

∫
Here,

→
r – two-dimensional vector of the site coordinates and R – measured spectral

distribution (R – with worse spatial resolution).
Thus, ground measurement and satellite observation data can be correctly

compared.

3.4.2 SPECTRAL RESPONSE TO THE SNOW MELTING: THE STOCHASTIC
APPROACH

In accordance with the models (3.14)–(3.21), we can give a set of calculation
equations that will determine the important parameters of snow cover for risk
management tasks. For example, the total weight of snow and the water content
(water equivalent) are dynamic values, which depend on the density of the snow
cover.

We will determine the dynamic density of the snow cover during the observation
interval as a stochastic value:

ρsnow =
∑i (ρi∆zi +ρ0∆z0)

∆zsnow
, (3.46)

where ρ i, ∆zi, – the density and capacity of the snow cover recorded during the
observation period i; and ρ0, ∆z0 – density and snow cover capacity at the beginning
of the observation period. At the same time, during the interval of observations i, the
dynamics of density is determined by a complex of meteorological indicators:

ρi = ρ
min
i +κ

1−Qp

f max
l

, (3.47)

where ρmin
i – initial precipitation; κ – empiric coefficient (usually equal 181);

Qp – the thermal precipitation functional, which depends on temperature, pressure,
and humidity; f max

l – maximum content of water in precipitation (in the forecasting
calculations is taken at the level of 0.5).

The set of empirical coefficients is determining by the complex of ground mea-
surements; the change in local meteorological indicators is determined according
to meteorological measurements, and the distributions of spatial indicators can be
determined by the remote sensing data.
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Water equivalent of the deposited snow W i j is assessed by taking into account cur-
rent and forecasting meteorological parameters, as well as the spatial heterogeneity
of snow cover. In the simplest case, it may be presented as

Wi j =
ρwHs

cs
∑
i j

dcc
i j(

0◦C−T s
i j

) , (3.48)

where ρw – water density, T s
i j – snow temperature, Hs – latent heat of snow cover

(80 cal/g), cs – thermal conductivity of the snow (0.5 cal/g ◦C), and dcc
i j – power of

solid component.
To calculate the catchment from the whole territory, an integral form of the water

equivalent equation can be used:

Wtot =
1−A0

Ai −A0
(Wi −W0) +W0. (3.49)

[ ]
In this equation, W tot – total water content in the snow cover (snow cover wa-
ter equivalent); W0 – snow cover water equivalent at the beginning of melting;
W i – snow cover water equivalent at the observation moment i; A0 – square of the
snow cover at the beginning of melting; Ai – current square of cover (at the moment
of observation i). In this way, we obtain a stochastic algorithm for estimating snow
cover parameters based on observation data, including satellite.

Thus, the key variables will be the area of snow cover and characteristics that
determine the water equivalent of snow at the moment of observation.

The normalized index of snow cover can be proposed in the form (Salomonson
and Appel, 2004):

NDSI =
R[0.55−0.65]−R[0.75−0.85]

R[0.55−0.65]+R[0.75−0.85]
≈ RVIS −RNIR

RVIS +RNIR
, (3.50)

where R – reflectance in the defined spectral band.
According to Salomonson and Appel (2004), it is possible to define a limit value

of NDSI index, which corresponds to the presence of snow cover. For open areas, it
is 0.32–0.36, and for areas covered with dense vegetation, it is 0.28–0.31. So if pixel
xi j has NDSI ≥ 0.3, we classify it to snow-covered cluster Ai with high reliability.
The ratio of the NDSI value and the snow cover capacity needed to estimate a water
equivalent can be determined from field measurements at the local level.

3.5 SATELLITE DATA FOR ASSESSMENT OF HYDROLOGICAL
CLIMATE-RELATED RISKS

3.5.1 LAND COVERS CLASSIFICATION APPROACH

In accordance with the model solutions, the application of satellite observations has
two main purposes: first, to provide a reliable classification of terrestrial covers in
the risk assessment sites, and second, to collect a sufficient statistics of spectral ob-
servations of varied classes of terrestrial covers (Kostyuchenko, 2019).
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For the most parts of Earth, in particular, for the essentially anthropogenic
changed landscapes of Northern Eurasia, sufficient experience of solving of these
problems has been accumulated (Kopachevsky et al., 2016). At the same time, in
view of drastic changes of precipitation patterns and land-use practices induced by
social transformations, the hydrological hazards are still dangerous, and their risks
still require a more accurate assessment in the context of regional climate, and envi-
ronmental and social change.

As the Equations (3.25)–(3.37) show, the key monitoring parameters are the
square and density of the plant cover and the hydrographic network distribution, and
key controlled variables are humidity, moisture, photochemical processes intensity,
and temperature. So, surface cover classification should be directed to the detection
of water objects and key local plant classes. With respect to water balance parame-
ters, plants covers are divided into forests, shrubs, grasslands (natural meadows and
farmland), wetlands, and peat bogs with herbaceous vegetation. Water objects are di-
vided into lakes, rivers, abandoned channels, natural river tributaries, artificial water
channels, and artificial reservoirs. Besides, from the viewpoint of risk assessment,
i.e., estimation of the possible losses, it is important to identify the elements of the
infrastructure: buildings, roads, bridges, dams, etc.

Based on the parameters of radiometric, spectral, spatial, and temporal resolution,
the required set of satellite data should be collected. Usual set of data for problem-
oriented classification and analysis of spectral characteristics of terrestrial covers
may include the data from USGS Landsat satellites, from EOS Terra MODIS, ac-
quired during the vegetation and the snow periods, and individual scenes from high-
resolution satellites such as Ikonos, QuickBird, or GeoEye1, acquired during the
vegetation period for model calibration and field measurements validation.

For change and anomaly detection, a basic period, when variables demonstrated
relative predictable behavior, should be determined. The basic period for determined
variables is usually determined based on the data availability. For Northern Eurasia,
this period is 1986–2009. The cartographic data since 1972 and 1986 and field veri-
fication data since 2007 can be used for data and model calibration and land covers
classification. This set of data allows to calculate relatively reliable assessments us-
ing current observations in the framework of methodology Equations (3.1)–(3.2) and
(3.3)–(3.6).

To process the satellite observation data, the hybrid classification procedure with
Bayesian maximum-likelihood classifier can be successfully applied (Blackburn,
1998). After obtaining of land cover classification, further analysis of the data should
be directed to study individual spectral characteristics of certain types of terrestrial
cover, taking into account the existing tendencies of changes local parameters, in
particular climatic (Kostyuchenko, 2019).

3.5.2 SPECTRAL DATA CALIBRATION USING IN-FIELD SPECTROMETRY
MEASUREMENTS

The basic idea of the proposed method of hydrological risk assessment is to an-
alyze a set of indicators of ecosystems stresses generated by variations of water
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and heat dynamics. Ecosystems reaction to water and heat stresses can be detected
through analysis of vegetation spectral response on the set of spectral indices (Black-
burn, 1998; Dobrowski, 2005; Choudhury, 2001; Verma, 1993; Penuelas, 1995).

Analysis of a wide range of spectral indices allows to determine the tendencies of
the change, which indicates the presence of water and temperature stress. Number of
existing spectral indices may be used in form adapted to task, reduced to sensor and
satellite.

For example, the analysis of long-term water, temperature, and radiation stresses
that would result a noticeable reaction of regional ecosystems can be accomplished
by analyzing the changes in vegetation photosynthetic activity, estimated by Photo-
chemical Reflectance Index (PRI) for the studied region. PRI index usually calculates
for TM sensor of Landsat satellite according to algorithm (Gamon et al., 1997) in the
form (Kostyuchenko et al., 2019):

PRITM =

([∫ 0.52

0.45
Idλ −

∫ 0.60

0.52
Idλ

]/[∫ 0.52

0.45
Idλ +

∫ 0.60

0.52
Idλ

])/
g, (3.51)

And the adapted form for ETM sensor:

PRIETM =

([∫ 0.52

0.45
Idλ −

∫ 0.60

0.52
Idλ

]/[∫ 0.52

0.45
Idλ +

∫ 0.60

0.52
Idλ

])/
g. (3.52)

Here, λ – wavelength, g – semi-empiric gain factor, in this case g = 600.
For the detection of stress-related changes of the vegetation, the distributions of

NDVI (Jackson et al., 1983) and EVI (Enhanced Vegetation Index) should be ana-
lyzed (Gamon et al., 1997). These indices may be used as the indicators of impact of
long-term landscape changes. To detect an impact of water stresses, a Structure Inten-
sive Pigment Index SIPI should be analyzed (Kostyuchenko et al., 2012). According
to Kostyuchenko et al. (2012), these indices can be calculated as follows:

NDVIMSS =
∫ 0.80

0.70
Idλ −

∫ 0.70

0.60
Idλ

∫ 0.80

0.70
Idλ +

∫ 0.70

0.60
Idλ g, (3.53)

([ ]/[ ])/
For MSS sensor of Landsat 1–5 satellites, and for TM and ETM sensors of Landsat
4–7 satellites,

NDVITM/ETM =

([∫ 0.90

0.76
Idλ −

∫ 0.69

0.63
Idλ

]/[∫ 0.90

0.76
Idλ +

∫ 0.69

0.63
Idλ

])/
g.

(3.54)
where a gain factor g = 200.

EVITM = 3.2
∫ 0.90

0.76
Idλ −

∫ 0.69

0.63
Idλ

∫ 0.90

0.76
Idλ

+ 6
∫ 0.69

0.63
Idλ −7.5

∫ 0.52

0.45
Idλ +1

])/
g, (3.55)

( [ ]/[
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EVIETM = 2.5
∫ 0.900

0.760
Idλ −

∫ 0.690

0.630
Idλ

∫ 0.900

0.760
Idλ

+ 6
∫ 0.690

0.630
Idλ −7.5

∫ 0.515

0.450
Idλ +1

])/
g, (3.56)

( [ ]/[

Here, a gain factor g = 500. Besides, some simplified algorithm can be proposed for
the EVI index:

EVITM/ETM =

(
2.5

[∫ 0.90

0.76
Idλ −

∫ 0.69

0.63
Idλ

]/
[∫ 0.90

0.76
Idλ +2.4

∫ 0.69

0.63
Idλ +1

])/
g, (3.57)

Here, g = 500.

SIPITM =

[∫ 0.90

0.76
Idλ −

∫ 0.52

0.45
Idλ

]/[∫ 0.90

0.76
Idλ −

∫ 0.69

0.63
Idλ/g

]
−1, (3.58)

SIPIETM =

[∫ 0.900

0.760
Idλ −

∫ 0.515

0.450
Idλ

]/[∫ 0.900

0.760
Idλ −

∫ 0.690

0.630
Idλ/g

]
−1, (3.59)

Here, g = 50 (SIPI = 0, if SIPI < 0).
Direct water stress may be estimated by NDWI, according to algorithm proposed

by Kostyuchenko et al. (2012):

NDWITM/ETM =

([∫ 0.90

0.76
Idλ −

∫ 0.75

1.55
Idλ

]/[∫ 0.90

0.76
Idλ +

∫ 0.75

1.55
Idλ

])/
g,

(3.60)
where gain factor g = 100. Proposed forms Equation (3.51)–(3.60) may be applied
also for field measurements in corresponding spectral bands.

The detected changes of the spectral indices can be used as the parameters in
method of assessment of risks of the processes that cause stress associated with
changes of spectral characteristics of the vegetation.

As it was mentioned in methodological section, field spectrometric measurements
should be carried out to calibrate described spectral indices and to verify calculated
models. The main purpose of calibration is to obtain stable inter-correlations between
satellite and in-field parameters.

It should be noted that there is a strong methodological constraint in the task of
inter-calibration and verification. Because a direct comparison of in-field and satel-
lite data is incorrect through a different acquiring methodology, and so different ra-
diometric, spectral, spatial, and temporal characteristics of acquired data and the
regularization procedures should be applied. Regularization by energy flux (spectral
and radiometric regularization) Equations (3.40)–(3.42) and spatial-temporal regu-
larization Equations (3.43)–(3.45) is necessary to obtain data distributions with stable
inter-correlation (see example in Figure 3.3).
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Figure 3.3 Example of inter-comparison of NDVI indices from satellite and field data
(R = 0.90; σ = 0.031.)

To calculate correlation from Figure 3.3 on the separated field sites using
spectrometer FieldSpec®3 FR in period 2007–2015 were acquired 117 spectral
signatures in different ranges: in range 350–2,500 nm with bandwidth 1.4 nm; in
the range 350–1,000 nm with bandwidth 2 nm; in range 1,000–2,500 with band-
width 3 nm; and in range 1,400–2,100 nm with bandwidth 10 nm (Kostyuchenko
et al., 2019).

As a result, to calibrate a data of satellite observations, the calibrations correla-
tions in the form of linear regressions may be proposed.

NDVIsat = (0.22+0.38)NDVIlab
ground. (3.61)

The same way may be proposed for the water indices NDWI.
It should be noted that NDWI indices have better correlations than vegetation

indices, although its spatial resolution is worse (see example in Figure 3.4).
Linear approximation equations for average calculated satellite NDWI index and

field measured data also may be presented:

NDWIsat = (0.65+2.75)NDWIlab
ground, (3.62)

This form of procedures can be applied as the calibration dependencies for vegeta-
tion spectral indices to recalculate satellite and in-field data. So, the procedure of
calibration of satellite-derived spectral indices on the base of field spectrometry may
be proposed.

Important limitation of proposed way of inter-calibration is connected with non-
linearity of indices distribution. Determined linear inter-calibration dependencies
for NDVI index are correct enough only in the interval of NDVI values 0.4–0.55.
If NDVI > 0.55, calibration dependency will not be linear, as it shows the ana-
lyzed data. Determination of inter-calibration dependencies for whole interval of
possible values of the index is the task of future studies.
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Figure 3.4 Example of inter-comparison of NDWI indices from satellite and field data
(R = 0.94; σ = 0.021.)

Additionally, it needs to be noted that there is a substantial difference between
satellite and field spectrometry, connected with scheme of survey, which might also
be considered as a methodical constraint.

While a field spectrometry usually uses a limbic scheme of observation, which
can lead to losses of information under anisotropic landscapes, the satellite sur-
veys use nadir scheme, which collect full signal from the site. Therefore, sig-
nals acquired and data collected can be different. To reduce this difference, it is
necessary to calculate a general function of view of the field spectrometer. Gen-
erally speaking, it is necessary to determine in the explicit form the distribution
of angles field spectrometric survey pm(ϑi), where ϑ – spectrometer view angle,
m – measurements sites, and i – measurements points, as a function pm(ϑi) →
F(θ(t),xi,yi,zi,z∗i ); where θ – solar angle, t – measurement time, x, y – coordinates
of measurement point, z – terrain, and z* – effective height of plants (position
of the spectrometer relative to the vegetation surface). It is necessary to reduce
the uncertainties and errors, connected with differences of limbic and nadir survey
schemes.

3.6 RISK MODEL: METHOD OF TO THE RISK ASSESSMENTS
USING BAYES APPROACH

In the framework of proposed “information-response” formalization of risk assess-
ment and decision support, it is necessary to estimate a probability distribution func-
tion HI(i |θ ) with a state of the studied natural system θ using acquired satellite data
to make an information (I) formally completed (I∗). Practically, this task can be re-
alized as a separate task of risks assessment using satellite data. Herein because the
input satellite data has a stochastic nature, a probability of stress detection using the
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set of spectral indicators may be assessed by Bayes rule as (Kostyuchenko et al.,
2019)

P(∆SRI*(x,y)|Qstress) =
PS(x,y)∏N PN (∆SRI*|Qstress)∫

x,y PN (∆SRI*|Q)dPs(x,y)

=
PS(x,y)PN (∆SRI*|Qstress)

PN (∆SRI*|Qstress)PS(x,y)+PN (∆SRI*|Q0)P0(x,y)
.

(3.63)

Here, ∆SRI* is the period-reduced spectral index (normalized difference between
observation period average and detected value at the moment of observation), which
is used for analysis (NDVI, EVI, NDWI, SIPI); index Qstress marks sites impacted
by stresses; index Q0 marks classes of pixels, where stresses are not present with
high reliability. Probability PS(x,y) is determined self-empirically. Ratio of proba-
bilities PS(x,y) and P0(x,y) is determined as limx,y,τ(PS(x,y)τ +P0(x,y)τ) = 1 (i.e.,
on the enough long periods, it is possible to assume that: PS(x,y) = 1−P0(x,y)).
Probability PS(x,y) can be determined using Gauss weight function, if pixel on the
satellite scene does not refer to the site where stress factors are observed and cannot
be unambiguously attributed to site, in which there is no stress. So, the probability of
uncertain presence of stress at location (that corresponds to position of this pixel on
the surface) will be a function of the geometric distance from the closest place under
the registered stress:

PS(x,y) = Pmin +(Pmax −Pmin)ed2
s /2σ2

p . (3.64)

where PS(x,y) – probability of existence (or appearance in time scale of observa-
tion period) of the studied stresses; Pmax – the maximum probability of the cur-
rent presence of stress in the study site (unregistered during the interpretation and
classification of the image), which depends on the type of sensor, the physical and
geographical features of the region, and the type of surface (based on the general
methodological principles (Kostyuchenko et al., 2019), Pmax for TM and ETM sen-
sors of Landsat satellite may be assessed as 0.25–0.28); Pmin – minimum probability,
depending on sensor type, physical and geographical features of the region, and type
of surface (Pmin may be assessed about 0.01); ds(x,y) – distance from the nearest
place under the registered stress; σ p – an empirical parameter to be determined, using
field research data, based on the characteristics of vegetation cover of the study area
and the type of sensor (e.g., for TM and ETM sensors of Landsat satellites, the pa-
rameter σ p can be assessed as 1.1–1.5 km). Therefore, for the hydrological hazards,
for TM and ETM sensors of Landsat satellite, the parameter PS(x,y) can be calcu-
lated in simplified form: PS(x d,y) = 0.01+0.26e

2
s /1.69. Calculated probabilities are a

basis for the assessment of risks, connected with hydrological and hydro-geological
threats. Assessment of complex risk is a complicated task and requires taking into
account multi-scale processes and links in studied multi-component systems. In the
general case, the following form of Equation (3.3) is presented (after Ermoliev and
Gaivoronski, 1992):
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R(t) = fA
(
RL(t),R0(t)

)∫∫
xy

∫ t

t0
p(v) f (x,y,v)dtdxdy. (3.65)

Here, fA RL(t),R0(t) is the approximation function of impact, which describes
the interaction of short- and long-term impact factors to complex hydrological
and hydro-geological security (depending on the used model, it may be pre-
sented in different form, even as linear composition of corresponding probabilities);
p(v) – probability of negative impact with determined conditions, where v – effec-
tive velocity of development of the disastrous process (modeled by the model of
runoff); R0(t) – general (mean) probability of disaster (in general case, this is the
probability distribution function of impacts f α (ψ , I) over the site ψ(x, y); function of
losses – parametric description of negative impact f v(I); and risk function H, which
is determined from regional disasters statistics), and might be calculated using re-
mote sensing data; RL(t) – long-term risk (here should be used the impact factors
Q j from the set j ∈ ℑ, connected with climate and environmental changes, and sce-
narios of change in disasters frequency F(Q j) are calculated with forecast models;
f (x,y,v) – function of expansion, describing by distribution of hydrological (prop-
erties of water-table) and geo-morphological (location and size of water discharge
zones) parameters. It should be noted that expansion function f (x,y,v) may also be
determined through satellite data classification and its verification with field data
(Kostyuchenko et al., 2019).

( )

Using the approach proposed, the hydrological risks can be assessed. The set of
spectral indices has been calculated to the estimation of stresses using the Landsat
data for the region of upper sites of Western Bug and Pripyat rivers, Ukraine, with
coordinates of the center: 490 57'15, 36'' N, 240 46' 05, 31'' E). The result of assess-
ment is presented in Figure 3.5.

As the results of application (in the Figure 3.5) demonstrate, using this approach,
the current state of hydrological security and the current level of corresponding risks
can be assessed. But in the analysis of the long-term behavior of the investigated
variables, the study of a wider set of parameters, both climatic and environmental,
which should be used in predictive models, is required.

3.7 CONCLUSIONS
Modeling of geo-systems should be an integral part both of remote sensing interpre-
tation methods, as well as of the risk assessment systems based on remote sensing
data utilization. It requires abundant knowledge in the field of Earth sciences, as well
as by increased requirements in the area of decision-making. New challenges define
new methodological requirements.

First, the methodology proposed allows to expand the problem definition of using
the satellite observations in tasks of socio-ecological security. In addition to tradi-
tional statistical analysis directed to surface change detection, it is possible to analyze
and predict state of the studied systems, based on the models of geo-systems.

This certainly expands the scope and sphere of application of approach, and could
positively affect the reliability of the results obtained through the using of different
sources of data.
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Figure 3.5 Example of assessment: the local quantitative risk of under-flooding calculated
for the separate region.

Second, the proposed methodology includes feedbacks between management
decisions and the systems state. Thus, it is postulated that the state of the system
depends on the observer: risks depend on the decision made and management im-
pacts (past, current, and planned) to the system.

This could positively affect the effectiveness of management decisions and the
quality of risk assessment (Ermoliev et al., 2012; Schlaifer and Raiffa, 1961).

The presented results obtained in the framework of multi-model approach allow to
conclude that based on satellite observation data, Bayes risk assessment techniques
are an adequate basis for assessing the hydrological and hydro-geological risks both
at the regional and local levels. Based on the model of hazardous processes, it is
possible to construct a method for processing the satellite images and analyzing the
spectral indicators.

In practice, the multi-model approach proposed and the results obtained may be
used for the assessing and forecasting the risks of flooding and swamping of the eco-
logically sensitive areas, for the development of decision-making systems for losses
minimization, as well as for the development of ecological monitoring systems.
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4.1 INTRODUCTION
By an integral transform, we mean a relation of the form:∫

∞

0
K(x,y) f (x)dx = E

{
f (x);y

}
=
(
E f

)
(y) = F(y) (4.1)

such that a given function f (x) is transformed to another function F(y) = E f (y).( )
The new function F(y) = E f (y) is called the transform of f (x), and K(x,y) is
called the kernel of the transform. The kernel K(x,y) and f (x) must satisfy certain( )
conditions to ensure the existence and the uniqueness of the transform E f (y).
The uniqueness and the existence of the integral transform are well established, and
throughout the remainder of this chapter, it is assumed that all integrals involved
converge absolutely.

( )

83
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Suppose that the kernel of the integral transform Equation (4.1) is symmetric,
that is,

K(x,y) = K(y,x) (4.2)

for all x and y. Using the definition (4.1),∫
∞

0
g(y)

(
E f

)
(y)dy =

∫
∞

0
g(y)

∫
∞

0
K(x,y) f (x)dx dy. (4.3)

[ ]
Formally changing the order of the integration,∫

∞

0
g(y)

(
E f

)
(y)dy =

∫
∞

0
f (x)

[∫
∞

0
K(x,y)g(y)dy

]
dx. (4.4)

Using the definition (4.1) and the equality Equation (4.2), we obtain∫
∞

0
g(y)

(
E f

)
(y)dy =

∫
∞

0
f (x)

(
E g
)
(x)dx. (4.5)

If, in particular, we set K(x,y) = e−xy in Equation (4.1), then we obtain the Laplace
transform: ∫

∞

L f (y) = L f (x);y =
0

e−xy f (x)dx (4.6)
( ) { }

and the relation Equation (4.4) takes the form∫
∞

0
g(y)

(
L f

)
(y)dy =

∞

0
f (x)

(
L g
)
(x)dx. (4.7)

∫
The relation Equation (4.7) is obtained by Goldstein in [12]. He used the relation
Equation (4.7) some representations for Whittaker’s confluent hypergeometric func-
tion. The relation Equation (4.7) is called an exchange identity by Van der Pol and
Bremmer [16]. We refer the identity Equation (4.7) as the Goldstein exchange iden-
tity. Similar relationships were obtained for other integral transforms such as the
Hardy transform by Srivastava [19], the potential transform by Srivastava and Singh
[20], and the generalized Hankel transform by Agarwal [1]. Glasser [11] used the
integral transform: ∫(

G f
)
(y) = G

{
f (x);y

}
=

∞

0

f (x)√
x2 + y2

dx, (4.8)

and its Parseval–Goldstein-type relationships to derive integral identities. Apelblat
[2] introduced a method for the evaluation of infinite integrals. The infinite integrals
were derived by applying the same or different integral transform twice. The method
has been used in obtaining the results in [3]. Ramanujan also presented some formula
on the theory of definite integrals [13, Chapter 11].

Consider the following integral transform:(
Ei f

)
(y) = Ei

{
f (x);y

}
=
∫

∞

0
Ki(x,y) f (x)dx, i = 1,2,3. (4.9)
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E1E2 f (x) = E1 E2 f (u) (x) = E3 f (x).and assume that Using the definition

(4.9), changing the order of integration, and using the assumption, we have∫
∞

0

(
E1 f

)
(x)
(
E2g

)
(x)dx =

∞

0

(
E2g

)
(x)

∞

0
K1(x,y) f (y)dy dx

=
∫

∞

0
f (y)

[∫
∞

0
K1(x,y)

(
E2g

)
(x)dx

]
dy

=
∫

∞

0
f (y)

(
E1E2g

)
(y)dy (4.10)∫

∞ ( )
= f (y) E3g (y)dy. (4.11)

0

∫ [∫ ]

Setting h = E2g in Equation (4.10), we obtain the exchange identity Equation (4.5).
Therefore, the integral identity Equation (4.11) is a generalization of the exchange
identity Equation (4.5). The identity of the type Equation (4.11) will be called a
Parseval–Goldstein-type relationship.

4.2 A PARSEVAL–GOLDSTEIN-TYPE RELATIONSHIP
It is known that the Stieltjes transform:(

I f (y) = I f (x);y =
0

f (x)
x+ y

dx, (4.12)
) { } ∫

∞

arises naturally as an iteration of the Laplace transform. If we take the Laplace trans-
form with respect to y of the function F(u) which is the Laplace transform of the
function f (x), we have the relation:(

L F
)
(y) =

[
L
(
L f

)
(u)
]
(y)

=
(
L 2 f

)
(y)

=
∫

∞

0
e−uy

[∫
∞

0
e−ux f (x)dx

]
du. (4.13)

Changing the order of integration in which we perform the integration, we see that(
L 2 f

)
(y) =

(
I f

)
(y). (4.14)

The iteration identity Equation (4.14) can be used to calculate and invert Stieltjes
transforms; for example, see Widder [24] and Sneddon [17].

In this section, we generalize the iteration identity Equation (4.14) to the general-
ized Stieltjes transform:(

Iρ f
)
(y) = Iρ

{
f (x);y

}
=
∫

∞

0

This generalization gives a Parseval–Goldstein-type relationship for the Laplace
transform and the generalized Stieltjes transform. We show how this Parseval-type

f (x)
(x+ y)ρ

dx. (4.15)
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relationship leads to Goldstein’s exchange identity and an exchange identity for the
generalized Stieltjes transform. As applications of the Parseval–Goldstein-type re-
lation, we present identities relating the potential transform to the sine transform
and the cosine transform, and the generalized Stieltjes transform to the Laguerre
transform. We give some results on the Riemann–Liouville and the Weyl fractional
integrals. We also present methods for solving some integral equations. We illustrate
the use of our results in the last part of this section. Various Parseval–Goldstein-type
identities are given in, for example [4,5,7,8,21,25,26,28,29], for a variety of integral
transforms.

4.2.1 A PARSEVAL–GOLDSTEIN-TYPE RELATIONSHIP FOR LAPLACE
TRANSFORMS

First, we give a lemma which is a generalization of identity Equation (4.14) to the
generalized Stieltjes transform Equation (4.15).

Lemma 4.2.1 If ℜ(ρ)> 0, then[
L uρ−1(L f

)
(u)
]
(y) = Γ(ρ)

(
Iρ f

)
(y). (4.16)

Proof. Using the definition of the Laplace transform Equation (4.6), we have

[
L uρ−1(L f

)
(u)
]
(y) =

∫
∞

0
uρ−1e−uy

[∫
∞

0
e−ux f (x)dx

]
du. (4.17)

Changing the order of the integration, which is permissible by the absolute conver-
gence of the integrals involved, we find from Equation (4.17) that

[
L uρ−1(L f

)
(u)
]
(y) =

∫
∞

0
f (x)

∫
∞

0
uρ−1e−(x+y)u du dx. (4.18)

[ ]
Computing the inner integral on the right-hand side and using the definition of
the generalized Stieltjes transform Equation (4.15), we deduce the iteration identity
Equation (4.16).

The following Parseval–Goldstein-type relationship relating the Laplace trans-
form to the generalized Stieltjes transform is the main theorem of this section.

Theorem 4.2.2 If ℜ(ρ)> 0, then∫
∞

0
xρ−1(L f

)
(x)
(
L g
)
(x)dx = Γ(ρ)

∫
∞

0
g(y)

(
Iρ f

)
(y)dy. (4.19)

Proof. The definition of the Laplace transform implies∫
∞

0
xρ−1 L f (x) L g (x)dx =

∞

0
xρ−1 L f (x)

∞

0
e−xyg(y)dy dx (4.20)

( ) ( ) ∫ ( ) [∫ ]
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Changing the order of the integration, which is permissible by the absolute conver-
gence of the integrals involved, we find from Equation (4.20) that∫

∞

0
xρ−1(L f

)
(x)
(
L g
)
(x)dx =

∞

0
g(y)

∞

0
xρ−1e−xy(L f

)
(x)dx dy (4.21)

∫ [∫ ]
Now, the assertion Equation (4.19) follows from the iteration identity Equation (4.16)
of Lemma 4.2.1.

The convolution property of the Laplace transform:(
L f *g (x) = L f (x) L g (x), (4.22)

) ( ) ( )
where the convolution of two functions f and g for the Laplace transform is
defined as

f *g(x) =
0

f (x− y)g(y)dy. (4.23)

Remark 4.2.3 If we use the convolution property Equation (4.22) of the Laplace
transform in the Parseval–Goldstein-type identity Equation (4.19) of Theorem 4.2.2,
we obtain ∫ ∫

∞

0
xρ−1(L f *g

)
(x)dx = Γ(ρ)

∞

0
g(y)

(
Iρ f

)
(y)dy (4.24)

∫
∞

where ℜ(ρ)> 0.

Remark 4.2.4 If we put h(x) = xρ−1 L f (x) in the identity Equation (4.19) of
Theorem 4.2.2 and use the definition of the Laplace transform Equation (4.6), we
obtain the Goldstein exchange identity Equation (4.7).

( )

Corollary 4.2.5 If ℜ(ρ)> 0, then∫ ∫
∞

0
g(y)

(
Iρ f

)
(y)dy =

∞

0
f (x)

(
Iρ g

)
(x)dx. (4.25)

Proof. Since the left-hand side of the identity Equation (4.19) of Theorem 4.2.2 is
symmetrical with respect to the function f and g, we have the exchange identity for
the generalized Stieltjes transform Equation (4.25).

Corollary 4.2.6 If ℜ(ρ)> 0 and ℜ(ν)> 0, then[
Iν xρ−1(L f

)
(x)
]
(u) =

Γ(ρ)

Γ(ν)

[
L yν−1(Iν f

)
(y)
]
(u). (4.26)

Proof. In the Parseval–Goldstein-type identity Equation (4.19), we set

g(y) = yν−1e−uy (4.27)

so that (
L g (x) =

( )

(x+u)ν
. (4.28)

) Γ ν

Now, the assertion Equation (4.26) follows immediately by substituting Equations
(4.27) and (4.28) to the identity Equation (4.19) of Theorem Equation (4.2.2) and
making use of the definition (4.15) of the generalized Stieltjes transform.
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Corollary 4.2.7 Let g1(x) and its derivatives of orders up to and including n− 1
be continuous for x > 0, with g1(x) and its derivatives having limits at x = 0, and
suppose g1(x) and its derivatives are of exponential order. If ℜ(ρ)> 0, then∫

∞

0
xρ−1(L f

)
(x)
[
xn(L g1

)
(x)− xn−1g1(0)−.. .−g(n−1)

1 (0)
]

dx

= Γ(ρ)
∫

∞

g(n)1 (y)
(
Iρ f

)
(y)dy. (4.29)

0

Proof. In the Parseval–Goldstein-type identity Equation (4.19), we set

g(y) = g(n)1 (y) (4.30)

so that (
L g
)
(x) = xn(L g1

)
(x)− xn−1g1(0)−.. .−g(n−1)

1 (0) (4.31)

by the derivative property of the Laplace transform. Now, the assertion Equation
(4.29) follows immediately by substituting Equation (4.30) and (4.31) to the identity
Equation (4.19) of Theorem Equation (4.2.2) and making use of the definition (4.15)
of the generalized Stieltjes transform.

A consequence of Equation (4.29) of Corollary 4.2.7 involving the generalized
Stieltjes transform, the Laplace transform, and the Laguerre transform is contained
in the next theorem. The Laguerre transform is defined as∫(

Jα f
)
(n) = Jα

{
f (x);n

}
=

∞

0
e−xxα Lα

n (x) f (x)dx, (4.32)

where

Lα
n (x) =

exx−α

n!
dn

dxn

(
e−xxn+α

)
(n = 0,1,2, . . . ; α >−1) (4.33)

are the associated Laguerre polynomials.

Theorem 4.2.8 If ℜ(ρ)> 0 and α >−1, then[
In+α+1xn+ρ−1(L f

)
(x)
]
(1) =

n!Γ(ρ)

Γ(n+α +1)
[
Jα

(
Iρ f

)
(y)
]
(n), (4.34)

where n = 0,1,2, . . . and[
L yn+α

(
In+α f

)
(y)
]
(1) =

n!Γ(ρ)

Γ(n+α)

[
Jα

(
Iρ f

)
(y)
]
(n), (4.35)

where n = 1,2, . . .

Proof. In the identity Equation (4.29) of Corollary Equation (4.2.7), we set

g1(y) = yn+α e−y (4.36)
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so that (
L g1

)
(x) =

Γ(n+α +1)
(x+1)n+α+1 (4.37)

and

gk
1(0) = 0, for 0 ≤ k ≤ n−1. (4.38)

Substituting Equations (4.36), (4.37), and (4.38) to the identity Equation (4.29) of
Corollary Equation (4.2.7), we obtain∫

∞

0

xn+ρ−1

(x+1)n+α+1

(
L f

)
(x)dx (4.39)∫

=
Γ(ρ)

Γ(n+α +1)

∞

0

dn

dyn

(
e−yyn+α

)(
Iρ f

)
(y)dy

=
n!Γ(ρ)

Γ(n+α +1)

∫
∞

0
e−yyαL α

n (y)
(
Iρ f

)
(y)dy. (4.40)

Now, the assertion Equation (4.34) follows from the definitions (4.15), (4.32), (4.32),
and the Equation (4.40). The assertion Equation (4.35) easily follows from the iden-
tity Equation (4.26) of Corollary 4.2.6.

4.2.2 SOME ILLUSTRATIVE EXAMPLES

An illustration of Theorem 4.2.2 is provided by evaluating the Mellin transform of
a function involving the complementary incomplete gamma function. The Mellin
transform is defined as(

M f (y) = M f (x);y =
∞

0
xy−1 f (x)dx, (4.41)

) { } ∫
Example 4.2.9 If ℜ(µ +1)> ℜ(ρ)> ℜ(µ)> 0 and ℜ(a)> 0, then

(
M eay

Γ(1−ρ,ay)
)
(µ) =

πΓ(µ)aρ−µ−1

Γ(ρ)sin[π(ρ −µ)]
. (4.42)

Proof. In the identity Equation (4.19) of Theorem Equation (4.2.2), we set

f (u) = e−au and g(y) = yµ−1 (4.43)

so that (
L f

)
(x) =

1
x+a

and
(
L g
)
(x) =

Γ(µ)

xµ
. (4.44)

From Equation (4.16) of Lemma 4.2.1 and the formula [9, Vol. 1, p. 137, Entry (7)]

( ) 1 xρ−1
Iρ f (x) = L (y) = aρ−1eay

Γ(1−ρ,ay). (4.45)
Γ(ρ) x+a

( )
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Substituting Equations (4.43), (4.44), and (4.45) into (4.19), we obtain

(
M eay

Γ(1−ρ,ay)
)
(µ) =

Γ(µ)

Γ(ρ)
a1−ρ

(
I xρ−µ−1)(a). (4.46)

Making use of Equation (4.16) of Lemma 4.2.1, the Stieltjes transform on the right-
hand side of Equation (4.46) may be evaluated and our assertion Equation (4.42)
follows immediately.

Example 4.2.10 We show that(
Jα y(ν−ρ+1)/2Kν−ρ+1

(
ay1/2

))
(n)

=
an+α−ρ−1

n!2n+α−ρ
Γ(ν +2)Γ(ρ)Γ(n+α +1)eα2/8W−k,l

(
a2

4

)
, (4.47)

where a > 0 , ℜ(ρ) > 0, ℜ(ν) > −1, ℜ(α) + n > 0, 2k = n + α + ν + 2,
2l = ν − n−α + 1, and n = 1,2, . . ., Kν(x) denotes the modified Bessel function
of the third kind, and Wk,l(x) denotes Whittaker’s confluent hypergeometric function.

Proof. In the identity Equation (4.35) of Theorem Equation (4.2.8), we set( )
f u uν 2( ) / Jν au1/2= so that (cf. [10, Vol. 2, p. 235, Entry (20)]

(
Iρ f

)
(y) =

aρ−1

2ρ Γ(ρ)
y(ν−ρ+1)/2Kν−ρ+1

(
ay1/2), (4.48)

and[
L yn+α

(
In+α f

)
(y)
]
(1)

=
an+α−2

2n+α

Γ(ν +2)Γ(n+α +1)
Γ(n+α)

ea2/8W−k,l

(
a2

4

)
. (4.49)

where k and l are as defined in the statement of the example. Substituting Equa-
tions (4.48) and (4.49) into (4.35) of Theorem 4.2.8, we obtain the assertion
Equation (4.47).

Example 4.2.11 We show that(
L y(2µ+2l−3)/2eay/2Wk,l(ay)

)
(b)

=
a1/2−l

bµ

Γ(µ −ρ +λ )Γ(µ)

Γ(µ +λ )
2F1

(
µ,ρ; µ +λ ,1− a

b

)
, (4.50)

where a > 0, b > 0, ℜ(ρ) > 0, ℜ(µ) > 0, ℜ(λ ) > 0, ℜ(λ ) > ℜ(ρ − µ), 2k = 1−
λ −ρ , 2l = λ −ρ , and n = 1,2, . . ., Kν(x) denotes the modified Bessel function of
the third kind, and Wk,l(x), 2F1 denotes Gauss’s hypergeometric function.
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Proof. In the identity Equation (4.35) of Theorem Equation (4.2.8), we set

f (u) = uλ−1e−au and g(y) = yµ−1e−by (4.51)

so that (
L f

)
(x) =

Γ(λ )

(x+a)λ
and

(
L g
)
(x) =

Γ(µ)

(x+b)µ
(4.52)

and (cf. [10, Vol. 2, p. 234, Entry (12)](
Iρ f (x) = Γ(λ )a−(2l+1)/2y((2l−1)/2)/2eay/2Wk,l(ay), (4.53)

)
where l and k are as in the statement of the example. Substituting Equation
(4.51), (4.52), and (4.53) into (4.19) of Theorem 4.2.2, we obtain the assertion
Equation (4.50).

4.3 THE LLL222-TRANSFORM AND ITS APPLICATIONS
In this section, we consider the L2-transform(

L2 f
)
(y) =

∫
∞

0
xe−x2y2

f (x)dx. (4.54)

and the Widder transform

(
W f

)
(y) =

∫
∞

0

x f (x)
x2 + y2 dx. (4.55)

The L2-transform is introduced by the author [27]. The Widder transform is intro-
duced as the potential transform by Widder, and he presented a systematic account
of the transform in [22,23]. Widder pointed out that the potential transform is related
to the Poisson integral representation of a function which is harmonic in a half-plane
and gave several inversion formulae for the transform and applied his results to har-
monic functions. Srivastava and Singh [20] gave the following exchange identity∫

∞

0
yg(y)

(
W f )(y)dy =

∫
∞

0
x f (x)

(
W g)(x)dx (4.56)

for the Widder transform. Some generalizations of the L2-transform are considered
in, for example, [6].

If we make a simple change of variable in the integral on the right-hand side of
Equation (4.54), we obtain(

L2 f )(y) =
1
2

∞

0
xe−x2y2

f
(√

x
)

dx. (4.57)
∫

Comparing Equation (4.57), the definitions (4.54) of the L2-transform, and
Equation (4.6) of the Laplace transform gives the relationship( 1 (√ )

L2 f )(y) = L f x (y2) (4.58)
2

( )
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There is a similar relationship between the Widder transform and the Stieltjes trans-
form: (

W f )(y) =
1
2

(
I f

(√
x
))

(y2). (4.59)

We introduce the idea of the convolution of two functions for the L -transform:2

f *g(x) =
x

0
y f x2 − y2 g(y)dy. (4.60)

∫ (√ )
It can be easily shown that the convolution for the L2-transform satisfies all the
properties of the convolution for the Laplace transform.

Theorem 4.3.1 We have(
L2 f *g

)
(y) =

(
L2 f

)
(y)
(
L2g

)
(y) (4.61)

Proof. By the definitions (4.54) of the L2-transform and Equation (4.60) of the con-
volution for the L2-transform, we have(

L2 f *g
)
(y) =

∫
∞

0
xe−x2y2

[
u f
(√

x2 −u2
)

g(u)du
]

dx (4.62)

Changing the order of integration√ and then changing the variable of integration in the
inner integral from x to t = x2 −u2, we obtain

(
L2 f *g

)
(y) =

∫
∞

0
ug(u)

∫
∞

0
xe−x2y2

f
(√

x2 −u2
)

dx du

=
∫

∞

0
ue−u2y2

g(u)du
∫

∞

0
te−t2y2

f (t)dt. (4.63)

[ ]

Hence, the assertion Equation (4.61) follows from the definition (4.54) of the L2-
transform.

In this section, we establish a Parseval–Goldstein-type relationship between the
Widder transform and the L2-transform. We also obtain identities relating the K -
transform ∫(

Kν f
)
(y) =

∞

0

√
xyKν(xy) f (x)dx. (4.64)

to the L2-transform, where Kν(x) is the Bessel function of the third kind (it is also
known as the Macdonald function), and the Laplace transform to the L2-transform.
Using these results, we show how one can extend tables of Laplace and Hankel
transforms.

4.3.1 A PARSEVAL–GOLDSTEIN-TYPE RELATIONSHIP
AND ITS COROLLARIES

First, we give a lemma that shows the iteration of the L2-transform by itself is the
Widder transform.
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Lemma 4.3.2 We have (
L 2

2 f
)
(y) =

1
2
(
W f

)
(y). (4.65)

Proof. Using the definition of the L2-transform Equation (4.54), we have(
L 2

2 f (y) = L2 L2 f (u) (y)

=
∫

∞

0
ue−y2u2

[∫
∞

0
xe−x2u2

f (x)dx
]

du. (4.66)

) [ ( ) ]

Changing the order of the integration on the right-hand side of Equation (4.66),
which is permissible by the absolute convergence of the integrals involved, we find
from Equation (4.66) that

(
L 2

2 f
)
(y) =

∞

0
x f (x)

∞

0
ue−(x2+y2)u2

du dx. (4.67)
∫ [∫ ]

Computing the inner integral on the right-hand side and using the definition of the
Widder transform Equation (4.55), we deduce the iteration identity Equation (4.65).

The following Parseval–Goldstein-type relationship relating the L2-transform to
the Widder transform is the main theorem of this section.

Theorem 4.3.3 We have∫
∞

0
x
(
L2 f

)
(x)
(
L2g

)
(x)dx =

1
2

∫
∞

0
yg(y)

(
W f

)
(y)dy. (4.68)

Proof. The definition Equation (4.54) of the L2-transform transform implies∫
∞

0
x
(
L2 f

)
(x)
(
L2g

)
(x)dx

=
∫

∞

0
x
(
L2 f

)
(x)
[∫

∞

0
ye−x2y2

g(y)dy
]

dx (4.69)

Changing the order of the integration, which is permissible by the absolute conver-
gence of the integrals involved, we find from Equation (4.69) that∫

∞ ( ) ( )
x L2 f (x) L2g (x)dx

0 ∫ [
∞

∫ ]
∞

= yg x2y2( )
(y) xe− L f (x)dx dy. (4.70)

0 0

Now the assertion Equation (4.68) follows from the iteration identity Equation (4.65)
of Lemma 4.3.2.

Remark 4.3.4 We have∫
∞

0
x
(
L2 f

)
(x)
(
L2g

)
(x)dx =

1
2

∞

0
y f (y)

(
W g
)
(y)dy. (4.71)

∫
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Since the relation Equation (4.68) is symmetrical with respect to f and g. Using
the Parseval–Goldstein-type relationships Equations (4.68) and (4.71), we obtain
the exchange identity Equation (4.56) for the Widder transform. Thus, the identity
Equation (4.68) of Theorem 4.3.3 generalizes relation Equation (4.71).

Corollary 4.3.5 We have∫
∞

0
xh(x)

(
L2 f

)
(x)dx =

∞

0
y f (y)

(
L2h

)
(y)dy. (4.72)

∫
Proof. The identity Equation (4.72) follows immediately after letting h(x( ) ) =
L2g (x) in the identity Equation (4.68) of Theorem 4.3.3.

Corollary 4.3.6 We have[
W L2 f (x) = L2 W f (x) (4.73)
( )] [ ( )]

Proof. We set f (y) = e−u2y2
in Equation (4.68) of Theorem 4.3.3. Then,(

L2 f
)
(x) =

∞

0
ye−(u2+x2)y2

dy =
1

2(u2 + x2)
(4.74)

∫
Now, the assertion Equation (4.73) follows from the identity Equation (4.68) of
Theorem 4.3.3.

The following corollary to Lemma 4.3.2 gives a method to invert the Widder
transform Equation (4.55):

Corollary 4.3.7 Consider the integral equation∫
∞

0

x f (x)
x2 + y2 dx = g(y), (4.75)

where g is known, and f is unknown. Then, the integral equation Equation (4.75) has
a unique solution given by

f (x) =
[
L −1

2
(
L −1

2 g
)]
(x) (4.76)

Proof. Comparing the integral equation Equation (4.75) with the identity Equation
(4.65) of Lemma 4.3.2 implies

g(y) = L 2
2 (y) (4.77)

( )
The assertion Equation (4.75) of Lemma 4.3.2 follows from the result Equation
(4.77).

Theorem 4.3.8 If ℜ(ν)≥−1

(
Kν y(2ν+1)/2 f (y)

)
(z) = 2ν u(2ν+1)/2

[
L2x2ν−2(L2 f

)( 1
2x

)]
(u). (4.78)
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Proof. We set g(u) = uν Jν(zu) Equation (4.68) of Theorem 4.3.3, where Jν is the
Bessel function of the first kind of order ν . Using the identity Equation (4.58) and
making the use of the Laplace transform table (cf. [9, Vol. 1, p. 185, Entry (30)])(

L2g
)
(y) =

1
2
(
L g(

√
y)
)
(x2) =

1
2
(
L uν/2Jν(zu1/2)

)
(x2)

=
1
2

( z
2

)ν

x−2ν−2 exp
(
− z2

4x2

)
(4.79)

Now in order to evaluate the Widder transform of the function g(u), we use the
identity Equation (4.65) of Lemma 4.3.2 and obtain

(
W g
)
(y) =

( z
2

)ν

L2x−2ν−2 exp − z2

4x2 (y). (4.80)
( ( ))

The L2-transform on the right-hand side of Equation (4.80) may be evaluated by
using the iteration identity Equation (4.58) and then the Laplace transform table (cf.
[9, Vol. 1, p. 146, Entry (20)]). Thus,(

W g
)
(y) = yν Kν(zy). (4.81)

Substituting the results Equation (4.79) and (4.81) into (4.68) of Theorem 4.3.3 gives∫
∞

0
yν+1Kν(zy) f (y)dy =

z
2

ν ∞

0
x−2ν−1 exp − z2

4x2

(
L2 f

)
(x)dx. (4.82)

( ) ∫ ( )
Now, the assertion follows by making a simple change of variable in the integral on
the right-hand side of Equation (4.82) and then using the definitions (4.64) of the
K -transform and Equation (4.54) of the L2-transform.

It is well known that

K1/2(x) = K−1/2(x) =
π

2x

1/2
e−x, (4.83)

( )
(see [18, p. 306]). Using the identity Equation (4.78) of Theorem 4.3.8 and the
special cases Equation (4.83), we obtain the identities in the following corollary:

Corollary 4.3.9 We have(
L y f

)
(x) =

2√
π

L2
1
x

(
L2 f

) 1
2x

(z) (4.84)
[ ( )]

and

(
L y f

)
(x) =

1√
π

L2
1
x3

(
L2 f

) 1
2x

(z). (4.85)
[ ( )]

In the following corollary, we present a new integral representation for the
Macdonald function.
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Corollary 4.3.10 If ℜ(ν)≥−1, then

Kν(y) =
1

(2y)ν

∫
∞

0
x−2ν−1exp −x2y2 − 1

4x2 dx. (4.86)
( )

Proof. We set f (x) = xν Jν(x) in the identity Equation (4.78) of Theorem 4.3.8.

4.3.2 SOME ILLUSTRATIVE EXAMPLES

An illustration of Theorem 4.3.8 is provided by the following example:

Example 4.3.11 If 2ℜ(ρ)> 2|ℜ(ν)|−1, then

(
Kν yρ−1)(z) = 2(2ρ−3)/2z−ρ

Γ
ρ

2
− ν

2
+

1
4

Γ
ρ

2
+

ν

2
+

1
4

, (4.87)
( ) ( )

(cf. [10, p. 127, Entry (1)]).

Proof. In the identity Equation (4.78) of Theorem Equation (4.3.8) we set
f (y) = y(2ρ−2ν−3)/2. Making use of the identity Equation (4.58) we obtain

(
L2y(2ρ−2ν−3)/2) 1

2x
=

1
2
(
L y(2ρ−2ν−3)/4) 1

4x2

= Γ

(
ρ

2
− ν

2
+

1
4

)
(2x)(2ρ−2ν−1)/2, (4.88)

( ) ( )

provided that ℜ(ρ −ν) > 1/2. Substituting Equation (4.88) into the identity Equa-
tion (4.78) of Theorem Equation (4.3.8) we find(

Kν yρ−1)(z) = 2ρ − 1
2

Γ
ρ

2
− ν

2
+

1
4

z(2ν+1)/2(L2y(2ρ+2ν−3)/2)(z). (4.89)
( )

Now, the assertion Equation (4.87) follows after evaluating the L2-transform on the
right side of Equation (4.89).

Example 4.3.12 If ℜ(ν)>−2, then

(
Kν y(2ν+1)/2 sin

(
ay2))(z) = a3/2(2a)−ν−3

Γ(ν +2)z(2ν+3)/2S−(2ν+3)/2,1/2

(
z2

4a

)
,

(4.90)
where Sµ,ν is the Lommel function.

Proof. In the identity Equation (4.78) of Theorem Equation (4.3.8), we set f (y( ) ) =
sin ay2 . Making use of the identity Equation (4.58) and then the formula [15, p. 54,
Entry (7.1)], we obtain

(
L2 sin

(
ay2))( 1

2x

)
=

1
2
(
L sin(ay)

)( 1
4x2

)
=

2αx4

x4 +α2 . (4.91)
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where α = 1/4a. Substituting Equation (4.91) into the identity Equation (4.78) of
Theorem Equation (4.3.8), we find

(
Kν y(2ν+1)/2 sin

(
ay2))(z) = 2ν

αz(2ν+1)/2 L
xν+1

x2 +α2 (z). (4.92)
( )

Now, the assertion Equation (4.90) follows from the tables of Laplace transforms
(see [15, p. 22, Entry 3.11]).

Example 4.3.13 We show that

(
L sin

(
ay2))(z) = π

2a
1
2
−C(t) cos t +

1
2
−S(t) sin t , (4.93)

√ [( ) ( ) ]
where t = z2/(4a) and C(t) and S(t) are the Fresnel integrals.

Proof. We set ν =−1/2 in Equation (4.88). Using the special cases Equation (4.83)
and the definition Equation (4.64) of the K -transform, we obtain

(
L sin ay2 (z) =

z
4a

S−1,1/2
z2

4a
. (4.94)

( )) ( )
It follows from a formula for the Lommel function (see [15, p.416]) that

S−1,1/2(t) = π
[
J1/2(t)+ J−1/2(t)+J1/2(t)−J−1/2(t)

]
, (4.95)

where J1/2(t) is the Anger–Weber function of order ν . However, we have

J1/2(t) =
2
πt

sin t and J−1/2(t) =
2
πt

cos t, (4.96)

√ √
(cf. [18, p. 306]) and

J1/2(t) =
2
πt

{[C(t)−S(t)]cos t +[C(t)+S(t)]sin t} (4.97)

√
and

J−1/2(t) =
2
πt

{[C(t)−S(t)]cos t − [C(t)−S(t)]sin t} , (4.98)

√
(cf. [15, p. 415]). Now, substituting Equation (4.96), (4.97), and (4.98) into (4.95)
and then using Equation (4.94), we obtain the assertion Equation (4.93).

Example 4.3.14 If |ℜ(ν)|< 1, and ℜ(a)> 0 then(
L (x+4ax2)(ν−1)/2

)
(z) = 2ν

Γ

(
ν

2
+

1
2

)√
z
πa

exp
( z

8a

)
Kν/2

( z
8a

)
. (4.99)
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Proof. We set f (y) = yν−1e−ay2
in Equation (4.78) of Theorem Equation (4.3.8).

Making use of Equation (4.58) and then using tables of Laplace transforms (cf. [15,
p. 37, Entry 5.3]), we obtain

(
L2yν−1e−ay2

)( 1
2x

)
=

1
2

(
L y(ν−1)/2e−ay

)( 1
4x2

)
= Γ

(
1
2
− ν

2

)
(4ax2 +1)(ν−1)/2

(2x)ν
, (4.100)

for ( )< 1. Using tables of Hankel transform (cf. [9, p. 132]), we obtainℜ ν

(
Kν y−1/2e−ay2

(z) =
1
2

πz
a

sec
νπ

2
Kν/2

1
4x2 , (4.101)

) √ ( ) ( )
where |ℜ(ν)| < 1, and ℜ(a) > 0. Now the assertion Equation (4.99) follows from
substituting Equation (4.100) and (4.101) into (4.78) of Theorem Equation (4.3.8)
and then using Equation (4.58).

Example 4.3.15 We show that(
L x1/2Erf ax1/2 (z) =

2√
πz

arctan az−1/2 (4.102)
( )) ( )

and

(
L x3/2Erf

(
ax1/2

))
(z) =

4√
π

arctan
(

az−1/2
)

(4.103)

Proof. We set f (y) = y−2 sin(ay) in Theorem Equation (4.3.7). Making use of Equa-
tion (4.58) and then using tables of Laplace transforms (cf. [15, p. 66, Entry 7.76]),
we obtain(

L2
1
y2 sin(ay)

)(
1
2x

)
=

1
2

(
L

1
y

sin(ay1/2)

)(
1

4x2

)
=

π

2
Erf(ax). (4.104)

Using tables of Laplace transforms (cf. [15, p. 54, Entry 7.5]), we obtain(
L

1
y

sin(ay)
)
(z) = arctan

(
a
z

)
. (4.105)

Now, the assertion Equation (4.102) follows from substituting Equation (4.104) and
(4.105) into (4.75) of Corollary 4.3.7. Similarly, the assertion Equation (4.103) fol-
lows from substituting Equations (4.104) and (4.105) into (4.76) of Corollary 4.3.7.
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4.4 SOLVING CLASSICAL DIFFERENTIAL EQUATIONS WITH THE
LLL222-TRANSFORM

In this section, we present some properties of the L2-transform, and using these
properties, we show how to solve the well-known Bessel’s differential equation and
Hermite’s differential equation.

We introduce a differentiation operator δ that we call the δ -derivative and
define as

δt =
1
t

d
dt

(4.106)

We note that

δ
2
t = δt .δt =

1
t

d
dt

(
1
t

d
dt

)
=

1
t2

d2

dt2 − 1
t3

d
dt
. (4.107)

The δ -derivative operator can successively applied in a similar fashion for any
positive integer power. Here, we derive a relation between the L2-transform of the
δ -derivative of a function and the L2-transform of the function itself.

Suppose that f (t) is a continuous function with a piecewise continuous deriva-
tive f '(t) on the interval t ≥ 0. Also suppose that f and f ' are of exponential order
exp 2(c t2) as t →∞, where c is a constant. Using the definitions Equation (4.54) of the
L2-transform and Equation (4.106) of the δ -derivative, and then using integration by
parts, we obtain(

L2δt f
)
(s) =

∫
∞

0
e−t2s2

f '(t)dt

= e−t2s2
f (t)
|||∞
t=0

+2s2
∫

∞

0
te−t2s2

f (t)dt. (4.108)

Since f is of exponential order exp(c2t2) as t → ∞, it follows that

lim
t→∞

e−t2s2
f (t) = 0, (4.109)

and consequently, (
L2δt f

)
(s) = 2s2(L2 f

)
(s)− f (0+). (4.110)

Similarly, if f and f ' are continuous functions with a piecewise continuous derivative
f '' on the interval t ≥ 0, and if all three function are of exponential order exp(c2t2)
as t → ∞ for some constant c, we can use Equation (4.109)(

L2δ
2
t f
)
(s) = 2s2(L2δt f

)
(s)−

(
δt f
)
(0+). (4.111)

Using Equations (4.110) and (4.111) we obtain(
L2δ

2
t f (s) = 4s4 L2 f (s)−2s2 f (0+)− δt f (0+). (4.112)
) ( ) ( )

By repeated application of Equations (4.110) and (4.112), we obtain the following
theorem:
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Theorem 4.4.1 If f , f ', . . . , f (n−1) are all continuous functions with a piecewise con-
tinuous derivative f (n) on the interval t ≥ 0, and if all three function are of exponen-
tial order exp(c2t2) as t → ∞ for some constant c, then(

L2δ
n
t f
)
(s) = 2ns2n(L2 f

)
(s)−2n−1s2(n−1) f (0+)

−2n−2s2(n−2)(δt f )(0+)−.. .−
(
δ

n−1
t f

)
(0+). (4.113)

for n = 1,2, . . .

When we are solving Bessel’s differential equation and Hermite’s differential equa-
tions, we will be required to evaluate the transform of a function that is expressed as
t2 f (t). Here, we develop a general property to evaluate the transform of t2n f (t). If
f t is a piecewise continuous function on x 0 and is of exponential order exp c2( x2) ≥ ( )
as x → ∞ for some constant c, then the L2-transform defined in Equation (4.54) is( )
an analytic function in the half-plane ℜ(s)> c. Therefore, L2 f (y) has derivatives
of all orders and the derivatives can be formally obtained by differentiating (4.54).
Applying the δ -derivative with respect to the variable y, we find that∫

δt
(
L2 f

)
(s) =

∞

0
te−t2s2[−2t2 f (t)

]
dt. (4.114)

Using the definition (4.54) of the L2-transform, we obtain

(
L2t2 f

)
(s) =−1

2
δt
(
L2 f

)
(s). (4.115)

If we keep taking the δ -derivative of Equation (4.54) with respect y, then we deduce
that

δ
n
t
(
L2 f

)
(s) =

∫
∞

0
te−t2s2[

(−2t2)n f (t)
]

dt. (4.116)

for n = 1,2,3, . . . As a result, we obtain the following theorem:

Theorem 4.4.2 If f is a piecewise continuous on x ≥ 0 and is of exponential order
exp(c2t2) as t → ∞ for some constant c, then

(
L2t2n f

)
(s) =

(−1)n

2n δ
n
s
(
L2 f

)
(s) (4.117)

for n = 1,2, . . .

4.4.1 A TECHNIQUE FOR SOLVING BESSEL’S DIFFERENTIAL EQUATION
USING THE LLL222-TRANSFORM

In this section, we introduce a new technique for solving Bessel’s differential
equation:

t2y''(t)+ ty'(t)+(t2 −ν
2)y(t) = 0. (4.118)



Integral Transforms & Parseval–Goldstein-Type Relationships 101

The solution of Bessel’s equation is

Jν(t) =
( t

2

)ν ∞

∑
n=0

(−1)n

n!Γ(n+ν +1)

( t
2

)2n
(4.119)

where ℜ(ν) ≥ 0, and Jν is called the Bessel function of the first kind of order ν .
Changing the dependent variable of Bessel’s Equation (4.118) from y to z where
y(t) = t−ν z(t), we find that Bessel’s equation becomes

tz''(t)− (2ν −1)z'(t)+ tz(t) = 0. (4.120)

Dividing both sides of Equation (4.120) by t, and adding and subtracting the term
z'/t, we obtain [

z''(t)− 1
t

z'(t) − 2(ν −1)
t

z'(t)+ z(t) = 0. (4.121)
]

Using the definition of the δ -derivative Equations (4.106) and (4.107), we can
express Equation (4.121) as

t2
δ

2
t z(t)−2(ν −1)δtz(t)+ z(t) = 0. (4.122)

Applying the L2-transform to Equation (4.122), we find(
L2t2

δ
2
t z(t) (s)−2(ν −1) L2δtz(t) (s)+ L2z(t) (s) = 0. (4.123)

) ( ) ( )
Using Equation (4.117) of Theorem 4.4.2 for n = 1 in Equation (4.123), we obtain

−1
2

δs
(
L2δ

2
t z(t)

)
(s)−2(ν −1)

(
L2δtz(t)

)
(s)+

(
L2z(t)

)
(s) = 0. (4.124)

Using Equation (4.113) of Theorem 4.4.1 for n = 1 and n = 2 in Equation (4.124)
and performing the calculations, we obtain the first-order differential equation[

2s3Z' ]
(s)+ 4s2(ν +1)−1 Z(s) = 2νz(0+), (4.125)( )

where Z(s) = L2z(t) (s). We assume that z(0+) = 0; that is,

z(0+) =
arbitrary for ν = 0,
0 for ν = 0.

(4.126)

{
/

Solving the first-order differential equation after substituting Equation (4.126) into,
we have ( )

Z(s) =Cs−2(ν+1) exp − 1
4s2 . (4.127)

Calculating the Taylor expansion of the exponential function in Equation (4.127),
we have

Z(s) =
(
L2z(t)

)
(s) =C

∞

∑
n=0

(−1)n

n!22ns2(n+ν+1) (4.128)
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Using the value (
L2t2(n+ν)

)
(s) =

Γ(n+ν +1)
2s2(n+ν+1) (4.129)

in Equation (4.128), we have

z(t) =C
∞

∑
n=0

(−1)nt2(n+ν)

n!22n−1Γ(n+ν +1)
(4.130)

Setting C = 2−ν−1 in Equation (4.131) we get

z(t) = tν
∞

∑
n=0

(−1)n

n!Γ(n+ν +1)

( t
2

)2n+ν

. (4.131)

Substituting y(t) = t−ν z(t) into the Equation (4.131), we obtain the Bessel function
(4.119) of the first kind of order ν as solution of Bessel’s Equation (4.118).

4.4.2 A TECHNIQUE FOR SOLVING HERMITE’S DIFFERENTIAL EQUATION
USING THE LLL222-TRANSFORM

In this section, we introduce a new technique for solving Hermite’s differential
equation:

y''(t)−2ty'(t)+2ny(t) = 0 (4.132)

for n = 0,1,2, . . . The solutions of Hermite’s equation are

H2k(t) = ∑
i=0

(−1) (2k)!∞ i

i!(2k−2i)!
(2t)2k−2i, (4.133)

H2k+1(t) =
∞

∑
i=0

(−1)i(2k+1)!
i!(2k−2i+1)!

(2t)2k−2i+1, (4.134)

and

2k !
H2k(0) = (−1)k ( )

k!
H2k+1(0) = 0, (4.135)

for k = 0,1,2, . . . and Hn is called Hermite’s polynomial of order n (cf. [14,
pp. 60–66]). We have the following initial cases:

( ) ( )
L2t2

δ
2
t y(t) (s)−2 L2δtt2y(t) (s)

+
(
L2δty(t)

)
(s)+2n

(
L2y(t)

)
(s) = 0. (4.137)

Applying the L2-transform to Equation (4.136), we find that

t2
δ

2
t y(t)−2t2

δty(t)+δty(t)+2ny(t) = 0. (4.136)

Using the definition of the δ -derivative Equations (4.106) and (4.107), we can
express Hermite’s differential equation (4.132) as

for k = 0,1,2, . . .
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− 1
2

δs
(
L2δ

2
t y(t)

)
(s)+δs

(
L2δtt2y(t)

)
(s)

+
(
L2δty(t)

)
(s)+2n

(
L2y(t)

)
(s) = 0. (4.138)

Using Equation (4.117) of Theorem 4.4.2 for n = 1 in Equation (4.137), we obtain

Y '(s)+
3s2 −n−2

s3 − s
Y (s) =

Y (0)
2(s3 − s)

(4.139)

Using Equation (4.113) of Theorem 4.4.1 for n = 1 and n = 2 in Equation (4.138)
and performing the calculations, we obtain the first-order differential equation:

( )

Yn(s) = Y (0)
(s2 −1)(n−1)/2

2sn+2
sn+1

(s2 −1)(n+1)/2 ds+
C(s2 −1)(n−1)/2

sn+2 (4.140)

where Y (s) = L2y(t) (s). Solving the first-order differential Equation (4.139), we
have ∫

Y2k+1(s) =
(
L2y(t)

)
(s) =Ck

(−1)k(1− s2)k

s2k+3 . (4.141)

We consider two cases where n is an odd positive integer or an even positive
integer. Let n = 2k+ 1, k = 0,1,2, . . . Using the initial cases Equation (4.135), we
may assume Y2k+1(0) = 0. In this case, Equation (4.140) becomes

where n = 0,1,2, . . ., and C is an arbitrary constant.

i=0
Y2k+1(s) =

(
L2y(t)

)
(s) =Ck(−1)k

k

∑
k
i

(−1)is2i−2k−3. (4.142)
( )

( )

( )
y2k+1(t) =Ck(−1)k

k

∑
i=0

k
i

(−1)i 2t2k−2i+1

Γ
(
k− i+ 3

2

) . (4.144)

The inverse L2-transform on the right-hand side of Equation (4.143) can be evalu-
ated by using the definition Equation (4.54) of the L2-transform

y2k+1(t) =Ck(−1)k
∑
i=0 i

(−1)i L −1
2 s2i−2k−3 (t). (4.143)

k k ( )
Applying the inverse L2-transform, we find

Using the binomial formula, we obtain

22z−1
Γ(z)Γ z+

1
2

=
√
πΓ(2z) (4.145)

( )Using the duplication formula for the gamma function (cf. [14, p.3])
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y2k+1(t) =Ck
(−1)kk!√

π

k

∑
i=0

(−1)i(2t)2k−2i+1

i!(2k−2i+1)
. (4.146)

with z = k− i+1, the result (4.144) becomes

Ck =
(−1)k(2k+1)!

2k!
(4.147)

If we set the arbitrary constant Ck as

Y (0) =
(−1)k(2k)!

2k k!
. (4.148)

Now, if we set C = 0, then the solution (4.140) becomes

in the formula (4.146), we obtain Hermite’s polynomial Equation (4.134).
Let n= 2k, k = 0,1,2, . . . Using the initial cases Equation (4.135), we may assume

Y2k(s) = (−1)k (2k)!
2k!

(s2 −1)(2k−1)/2

s2k+2

∫ s2k+1

(s2 −1)(2k+1)/2 ds (4.149)

∫ s2k+1 ∫1 k

= u−1/ 1
ds 2 +1 du

(s2 −1)(2k+1)/2 2 u∫1 k ( )
2= ∑

k
u( i−2k+1)/2 du (4.150)

2 i=

k ( ) 2 2k 1

∑
k i(s2 2−1)( − + )/

= (4.151)
i=0 i 2i−2k+1

0 i

( )
The integral on the right-hand site of Equation (4.149) can be evaluated by making
the substitution u = s2 −1 and then using the binomial formula:

Substituting the result (4.151) into (4.149) and using the binomial theorem, we find

Y2k(s) = (−1)k (2k)!
k!

1
s2 +

k

∑
i=1

(−1)i 2ik(k−1) . . .(k− i+1)
1×3×.. .× (2i−1)

s−2i−2 (4.152)

( )

y2k(t) = (−1)k (2k)!
k!

1+
k

∑
i=1

(−1)i 2ik(k−1) . . .(k− i+1)
i! [1×3×.. .× (2i−1)]

t2i (4.153)

Applying the inverse L2-transform to Equation (4.151) and using the definition
(4.54) of the L2-transform, we find( )

It is clear that the formula (4.153) is the same as Equation (4.133).
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5.1 INTRODUCTION SINGULAR INTEGRAL EQUATIONS WITH
CAUCHY KERNEL

Singular integral equations (SIEs) with Cauchy kernel occur frequently in mixed
boundary value problems for partial differential equations. Many fluid dynamics
problems such as the stationary linear problem of ideal fluid flow is reducible to
Cauchy singular integral equation (CSIE) (see [5] and the references therein). An in-
teresting and comprehensive survey of applications of SIEs can be found in [14,42].
It is worth noting that the methods of exact and approximate solutions of SIEs have

107
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been still a challenging problem for the research community. In this chapter, we find
the approximate solution of Cauchy singular integral equations (CSIEs)

−
∫ 1

−1

χ
[c]
(t)

t − x
dt −

∫ 1

−1
k
[c]
(x, t)χ

[c]
(t)dt = g

[c]
(x), | x |< 1, (5.1)

where χ
[c]
(t) is an unknown function which vanishes at t = 1 and becomes un-

bounded at t 1. The functions g
[c]

=− (x) and k
[c]
(x, t) are known real-valued Holder¨

continuous over the interval [−1,1] and [−1,1]× [−1,1], respectively. The first in-
tegral in Equation (5.1) is understood to be exist in the sense of CPV. Also, the
function χ

[c]
(t) is assumed to be a Holder¨ continuous in order to ensure the exis-

tence [9] of Cauchy principal value. CSIE equations have various applications in
the field of aerodynamics [28], fracture mechanics [16], neutron transport [35], etc.
They are also used in various areas of mathematical physics such as potential the-
ory [10], elasticity problems as well as electromagnetic scattering [43]. The numeri-
cal methods which are developed for one-dimensional Cauchy-type singular integral
equations include: Galerkin’s method [4,38], collocation method [32], quadrature
method [23,41], inverse method [24], Sinc approximations [1] etc. In this chapter,
we propose a residual-based Galerkin’s method with Legendre polynomial as basis
function in order to find the numerical solution of Equation (5.1).

5.2 METHOD OF SOLUTION FOR CSIES OVER [–1,1]
To find the approximate solution of CSIE (5.1), we write the unknown function
[18] as

χ
[c]
(t) =

1− t
1+ t

ξ
[c]
(t), (5.2)

√
where ξ

[c]
(t) is an unknown function of t ∈ [−1,1]. Now using Equation (5.2) in

Equation (5.1), we obtain

−
∫ 1

−1

√
1− t
1+ t

ξ
[c]
(t)

t − x
dt −

∫ 1

−1

√
1− t
1+ t

k
[c]
(x, t)ξ

[c]
(t)dt = g

[c]
(x), | x < 1. (5.3)

We approximate the function ξ
[ ]
(t) by orthonormalized Legendre polynomials as

follows:

c

ξ
[c]
(t)≈ ξ

*
n
[c]
(t) =

n

∑
j=0

a
[c]

j e j(t), (5.4)

where a
[c]

; j 0 1 2 n are unknown constant coefficients and e t n. . {j = , , , . , j( )} j=0 is
the set of (n + 1) orthonormalized Legendre polynomials on [−1,1]. To get the
values of unknown coefficients a

[c]

j , we use residual-based Galerkin’s method. On

using the above approximation for ξ
[c]
(t) in Equation (5.3), the residual error

[c]R (x,a
[c] c
,a

[c] [ ] [c]
,a , ...,

0 1 2
a )n will be
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R[c]
(x,a

[c]

0 ,a
[c]

1 ,a
[c]

2 , ...,a
[c]

n ) =
∫ 1

−1

1− t
1+ t

ξ *
n
[c]
(t)

t − x
dt

−
∫ 1

−1

√
1− t
1+ t

k
[c]
(x, t)ξ *

n
[c]
(t)dt −g

[c]
(x), | x |< 1. (5.5)

√

In Galerkin’s method, this residual error
[c]

x a
[c] [R ( , ,
0

a
c]
,

1
a
[c]
, ...,

2
a
[c]
)n is assumed to be

orthogonal to the space spanned by orthonormal polynomials n{e j(x)} j=0, that is,
we have

〈R[c]
(x,a

[c]

0
,a

[c]

1
,a

[c]

2
, . . . ,a

[c]

n ),e j〉L2 = 0, ∀ j = 0,1,2, . . . ,n. (5.6)

The explicit form of Equation (5.6) is as follows:

n

∑
r=0

a
[c]

r

1

−1
−

1

−1

1− t
1+ t

1
t − x

er(t)eq(x)dtdx

−
∫ 1

−1

∫ 1

−1

√
1− t
1+ t

k
[c]
(x, t)er(t)eq(x)dtdx

}

=
∫ 1

−1
g
[c]
(x)eq(x)dx, q = 0,1,2, . . . ,n, (5.7)

{∫ ∫ √

where

b
[c]

rq =
∫ 1

−1
−
∫ 1

−1

√
1− t
1+ t

1
x− t

er(x)eq(t)dtdx−
∫ 1

−1

∫ 1

−1

√
1− t
1+ t

k
[c]
(x, t)er(t)eq(x)dtdx,

r,q = 0,1,2, . . . ,n,

g
[c]

q =
∫ 1

−1
g
[c]
(x)eq(x)dx, q = 0,1,2, . . . ,n.

Finally, the system (5.7) can be written in matrix form as

B
[c]T

A
[c]
= B1

[c]
A

[c]
= G

[c]
, (5.8)

where

B
[c]

1 = B
[c]T

, B
[c]
=

||||(
b
[c]

00
b
[c]

01
. . . b

[c]

0n

b
[c]

10
b
[c]

11
. . . b

[c]

1n
...

...
. . .

...
b
[c]

n0
b
[c]

n1
. . . b

[c]

nn

||||) , A
[c]
=

||||(
a
[c]

0

a
[c]

1
...

a
[c]

n

||||) , G
[c]
=

||||(
g
[ ]

0

g
[c]

1
...

g
[c]

n

||||) .

(5.9)

( ) ( ) ( c )

After solving the system (5.8) which is obtained as a result of approximation of
Equation (5.3), we get the values of a j; j = 0,1,2, . . . ,n.
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5.3 ERROR ANALYSIS
We show the convergence of sequence of approximate solutions, and we also derive
the error bound, in this section. We write the Equation (5.3) in operator form

(S
[c] −K

[c]
)ξ

[c]
(x) = g

[c]
(x), | x |< 1. (5.10)

In the above Equation (5.10), the operators S
[c]

and K
[c]

are defined as

S
[c]

ξ
[c]
(x) =−

∫ 1

−1

1− t
1+ t

ξ
[c]
(t)

t − x
dt, (5.11)√

K
[c]

ξ
[c]
(x) =

∫ 1

−1

1− t
1+ t

k
[c]
(x, t)ξ

[c]
(t)dt. (5.12)

√

We assume that ∫ 1

−1

∫ 1

−1

1− t
1+ t

k
[c]
(x, t)

2

dtdx < ∞. (5.13)

{√ }
Now, we define the Hilbert space L2[−1,1] as

L2[−1,1] = u : [−1,1]→ R :
1

−1
(u(t))2dt < ∞ . (5.14)

{ ∫ }
with the following norm 2||.||L2 and inner product 〈., .〉L2

||u||L2 =
∫ 1

−1

{
u(t)

}2
dt

1/2

, for u(t) ∈ L2, (5.15)

{ }

〈u,v〉L2 =
−1

u(t)v(t)dt, for u(t),v(t) ∈ L2. (5.16)
∫ 1

We define another function space, say M
[c]

such that

M
[c]
= {u(t) ∈ L2 :

∞

∑
i=0

(d
[c]

i )2〈u,ei〉2
L2 < ∞}. (5.17)

√
2

where
[ ∞

d
c]

i = ∑ 〈S[c]ei,e j〉L2 . Following results [6], the function S
[c]

ei(x) is a poly-
j=0

nomial of degree at the most of i; hence, d
[c] ∀i i will be a finite number. M

[c]
is a

subspace of L2 space which is actually a Hilbert space with respect to the following
norm || . ||

M[c] and inner product 〈., .〉
M[c]

|| u ||2
M[c]=

∞

∑
i=0

(d
[c]

i )
2
〈u,ei〉2

L2 , for u(t) ∈ M
[c]
, (5.18)

〈u,v〉
M[c] =

∞

∑
i=0

(d
[c]

i )
2
〈u,ei〉L2〈v,ei〉L2 , for u(t), v(t) ∈ M

[c]
. (5.19)

Now with the aid of results in [6], we obtain
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S
[c]

en(x) =
n

∑
i=0

α
[c]

i ei(x), (5.20)

where the coefficients α
[c]

i = 〈S[c]
en,ei〉L2 , i = 0,1,2, . . . ,n. Using the above result

in Equation (5.20), the operator S
[c]

: M
[c] → L2, can be extended as a bounded linear

operator and defined as

S
[c]

ξ
[c]
(x) =

∞

∑
i=0

〈ξ [c]
,ei〉L2

i

∑
j=0

〈Se
[c]

i ,e j〉L2 e j(x) ∈ L2[−1,1]. (5.21)

Using the orthogonal property of Legendre polynomial, we find the norm of
operator S

[c]

|| S
[c]

ξ
[c] ||2

L2=
∞

∑
i=0

(d
[c]

i )
2
〈ξ [c]

,ei〉2
L2 =|| ξ ||2

M[c] . (5.22)

Therefore, using Equation (5.22), we obtain

|| S
[c] ||= 1. (5.23)

Also, the operator S
[c]

from M
[c] → L2 is one-one and onto [18]. Hence, the

operator (S
[c]
)−1 : L2 [c]→ M exists as a bounded linear operator by using

Bounded Inverse Theorem [27]. This operator (S
[c]
)−1 is defined as

(S
[c]
)−1

ξ
[c]
(x) =

∞

∑
〈ξ [c]

(x),ei(x)〉L2

d [c] ei(x). (5.24)
i=0 i

The Equation (5.10) will have a unique solution if and only if the operator
(S

[c] [c] 1−K )− is bounded. We assume that this condition exists. We define the map-
ping Q

[c]
n : L2 → L2 as

Q
[c]

n ξ
[c]
(x) = ∑

i=0
〈ξ [c]

,ei〉L2ei(x), (5.25)
n

where Q
[c]
n is the operator of orthogonal projection. With the aid of Equation (5.6),

we obtain

Q
[c]

n

{
(S

[c] −K
[c]
)ξ *

n
[c]
(x)−g

[c]
(x)
}
= 0. (5.26)

Since the function ξ *[c](x) defined in Equation (5.4), is a polynomial. Therefore, with
the help of the formulas given in [6], the function S

[c]
ξ * [c]

n (x) will be a polynomial;
therefore, we obtain

Q
[c]

n S
[c]

ξ
*
n
[c]
(x) = S

[c]
ξ
*
n
[c]
(x), (5.27)

and hence, the Equation (5.26) becomes

S
[c]

ξ
*
n
[c]
(x)−Q

[c]

n K
[c]

ξ
*
n
[c]
(x) = Q

[c]

n g
[c]
(x). (5.28)
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Due to the boundedness of (S
[c]
)−1 and the compactness Equation (5.13) of K

[c]
for

all n n , the operator S
[c]≥ 0 ( −Q

[c]
n K

[c]
)−1 exists as a bounded linear operator [20].

Hence, the Equation (5.28) has a unique solution which is defined as

ξ
*
n
[c]
(x) = (S

[c] −Q
[c]

n K
[c]
)−1Q

[c]

n g
[c]
(x). (5.29)

From Equations (5.10) and (5.29), for all n ≥ n0, we have

ξ
[c]
(x)−ξ

*
n
[c]
(x) = (S

[c] −Q
[c]

n K
[c]
)−1{

g
[c]
(x)−Q

[c]

n g
[c]
(x)+K

[c]
ξ

[c]
(x)−Q

[c]

n K
[c]

ξ
[c]
(x)
}
. (5.30)

Now taking M
[c]

norm on both the sides of Equation (5.30), we obtain

|| ξ
[c] −ξ

*
n
[c] ||

M[c] ≤|| (S[c] −Qn
[c]

K
[c]
)−1 |||| g

[c] −Q
[c]

n g
[c] ||L2

+ || (S[c] −Qn
[c]

K
[c]
)−1 |||| K

[c]
ξ

[c]
(x)−Q

[c]

n K
[c]

ξ
[c]
(x) ||L2 . (5.31)

Due the compactness of operator K
[c]

, we have K
[c] ]−Q

[c]
n K

[c|| || → →L2 0 as n ∞ [20].
[c] c* [ ] [c]

ξ|| − || → →ξn M 0 as n ∞.Also, g
[c]

Q
[c]

g
[c]

0 as n ∞.|| − || → →n L2 Therefore,
Further, it is noticed that if ξ

[c] ∈ M
[c]

,

|| ξ
[c] ||L2≤|| ξ

[c] ||
M[c] . (5.32)

then we have

Using Equation (5.32) in (5.31), we finally obtain

|| ξ
[c] −ξ

*
n
[c] ||L2 ≤|| (S[c] −Qn

[c]
K

[c]
)−1 |||| g

[c] −Q
[c]

n g
[c] ||L2

+ || (S[c] −Qn
[c]

K
[c]
)−1 |||| K

[c]
ξ

[c]
(x)−Q

[c]

n K
[c]

ξ
[c]
(x) ||L2 . (5.33)

5.3.1 WELL POSEDNESS

In this subsection, we verify the Hadamard well posedness of problem (5.28). The
existence the operator S

[c]
( −Q

[c]
n K

[c]
)−1, which is already shown above, implies that

the problem (5.28) has a solution. We now show the uniqueness of the solution to the
problem (5.28) with the aid of principle of contradiction.

Let us assume that the system (5.28) has two distinct solutions, say y1 and y2 .
Then, we have

S
[c]

y1(x)−Qn
[c]

K
[c]

y1(x) = Qn
[c]

g
[c]
(x), (5.34)

and
S
[c]

y2(x)−Qn
[c]

K
[c]

y2(x) = Qn
[c]

g
[c]
(x). (5.35)

Taking the difference of Equations (5.34) and (5.35), we obtain

(S
[c] −Qn

[c]
K

[c]
)(y1(x)− y2(x)) = 0. (5.36)
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In Section 5.3, the existence of bounded linear inverse operator S
[ ] [−Q

]

n K
[ ]
)−1c c c

(

is already shown. Therefore on applying the inverse operator S
[c]

Q
[c] [

( − n K
c]
)−1 on

both the sides of Equation (5.36), we get

y1(x) = y2(x), | x |< 1. (5.37)

Equation (5.37) contradicts our assumption. Hence, the problem (5.28) has a unique
solution. Also, the boundedness of the inverse operator

[
(S

c] −Q
[c]

n K
[c]
)−1 implies

the continuity of
[

(S
[c]

Q
c]− n K

[c]
)−1. This means that solution is stable. Since the

problem (5.28) satisfies all the conditions of well-posedness therefore it is a well-
posed problem.

5.3.2 EXISTENCE AND UNIQUENESS

In this subsection, we show the existence and uniqueness of solution for linear system
(5.8). We start the proof by defining the prolongation operator [20] P

[c]
n : Rn+1 → E

as follows:
n

Pn
[c]

G
[c]
= ∑

j=0
〈g[c]

,e j〉L2 e j(x) ∈ E, (5.38)

where Rn+1 is a real vector space [26] having (n+ 1)-tuples of real numbers as its
vectors, E = span{e n [c]

j(x)} j=0 and G is same as defined in Equation (5.9). Now
using the definition of orthogonal projection Qn, we obtain

Q
[c]

n g
[c]
(x) =

n

∑
j=0

〈g[c]
,e j〉L2 e j(x). (5.39)

From Equations (5.38) and (5.39), we have

Pn
[c]

G
[c]
= Qn

[c]
g
[c]
(x), g

[c]
(x) ∈ L2, G

[c] ∈ Rn+1, | x |< 1. (5.40)

We further define a restriction operator [20] R
[c]

n : E → Rn+1 as follows:

Rn
[c]

ξ
*
n
[c]
(x) = (〈ξ *

n
[c]
,e0〉L2 ,〈ξ *

n
[c]
,e1〉L2 , . . .〈ξ *

n
[c]
,en〉L2)T ∈ Rn+1. (5.41)

By orthogonal property of Legendre polynomials in Equation (5.4), we get

a j
[c]
= 〈ξ *

n
[c]
,e j〉L2 , j = 0,1, . . . ,n. (5.42)

Therefore, from Equations (5.41) and (5.42), we obtain

Rn
[c]

ξ
*
n
[c]
(x) = A

[c]
, (5.43)

where the matrix A
[c]

is same as defined in Equation (5.9). Since system (5.29)
has a unique solution ξ *[c]

n (x) due to the existence of bounded linear operator
S
[c]

Q
[c]

K
[c] −1 [

( − n ) . Therefore, from Equation (5.43), the solution A
c]

of system (5.8)
exists uniquely.
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5.4 ILLUSTRATIVE EXAMPLES
In this section, we find the approximate solution of numerical examples by using the
proposed method discussed in Section 5.2.

Example 5.1 Consider the Cauchy singular integral equation

−
1

−1

1− t
1+ t

ξ
[c]
(t)

t − x
dt − 1

2

1

−1

1− t
1+ t

(x− xt2)ξ
[c]
(t)dt =

1
π

{
xex − J1(1)x2 +7x5

}
,

(5.44)

∫ √ ∫ √

where J1(1) is the Bessel function of first kind of order one. The exact solution is
not known. Figure 5.1 shows that as n is increasing, the approximate solutions are
coming closer to each other which means that the error between the approximate
solution and the exact solution is keep on decreasing.

Further, it can be seen from Table 5.1 that the error bound is decreasing as n is
increasing which shows the convergence of sequence of approximate solutions to the
exact solution.

Example 5.2 Consider the singular integral equation with Cauchy kernel

−
∫ 1

−1

√
1− t
1+ t

ξ
[c]
(t)

t − x
dt − 1

5

∫ 1

−1

√
1− t
1+ t

(1+ x4)(1+ t)2
ξ

[c]
(t)dt

=
1
π

{
5179
40

+4x−5x2 +7x3 +
97x4

20

}
. (5.45)

Figure 5.1 Comparison of approximate solution for different values of n in case of
Example 5.1.
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Table 5.1
The Theoretical Error Bound in Case of Example 5.1

n [||ξ
c] −ξ

[c]* ||n L2Error Bound for
n = 1 1.21436
n = 2 1.19832
n = 3 2.51361×10−1

n = 4 2.51042×10−1

n = 5 1.5630×10−4

n = 6 1.2961×10−5

n = 7 9.22537×10−7

n = 8 5.75069×10−8

Figure 5.2 Comparison of exact solution and approximate solutions in case of Example 5.2.

1
χ
[c] 1− x 3x2
(x) = −120+ x+ +7x4 is exact solution. It can be seen in2π 1+ x 2

Figure 5.2 that the approximate solution is the exact solution for n = 4. It is also
shown in Table 5.2 that actual error satisfies the error bound which is calculated by
using Equation (5.33).

√ { }

Example 5.3 Consider a Cauchy singular integral equation

−
∫ 1

−1

1− t
1+ t

ξ
[c]
(t)

t − x
dt − 1

2

∫ 1

−1

1− t
1+ t

x(1+ t)ξ
[c]
(t)dt =

1
π

{
x−5x2 +7x3

}
sinx.

(5.46)

√ √
Example 5.3 has not known exact solution. We find its approximate solution by pro-
posed method and the results are detailed in Table 5.3. In Figure 5.3, the closeness
of the approximate solutions to each other with the increase in the value of can be
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Table 5.2
The Actual Error and Theoretical Error Bound in Case of Example 5.2

n [c]||ξ
[c] −ξ *

n ||L2Actual Error Error Bound for ||ξ −ξ * [c]||L2

n = 1 1.00668 3.58307
n = 2 2.40175×10−1 1.62093
n = 3 2.10905×10−1 1.02621
n = 4 0 0

Table 5.3
The Theoretical Error Bound in Case of Example 5.3

n * [c]||ξ
[c] −ξn ||L2Error Bound for

n = 1 1.66512
n = 2 6.33927×10−1

n = 3 3.47631×10−1

n = 4 3.05371×10−2

n = 5 1.75190×10−2

n = 6 2.09064×10−4

n = 7 1.19283×10−5

n = 8 1.00000×10−8

Figure 5.3 Comparison of approximate solution for different values of n in case of
Example 5.3.
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seen which verifies the results (5.33). Table 5.3 implies the convergence of sequence
of approximate solutions to the exact solution.

5.5 INTRODUCTION OF HYPERSINGULAR INTEGRAL EQUATIONS
Hypersingular integral equations (HSIEs) have great importance in the field of aero-
nautics [3,28,29,33]. Many problems occur in the field of aeronautics such as wing
and tail surfaces problem; pairs or collections of wings problems [3] are reducible
to HSIEs. These HSIEs also appeared during the mathematical modeling of vortex
wakes behind aircraft at altitude, near the ground at the time of takeoff and land-
ing operations [17]. Many two-dimensional problems of aerodynamics can be mod-
eled as singular integral equation such as for an inviscid incompressible fluid flow
past a rectangular airfoil problem reduces into a hypersingular integral equation [5].
Apart from problems of aeronautics, the problems of electromagnetic scattering [17],
acoustics [21], fluid dynamics [37], electromagnetic diffraction [44], elasticity [15],
and fracture mechanics [8] are modeled as hypersingular integral equations. In early
nineties, Parsons and Martin [36] used HSIE to study the problem of water wave
scattering. Further, these equations for crack problems in the field of fracture me-
chanics [2,11,12] have been explored by many researchers. Various methods such as
complex variable function method [7], boundary element method [25], polynomial
approximation method [8,30,31], reproducing kernel method [13], and piecewise lin-
ear approximations on a nonuniform grid [39] for solving SIEs have already been
explored. However, to find the approximate solution of HSIEs, search for a better
method in some sense is always welcomed. In this chapter, we propose a residual-
based Galerkin’s method with Legendre polynomial as basis function to find the
approximate solution of HSIEs. The HSIEs of practical interest which occur during
the formulation of many boundary value problems are of the form:

=
∫ 1

−1

χ
[h]
(t)

(t − x)2 dt −
∫ 1

−1
k
[h]
(x, t)χ

[h]
(t)dt = g

[h]
(x), |x|< 1, (5.47)

with χ
[h]
(±1) = 0. The functions g

[h]
(x

[h]
) and k (x, t) are known real-valued Holder¨

continuous over the interval [−1,1] and [−1,1
[h]

]× [−1,1], respectively. χ (x) is an
unknown function defined over the interval [−1,1]. The first integral in Equation
(5.47) is understood to be exist in the sense of Hadamard finite part integral. Also,
the derivative of unknown function χ

[h]
(x) is assumed to be Holder¨ continuous in

order to ensure the existence of finite-part integral [34].

5.6 METHOD OF SOLUTION TO THE PROBLEM
A function χ

[h]
(t) defined over the interval [−1,1] in Equation (5.47) with

χ
[h]
(±1) = 0 can be represented [19] as follows:

χ
[h]
(t) = 1− t2ξ

[h]
(t), (5.48)

√
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where ξ
[h]
(t) is an unknown function. Using Equation (5.48) in Equation (5.47), we

obtain

=
∫ 1

−1

ξ
[h]
(t)

√
1− t2

(t − x)2 dt −
∫ 1

−1

√
1− t2k

[h]
(x, t)ξ

[h]
(t)dt = g

[h]
(x), |x|< 1. (5.49)

Now, we approximate the function ξ
[h]
(t) by orthonormalized Legendre polynomials

as follows:

ξ
[h]
(t)≈ ξ

*
n
[h]
(t) =

n

∑
j=0

a
[h]

j e j(t), (5.50)

where a
[h]

j ; j = 1,2, . . . ,n are unknown constant coefficients.

Using Equation (5.50) for ξ
[h]
(t) in Equation (5.49), we get the residual error

[h]
x a

[h]R ( , ,
0

a
[h]
,

1
a
[h] [
, ...,

2
a

h]
)n , where

R[h]
(x,a

[h]

0
,a

[h]

1
,a

[h]

2
, ...,a

[h]

n ) = =
1

−1

ξ *
n
[h]
(t) 1− t2

(t − x)2 dt

−
∫ 1

−1

√
1− t2k

[h]
(x, t)ξ *

n
[h]
(t)dt −g

[h]
(x), |x|< 1.

(5.51)

∫ √

In Galerkin’s method, the space E = span{e j(x n)} j=0 is assumed to be orthogonal to
[h]

x a
[h]

a
[h]R ( , , ,

0 1
a
[h] ]
, ...,a

[h
)

2 n , so we have

〈R[h]
(x,a

[h]

0
,a

[h]

1
,a

[h]

2
, ...,a

[h]

n ),e j〉L2 = 0, ∀ j = 0,1,2, . . . ,n. (5.52)

Using Equation (5.51) for j = 0,1,2, . . . ,n, Equation (5.52) becomes

〈
=
∫ 1

−1

ξ *
n
[h]
(t)

√
1− t2

(t − x)2 dt −
∫ 1

−1
k
[h]
(x, t)ξ *

n
[h]
(t)
√

1− t2dt −g
[h]
(x),e0

〉
L2

= 0,

〈
=
∫ 1

−1

ξ *
n
[h]
(t)

√
1− t2

(t − x)2 dt −
∫ 1

−1
k
[h]
(x, t)ξ *

n
[h]
(t)
√

1− t2dt −g
[h]
(x),e1

〉
L2

= 0,

〈
=
∫ 1

−1

ξ *
n
[h]
(t)

√
1− t2

(t − x)2 dt −
∫ 1

−1
k
[h]
(x, t)ξ *

sn
[h]
(t)
√

1− t2dt −g
[h]
(x),en

〉
L2

= 0.

(5.53)
In order to evaluate singular integral in each integral equation of system (5.53), we
use the results of [22] and we obtain linear system of order (n+1)× (n+1).

The above system (5.53) can be written in matrix form as

B
[h]T

A
[h]
= B1

[h]
A

[h]
= G

[h]
, (5.54)
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where

B
[h]

1 = B
[h]T

, B
[h]
=

|||||(
b
[h]

00
b
[h]

01
. . . b

[h]

0n

b
[h]

10
b
[h]

11
. . . b

[h]

1n
...

...
. . .

...
b
[h]

n0
b
[h]

n1
. . . b

[h]

nn

|||||) , A
[h]
=

|||||(
a
[h]

0

a
[h]

1
...

a
[h]

n

|||||) , G
[h]
=

|||||(
g
[h]

0

g
[h]

1
...

g
[h]

n

|||||) ,

(5.55)

b
[h]

rq =
∫ 1

−1

{
=
∫ 1

−1

{√
1− t2er(t)
(t − x)2 dt −

∫ 1

−1
k
[h]
(x, t)er(t)

√
1− t2dt

}
eq(x)dx,

r,q = 0,1,2, . . . ,n,

g
[h]

q =
∫ 1

−
g
[h]
(x)eq(x)dx, q = 0,1,2, . . . ,n.

( ) ( ) ( )

1

Now, we solve the linear system (5.54) which gives the value of unknown coefficients
a
[h]

j ; j = 0,1,2, . . . ,n.

5.7 CONVERGENCE
This section shows the convergence of sequence {ξ *[h] ∞}n n=0 to the exact solution
ξ *[h]

n (x) in L
2

space.

5.7.1 FUNCTION SPACES

We first define a Hilbert space L
2
[−1,1] = {u(t 2) : [−1,1]→ R : (u(t)) dt < ∞}

−1
with the norm 2|| . ||L2 and inner product 〈., .〉L2

∫ 1

||u(t)||L2 =
{∫ 1

−1
(u(t))2dt

}1/2
for u(t) ∈ L2[−1,1], (5.56)

〈u,v〉L2 =
∫ 1

−1
u(t)v(t)dt for u(t),v(t) ∈ L2[−1,1]. (5.57)

Now, we define the set of functions

M
[h]
= {u(t) ∈ L

2
:

∞

∑
j=0

(d
[h]

j )
2
〈u,e j〉2

L2 < ∞}, (5.58)

where

(d
[h]

j )
2
= || S

[h]
e j ||

2

L2 , (5.59)∫ √
S
[h]

e j(x) = =
1

−1

1− t2

(t − x)2 e j(t)dt. (5.60)
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The set M
[h]

which is a subspace of L2 is actually a Hilbert space with respect to the
norm || . ||

M[h] and inner product 〈., .〉
M[h]

|| u ||2
M[h]= ∑

j=0
(d

[h]

j ) 〈u,e j〉2
L2 for u(t) ∈ M

[h]
, (5.61)

∞ 2

〈u,v〉
M[h] = ∑

j=0
(d

[h]

j )
2
〈u,e j〉L2〈v,e j〉L2 for u(t),v(t) ∈ M

[h]
. (5.62)

∞

Now operating the operator S
[h]

, on e j(x); j = 0,1,2, . . . ,n and using the results of
[22], we obtain

S
[h]

e0(x) =−πe0(x),

S
[h]

e1(x) =−2πe1(x), S
[h]

e2(x) =−π

√
5

4
√

3
e0(x)+3e2(x) ,

n
S
[h]

en(x) = ∑
i=0

ci
[h]

ei(x); where ci
[h]
= 〈S[h]

en,ei〉L2 , i = 0,1,2, . . . ,n. (5.63)

[ ]

5.7.2 ERROR ANALYSIS

Using Equation (5.63), we extend the operator S
[h]

: M
[h] → L

2
as a bounded linear

operator

S
[h]

ξ
[h]
(x) =

∞

∑
j=0

〈ξ [h]
,e j〉L2

j

∑
i=0

〈S[h]
e j,ei〉L2 ei(x) ∈ L

2
[−1,1]. (5.64)

Using Equation (5.64), the norm of the operator S
[h]

|| S
[h]

ξ
[h] ||2

L2=
∞

∑
j=0

(d
[h]

j )
2
〈ξ [h]

,e j〉2
L2 =|| ξ

[h] ||2
M[h] . (5.65)

Hence, using Equation (5.65), we obtain

|| S
[h] ||= 1. (5.66)

Moreover, the mapping S
[h]

: M
[h] → L

2
is bijection mapping. Therefore, following

Bounded Inverse Theorem, the operator (S
[h]
)−1 : L

2 →M
[h]

exists as a bounded linear
operator which is defined as

(S
[h]
)−1

ξ
[h]
(x) =

∞

∑
j=0

〈ξ [h]
(x),e j(x)〉L2

d j
e j(x). (5.67)
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Now, with Equation (5.67), the norm for linear operator (S
[h]
)−1

|| (S[h]
)−1

ξ
[h]
(x) ||

M[h]=|| ξ
[h]
(x) ||

L2 . (5.68)

Now, we define the mapping Q
[h]

n : L
2 → L

2
as

Qn
[h]

ξ
[h]
(x) =

n

∑
j=0

〈ξ [h]
,e j〉L2 e j(x). (5.69)

After defining all the operators and function spaces, we can finally estimate the
error bound for the error which occurs in approximating the exact solution of
Equation (5.47) by taking its projection from Hilbert space onto a vector space
E = span{e j(x n)} j=0. Writing Equation (5.49) in an operator equation from the spaces

M
[h]

to L
2

(S
[h] −K

[h]
)ξ

[h]
(x) = g

[h]
(x), g

[h]
(x) ∈ L

2
, ξ

[h]
(x) ∈ M

[h]
, (5.70)

where the operator K
[h]

: M
[h] → L

2
is as follows:

K
[h]

ξ
[h]
(x) =

∫ 1

−1

√
1− t2 k

[h]
(x, t)ξ

[h]
(t)dt. (5.71)

In order to prove that the operator K
[h]

: M
[h] → L

2
as a compact operator, we need to

assume: ∫ 1

−1

∫ 1

−1

{√
1− t2 k

[h]
(x, t)

}2
dtdx < ∞. (5.72)

The Equation (5.70) will have a unique solution if and only if the operator
(S

[h] −K
[h]
)−1 exists as a bounded linear operator. We assume that S

[h]
K

[h] 1( − )−

exists as bounded operator. From Equation (5.52), we have

Qn
[h]
{
(S

[h] −K
[h]
)ξ *

n
[h]
(x)−g

[h]
(x)
}
= 0. (5.73)

Since the function S
[h]

ξ *[h]
n (x) is a polynomial therefore, we get

Qn
[h]

S
[h]

ξ
*
n
[h]
(x) = S

[h]
ξ
*
n
[h]
(x). (5.74)

Using the above fact, Equation (5.73) becomes

S
[h]

ξ
*
n
[h]
(x)−Qn

[h]
K

[h]
ξ
*
n
[h]
(x) = Qn

[h]
g
[h]
(x). (5.75)

−
Due to the boundedness of S

[h] 1
and compactness of K

[h]
, for all n arbitrarily large,

say n
[h] [h] [h] 1> n0, (S −Qn K )− exists as a bounded linear operator [20]. Hence, there

exists a unique solution for Equation (5.75) which is as follows:

ξ
*
n
[h]
(x) = (S

[h] −Qn
[h]

K
[h]
)−1Qn

[h]
g
[h]
(x). (5.76)
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Now from Equations (5.70) and (5.76), we have

ξ
[h]
(x)−ξ

*
n
[h]
(x) = (S

[h] −Qn
[h]

K
[h]
)−1

×
{

g
[h]
(x)−Qn

[h]
g
[h]
(x)+K

[h]
ξ

[h]
(x)−Qn

[h]
K

[h]
ξ

[h]
(x)
}
. (5.77)

The norm of Equation (5.77)

|| ξ
[h] −ξ

*
n
[h] ||

M[h]≤ || (S[h] −Qn
[h]

K
[h]
)−1 |||| g

[h] −Qn
[h]

g
[h] ||

L2

+ || (S[h] −Qn
[h]

K
[h]
)−1 |||| K

[h]
ξ

[h]
(x)−Qn

[h]
K

[h]
ξ

[h]
(x) ||

L2 .

(5.78)

The assumption made in Equation (5.72); the operator S
[h]

is a Hilbert–Schmidt
operator [20] and so, || K

[h] [h] [h]− Qn K || 2→ 0 as n → ∞. Also, we have
L

|| ξ
[h] −ξ *[h] || [h]→ 0 as n → ∞ as || g

[h] −Qn
[h]

g
[h] || 2→ 0 as n → ∞.n M L

Further, due to the fact that if ξ
[h] ∈ M

[h]
, then we have

|| ξ
[h] ||

L2≤|| ξ
[h] ||

M[h] . (5.79)

Using Equation (5.79), Equation (5.78 ) can be written as follows:

|| ξ
[h] −ξ

*
n
[h] ||

L2≤ || (S[h] −Qn
[h]

K
[h]
)−1 |||| g

[h] −Qng
[h] ||

L2

+ || (S[h] −Qn
[h]

K
[h]
)−1 |||| Kξ

[h]
(x)−Qn

[h]
K

[h]
ξ

[h]
(x) ||

L2 . (5.80)

Also, we have

|| ξ
[h] −ξ

*
n
[h] ||

L2→ 0 as n → ∞. (5.81)

Hence, the convergence of the sequence {ξ * [h] ∞}n n=0 is shown.

5.7.3 WELL POSEDNESS OF LINEAR SYSTEM

Here, we show that well-posedness of the problem (5.76) in the sense of Hadamard.
The problem (5.76) has a solution this is due to the existence of inverse operator
(S

[h] −Q
[h]
n K

[h]
)−1 which is already proved in the previous section. Now to prove the

uniqueness of solution to the problem (5.76), we use contradiction principle. Let us
assume that problem (5.76) has two solutions, say y1 and y2 , which are distinct from
each other. Now, we have

S
[h]

y1(x)−Q
[h]

n K
[h]

y1(x) = Q
[h]

n g
[h](x), (5.82)

and
S
[h]

y2(x)−Q
[h]

n K
[h]

y2(x) = Q
[h]

n g
[h](x). (5.83)
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From Equations (5.82) and (5.83), we get

(S
[h] −Q

[h]

n K
[h]
)(y1(x)− y2(x)) = 0. (5.84)

Since the bounded operator (S
[h] −Q

[h]
n K

[h]
)−1 exists, from Equation (5.84), we get

y1(x) = y2(x), | x |< 1. (5.85)

Equation (5.85) contradicts our assumption. Hence, we have proved that solution to
the problem (5.76) exists uniquely. Moreover, the continuity of the inverse operator
(S

[h] −Q
[h]
n K

[h]
)−1 proves that a minor change in the given data results a minor change

in the solution. As it is shown that the problem (5.76) satisfies all the well-posedness
conditions therefore it is a well-posed problem.

5.7.4 EXISTENCE AND UNIQUENESS

This subsection shows that the solution of the linear system (5.54) has a unique
solution. We start the proof by defining the prolongation operator [20]

[h] 1P : Rn+ →n
E as follows:

P [h]

n G
[h]
=

n

∑
j=0

〈g[h]
,e j〉

L2 e j(x) ∈ E, (5.86)

where Rn+1 is a real vector space [26] whose elements are (n+ 1)-tuples of real
numbers, E n [h]

= span{e j(t)} j=0 and G is already defined in Equation (5.55). Now

from the definition of orthogonal projection Q
[h]
n , we get

Q
[h]

n g
[h]
(x) =

n

∑
j=0

〈g[h]
,e j〉

L2 e j(x). (5.87)

Following Equations (5.86) and (5.87), we have

P [h]

n G
[h]
= Q

[h]

n g
[h]
(x), g

[h]
(x) ∈ L2, G

[h] ∈ Rn+1, | x |< 1. (5.88)

Also, we define restriction operator [20] R
[h]

n : E → Rn+1 as follows:

Rn
[h]

ξ
*
n
[h]
(x) = (〈ξ *

n
[h]
(x),e0〉L2 ,〈ξ *

n
[h]
(x),e1〉L2 , . . .〈ξ *

n
[h]
(x),en〉L2 )T ∈Rn+1, (5.89)

where the function ξ * [h]
n (x) is already defined in Equation (5.50). From Equation

(5.50), we get
a
[h]

j = 〈ξ *
n
[h]
(x),e j L

〉 2 , j = 0,1, . . . ,n. (5.90)

Therefore, from Equations (5.89) and (5.90), we obtain

Rn
[h]

ξ
*
n
[h]
(x) = A

[h]
, (5.91)

where the matrix A
[h]

is already defined in Equation (5.55). Since operator
S
[h]

Q
[h] [

( − n K
h]
)−1 exists as bounded linear operator therefore ξ *[h]

n (x) also exists
uniquely. Hence, from Equation (5.91), the solution A

[h]
of system (5.54) exists

uniquely for every given G
[h]

. Also, the inverse of matrix B
[h]

1 exists [40].
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5.8 ILLUSTRATIVE EXAMPLES
The efficiency of our proposed numerical method and verification of the theoretical
results is shown in this section, with the aid of numerical illustrations.

Example 5.4 We consider an integral equation:

=
1

−1

ξ
[h]
(t) 1− t2

(t − x)2 dt +
1

−1

ξ
[h]
(t) 1− t2 exp(t + x)

12
dt = πg

[h]
(x), |x|< 1, (5.92)

∫ √ ∫ √

where g
[h]
(x) = − 9

8 x + 6x3 − 6x5 + 81
64 exp(x)I2(1)− 31

4 exp(x)I3(1), and I2, I3 are

modified Bessel functions of first kind of order two and three, respectively. ξ
[h]
(x) =

3x
16 − x3 + x5 is the exact solution.

The numerical results for actual error and error bound are detailed in Table 5.4.
Figure 5.4 shows the comparison between approximate solutions and exact solution
for n = 1,2, . . . ,5.

Table 5.4
The Theoretical Error Bound in Case of Example 5.4

n
1

2Actual Error (In L norm)
0.06481

Error Bound
1.43228

2 0.06480 1.43183
3 0.05688 1.31111
4 0.05687 1.31110
5 2.19155×10−14 1.19141×10−10

Figure 5.4 Comparison of exact solution with approximate solutions of Example 5.4.
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Example 5.5 Consider one more hypersingular integral equation:

=
∫ 1

−1

ξ
[h]
(t)

√
1− t2

(t − x)2 dt +
∫ 1

−1

(x+ x2)ξ
[h]
(t)

√
1− t2

36+12s
dt = πg

[h]
(x), |x|< 1, (5.93)

where

g
[h]
(x) =

1326099
655360

− 1469711672063x
7864320

+
84573531x

320
√

2
− 1470155415887x2

7864320

+
84573531x2

320
√

2
+

115527x3

10240
+

4953727x4

16384
− 88851x5

2560
− 5394557x6

10240

+
7571x7

320
+

1453239x8

5120
+

327x9

64
− 1793x10

256
− 45x11

16
+

1885x12

128
.

This example has an exact solution

ξ
[h]
(x) =

1
640

{
−252+45x+4510x2 −725x3 −22258x4 +2680x5 +38000x6

−2000x7 −20252x8 −252x9 +45x10 +150x11 −725x12
}
.

Table 5.5 shows that the error is decreasing with the increase in the value of n which
verifies the result Equation (5.81). The comparison of approximate solutions for
n = 1,2, . . . ,12 with the exact solution is shown in Figure 5.5. The actual error is
also calculated for Example 5.5 with respect to norm in L

2
.

Table 5.5
The Theoretical Error Bound in Case of Example 5.5

n
1

2Actual Error (In L norm)
0.38064

Error Bound
8.84521

2 0.37161 8.74921
3 0.37160 8.74689
4 0.28343 7.76302
5 0.27503 7.64867
6 0.25688 7.24213
7 0.25274 7.15094
8 0.00570 0.19899
9 0.00564 0.19739
10 0.00054 0.02196
11 0.00049 0.02053
12 5.95198×10−16 1.07677×10−10
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Figure 5.5 Comparison of exact solution with approximate solutions of Example 5.5.

5.9 CONCLUSION
In this chapter, we have considered the numerical solution of CSIEs and HSIEs
over the interval [−1,1]. A residual-based Galerkin’s method is proposed to find
the numerical solution of CSIEs and HSIEs over the finite interval. This method
that converts the SIE into a system of linear equations is shown. The existence
and uniqueness of solution for the system of linear algebraic equations is proved. The
convergence of sequence of approximate solutions is proved, and the error bound is
also obtained. With the aid of numerical examples, all the derived theoretical results
are verified.
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6.1 INTRODUCTION
Since their conception, partial differential equations (PDEs) have been considered
as one of the greatest intellectual achievements of researchers in their attempt to un-
derstand the physical world. PDEs arise naturally whenever we deal with systems
having a continuous extent; for instance, solids (mass and heat transport) and fluid
mechanics (Navier–Stokes equations), quantum mechanics (Schrodinger equation),
general relativity, electricity and magnetism (Maxwell equations), and optics. Sev-
eral more applications of PDEs in Engineering may be found in [1]. PDEs contain
partial derivatives in which an unknown function depends upon several variables
unlike in ordinary differential equations (ODEs) in which the unknown function de-
pends only on one variable.

6.1.1 TYPES OF PDES

Partial differential equations are classified into linear and non-linear. In linear PDEs,
the dependent variable and all the derivatives occur in linear fashion, and vice versa
in case of non-linear PDEs. A general second-order linear PDE for f (x,y) may be
written as

A
∂ 2 f
∂x2 +B

∂ 2 f
∂x∂y

+C
∂ 2 f
∂y2 +D

∂ f
∂x

+E
∂ f
∂y

+F f = Q (6.1)

where A,B,C,D,E,F,and Q may be either constants or functions of independent
variables. Based on various values of A,B,C,D,E,F,and Q, there are three types
of linear PDEs:

a. Parabolic PDE: In this case, B2 − 4AC = 0. Parabolic PDEs describe flow
of information through diffusion process. Examples of parabolic equations
are
I. The diffusion equation: ∂C =

∂ t D ∂ 2C
2 , where C and D are the concentra-

∂x
tion field and diffusion coefficient, respectively.

II. Heat conduction equation: =
∂ t α

∂x2 , where T and α are the temper-
ature field and thermal diffusivity, respectively.

∂T ∂ 2T

b. Hyperbolic PDE: These PDEs describe transport and wave propagation
phenomena.
I. First-order Hyperbolic PDE: The first-order hyperbolic PDE is: ∂ f +

∂ t

a ∂ f =
∂x 0,a > 0. The examples are

∂• Wave equation: f +
∂ t a ∂ f =

∂x 0,a > 0.
• Euler equations governing adiabatic and inviscid flow:

∂ρ

∂ t
+u .∇ρ +ρ∇ .u = 0

∂u
∂ t

+u .∇u+
∇p
ρ

= g

∂e
∂ t

+u .∇e+
p
ρ

∇ .u = 0
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where ρ,u, p,and e are the fluid mass density, flow velocity, pres-
sure, and specific internal energy, respectively.

II. Second-order Hyperbolic PDE: In this case, B2 −4AC > 0. The exam-
ples are
• Wave equation: Wave equation representing propagation of, say,

sound waves in fluids, water waves, oscillations in solid structures,
2 2

and electromagnetic waves: ∂ f
2 = u2 ∂ f

2 , where u is the wave ve-
∂ t ∂x

locity, and f (x, t) is the displacement.

c. Elliptic PDE: In this case, B2 − 4AC < 0. Elliptic PDEs describe steady-
state phenomena. Examples of elliptic PDEs are

I. Steady-state heat equation: ∇2T = 0, where ∇2 ∂ 2 ∂ 2 ∂ 2
=

∂x2 + +
∂y2 ∂ z2 is

the Laplacian operator.

II. Poisson equation: ∇2u = f .

III. Laplace equation: ∇2u = 0.

6.2 SOLUTION OF PDES

There are several methods to solve PDEs, which may be either analytical or nu-
merical. Depending on the type of PDE, the differential operator may depend only
on space or on space and time. In case the differential operator is space dependent
only, boundary conditions are required in order to obtain the unique solution; such
problems are called boundary value problems (BVP). In case the PDE includes both
the space- and time-dependent differential operators, initial and boundary conditions
would be needed; such problems are called initial boundary value problems (IBVP).
There are three types of boundary conditions:

a. Dirichlet boundary conditions: In this case, the value of the dependent vari-
able is assigned at the boundary; that is, if u is the dependent variable, then
u(Ω) = uΩ, where Ω represents the boundary.

b. Neumann boundary conditions: In this case, the value of the normal| deriva-|tive of the dependent variable at the boundary is specified, i.e., ∂u
∂n | = g.

Ω

c. Robin boundary conditions (or mixed boundary conditions): In this case, a
linear| combination of Dirichlet and Neumann boundary conditions, u(Ω)+
∂u |
∂n | , is specified at the boundary.

Ω

Analytical solution of a PDE results in a function, which satisfies the PDE at
every point in the space as well as at the boundaries. Techniques such as separa-
tion of variables, integral transforms [2,3], perturbation methods [4], calculus of
variations [5], and eigenfunction expansion [6] are used to solve PDEs analyti-
cally. For IBVPs, initial conditions of the solution must be specified everywhere at
time t = 0.



132 Recent Advances in Mathematics for Engineering

6.3 NUMERICAL SOLUTIONS

In most of the PDEs, especially which mimic physical situations, the analytical
solution becomes hard to obtain due to the complexity of the PDE and boundary
conditions. In such cases, numerical solutions are the only way to obtain unique so-
lution. The availability of high-performance computers has made it possible to solve
a variety of complex problems by developing reliable numerical methods, which
were otherwise difficult to solve using analytical schemes. The most commonly used
methods to solve PDEs numerically are the finite volume method (FVM), finite ele-
ment method (FEM), and the finite difference method (FDM). Other methods such
as spectral and method of lines are also used.

6.3.1 FINITE VOLUME METHOD

Finite volume method (FVM) is a conservative numerical technique used to solve
PDEs on structured as well as non-structured and non-uniform meshes. It approx-
imates the values of conserved variables averaged across a volume; the values of
the conserved variables are located inside the volume element, and not at nodes like
in FMD or FEM. In FVM, volume integrals are replaced by surface integrals using
the Gauss divergence theorem, which are then evaluated as fluxes at the surfaces
of each volume element. FVM is a very powerful technique when the geometries
(where PDEs are solved) involved are irregular and also in situations where the
mesh moves to track interfaces or shocks. For more details on FVM, the reader is
referred to [7].

6.3.2 FINITE ELEMENT METHODS

Finite element methods (FEMs) are a class of numerical methods employed to obtain
approximate solutions of PDEs. The domain over which the function is approximated
is divided into smaller parts/regions called as finite elements. The solution is mod-
eled over the finite elements via interpolation in terms of the values of the solution
at the vertices (nodes) and basis functions or piecewise polynomials. Upon using
this representation in a week form of the problem, a discrete form of the governing
PDE is obtained in the form of an algebraic system in which the values of the solu-
tion are to be solved for at a finite number of points (the finite element nodes). The
weak form of the equation has an integral form, which is converted into sum of inte-
grals over the finite elements, leading to the discrete form of the PDE by numerical
integrations involving the interpolation functions and their derivatives. Some FEM
methods instead use variational methods to approximate the solution by minimizing
the associated error function. One of the benefits of using the FEM is that selec-
tion of discretization as well as the basis functions is flexible. The FEM theory is
well developed, which provides useful error estimates and bounds for the error while
attempting numerical solution to the problem. More details on FEM can be found
here [8].
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6.3.3 FINITE DIFFERENCE METHODS

Finite difference methods (FDMs) are a class of numerical methods used for solving
differential equations. In FDMs, finite differences are used to approximate the
derivatives with the help of Taylor’s expansion. In order to approximate the deriva-
tives using FDM, the domain is divided into discrete points called grid points
(Figure 6.1). The derivatives are approximated at these grid points using finite dif-
ference approximation. This process converts ODE/PDE into a system of algebraic
equations, which may be solved with the help of variety of matrix algebra techniques.
Just to illustrate the process, let us consider a 2D domain divided into several grid
points (Figure 6.1); let us take the distance between two grid points along x− direc-
tion as ∆x and ∆y along y− direction. Let us also represent the nodes by i, j notation,
where i index varies along x, and j index varies along y directions.

Now, let us find out the finite difference approximation of various derivatives like
∂ f ∂ f ∂ 2 f, , ,
∂x ∂y 2∂x . (i, j)etc at the node with the help of Taylor’s expansion:

fi+1, j = fi, j +
∂ f
∂x i, j

∆x
1!

+
∂ 2 f
∂x2

i, j

(∆x)2

2!
+

∂ 3 f
∂x3

i, j

(∆x)3

3!

( } ( } ( }
+higher order terms

Since ∆x is very small, higher powers of ∆x (e.g. (∆x 2) , 3(∆x) ) will be very small
and may be neglected. Therefore, we may write

fi+1, j ≈ fi, j +

(
∂ f
∂x

}
i, j
∆x+

(
∂ 2 f
∂x2

}
i, j

(∆x)2

2

Figure 6.1 Grid points in 2D domain.
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which may be written as

f i+1, j − f i, j

∆x
≈ ∂ f

∂x i, j
+

∂ 2 f
∂x2

i, j

(∆x)
2

(
∂ f
∂x

}
i, j

=
fi+1, j − fi, j

∆x
−
(

∂ 2 f
∂x2

}
i, j

(∆x)
2

=
fi+1, j − fi, j

∆x
+O(∆x)

{ }

( } ( }

Thus, ∂ f
∂x may be approximated by the following finite difference approxima-

i, j
tion: (

∂ f
∂x

}
i, j

=
fi+1, j − fi, j

∆x
+O(∆x)

The finite difference approximation as above is called as first-order forward
difference.

First-order backward difference approximation for ∂ f
∂x may also be obtained

i, j
using Taylor’s expansion in the similar manner:

{ }
(

∂ f
∂x i, j

=
fi, j − fi−1, j

∆x
+O(∆x)

}

Higher order approximations for ∂ f
∂x , e.g., central difference approximation, may

i, j
also be found using Taylor’s expansion:

{ }
(

∂ f
∂x i, j

=
fi+1, j − fi−1, j

2∆x
+O(∆x)2

}

The central difference finite difference expression for ∂ f
∂x is correct up to second

i, j
order. In the same way, we can also get finite difference approximation for higher
order derivatives. Some of the higher order finite difference approximations are given
as follows:

{ }

(
∂ 2 f
∂x2

}
i, j

=

(
∂

∂x

(
∂ f
∂x

}}
i, j

=

∂ f
∂x i+1, j

− ∂ f
∂x i, j

∆x

=
fi+1, j −2 fi, j + fi−1, j

(∆x)2 +O(∆x)2

(
∂ 2 f
∂y2

}
i, j

=

(
∂

∂y

(
∂ f
∂y

}}
i, j

=

{
∂ f
∂y

}
i, j+1

−
{

∂ f
∂y

}
i, j

∆y

=
fi, j+1 −2 fi, j + fi, j−1

(∆y)2 +O(∆y)2

{ } { }
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Mixed derivatives may also be approximated in the similar manner:{ } { }(
∂ 2 f

∂x∂y

}
i, j

=

(
∂

∂x

(
∂ f
∂y

}}
i, j

=

∂ f
∂y i+1, j

− ∂ f
∂y i, j

∆x
=

fi+1, j+1− fi+1, j
∆y − fi, j− fi, j−1

∆y

∆x

=
fi+1, j+1 − fi+1, j − fi, j + fi, j−1

(∆x)(∆y)
+O(∆x∆y)

In order to illustrate the methodology used in FDM, let us solve a 2D linear parabolic
PDE using FDM. Consider following time-dependent 2D heat equation:

∂T
∂ t

= α

(
∂ 2T
∂x2 +

∂ 2T
∂y2

}
x0 < x < xl and y0 < y < yl (6.2)

The domain over which this equation is to be solved is shown in Figure 6.2.
The boundary conditions for the above equation are

T (x = x0,y, t) = TL; T (x = xl ,y, t) = TR, T (x,y = y0, t) = TB, T (x,y = yl , t) = TT

and the initial condition is given as

T (x,y, t = 0) = T0

In Equation (6.2), α is thermal diffusivity; TL is the temperature fixed at left bound-
ary, TR is the temperature at the right boundary, TB is the temperature at the bottom
boundary, and TT is the temperature at the top boundary; T0 is the initial temperature
of the 2D domain.

In order to get the numerical solution for Equation (6.2), we need to discretize the
domain into a set of nodes having following coordinates (xi,y j):

xi = x0 +(i−1)∆x i = 1,2, . . .nx

y j = y0 +( j−1)∆y j = 1,2, . . .ny

Figure 6.2 The domain over which PDE has to be solved.
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where

nx =
xl − x0

∆x
+1

ny =
yl − y0

∆y
+1

The finite difference approximation of ∂T
∂ t may be written as forward difference in

time as follows: ( }
∂T
∂ t

t

i, j
≈ T (i, j, t +∆t)−T (i, j, t)

∆t

where ∆t is the time step. For the sake of convenience, let us write t +∆t as n+ 1
and t as n. With this, we can write(

∂T
∂ t

}n

i, j
≈

T n+1
i, j −T n

i, j

∆t
(6.3)

The above discretization of the time derivative is first-order accurate. Using
Equation (6.3) and finite difference approximation for spatial differential operators,
we can convert the PDE in Equation (6.2) into a set of linear algebraic equations
corresponding to each node. Now, depending on whether we know the right-hand
side (RHS) of Equation (6.2) at the current time (t or in the present notation, n)
or not, we have two possibilities: explicit time discretization and implicit time
discretization.

6.3.3.1 Explicit Method
In this case, the RHS of the PDE is known at the current time, and solution at the
next time step (t+∆t or n+1 in the current notation) may be known by the following
equation: (

∂T
∂ t

}n

i, j
= α

[
∂ 2T
∂x2 +

∂ 2T
∂y2

]n

i, j

Using Equation (6.3) and central difference formula for the spatial differential oper-
ators (using five-point stencil, Figure 6.3), we get

T n+1
i, j −T n

i, j

∆t
= α

[
T n

i+1, j −2T n
i, j +T n

i−1, j

(∆x)2 +
T n

i, j+1 −2T n
i, j +T n

i, j−1

(∆y)2

]

Considering ∆x = ∆y, we may write

T n+1
i, j = βT n

i+1, j +(1−4β )T n
i, j +βT n

i−1, j +βT n
i, j+1 +βT n

i, j−1 (6.4)

where β
α= ∆t W
∆x 2 . e see that the RHS side in Equation (6.4) is known and hence
( )

the solution of Equation (6.2) at the next time step may be calculated easily from
Equation (6.4) with the help of boundary conditions and initial condition.
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Figure 6.3 Five-point stencil to approximate the second-order spatial differential operators.

Pseudocode:

− Enter input parameters: α,∆x,∆t
− Discretize the domain into computational nodes:

xi = 0 +( − )∆ , = , , . . . , x

yi = y0 +(i−1)∆y, i = 1,2, . . . ,ny

x i 1 x i 1 2 n

where nx =
xl−x0 +1,ny =

yl−y0 +1.∆ ∆
− Initialize the domain: Specify the initial value of temperature at all compu-

tational nodes.

x y

T (i, j, t = 0) = T0
− Apply Dirichlet boundary conditions at all the boundaries:

• Left boundary
i = 1
Loop from j = 1 to ny

T (i, j, t) = TL
Loop End

• Bottom boundary
j = 1
Loop from i = 1 to nx

T (i, j, t) = TB
Loop End

• Right boundary
i = nx
Loop from j = 1 to ny

T (i, j, t) = TR
Loop End
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• Top boundary
j = ny
Loop from i = 1 to nx

T (i, j, t) = TT
Loop End

− Update the dependent variable values at the inner nodes
Calculate: β

α= ∆t
(∆x 2)

Loop over time (instep = 1 to nstep)
Loop over first space variable (i = 1 to nx −1)

Loop over second space variable ( j = 2 to ny −1)
T t+∆t t t t t t−i, j = βTi+ +1, j (1 4β )Ti, j +βTi−1, j +βTi, j+ +1 βTi, j−1

End Loop (second space variable)
End Loop (first space variable)

End Loop (time)

6.3.3.2 Implicit Method
In this method, the RHS of Equation (6.2) is not known at the current time. This may
be written as (

∂T
∂ t

}n

i, j
= α

[
∂ 2T
∂x2 +

∂ 2T
∂y2

]n+1

i, j

Using finite difference approximation (with five-point stencil for second-order spatial
differential operators as in Figure 6.3 and first-order forward difference approxima-
tion for the temporal differential operator), we get

T n+1
i, j −T n

i, j

∆t
= α

[
T n+1

i+1, j −2T n+1
i, j +T n+1

i−1, j

(∆x)2 +
T n+1

i, j+1 −2T n+1
i, j +T n+1

i, j−1

(∆y)2

]
Higher order approximations for differential operators may also be derived using
Taylor’s expansion, which, however, will increase the number of functional evalua-
tions to approximate the differential operator.

Moving the unknown terms to the left-hand side and known terms on the RHS,
we get

(1+4β )T n+1
i, j −βT n+1

i+1, j −βT n+1
i−1, j −βT n+1

i, j+1 −βT n+1
i, j−1 = T n

i, j (6.5)

In order to devise a solution mechanism, let us first consider that the domain is dis-
cretized such that nx = ny = 4. For this case, the domain is shown in Figure 6.4.

Plugging in i= 2,3,4 and j = 2,3,4 in Equation (6.5), we get four algebraic equa-
tions corresponding to the inner nodes of the domain. The unknowns of these equa-
tions are T n+1 1 1

, ,T n+1 n
, ,T n+

, , +
2 2 2 3 3 2 T3,3 . The resulting algebraic equations may be written

as using matrix notations as
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Figure 6.4 Domain discretization for nx = ny = 4. Boundary conditions at each boundary
are shown.

{|||{
{||{

1+4β −β −β 0
−β 1+4β 0 −β

−β 0 1+4β −β

0 −β −β 1+4β

}||}
{|||{

T n+1
2,2

T n+1
2,3

T n+1
3,2

T n+1
3,3

}|||}=

{|||{
T n+1

1,2 +T n+1
2,1 +T n

2,2
T n+1

1,3 +T n+1
2,4 +T n

2,3
T n+1

4,2 +T n+1
3,1 +T n

3,2
T n+1

4,3 +T n+1
3,4 +T n

3,3

}|||}
}|||}

(6.6)

Using the boundary conditions, we may write

T n+1
1,2 = TL = T n+1

1,3

T n+1
2,1 = TB = T n+1

3,1

T n+1
4,2 = TR = T n+1

4,3

T n+1
2,4 = TT = T n+1

3,4

Therefore, Equation (6.6) may be written as{||{
1+4β −β −β 0
−β 1+4β 0 −β

−β 0 1+4β −β

0 −β −β 1+4β

}||}
{|||{

T n+1
2,2

T n+1
2,3

T n+1
3,2

T n+1
3,3

}|||}=

{||{
TL +TB +T n

2,2
TL +TT +T n

2,3
TR +TB +T n

3,2
TR +TT +T n

3,3

}||}
(6.7)

We see that the coefficient matrix has five diagonals: a main diagonal with entries
as 1+4β , two sub-diagonals above, and two sub-diagonals below the main diagonal
with entries −β . The solution of the Equation (6.7) depends upon the structure of
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Figure 6.5 Domain discretization with nx = ny = 5.

the coefficient matrix. In order to understand the structure of the coefficient matrix
further, let us increase discretization to nx = ny = 5. With this number of nodes, the
domain discretization is shown in Figure 6.5.

The PDE will be solved at the inner nodes. The unknowns are T n+1, T n+1, T n+1
2,2 2,3 2,4 ,

T n+1, T n+1, T n+1, T n+1
3,2 3,3 3,4 4,2 , T n+1

4,3 , T n+1
4,4 . The set of algebraic equations in this case

(considering the boundary conditions) may be written as{||||||||||||{

1+4β −β 0 −β 0 0 0 0 0
−β 1+4β −β 0 −β 0 0 0 0
0 −β 1+4β 0 0 −β 0 0 0
−β 0 0 1+4β −β 0 −β 0 0
0 −β 0 −β 1+4β −β 0 −β 0
0 0 −β 0 −β 1+4β 0 0 −β

0 0 0 −β 0 0 1+4β −β 0
0 0 0 0 −β 0 −β 1+4β −β

0 0 0 0 0 −β 0 −β 1+4β

}||||||||||||}

×

{||||||||||||||{

T n+1
2,2

T n+1
2,3

T n+1
2,4

T n+1
3,2

T n+1
3,3

T n+1
3,4

T n+1
4,2

T n+1
4,3

T n+1
4,4

}||||||||||||||}
=

{|||||||||||||{

TL +TB +T n
2,2

TL +T n
2,2

TL +TT +T n
2,4

TB+T n
3,2

T n
3,3

TT +T n
3,4

TB +TR +T n
4,2

TR +T n
4,3

TT +TR +T n
4,4

}|||||||||||||}
(6.8)
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We see that with increase in the discretization, the sparsity of the coefficient
matrix changes. Although the number of non-zero diagonals (main diagonal +
sub-diagonals) does not change, the placement of sub-diagonals with respect to the
main diagonal changes with discretization. All these details should be kept in mind
while solving Equation (6.8) computationally.

Pseudocode:

− Enter input parameters: α,∆x,∆t
− Discretize the domain into computational nodes:

xi = x0 +(i−1)∆x, i = 1,2, . . . ,nx

yi = y0 +(i−1)∆y, i = 1,2, . . . ,ny

where nx =
xl−x0
∆x +1,ny =

yl−y0
∆y +1.

− Initialize the domain: Specify the initial value of temperature at all compu-
tational nodes.
T (i, j, t = 0) = T0

− Apply Dirichlet boundary conditions at all the boundaries:
• Left boundary

i = 1
Loop from j = 1 to ny

T (i, j, t) = TL

Loop End
• Bottom boundary

j = 1
Loop from i = 1 to nx

T (i, j, t) = TB

Loop End
• Right boundary

i = nx

Loop from j = 1 to ny

T (i, j, t) = TR

Loop End
• Top boundary

j = ny

Loop from i = 1 to nx

T (i, j, t) = TT

Loop End
− Update the dependent variable values at the inner nodes

Calculate: β = ∆t
(∆x 2)
α



142 Recent Advances in Mathematics for Engineering

Assemble the matrix A (coefficient matrix)
Loop over time (istep = 1 to nstep)

Loop over first space variable (i = 1 to nx −1)
Loop over second space variable ( j = 2 to ny −1)

Assemble the RHS column vector (b)
Solve: Ax = b (x is unknown vector; here it is temperature)

End Loop (second space variable)
End Loop (first space variable)

End Loop (time)

There are several ways to solve linear system of equations represented by Ax = b.
These methods may be categorized into following heads:

I. Direct methods
II. Iterative methods.

6.3.3.2.1 Direct Methods
Direct techniques usually are the methods that give exact solution of the system of
equations in a finite number of steps. However, the solutions obtained by direct meth-
ods are also contaminated by round-off errors, which may be minimized by careful
analysis of the system and thereafter devising novel schemes to contain round-off er-
ror. Gauss elimination with back substitution is the most important direct technique
which is employed to solve Ax = b. Various pivoting strategies are used in Gauss
elimination method to take care of the round-off errors in the solution [9].

Gauss elimination requires O(n3/3) arithmetic operations to solve an arbitrary
system of linear equations, Ax = b, where n is the size of the system. In order to
make the solution efficient, i.e., to reduce the number of arithmetic operations in
finding out the unknown vector x, the coefficient matrix is factored into two matrices:
lower triangular (L) and upper triangular (U), i.e., A = LU . This is known as LU
decomposition. Thereafter, the solution is accomplished in two steps:

− First, one takes y =Ux, and solve the lower triangular system Ly = b. Solv-
ing Ly = b needs only O(n2) operations as back substitution is the only step
needed for getting the solutions.

2− Thereafter, Ux = y is solved, which again takes only O(n ) operations to
solve the system. In total, the number of operations needed is O(2n2) only.

For well-conditioned systems, direct methods always arrive at the same answer. Even
in case of ill-conditioned problems, direct methods may be used for the solution.
All these methods require a lot of random access memory (RAM) for computation.
Direct methods fail in the following cases:

− If the matrix A is very large, e.g., n is on the order of a few million, the
solution will require O(n3) operations to get the solution.
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− If the matrix is a sparse matrix, it is meaningless to use the computing re-
sources to solve such a system using direct solver like Gaussian elimination.
However, if the direct solver takes care of the sparsity while attempting the
solution, it is preferable.

6.3.3.2.2 Iterative Methods
Iterative methods are suitable for solving large size algebraic systems (in terms of
computational requirements) as the relevant algorithms may be parallelized easily
using shared as well as distributed memory architectures. These methods approach
the solution in a gradual fashion, contrary to direct methods in which solution is ob-
tained in one computational step. The error in the solution decreases monotonically
(or the solution converges to the actual solution) in each iteration if the problem is
well conditioned; if the problem is not well conditioned, the convergence is slow and
sometimes the solution does not converge at all. In ill-conditioned problems, before
iterative methods are employed, the matrix if first “conditioned” using precondition-
ers (see Appendix A.1 for a short introduction on preconditioners), and then, the
solution is attempted. Preconditioners improve the condition number of the matrix to
ensure better convergence [9,10].

Iterative schemes start with an initial guess to the solution and gradually approach
towards the correct solution in subsequent steps called iterations. The number of
iterations depends upon a tolerance value, which serves as the stop criterion. Iteration
continues until the stop criterion is satisfied. The selection of tolerance depends on
the problem at hand: if faster solutions are required, the tolerance may be made
smaller (i.e., the stop criterion may be made less restrictive), and in case accurate
solution is needed, tolerance may be taken bigger (i.e., the stop criterion may be
more restrictive). Usually, tolerance is decided based on the inputs to the model one
is solving. If the input is couple of digits accurate, there is no point in taking tolerance
too much tight. In any case, the tolerance should always be greater than the number
that depends on the machine precision and the condition number [9,10].

There are two main categories of iterative methods used to solve system of linear
equations:

I. Stationary iterative methods
II. Non-stationary or Krylov subspace methods.

6.4 STATIONARY ITERATIVE METHODS
In stationary iterative method, Ax = b is converted to x =Mx+c, where M is the iter-
ation matrix, and c is any vector. After the initial vector x(0) is selected, the sequence
of approximate solution vector is estimated by

x(k+1) = Mx(k)+ c (6.9)

where k = 1,2,3, . . .. This method is called stationary because the formula
does not change as a function of x(k). There are four main stationary
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iterative methods: Jacobi, Gauss–Seidel, successive over relaxation (SOR), and
symmetric SOR.

6.5 NON-STATIONARY METHODS (KRYLOV SUBSPACE METHODS)
Non-stationary methods (Krylov subspace methods) involve information that
changes at each iteration. In these methods, constants are evaluated by taking the
inner products of residuals or other vectors arising from the iterative method.

Given a nonsingular matrix A ∈ RN×N and a vector b ∈ RN , a linear system of
equations may be written as

Ax = b

Let us suppose that the exact solution of the above system is a vector x*. The it-
erative solution of the above system is attempted by taking an initial guess x(0),
and compute a sequence of iterates x(k) which approximates x* moving in an
affine subspace x(0) + K ⊂ RN . The goal is to construct the subspace K using
simple operations such as matrix-by-vector products, which could minimize some
norm of r(k) = b−Ax(k). The subspace K constructed using these operations (e.g.,
matrix-vector products) is called the Krylov subspace. Most of the iterative meth-
ods that are employed nowadays to solve large-scale problems are Krylov subspace
solvers.

Krylov subspace-based algorithms approximate x by transforming an N-
dimensional vector space into an n-dimensional subspace (n ≤ N) by matrix-vector
multiplications. This approach of forming the subspace avoids explicit estimation of
A−1, which is quite expensive for large sparse matrices. The algorithm starts with
a guess x(0), which is used to obtain x = x(0) + x(n). The estimate for x(n) may be
extracted from the Krylov subspace:

Kn

{
A,r(0)

}
= span

{
r(0),Ar(0),A2r(0), . . . ,An−1r(0)

}
, r(0) = b−Ax(0)

In the above equation, span means that{every vector in the subspace}may be expressed
as a linear combination of the basis r(0),Ar(0),A2r(0), . . . ,Anr(0) . Therefore, it is

possible to find x(n) as linear combination of the basis:

x(n) ≈
−

∑
i=1

ciAir(0)
n 1

where ci are scalars.
Krylov subspace is a suitable space to look for the approximate solution of the

system of linear equations because it has a natural representation as a member of
Krylov subspace. In fact, it is possible to find the solution in very less number of
iterations if the dimension of this space is small.

There are two very famous methods based on Krylov subspace: the conjugate
gradient (CG) method and the generalized minimum residual (GMRES) method.
The two methods are briefly outlined in the rest of this chapter.
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6.5.1 CONJUGATE GRADIENT (CG) METHOD

Hestenes and Stiefel [11] proposed the CG method. This method solves a system of
linear equations:

Ax = b

for the vector x, where the matrix A is symmetric (AT = A) and positive definite
(xT Ax> 0 for all x∈Rn). In this method, a sequence of conjugate/orthogonal vectors
(two vectors u and v are conjugate with respect to A if uT Av = 0) are generated.
These vectors are the residual of the iterates as well as the gradients of a quadratic
functional, the minimization of which is equivalent to solve the linear system; that
is, CG method solves the following optimization problem:

min f (x) =
1

xT Ax−bxT
2

which is equivalent to finding the solution of the original system

∇ f (x) = Ax−b = 0

CG method proceeds by generating vector sequences of iterates, residuals, and search
directions to update iterates and residuals. Two inner products are performed in every
iteration to compute the scalars, which make the sequence of iterates and residuals
satisfy some orthogonality conditions. In the case of a symmetric positive definite
matrix, the orthogonality conditions involve some kind of norm in which the distance
to the true solution is minimized.

Just to illustrate in details, we start with initial guess x(0) and take initial direc-
tion as p(0) = − ∇ f | = − (0) = (0)

x(0) b Ax r . The negative gradient of the function
should give a direction of steepest descent, which is also the residual of the prob-
lem. However, in CG method, we know that the directions p(k) are conjugate to each
other; therefore, p(k) is computed from not only the residual but also all previous
directions: { }

p(k) = r(k)−∑
i<k

p(i)
T

Ar(k)(
p(i)

)T Ap(i)
p(i) (6.10)

where r(k) = b−Ax(k). With this direction, the location of the solution may be ob-
tained from

x(k+1) = x(k)+α
(k)p(k) (6.11)

where

α
(k) =

{
p(k)

}T
r(k)(

p(k)
)T Ap(k)

The residuals are also updated as

r(k+1)= b−Ax(k+1)= b−A
{

x(k)+α
(k)p(k)

}
= b−Ax(k)−α

(k)Ap(k)= r(k)−α
(k)q(k)

where q(k) = Ap(k).
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Thereafter, the search directions are updated with the new residuals r(k+1)

p(k+1) = r(k+1)+β
(k)p(k)

where

β
(k) =

r(k+1)
T
(r(k+1))(

r(k)
)T

(r(k))

{ }

The pseudocode to implement CG method is given below. This algorithm requires
less computational space than expected since the search direction depends upon the
residual as well as previous search directions. However, because of the fact that p(k)

and r(k) span same Krylov subspace, the space requirement is significantly taken
care of.

Pseudocode:

0− Start with initial guess x( )

0− Calculate the residual: r( ) = b−Ax(0)

− Take initial search direction: p( ) = r( )0 0

− k = 0
− Repeat

T
(r(k) r k( ( )

k ) )( ) = T
(p(k)) (Ap(k))

− Calculate α

kx( +1) = x(k)+α(k)p(k)− Next iterate:
kr( +1) = r(k)−α(k)Ap(k)− Update the residual:

k− If r( +1) is sufficiently small (as per the tolerance), exit the loop
T

(r(k+1)) (r(k+1)
kβ

)( ) = T
(r(k)) (r(k))

− Compute

kp( +1) = r(k+1)+β (k)p(k)− Estimate the new search directions:
− Increment: k = k+1
− End Repeat

k− Return x( +1) as the result

6.5.2 GENERALIZED MINIMUM RESIDUAL (GMRES) METHOD

As discussed above, one of the most accepted iterative methods for solving large
sparse symmetric positive definite linear system of equations is CG method and
in some cases a combination of CG method with some preconditioning techniques
[12,13]. For a short introduction on preconditioning, see Appendix (A.1). However,
for solving non-symmetric linear systems, GMRES method is mostly used. Saad
and Schultz [14] developed this method in 1986. This method generates a sequence
of orthogonal vectors with the help of all previously computed vectors in the or-
thogonal sequence, which, therefore, necessitates the use of only restarted versions
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of GMRES. In case no restarts are used, GMRES will converge in almost n steps
like any other Krylov subspace method, which will be of no practical use if n is large
(due to prohibitive storage computational requirements). Therefore, the success of
GMRES method depends on the decision of when to restart.

Contrary{ to CG method where} the residuals form an orthogonal basis for the space
span r(0),Ar(0),A2r(0), . . . , the basis in GMRES method is formed using modified
Gram–Schmidt orthogonalization, which becomes Arnoldi method [15] when it is
applied to Krylov sequence (Anr(0)). The following algorithm is used to construct
the basis using Arnoldi method:

w(i) = Av(i)

for j = 1, . . . , i
w(i) = w(i)−

{
w(i),v( j)

}
v( j)

end
v(i+1) = w(i)/

||||||w(i)
||||||

|| In the above algorithm, the inner product coefficients (w(i),v( j|| )) and the norm|| (i)||w |||| are stored in an upper Hessenberg matrix. After the basis is formed, the
GMRES iterates are constructed as

x(k) = x(0)+ y1v(1)+ . . .+ ykv(k)

In the above equation, y '
j s have been chosen to minimize the residual norm|| |||| ||||b−Ax(k)||. The complete algorithm may be found here [14]. A routine to imple-

ment restarted GMRES algorithm in FORTRAN 90 has been given here [16]. The
routine is given as subroutine mgmres st (N, NZ NUM, IA, JA, A, X, RHS, ITR MAX,
MR, TOL ABS, & TOL REL)

In order to use the subroutine, the elements of the matrix are assumed to be stored
in sparse triplet form. In these triplets, only non-zero entries of matrix A need to be
stored. The sparse triplets are

1. A(k): this vector stores the non-zero value of the elements of sparse
matrix A.

2. IA(k): this vector stores the row indices of the non-zero entry.
3. JA(k): this vector stores the column indices of the non-zero entry.

Other arguments in the subroutine are

1. N: Order of the linear system (i.e., number of equations)
2. NZ NUM: The number of non-zero matrix entries
3. IA(NZ NUM), JA(NZ NUM): Row and column indices of non-zero matrix

values
4. A(NZ NUM): non-zero matrix values
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5. X(N): The solution array: on input, it will contain an approximation to the
solution, and on output, it will contain an improved approximation. At the
end of iteration, this array will give the final solution.

6. RHS(N): The right-hand side of the linear system
7. ITR MAX: The maximum number of (outer) iterations
8. MR: The maximum number of (inner) iterations 0 < MR ≤ N.
9. TOL ABS: Absolute tolerance applied to the current residual

10. TOL REL: Relative tolerance comparing the current residual to the initial
residual.

The above GMRES subroutine (mgmres st) has been used to solve following 2D
parabolic PDE on a rectangular domain:

∂T
∂ t

= α

(
∂ 2T
∂x2 +

∂ 2T
∂y2

}
for xL < x < xR and yB < y < yT

where α is thermal diffusivity. The boundary conditions are (Dirichlet)

T (xL,y, t) = TL Left boundary
T (xR,y, t) = TR Right boundary
T (x,yB, t) = TB Bottom boundary
T (x,yT , t) = TT Top boundary

Figure 6.6 The contour plots of temperature field after different time intervals. The time
step in this simulation is taken as ∆t = 0.001; the spatial discretization has been taken as
∆x = 0.1 = ∆y. Other details may be seen from the code given in the Appendix A.2.
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and the initial condition is

T (x,y, t = 0) = T0

The FORTRAN 90 code to solve the above IBVP using GMRES method is given

in Appendix (A.2). The mgmres st subroutine is not appended here, and it may be

obtained from [16]. The evolution of the T (x,y, t) is shown in Figure 6.6.

6.6 CONCLUSION
This chapter deals with a brief summary of various schemes employed to solve

linear PDEs. In particular, the chapter has elaborated more on various important

schemes based on Krylov subspace methods like CG and GMRES methods. At the

end, GMRES method has been employed to solve a 2D heat transport equation.

APPENDIX
A.1 PRECONDITIONING

Sometimes, the condition of the matrix A in the linear system of equations

Ax = b is bad (which is understood from the condition number (κ) of the matrix:

κ 1= ||A||||||A−
||
||, where ||A|| is Euclidean norm of the matrix A. The matrix is

considered bad when it has large condition number). Preconditioning is done to im-

prove the condition of the matrix. In preconditioning, the matrix A is multiplied by a

preconditioner as follows:

M−1Ax = M−1b→M−1 (Ax−b) = 0

Here, M−1A is the preconditioned matrix, and M−1 is the preconditioner.

There are no fixed rules for choosing a preconditioner. The cheapest choice of

preconditioner may be M = I, which when applied on the linear system will result

in the same system, which therefore will not serve the purpose. However, if we take

M 1 1 1= A → M− = A− → M− A = I, which has the condition number of 1, results

will be obtained in a single iteration. This is the other extreme for selection of a

preconditioner. Therefore, M is chosen between these two extremes (i.e., between

the extremes M = I and M = A), to achieve a minimal number of iterations and at

the same time keeping P−1 as simple as possible.

A.2 2D PDE CODE USING GMRES METHOD (FOR THE DETAILS OF
DISCRETIZATION, PLEASE SEE 6.3.3.2 AND 6.5.2)

!==============(Declaration of various variables)=============

module variables

implicit none

integer, parameter:: ntsteps = 40 !number of time steps

double precision, parameter:: dt = 0.001D0, dx = 0.1D0, dy = dx
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double precision, parameter:: alpha = 5.0D0

double precision, parameter:: x0 = 0.0, xL = 10.0, y0 = 0.0,

yL = 10.0

!Temperature values at boundaries

double precision, parameter:: TB = 100.0, TT = TB, TL = TB,

TR = TB

!Considering dx = dy

double precision, parameter:: lambda = (alpha*dt)/(dx*dx)

integer, parameter:: nx = ((xL-x0)/dx)+1 !number of nodes

along x

integer, parameter:: ny = ((yL-y0)/dy)+1 !number of nodes

along y

integer, parameter:: nz_diag = nx - 4 !number of zeros diagonal

integer, parameter:: neq = (nx-2)*(ny-2)

!number of linear equations

integer, parameter:: nz_num_cen = neq

!non-zero elements in central diagonal

integer, parameter:: nz_num_d1t = (nx-3)*(mod(nx-3,neq-1)+1)

!nonzero elements

!in top d1 sub-diag

integer, parameter:: nz_num_d1b = (ny-3)*(mod(ny-3,neq-1)+1)

!nonzero elements

!in bottom d1 sub-dia

integer, parameter:: nz_num_d1 = nz_num_d1t + nz_num_d1t

!total non-zero

!elements in top and bottom

d1 sub-diag

integer, parameter:: nz_num_d2 = 2*(neq-nz_diag-2)

!nonzero elements in sub-diagonals 2

integer, parameter:: nz_num = nz_num_cen + nz_num_d1 + nz_num_d2

integer, parameter:: z_num_d1t = nx-3

!number of zeros in top d1 sub-diag

integer, parameter:: z_num_d1b = ny-3

!number of zeros in bottom d1 sub-diag

end module variables

!==============================================================

program pde_solve

use variables

implicit none

integer:: i, itstep, j, k
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integer, parameter:: itr_max = 1

integer, parameter:: mr = 10

double precision:: time, tol_abs, tol_rel

integer, dimension(1:nz_num):: ia, ja

double precision, dimension(1:nz_num):: val_nz

double precision, dimension(1:neq):: rhs, temp_est

double precision, dimension(1:nx, 1:ny):: temp_all

!include boundary temp also

double precision,dimension(1:nx):: xcor

double precision,dimension(1:ny):: ycor

!Node coordinates

do i = 1, nx

xcor(i) = x0 + (i-1)*dx

enddo

do j = 1, ny

ycor(j) = y0 + (j-1)*dy

enddo

!Temperatures at the boundary

!Bottom boundary

j = 1

do i = 1, nx

temp_all(i,j) = TB

enddo

!Left boundary

i = 1

do j = 1, ny

temp_all(i,j) = TL

enddo

!Right boundary

i = nx

do j = 1, ny

temp_all(i,j) = TR

enddo

!Top

j = ny

do i = 1, nx

temp_all(i,j) = TT

enddo



152 Recent Advances in Mathematics for Engineering

k = 0

do i = 2, nx-1

do j = 2, ny-1

k = k+1

temp_all(i,j) = 0.0D0

temp_est(k) = 0.0D0 !temperature at inner nodes

enddo

enddo

tol_abs = 1.0D-8

tol_rel = 1.0D-8

!Set the matrix

k = 0

do i = 1, neq

if(i>1) then

if(mod(i-1,nx-2) /= 0) then !for lower d1 sub-diag

k = k+1

ia(k) = i

ja(k) = i - 1

val_nz(k) = -lambda

endif

endif

if(i>nz_diag+2) then !for lower d2 sub-diag

k = k+1

ia(k) = i

ja(k) = i - (nz_diag+2)

val_nz(k) = -lambda

endif

k = k+1 !for the main diag

ia(k)= i

ja(k) = i

val_nz(k) = 4*lambda + 1

if(i<neq) then

if(mod(i,nx-2) /= 0) then !for upper d1 sub-diag

k = k + 1

ia(k) = i

ja(k) = i+1

val_nz(k) = -lambda

endif

endif

if(i<neq-(nz_diag+1)) then !for upper d2 sub-diag

k = k + 1

ia(k) = i
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ja(k) = i+(nz_diag+2)

val_nz(k) = -lambda

endif

enddo

!Evolution of Temp by solving GMRES routine for sparse system

open(unit=10,file=’data.txt’)

do itstep = 1, ntsteps

time = itstep*dt

!set the right hand side vector

k = 0

do i = 2, nx-1

do j = 2, ny-1

if(i==2 .and. j==2) then

k = k+1

rhs(k) = lambda*temp_all(i-1,j)+lambda*temp_all(i,j-1)

+temp_est(k)

endif

if(i==2 .and. j==ny-1) then

k = k+1

rhs(k) = lambda*temp_all(i-1,j)+lambda*temp_all(i,j+1)

+temp_est(k)

endif

if(i==nx-1 .and. j==2) then

k = k+1

rhs(k) = lambda*temp_all(i+1,j)+lambda*temp_all(i,j-1)

+temp_est(k)

endif

if(i==nx-1 .and. j==ny-1) then

k = k+1

rhs(k) = lambda*temp_all(i+1,j)+lambda*temp_all(i,j+1)

+temp_est(k)

endif

if(j==2) then

if(i>2 .and. i<nx-1) then

k = k+1

rhs(k) = lambda*temp_all(i,j-1)+temp_est(k)

endif

endif

if(j==ny-1) then

if(i>2 .and. i<nx-1) then

k = k+1

rhs(k) = lambda*temp_all(i,j+1)+temp_est(k)

endif
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endif

if(i==2) then

if(j>2 .and. j<ny-1) then

k = k+1

rhs(k) = lambda*temp_all(i-1,j)+temp_est(k)

endif

endif

if(i==nx-1) then

if(j>2 .and. j<ny-1) then

k = k+1

rhs(k) = lambda*temp_all(i+1,j)+temp_est(k)

endif

endif

if(i>2 .and. i<nx-1 .and. j>2 .and. j<ny-1) then

k = k+1

rhs(k) = temp_est(k)

endif

enddo

enddo

print*, k, neq

!Call the GMRES routine to solve the sparse system

call mgmres_st(neq, nz_num, ia, ja, val_nz, temp_est, rhs, &

itr_max, mr,tol_abs, tol_rel)

k = 0

do i = 2, nx-1

do j = 2, ny-1

k = k+1

temp_all(i,j) = temp_est(k)

enddo

enddo

write(10,*)"After time = ", time

do i = 1, nx

do j = 1, ny

write(10,*) xcor(i), ycor(j), temp_all(i,j)

enddo

enddo

enddo

close(10)

end
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7.1 INTRODUCTION
The nonlinear sine–Gordon equation (SGE)has been found in numerous physical
applications, viz., optical fiber signals, tsunamis, atmospheric waves, superconduc-
tivity, and gravitational fields. Due to a large number of applications, the simulation
of this equation has enormous significance in research.

Consider the 2D nonlinear SGE,

utt + γux = uxx +uyy − f (x,y)sin(u) , x ∈ R, t ≥ 0, (7.1)

where R = {(x,y) : a1 ≤ x ≤ a2,b1 ≤ y ≤ b2}, with initial conditions (ICs):

u = ϕ1 (x,y) andut = ϕ2 (x,y) , at t = 0, (7.2)

157
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and Neumann boundary conditions (BCs):

un = g1 (x,y, t) , x = a and b,c ≤ y ≤ d,

un = g2 (x,y, t) , y = c and d,a ≤ x ≤ b. (7.3)

where u= u(x,y, t), h= h(x,y), ϕ1 =ϕ1(x,y), ϕ2 =ϕ2(x,y), and γ ≥ 0 is a dissipative
term. The Equation (7.1) turns out into undamped SGE for γ = 0 and into a damped
one for γ > 0. The functions ϕ1 and ϕ2 describe kinks and velocity, respectively,
whereas f represents Josephson current density.

The SGE appears in the dispersion of the fluxons in Josephson’s junction, dis-
ruptions in crystals, stability of fluid motions, motion of a rigid pendulum [1–5],
etc. Josephson junction model [4] consists of two separated superconducting layers
which can be described by 2D SGE and has numerous applications in physical sci-
ence, electronics, etc. A soliton-like structure has been modeled by Djidjeli et al. [6]
in higher dimensions.

The various methods have been proposed in recent years for the solution of 2D
SGE. Christiansen and Lomdahl [7] used a leapfrog method in generalized form,
whereas Argyris et al. [8]used finite element method. Both methods were success-
fully used, the latter giving slightly more accurate results. Xin [9] modeled the light
bullets using this equation and viewed that sine–Gordon pulse envelopes undertake
focus and defocus cycles. The “evolution of lump and ring solitons” of the 2D SGE
and that of the breather-type waves while standing and on the move were exam-
ined in [10,11]. Sheng et al. [12] used a “split cosine scheme” to solve 2D SGE.
Bratsos [13–17] proposed explicit and improved finite-difference methods, modified
predictor–corrector method, method of lines, and a numerical scheme of order 3, to
solve2D SGE.

Dehghan and Shokri [18] proposed a thin-plate radial basis splines collocation
method, whereas Dehghan and Mirzaei [19] proposed a dual reciprocity boundary
element method to solve 2D SGE. Mirzaei and Dehghan [20] studied the bound-
ary element solution by applying continuous linear element approximation, while
meshless LBIE and MLPG methods have been proposed in [21,22] for the solu-
tion of 2D SGE. Dehghan and Ghesmati [23] proposed a radial point interpolation
method (RPIM)-based local weak meshless method. Jiwari et al. [24] introduced
polynomial differential quadrature method (PDQM) to solve damped and undamped
2D SGE.

The differential quadrature method (DQM) has been presented in references
[25–30] for solving differential equations. Korkmaz and Dag [31] presented cubic
B-spline DQM for Burgers’ equation. Gottlieb [32] developed an “optimal strong
stability preserving high order time discretization scheme.” Abbas et al. [33] pro-
posed “cubic trigonometric B-spline (CTB) collocation method” for the wave equa-
tion. Recently, Tamsir et al. [34] presented a cubic trigonometric B-spline DQM for
Fisher’s reaction–diffusion equations. The CTB functions work as a basis function
in DQM for computing the weight coefficients of derivatives with respect to space
variables.
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In this chapter, we simulate2D SGE numerically for a large number of cases to-
gether with ring and line solitons of the elliptic and circular shapes. Both cases of
damped and undamped are chosen for numerical simulation. First, the accuracy and
convergence rate of the method have been tested by taking a test problem. In rest of
the problems, the 2D damped and undamped SGEs have been simulated. The results
have been compared with the results existing in the literature.

7.2 DESCRIPTION OF THE METHOD
It is supposed that the domain R is partitioned uniformly by Nx and Ny grid points in
x and y directions with step size h = 1/(Nx −1) and k = 1/(Ny −1), respectively.

The rth-order partial derivative of u with respect to x and y is given by

∂ rui j

∂xr =
Nx

∑
s=1

w(r)
is

us j, (7.4)

∂ rui j

∂yr =
Ny

∑
s=1

w̃(r)
js

uis, (7.5)

where i = 1,2, . . . ,Nx, j = 1,2, . . . ,Ny and ui j = u(xi,y j, t). The terms w(r)
i j

and w̃(r)
i j

,
r = 1,2 represent the rth-order weight coefficients of the partial derivatives with
respect to space variables x and y.

The CTB basis functions [33,34] at the knots are given as

Tk(x) =
1
ζ

{}}}}}}}}{}}}}}}}}{

δ 3 (xk−2) , x ∈ [xk−2,xk−1)
{η (xk)δ (xk−2)+η (xk+1)δ (xk−1)}δ (xk−2)

+η (xk+2)δ 2 (xk−1) , x ∈ [xk−1,xk)
η2 (xk+1)δ (xk−2)+{δ (xk−1)η (xk+1)

+ δ (xk)η (xk+2)}η (xk+2) , x ∈ [xk,xk+1)
η3 (xk+2) , x ∈ [xk+1,xk+2)

0 otherwise
(7.6)

where δ = sin(0.5(x− xk)) , η = sin(0.5(xk − x)) , ζ = sin(0.5h)sin(h)sin(1.5h) .
The values of s at the knots are given as

Tk (x j) ={ b, if k− j = 0
a, if k− j =±1
0, else

; T '
j (xi) ={ c, if k− j = 1

−c, if k− j =−1
0, else

;

T ''
j (xi) =

{{{ e, if k− j = 0
d, if k− j =±1
0, else

,

{{ {{

where a = sin2 (0.5h)csc(h)csc(1.5h), b = 2/(2cos(h)+1), c = 0.75csc(1.5h),

d =
3csc2 (0.5h){1+3cos(h)}

16+(cos(1.5h)+2cos(0.5h))
, e =

−3cot2 (1.5h)
4cos(h)+2

.
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The CTB basis functions have been modified as
↔
T 1 = T1(x)+2T0(x)
↔
T 2(x) = T2(x)−T0(x)
↔
T p(x) = Tp(x) for p = 3, . . . ,Nx −2
↔
T Nx−1(x) = TNx−1(x)−TNx+1(x)
↔
T Nx(x) = TNx(x)+2TNx+1(x)

}}}}}}}}}}}}}}}}}
, (7.7)

{↔ ↔ ↔ {
where T 1,T 2, . . . ,T Nx forms a basis in the domain R.

For finding the weighting coefficients w(1)
i j , we take r = 1 and use the values of

↔
T k(x)(k = 1,2, . . . ,Nx) in Equation (7.4) which implies

↔
T
'
k (xi) =

Nx

∑ w(1)
is

↔
T k (xs) , for i = 1,2, . . . ,Nx; k = 1,2, . . . ,Nx (7.8)

s=

By using Equation (7.6) and Lemma 1 in Equation (7.8), we get

1

Aw(1)
is =

→
R [i] , for i = 1,2, . . . ,Nx; s = 1,2, . . . ,Nx, (7.9)

where A is tri-diagonal matrix and given by

A =

||||||||||

2a+b b
0 b a

a b a
. . . . . . . . .

a b a
a b 0

a 2a+b

||||||||||
N×N

[ ]

→
where the vectors R [i] are given by

→
R [1] =

[
−2c 2c 0 0 . . . 0 0

]T
,

→
R [2] =

[
−c 0 c 0 . . . 0 0

]T
,

...
→
R [Nx −1] =

[
0 0 . . . 0 −c 0 c

]T
,

→
R [Nx] =

[
0 0 . . . 0 0 −2c 2c

]T
.

The system Equation (7.9) is solved by using “Thomas algorithm” in order to
get w(1)

is . The weighting coefficients w(2)
is , i, s = 1,2, . . . ,Nx are calculated by using

the formula of Shu [30] which is given by
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{{{ a(r)is = r
(

a(1)is a(r−1)
ii − a(r−1)

is
xi−xs

)
, fors = i and i = 1,2, . . . ,Nx; r = 2,3, . . . ,Nx −1,

a(r)ii =−∑
Nx
s=1, j=i a(r)is , fors = i.

(7.10)

/

/

7.3 IMPLEMENTATION OF METHOD TO 2D SGE
The space derivatives in the 2D SGE Equation (7.1) are estimated by modi-
fied cubic trigonometric B-spline (MCTB)-DQM. Consequently, the Equation (7.1)
transformed into the following form:

d2ui j

dt2 +β
dui j

dt
=

Nx

∑
s=1

w(2)
is

us j +
Ny

∑
s=1

w̃(2)
js

uis − f (xi,y j)sinui j

i = 1,2, . . . ,Nx, j = 1,2, . . . ,Ny, (7.11)

together with ICs:

ui j = ϕ1 (xi,y j) and
dui j

dt
= ϕ2 (xi,y j) at t = 0s. (7.12)

Now let
dui j

dt
= vi j. (7.13)

Using approximation Equation (7.13), Equation (7.11) reduces into first order

dvi j

dt
+βvi j =

Nx

∑
s=1

w(2)
is

us j +
Ny

∑
s=1

w̃(2)
js

uis − f (xi,y j)sinui j. (7.14)

Now, the estimation of Neumann BCs Equation (7.3) at x = a1 and x = a2 is given as

Nx

∑
s=1

w(1)
1s

us j = g1 (a1,y, t) , (7.15)

Nx

∑
s=1

w(1)
Nxs

us j = g2 (a2,y, t) (7.16)

By solving Equations (7.15) and (7.16) for u1 j and uNx j, we have

u1 j =
w(1)

1Nx
(g2 −A2)−w(1)

NxNx
(g1 −A1)(

w(1)
1Nx w(1)

Nx1 −w(1)
11 w(1)

NxNx

) , (7.17)

uNx j =
w(1)

Nx1
(g1 −A1)−w(1)

11
(g2 −A2)(

w(1)
1Nx w(1)

Nx1 −w(1)
11 w(1)

NxNx

) , (7.18)

where A1 = ∑
Nx−2
s=2 w(1)

1s
us j, A2 = ∑

Nx−2
s=2 w(1)

Nxs
us j, g1 = g1 (a1,y, t), g2 = g2 (a2,y, t),

and j = 1,2, . . . ,Ny.
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Similarly, the estimation of Neumann BCs Equation (7.3) at y = b1 and y = b2 is
given by

Ny

∑
s=1

w̃(1)
1s

uis = g3, (7.19)

Ny

∑
s=1

w̃(1)
Nys

uis = g4, (7.20)

By solving the Equations (7.19) and (7.20) for ui1 and uiNy , we have

ui1 =
w̃(1)

1Ny
(g4 −A4)− w̃(1)

NyNy
(g3 −A3)(

w̃(1)
1Ny w(1)

Ny1 − w̃(1)
11 w̃(1)

NyNy

) , (7.21)

uiNy =
w̃(1)

Ny1
(g3 −A3)− w̃(1)

11
(g4 −A4)(

w̃(1)
1Ny w(1)

Ny1 − w̃(1)
11 w̃(1)

NyNy

) , (7.22)

where A3 =∑
Ny−2
s=2 w̃(1)

1s
uis, A4 =∑

Ny−2
s=2 w̃(1)

Nys
uis, g3 = g3 (x,b1, t), g4 = g4 (x,b2, t), and

i = 1,2, . . . ,Nx
The system of ODEs Equation (7.14) together with ICs Equation (7.12) and

Neumann BCs. Equations (7.17), (7.18), (7.21), and (7.22) is solved by strong-
stability preserving Runge-Kutta (SSP-RK) (5,4) method.

7.4 RESULTS AND DISCUSSION
The six examples have been considered in this section for numerical simulation.
First of all, the accuracy and efficiency of the method are tested in terms of RMS
and L∞ error norms through test problem. The RMS and L∞ error norms have been
evaluated by the formulae:

L∞ = max |ue
i j −unum

i j | and RMS =
1

Nx ×Ny

|√ Nx

∑
i=1

Ny

∑
j=1

|||ue
i j −unum

i j

|||2,
√|

where i = 1,2, . . . ,Nx and j = 1,2 e num, . . . ,Ny. The terms ui j and ui j represent exact and
numerical solutions. For rest of problems, the obtained results have been simulated
through surface plots.

Test Problem: The SGE Equation (7.1) is considered for f (x,y) =−1 and β = 0
in [−7, 7] × [−7, 7] with ICs:

u(x,y,0) = 4tan−1 ex+y and ut (x,y,0) =− 4e +

1+ e2(x+y)
(7.23)

( ) x y

and Neumann BCs:

ux =− 4ex+y+t

exp(2t)+e2(x+y) , x =−7 and x = 7,y ∈ [−7,7],

uy =− 4ex+y+t

exp(2t)+e2(x+y) , y =−7 and y = 7,x ∈ [−7,7],

}} (7.24)

}
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Table 7.1
Comparison of Error Norms for Test Problem

L∞ −Error RMS-Error

t [6] [18] [24] [35] Present [18] [24] [35] Present

1 3.50e-02 6.70e-02 2.7e-03 3.0e-04 2.52e-04 5.0e-03 5.0e-04 2.0e-04 1.53e-04
3 4.31e-02 8.34e-02 2.0e-03 6.0e-04 5.79e-04 1.03e-02 5.0e-05 4.0e-04 3.79e-04
5 4.04e-02 1.01e-01 3.3e-03 8.0e-04 7.74e-04 1.45e-02 7.0e-04 7.0e-04 6.63e-04
7 3.50e-02 1.516e-01 5.9e-03 1.2e-03 1.15e-03 1.87e-02 1.1e-03 1.0e-03 9.94e-4

and with the exact solution

u(x,y, t) = 4 tan−1 ex+y−t .
( )

The solution of test problem is solved using the parameter values: ∆t = 0.001 and h=
∆x = ∆y = 0.25 at different t and presented in Table 7.1 which shows that obtained
results are finer than the results presented in [13,14,17,32].

7.4.1 CIRCULAR RING SOLITONS

The circular ring solitons of SGE Equation (7.1) have been obtained for f (x,y) =−1
and β = 0 in [−7, 7] × [−7, 7] with ICs:

u(x,y,0) = 4 tan−1
(

e
(

3−
√

x2+y2
))

,

ut (x,y,0) = 0,

}}} (7.25)

and Neumann B.C.’s:

ux = 0, for x =−7 and x = 7,y ∈ [−7,7], t > 0
uy = 0, for y =−7 and y = 7,x ∈ [−7,7], t > 0 . (7.26)

}
The surface and contour curves of the circular ring soliton waves are depicted in
Figure 7.1 at t = 0,2.8,5.6,8.4,11.2,12.6 with ∆t = 0.2 and ∆x = ∆y = 0.4 in
terms of sin(u/2). The ring soliton is shrinking from its initial position until t = 2.8
and comes into view of a single ring soliton. A radiation comes into view from
t = 5.6 which is an expansion stage and continues until t = 11.2 where the ring soli-
ton is almost rehabilitated. The graphs shown in Figure 7.1 are in excellent agreement
with the plots given in Refs. [6–8,14,15,23,24,35].

7.4.2 ELLIPTICAL RING SOLITONS

The elliptical ring solitons of SGE Equation (7.1) have been obtained for
f (x,y) =−1 and β = 0 in [−7, 7] × [−7, 7] with ICs:
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Figure 7.1 The surface curves and contours of circular ring solitons at different times.

u(x,y,0) = 4tan−1

{}{e

{
3−
√

(x−y)2
3 +

(x+y)2
2

}}}} ,

ut (x,y,0) = 0.

}}}}}}}}} (7.27)

The Neumann boundary conditions in Equation (7.26) have been used. The sur-
face and contour curves of the elliptical ring solitons are depicted in Figure 7.2 at
t = 0, 1.6, 3.2, 4.8, 6.4, 8.0 with ∆t = 0.2 and ∆x = ∆y = 0.4 in terms of sin(u/2).
It is observed that the soliton of the elliptical ring contracts from its early position up
to t = 3.2. The temporary behavior of the soliton waves consists of contraction and
explosion phases. The formation of a circular ring soliton has begun from t = 8.0 as
given in references [8,16,19,20,23,24,35].

7.4.3 ELLIPTICAL BREATHER

The elliptical breather for SGE Equation (7.1) has been obtained for f (x,y) = −1
and β = 0 in the [−7, 7] × [−7, 7] with ICs:
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Figure 7.2 The surface curves and contours of elliptical ring soliton at different times.

u(x,y,0) = 4tan−1 2.0sech 0.866 (x−y)2

3 + (x+y)2

2 ,

ut (x,y,0) = 0.

}} (7.28)

( ( √ )) }

The Neumann boundary conditions in Equation (7.26) have been used. Figure 7.3
shows the surface curves and contours at t = 0,1.6,8.0,9.6,11.2,12.8 with ∆t = 0.2
and ∆x = ∆y = 0.4 for the elliptical breather. The graphs disclose that the elliptical
breather seems rotating in a clockwise direction around the major axis y =−x from
its early position and seems shrinking until t = 1.6 a reflection stage is observed
at t = 8.0 and 9.6. At t = 11.2, the major axis almost recaptures its early position
(y =−x) but observes a strong oscillation. From t = 12.8, an expansion stage is seen.
The graphs presented in this solution wave are in excellent correspondence with the
plots given in references [7,8,16,17,23,24,35].

7.4.4 SUPERPOSITION OF TWO ORTHOGONAL LINE SOLITONS

The superposition of two orthogonal line solitons has been studied for f (x,y) =−1
and β = 0.05 in [−6, 6] × [−6, 6] with ICs:
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Figure 7.3 The surface curves and contours of elliptical breather at different times.

u(x,y,0) = 4tan−1 (ex + ey) ,
ut (x,y,0) = 0.

}
(7.29)

This problem has been solved numerically with parameters: t = 1,3,7, ∆t = 0.001
and size of grid 31× 31. Figure 7.4 shows the surface curves and contours. We can
see on the graphs that we find the rupture of two orthogonal line solitons moving
away and that separations occur between them without any deformation from t = 1 to
t = 3. At t = 7, appearance of a deformation has been noticed. A fine agreement has
been found with those given in references [24,35].

7.4.5 LINE SOLITONSIN AN INHOMOGENOUS MEDIUM

The line solitons have been studied in an inhomogenous medium for f (x,y) = −1
and β = 0.05 in [−7, 7] × [−7, 7] with ICs:

u(x,y,0) = 4tan−1 e(
x−3.5
0.954 ) and ut (x,y,0) = 0.629sech e(

x−3.5
0.954 ) . (7.30)

( ) ( )
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Figure 7.4 The surface curves and contours of superposition of two orthogonal lines at dif-
ferent times.

Figure 7.5 The surface curves and contours of line solitons at different times.

This problem has been solved numerically with parameters: t = 0,5,9,11,
∆t = 0.001 and size of grid 31× 31. Figure 7.5 shows the surface curves and con-
tours. It is clear that the soliton line goes into straight line to a slight extent during
the transmission period. A twist has been noticed in its straightness on increasing t.
The movement seems to be prevented due to the medium’s inhomogeneity. A fine
agreement has been found with those of the references [18,24,35].
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7.5 CONCLUSIONS
A numerical simulation of 2D nonlinear damped as well as undamped SGE has been
carried out via MCTB-DQM. The different cases of the ring and line solitons includ-
ing elliptical and circular shapes have been discussed. The results and graphs have
been compared to those available in references [6–8,14,16–20,23,24,35]. Obtained
results are finer than the results available in references [6,18,24,35]. The excellent
numerical approximations to the exact solutions have been attained. The surface and
contour curves showed that the results are very similar to those available in the afore-
said references. Moreover, the method is economically easy to implement and may
be extended for higher dimensional wave-related problems.
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8.1 INTRODUCTION

Formation of spatial patterns in nature is ubiquitous, with illustrations like zebra
stripe patterns on animals skin, Turing patterns in a coherent quantum field, or dif-
fusive patterns in predator-prey models [2,25,29]. The spatial factors of species in-
terplay have been recognized as a vital component in how ecological communities

171
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are created and ecological interplay occurs over a broad limit of temporal and spatial
scale [12]. Spatial population distribution is of major importance in the study of
ecological systems [17,18,30]. Mechanisms and scenarios characterizing the spatial
population distribution of ecological species in spatial habitat are a focus of special
interest in population dynamics. The spatial population distribution is affected by the
proliferation capacity of the species and interactions between individuals [35]. Spa-
tial effect may be disregarded in a certain extent, particularly when the population of
a given species stay fixed in space at any moment of time. Albeit this assumption is
not completely realistic. Individuals of an ecological species do not fix at all times
in space, and their dispersion in space changes incessantly by the self-movement of
individuals [17,19,21,25,26].

Spatiotemporal mathematical model is an appropriate tool for investigating fun-
damental mechanism of complex spatiotemporal population dynamics. An appropri-
ate mathematical structure to explain the spatial aspect of population dynamics is
specified by reaction-diffusion equations. Reaction-diffusion models were initially
applied to describe the ecological pattern formation by Segel and Jackson in 1972,
based on the primary work of Turing [33]. Over the last several decades, a number
of papers have been published on the spatial dynamics of predator-prey model based
on reaction-diffusion equations, and different types of patterns have emerged from
these models [17,19,21,25,26,29,33].

Idea of diffusion may be considered as the natural propensity for a cluster of
particles at the beginning concentrated close to a location in space to spread out in
time, slowly occupying an ever sizable area close to the initial point. Here, the word
“particles” mentions not only to physical portion of the matter, but to biological pop-
ulations or to any other recognizable elements as well. Moreover, the word “space”
mentions not only to general Euclidean n-space but also to an hypothetical living
space (such as ecological space) [14,17,25,26]. Diffusion is a natural phenomenon
where physical material moves from an area of high concentration to an area of low
concentration; that is, diffusion is a natural process by which the particle cluster
as an entire dispersion according to the non-uniform movement of every particle.
Diffusion can be defined to be basically an invariant process by which particle clus-
ters, population, etc. diffuse inside a given space according to individual random
movement [26].

Diffusion–Reaction partial differential equation systems can be used to represent
mathematical models, which describe how the individuals of one or more species
distributed in space change under the effect of two procedures, first is local interac-
tion, in which the species interact with each other, and second is the diffusion, which
causes the species to spread out over a surface in space. Mathematically, reaction–
diffusion systems take the form of semi-linear parabolic partial differential equations
[17,21,26].

Through mathematical modeling as a viable tool, complex biological processes
are studied. Mathematical modeling can be extremely helpful in analyzing factors
that may contribute to the complexity intrinsic in insufficiently understood tumor–
immune as well as Prey–Predator interactions. Likewise, the primary objective of
the mathematical modeling of tumor–immune and Prey–predator models are, briefly,
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the analysis of the interplay inside and between biological species and their artificial
surrounding, and the examination of the temporal transformation of clusters of indi-
viduals of different biological species. It is however true that space and time are in-
divisible “sibling coordinates” and only when population densities (tumor–immune
system or Prey–Predator system) are contemplated in both space and time, actual
dynamics can be understood [3,5,13,16–18,20,27,39,40].

Cooperative behavior can stimulate a relation among the population density and
per capita population growth rate [10,31]. Ecologists have accepted several mecha-
nisms for stimulating cooperative behavior in prey, namely cooperating reproduction
and foraging capacity. The cooperative behavior in prey may be generated by preda-
tion or by procedure inborn to the prey lifespan history [32]. Theory has pervasively
paid attention to cooperative behavior in preys [9,15,22,28,36,37,41], and coopera-
tive behavior in predators is less studied and poorly understood [7,11,34], in particu-
lar when space is considered explicitly. A mathematical model of prey and predator
population interplay with cooperative behavior in predators through the system of
nonlinear ordinary differential equations has been studied in non-spatial domain by
Alves et al. [1]. Motivated from their work, we modify and extend the model in a
spatial domain to study its spatial dynamics.

Most of the models in mathematical ecology or tumor–immune interaction deal
with non-spatial variant. The rate of change of the number of individuals u in a popu-
lation may be manifested as the derivative with respect to time “t,’ du/dt. The model
equations of a biological community of interacting individuals and their environment
are then founded by equating this derivative to another relation expressing the effect
of species interaction on population. Same is the situation with tumor–immune inter-
acting models. This type of straightforward analysis is not practicable when spatial
models are considered. Directly connected to species interplay is the net population
via an arbitrary infinitesimal piece of space rather than the spatial rate of change
of the population itself, and thus, a reasonable manifestation is unreachable without
knowledge of the mechanism of motion of the individuals.

8.1.1 PREY–PREDATOR SYSTEM

Prey–predator system represents the functional dependence of one species on an-
other, where the first species depends on the second species for food. Predation is
a mode of life in which food is primarily obtained by killing and consuming or-
ganisms. The prey is part of the predator’s habitat, and if the predators do not get
any prey for food, then they become extinct. The functional dependence in general
depends on many factors, namely, the various species densities, the efficiency with
which the predator can search out and kill the prey, and the handling time [4,14,38].

8.1.1.1 Cooperative Behavior of Hunting
Cooperative behavior of hunting is one of the highly fascinating tactical natural in-
stincts in the animal kingdom. A successful hunt requires a great deal of cooperation
and coordination within the group. Hunting cooperation in animal kingdom is very
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frequent; for example, group hunting enables lionesses to have greater success
in capturing preys, and it involves both divisions of work and role specializa-
tion. It has been connected to the social system of animal species and the evolu-
tion of society and thus provides a unique approach to study cooperative behavior
[1,7,9,11,15,22,28,34,36,41].

8.2 NONLINEAR DYNAMICS PRELIMINARIES
Some mathematical methods and ideas have been depicted in this segment which are
used to examine the nonlinear dynamics and pattern formation (spatiotemporal mod-
els), introduced in this thesis. The details of the ideas are depicted for non-spatial
(ordinary differential equations) as well as spatial (reaction–diffusion partial differ-
ential equations) systems.

8.2.1 BASICS OF STABILITY ANALYSIS

Let X(t) ∈ Rn depicts the states of a system at time “t. The dynamics of the system
is ruled by a system of first-order nonlinear ordinary differential equations:

Ẋ(t) = G(X(t),θ), X(0) = X0, (8.1)

where X = [x1,x2, ...,x T
n] stands for the n state variables, θ holds the parameter

values, and G is a nonlinear function of the state variables and parameter values. If
G(X*) = 0, then X* is an equilibrium solution of the system. Consider X0 to be its
neighboring point. The equilibrium solution X* is stable if for all ε > 0, there is a
δ > 0 such that

|| X(t)−X* ||< ε, whenever || X*−X0 ||< δ .

That is, X* is stable if the equilibrium solutions go ahead to X* at a said time stay
close to X* for each future time. X* is asymptotically stable if neighboring solutions
not only stay close, but also approach to X* as t goes to infinity, for each future time.
That is, X* is stable and

lim
t→∞

X(t) = X*,

then the solution X* is asymptotically stable.

Asymptotic Stability ⇒ Stability.

Stability of an equilibrium solution is a local property. An equilibrium solution X*
which is not stable is called unstable.

8.2.1.1 Local Stability Analysis
The system of interacting populations

dXi(t)
dt

= Gi(X1,X2, ...,Xn), (8.2)
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with initial conditions

Xi(0) = Xi0 ≥ 0, i = 1,2, ...,n. (8.3)

Let us suppose that the function Gi is such that the solution of above system is unique.
Let X(t) be any other solution in the vicinity of equilibrium solution X*, then

X = X*+η , (8.4)

where η = (η1,η2, ...,ηn) is a perturbation from the equilibrium solution. Then, the
perturbation vector can be written as

dη

dt
=

∂G
∂X

||||
X=X*

η ≡ Aη , (8.5)

where A = (ai j)n×n is the variational matrix at the equilibrium solution X*. Let η(0)
be the initial perturbation from the equilibrium solution X*, then the formal matrix
solution to Equation (8.5) can be given by

η(t) = eAt
η(0). (8.6)

The system is stable about the equilibrium solution X* if the perturbation η(t) goes to
zero as t tends to ∞. This is feasible only if the real parts of the characteristic values
of the variational matrix A, namely, Re{λi}, are negative for each i. If Re{λi} > 0
for at least one value of i, then the equilibrium solution is unstable. Since η(t) is
the solution of linearized system Equation (8.5), which is a close to actual nonlinear
system, the stability is referred to local/linear stability only.

Therefore, the characteristic values of the variational matrix decide whether the
equilibrium solution is linearly stable or unstable. The characteristic equation for the
variational matrix can be written as

det(A−λ I) = a0λ
n +a1λ

n−1 + ...+an = 0, a0 = 0. (8.7)/

The coefficients ai, i = 1,2, ...,n of characteristic equation are all real. The system
Equation (8.2) is locally stable about the equilibrium point if all of the eigenvalues
have negative real parts. On the other hand, the system is unstable if at least one of
the eigenvalues has positive real part. In other words, all the eigenvalues of Jacobian
matrix must lie in the left half of the complex plane. Accordingly, the necessary
condition (not sufficient) for all eigenvalues to have negative real part is

Trace (A)< 0.

In the special case, if Trace (A) = 0, then either at least one eigenvalue must lie in the
right half plane, or all eigenvalues must be purely imaginary (the pathological case
of neutral stability). Another necessary, but not sufficient, condition is

(−1)n det |A|> 0.
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Routh–Hurwitz Criterion gives necessary and sufficient conditions to make certain
that the real part of all characteristic roots is negative that belongs to left half complex
plane. These conditions, collectively an > 0, are [24]

H1 = a1 > 0, H2 = || a1 a3
1 a2

||> 0, H3 = |||
1 3 5

1 a2 a4
0 a1 a3

|||> 0,

Hk =

||||||||||||

a1 a3 . . . .
1 a2 a4 . . .
0 a1 a3 . . .
0 1 a2 . . .
. . . . . .
0 0 . . . ak

||||||||||||
> 0, k = 1,2,3, ...,n (8.8)

|| || ||| a a a
|||

If the values of parameters are such that the above restrictions are simultaneously
satisfied, then the given system will be locally asymptotically stable at X*.

8.2.2 TYPES OF BIFURCATIONS

The theory of bifurcation is the mathematical study of sudden changes in the qualita-
tive behavior of the solutions of a nonlinear dynamical system. Bifurcation analysis
shows the long-term dynamics of the interacting population depending on the sys-
tem parameters. In particular, equilibrium point(s) can be created and destroyed, or
their stability can change due to change in parameter values. The parameter val-
ues for which the bifurcation occurs are called bifurcating points. In this thesis, we
particularly focused on local bifurcations, which occur when a small change in the
parameter value of a given dynamical system causes a sudden change in the quali-
tative behavior of the system in the neighborhood of a critical point of the system.
Scientifically, they are important since they provide models of transitions and stabil-
ities as the control parameter is varied. Some different types of local bifurcations are
as follows:

• Hopf bifurcation: Hopf bifurcation is that type of bifurcation at which a
stable equilibrium point loses its stability at a threshold value and gives birth
to a limit cycle with the variation of the bifurcation parameter. The system
experiences Hopf bifurcation when a purely complex conjugate crosses the
boundary of stability. The Hopf bifurcation destroys the temporal symmetry
of a system and gives rise to oscillations, which are uniform in space and pe-
riodic in time. Two types of Hopf bifurcation are observed: one is supercriti-
cal, and other is subcritical. Supercritical Hopf bifurcation is a phenomenon
in which the unstable limit cycle becomes stable at the bifurcation point.
Subcritical Hopf bifurcation is a phenomenon in which the stable limit cycle
becomes unstable at the bifurcation point.

• Turing bifurcation: Turing bifurcation is the primary bifurcation which
gives rise to spatiotemporal patterns and is crucial for almost all reaction–
diffusion-type mathematical systems for pattern formation in embryology,
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ecology, epidemiology, and to some other areas of biology, physics, and
chemistry [2,19,23,25,33]. The primary concept of the Turing bifurca-
tion is that a uniform steady-state solution can be stable to uniform spa-
tiotemporal perturbations, but unstable to definite spatiotemporally chang-
ing perturbations, leading to the formation of patterns, that is, a spatial
pattern. The straightforward model to contemplate mathematically is fun-
damentally treated by Turing in 1952, namely, two reaction–diffusion-type
partial differential equations, the interacting chemicals having distinct coef-
ficients of diffusion. For appropriate reaction kinetics, as the proportion of
diffusivity increases (or decreases) from unity, e.g., there is a critical value
at which the homogenous equilibrium solution becomes unstable to a par-
ticular spatiotemporal mode. Such kind of bifurcation is called the Turing
bifurcation.

8.3 TURING (DIFFUSIVE) INSTABILITY
Spatiotemporal patterns are formed via the diffusive instability of the uniform equi-
librium solution to small spatiotemporal perturbations. If the uniform equilibrium
solution is stable, then small spatiotemporal perturbations from the equilibrium state
will move towards back to the equilibrium state. In 1952, Alan Mathison Turing
pointed out how a reaction–diffusion system, showing such instabilities can form
diffusive patterns [29,33].

Alan Turing, in 1952, demonstrated that the reaction–diffusion system may form
the spatial pattern, if the following two conditions holds:

• the coexistence steady state is linearly stable in the non-spatial (without dif-
fusion) system

• after adding the diffusion term in system, the coexistence steady state is
linearly unstable.

Proper mathematical analysis demonstrates that, on the beginning of instability, the
model initially becomes unstable with regard to a spatiotemporally nonhomogenous
perturbation with a definite wave number. Such type of instability is called a diffusive
instability (Turing instability).

The mathematical foundation of diffusive instability by considering two state vari-
ables, Y1 and Y2, which are subject to one-dimensional space:

∂Y1

∂ t
= H1

(
Y1,Y2

)
+D1

∂ 2Y1

∂x2 ,

∂Y2

∂ t
= H2

(
Y1,Y2

)
+D2

∂ 2Y2

∂x2 , (8.9)

where “x is the space coordinate, and “t is the time. D1 and D2 are diffusion coeffi-( ) ( )
cients of Y1 and Y2, respectively. H1 Y1,Y2 and H2 Y1,Y2 are the arbitrary interac-
tion terms of Y1 and Y2, respectively.
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To understand the effect of diffusion in pattern formation, we assume that in
absence of diffusion, that is, when solutions are well mixed, the system has some pos-
itive spatially homogeneous steady state, (Y *

1 , Y *
2 ). Mathematically, this means that

∂Y *
1

∂ t
= 0 =

∂Y *
2

∂ t
,

∂ 2Y *
1

∂x2 = 0 =
∂ 2Y *

2
∂x2 , (8.10)( ) ( )

⇒ H1 Y *
1 ,Y

*
2 = 0 = H2 Y *

1 ,Y
*
2 . (8.11)

Additionally, suppose that (Y *
1 , Y *

2 ) is stable with respect to spatially uniform pertur-
bations, system is stable without diffusion.

To examine the effects of small nonhomogeneous perturbation on the stability of
the system with respect to homogeneous steady state, we write

Y1
(
t,x) = Y *

1 +Y
'
1(t,x),

Y2
(
t,x) = Y *

2 +Y
'
2(t,x). (8.12)

It is assumed that the perturbations are sufficiently small; that is, we analyze the local
stability of the system. Substituting Equation (8.12) into (8.9), using Equation (8.10),
and linearizing the equations, we obtain

∂Y
'
1

∂ t
= a11Y

'
1 +a12Y

'
2 +D1

∂ 2Y
'
1

∂x2 ,

∂Y
'
2

∂ t
= a21Y

'
1 +a22Y

'
2 +D2

∂ 2Y
'
2

∂x2 , (8.13)

where

a11 =
∂H1

∂Y1

||||(
Y *

1 , Y *
2

), a12 =
∂H1

∂Y2

||||(
Y *

1 , Y *
2

),
a21 =

∂H2

∂Y1

|||||(
Y *

1 , Y *
2

), a22 =
∂H2

∂Y2

|||||(
Y *

1 , Y *
2

), (8.14)

| |

and Y
'
1 and Y

'
2 are perturbations from Y *

1 and Y *
2 . Equations (8.13) can be written in

the compact matrix form:
Y

'
t = AY

'
+DY

'
xx, (8.15)

where

Y
'
=

{
Y

'
1(t,x)

Y
'
2(t,x)

}
=

{
Y1(t,x)−Y *

1
Y2(t,x)−Y *

2

}
,

A =

{
a11 a12
a21 a22

}
,

D =

{
D1 0
0 D2

}
.
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For linear stability analysis, it is sufficient to assume solution of Equation (8.13) in
the form

Y
'
1 = exp(µt + ikx),

Y
'
2 = exp(µt + ikx), (8.16)

where k and µ are the wave number and frequency, respectively. Corresponding char-
acteristic equation is|||| a11 −D1k2 −µ a12

a21 a22 −D2k2 −µ

|||= 0. (8.17)
|

Solving for µ , we obtain

µ =
1
2

a11 +a22 − k2(D1 +D2)±√{
a11 +a22 − k2(D1 +D2)

}2
−4
{
(a11 −D1k2)(a22 −D2k2)−a12a21

})
.

(

The condition k = 0 corresponds to the neglect of diffusion, and by definition, per-
turbations of zero wave number are stable when diffusive instability sets in. It is thus
required that

a11 +a22 < 0,
a11a22 −a12a21 > 0. (8.18)

Diffusive instability sets in when at least one of the following conditions is violated
subject to the conditions (8.18):

ã11 + ã22 < 0,
ã11ã11 −a12a21 > 0. (8.19)

It is seen that the first condition ã11 + ã22 < 0 is not violated when the
requirement a11 + a22 < 0 is met. Hence, only violation of the second condi-
tion ã11ã11 −a12a21 > 0 gives rise to diffusive instability. Reversal of the second
inequality of Equation (8.19) yields

Q k2 = D1D2k4 − D1a22 +D2a11 k2 +a11a22 −a12a21 < 0. (8.20)( )
( ) ( )

The minimum of Q k2 occurs at k2 = k2
m, where

k2
m =

D1a22 +D2a11

2D1D2
> 0. (8.21)

Thus, a sufficient condition for instability is that Q k2
m be negative. Therefore,

( )
(
a11a22 −a12a21

)
−

D1a22 +D2a11
2

4D1D2
< 0. (8.22)

( )
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Combination of Equations (8.18), (8.21), and (8.22) leads to the following final cri-
terion for diffusive instability:

D1a22 +D2a11 > 2 a11a22 −a12a21
1
2 D1D2

1
2 > 0. (8.23)

( ) ( )
The critical conditions for the occurrence of the instability are obtained when the
first inequality of Equation (8.23) is an equality.

8.4 MODELS DESCRIPTION
By incorporating the diffusion and Holling type III functional response in the gen-
eral prey–predator system with hunting cooperation [1,6], we obtain the following
predator–prey model:

dX
dt '

= rX
{

1− X
K

}
− (λ +aY )X2Y

1+H1 (λ +aY )X2

dY
dt '

= e
(λ +aY )X2Y

1+H1 (λ +aY )X2 −mY (8.24)

where X(t
'
) and Y (t

'
) are the densities of prey and predator population at time t

'
,

respectively. The parameter r is rate of growth of prey, K is its holding efficiency, λ

is the constant invasion rate, and a is the rate of predator hunting cooperation. The
parameter e is the efficiency of conversion, and m is the natural death rate of predator.
H1 is the predator’s handling time. All parameters are positive.

On the other hand, we assume that the prey and predator populace densities spread
without any order, and this random distribution of species is depicted by diffusion.
Then, we propose a spatial prey–predator model with hunting cooperation and Allee
effects in predators corresponding to Equation (8.24) as follows:

∂X
∂ t '

= rX
{

1− X
K

}
− (λ +aY )X2Y

1+H1 (λ +aY )X2 +d1∇
2X

∂Y
∂ t '

= e
(λ +aY )X2Y

1+H1 (λ +aY )X2 −mY +d2∇
2Y (8.25)

where the non-negative constants d1 and d2 are the diffusion coefficients of prey and
predator, respectively. ∇2 is the usual Laplacian operator in d ≤ 3 space dimensions.

The great number of the research work is based upon the nondimensional models
of the nonlinear coupled partial differential equations as they have less number of
parameters. Following [1], the variables are scaled as

u =
eλ

m
X , v =

λ

em
Y, t = mt

'
,

√ √
and dimensionless values of other parameters are given by

σ =
r
m
, N =

√
eλ

m
K, α =

a
λ

√
em
λ

, h1 =
m
e

H1.
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With these changes, Equations (8.25) becomes

∂u
∂ t

= σu
{

1− u
N

}
− (1+αv)u2v

1+h1 (1+αv)u2 +d1∇
2u

∂v
∂ t

=
(1+αv)u2v

1+h1 (1+αv)u2 − v+d2∇
2v. (8.26)

This is the working spatial prey–predator model with hunting cooperation and Allee
effects in predators. Generally, to make certain that spatial patterns are governed by
reaction–diffusion method, model (8.26) is to be analyzed with the following initial
conditions:

2D : u(x,y,0)> 0, v(x,y,0)> 0, (x,y) ∈ Ω = [0,L]× [0,L] (8.27)

and Neumann’s boundary condition

∂u
∂ν

=
∂v
∂ν

= 0, (8.28)

where L is the size of the homogeneous spatial domain, and ν is the outward unit
normal on the boundary ∂Ω. The aim of our study in this chapter is to investigate
the phenomena of diffusion-driven instability (spatial pattern) and higher order insta-
bility analysis outside the diffusion Driven instability domain, in the predator–prey
system with hunting cooperation and Allee effects in predator.

8.5 SPATIOTEMPORAL MODEL

8.5.1 INITIAL DENSITY DISTRIBUTION

The spatiotemporal pattern formation generally onsets with a community interplays
of species. The initial conditions for model (8.26) should be stated by the mathemat-
ical compact support function that is within a definite domain the initial distribution
of prey & predator is non-zero and elsewhere zero. The structure of the realm and the
outlines of the species densities can be dissimilar in different prey-predator models.
In this study, we have employed the initial distribution of species such as statistically
uncorrelated Gaussian white noise perturbation in space:

u(xi,y j,0) = u*+ γ1εi j,

v(xi,y j,0) = v*+ γ2ηi j, (8.29)

where γ1 and γ2 are very small real numbers, and εi j and ηi j are statistically un-
correlated Gaussian white noise perturbations with zero mean and fixed variance in
two-dimensional space.
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8.5.2 EQUILIBRIA OF SYSTEM

In absence of diffusion, the equilibrium points of the system are given by{ }
σu 1− u

N
− (1+αv)u2v

1+h1 (1+αv)u2 = 0,

(1+αv)u2v
1+h1 (1+αv)u2 − v = 0. (8.30)

Clearly, the above system has the following meaningful steady-state points: (i)
E0(0,0) (prey and predator both extinct), (ii) E1(N,0) (prey only survive), and (iii)
two positive coexistence equilibrium points E2(u2,v2) and E{ } 3{(u3,v3) (interior equi-}
librium solutions), where v 1 1 1 1

2 = − = −
α (1−h u )u 1 and v3 1 ,

1 2 2 α (1−h1u3)u3
and

u2, u3 be the positive solution of

A0u4 +A1u3 +A2u2 +A3u+A4 = 0, (8.31)

where
A0 = h1ασ , A1 = (h1N − 1)ασ , A2 = ((1 − h1)ασ − h1)N, A3 = (1 − h1)N,
A4 =−N.

The number of coexistence equilibrium points and their stability depends upon
the parameter values for the model (8.26).

8.5.3 STABILITY ANALYSIS OF SYSTEM

The Jacobian matrix (J) of the model of Equation (8.26) is as follows:

[| σ(1− 2u
N )+ v(1+vα)[(1+vα)h1u2−1]

[1+(1+vα)h1u+(1+vα)h1u2]2
− u[1+2αv+(1+αv)2h1u+(1+αv)2h1u2]

[1+(1+αv)h1u+(1+αv)h1u2]2

− v(1+vα)[(1+vα)h1u2−1]
[1+(1+vα)h1u+(1+vα)h1u2]2

u[1+2αv+(1+vα)2h1u+(1+vα)2h1u2]
[1+(1+vα)h1u+(1+vα)h1u2]2

−1
| ,

=

[
∆11 ∆12
∆21 ∆22

]
= (∆i j)2×2 . (8.32)

]

1. At E0(0,0), Jacobian matrix is

J0 =

[
σ 0
0 −1

]
,

whose eigenvalues are −1 and σ (which is a positive parameter). Hence,
the system is unstable at the origin.

2. At E1(N,0), Jacobian matrix is

J1 =

[
−σ − N

1+h1N+h1N2

0 N
1+h1N+h1N2 −1

]
,

whose eigenvalues are −σ and N
1+h1 1N+h 2 −1.N

N 1.1+h1N+ 1N2 <h

Hence, the system is locally

asymptotically stable if
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3. At E2(u2,v2)

Lemma 8.5.1 The equilibrium solution E2(u2,v2) is locally asymptotically stable if
and only if

(N−Nσ +2σu2)(1+h1u2(1+v2α)+h1u2
2(1+v2α))2−N(u2(1+2αv2)−v2(1+

αv2)+(h1u2 +h1v2 +h1)(1+αv2)
2u2

2)> 0,

and

u2v2(1 + αv2)(1 − h1u2
2(1 + αv2))N(1 + 2αv2 + h1u2(1 + αv2)

2 + h1u2(1 +
αv2)

2) + (−(1 + h1u2
2(1 + αv2) + h1u2(1 + αv2))

2 + u2(1 + 2αv2 + h1u2(1 +
αv2)

2 + h1u2
2(1 + αv2)

2))(v2(1 + αv2)N(−1 + h1u2
2(1 + αv2)) − 2σu2(1 +

h1u2(1+αv2)+h1u2
2(1+αv2))

2+σN(1+h1u2(1+αv2)+h1u2
2(1+αv2))

2)> 0.

Proof. The eigenvalues of the corresponding Jacobian matrix J at equilibrium solu-
tion E 1

2(u2,v2) are given by (2 µ1 ±µ2), where

µ1 = σ(1− 2u2

N
)−1+

v2(1+αv2)(h1u2
2(1+αv2)−1)

(1+h1u2(1+αv2)+h1u22(1+αv2))2

+
u2(1+2αv2 +h1u2(1+αv2)

2 +h1u2
2(1+αv2)

2)

(1+h1u2(1+αv2)+h1u22(1+αv2))2 ,

√
µ2 = µ 21 −4µ3 and µ3 is the determinant of Jacobian J at E2(u2,v2). Hereby, the
coexistence equilibrium solution E2(u2,v2) is locally asymptotically stable if and
only if µ1 < 0 and µ3 < 0.

Lemma 8.5.2 The reaction–diffusion system Equation (8.26) enters into a Hopf
bifurcation around E2(u2,v2) at σ = σhb, where σhb satisfies the equality σhb =
N 2((1+h1u2(1+αv2)+h1u 2

2 (1+αv2)) −u2(1+2αv2)+v2(1+αv2)−(h1+v2h 2
1+u2h1)(1+αv2) u 2

2 ) .
(N−2u2)(1+h1u2(1+αv 22)+h1u2 1+αv 2( 2))

Proof. The characteristic equation corresponding to the equilibrium solution
E2(u2,v2) is given by λ11 −µ1λ11 +µ3 = 0.2 Let us assume that

u ≈ exp(λ11t), v ≈ exp(λ11t).

If µ1 = 0, then both the eigenvalues will be purely imaginary provided µ3 is pos-
itive and there are no other eigenvalues with negative real part. Presently, µ1 = 0
gives σ = σhb. Substituting λ

2
11 = a1 + ib1 into the equation λ11 − µ1λ11 + µ3 = 0

and separating real and imaginary parts, we obtain (a 2
1 −b 2

1 )−µ1a1 +µ3 = 0 and
2a1b1 − µ1b1 = 0. Differentiating 2a1b1 − µ1b1 = 0 both sides with respect to σ at
σ = σhb and considering a1 = 0, we get

da1

dσ

||||
σ=σhb

=
1
2

{
1− 2u2

N

}
= 0.

|
/
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For a change of stability about E2(u2,v2), we should have the real part of λ11, that
is, a1 = 0. Hence, the system undergoes a Hopf bifurcation at E2(u2,v2) as σ passes
through the value σhb.

8.6 ANALYSIS OF THE SPATIOTEMPORAL MODEL
Interior equilibrium point E2(u2,v2) of non-spatial system is spatially homogenous
steady state, that is, constant in space and time for the reaction–diffusion system
(spatiotemporal model). We assume that E2(u2,v2) is stable in non-spatial system
which means the spatially homogenous steady state is stable with respect to spa-
tially homogenous perturbations. Though the diffusion is often consider as a stabi-
lizing process, it is a well-known fact that diffusion can make a spatially homogenous
steady-state linearly unstable (Turing instability) with respect to heterogenous per-
turbations in a system of two interacting species [29,33]. The condition for Turing
instability may be obtained by introducing a small heterogenous perturbation of the
homogenous steady state as follows:

u(x,y, t) = u2 + ε1 exp(λkt)cos(kxx)cos(kyy) ,

v(x,y, t) = v2 + ε2 exp(λkt)cos(kxx)cos(kyy) , (8.33)( )
where ε1 and ε2 are two non-zero reals and k = (k 2 2 2

x,ky), such that k = kx + ky , is
the wave number.

Substituting Equation (8.33) into (8.26) and then linearizing it about interior equi-
librium point E2(u2,v2), we obtain the variational matrix as[|| σ(1− 2u2

N )+
v2(1+v2α)[(1+v2α)h2u2

2−1]
[1+(1+v2α)h1u2+(1+v2α)h2u2

2 ]
2 − k2 − u2 [1+2αv2+(1+αv2)

2h1u2+(1+αv2)
2h1u2

2]

[1+(1+αv2)h1u2+(1+αv2)h1u2
2]

2

− v2(1+v2α)[(1+v2α)h1u2
2−1]

[1+(1+v2α)h1u2+(1+v2α)h1u2
2 ]

2
u2 [1+2αv2+(1+v2α)2h1u2+(1+v2α)2h1u2

2 ]

[1+(1+v2α)h1u2+(1+v2α)h1u2
2 ]

2 −1−dk2

]||
The corresponding characteristic equation is

λ
2 +C1(k2)λ +C2(k2) = 0, (8.34)

where

C1(k2) = (1+d)k2 +1+σ
( 2u2

N
−1
)
−

αu2v2 +(1+αv2)
(
u2 − v2 +h1u2

3(1+αv2)+(h1 +h1v2)u2
2(1+αv2)

)(
1+h1u22(1+αv2)+h1u2(1+αv2)

)2 ,

C2(k2) =
2(1+dk2)u2

(
1+u2

4h1
2(1+αv2)

2
)
σ +(1+dk2)v2N(1+αv2)+(k2 −σ)

(
(1+dk2)N +u2

(
−1−2v2α +2h1(1+dk2)(1+αv2)

)
N
)(

1+h1u22(1+ v2α)+h1u2(1+ v2α)
)2N

+

h1u2
4(1+ v2α)2(2(−1+2h1(1+dk2))σ +h1(1+dk2)(k2 −σ)N)+2u2

3(1+αv2)(2h1(1+dk2)−h1(1+αv2)+h1
2(1+dk2)(1+αv2))σ(

1+h1u22(1+ v2α)+h1u2(1+ v2α)
)2N

+

u2
3(1+αv2)h1(−1+2h1(1+dk2))(1+αv2)(k2 −σ)N −2σu2

2(−1−2v2α +2h1(1+dk2)(1+αv2))+u2
2(1+αv2)h1(1+αv2)(k2 −σ)(

1+h1u22(1+ v2α)+h1u2(1+ v2α)
)2N

+

u2
2h1

2(1+dk2)(1+αv2)(k2 −σ)+h1(1+dk2)(−2k2 + v2 +αv2
2 +2σ)(

1+h1u22(1+ v2α)+h1u2(1+ v2α)
)2N

.

By Routh–Hurwitz criterion, the system Equation (8.26) will be stable about
E u v if C k2 0 and C k2 2

2( 2, 2) 1( ) > 2( ) > 0. As the parameters D and k are all pos-
itive and by the stability of the non-spatial model, C1(k2) > 0 is always positive.
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Therefore, the condition for diffusive instability is C2(k2)< 0.

The polynomial function C2(k2) has a minimum for some value of k, say kmin,
where

k2
min =

1

2Nd(h1 +h1u2)
(
1+u2(h1 +h1u2)(1+αv2)

)2

×

({
−1−u2(h1 +h1u2)− (−1+h1 +h1u2)

(
1+u2(h1 +h1u2)(1+αv2)

)2
}

N

+d(h1 +h1u2)(v2(1+αv2)
(
−1+h1u2

2(1+αv2)
)
−2σu2(

1+u2(h1 +h1u2)(1+αv2)
)2

+σN
(
1+u2(h1 +h1u2)(1+αv2)

)2

)
.

For this minimum value of k, Turing instability will occur when C2(k2 ) <min 0.
Therefore, substituting k2

min in C2(k2), we get the sufficient condition for Turing
instability as

d∆11 +∆22 −2
√

d ∆11∆22 −∆12∆21 > 0 (8.35)
√

The interval of the wave number for which Turing instability takes place is (k−,k+),
and in this interval, we have C2(k2)< 0, where

k− =
d∆11 +∆22 − (d∆11 +∆22)2 −4d(∆11∆22 −∆12∆21)

2d
,

√
k+ =

d∆11 +∆22 + (d∆11 +∆22)2 −4d(∆11∆22 −∆12∆21)

2d
,

√
where the values of ∆i j, i, j = 1,2 are obtain from Equation (8.32) about E2(u2,v2).

8.7 NUMERICAL SIMULATIONS
We will now investigate the numerical results of both spatiotemporal as well as non-
spatial models. For numerical simulation, we set σ , N, h1 as σ = 10.0, N = 1.2,
h1 = 0.01 and consider cooperation rate (α), as a controlling parameter. For these
values of parameters, the positive equilibrium points are (0, 0), (1.2, 0), (0.6875,
2.9362), and (0.7638, 2.7763). The steady state (0.6875, 2.9362) is stable and
(0.7638, 2.7763) is unstable. Hence, throughout our study in the spatiotemporal do-
main, we have considered the stable steady state (0.6875, 2.9362). Figure 8.1 shows
the time evolution of prey and predator in the non-spatial domain. Please note that
the nondimensional parameter N eλ= m K, comprising of the dimensional carrying
capacity, attack rate, per capita mortality rate of predators and the conversion effi-
ciency, which is defined as the average number of offspring produced by a single
predator during its life time, when introduced into the prey population at carrying
capacity. If N = 1.2 and the cooperation coefficient α ( = 0.1, 0.5) is small, then
the predator population goes to extinct as the prey population is too small to sustain



186 Recent Advances in Mathematics for Engineering

them (see Figure 8.1a,b). However, for large value of α ( = 0.6, 0.7, 0.8), the preda-
tor survives due to hunting cooperation behavior in predators (see Figure 8.1a,b).
Figure 8.2 shows the bifurcation diagram for prey and predator species density with
α as the bifurcation parameter. We begin by varying the rate of hunting cooperation
α (see Figure 8.2). The prey only equilibrium solution (u=N, v= 0) is always stable
for all values of cooperation rate α (solid red lines). For some value of cooperation
rate α , a Hopf bifurcation occurs (α = 0.7671): the stable coexistence equilibrium
loses stability so that stable limit cycle oscillations emerge, and their amplitudes
quickly increase with α .

Figure 8.1 Time evolution of (a) prey and (b) predator in the non-spatial domain of the
model for fixed parameters σ = 10.0, N = 1.2, h1 = 0.01 and different parameter values of
hunting cooperation rate (α) which are mentioned in figures.

Figure 8.2 The bifurcation diagram with the rate of hunting cooperation (α) as the bifur-
cation parameter, and the parameters N, σ , h1 are fixed at N = 1.2, σ = 10, h1 = 0.01, re-
spectively. 8.2(a) The prey density (y-axis) is plotted verses cooperation rate α (x-axis), and in
8.2(b), the predator density (y-axis) is plotted verses cooperation rate α (x-axis). The solid red
part of curve is where the steady state is stable, the solid gray part of curve, unstable. The filled
solid green circles denote stable periodic solution branch, and blue open circles are unstable,
which begins at the Hopf bifurcation value α = 0.7671.
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For spatiotemporal model, we perform all the numerical simulations of the system
(8.26) over the non-zero initial condition and zero-flux boundary conditions, in two-
dimensional spatial domain. The domain size is 50× 50 with time-step ∆t = 0.001
and space-step ∆x = ∆y = 0.5. The parameter values of σ , N, and h1 remain same
(σ = 10, N = 1.2, h1 = 0.01), and α is used as the controlling parameter (just like
the non-spatial case).

Note: The Neumann zero-flux conditions are placed at boundary of the numerical
domain in two-dimensional problems. The size of the domain is chosen large enough
so that the impact of the boundaries has been kept as small as possible during the
simulation time.

We now demonstrate diffusive induced instability (Turing instability) and the cor-
responding pattern formation for the system Equation (8.26). Although the suffi-
cient conditions for Turing instability were obtained analytically in the previous sec-
tion, whether they are satisfied with our corresponding set of parameter values, they
are yet to be tested. In order to do so, we sketch the Turing instability condition
(8.35) for distinct values of d (other parameter values are fixed, namely, σ = 10.0,
α = 0.55, N = 1.2, h1 = 0.01). Figure 8.3a shows the zone for the emergence of
spatial patterns corresponding to Turing instability condition against the ratio of
diffusion coefficients (d). We observe that the sufficient condition of the diffusive
instability, that is, Equation (8.35) holds, when d is adequately small, ending on
d = 0.039 (see Figure 8.3a). The spatial dispersion curve for this particular model
is shown in Figure 8.3b, and the dispersion relation is represented by the real part
of the largest eigenvalues of the spatial model. The corresponding plot of real part
of largest eigenvalue Re(λ ) against the wave number (k) is shown in Figure 8.3b.
The real part of largest eigenvalue Re(λ ) > 0 holds, the wave number (k) fits in the
interval (k−,k+), that is, (0.5635,2.0160). Also, we obtain the controlling parame-
ter space for Turing instability via sufficient condition, which is shown in Figure 8.4.
In Figure 8.5, we have illustrated the density distributions of prey and predator which
covers three kinds of spatial pattern, namely spots, mixed (spots-stripes) and stripes.
Figure 8.5a,d shows the two-dimensional stationary diffusive patterns of the model
(8.26) at time t = 2,000 (2,000,000 iterations) and α = 0.55 with diffusion coefficient

Figure 8.3 (a) Zone for the emergence of spatial pattern corresponding to Turing instability
condition and (b) characterization of the dispersal relation for d = 30.
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Figure 8.4 Controlling parameters space for Turing patterns corresponding to Turing insta-
bility condition in the region.

Figure 8.5 Two-dimensional spatial patterns of the prey (ac) and predator (df) at time mo-
ment t = 2,000 (2,000,000 iterations) for different values of cooperation rate (α) with initial
distribution. (a,d) α = 0.55; (b,e) α = 0.56; (c,f) α = 0.57. Other parameter values are σ = 10,
N = 1.2, h1 = 0.01, d = 0.023.

ratio d = 0.023 for the prey and predator population. In these figures, hexagonal
patterns (spots) prevail over the entire habitat eventually. In Figure 8.5a, it is ob-
served that the blue spots (minimum density of prey) are distributed on a reddish
background (maximum density of prey); that is, the preys are segregated with low
population density. On the other hand, Figure 8.5d consists of red spots on a blue
background; that is, the predators are isolated with high population density. As the
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Figure 8.6 2D spatial patterns of the prey (ac) and predator (df) at time moment t = 2,000
(2,000,000 iterations) for different values of diffusion coefficient (d) with initial distribution.
(a,d) d = 0.0175; (b,e) d = 0.02; (c,f) d = 0.028. Other parameter values are σ = 10, α = 0.55,
N = 1.2, h1 = 0.01.

α is increased to 0.56, some patches split into stripes resulting in spots-stripes pat-
terns in both prey and predator population (see Figure 8.5b,e). When α is increased
to 0.57, the dynamics of the model exhibits a decay in the spot and emergence in
stripes pattern only (Figure 8.5c,f ). Thus, by increasing the control parameter α , a
sequence spots → spot-stripes → stripes is observed.

Figure 8.6 demonstrates the spatial patterns of prey and predator with respect
to different diffusion rates d. Figure 8.6a,d shows the two-dimensional spatial pat-
terns of the model (8.26) at time t = 2,000 (2,000,000 iterations) with diffusion rate
d = 0.0175 for the prey and predator population. In these figures, the stripes pattern
prevails over the entire habitat. In Figure 8.6a, it is observed that blue stripes (mini-
mum density of prey) are distributed on a reddish background (maximum density of
prey). On the other hand, Figure 8.6d consists of red stripes on a blue background.
As the diffusion rate d is increased to 0.02, some stripes split into spots resulting
in spots-stripes patterns in both prey and predator population (Figure 8.6b,e). When
d is increases to 0.028, the dynamics of the model exhibits a decay in the stripes
and emergence in spots pattern (see Figure 8.6c,f). Thus, by increasing the d (rate of
diffusion), a sequence stripes → spot-stripes → spots is observed.

8.8 DISCUSSION AND CONCLUSION
In theoretical ecology, intensive studies of the mechanisms and scenarios of pattern
formation, in models of interacting populations, have always been an attraction, as
their perception helps to enhance the understanding of real-world ecological systems.
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In this chapter, we have considered a diffusive predator–prey model with hunting co-
operation in predators and type III functional response under non-zero initial condi-
tions and zero-flux boundary conditions. We have provided elaborate analysis of both
non-spatial and spatiotemporal models, and studied possible scenarios of pattern for-
mation in the diffusive predator–prey model with hunting cooperation in predators.
While studying the spatiotemporal model, we first obtain the condition for diffusive
instability and identified the corresponding domain in the space of controlling pa-
rameters. The hunting cooperation coefficient and the ratio of diffusion coefficient
are the controlling parameters in our study. Using the parameter values from Tur-
ing domain, we investigate the properties of the system using extensive numerical
simulations.

Our model simulation has been categorized in two separate domains, namely, the
non-spatial and the spatial domains. We have highlighted the effect of hunting co-
operation in predators along with carrying capacity of the predators. After simulated
numerically, we confirmed that in the non-spatial domain, for fixed N, the increase in
the hunting cooperation in the predators helps them to survive. In the spatial domain,
for fixed N, the hunting cooperation in predators plays a crucial role in the coexis-
tence. By varying the values of cooperation coefficient, we get dissimilar types of
diffusive patterns, namely, patchy pattern (spots), stripe pattern, and mixed pattern
(spot-stripe). From the point of view of population dynamics, one can observe that
there exists the pattern formation (spot) for preys implying that the preys are scat-
tered with low density and the remaining region is high dense, which means that the
preys have segregated in very small groups over the large area and are safe. Similarly,
spot formation in predators conveys that with hunting cooperation, the predators are
scattered and isolated but still survived. Large African predators such as cheetah
(Acinonyx jubatus), leopard (Panthera pardus), and lion (Pathera leo) regularly pre-
date ungulates and double their mass with the possibility of injury or death to the
predator during prey capture but can easily be overcome by cooperative hunting that
may improve hunting success rate [8].

The methods and consequences in the study may amplify the systematic investi-
gation of spatial pattern formation in the predator–prey systems, and may nicely en-
force in some different research dimensions. Further analysis are important to study
the patterns dynamics of some more diffusive ecological models. It would be inter-
esting to study the traveling waves in the spatial predator–prey models with hunting
cooperation in predators. This work highlights a number of research areas for future
consideration in spatial pattern formation.
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9.1 INTRODUCTION

Numerical methods are well known in the field of science and engineering to solve
various linear and nonlinear ordinary differential equations (ODEs). Some of the
well-known methods developed to solve the ODEs include but not limited to Euler’s
method, Picard’s method, Taylor’s series method, and Runge–Kutta (R-K) method.
These methods have gone through various stages of development with the advance-
ment of the programming languages and for the various applications to real life ap-
plications. This chapter is an attempt to discuss the development in R-K method
since its existence. This method is developed for various orders of convergence, i.e.,
ranging from order 1 to order 4. In all these available versions of R-K method, the
method of fourth order becomes more famous because of its convergent properties.
This method is of excessive practical significance with mentioned accuracy and nu-
merical stability in comparison with the well-known Euler’s method.
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The Taylor’s series method [8] which is well known for solving differential equa-
tions numerically becomes ineffective for the problem which involves the higher
order derivatives. Also, the well-known Euler’s method is less effective in the prac-
tical problems since it requires the step size (h) to be small for obtaining reasonable
accuracy. The merit of R-K methods as compared to the above-discussed methods in-
volves no requirement of the calculations for higher order derivatives, and also they
are designed to give greater accuracy with the advantage of requirement of only the
function values at some selected points on the sub-interval. These methods agree with
Taylor’s series solution up to the terms of hr where r is the order of the R-K method.

According to Arumugan et al. [1], problems in science and engineering can be
solved by reducing them to differential equations satisfying certain conditions. Ana-
lytic methods can be applied to solve many standard types of differential equations.
However, some differential equations generated from physical problems are so com-
plex that they can be solved efficiently by numerical methods. The general solution of
a differential equation of the nth order has n arbitrary constants; hence, to compute
its numerical solution, n conditions are needed. If these n conditions are specified
at the initial point only, then it is called an initial value problem. If on the other
hand, the conditions are specified at two or more points, then it is called a boundary
value problem.

The initial value problem, dy =dx f (x,y) with the initial condition y(x0) = y0 , can
be solved by any method from the methods categorized in the following groups of
methods:

1. Single-step or pointwise methods: In these methods, the solution is ap-
proximated by a truncated series and each term of the series is a function
of x. A solution of this type is called a pointwise solution. The methods by
Taylor and Picard belong to this category.

2. Step by step methods: Here, the values of solution are computed by short
steps ahead for equal intervals h of the independent variable. These values
are then iterated till the desired accuracy is attained. The methods of Euler,
Milne, Adams–Bashforth, Runge–Kutta, and others constitute this category.
Among all these methods, this chapter will focus and discuss on the R-K
method of various orders.

9.2 DEVELOPMENT OF RUNGE–KUTTA METHOD
In the last decade, many researchers have devoted their efforts in development of nu-
merical methods to solve the ODEs efficiently with good accuracy. One such method
is the R-K method that was developed by Runge [13] and Kutta [9], the two German
Mathematicians in early 1900 in context to find the solution to differential equation
in field of atomic spectra. This method came into existence from a procedure that was
basically developed while working on the numerical solution of algebraic equations.
These methods possess the strength that they are easy to program and are capable
to compute solution of ODEs as compared to other methods except if the calcula-
tions of the function are complicated. The idea of generalizing the Euler’s method,
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by allowing for a number of evaluations of the derivative to take place in a step, was
due to Runge’s paper of 1895.

In the paper, Runge dealt with an initial value problem of the form dy =dx
f (x,y), y(x0) = y0. He explored three main schemes. The first of these three meth-
ods is the midpoint role adapted to ODEs, whereas the second and third methods are
different versions of the trapezoidal rule. The last of these methods suggests iterative
computation of the stage values.

Further contributions were made by Heun in 1900 [7] and Kutta 1901 [9]. The lat-
ter completely characterized the set of R-K methods of order 4 and proposed the first
method of order 5. In his paper, which appeared in 1901, Kutta discussed the analysis
of R-K methods as far as order five and systematically obtained the order conditions
up to fifth order. However, this was incomplete in two different respects. First, his
analysis was for only a first-order differential equation, rather than a system of equa-
tions. The other sense in which the work of Kutta was incomplete was that his order 5
methods have slight errors in them. These errors were corrected by Nystrom in 1925
[11]. The first phase in the history of R-K methods ended by the work of Nystrom.
He took the analysis of the fifth-order methods to its completion. It was not until the
work of Huta in 1957 that the sixth-order methods were introduced. The theory for
a system comes out of the work of Gill in 1951 [6] and Merson in 1957 [10] and by
Butcher in 1996 [3].

Since the advent of digital computers, most of the researchers’ interest has been
focused on R-K methods, and a large number of research workers have contributed
to recent extensions of the theory, and to the development of extended R-K methods.
Although early studies were devoted entirely to explicit R-K methods, interest then
moved to include implicit methods, which got recognized as an appropriate method
for the solution of stiff differential equations.

9.3 THE RUNGE–KUTTA METHODS
Consider the first-order ODE of the form given by

dy
= f (x,y), (9.1)

dx

with condition y(x0) = y0 where points of the domain [x0,xn] are considered at uni-
form distance. The solution at the point xn+1 obtained by y(xn+1) can be obtained by
using the R-K method. The method is based upon the concept of weighted average of
slopes at various points in the domain. Considering m slopes, in general the formula
for the method can be written as

m
yn+1 = yn + ∑ wiki (9.2)

i=−1

where wi are the constant weight coefficients and ki are the coefficients to be calcu-
lated. As discussed and presented by Bucher [4], each formula of R-K method can be
represented in a tabular form known as Bucher table. This table provides a summary
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of the values of the constants with respect to ki inform of steps involved with final
row of table as the represented final formula.

Following are the details of R-K methods of different orders:

1. First-Order R-K method: The Euler’s formula for first approximation to
the solution of the above differential Equation (15.2) is given by:

y1 = y(x0 +h)

On expanding by Taylor’s series, it can be rewritten as

y1 = y(x0 +h) = y0 +
h
1!

y
'
0 +

h
2!

y
''
0 + ...

2

Clearly, Euler’s method agrees with the Taylor’s series solution up to the
term in h. Hence, Euler’s method is the R-K method of first order given as

y1 = y0 +hy
'
0 = y0 +h f (x0,y0)

2. Second-Order R-K method: The modified Euler’s formula for numerical
solution ODE given by Equation (15.2) can be obtained from

y1 = y0 +
h
2
( f (x0,y0)+ f (x0 +h,y0 +h f (x0,y0)))

= y0 +
h
2
( f0 + f (x0 +h,y0 +h f0)), (9.3)

where f0 = f (x0,y0). Expanding the LHS by Taylor’s series, we get

y1 = y(x0 +h) = y0 +
h
1!

y
'
0 +

h2

2!
y
''
0 +

h3

3!
y
'''
0 + .

Expanding f (x0 +h,y0 +h f0) by Taylor’s series for a function of two vari-
ables, we have

f (x0 +h,y0 +h f0) = f (x0,y0)+
h
1!

d f
dx

(x0,y0)

+ h
(

d f
dx

)
(x0,y0)

)
+O(h2)

(( )

where O(h2) represents all the terms involving second and higher powers
of h. Using this expression in Equation (9.3), we get

y1 = y0 +
h
2
( f0 + f (x0,y0)+h

d f
dx

(x0,y0)+h
d f
dx

(x0,y0))+O(h2)

y1 = y0 +hy
'
0 +

h2

2!
y
''
0 +O

(
h3) , (9.4)

( ) ( )
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Comparing Equations (9.3) and (9.4), it can be concluded that the modi-
fied Euler’s method agrees with Taylor’s series solution up to the h2 term.
Hence, the modified Euler’s method is the R-K method of second order or
midpoint method. Therefore, the second-order R-K formula is given by

y1 = y0 +
1
2
(k1 + k2)

where k1 = h f (x0,y0), k2 = h f (x0 + h k,y0 + 1 )2 . In form of Bucher table,
the formula can be represented as in Table 9.1.

3. Third-Order R-K formula: The formula for the third order R-K method
is given by

y1 = y0 +
1
6
(k1 +4k2 + k3) (9.5)

where k1 = h f (x0,y0), k2 = h f (x h
0 + ,2 y k

0 + 1 )2 , k3 = h f (x0 + h,y0 −
k1 + 2k2). In form of Bucher table, the formula can be represented as in
Table 9.2.

4. Fourth-Order R-K method: This method is the most commonly used
Runge–Kutta (R-K) method. The working rule for solving the initial value
problem given by Equation (15.2) using the fourth-order R-K method is as
follows:

y1 = y0 +
1
6
(k1 +2k2 +2k3 + k4) (9.6)

Table 9.1
Bucher Table for the
Second-Order R-K Formula

k2

0

0
1
2

k1

0
1
2
1
2

h
0
1
2

Table 9.2
Bucher table for the Third-Order
R-K Formula

k3

0

0

1
6

k2

0

0
2
4
6

k1

0
1
2

−1
1
6

0
1
2

1

h
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( )
The four required constants are k1 = h f (x0,y0), k2 = h f x h

0 + ,y k
0 + 1 ,

k h k2
3 = h f x0+ ,y0+ , k4 = h f (x0+h,y0+k3)

2 2( )
2 2 . Similarly, the value of y2

in the second interval is obtained by replacing x0 by x1 and y0 by y1 in the
above set of formulae. In general, to find yn, we substitute xn−1, yn−1 in the
expression for k1, k2, etc. It should be noted that
• The operation is identical for both linear and nonlinear differential equa-

tions.
• To evaluate yn+1, we need information only at the point yn. Information

at the points yn−1,yn−2, etc. is not directly required. This indicates that
R-K methods are step-based methods.

In form of Bucher table, the formula is represented in Table 9.3.
5. Fifth-Order R-K method: The fifth-order R-K method was introduced by

Kutta [9], but since there were errors in the presentation of his results, it was
then partly corrected by Nystrom [12] and Lawson [10] separately that give
rise to two different formulations of the fifth-order R-K method. But the
formula by Lawson becomes famous as the fifth-order R-K method given as
follows with Bucher table of the formula can be represented as in Table 9.4:

y1 = y0 +
1

90
(7k1 +32k3 +12k4 +32k5 +7k6) (9.7)

Table 9.3
Bucher table for the Fourth-Order
R-K Formula

k4
0
0
0
0
1
6

k3
0
0
0
1
2
6

k2
0
0
1
2
0
2
6

k1
0
1
2
0
0
1
6

h
0
1
2
1
2
1

Table 9.4
Bucher table for the Fourth-Order R-K Formula

h k1 k2 k3 k4 k5 k6

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0

1
4

3
16

1
16 0 0 0 0

1
2 0 0 1

2 0 0 0
3
4 0 −3

16
6
16

9
16 0 0

1 1
7

4
7

6
7

−12
7

8
7 0

7
90 0 32

90
12
90

32
90

7
90
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with k1 = h f (x0,y0), k2 = h f
(
x0 +

h
2 ,y0 +

k1
2

)
, k3 = h f

(
x0 +

h
4 ,y0 +

3k1
16 +

k2
16

)
, k4 = h f

(
x0 +

h
2 ,y0 +

k3
2

)
, k5 = h f

(
x0 +

3h
4 ,y0 − 3k2

16 + 6k3
16 + 9k4

16

)
, k6 =

h f
(
x0 +h,y0 +

k1
7 + 4k2

7 + 6k3
7 + 12k4

7 − 12k4
7 + 8k5

7

)
.

9.4 EXTENSION OF RUNGE–KUTTA METHODS
Apart from the R-K method of order first to fifth, all of which are due to Runge
and Kutta, the original authors, there are other special methods which are a sort of
extension to the earlier methods. These modified methods developed on the theme of
R-K method are discussed as follows:

1. RK34 method: This method was proposed by Abebe [2] and Gustaf [14]
as a combination of the R-K third and fourth methods usually called
Embedded R-K method and is given as follows:
RK34 of order four

y1 = y0 +
1
6
(k1 +2k2 +2k3 + k4)

RK34 of order three

y1 = y0 +
1
6
(k1 +4k2 + l3)

where k1 = h f (x0,y0), k2 = h f (x0 +
h
2 ,y0 +

k1
2 ), k3 = h f (x0 +

h
2 ,y0 +

k2
2 ),

l3 = h f (x0 +h,y0 −hk1 +2hk2), k4 = h f (x0 +h,y0 + k3)
2. Runge–Kutta–Fehlberg (RKF45) method: This is a numerical method

which was developed by famous mathematician Erwin Fehlberg with the
modification of the well-known R-K method in 1969. This [5] method has
a procedure to determine if the proper step size h is being used. At each
step, two different approximations for the solution are made and compared.
If the two answers are in close agreement, the approximation is accepted.
If the two answers do not agree to a specified accuracy, the step size is
reduced. If the answers agree to more significant digits than required, the
step size is increased. The method is given by
RKF45 of order four

y1 = y0 +
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 +
1
5

k5

RKF45 of order five

y1 = y0 +
16

135
k1 +

6656
12825

k3 +
28561
56430

k4 −
9
50

k5 +
2

55
k6

where k1 = h f (x0,y0), k2 = h f
(
x0+

h
2 ,y0+

k1
2

)
, k3 = h f

(
x0+

3h
8 ,y0+

3k1
32 +

9k2
32 , k4 = h f

(
x0 +

12h
13 ,y0 +

1932k1
2197 − 7200k2

2197 + 7296k3
2197

)
, k5 = h f

(
x0 +h,y0 +

439k1
216 − 8k2 +

3680k3
513 − 845k4

4104

)
, k6 = h f

(
x0 +

h
2 ,y0 − 8k1

27 + 2k2 − 3544k3
2565 +

1859k4
4104 − 11k5

40

)
.

)
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3. Runge–Kutta–Gill method: The Runge–Kutta–Gill method [6] is the most
widely used single-step method for solving ODEs and is given by

y1 = y0 +
1
6

(
k1 +2

(
1− 1√

2

)
k2 +2

(
1+

1√
2

)
k3 + k4

)
+O(h5) (9.8)

where k1 = h f (x0,y0), k2 = h f x0 + h
2 ,y0 + k1

2 , k3 = h f x0 + h
2 ,

y0− − 1
2 +

1√
2

)
k1+

(
1− 1√

2

)
k2

)
, k4 = h f

(
x0+h,y0− k2√

2
+(1+ 1√

2
)k3

)
.

( ) (
(

4. Runge–Kutta–Merson method: This method [10] outlines a process for
deciding the step size for better predetermined accuracy. For this method,
five functions are evaluated at every step. The algorithm is given by

y1 = y0 +
1
6
(k1 +4k4 + k5)+O(h5) (9.9)

where k1 = h f (x0,y0), k2 = h f (x0 +
h
3 ,y0 +

k1
3 ), k3 = h f (x0 +

h
3 ,y0 +

k1
6 +

k2
6 ), k4 = h f (x0 +

h
2 ,y0 +

k1
8 + 3k2

8 ), k5 = h f (x0 +h,y0 +
k1
2 − 3k2

2 +2k4).
5. RK43 method: This method applied the following four stages to arrive at

the solution:

y1 = ym +
h
2

f (xm,ym)

y2 = y1 +
h
2

f (x1,y1)

y3 =
2
3

ym +
y2

3
+

h
6

f (x2,y2)

ym+1 = y3 + 2
f (x3,y3)

h

6. RK54 method: This method applies the following five stages to arrive at
the solution:

y1 = ym +0.391752226571890h f (xm,ym)

y2 = 0.444370493651235ym +0.555629506348765y1 +0.368410593050371h f (x1,y1)

y3 = 0.620101851488403ym +0.379898148511597y2 +0.251891774271694h f (x2,y2)

y4 = 0.178079954393132ym +0.821920045606868y3 +0.544974750228521h f (x3,y3)

ym+1 = 0.517231671970585y2+0.096059710526147y3+0.063692468666290h f (x3,y3)

+0.386708617503269y4 +0.226007483236906h f (x4,y4)
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Table 9.5
The Results Are Presented in the Form of Maximum Absolute Errors

Methods
Fifth order R-K

Max. Error
9.67E-12

Position of Accuracy
First

ODE45 9.46E-11 Second
Fehlberg RK45 of fourth order 9.48E-10 Third
Fehlberg RK45 of fifth order 9.48E-10 Third
Mersons 9.70E-10 Fifth
Gills 9.87E-9 Sixth
RK34 of third order 8.71E-9 Seventh
Fourth order 8.71E-9 Seventh
Third order 9.99E-7 Ninth
Second order 9.46E-5 Tenth
RK54 9.21E-3 Eleventh
RK43 9.20E-3 Twelfth
RK34 of fourth order 8.27E-3 Thirteenth
First order 7.32E-3 Fourteenth

9.5 NUMERICAL RESULTS
In this section for demonstrating the efficiency of different orders of R-K method in
solving the given differential equation, an ODE is solved by the different orders of
R-K methods. The obtained solutions are compared with the exact solution of the
equation in order to ascertain the level of accuracy with regard to each method.

The Problem: Obtain the approximate value of the solution (y) for the initial
value problem

y
'
=−2xy2,y(1) = 1,

using different R-K methods with step h = 0.05. The exact solution of the equation
is given by y 1= . The solution is obtained by R-K method with domain [1,2] withx2

number of partitions as N = 21 using a MATLAB program. In Table 9.5, the results
are presented in the form of maximum absolute errors.

9.6 CONCLUSION
It may not be clearly identified that which one, out of the discussed different R-K
methods, is more accurate by just studying the solution curves and comparing the
exact solution with approximated solutions obtained for the differential equation se-
lected for the study. It can be seen from the graphs that the solution curves for exact
and approximated solution obtained from almost all different categories coincide
throughout the corresponding values. However, the differences among the solutions
can be detected by studying the tables displaying both the exact and approximated
solutions numerically. On going through observation of all the methods, these meth-
ods can be listed in the order of their accuracies from the most accurate down to the
least accurate as given in Table 9.5.
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TOIP had been addressed by Sylva and Crema (2004), Ehrgott (2006a),
Chinchuluun and Pardalos (2007), and Chankong and Haimes (2008). They have
used different strategies to find the whole set of non-dominated points. Elimination

Existing literature on Bi-objective Integer Programming is abundant; but when the
number of objectives is more than two, the situation changes. Only a few methods
have discussed the TOIP model. Here is a brief review of some of those methods that
have analyzed TOIP problems.

10.2 LITERATURE REVIEW

In Section 10.2, literature is reviewed. Some important concepts for TOIP are pre-
sented in Section 10.3. The proposed algorithm is discussed in Section 10.4. Com-
putational experiments are presented in Section 10.5 and finally, the chapter is con-
cluded in Section 10.6.

In this study, we develop a criterion-based decomposition method to solve a TOIP
problem. The algorithm by Boland et al. (2017) motivated us; when their idea is
combined with Ozlen and Azizoglu (2009) and Ozlen et al. (2014), it has further
scope of improvement. This modified algorithm minimizes the number of constraints
and the binary variables that are added to the problem to decompose the criterion
space, which resulted in a decrease in the number of integer problems (IPs) solved
and hence a decrease in the central processing unit (CPU) time.

A solution for a MOIP can be identified either in the decision space or in the crite-
rion space. Algorithms that search in the criterion space have advantages compared
to the algorithms that search in the decision space (Boland et al., 2017). Basically,
the problem in the criterion space requires less computational effort than that in the
decision space. Therefore, we are focusing search for the non-dominated points in
the criterion space. In this chapter, we consider problems that involve three objec-
tive functions with integer restricted variables, which are called Tri-objective Integer
Programming (TOIP) problems.

In many practical situations, one is required to optimize several objective functions
simultaneously. Since these objective functions may conflict with each other, finding
a solution that can optimize all objective functions at the same time is impossible.
In such cases, non-dominated solutions are of interest which represent points where
value of one objective cannot be improved without adversely affecting the value of
some other objective function. These problems are called multi-objective optimiza-
tion problems, and when variables are restricted to integer values, they are called
Multi-Objective Integer Programs (MOIP) (Antunes et al., 2016; Ehrgott, 2006b;
Greco et al., 2016). Similarly, when variables are continuous, the models are known
as Multi-objective Linear Programming (MOLP) problems and they have been dis-
cussed in Benson (1998) and Benson and Sun (2000, 2002). In Multi-Objective
Mixed-Integer Programming (MOMIP) problems, some variables are continuous and
the remaining variables are restricted to integer values (Al-Hasani et al., 2018; Stid-
sen et al., 2014).

10.1 INTRODUCTION
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of the dominated region method has been used by Sylva and Crema (2004), where
instead of decomposing the criterion space, the authors eliminated the dominated part
from further consideration. In each iteration, new constraints and binary variables are
added to the problem, which makes the problem larger and larger afterwards. That
means more time is required to get the whole set of solution. Further modification of
Sylva and Crema (2004) has been discussed by Lokman and Koksalan (2013) where
the authors provided two new algorithms to find the non-dominated set for a MOIP.
The number of constraints and binary variables required in (Sylva and Crema, 2004)
has been decreased in the first algorithm, and the complexity is further reduced in
the second algorithm by considering bounds for the objective functions. Thus, their
second algorithm outperformed the first one according to their computational exper-
iments.

Some methods have used decomposition in the criterion space to create smaller
sub-problems by adding constraints and binary variables depending on the recent
non-dominated point (Dachert and Klamroth, 2015; Boland et al., 2016). Dachert
and Klamroth (2015) developed a new algorithm by splitting the area of criterion
space into smaller sub-problems by considering neighborhood characteristic to avoid
generating redundant sub-problems. Boland et al. (2016) developed an efficient al-
gorithm for solving TOIP which is called the L-shape method (LSM). The authors
used the criterion space to find the non-dominated points. Combining ideas from
Sylva and Crema (2004) and Dachert and Klamroth (2015) led to the LSM algo-
rithm. There is a disadvantage in this approach; that is, it requires solving more IPs
than what is required by the algorithm developed by Dachert and Klamroth (2015).

Another strategy to solve TOIP is using scalarization technique, that is, the
ε-constraint method (Ehrgott, 2006a; Ozlen and Azizoglu, 2009; Mavrotas and Flo-
rios, 2013; Ozlen et al., 2014) where the multi-objective problem transforms to a
single objective problem. By combining the ε-constraint method and the weighted-
sum method (Aneja and Nair, 1979), Ehrgott (2006a) proposed a new algorithm with
flexible constraints, which is called the method of elastic constraints. In Ozlen and
Azizoglu (2009) and Ozlen et al. (2014), more modifications were proposed using
the objective bounds to identify the non-dominated solutions. They generated all
non-dominated points by shrinking those bounds.

10.3 PRELIMINARIES
10.3.1 BASIC CONCEPT

For completeness, some basic ideas from Ehrgott (2006b), Antunes et al. (2016),
Al-Hasani et al. (2019), and Al-Rabeeah et al. (2019) are reproduced here.

TOIP can be expressed as follows:

maxz1 (x) ,z2 (x) ,z3 (x) (10.1)

subject to x ∈ X where zi(x) represents the objective functions i, i = 1,2,3. X rep-
resents the feasible set in the decision space, and Y represents the feasible set in the
criterion space such that x j ∈ Z for j = 1,2, . . . ,n.

Each objective function: z n
i (x) = ∑ j=1 ai jx j, where ai j ∈ Z such that i = 1,2,3.
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Definition 10.1 A feasible solution x◦ ∈ X in the decision space is called efficient
solution if there is no x ∈ X such that z ◦ ◦

i(x)≥ zi(x ) for each i and zi (x)> zi(x ) for
at least one i. The image z(x◦) of efficient point x◦ in the criterion space is called
non-dominated point. Let XE ,YN denote the set of all efficient solutions and non-
dominated solutions, respectively.

Definition 10.2 Let x◦ ∈ XE be an efficient solution. If there is some positive value
λ such that x◦ T∈ XE is an optimal solution of min ◦ ◦

x ∈ X λ z(x ), then x is termed as
supported efficient solution; otherwise, it is called non-supported efficient solutions,
z(x◦) is termed as supported non-dominated solutions.

Definition 10.3 An efficient solution x◦ ∈ X in the decision space is called strictly
efficient if there is no x ∈ X such that zi(x) ≥ zi(x◦) for each i, image of the strictly
efficient solution in the criterion space is called strictly non-dominated solution.

Definition 10.4 A feasible point in the criterion space is called weakly non-
dominated point if and only if it is not strictly dominated by any other non-dominated
point.

Overall, our interest is to compute the whole set of non-dominated points for
a TOIP model that includes non-dominated supported and non-dominated non-
supported points.

10.3.2 REVIEW OF SOME RECENT APPROACHES

10.3.2.1 The ε-Constraint Method
The ε-constraint method finds the non-dominated points for a general MOIP. It solves
a MOIP by transforming it into a single objective problem by considering one objec-
tive and converting other objectives into constraints with restricted value. Thus, the
problem (10.1) is reformulated as

maxz3 (x)
s.t. x ∈ X , zi(x)≥ εi (10.2)

where εi can be set as lower bound for each objective function i = 1,2. i = 3. The
algorithm starts with this initial εi value, and then, in each iteration, this value is
updated according to the last non-dominated point detected. This process continues
until the value of εi touches the upper bound, and then, the algorithm terminates. It is
well known that in general, the ε-constraint method can only generate weakly non-
dominated points (Antunes et al., 2016); therefore, Ozlen and Azizoglu (2009) and
Antunes et al. (2016) improved it by combining it with the weighted-sum method
(Aneja and Nair, 1979) as follows:

/

maxz3 (x)+w
2

∑
i=1

zi (x)

s.t. x ∈ X , zi(x)≥ εi (10.3)

for all i = 1,2.



Criterion Space Decomposition Method 207

From Equation (10.3), it is clear that the weight specified for the objective func-
tion 3 is 1 and small positive weights w are assigned to the rest of objective functions.
It may be noted that there is no need to add constraint to the objective 3 which has
been considered later in the proposed algorithm.

10.3.2.2 Boland, Charkhgard, and Savelsbergh Method (2017)
Based on Sylva and Crema (2004), Boland et al. 2017 developed a method to find
the non-dominated solution for TOIP. This algorithm not only eliminates the dom-
inated part from the search space as was done in Sylva and Crema (2004) but
also decomposes the rest of the criterion space into smaller sub-spaces (regions)
defined by a set of constraints to avoid solving unnecessary IPs. These small re-
gions are updated by changing the constraints after each step according to the re-( )
cent non-dominated point determined. A new region is created pU , p, pL , which is
denoted by three points that is upper bound of the region, search index point, and
lower bound of the region, respectively. The algorithm maintains a queue of regions,
and at each iteration, the algorithm selects one region and searches inside that re-( )
gion for a non-dominated point. The search inside the region pU , p, pL is carried
out by

max
3

∑
i=1

za
i ,

s.t. x ∈ X , za
i = zi (x) ∀i = {1,2,3}

za
i ≥

(
p j

i − ε −mi

)
bi j +mi ∀i = {1,2,3} , j = {1, . . . , t} , i ∈ θ(p j)

∑
i∈θ(p)

bi j = 1, ∀i = {1, . . . , t} , bi j ∈ {0,1} (10.4)

za
i ≥ (pi − ε −mi)b

'
i +mi ∀i = {1,2,3} , j = {1, . . . , t} , i ∈ θ(p j)

∑
i∈θ(p)

b
'
i = 1, ∀ j = {1, . . . , t} b

'
i ∈ {0,1}

{ }

where a refers to an item in the list of the non-dominated points in this specific
region, m is a large constant, and ε is a small positive value; the two sets θ(p j) and
θ(p) used by Boland et al. (2017) were just for computational purpose. It may be
noted that for each objective function, there are at least three or more constraints
associated with it as shown in the numerical example discussed by Boland et al.
(2017). Our goal, in this chapter, is to utilize the advantages of method used by
Boland et al. (2017) along with other current algorithms and develop a new algorithm
that can outperform all of them.
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10.4 THE PROPOSED ALGORITHM
In the proposed approach, the non-dominated points for the problem (10.1) are
determined by using an augmented weighted-sum objective function similar to
problem (10.3) along with some constraints from the formulation Equation (10.4).
The algorithm deals with a queue of regions based on the latest non-dominated
point detected. At each iteration, the algorithm searches inside one of these regions.( )
Suppose that we start our search with the initial search region pU , p, pL where
pU U= (p U L L L, ) = ( , ) = ( , )1 p2 , p p1 p2 , and p p1 p2 , the modified problem for each iter-
ation becomes

max{w1z1 +w2z2 + z3}
s.t. x ∈ X , z1 = z1 (x) , z2 = z2 (x) and z3 = z3 (x)

z1 ≥ pL
1 , z2 ≥ pL

2 (10.5)

z1 ≥ (p1 − ε −m1)b1

z2 ≥ (p2 − ε −m2)b2

b1 +b2 = 1,bi ∈ {0,1}( ( )( )) ( ( ))
where w 1 ZUB ZLB 1 ZUB ZLB UB

1 = / ( − + − +1 and w2 = 1 LB/1 Z −1 2 2 2 Z +2 1 ,
m is a small constant, and ε is a small positive value. From Equation (10.5), it is clear
that we have saved some constraints with respect to the third objective function in
Equation (10.4). In addition, the proposed formulation simplifies by reducing the
number of constraints and binary variables.

For the initial step, the algorithm starts by setting pL = p = (m UB
1,m2) = (Z −1

1,ZUB L− 1)2 . The values of p will be updated according to the new non-dominated
points identified. The variables b1,b2, . . . are binary variables. The algorithm starts
by finding the global lower and upper bound for the three objective functions( ) ( ) ( ) ( )
ZLB ZUB ZLB ZUB and ZLB ZUB . First search region pU p pL

1 , , ,1 2 , 3 , ,2 3 will be( ) (( ) )
set accordingly such that pU p pL ZUB ZUB M M , M m m( ) ( ) , , = , , , = ( 1,1 2 2) ,m1 =
ZLB −1 1 ,m2 ZLB= −2 1 . Through our explanation, we call the set of search re-( )

gion R and the set of non-dominated points as Nd. First search region pU p pL is( ) ( ) , ,
represented by pU = pU ,1 pU

2 , p = (p L L L
1, p2), and p = p ,1 p2 .

If the algorithm finds a new non-dominated point inside this search region,
then it is added to R; otherwise, it sets temporary variable p∧U to find another
search region, and it will check some steps to avoid creating repeated search
regions.

The steps of the proposed algorithm are given in Algorithm 10.1.

Theorem 10.1 For x◦ ∈ X , if y◦ = z(x◦) is a non-dominated solution for
the proposed weighted-sum objective Equation (10.5), then it is also a non-
dominated solution for the TOIP in Equation (10.1). For proof, see Chankong and
Haimes (2008).
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Algorithm 10.1 Pseudo-code for the Proposed Algorithm

Step 1. Set R and Nd as a null set. ( )
Step 2. Create an initial search region pU , p, pL and add it to R.
Step 3. While R is not empty, pick a first search region and solve Equation (10.5),
If it is feasible then add the new non-dominated point znew to Nd, otherwise go to
Step 4. If it is empty go to Step 6.
Step 4. Set temporary variables p( ∧U L, p∧ as follow:)
p∧U p∧U p∧U min max p znew pU= ( , ) = ( (1 1, ) , ,2 1 1 min(max w(p ne

2,z ) ,2 pU ))2 .( )
p∧L = p∧L ∧

1 , p L
2 = ((min(p1,znew) ,1 min w(p ne

2,z ))2 If (znew <1 p1) or (znew <2 p2).( )
Then add p∧U , p, p∧L to R, otherwise go to Step 6.
Step 5. Check ( )
5.1: If p∧U pU and p∧U pU then add pU< < , ∧U L,1 1 2 2 p p to R.( )
5.2: Else if p∧U pU and p∧U pU then add pU M pL p U≥ < , ,( , ∧ )1 1 2 2 1 2 to R.( )
5.3: Else if p∧U U<1 p1 and p∧U ≥ pU

2 2 then add pU U,M,(p∧ L,1 p2) to R.
Then go Step 3.
Step 6. Stop.

10.4.1 NUMERICAL ILLUSTRATION

In this section, we explain the steps of the algorithm by solving a knapsack problem
with ten variables:

maxzi (x) = PiXT , i = 1,2,3

s.t. AXT =Wr, jXT ≤ 295 (10.6)

where
P1 = [21 69 26 92 77 30 96 80 60 61],
Pi = [52 92 19 10 63 34 100 60 11 12],
Pi = [37 100 74 17 60 69 49 69 49 59],
Wr, j = [84 49 68 20 97 74 60 30 13 95],
X = [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10].

Solution process:

1. Find the global upper and lower bounds for the first and second ob-
jective function. (ZUB L,ZUB B) = (474,336) ,(ZLB, =1 2 1 Z ) (2 0,0) =⇒ m1 =
ZLB LB−1 =−1 similarly m2 =1 Z −2 1 =−1( ) ( )

2. For the initial search part pU , p, pL = (474,336), (−1,−1), (−1,−1) ,
these values are initialized by setting pL = p = (m1,m LB LB

2) = (Z −1 1,Z −2
1).

3. Find a non-dominated point inside the search region in the second step using
Equation (10.5). This results in znew = (361,316,410).

4. Set p∧U = min(max(−1,361),474),min(max U(−1,316),336) ⇒ p∧ =
361 new new( ,316). Now check if (z <1 p1) or (z <2 p2) and the answer is NO,

then go to Step 5.



210 Recent Advances in Mathematics for Engineering

5. Check
U• If p∧ <1 pU

1 and p∧U <2 pU
2 , and the answer is YES, add ((474,336),

(361,316), (−1,−1)) to R.
U• Else if p∧ ≥1 pU

1 and p∧U <2 pU
2 , and the answer is NO, continue

checking.
U• Else if p∧ <1 pU

1 and p∧U ≥2 pU
2 , the answer is NO.

So, from Step 5, one new search region is created, that is, ((474,336), (361,316),
(−1,−1)); hence, find a non-dominated point in this search region and get
z = (404,255,369). Repeat Steps 4 and 5 until infeasible region has reached, and
then, stop. The outcome of all other iterations is in Table 10.1.

10.5 COMPUTATIONAL EXPERIMENTS

The proposed algorithm was implemented using Cplex Callable Library. CPLEX
12.5 was used as a solver for integer programming problems in C environment. All
experiments were carried out on a Dell Inc. OptiPlex 9020 with processor Intel (R)
Core (TM) i7-4770 CPU@ 3.40 GH and RAM 4.00 GB. Lubuntu operating system
16.04.01 was used for these experiments.

In order to investigate the performance of the proposed algorithm, some re-
cently developed methods for TOIP were selected; they are: (Boland et al.,
2017), IRM (Ozlen et al., 2014) and EIRM (Al-Rabeeah et al., 2020). For
fair comparison with Boland et al. (2017), some of their instances as in
http://hdl.handle.net/1959.13/1062187 were used (see Tables 10.2 and 10.6). For
comparison with IRM and EIRM, few instances are same that were used in those
papers and the rest instances are different (see Tables 10.3 and 10.4).

Instances that are same as in all earlier three papers, viz., Ozlen et al. (2014),
Boland et al. (2017), and Al-Rabeeah et al. (2020), are denoted by an asterisk mark.
These instances are assignment problems (ASP) and knapsack problems (KP). The
proposed algorithm discussed in this chapter has been referred to as TODM in the
computational experiments.

10.5.1 BEFORE RELAXATION

The computational experiment in Tables 10.2, 10.3, 10.4, 10.7, and 10.8 shows
encouraging results. The proposed algorithm performed better with respect to the
CPU time when compared with (Ozlen et al., 2014; Boland et al., 2017; Al-
Rabeeah et al., 2020) (see Figures 10.1–10.3). It may also be noted that the num-
ber of IPs solved is less compared with IRM and the EIRM in all instances (see
Tables 10.3, 10.4, and 10.8). However, for smaller instances, the proposed algo-
rithm required slightly more IPs than what were required by algorithm proposed
by Boland et al. (2017), whereas for larger instances, it required less number of IPs
(see Tables 10.2 and 10.8).

http://hdl.handle.net
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Table 10.1
All Iteration for Solving the Numerical Example above before Relaxation

p List Non-Dominated Point

Steps Nsr pU
1 pU

2 p1 p2 pL
1 pL

2
newz1 2znew

3znew

1 1 474 336 −1 −1 −1 −1 361 316 410
2 2 474 336 361 316 −1 −1 404 255 369
3 3 404 316 −1 −1 361 255 408 270 364

4 474 336 404 316 −1 −1
4 5 474 336 404 316 −1 −1 408 270 364

6 404 316 −1 −1 361 270
5 7 404 316 −1 −1 361 270 423 292 358

8 408 316 −1 −1 404 270
9 474 336 408 316 −1 −1

6 10 408 316 −1 −1 404 270 423 292 358
11 474 336 408 316 −1 −1
12 404 316 −1 −1 361 292

7 13 474 336 408 316 −1 −1 423 292 358
14 404 316 −1 −1 361 292
15 408 316 −1 −1 404 292

8 16 404 316 −1 −1 361 292 427 307 353
17 408 316 −1 −1 404 292
18 423 316 −1 −1 408 292
19 474 336 423 316 −1 −1

9 20 408 316 −1 −1 404 292 427 307 353
21 423 316 −1 −1 408 292
22 474 336 423 316 −1 −1
23 404 316 −1 −1 361 307

10 24 423 316 −1 −1 408 292 427 307 353
25 474 336 423 316 −1 −1
26 404 316 −1 −1 361 307
27 408 316 −1 −1 404 307

11 28 474 336 423 316 −1 −1 427 307 353
29 404 316 −1 −1 361 307
30 408 316 −1 −1 404 307
31 423 316 −1 −1 408 307

12 32 404 316 −1 −1 361 307 474 336 344
33 408 316 −1 −1 404 307
34 423 316 −1 −1 408 307
35 427 316 −1 −1 423 307
36 474 336 427 316 −1 −1

13 37 408 316 −1 −1 404 307 474 336 344
38 423 316 −1 −1 408 307
39 427 316 −1 −1 423 307
40 474 336 427 316 −1 −1

14 41 423 316 −1 −1 408 307 474 336 344
42 427 316 −1 −1 423 307
43 474 336 427 316 −1 −1

15 44 427 316 −1 −1 423 307 474 336 344
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Table 10.2
Comparison between the Proposed Method and Boland et al. Algorithm
(2017) with Respect to CPU Time (Seconds) and IPs

Boland et al. Algorithm TODM-BR

Problems Solutions CPU Time IP CPU Time IP

ASP100* 221 20.481 462 13.095 524
ASP225 2198 200.345 4149 150.262 4361
ASP400* 1942 679.179 3853 243.501 3905
ASP625 6928 1066.386 12987 847.401 13095
ASP900* 5195 4061.29 10253 1110.8 10654
ASP1225 9142 3984.567 15335 2537.775 15552
ASP1600* 14733 6963.232 27737 4830.799 23355
AP2025 22714 11300.347 43653 9314.681 41563
ASP2500* 29193 14885.142 54420 12857.901 50430
DKP10 9 0.047 18 0.021 19
DKP20 61 5.768 129 3.263 134
DKP30 195 75.439 429 55.917 450
DKP40 389 320.221 872 198.472 723
DKP50 1048 1085.411 2424 910.502 2109
DKP100 6500 44.651 14752 39.730 13909

Table 10.3
Comparison between the Proposed Method and the IRM with Respect to
CPU Time (seconds) and IPs

IRM TODM-BR

Problems Solutions CPU Time IP CPU Time IP

ASP100* 221 13.2190 1158 13.095 524
ASP225 2198 164.912 9994 150.262 4361
ASP400* 1942 330.007 9055 243.501 3905
ASP625 6928 1026.464 26349 847.401 13095
ASP900* 5195 1378.103 22410 1110.8 10654
ASP1225 9142 2957.021 37133 2537.775 15552
ASP1600* 14733 4972.023 55935 4830.799 23355
AP2025 22714 10029.568 84853 9314.681 41563
ASP2500* 29193 15225.142 109142 12857.901 50430
KP10 6 0.055 34 0.047 16
KP20 20 0.351 119 0.299 46
KP30 35 1.095 208 0.911 84
KP40 117 5.402 639 4.332 283
KP60 578 46.814 3068 40.416 1566
KP80 1082 200.561 5430 181.557 2752
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Table 10.4
Comparison between the Proposed Method and the EIRM with Respect to
CPU Time (Seconds) and IPs

EIRM TODM-BR

Problems Solutions CPU Time IP CPU Time IP

ASP100* 221 13.481 802 13.095 524
ASP225 2198 158.318 6727 150.262 4361
ASP400* 1942 310.041 6105 243.501 3905
ASP625 6928 881.162 17668 847.401 13095
ASP900* 5195 1239.154 15045 1110.8 10654
ASP1225 9142 2603.277 24878 2537.775 17589
ASP1600* 14733 4866.612 27348 4830.799 23355
AP2025 22714 9532.994 56726 9314.681 41563
ASP2500* 29193 13235.731 72842 12857.901 50430
KP10 6 0.043 26 0.047 16
KP20 20 0.341 87 0.299 46
KP30 35 1.071 150 0.911 84
KP40 117 4.981 452 4.332 283
KP60 578 41.859 2115 40.416 1566
KP80 1082 183.379 3711 181.557 2752

Figure 10.1 CPU time comparison between the proposed method (TODM-BR) and Boland
et al. algorithm (Boland et al., 2017).

10.5.2 AFTER RELAXATION

The performance of the proposed approach can further be improved by using the
idea of relaxation that was used in Ozlen et al. (2014). Basically, one is utilizing
the history of already solved sub-problems to avoid repeat calculations. This means
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Figure 10.2 CPU time comparison between the proposed method (TODM-BR) and IRM.

Figure 10.3 CPU time comparison between the proposed method (TODM-BR) and EIRM.

that when there are two problems, one is feasible with respect to other, there is no
need to solve both but instead solve only one. In Table 10.1, one can see that the
algorithm solves in some cases four or five search regions in maximum which have
been avoided using relaxation. Table 10.5 shows the improvement after implement-
ing the relaxation idea when comparison has been performed between the proposed
algorithm before and after relaxation (see Figure 10.4). In Tables 10.6, 10.7, and
10.8, all algorithms have been compared in terms of the CPU time (see Figure 10.5)
and the number of IPs.
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Table 10.5
Comparison between the Proposed Method before and after Relaxation with
Respect to CPU Time (Seconds) and IPs

TODM-BR TODM-AR

Problems Solutions CPU Time CPU Time CPU Time IP

ASP100* 221 13.095 524 11.465 461
ASP225 2198 150.262 4361 125.992 3745
ASP400* 1942 243.501 3905 226.682 3459
ASP625 6928 847.401 13095 776.936 11399
ASP900* 5195 1110.8 10654 969.249 9303
ASP1225 9142 2537.775 17589 2325.063 15552
ASP1600* 14733 4830.799 23355 4743.477 17415
AP2025 22714 9314.681 50430 8424.913 45548
ASP2500* 29193 12857.901 41563 12731.716 37575
KP10 6 0.047 16 0.025 10
KP20 20 0.299 46 0.272 41
KP30 35 0.911 84 0.861 74
KP40 117 4.332 283 4.188 242
KP60 578 40.416 1566 35.196 1298
KP80 1082 181.557 2752 160.862 2270

Figure 10.4 CPU time comparison between the proposed method before and after relaxation
(TODM-BR and TODM-AR).
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Table 10.6
Comparison between the Proposed Method before and after Relaxation and
Boland et al Algorithm (2017) with Respect to CPU Time (Seconds)

Problems Solutions Boland et al. Algorithm TODM-BR TODM-AR

ASP100* 221 20.481 13.095 11.465
ASP225 2198 200.345 150.262 125.992
ASP400* 1942 679.179 243.501 226.682
ASP625 6928 1066.386 847.401 776.936
ASP900* 5195 4061.29 1110.8 969.249
ASP1225 9142 3984.567 2537.775 2325.063
ASP1600* 14733 6963.232 4830.799 4743.477
AP2025 22714 11300.347 9314.681 8424.913
ASP2500* 29193 14885.142 12857.901 12731.716
KP10 6 0.047 0.047 0.025
KP20 20 5.768 0.299 0.272
KP30 35 75.439 0.911 0.861
KP40 117 320.221 4.332 4.188
KP60 578 1085.411 40.416 35.196
KP80 1082 44.651 181.557 160.862

Table 10.7
Comparison between IRM, EIRM, TODM-BR, and TODM-AR with Respect to
CPU Time

Problems Solutions IRM EIRM TODM-BR TODM-AR

ASP100* 221 13.2190 13.481 13.095 11.465
ASP225 2198 164.912 158.318 150.262 125.992
ASP400* 1942 330.007 310.041 243.501 226.682
ASP625 6928 1026.464 881.162 847.401 776.936
ASP900* 5195 1378.103 1239.154 1110.8 969.249
ASP1225 9142 2957.021 2603.277 2537.775 2325.063
ASP1600* 14733 4972.023 4866.612 4830.799 4743.477
AP2025 22714 10029.568 9532.994 9314.681 8424.913
ASP2500* 29193 15225.142 13235.731 12857.901 12731.716
KP10 6 0.055 0.043 0.047 0.025
KP20 20 0.351 0.341 0.299 0.272
KP30 35 1.095 1.071 0.911 0.861
KP40 117 5.402 4.981 4.332 4.188
KP60 578 46.814 41.859 40.416 35.196
KP80 1082 200.561 183.379 181.557 160.862
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Table 10.8
Comparison between IRM, EIRM, TODM-BR, and TODM-AR with Respect to
Number of IPs

Problems Solutions IRM EIRM TODM-BR TODM-AR

ASP100* 221 1158 802 524 461
ASP225 2198 9994 6727 4361 3745
ASP400* 1942 9055 6105 3905 3459
ASP625 6928 26349 17668 13095 11399
ASP900* 5195 22410 15045 10654 9303
ASP1225 9142 37133 24878 17589 15552
ASP1600* 14733 55935 27348 23355 17415
AP2025 29193 109142 72842 50430 45548
ASP2500* 22714 84853 56726 41563 37575
KP10 6 34 26 16 10
KP20 20 119 87 46 41
KP30 35 208 150 84 74
KP40 117 639 452 283 242
KP60 578 3068 2115 1566 1298
KP80 1082 5430 3711 2752 2270

Figure 10.5 CPU time comparison between all previously mentioned algorithms.

10.6 CONCLUSION
In this chapter, a new algorithm has been developed where efficiency to find all set
of non-dominated points for a TOIP model has improved. The proposed algorithm
combines ideas from some recent algorithms where the requirements on additional
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number of constraints and binary variables are reduced. The improvement is reflected
in reduction on the number of IPs and the CPU time. The performance of the pro-
posed algorithm has been further improved by implanting the idea of relaxation.
Computational experiments support the proposed claim.
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11.1 INTRODUCTION
Network optimization problems arise in many real-life situations that can be rep-
resented by a network diagram G(n,m), where “n” represents the set of nodes and
“m” the set of links; each link joins a pair of the nodes in that network. These nodes
represent some kind of physical entities, and links represent the relationship among
those entities. The relationship between the two entities is measured by assigning
some weight to that link. In many different fields of science, engineering, technol-
ogy, management, business, and commerce, we often come across situations that can
be represented by a network and, therefore, that situation can be analyzed using an
appropriate network methodology. A large volume of literature exists in Operations
Research (OR), where many real-life situations have been conceptually represented
by a network or analyzed as a network, and the results have been interpreted back
with regard to the original situation (see Hastings, 1973). Therefore, networks and
their associated methods have become a tool for analysis and optimization. The links
in the networks are assigned weights to represent the object of the physical situa-
tion. These network models can be directed or undirected, and the objective can be
to maximize or minimize a given objective function under some given conditions.

This chapter is concerned only with those situations where the associated link-
weights were modified in certain ways to get to the required optimum solution for
the given objective function. The aim of the chapter is to briefly review some of
the known instances where link-weights were modified to get to the optimal solu-
tion. For each case, we briefly discuss the modification process and analyze how
that modification helped to reach the optimal solution. We then leave it to the reader
to advance this philosophy of “link-weight modification” further on other situations
as a problem-solving tool. The purpose is to emphasize that the “link-weight mod-
ification” is a concept that can be used as a problem-solving tool. Some available
applications have been examined closely with regard to its modification process and
analysis to reach the optimal solution.

The concept of link-weight modification has been in existence but has not been
explored as a potential optimization tool. We first review a few known cases and
identify the associated philosophy behind that modification in the context of that
specific problem. These applications include

A. An assignment model solved by the well-known Hungarian method of as-
signment.

B. A re-visitation to the transportation model.
C. Determination of the shortest route in a directed network.
D. The shortest route in a non-directed network.
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E. The minimum spanning tree under an index restriction.
F. The traveling salesmen tour.
G. The shortest path passing through “k” number of specified nodes.

The chapter has been organized in five sections. Section 11.2 deals with the broad
classification of link-weight modification approaches. In Sections 11.3 and 11.4, we
briefly review the existing applications. Some numerical illustrations are discussed
in Section 11.5, and the chapter is concluded in Section 11.6, where we leave it to
the reader as a challenge: “to advance the link-weight modification philosophy as a
problem solving tool to solve other network optimization problems.”

11.2 BROAD CLASSIFICATION
The link-weight modification has been successfully applied for solving many net-
work routing instances as mentioned above. We broadly classify them into two cate-
gories.

Category 1: Some link-weights are altered to zero value by maintaining relative
merits of the links. The purpose of altering weight to zero is to avoid test for the
optimality when total cost is zero, which becomes a natural minimum among non-
negative quantities. Avoiding the test of optimality is beneficial as in many instances,
the identification of the optimality of that solution is not easy. The applications A
to D above are in this category. The Hungarian method of assignment is a well-
known approach, but the unification of assignment and transportation (application B)
has been achieved recently by extending the Hungarian method of assignment to
solve the transportation model. The shortest route in a directed network has been
obtained by changing the link-weights and the non-directed network is also analyzed
by making use of implied directions. Details are provided under each case separately.

Category 2: The link-weights are increased in a controlled way to create alterna-
tive possibilities. Once again, relative merits of links are maintained. This situation
arises when one is required to find a minimum spanning tree under index restriction
of less than or equal to two index value. This kind of network has applications in the
traveling salesman tour (application F) and the path through the k-specified nodes
(application G).

11.3 NETWORK OPTIMIZATION BY “LINK-WEIGHT MODIFIED TO
ZERO VALUE”: A CLOSE LOOK AT SOME PROBLEMS IN
CATEGORY 1

11.3.1 A CLASSICAL APPLICATION: THE ASSIGNMENT PROBLEM SOLVED
BY THE HUNGARIAN METHOD OF ASSIGNMENT

The Hungarian method is a well-documented method in the OR literature. A mathe-
matical model for an assignment problem can be stated as

Minimize Z =
n

∑
i=1

n

∑
j=1

ci jxi j,
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Subject to
n

∑
i=1

xi j = 1 for j = 1,2, . . . ,n

n

∑
j=1

xi j = 1 for i = 1,2, . . . ,n

xi j = 0 or 1 ∀i j. (11.1)

Since the assignment model is a degenerate linear program and also a degenerate
transportation model, the usual linear programming and transportation approaches
encounter difficulties in the identification of the optimal solution for the model Equa-
tion (11.1). The Hungarian method attempts to solve the problem by the link-weight
modification and avoids the test of optimality. The modification process starts by
subtracting the minimum in each row from all other elements in that row, and works
as follows:

1. “It creates a zero in each row and also maintains a relative merit of each
element in that row.” The same process is repeated for each row and each
column. The zero element will be an independent element, if it is the only
zero element either in the row or in the column.

2. If the number of independent zeros is insufficient, more zeros are created
without changing the relative merits of the cost elements.

3. The purpose behind all these link-weight modifications is to obtain the total
assignment cost to zero, that is, an assignment is made only to cells where
the modified cost is zero. The zero total cost is a natural minimum among
all positive numbers, thus eliminating the need for any test to establish op-
timality of that solution.

11.3.2 UNIFICATION OF AN ASSIGNMENT AND THE TRANSPORTATION
PROBLEMS

The mathematical model for the transportation problem is given by

Minimize Z =
m

∑
i=1

n

∑
j=1

Ci jxi j

Subject to
n

∑
j=1

xi j = ai for i = 1,2, . . . ,m

m

∑
i=1

xi j = b j for j = 1,2, . . . ,n

xi j ≥ 0 and integers ∀(i, j). (11.2)

Once again, this is a well-documented model in the OR literature. Here, we propose
to discuss only a recent approach, where the transportation model Equation (11.2)
has been reconsidered as an assignment model with ai number of duplicated rows,
for row i, i = 1,2, . . . ,m and b j number of duplicated columns, for j, j = 1,2, . . . ,n.
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Details of this approach are in Munapo et al. (2012), where the link-weight
modification and philosophy remain the same as that of the Hungarian method of
assignment. The approach does not require any test for optimality of the solution, as
the total cost in the reduced cost matrix is zero. This approach does not encounter
any difficulty when the transportation model has a degenerate solution.

11.3.3 SHORTEST ROUTE IN A DIRECTED NETWORK

The shortest route in a given network G(n,m) is a classical problem which has many
applications. Many different solution procedures have been developed to solve this
problem, from time to time. The problem is to find a path between two nodes
in the given network such that the sum of the weights of its constituent edges
is minimized. Pollack and Wiebenson (1960) reviewed methods for solving the
shortest route problem. The directed network discussed here assumes to satisfy the
following:

a. Link (i, j) is a directed link that starts at node i and ends at node j, (i < j);
in other words, the nodes are numbered in topological order.

b. All nodes, except the source and the destination nodes, have at least one
incoming link to it and at least one outgoing link from it.

c. The source has all outgoing links, and the destination has all incoming links.
Node “1” is the origin, and “n” is the destination node.

The link-weight modification is carried out as follows:

a. Subtract the minimum weight from all incoming links, and add the same
minimum weight to all outgoing links. The total length between the source
node and the destination node does not alter by implementing this process.
However, if a path can be identified with total cost zero, that path becomes
a natural minimum cost path.

b. Each iteration results in at least one zero-modified link-weight. The process
can be carried out at nodes 2, 3, . . . , etc., until we reach the destination node.

c. A label (m,w) is associated with a node, where m represents its sequential
position in the network and w represents the minimum weight from the
source node to that node.

Algorithmic steps are as follows:

Step 1: Label the source node. The label will be (1,0), set k → 2, go to Step 2.
Step 2: Find the min{incoming weight}, wk associated with node k, i.e.,

wk = min{wl1k,wl2k, . . . ,wlkk}, where lk is the number of incoming links
to node k. Assume that the minimum weight is denoted by w, and the link-
weights are modified as follows:
Weights of incoming arc to node k will be modified as (wlik −w), and one

of them will be equal to zero. ( )
Weights for the outgoing arc from node k will be wk j +w for j = 1,2, . . .

Step 3: If k < (n−1), set k = k+1 and return to Step 2.
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Step 4: All nodes have been labeled. Find the label for the destination node. The
shortest distance is w at the destination node, and the path can be traced back
by passing through the links with modified weights as zero.

The philosophy is to trace a path passing through the links with zero link-weight.
That path becomes the required minimum cost path. For details, see Munapo et al.
(2008).

11.3.4 SHORTEST ROUTE IN A NON-DIRECTED NETWORK

A non-directed network cannot be analyzed on lines of a directed network, because
conversion of a non-directed network to a directed network by replacing each link by
two separate links in opposite directions is not feasible as the network will become
unwieldy to deal with and nodes will not be able to maintain the topological order
that we had in a directed network. Therefore, a new approach is required (Wikipedia,
2019). However, the following properties hold for the non-directed network.

11.3.4.1 Label Associated with a Node
Since the shortest path has to start from the origin node, the shortest distance from
origin to origin is a known distance, which is 0. Hence, the origin node can be labeled
as was done in the case of a directed network. Since topographical order of nodes is
missing in a non-directed network, we need a label that can not only provide the total
distance from the origin but also trace the path back from the origin to that node. In
other words, we need the history associated with that label. Note that in the case of a
directed network, a two-element label was sufficient, but for a non-directed network,
a three-element label is required. It is given by (i, j,d), where i indicates the order, j
indicates the previous node, and d denotes the distance from the origin node to that
node. In this sense, the origin node will have a label (0, O, 0); that is, the label on the
origin node will be O(0,O,0).

11.3.4.2 Notations and Definitions
We need some notations that will facilitate the subsequent discussion. Define a few
sets of nodes and links as follows:

L0 = set of labeled nodes, which at the start, has only one element in this set,
i.e., = {O}

L1 = set of links connected to the labeled nodes. Initially, all links (O -> j) will
belong to this set, as origin node “O” is the only labeled node.

L2 = set of links that will never participate in the shortest path. Initially, we have
no knowledge about these links; hence, it will be a null set = {∅} .

L3(O,k) = set of links that form the shortest path between the node O and the node
k. Initially, the origin node is the only labeled node, hence, when k = O, L3(O,k) =
{(O,O)}, i.e., no movement, since it is a path from the node “O” to “O.” The path is
(O → O).

Since the first link on the shortest path will be a link starting from the origin node,
one may assume the links from the origin as directed (O → j), where (O → j) are
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directly connected links with the origin node. Although the links are non-directed, in
theory, one can return to the origin node O from any other node, but the path from O
to j will only increase its distance. Thus, returning to a labeled node will definitely
increase the total distance. All links, directed or non-directed, between two labeled
nodes, will only increase the distance. These links will belong to the set L2.

11.3.4.3 Link-Weight Modification Using the Implied Direction
Find the minimum weight associated with a link that belongs to the set {L1}. Let the
corresponding node associated with the minimum weight be denoted by the node j
and the minimum weight be denoted by w(O j). Now label the node j by j(1,O,w(o j))

.
The number 1 in the label indicates that it is the first label after the initial label at
node O. The minimum distance from the node O to j is w(O j), and the shortest path
from the origin to node j is formed by the link (O, j).

The link-weights will be modified as follows:
New weight of the link (O, j) will be = w(O j)–w(O j) = 0
New weights associated with links ( j,k) will be given by w( j,k) + w(O j). The

weight of the link (O, j) in the direction ( j,O) will be = w(O j)+w(O j) = 2w(O j).
New weights of the remaining links will remain unchanged, and one has to up-

grade the sets L1, L2, and L3.
Since nodes O and j are labeled, once again, one can assume directions from the

labeled nodes to unlabeled nodes. Find the minimum weight of all links in the set L2,
which will have all unlabeled links joining the nodes O and j. Note that a new node
will be labeled each time. The process will terminate in n steps.

Thus, once again, the link-weights have been altered to make link-weight zero by
identifying some implied directions as we did with directed links. For details, see
Kumar et al. (2013).

11.4 LINK-WEIGHT MODIFICATION APPROACH TO FIND A
MINIMUM SPANNING TREE WITH NODE INDEX ≤ 2

In Sections 11.3, link-weights were altered by subtracting the minimum weight to
create a link with altered weight equal to zero. However, in the following, instead
of subtracting, we add a certain weight to achieve a different goal. We consider the
well-known minimum spanning tree (MST) problem under an index restriction (see
Munapo et al., 2016). For a connected network G(n,m) , where n denotes the number
of nodes and m denotes the number of links, the conventional MST deals with a
selection of (n− 1) links such that the n node network remains connected and total
weight of the selected links is minimum. Such an MST graph can be obtained by any
greedy approach (see Anupam, 2015; Garg and Kumar, 1968). In such an MST, the
index of a node i denoted by ni can be an integer value such that 1 ≤ ni ≤ (n−1).
Since the MST under index restriction will have to satisfy the index condition, that
is, 1 ≤ ni ≤ 2, i = 1,2, . . . ,n and ni = 1 for the origin and the destination node, the
MST obtained by the greedy approach will have to be modified to satisfy the index
restriction.
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A link (i, j) is basic if it belongs to the MST, and it is non-basic if it does not
belong to the MST. It means that the index value for the node i denoted by ni is high
if it is >2, i.e., if the number of basic links is more than two. For the high index
nodes, some basic links have to be removed and added elsewhere, as the number of
links will have to remain equal to (n− 1) for an n-node network. It may be noted
that in the first place, they were selected since they satisfied the selection criteria by
application of the greedy approach. To undo that selection, we add to the link-weight
and make an alternative selection possible. In other words, we remove links from a
high index node and add links to a low index node.

11.4.1 INDEX BALANCING THEOREMS

Theorem 11.1 Since a conventional MST can easily be obtained by any greedy ap-
proach, it can be assumed that index of each node i denoted by ni is a known number.
Therefore, high and low index nodes are known for the given network. The index bal-
ancing theorem states that adding the same constant to all arcs emanating from a high
index node does not alter their relative merit, but can create an alternative for a link
to be replaced to reduce the imbalance. The value of the constant is governed by the
outgoing and incoming link-weights.

Theorem 11.2 Total index of a MST in a network G(n,m) is a constant given by
2(n − 1). Thus, in every attempt when the index of a high index node is reduced by
1, it also balances one low index node. Thus, convergence is guaranteed.

The index-restricted MST has potential applications in finding a path through
“K” specified nodes. It means that we need a path joining the origin node to the
destination node that passes through all specified nodes with index of these nodes
equal to 2 (see details in Kumar et al. (2014)).

The index-restricted MST also has applications in the determination of a traveling
salesman tour (see Kumar et al., 2014, 2016, 2018a, 2019). For other innovative
approaches, see Kumar et al. (2018b).

11.5 NUMERICAL ILLUSTRATIONS
Since the Hungarian method of assignment is well known, we escape its illustration
and move to other models.

11.5.1 UNIFICATION OF THE TRANSPORTATION AND ASSIGNMENT
MODELS BY THE HUNGARIAN APPROACH

Consider a transportation model as given in Table 11.1.
Applying the normal row reduction of minimum as carried out in assignment

method, one gets

0 3 4
3 0 2 ,
0 5 8
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Table 11.1
A 3 × 3 Transportation Model

Source/Demand 1 2 3 Supply

A 4 7 8 55
B 9 6 8 25
C 5 10 13 25
Demand 30 50 25 105

and then column reduction leads to

030 3 2
3 025 00
00 5 6

.

Here, the zero cost cells display the allocation 0xi j . Thus, the allocation at the zero
cost cell (A,1) is equal to 30 in transportation, and we have 30 vertical lines in the
Hungarian sense of assignment. Also the current number of zeros is insufficient to
assign 105 units; hence, additional number of zeros will have to be created. It is
like the Hungarian approach with a different interpretation to horizontal and vertical
lines. The new table with allocation will be

025 1 025
5 025 0
05 3 4

.

Once again, the number of zeros is insufficient; therefore, one more effective zero in
cell (1,2) is created, and the result is the cost matrix given by

05 025 025
6 025 1

025 2 4
,

which is the required optimal solution with a total of 105 allocations, as per the above
plan. From the above, optimal values of the required transportation plan can be easily
obtained, and the corresponding optimal cost can be easily established.

11.5.2 SHORTEST PATH IN A DIRECTED NETWORK

Consider the graph in Figure 11.1.
Directions of the links are given by (i, j) where i < j. Let the link-weights be as

given in Table 11.2.
After the initial label at the origin node 1, the next label will be at node 2. It will

be the min{3(1,2)}= 3, and altered weights will be given by: link (1,2) = 3−3= 0,
link (2,3) = 4+ 3 = 7, link (2,4) = 5+ 3 = 8, and link (2,6) = 7+ 3 = 10. These
values are indicated by a # mark in Table 11.2.
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Figure 11.1 Given network with link-weights as shown in Table 11.2.

Table 11.2
Link-Weights and Labelling Process for the Solution

S. No Directed Link
Link-Weights,

Altered Link-Weights Node and Label
Minimum Cost

and Path

1 (1,2) 3, 3 − 3 = 0# 1(0,1)a 0, path 1->1
2 (1,3) 2, 2 − 2 = 0* 2(1,3) 3, path 1->2
3 (1,4) 4, 4 − 4 = 0** 3 (1,2)* 2, path 1->3
4 (1,5) 5, 5 − 5 = 0*** 4(1,4)** 4, path 1->4
5 (2,3) 4, 4 + 3 = 7# 4(3,5)*** 4, path 1->3->5
6 (2,4) 5, 5 + 3 = 8# 6(3,6) or (4,6)## 6, path 1->3->6

or 1->4->6
7 (2,6) 7, 7 + 3 = 10#
8 (3,4) 5, 5 + 2 = 7*
9 (3,5) 2, 2 + 2 = 4*, 4 – 4 = 0***
10 (3,6) 4, 4 + 2 = 6*
11 (4,5) 3, 3 + 4 = 7**
12 (4,6) 2, 2 + 4 = 6**
13 (5,6) 4, 4 + 5 = 9***

The next label will be node 3. It will be min{2(1,3),7(2,3)} = 2, and altered
weights will be given by: link (1,3) = 2−2 = 0; and for other links, it will be: link
(3,4) = 5+2 = 7; link (3,5) = 2+2 = 4; link (3,6) = 4+2 = 6. These values are
shown by an * mark in Table 11.2.

The next label will be on node 4. It will be min{4(1,4), 8(2,4), 7(3,4)} = 4. Thus,
the altered weights will be: 4 − 4 = 0 for the link (1,4); and for other links, it will
be: link (4,5) = 3 + 4 = 7; link (4,6) = 2 + 4 = 6. These altered values are shown
by ** in Table 11.2.

The next label will be assigned to node 5. It will be given by min{5(1,5),4(3,5),
7(4,5)}= 4. Altered values are shown by *** marks in Table 11.2.

3 5

4

6

1

2
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Finally, we label the node 6. It is given by min{10(2,6),6,(3,6),6(4,6),
9(5,6)}= 6, which is obtained from two alternatives, i.e., from node 3 or node 4.
The altered values are shown by ## mark in Table 11.2.

11.5.3 SHORTEST PATH IN THE NON-DIRECTED NETWORK BY LABELLING
APPROACH

Reconsider the network in Figure 11.1. Assume that each link is a non-directed net-
work with initial weight as given in Table 11.2 in both directions, i.e., link-weight
(i, j) = the link-weight ( j, i). This is given in Table 11.3.

Initially, only the origin node, i.e., node 1 is labeled. Therefore, we assign di-
rections to links (1,2),(1,3),(1,4) and (1,5), i.e., from the node 1 to k, where
k = 2,3,4,5. The minimum of these links from node 1 is = {3,2,4,5} = 2, which
corresponds to the node 3. Hence, this node will be the next to be labeled as shown
in Table 11.4. The modified weight for various links will be:

Link (1,3) = 2−2 = 0, link (3,1) = 2+2 = 4,

Table 11.3
Link-Weights for the Non-Directed Network

From\To 1 2 3 4 5 6 Label (i,j,d)

1
2

-
3

3
-

2
4

4
5

5
-

- (0, O, 0) O(0,O,0)
7

3 2 4 - 5 2 4
4 4 5 5 - 3 2
5 5 - 2 3 - 4
6 - 7 4 2 4 -

Table 11.4
Link-Weights after Labeling the Node 3 (altered values are shown in bold)

From\To 1 2 3 4 5 6 Label (i,j,d)

1 - 3 2 − 2 = 0 4 5 - (0, O, 0) O(0,O,0)
2 3 - 4 5 - 7
3 2 + 2 = 4 4 + 2 = 6 - 5 + 2 = 7 2 + 2 = 4 4 + 2 = 6 3(1,1,2)
4 4 5 5 - 3 2
5 5 - 2 3 - 4
6 - 7 4 2 4 -
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Link (3,2) = 4+2 = 6, link (3,4) = 5+2 = 7, link (3,5) = 2+2 = 4 and link
(3,6) = 4+2 = 6

These modified weights are shown in Table 11.4.
For the next label, we find minimum of links connected to nodes 1 and 3. This

minimum is = min{3(1,2),4(1,4),5(1,5),6(3,2),7(3,4),4(3,5),6(3,6)}= 3(1,2).
Thus, node 2 will be labeled. Modified weights as well as the label on node 2 will be
as shown in Table 11.5.

Note that the link-weights will be altered only for the links (1,2), (2,1), (2,3),
(2,4), and (2,6). This is given in Table 11.5.

For the next label, we find min{4(1,4),5(1,5),8(2,4),10(2,6),7(3,4),4(3,5),
6(3,6)} = 4(1,4) or link (3,4). After labeling the node 4, the modified weights are
given in Table 11.6.

Checking for the next label, we find minimum of links from node 1, 2, 3, and
4, which is given by min{5(1,5),10(2,6),4(3,5),6(3,6),7(4,5),6(4,6)} = 4(3,5).
The modified weight will be 4+4 = 8, as shown in Table 11.7.

Table 11.5
Modified Link-Weights after Labelling the Node 2

From\To 1 2 3 4 5 6 Label (i,j,d)

1
2
3
4

-
3 + 3 = 6
2+2 = 4

4

3 − 3 = 0
-

4+2 = 6
5

2 – 2 = 0
4 + 3 = 7

-
5

4
5 + 3 = 8
5+2 = 7

-

5
-

2+2 = 4
3

-
7 + 3 = 10
4+2 = 6

2

(0, O, 0) O(0,O,0)
2(2,1,3)
3(1,1,2)

5 5 - 2 3 - 4
6 - 7 4 2 4 -

Table 11.6
Modified Weights after Labelling the Node 4

From\To 1 2 3 4 5 6 Label (i,j,d)

1 - 3 – 3 = 0 2 – 2 = 0 4 − 4 = 0 5 - (0, O, 0) O(0,O,0)
2 3+3 = 6 - 4+3 = 7 5+3 = 8 - 7+3 = 10 2(2,1,3)
3 2+2 = 4 4+2 = 6 - 5+2 = 7 2+2 = 4 4+2 = 6 3(1,1,2)
4 4 + 4 = 8 5 + 4 = 9 5 + 4 = 9 - 3 + 4 = 7 2 + 4 = 6 4(3,1,4)
5 5 - 2 3 - 4+4 = 8 4(4,1,5)
6 - 7 4 2 4 -
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Table 11.7
Modified Links Weights after Labeling the Node 5

From\To 1 2 3 4 5 6 Label (i,j,d)

1 - 3 – 3 = 0 2 – 2 = 0 4 – 4 = 0 5 - (0, O, 0) O(0,O,0)
2 3+3 = 6 - 4+3 = 7 5+3 = 8 - 7+3 = 10 2(2,1,3)
3 2+2 = 4 4+2 = 6 - 5+2 = 7 4 − 4 = 0 4+2 = 6 3(1,1,2)
4 4+4 = 8 5+4 = 9 5+4 = 9 - 3+4 = 7 2+4 = 6 4(3,1,4)
5 5 + 4 = 9 - 2 + 4 = 6 3 + 4 = 7 - 4 + 4 = 8 4(4,1,5)

6 - 7 4 2 4 -
6(5,3,6) or

6(5,4,6)

For the next label, we find min{10(2,6),6(3,6),6(4,6),8(5,6)}= 6 via the nodes
3 or 4. Thus, two alternative paths exist, which are 1 → 3 → 6 and 1 → 4 → 6, and
cost for each path will be 6.

11.5.4 MINIMUM SPANNING TREE

Let us reconsider the network in Figure 11.1. The conventional minimum spanning
tree using any greedy approach will be as shown in Figure 11.2.

The MST in Figure 11.2 occurs to be a MST path between node 2 and node 6.
However, if we were looking for an MST path between nodes 1 and 6, the node 1
is a high index node and node 2 is a low index node. Thus, we have to remove an
arc from the high index node 1 and select an arc joining the low index node 2. By
application of the index balancing theorem, if we add two to all links joining the node
1, the link-weight of the link (1,3) will become 2+ 2 = 4 and therefore, a tie exists
between the link (1,3) and the link (2,3); hence, we select the link (2,3), replacing the
link (1,3). Thus, an alternative has been developed, and we selected the one which
balances the node index. The required MST path joining nodes 1 to 6 is shown in
Figure 11.3.

The total weight is 14, whereas in Figure 11.2, the total weight was 12.

Figure 11.2 MST of the network in Figure 11.1.

2

3 5

4

6

1

2
3

2

3

2
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Figure 11.3 The MST path joining nodes 1 and 6.

11.6 CONCLUDING REMARKS

In this chapter, we have cited a few instances where a desired goal was achieved
through the link-weight modification, and the actual process of link-weight modifi-
cation was dependent on that situation. There is no set of rules or steps, the process
of link-weight changes from problem to problem. The concept of link-weight modi-
fication is an optimization tool, yet its execution is an art which depends on our own
ability to exploit the given situation to develop a suitable process. Therefore, we con-
clude that the link-weight modification is a philosophy, applicable for optimization
in networks, but the execution of this tool remains an art.
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12.1 INTRODUCTION
Rich model is built by assembling various diverse submodels which are formed by
the co-occurrences of the residuals [1]. Residuals are higher-order pixel differences,
or in other words, the residual domain is obtained when an image is filtered with a
denoising filter. The purpose of considering various diverse submodels is that each
submodel tries to capture different relationships between neighboring pixels in the
residual domain.

12.2 NEED FOR RESIDUAL DOMAIN
In this section, we will discuss the residual domain and why feature extraction from
the residual domain is preferred. The residual domain of an image denotes the output
image filtered through a high-pass filter. Processing an image using a high-pass filter
is equivalent to highlighting the details of an image as well as suppressing the smooth
regions such as the blue sky/flat regions lacking any texture. Feature extracted from
the residual domain is beneficial as the extracted features tend to be independent of
the content for the classification tasks. The decision of a classifier should not be bi-
ased by the image content, and hence, features obtained from the residual domain
are robust and more generalized. Images captured from the most of the cameras have
certain dependencies in the neighboring pixels due to the natural scene complexity as
well as various digital signal processing operations such as color filter array demo-
saicing, gamma correction, and filtering on the irradiance values [2]. These spatial
dependencies between the neighboring pixels are graphically shown in [3]. Authors
in [3] used 10,700 grayscale images from the BOWS2 dataset [3] to show that the
joint probability of occurrences of two adjacent pixels follows a near-linear profile.
With this fact, we can deduce that for natural images, the joint probability distribu-
tion of adjacent pixels will not vary much, or in other words, the pixels differences of
neighboring pixels will be smaller for natural or uncorrupted images. It was further
shown in [3] that the shape of joint probability distribution remains unchanged with
the pixel value variation using information-theoretic tools like entropy, mutual infor-
mation, etc. Mathematically, the joint probability P(Ii, j, Ii, j+1) between two adjacent
pixels is measured, where Ii, j and Ii, j+1 are the two pixel values adjacent to each other
in the horizontal direction. It can be deduced that pixel values Ii, j and Ii, j+1 should
be somewhere close to each other for uncorrupted images. Histograms of a double,
triple, and large group of neighboring pixels can be used to model the dependencies
among pixels in the natural images. But this method of modeling dependencies is
less efficient due to the following reasons [3].
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• Consider the case of an Eight-bit grayscale image in which pixel values lie
between 0 and 255, in the joint histogram of two neighboring pixels, there
could be 2562 = 65,536 bins.

• There are such color combinations whose probability of occurrence together
is very less, for example, a pixel value of 255 and 0 adjacent to each other in
an eight-bit grayscale image. The corresponding bins in the histogram will
be empty and thus act as a noise in the features.

• The features obtained using the histogram are image content dependent.

Now, we will show how feature dimension can be reduced by using the residual do-
main. Consider the case of eight-bit grayscale images. This means that each pixel
can choose from 28 = 256 unique values. The implication is that, as a pair, there
can be 256 2( ) = 65,536 combinations for (Ii, j, Ii, j+1). Let us now consider the sec-
ond case, i.e., considering only the differences between the pixel intensities, where
intensity pairs (Ii, j, Ii, j+1) such as (1,2), (2,3), and (250,251) all fall in the same
bucket. Empirically, the minimum difference possible is 0−255 =−255 and maxi-
mum difference possible is 255−0 = 255. Hence, the total number of combinations
are 255− (−255)+1 = 511, instead of 65536. One such application of residual do-
main is presented in [3], in which pixel differences are modeled as Markov chains,
and then, sample transition probability matrix is used as features for steganalysis of
digital images.

12.3 RICH MODELS OF NOISE RESIDUAL
Formation of rich models [1] aims to capture various kinds of dependencies among
the neighboring pixels. The construction of a rich model [1] starts by computing
various diverse submodels. Submodels capture different spatial relationships in the
neighboring pixels of the noise residuals. The procedure described below gives a
complete description of the construction of submodels in the residual domain.

12.3.1 NOISE RESIDUAL

Consider a single-component eight-bit grayscale image I, of size M × N, where
0≤ I(i, j)≤ 255, for i∈ {1 . . .M} , j ∈ {1 . . .N}. For the given image I, let pi, j repre-
sent a pixel in the spatial domain, ri, j be its residual domain counterpart, andN (pi, j)
the neighborhood of pixel p M×N

i, j, with pixel pi, j excluded. Noise residual R ∈R of
an image is defined [1] in Equation 12.1.

ri, j = Ψ(N (pi, j))− c . pi, j (12.1)

Here, Ψ is a function which accepts N (pi, j) as input and outputs an estimate of
c . pi, j, where i, j span the rows and columns of the image and c denotes the residual
order. The function Ψ(N (pi, j)) is implemented using denoising filters and is aimed
to estimate c . pi, j; thus, the center pixel pi, j is excluded in calculating the residual.
As otherwise the estimator-related function Ψ(N (pi, j)) will converge to the trivial
solution of giving weight c to the central pixel and zero to all other neighbors.
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Tables 12.1–12.4 show some of the linear and non-linear filters/functions [1] used
for calculating noise residuals of a given image. For linear filters, central pixel pi, j is
always marked with *. The integer multiplied with the central pixel pi, j is the residual
order c.

Two types of residuals have been defined as “spam” residuals and “minmax”
residuals. Residuals obtained from the filters/functions shown in Table 12.1 are of
type “spam” as they contain exactly one linear operation. Residuals with two or
more linear operations combined together using minimum or maximum operation
are called “minmax” type of residuals. The final filters/functions corresponding to
“minmax” type of residuals are non-linear in nature. Hence, for the “minmax” type
residuals, we can have two outputs by differently (using a minimum or maximum op-
eration) combining two sets of linear filters, whereas for “spam” residuals, we will
have one output. The advantage of using “minmax” residual is that it introduces non-
linearity in the features extracted from the residual domain. For example, residual 2a
in Tables 12.1 corresponds to second-order “spam”-type residual where ri, j can be
written as in Equation 12.2.

ri, j = pi, j−1 + pi, j+1−2pi, j (12.2)

Residual 1a (Table 12.1) corresponds to the first-order “spam”-type residual, where
ri, j can be written as in Equation 12.3. In first-order residuals, the central pixel is
predicted as an adjacent neighbor pixel.

ri, j = pi, j+1− pi, j (12.3)

Residual 2b (Table 12.3) corresponds to “minmax”-type residual which provides two
residuals as described in Equations 12.4 and 12.5.

Table 12.1
Mathematical form of Some of the Linear Filters in the Filter Space B
(*Denotes the Central Pixel)

Name ri, j

1a −1* 1

2a 1 −2* 1

E3a
−1 2 −1
2 −4* 2

S3a
−1 2 −1
2 −4* 2
−1 2 −1

S5a

−1 2 −2 2 −1
2 −6 8 −6 2
−2 8 −12* 8 −2
2 −6 8 −6 2
−1 2 −2 2 −1
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Table 12.2
Mathematical form of some of the first order non-linear filters in the filter
space B

Name ri, j

max
pi, j−1− pi, j
pi, j+1− pi, j

, min
pi, j−1− pi, j
pi, j+1− pi, j

{ {
{ {1b

1c max
pi−1, j− pi, j
pi, j+1− pi, j

, min
pi−1, j− pi, j
pi, j+1− pi, j{ {

1d max{ i−1, j− i, j
pi, j+1− pi, j
pi, − , , − ,j 1− pi j

, min{ i−1, j− i, j
pi, j+1− pi, j
pi j 1− pi j

{p p {p p

{ {
max

''{''{
pi−1, j− pi, j
pi, j+1− pi, j
pi, j−1− pi, j
pi+1, j i, j i+1, j i, j− p

, min

''{''{
pi−1, j− pi, j
pi, j+1− pi, j
pi, j−1− pi, j
p − p

1e

{ {
max

{{
pi−1, j− pi, j

pi−1, j+1− pi, j
pi, j+1− pi, j

, min
{{

pi−1, j− pi, j
pi−1, j+1− pi, j
pi, j+1− pi, j

1f { {
1g max

''{''{
pi−1, j−1− pi, j
pi−1, j− pi, j

pi−1, j+1− pi, j
pi, j+1− pi, j

, min

''{''{
pi−1, j−1− pi, j
pi−1, j− pi, j

pi−1, j+1− pi, j
pi, j+1− pi, j{ {

1h max

''''{''''{
pi−1, j−1− pi, j
pi−1, j− pi, j

pi−1, j+1− pi, j
pi, j+1− pi, j

pi+1, j+1− pi, j

, min

''''{''''{
pi−1, j−1− pi, j
pi−1, j− pi, j

pi−1, j+1− pi, j
pi, j+1− pi, j

pi+1, j+1− pi, j

max
pi−1, j + pi+1, j−2pi, j
pi, j−1 + pi, j+1−2pi, j

(12.4)
{

min
pi−1, j + pi+1, j−2pi, j
pi, j−1 + pi, j+1−2pi, j

(12.5)
{

All the residuals are categorized into six residual classes [1], namely, first-order,
second-order, third-order, SQUARE, EDGE3×3, and EDGE5×5. The second- and
third-order residuals give better predictions in the region of complex textures,
whereas EDGE3×3 gives better estimates of the central pixel at edges, and SQUARE
consider more number of neighboring pixels to estimate central pixel.

Each residual is further categorized on the basis of its symmetric nature. The ad-
vantage of the symmetric residual is that it reduces the number of submodels and
in turn reduces the feature dimension. Moreover, features obtained from symmetric
residuals are statistically robust. One category of residuals is called directional resid-
uals, and the other is called non-directional residuals. If the rotation of given image
by 90◦ does not change the resulting residuals (with respect to the given image),
then the corresponding residual is categorized as non-directional residuals; else, it is
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Table 12.3
Mathematical form of Some of the Second Order Non-Linear Filters in the
Filter Space B

Name ri, j

2b max
pi−1, j + pi+1, j−2pi, j
pi, j−1 + pi, j+1−2pi, j

min
{

pi−1, j + pi+1, j−2pi, j
pi, j−1 + pi, j+1−2pi, j

{

2c
max

''{''{
pi−1, j + pi+1, j−2pi, j
pi, j−1 + pi, j+1−2pi, j

pi+1, j−1 + pi−1, j+1−2pi, j
pi−1, j−1 + pi+1, j+1−2pi, j{

min

''{''{
pi−1, j + pi+1, j−2pi, j
pi, j−1 + pi, j+1−2pi, j

pi+1, j−1 + pi−1, j+1−2pi, j
pi−1, j−1 + pi+1, j+1−2pi, j{

max
pi, j−1 + pi, j+1−2pi, j

pi+1, j−1 + pi−1, j+1−2pi, j

min
{

pi, j−1 + pi, j+1−2pi, j
pi+1, j−1 + pi−1, j+1−2pi, j{

{

2d

2e
max

{{
pi, j−1 + pi, j+1−2pi, j

pi+1, j−1 + pi−1, j+1−2pi, j
pi−1, j + pi+1, j−2pi, j

min

{{{
pi, j−1 + pi, j+1−2pi, j

pi+1, j−1 + pi−1, j+1−2pi, j
pi−1, j + pi+1, j−2pi, j

directional residuals. For example 1a, 1b, 2a, 2e, and E3c are directional residuals
in the Tables 12.1–12.4, whereas 1e, 2b, 2c, S3a, and E3d residuals correspond to
non-directional residuals.

Further each of the residuals described in Tables 12.1–12.4 have a symmetric
index [1], σ associated with it. This parameter tells about the number of differ-
ent residuals that can be obtained by rotating an image before calculating residual.
For example, the residuals 1c and 1g in Table 12.2 have symmetric index 4 and 8,
respectively.

12.3.2 TRUNCATION AND QUANTIZATION

The residual space can have a high dynamic range, forming a multi-dimensional
co-occurrence which can lead to a sparsely populated array. This problem is solved
with the help of truncation, which can limit the dynamic range of residuals. If there
were no truncation, there would be a whole bunch of values outside [−T,T ] and
consequently less number of pairs satisfying the condition of co-occurrence, leading
to underpopulated bins. Further, the residuals obtained ri, j from higher-order pixel
differences will have higher dynamic range; hence, the features obtained from the
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Table 12.4
Mathematical form of Some of the Fourth-Order Non-Linear Filters in the
Filter Space B

Name ri, j

E3b
max

2pi, j−1− pi−1, j−1 +2pi−1, j− pi−1, j+1 +2pi, j+1−4pi, j
2pi+1, j− pi+1, j−1 +2pi, j−1− pi−1, j−1 +2pi−1, j−4pi, j

min
{

2pi, j−1− pi−1, j−1 +2pi−1, j− pi−1, j+1 +2pi, j+1−4pi, j
2pi+1, j− pi+1, j−1 +2pi, j−1− pi−1, j−1 +2pi−1, j−4pi, j{

{

E3c
max

2pi, j−1− pi−1, j−1 +2pi−1, j− pi−1, j+1 +2pi, j+1−4pi, j
2pi, j−1− pi+1, j−1 +2pi+1, j− pi+1, j+1 +2pi, j+1−4pi, j

min
{

2pi, j−1− pi−1, j−1 +2pi−1, j− pi−1, j+1 +2pi, j+1−4pi, j
2pi, j−1− pi+1, j−1 +2pi+1, j− pi+1, j+1 +2pi, j+1−4pi, j

E3d
max

{''{
, − − , − − , − , + , + ,

2pi+1, j− pi+1, j−1 +2pi, j−1− pi−1, j−1 +2pi−1, j−4pi, j
2pi, j−1− pi+1, j−1 +2pi+1, j− pi+1, j+1 +2pi, j+1−4pi, j
2pi+1, j− pi+1, j+1 +2pi, j+1− pi−1, j+1 +2pi−1, j−4pi, j

min

{''{''{
2pi, j−1− pi−1, j−1 +2pi−1, j− pi−1, j+1 +2pi, j+1−4pi, j
2pi+1, j− pi+1, j−1 +2pi, j−1− pi−1, j−1 +2pi−1, j−4pi, j
2pi, j−1− pi+1, j−1 +2pi+1, j− pi+1, j+1 +2pi, j+1−4pi, j
2pi+1, j− pi+1, j+1 +2pi, j+1− pi−1, j+1 +2pi−1, j−4pi, j

{''2pi j 1− pi 1 j 1 +2pi 1 j− pi 1 j 1 +2pi j 1−4pi j

residuals will have high dimensions. To avoid the growth of feature dimension, the
obtained residuals are quantized with quantization step, q as shown in Equation 12.6.
Here, [.] denotes the rounding operation.

ri, j ← ϒ
ri, j

q
;T (12.6){

([ ] )

ϒ(x;T ) =

'{'{
T if x ≥ T
x if |x|< T
−T if x ≤−T

(12.7)

Hence, each element of R, ri, j can be any integer value between −T and +T , for
example if T = 2, then ri, j ∈ {−2,−1,0,+1,+2}

12.3.3 CO-OCCURRENCES

Co-occurrences matrices from the quantized and truncated noise residual R are cal-
culated to form the models. Co-occurrence matrix is defined in Equation 12.8.

Ch
u = ∑

i
∑

j
1[ ri, j=u1, ri, j+1=u2,.>ri, j+n=un ],

u1,u2, .,un ∈ [−T,T ] (12.8)

In the Equation 12.8, co-occurrences are calculated in the horizontal direction, de-
noted as Ch, and similarly, one can obtain co-occurrence matrix in the vertical (Cv),
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diagonal (Cd), and minor diagonal direction (Cm). In the Equation 12.8, the defined
co-occurrence matrix, C, is an n-dimensional array indexed with u, u= (u1,u2.....un)
and Ch

u represents uth element of Ch.
In the Equation 12.8, 1 is the indicator function which is 1 when the condi-

tion inside [ ] is satisfied; otherwise, it is 0. Therefore, from each residual, four
co-occurrence matrix can be obtained, in the horizontal, vertical, diagonal, and
in minor diagonal direction. Since each element of R, ri, j ∈ [−T,+T ] and hence
there would be (2T +1 n) elements in a co-occurrence matrix, C, where T is the
threshold used for truncating residuals, ri, j, and n is the order of co-occurrence
matrix.

As mentioned in [1], correlation between the neighboring pixels reduces grad-
ually in the diagonal directions, and hence, out of the four directions mentioned
above, only horizontal and vertical directions are considered for building rich mod-{ }
els. Therefore for each residual R ∈ Rh,Rv , there exist two co-occurrence matri-
ces one in horizontal direction (Ch) and one in vertical direction (Cv).

As mentioned in Section 12.3.1, there exist directional and non-directional resid-
uals, going one-step forward, for any residual R, if its horizontal and vertical co-
occurrence matrices can be added to form a single matrix, such residuals are known
as hv-symmetrical residuals [1]. This implies that all the non-directional residu-
als are hv-symmetrical residuals because, for non-directional residuals, the resid-
ual value does not change when the image is rotated. On the other hand, those
residuals whose horizontal and vertical co-occurrence matrices cannot be added
to form a single matrix are known as hv-nonsymmetrical residuals. Therefore, hv-
symmetrical residual produces a single co-occurrence matrix (sum of horizontal and
vertical co-occurrence matrices), whereas hv-nonsymmetrical residual produces two
co-occurrence matrices.

Another important point to discuss is the selection of threshold, T, and co-
occurrence order, n. Each co-occurrence matrix contains (2T + 1 n) elements. If we
choose a larger value of T , then there can be a case in which the co-occurrence matrix
is sparsely populated and thus results in a poor selection of submodels.

Since it has already been discussed in the definition of rich models that rich mod-
els consist of various diverse submodels, each submodel tries to capture a different
kind of relationship between the neighboring pixels of an image. The use of different
types of residuals (six classes of residuals) captures different types of relationship be-
tween neighboring pixels and then forming one or more populated co-occurrence ma-
trix (submodels) results in diverse submodels. The point to concern is to choose the
correct value of T and n, which does not lead to a sparsely populated co-occurrences
matrix.

Rich models can be widely applicable in the image forensic problems. Consider
the case of pixel-based image forgeries where the statistical correlation between the
pixels of an image changes. The advantage of applying rich models to such problems
is that rich models consider the different types of relationship between the neigh-
boring pixels and hence features obtained using rich models would be effective in
distinguishing forged images.
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In this work, first, the use of rich models in steganalysis of digital images will be
explained, which already exist in the literature, and later, the use of rich models
in distinguishing natural images from computer-generated (CG) images will be
explained.

12.4 RICH MODELS FOR STEGANALYSIS OF DIGITAL IMAGES
Steganography is the art of hiding information in the information. Various file for-
mats can be used to hide the information. Those file formats which have a high degree
of redundancy are best suitable for steganography, and hence, digital images are very
well suitable for steganography as images contain various types of redundancies. In
images, redundant bits are those bits which do not affect the visual perception of
human beings. Therefore even if redundant bits are altered by hiding information, it
is hardly noticeable.

Image steganography techniques are divided into two categories

1. Spatial Domain
In this category, information is hidden in the pixels of an image. For

example, the least significant bit embedding.
2. Transform Domain

In this, an image is first transformed into another domain such as the
frequency domain, and then, information is embedded in the transformed
domain. The steganography done in the frequency domain is more robust.

Steganalysis is the art of detecting the messages hidden using steganography tech-
niques. Since hiding the information in the images may alter the statistical properties
of the images, such as the correlation between the neighboring. Therefore, these can
act as signatures to detect the hidden messages.

In recent times, the content-adaptive steganography is an emerging area in
steganography research. Adaptive steganography distorts the pixels of an image very
less so that the detection of hidden messages becomes difficult. Adaptive steganog-
raphy is mainly divided into two categories: adaptive steganography in the spa-
tial domain and adaptive steganography in the frequency domain. HUGO (Highly
Undetectable steGO) is an example of content-adaptive steganography in the spatial
domain and is one of the recent advanced steganography algorithms. The embedding
algorithm HUGO considers a complex model consisting of various submodels, each
capturing different embedding artifacts [1]. Also, HUGO preserves the joint distribu-
tion of first-order differences of neighboring pixels, and hence, considering only first-
order residuals for detecting, HUGO will not give better results. Therefore, forming
submodels using higher-order residuals (considering more neighboring pixels) will
be a better choice in identifying HUGO.

Moreover as mentioned above, there are two types of residuals, “spam” and “min-
max.” The use of “minmax” residuals is very effective in detecting adaptive steganog-
raphy because the residuals computed from the pixels in the direction perpendicular
to the edge will result in a large value and residuals computed from the pixels in
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the direction parallel to the edge will result in a small value, and hence, “minmax”
residual plays a major role in detecting HUGO. The role of quantizing residual also
plays a major in steganalysis. Other than reducing feature dimension, quantization
also makes the features more sensitive to embedding changes at discontinuities in
the image [1].

12.5 RICH MODELS FOR DISTINGUISHING PHOTO-REALISTIC
AND PHOTOGRAPHIC IMAGES

In the 1980s, pictures were formed on the photosensitive films, doctoring which was
not easy, and any attempt at manipulation was easily noticeable [4]. With the outburst
of digital technology, images are reduced to mere numbers organized as matrices,
which makes them easier to manipulate. One issue concerning digital forensics is
the rampant use of CG images disguised as photographic images (PIM)/natural or
real images and vice versa. Such type of CG images is referred to as photo-realistic
computer-generated (PRCG) images.

Historically, the problem of automatic differentiation of PRCG and PIM has not
received much attention as other forensic problems such as detection of copy-move
forgery in a given image. It is mainly because differentiating between CG image and
PIM was a task of less difficulty due to limitations of the systems used for gener-
ating CG images. Nevertheless, the artificial intelligence (AI) and computer vision
community have made great strides to simulate PRCG images visually close to the
natural images (Figure 12.1).

Besides producing fake photos, PRCG images are also of an utmost require-
ment in many situations. One possible situation can be a scene which has enough
physical description available, in such cases, generating a CG image is much eas-
ier where viewing angles are difficult to capture using conventional photogra-
phy techniques. Observing the trend, PRCG images are bound to become ubiqui-
tous. Therefore, there is a need to develop methods to distinguish between PRCG
and PIM.

The pipeline of the generation of natural images and CG images is very differ-
ent from each other. In the case of natural images, light from a real scene falls on
the image sensor after passing through lenses, optical filter, and a thin layer of color
filter array (CFA) pattern. The purpose of this thin layer is to extract specific color
components from the light; for example, in the case of RGB images, CFA pattern
will extract red, green, and blue color wavelengths from the light. In digital cameras,
an image signal is first generated at the image sensor, and either red, green, or blue
color is present at each location. The other two color components at each location
are interpolated from the neighboring pixels. In this way, each location in an RGB
image has three values present at each pixel location. Later image is passed through
various in-camera processing operations such as white balancing and contrast sat-
uration. Due to CFA interpolation and various in-camera processing, there exists a
correlation between neighboring pixels in a natural image, whereas for CG images,
this is not the case as there is no interpolation in their generation. Motivated from this
fact, intuitively we can say that features obtained from rich models might be able to
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(a)

(b)

Figure 12.1 Visual comparison of photo-realism with a PIM. The image (a) is a genuine
PIM from Google dataset [26,27]. The image (b) is CG image from PRCG dataset [26,27].

distinguish CG and real images because the rich model captures the various types
of complex dependencies among the neighboring pixels, which exists in the natural
images and not with the CG images.

12.5.1 EXISTING WORKS

One of the earliest works addressing automated detection of CG images devised
simple metrics such as texture, saturation level, edge sharpness, and histogram
proximity [5]. This was the time of the late 1990s, a time when photorealism was
just picking up. Consequently, much more sophisticated measures were introduced
in [4,6]. In [4], the natural-scene quality (NSQ) modeled using natural-imaging qual-
ity (NIQ) was used to distinguish between PRCG and PIM. The proposed NIQ cap-
tures information of imaging process such as white balancing and demosaicing, and
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NSQ is typical of the scene like an illumination in a real scenario. Of the two, NSQ
is more characteristic of PIM as duplicating complex natural scene illumination is
difficult in CG images because it needs precise and intricate mathematical modeling
of light and other materials.

Use of statistical features was further extended in [6] by utilizing higher-order
statistics of photographic and photorealistic images such as skewness and kurtosis.
This method used the wavelet transform instead of Fourier transform as the latter
is not localized in spatial and frequency domain simultaneously. It was shown that
wavelet sub-band coefficients of natural images follow generalized Laplacian distri-
bution, characterized by a sharp peak and a long tail, justifying the use of higher-
order statistics in [6]. Along with these statistics, a linear predictive model was also
used to exploit the fact that natural images bear higher spatial correlation. This estab-
lished the observation that irrespective of the degree of perceptual similarity between
PIM and PRCG images, the underlying statistics of the two are quite different owing
to the multitude of differences in the image forming procedure.

An entirely different approach was used in [7]. Instead of finding statistical
differences between PRCG and PIM, the authors concentrated on one fundamental
difference between the two, the presence of demosaicing artifacts. Almost all cam-
eras today use CFAs for the demosaicing purpose to save hardware space and by-
pass the sensor registration problem [8]. For a PIM capturing a natural scene, abrupt
changes in pixel values are most unlikely. It can be construed in this way; given the
information about the neighboring pixels in a natural image, one is in a good position
to predict the value of the pixel whose neighbors are being analyzed. As a result, for
any of the three color channels–red, green, or blue, digital cameras do not record
color values at every pixel location. Pixel values are recorded at only a few locations,
and the rest is obtained via CFA demosaicing. This small concept leads to a signif-
icant simplification in camera manufacturing. This simplification, however, is not a
restriction nor a necessity while generating computer graphics. Hence, CFAs are not
used altogether for CG images. Detecting CFA traces in images turned out to be a
beneficial technique with accuracies reaching more than 98%. A reasonably new ap-
proach for classification was proposed in [9] where features were extracted from the
noisy signal. First, the image under consideration was convolved with a denoising
filter. The denoised image was then subtracted from the original image to obtain the
noise signal. A 15-dimensional feature based upon the normalized correlation values
was then obtained from the noise signal and used for classification.

Local binary patterns (LBP) have emerged as a simple yet an effective texture
descriptor [10] with application ranging from image-based face-recognition [11] to
video-based motion-detection [12]. However, texture-based PIM versus PRCG clas-
sification using the LBP was first proposed in [13]. The technique relied on uni-
form LBP features which can take over 58 different combinations and accounted
for the 58 bins of the 59-dimensional histogram feature. The last bin accounted for
non-uniform LBP features. A fresh approach to classification, which proved more
effective than [13], using homomorphic filtering was introduced in [14] exploiting
the illumination reflectance model. According to the illumination reflectance model,
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the images captured by digital cameras are the product of illumination falling on
it, and the light reflected. Illumination dropping in a scene does not change sud-
denly; it is only the reflectance which may vary depending upon the surface proper-
ties of the objects in the scene. Accordingly, for PIM, illumination is captured in the
low frequency, and reflectance constitutes the high frequency. Consequently, it was
shown that after homomorphic filtering, the details in PIM were boosted, while in
PRCG image, they were blurred since PRCG images do not adhere to such illumi-
nation reflectance model. Contour transform was then applied to homomorphic im-
ages. Properties of contour transform are multiresolution, localization, critical sam-
pling, directionality, and anisotropy. A detailed description of contour transform and
its advantages over Fourier and wavelet transforms can be found in [15]. Once the
contour transform sub-bands of the homomorphic filtered images were obtained, a
co-occurrence matrix was formed. Instead of using the entire co-occurrence matrix
as features, the co-occurrence matrix was characterized by energy, contrast, homo-
geneity, maximum column mean, and texture similarity. In [16], it was proposed
that a CG image would have features similar to that of a “completely tampered
image.” It used the tampering localization features proposed by [17] for classification
giving an average accuracy of 96%. A convolutional neural networks(CNN)-based
method [18] for distinguishing PIM versus PRCG images divides the input image
into patches of size 100× 100. A special pooling layer, instead of the max-pooling
layer, is used to compute the statistical values from the filtered images. The final
predicted class of an input image is decided by the classification probability of the
100×100 patches. A weighted voting strategy is used to predict the class of an input
image. Authors in [19] had also presented a more exhaustive CNN-based approach
to distinguish natural images and CG images. The input to the CNN is an RGB im-
age, and hence, 3D convolutional filters are used at the input layer. A local-to-global
strategy is used in which the CNN is trained on patches and the final class of an
image is predicted by the majority voting of the decisions obtained on the patches.
Patches from the images are cropped randomly using maximal Poisson-disk sam-
pling (MPS) [20] technique. The CNN architecture consists of three convolutional
layers: two fully connected layers and one softmax layer. Before feeding the input
image into CNN, each image is resized such that the shorter edge of an image has
512 pixels, and 200 patches each of size 240×240 are extracted from each image for
training and 30 patches of the same size are used for testing and the final decision is
made by majority voting of the decisions of the 29 patches, thus discarding the last
patch.

In the present work, a successful attempt has been made to distinguish PIM and
PRCG using rich models in the residual domain. In [1], rich models were used to
build steganalysis detectors. Motivated from the application of rich models, an at-
tempt has been made to apply the concepts of rich models in the differentiation of
natural images and CG images. As discussed in Section 12.3, building a rich model
requires various residuals, a threshold T , and co-occurrence order n. The value of
the threshold, T , and co-occurrence order, n, is chosen to be 2 and 3, respectively.
Hence, as mentioned in Section 12.3.3, the number of bins will be (2×2+1 3) = 125.
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Residuals are truncated to curb the dynamic range of residuals and quantized to re-
duce the feature dimension. But the open question is, what should be the value of
the quantization step q > 0 which gives better results? Due to truncation of residuals,
there is an undesirable loss of information, and hence to compensate for this loss, a
possible way is to consider different values of q for various submodels obtained from
one residual. In [1], the value of quantization step, q, is obtained experimentally and
best performance is achieved according to the following equations:

q ∈
{c,1.5c,2c} c > 1
{1,2} c = 1

{

where c is the residual order or the number associated with the central pixel pi, j in
Tables 12.2–12.4. In Table 12.1, central pixel pi, j is denoted by *. In the proposed
system for distinguishing PIM from PRCG, similar rules for the selection of q are
followed.

12.5.2 FEATURE EXTRACTION

The final feature dimension for each image with co-occurrence order n = 4 is 34,671
(please refer to [1] for detailed calculation). There are primarily three ways to reduce
this high feature dimensionality. First is to cut short the number of filters in filter
space B. However, this reduces the kind of features which can be learned by the
classifier. It can be interpreted that each filter in B tries to capture a different aspect
of spatial correlation among the neighboring pixels of the input image. This way, one
does not fine-tune the detection to some particular traits of the input image. It is due
to this reason only that removing some filters from B was not considered a viable
way for dimensionality reduction. Second, a lower truncation value, T , can be used.
This, however, leads to heavy loss of information for images having high contrast
and large dynamic range. Finally, the order of the co-occurrence matrix could be
reduced. Increasing the order n of the co-occurrence matrix is susceptible to having
underpopulated bins resulting in less descriptive features. Accordingly, the order n
of the co-occurrence matrix is reduced from four to three. This reduced the feature
dimensionality from 34,671 to 8,001.

12.5.3 CLASSIFICATION

For classifying very high dimensional features, the proposed system uses an ensem-
ble classifier as proposed in [21]. This was necessary since kernel support vector ma-
chine (SVM) scales poorly with increasing dimensionality, making it difficult to use
for a feature size of 8001. A good comparison of ensemble classifier and SVM can be
found in [21]. It was shown that the ensemble classifier reaches SVM’s classification
accuracy rate and sometimes outperforms it with the only fraction of computation
time required by kernel SVM.

The ensemble classifier is composed of several base learners. Each base learner
is a weak and unstable [22,23] binary classifier and acts on a random (but uniformly
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distributed) subspace of the original feature space. During the testing phase, each
base learner gives its prediction of whether the input image is a CG or PIM. The final
decision is taken by getting a consensus of each base learner. In this way collectively,
all the base learners behave as a single entity and act as a single binary classifier.

The particular choice considered for binary classifier was Fisher’s linear discrim-
inant (FLD) [24,25]. FLD is a binary classification technique which tries to find a
mapping w such that when features of two classes are mapped to a one-dimensional
subspace, their respective mean is separated by maximum with the least within-class
variance. Each FLD works on a small subset of original feature space. This makes
the ensemble classifier easily scalable with changing feature dimension. This is in
contrast to kernel SVM where computation time increases with feature dimension.
As the feature dimension increases, more base learners can be added to the ensemble
classifier. Since each FLD acts only on a small subset of the bootstrap feature space,
FLDs are made to run in parallel and thereby not increase the computation time as
high as that of the kernel SVM.

12.5.4 SYSTEM DESCRIPTION

The exact scheme is now presented algorithmically. The aim here will be to amalga-
mate all the ideas, concepts, and motivation listed so far as a single unit.

• Let I denote a single-component input image of size M×N.
• Set up the filter bank B, and fix the filters to be used for calculating residuals.

Let Nfilters denote the number of filters.
• Fix the parameters, threshold, T = 2 and order of co-occurrence matrix,

n = 3.
• For each filter, fl in B, where l ∈ {1,2, ...,Nfilters}, find the filtered image.

Ifiltered,l = I * fl (12.9)

here “*’ denotes the convolution operation. This will be l number of filtered
images. The obtained filtered images are the noise residuals.

• Quantize and truncate the obtained residual images using Equation 12.6.
• Calculate the third-order co-occurrence matrix using Equation 12.8

12.6 EXPERIMENTS AND DISCUSSION
In this section, results on various datasets described below are shown, and the pro-
posed method is compared with the state-of-the-art methods. In all the experiments,
the input image to the proposed system is re-sized to 512×512 to speed up the exe-
cution time. All the experiments in this work are performed on MATLAB R2018a.

12.6.1 DATASETS

To show the application of the proposed system in distinguishing natural images
from CG images, experiments are performed on three datasets.
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1. Columbia Image Database
Columbia image dataset [26,27] contains two types of natural images,

“Google” and “Personal” and one type of CG images, say “PRCG
Columbia.”
a. Google : The images in this dataset are natural images.
b. Personal : Consists of 800 natural images which are captured by the

author using the professional single-lens-reflex cameras. The content of
the images in this dataset is diverse in nature.

c. PRCG Columbia : Consists of 800 CG images, which are collected
from 40 3D graphics websites as mentioned in [26,27]. Maya, 3-ds
MAX, Softimage-xsi, and so on are used as rendering software. Other
than the abovementioned rendering software, geometry modeling and
high-end rendering techniques are also used.

2. RAISE
The RAISE dataset [28] consists of 8,156 high-resolution uncompressed

images. The images of this dataset are collected by four photographers.
The images are captured by three different cameras. All the images in this
dataset are of high resolution 3,008× 2,000,4,288× 2,848 and 4,928×
3,264 pixels. Each image in the dataset belongs to either of the seven cate-
gories, as mentioned in [28]. But for this work, experiments have been per-
formed on the images shared by the author [29]. The images of the RAISE
dataset serve the purpose of natural images in experiments.

3. Level-Design Reference Database
The images in this dataset [30] are CG images. The dataset consists of

63,368 images of resolution, 1,920× 1,080 pixels. These images are the
screenshots of video games and are stored in JPEG format.

12.6.2 ANALYSIS FOR DIFFERENT COLOR CHANNELS

As input to the proposed algorithm is a single-channel image. Therefore, a possible
solution is to convert an RGB image into a grayscale image. However, the use of
grayscale image inhibits the possibility of carrying out experimentation on all the
three channels independently. Now, the choice is to select either red channel, blue
channel, or green channel of an RGB image. However, the green channel should
be chosen because it is visually most consistent as compared to the other two color
channels, but the results described later show that considering the effect of all the
three channels gives better results. Therefore, red, green, and blue channels of an
RGB image are independently processed and classified, and the final predicted class
of the color image is decided by the majority voting. The advantage of using all the
three channels is that it can capture the effect of photorealism in all channels and
gives a better chance to distinguish PIM and PRCG.

Input to the proposed system is an RGB (three-component) image. As input to
the algorithm (Section 12.5.4) is a single-channel image; hence, feature extraction
process and classification should be done independently for the red, green, and blue
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channel. So, the final predicted class of an image will be decided by taking a majority
vote of the individual predictions obtained using the three channels. Figures 12.2
and 12.3 show the block diagram of the training and testing procedure, respectively,
of the proposed system.

For the experiments performed on the Columbia image database, 75% images of
the all the three sub-databases of Columbia image database are randomly selected
for training, and the remaining images are used for testing. As mentioned above,
three sub-databases are “Google” and “Personal” which have PIM images and CG
images, “PRCG Columbia.” Table 12.5 shows the result of distinguishing images
from the “Google” versus “PRCG Columbia” as well as “Personal” versus “PRCG
Columbia.” Table 12.5 reports the median and mean accuracies of seven iterations
on the 25% testing images.

Figure 12.2 Block diagram corresponding to training phase of the proposed system.
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Figure 12.3 Block diagram corresponding to testing phase of the proposed system.

Table 12.5
Median and Mean Accuracies of Seven Iterations for Different Color
Channels (Red, Green, Blue) and for the Combined Three-Channel Image

Google versus PRCG Columbia Personal versus PRCG Columbia

Median Mean Median Mean

Red channel 82.83 82.72 98.75 98.89
Green channel 83.08 82.94 99 98.71
Blue channel 81.57 82.11 99 98.96
RGB (majority voting) 83.84 83.73 99.25 99.04

Results are reported on the Columbia Image Database

12.6.3 ROBUSTNESS AGAINST POST-PROCESSING OPERATIONS

To check the robustness of the proposed system, we test the proposed system against
some common post-processing image operations such as double JPEG (Joint Photo-
graphic Experts Group) compression and histogram equalization. For this purpose,
an experiment is performed on the Columbia image database. Since the images of
the database are originally single compressed, so for double-JPEG compression,
we considered quality factors 80 and 90 as these are frequently used quality fac-
tors for JPEG compression. The experiment performed with images compressed
twice with the secondary quality factor being 80 is referred to as JPEG-80 and
similarly for quality factor being 90 is referred to as JPEG-90. For histogram
equalization, all the images of the Columbia database are histogram equalized.
For all the three experiments, 75% images are randomly selected for training,
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Table 12.6
Robustness Against JPEG Compression and Histogram Equalized Images

JPEG-80 JPEG-90 Histogram Equalization

Median Mean Median Mean Median Mean

Google versus PRCG
Columbia

80.81 80.59 82.58 82.40 81.57 81.39

Personal versus PRCG
Columbia

96.50 96.21 98 98 97.25 97.29

Median and mean accuracies of seven iterations are shown.

and the remaining images are used for testing. In Table 12.6, median and mean
accuracies of seven iterations are reported. As can be seen from Table 12.6, the
proposed system is robust against double-JPEG compression and histogram equal-
ization. From the experimental results shown above, it can be concluded that rich
models can be used to distinguish real images and CG images, although they are
originally used for steganalysis of digital images. The results obtained from rich
models are comparable to CNN-based methods and features obtained from rich
models are very less computationally expensive as compared to the two CNN-based
methods.

12.6.4 COMPARISON WITH STATE OF THE ART

Performance of the proposed system is compared with two methods based on CNN,
proposed by Rahmouni et al. [18] and Quan et al. [19]. For different experiments
related to comparison, all the methods are provided with the same training and testing
datasets. For reporting the comparative performance with [18], and [19] all the re-
sults are directly taken from [19]. A patch size of 100× 100 is used in Rahmouni
et al. [18]. While the method proposed by Quan et al. [19] obtains the best accuracy
on using patches of size 240×240. The accuracies on the full-size image are reported
based on the majority voting scheme used by the respective methods.

12.6.4.1 Comparison on Columbia Database
The experiments on Columbia database are compared with [18] and [19], and median
classification accuracies of seven iterations are reported in the Table 12.7. The dataset
is randomly split into 75% of training images and 25% of testing images. The per-
formance of the proposed system on the Personal dataset (Personal versus PRCG
Columbia) is better than [18], and [19]. On the Google dataset (Google versus
PRCG Columbia) proposed system performs better than [18], but method in [19]
outperforms both the methods. The reason behind the lack of performance in Google
dataset is that it is an uncontrolled dataset; that is, it has a diverse image content
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Table 12.7
Comparison on Columbia Image Database

Rahmouni et al. [18] Quan et al. [19] Proposed

Google versus PRCG Columbia 75.31 93.2 83.84
Personal versus PRCG Columbia 75.75 98.5 99.25

Median accuracies of seven iterations are shown.

Table 12.8
Comparison on RAISE versus Level-Design Reference Dataset on Full Size
Images

Rahmouni et al. [18] Quan et al. [19] Proposed

99.3 99.58 99.86

Median accuracies of seven iterations are shown.

and involves more types of cameras, photographer styles, and lighting conditions,
whereas the Personal dataset has limited diversity in camera and photographer style
factors. Moreover, the ground truth of the Google dataset might not be reliable [30],
whereas the images in Personal dataset have reliable sources.

12.6.4.2 Comparison on RAISE versus Level-Design

Experiments are performed on the list of images provided with the code [29] shared
by the authors [18]. The experiments on this database are compared with [18],
and [19]. For this comparison, method by Quan et al. [19] uses the patch size of
60×60 instead of their best patch size of 240×240.

As shown in the Table 12.8, on the full-size test images, the proposed system
based on rich models performs slightly better than [18], and [19]. To, summarize,
results presented in the Tables 12.5–12.8 show that the rich models are capable to
distinguish between PIM and PRCG images.

12.7 CONCLUSION

Given the current eruption of photorealistic CG images, it has become quintessen-
tial to verify the credibility of images. To this end, a new method for PIM versus
PRCG images classification has been proposed. Good classification accuracies, close
to 99%, have been obtained on standard publicly available datasets, for PRCG versus
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natural image classification. A useful extension would be to locate the patches in a
given image which have been computer-generated.
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13.1 INTRODUCTION
Annular jets with and without swirl have been used in many combustion-related ap-
plications for many years. Generally, annular jets are issued from a straight or con-
vergent duct with an axisymmetric central body or bluff body of a diameter which is
smaller than the diameter of the straight duct. A recirculation zone is formed behind
this central body which plays a crucial role in mixing and flame stabilization.

Finite element method (FEM)-based analysis is one of the most extensively
used computational methods for numerical simulation of a variety of engineering
problems [1–3]. Del Taglia et al. [4] studied the flow emanating from an annu-
lar duct with a central blockage and observed that the flow field inside the re-
circulation region is asymmetric about the jet axis. Memar et al. [5] studied the
effect of swirling on the convective heat transfer of the coaxial jets. The inner
jet swirl number was varied from 0 to 1.2, and outer jet swirl number was ap-
proximately equal to 1.3. Local heat transfer had shown a strong dependency on
the inner jet swirl number, outer jet swirl number, and Reynolds number ratio.
For high annular flow rates, increasing the inner jet swirl number appeared to
have less impact on heat transfer enhancement. Nikjooy et al. [6] applied stan-
dard k-ε and algebraic stress turbulence model to predict the mean and turbulence

259
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characteristics of non-swirling axisymmetric coaxial jets. The mean, turbulence flow
properties, and shear stress predicted using algebraic stress model agreed well with
the experimental results than the results predicted using k-ε turbulence model. To
some extent, the effectiveness of the turbulence model can be obscured by the
flow boundary conditions. Buresti et al. [7] characterized the mean and fluctuat-
ing flow field of coaxial jets using laser-Doppler anemometry (LDA) and hotwire
anemometry.

Nejad and Ahmed [8] investigated the effects of different swirl type (constant an-
gle, free vortex, and forced vortex) with constant swirl number on an isothermal
suddenly expanded dump combustor flow properties. Imposing swirl to the flow
significantly altered the flow field properties of the dump combustor and resulted
in a marked reduction of corner recirculation length. Due to the large-scale mo-
tion of the vortex core, turbulence present in the constant angle swirl flow was the
greatest.

A complex mathematical model was developed by Aleksandar et al. [9] for pre-
dicting combustion dynamics of the pulverized coal combustion in an axisymmetric
combustion chamber with swirl burner. The study reveals that a simple k-ε model
can easily be used to predict the multiphase turbulent reacting flows without com-
promising the accuracy of the solution. Harris [10] computed the decay of swirl
flow in a pipe using the order of magnitude analysis for solving an approximation
of the Navier–Stokes equations. A simple expression has been derived to predict
the swirl decay rate which proved to be in good agreement with the experimental
results. It was found that the swirl decay rate is proportional to the pipe friction fac-
tor. Pipes with smooth surface have extremely persistent swirl flows when the flow
Reynolds number is very high. It was predicted that at a sufficient distance from the
swirler, the swirl flow rotates like a solid body. Park and Shin [11] studied the en-
trainment characteristics of free swirling jets using Schlieren flow visualization and
developed a new technique for measuring entrainment velocity, which was found
to be reasonably accurate. Visualization studies revealed that mass entrainment rate
was proportional to the swirl strength. Processing vortex core induced a large-scale
periodic motion which was in synchronization with fluctuation velocity signal. This
model successfully predicts the sheet trajectory, velocity, and thickness of the flow.
The important observation was the non-swirling annular sheet starts to converge as
it moves downstream of the issuing nozzle. But, the swirling annular jet tends to
diverge from the flow axis. For swirling annular sheets, the thickness reduces as
the flow moves downstream of the nozzle. Percin et al. [12] used experimental par-
ticle image velocimetry (PIV) technique to investigate the vortex structures of the
swirling annular flow. This study reveals that the vortex core is formed inside the
swirling jet. Inside this swirling vortices, there is a point at which the vortex break-
down occurs and the pressure fluctuations are maximum before this vortex break-
down point. Sheen et al. [13] presented an experimental study which investigates the
flowfields of confined swirling jets and unconfined swirling jets. Reynolds number
and swirl numbers were used as control parameters. Smoke streak visualization tech-
nique was used to identify the flow patterns, and velocity measurements were taken
by using laser anemometry. The flowfield was classified into seven different zones.
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Each zone has distinctive variation based on the flow condition. The length of the
recirculation zone is correlated with the swirl number. Garcia-Vallalba and Jochen
Frohlich [14] demonstrated a large Eddy simulation (LES) of unconfined swirling
annular jets. The swirl number variation is the main control parameter between dif-
ferent flow conditions. It is varied from 0 to 1.2. The mean flow characteristics and
the vortex structure were studied. They introduced a pilot co-annular jet at the jet
center axis. This introduction causes an additional swirl at the jet centerline which
observed to be eliminating the coherent structures of the jet. Koen et al. [15] studied
the combustion characteristics of the compact combustion chamber in which they
used different variations of confined swirl mixer. They identified five different flame
states, and each of these flame states has distinct properties. This variation arises
only because of the change in swirl numbers. Internal recirculation zone was identi-
fied, and its role in flame stabilities was found. Marsik et al. [16] studied the stability
of the swirling annular flow. A new approach is proposed presented to stabilize the
swirling flow. The flow stability can be attained by the attenuation of the kinetic en-
ergy of the disturbances. To demonstrate this concept, they used an isothermal coax-
ial swirl flow with constant viscosity and density was used. Parra et al. [17] used
Reynolds averaged Navier–Stokes equation (RANS) simulation to study the mix-
ing and combustion characteristics of turbulent coaxial swirling flows. The interac-
tion between two reacting swirling flows was studied, and its complex flow patterns
were revealed. Stronger swirling flows generate recirculation zones and thinner flame
front, whereas weaker swirl flows create thicker flame fronts. Ibrahim and Mckinney
[18] developed a mathematical model to study annular non-swirling and swirling
liquid sheets.

From the previous studies, it is evident that the studies related to confined swirling
annular free jet have not extensively analyzed. The future scope of work will entrap
the potential of meshfree methods [19] for analysis of more complex domains and
problems.

The work presented is based on previous studies from which it is evident that the
swirling annular free jet has not extensively studied. The studies discussed above are
either experimental or numerical LES studies except the study reported by Parra et al.
[15]. LES is a very time-consuming technique when compared to simpler RANS
simulations. Since it is very important for the engineering community to understand
the flow physics swirling flow to improve the performance of future combustor ap-
plications, this study is mainly focused to investigate the flowfield of the swirling
annular jet issuing from a straight annular circular duct with the help of RANS
simulation.

13.2 COMPUTATIONAL MODEL
Although more advanced computational techniques such as LES and DNS are avail-
able to study complex flow phenomenon like swirling flows, in this study a simple
RANS simulation was used. The main aim of using RANS simulation is to demon-
strate its ability to accurately predict the mean flow properties of the swirling flows.
By doing this, one can able to easily characterize the swirler design without much
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need of computing power and enormous amount of time. ANSYS CFX Software
is used to perform numerical analysis. For solving the system of linearized govern-
ing equations, it uses a multigrid accelerated incomplete lower-upper factorization
technique. It is an iterative solver which means the exact solution of the equa-
tions is approached during the course of several iterations. For higher accuracy, it
heavily relies on pressure-based solution technique for broad applicability. To dis-
cretize the domain and to integrate the fluid flow equations in its solution strategies,
it uses FEM.

13.2.1 GEOMETRY

A circular solid cylinder of smaller diameter is fixed inside the hollow circular duct
of larger diameter which forms an annular duct as shown in Figure 13.1. A solid
cylinder is used as a bluff body which creates a recirculation zone downstream of
the duct exit. A stationary swirler is placed inside the annular region to induce the
incoming fluid flow to swirl around its axis. Stationary swirler consists of ten angular
vanes fixed circumferentially to the inner circular wall of the swirler. Three different
vane angles (swirl angles ϕ) of 0◦, 25◦, and 50◦ are considered for this study. All
the swirlers are designed such that they have the same vane length, thickness, and
wetted surface area. Swirler is positioned 25 mm upstream of the duct exit in order
to establish a fully developed swirling flow at the annular duct. The annular duct has
the inner diameter, outer diameter, and annular area of Di = 10 mm, Do = 15 mm, and
A = 98 mm2, respectively. It has an equivalent diameter (Deq) of 11.18 mm. For all
the swirl configurations, inlet total pressure has been maintained constant. Detailed
dimensions of the annular duct and swirler are shown in Figure 13.1.

Figure 13.1 Dimensions of circular annular duct and swirler.
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Figure 13.2 Domain dimensions, mesh distribution, and boundary conditions.

13.2.2 MESHING

Domain dimensions, mesh distribution, and boundary conditions are presented in
Figure 13.2. An unstructured three-dimensional grid constructed by tetrahedral ele-
ments has been used to simulate the flowfield. To accurately capture the swirl prop-
erties, very fine grid elements with the size of 0.2 mm are used at the immediate
downstream location of the annular duct exit. This region is followed by a fine region
with an element size of 0.8 mm, and the remaining part of the mesh is constructed
with coarse elements. Extreme care has been taken while setting mesh parameters
at the swirler geometry in order to achieve error-free mesh at the regions between
the angular vanes. Approximately four million elements are used in mesh construc-
tion. The size of the inflation layers near the wall region is adjusted appropriately to
achieve the Yplus value of <1.

13.2.3 PHYSICS DEFINITION

To simulate the flowfield CFX solver is used. For solving the RANS, CFX solver
uses an iterative method to obtain an exact solution during the course of the iteration
sequence. It is a pressure-based solver which suits well for our problem. At the inlet,
total pressure and static temperature have been specified. At the opening boundary,
opening pressure and static temperature have been specified. Shear Stress Transport
(SST) turbulence model is used to simulate the turbulence present in the flow field. It
provides an optimal switching between the k-ε and k-ω turbulence model. Standard
sea level pressure (101,325 Pa) has been considered as the reference pressure for the
entire analysis.

13.3 RESULTS AND DISCUSSIONS
Figure 13.3 shows the fully developed swirl flow issuing from the annular duct with
50◦ swirler. Swirling flow is characterized by a dimensionless parameter called swirl
number (S). It is defined as the ratio of the axial flux of angular momentum to the
axial flux of axial momentum.
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Figure 13.3 Swirl flow emanates from the annular duct with 50◦ swirler.

S =

∫ Ro
Ri

ρuwtanr2dr∫ Ro
Ri

ρu2r2dr
(13.1)

S – Swirl number
Ri and Ro – Inner and outer radius of the annular duct
ρ – Fluid density
u – Axial velocity at the exit plane
W tan – Tangential velocity at the exit plane
r – Radial distance from the centerline
Swirl number calculated for different swirl angles by using Equation 13.1 is plotted
in Figure 13.4. From the plot, it is evident that the swirl number shows a linear

Figure 13.4 Variation of swirl number with swirl angle.
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relation with the swirl angle (ϕ). A simple linear equation is used to fit the data
obtained by the computation which has the slope (dS/dϕ) of 0.032.

Figure 13.5 shows static pressure distribution along the jet centerline (X-axis).
Static pressure value obtained for all the jet configurations has been normalized by
the standard atmospheric pressure (Patm = 101,325 Pa) at sea level. To validate the
simulated results, the experimental data for the swirling annular flow are taken from
the study carried out by Gopinath [20] and compared with the computational re-
sults, which shows that they are in good agreement with each other. The experiments
are conducted on the scaled-up version of the swirling annular duct of the same
design.

For 0◦ swirl flow, the static pressure initially reduces and reaches a normal-
ized minimum pressure of Pmin/Patm = 0.96 at (location of minimum pressure)
Xpmin/Deq = 0.27. Beyond the minimum pressure location, the static pressure starts
increasing till it finally reaches the atmospheric pressure at X/Deq = 2.147. Swirl
flow results from a 25◦ swirler have the normalized minimum pressure value of
Pmin/Patm = 0.8 at Xmp/Deq = 0.626. Pressure distribution of 50◦ swirl flow also
exhibits the same tendency as 0◦ and 25◦ swirl flows. It has the minimum pressure
value of Pmin/Patm = 0.96 at X/Deq = 0.626. Among the three configurations con-
sidered, 25◦ swirl flow has the lowest minimum pressure value, which is 16.6% less
than the value of 0◦ and 50◦ swirl flow.

Velocity distribution along jet centerline is shown in Figure 13.6. From the plot,
it is evident that the velocity distribution has significant dependency on the swirl
conditions. Among the three jet configurations, 0◦ swirl flow has the maximum cen-
terline velocity of Umax = 150.78 m/s at X/Deq = 3.22. Velocities obtained for 25◦ and
50◦ swirl flows were also normalized by using the Umax value obtained for 0◦ swirl
flow (it is the maximum velocity reached by the flow emanates from the 0◦ swirler).
Maximum reverse flow velocity (Urev) and location of maximum reverse flow veloc-
ity (XUrev) vary with swirl angle which is presented in Table 13.1. The other two

Figure 13.5 Pressure distributions along jet centerline.
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Figure 13.6 Velocity (X component) distributions along jet centerline.

Table 13.1
Comparison between the Flow Properties of Different Swirl Flows

ϕ S Pmin/Patm Urev/Umax Xp min/Deq XU rev/Deq Xs/Deq

0◦ 0 0.96 −0.64 0.27 0.27 0.67
25◦ 0.6 0.8 −0.19 0.63 0.98 2.8
50◦ 1.6 0.96 −0.22 0.63 1.07 5.25

components of the velocity (Y and Z) oscillate very closer to zero and the oscillation
range (0.4 m/s > v & w >−0.4 m/s) is very less when compared to the X component
velocity.

The flow exiting from the annular duct starts to converge and joints at a
downstream location from the exit geometry. This downstream location is gener-
ally a stagnation point and is represented as a Red dot in Figure 13.7. Location of
this stagnation point where the velocity is zero (U = 0 m/s) is significantly altered
by the swirling conditions. The zone in between the nozzle exit, stagnation point and
the boundary of the annular flow region is called recirculation zone. This recircu-
lation zone can be easily identified in Figure 13.7. Stagnation point marks the end
of the recirculation zone, and the distance from the duct exit to the stagnation point
may be denoted as the length of the recirculation zone (Xs). Streamline pattern in-
side the recirculation zone is presented in Figure 13.7. When compared with other
swirl flows, 50◦ swirl flow has the largest recirculation zone (Figure 13.7c), which
is almost twice that of the 25◦ swirl and five times larger than the 0◦ swirl flow.
Recirculation pattern is almost symmetrical about the jet axis for 0◦ and 50◦ swirl
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Figure 13.7 Streamline pattern in the recirculation zone. (a) 0◦ swirl flow, (b) 25◦ swirl flow,
and (c) 50◦ swirl flow.

flow. But, the recirculation pattern of 25◦ swirl flow is asymmetrical about the jet
axis (Figure 13.8).

V = u2 + v2 +w2 (13.2)
√

Figure 13.9 presents lateral velocity distribution at X/Deq = 0. In this figure, Y-axis
represents the nondimensionalized form of resultant velocity (V/Vmax). The equa-
tion that used to calculate V is shown in Equation 13.2 in which u, v, and w represent
the local velocity component at X, Y, and Z directions. Vmax is equal to 150.78 m/s.
All jets have a double peak of positive maximum velocity. Although the jet flow
is swirling about its axis, it is observed that the velocity distribution is symmetric
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Figure 13.8 Lateral velocity distribution (Z axis) at X/Deq = 0.

Figure 13.9 Lateral velocity distribution X/Deq = 5.

about the jet axis. As observed in centerline velocity distribution, in lateral veloc-
ity distribution plot also 0◦ swirl flow has the maximum velocity among the three
configurations. All jet configurations almost have zero exit velocity at the center.
Comparing 0◦, 25◦, and 50◦ swirl flows, the 50◦ swirl has less maximum velocity
than the other two. The maximum velocity of 50◦ swirl flow is 61% < 0◦ swirl flow
and 55% < 25◦ swirl flow. Figure 13.10 shows the velocity distribution at X/Deq = 5.
The swirling flow of 0◦ vane angle has a single peak maximum velocity at Z/Deq = 0.
Swirling flow of 25◦ and 50◦ vane angle has double peak maximum velocity at
Z/Deq = 1 and Z/Deq = 1.5, respectively.

Mass entrainments of different swirling annular jet configurations are plotted in
Figure 13.10. Mass flow at different X/Deq is obtained and normalized by the inlet
mass flow rate (mi). Mass flow rate at different locations for different swirl conditions
has been fitted by using a simple linear expression (13.3).
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Figure 13.10 Mass entrainment.

m
mi

= Km
X

Deq
+Cm (13.3)

( )
In Equation 13.3, Km denotes streamwise mass entrainment rate. Obtained values
of Km are plotted against swirl angle in Figure 13.11. It is observed that Km in-
creases linearly with increase in swirl angle. Slope of the linear curve in Figure 13.11
dKm/dϕ = 0.039. It is interesting to note that dKm/dΦ (Km vs ϕ) is approximately
equal to dS/dΦ (S vs ϕ).

Figure 13.11 Variation of streamwise mass entrainment rate with swirl angle.
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From the above analysis, it can be said that the increase in swirl angle increases
the swirl number, recirculation zone length, and mass entrainment rate.

13.4 CONCLUSIONS
This work presents the effect of swirling on the circular annular jets issuing from
a straight annular circular duct. Stationary swirler with angular vanes of 0◦, 25◦,
and 50◦ was used to induce swirling in the annular duct. From the results, it is ob-
served that the 25◦ swirl flow has the lowest value of pressure in the recirculation
region. Swirl number and mass entrainment rate increases linearly at the rate of
(dKm/dΦ and dS/dΦ) 0.03 with an increase in swirl angle. Length of the recircu-
lation region also increases linearly with increase in swirl angle. Fifty-degree swirl
flow has the largest recirculation region zone, maximum mass entrainment rate, and
highest swirl number. Hence from the preliminary analysis, it may be stated that
the 50◦ swirl flow is more suitable for the applications where enhanced mixing is
required.
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14.1 INTRODUCTION

Linear programming (LP) is mathematical modeling of a real-world problem related
to business industries. This method is used to find optimum solutions of the problems
in which objective function and constraints appear as linear functions of decision
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variables. Linear programming formulations of real-life problems are essentially re-
quired, if more than two variables appear in the problem. A large number of variables
in a LP problem make its solution quite complex. Therefore, a more efficient method
and a solving tool of finding optimal solutions are required. In 1947, Dantzig [3,4],
a mathematical scientist and member of the U.S. Air Force, formulated some gen-
eral LP problems and developed simplex method for solving them. This method has
become very significant to bring LP into broader use. Nadar [18] highlighted that
simplex method has played a vital role during these many years in many real-world
problems and still improving in order to get the optimum solution. Taha [22] checked
the convergence of the process. Simplex method is considered as a significant devel-
opment for making optimal decisions in complex situations.

There are so many applications of LPs. The approach is being used in the
petroleum refineries since a long time. Generally, a refinery has a choice to purchase
crude oil from different sources which differs in compositions and prices. Refinery
can manufacture different products, such as petrol, diesel, and different types of lu-
bricants in varying quantities. The constraints may be due to the restrictions on the
quantity of the crude oil available from a particular source, the capacity of the re-
finery to produce a particular product, and so on. A mix of the purchased crude oil
and manufactured products is sought that gives the maximum profit [18]. Optimal
solutions of such problems can be obtained in fractions by using simplex, two-phase
or dual simplex method.

Another one important application is the handling of a cutting stock problem that
derives by the different constraints of a paper production mill. System accepts orders
from customers and plan to produce accomplished within due time. The aim is to
find an optimal solution for cutting master reels of standard size into ancillary reels
of different sizes in a manner to satisfy a conglomeration of customers insistences
with minimum possible waste. Such problems can be handled easily by LP approach
[11]. The approach is also associated with the number of cutting blades to cut master
reel into auxiliary reels of required widths simultaneously. Some constraints must be
framed during the determination of the cutting patterns. This approach determines
feasible combinations of widths with a minimal waste production. Such problems
can be solved by various methods, but the solutions are required in integers. For this
purpose, some approaches such as Gomory’s cutting-plane algorithm or branch-and-
bound techniques are generally used. However, manual implementations of above-
mentioned methods for solving a LP system having large number of variables and
constraints are quite difficult for an individual or a team.

After inclusion of digital computers, some clever algorithms are introduced by re-
searchers for solving complex LP problems. Some defense departments have shown
their intense interest in LP application [5]. The U.S. National Bureau of Standards
with Pentagon funding did first experiment on techniques for solving linear programs
primarily by Hoffman et al. [10]. The progress is continuing till date for increasing
the efficiency of algorithms to solve more and more complicated problems.

Nowadays, many commercial tools such as Linear Interactive and Discrete
Optimization (LINDO), General Interactive Optimizer (GINO), TORA, AMPL, and
EXCEL SOLVER, packages, as well as many other commercial and academic
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packages are available to find solutions of LP problems, but no efficient tool is avail-
able to find integer solutions of different types of LP problems. Neuman [19] used
MATLAB to solve such problems, but approach could not give satisfactory results
on some problems, especially, for the problems of minimization in integers. At this
stage, a reliable tool/code is essential for significant uses of LP problems of real
world, specially, if integer solutions are required. In this chapter, review of methods
and codes developed in C language are given to solve any type of LP problem in
fractions as well as in integers.

14.2 REVIEW ON TERMS RELATED TO LINEAR PROGRAMMING
PROBLEMS AND SIMPLEX METHOD

Let a LP problem be of the type:

Maximize CT . x (14.1)

subject to

Ax ≤ b,xi ≥ 0, (14.2)

where x = (x1,x2, ...,xn) is a set of variables and C = (C1,C2, ...,Cn) be the set of
involved constants. A is a p×n matrix and B = (B1,B2, ...,Bp) with Bi ≥ 0.

The objective of the problem is to find a feasible region to achieve an optimal
solution. In geometric terms, the feasible region defined by all values of x such that
Ax ≤ B,xi ≥ 0 is a (possibly unbounded) convex polytope. There is a simple charac-
terization of the extreme points or vertices of this polytrope; that is, x= (x1,x2, ...,xn)
is an extreme point if and only if the subset of column vectors Ai corresponding to the
non-zero entries of x(xi = 0) are linearly independent. In this context, such a point is
known as a basic feasible solution (BFS). If at least one constraint is violated, solu-
tion is known as infeasible solution. The collection of all feasible solutions is called
feasible region. A feasible solution is called optimum solution if it is most favorable.

If there are m equality constraints having m+ n variables (m ≤ n), a start for an
optimum solution is made by putting n unknowns out of m+ n, equal to zero and
then solving for m equations in remaining m unknowns, provided that the solution
exists and is unique. The n zero variables are called non-basic variables and the rest
m are known as basic variables which form a basic solution. If the solution yields all
non-negative basic variables, it is called BFS; otherwise, it is infeasible. This reduces
the number of alternatives for the optimal solution from infinite to a finite number,( )
whose maximum limit can be m+n (m+n)!=m m!n! .

In a LP problem, if all basic variables are (> 0), solution is called non-degenerate
solution, and if some of them are zero, solution is called degenerate.

Simplex method is an ancient and reliable algorithm for solving linear programing
problems. It also provides the basis for performing various parts of post-optimality
analysis very efficiently. Klee and Minty [13] have given a useful geometrical in-
terpretation and concluded that it is an algebraic procedure and its worst-case com-
plexity is exponential. At each iteration, it moves from the current BFS to a better,

/
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adjacent feasible solution by choosing both an entering basic variable and a leaving

basic variable and using Gaussian elimination method to solve a system of linear

equations. When the current solution has no adjacent BFS, it is better the current

solution is optimal and algorithm stops.

Maros [17] has given the summary of simplex computational techniques with

many experimental observations. The gap between practical effectiveness and theo-

retical complexity was bridged by Borgwardt [1] and Spielman and Teng [21].

14.2.1 CONVERGENCE OF SIMPLEX METHOD

Let there exist a constant θ > 0 such that for every iteration r, the values of all basic

variables xr
j satisfy xr

j θ > 0 for all ji.≥
In the starting of tth, by eliminating the basic variables from the objective equa-

tion, we obtain

zt−1− z = ∑(−C−t
j )x j, (14.3)

where C−t
j = 0 for all basic j = ji.i

If (−C−t
s ) = max(−C−t

j )≤ 0, the iterative process stops with the current BFS op-

timal. Otherwise, we increase non-basic xs, to xs = θt ≥ θ and adjust basic variables

to obtain the BFS to start iteration t +1.

14.2.2 PROGRAMMING FOR SIMPLEX METHOD

If a LP problem has n variables and m constraints and each constraint has“≤” sign,

the problem will be solved by simplex method. However, if some constraints have

another inequalities such as “=” and/or “≥,” problem will be solved by another ap-

proach, which are discussed in subsequent sections. In this section, it is necessary

to introduce main function of the program for understanding the meanings of vari-

ables and arrays mentioned. This is common part to call problem-related subroutine;

therefore, it is necessary to define variables related to all inequalities “≤,” “=,” and

“≥,” in main function.

int main()

{

int n, m, l, g, e, i, j, x[50], y[50], k, s, retur;

float c[50], b[50], a[50][50], zc[50], d[50], fact, w;

printf("Enter the number of variables in objective function......:");

scanf("%d", &n);

printf("Enter the number of constraints in LPP...................:");

scanf("%i",&m);

printf("Enter the number of inequalities having sign <= ..........:");

scanf("%i",&l);

printf("Enter the number of inequalities having sign >= ..........:");

scanf("%i",&g);

printf("Enter the number of inequalities having sign = ..........:");

scanf("%i",&e);

if(m!=l+g+e)
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{

printf("Incorrect input! Try again....");

getch();

return(0);

}

if(l!=0 && g==0 && e==0)

{

printf("\nThis problem is solving by Simplex Method.");

printf("\nWelcome by Simplex.");

}

if(g!=0 || e!=0)

{

printf("\nThis problem is solving by Two-Phase Simplex Method.");

printf("\nWelcome by Simplex.");

}

printf("\nPress 1 for maximization.\nPress 2 for minimization.\n");

scanf("%d", &k);

if(k==1) fact=1; else if(k==2) fact=-1;

else {puts("Invalid choice !\n"); getch(); return(0);}

for(j=1;j<=n+l+g+g+e;j++)

x[j]=j;

for(i=n+1;i<=n+l;i++)

{

y[i-n]=i;

b[i-n]=0;

}

printf("Enter the coefficients of the variables in objective

function.:\n");

for(j=1;j<=n;j++)

{

printf("C[%d]=",j);

scanf("%f", &c[j+1]);

}

printf("Constant term:");

scanf("%f", &c[1]); printf("\n");

for(j=n+2;j<=n+l+1;j++)

c[j+1]=0;

for(j=1;j<=n+l+1;j++)

c[j]=c[j]*fact;

if(l!=0)

{

printf("Enter the coefficients of the constraints having

‘<=’ sign.....:\n");

for(i=1;i<=l;i++)

{

for(j=1;j<=n;j++)

{

printf("Coefficient %i :",j);
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scanf("%f",&a[i][j+1]);

}

printf("Constant term:");

scanf("%f",&a[i][1]); printf("\n");

}

printf("\n");

}

if(g!=0)

{

printf("Enter the coefficients of the constraints having

‘>=’ sign.....:\n");

for(i=l+1;i<=l+g;i++)

{

for(j=1;j<=n;j++)

{

printf("Coefficient %i :",j);

scanf("%f",&a[i][j+1]);

}

printf("Constant term:");

scanf("%f",&a[i][1]); printf("\n");

}

printf("\n");

}

if(e!=0)

{

printf("Enter the coefficients of the constraints having

‘=’ sign......:\n");

for(i=l+g+1;i<=l+g+e;i++)

{

for(j=1;j<=n;j++)

{

printf("Coefficient %i :",j);

scanf("%f",&a[i][j+1]);

}

printf("Constant term:");

scanf("%f",&a[i][1]); printf("\n");

}

printf("\n");

}

for(i=1;i<=m;i++)

{

if(a[i][1]<0.0)

{

printf("Bad input: Constants bi must be non-negative.\n");

return(0);

}

}

if(l!=0 && g==0 && e==0)
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retur=simplex(l, m, n, c, x, y, b, a, zc);

else

{

for(j=1;j<=n+1;j++)

d[j]=c[j];

for(j=1;j<=n+l+g+1;j++)

c[j]=0;

for(j=n+l+g+2;j<=n+l+g+g+e+1;j++)

c[j]=-1;

w=ibfs(m, l, g, e, a);

retur=t_phase(l, g, e, m, n, c, x, y, b, a, zc, d, w);

}

if(k==1)

{

printf("\nMaximization of the problem is as:\n");

printf("Maximum of objective function is=%f\n",zc[1]);

}

if(k==2)

{

printf("\nMinimization of the problem is as:\n");

printf("Minimum of objective function is=%f\n",-zc[1]);

}

for(j=1;j<=n;j++)

for(i=1;i<=m;i++)

if(j==y[i])

printf("X%d=%f\n",y[i],a[i][1]);

printf("\nDo you want integer solution of the problem?");

printf("\nPress 1 for yes!\nPress 2 for no!\n");

scanf("%d", &k);

if(k==1 && retur==-20)

gomor(l, m, n, c, x, y, b, a, zc);

if(k==1 && retur!=-20)

{

printf("\nProblem is not fit for obtaining an integer solution!");

return(0);

}

else if(k==2)

return(0);

else if (k!=1 || k!=2)

{puts("Invalid choice !\n"); getch(); return(0);}

}

This part of the program will perform simplex procedure.

int simplex(int l, int m, int n, float c[], int x[],

int y[], float b[], float a[][], float zc[])

{

int i, j;

for(i=1;i<=m;i++)

for(j=n+2;j<=n+l+1;j++)
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{

if(i==j-n-1)

a[i][j]=1;

else

a[i][j]=0;

}

simp_comp(l, m, n, c, x, y, b, a,zc);

return(-20);

}

int simp_comp(int l, int m, int n, float c[], int x[],

int y[], float b[50], float a[50][50], float zc[50])

{

int i, j, s, r; float dv, temp;

for(j=1;j<=n+l+1;j++)

zc[j]=z_c(j, m, c, b, a);

s=m_neg(n, l, zc);

if(s==-1)

{

printf("Pivot element could not be found\n");

table(s,l, m, n, c, x, y, b, a, zc);

}

else

{

r=m_rat(s, m, a);

printf("Position of Pivot element is (%d, %d)\n", r, s);

table(s,l, m, n, c, x, y, b, a, zc);

}

do

{

temp=-1;

for(i=1;i<=m;i++)

if(a[i][s+1]>0)

temp=a[i][s+1];

if(temp>0)

{

dv=a[r][s+1];

for(j=1;j<=n+l+1;j++)

a[r][j]=a[r][j]/dv;

for(i=1;i<=m;i++)

{

dv=a[i][s+1];

if(i!=r)

for(j=1;j<=n+l+1;j++)

a[i][j]=a[i][j]-a[r][j]*dv;

}

y[r]=x[s]; b[r]=c[s+1];

for(j=1;j<=n+l+1;j++)
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zc[j]=z_c(j, m, c, b, a);

dv=zc[2];

for(j=2;j<=n+l+1;j++)

if(dv>zc[j])

dv=zc[j];

if(dv>=0)

{

table(s,l, m, n, c, x, y, b, a, zc);

printf("\nOptimum Solution Achieved.");

return(0);

}

s=m_neg(n, l, zc);

if(s==-1)

{

printf("Pivot element could not be found.\n");

table(s,l, m, n, c, x, y, b, a, zc);

return(0);

}

else

{

r=m_rat(s, m, a);

printf("Position of Pivot element is (%d, %d).\n", r, s);

table(s,l, m, n, c, x, y, b, a, zc);

}

temp=zc[2];

for(j=2;j<=n+l+1;j++)

if(temp>=zc[j])

temp=zc[j];

}

else

{

if(s!=-1)

printf("\nThe problem has unbounded solution!");

return (0);

}

}

while(temp<0);

dv=zc[n+2];

for(j=n+2;j<=n+l+1;j++)

if(dv>=zc[j])

dv=zc[j];

if(dv==0)

{

printf("\nOptimum Solution Achieved");

printf("\nHowever, alternative optimum solutions will

exist for this problem!\n");

}

}
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14.2.3 CODE TO PERFORM OPTIMALITY TEST
Optimality test checks whether the current feasible solution can be improved or not.
This is done by computing Z j−Cj, where Z j = ∑CBAi j. If Z j Cj is negative under
any column in simplex table, the current feasible solution is not

−
optimal and at least

one better solution is possible.

float z_c(int j, int m, float c[50], float b[50], float a[50][50])

{

int i; float zc[50]; zc[j]=0.0;

for(i=1;i<=m;i++)

zc[j]=zc[j]+b[i]*a[i][j];

zc[j]=zc[j]-c[j];

return(zc[j]);

}

To determine the selection of entering variable, most negative Z j −Cj from the

columns of simplex table is to be marked. Similarly, leaving variable is decided by

marking minimum non-negative ratio of the elements of quantity column, with the

elements of the column in which most negative Z j−Cj exists. Following two codes

perform these tasks:

Code to calculate most negative Z j−Cj

int m_neg(int n, int l, float zc[50])

{

int j, k; float temp; temp=0;

for (j=2;j<=n+l+1;j++)

if(temp>zc[j])

{

temp=zc[j];

k=j-1;

}

if(temp<0)

return(k);

else

return(-1);

}

Code to calculate minimum ratio

int m_rat(int s, int m, float a[50][50])

{

int i, k; float mr[50], temp;

for(i=1;i<=m;i++)

if(a[i][s+1]>0)

mr[i]=a[i][1]/a[i][s+1];

else

mr[i]=10000;

temp=mr[1];
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for(i=1;i<=m;i++)

if(temp>=mr[i]&& mr[i]>=0)

{

temp=mr[i]; k=i;

}

return(k);

}

14.2.4 CODE TO PRINT SIMPLEX TABLE FOR EACH ITERATION
int table(int s, int l, int m, int n, float c[], int x[],

int y[], float b[50], float a[50][50], float zc[50])

{

int i,j; float mr[50], dv;

for(j=1;j<=n+l;j++)

printf("----------------");

printf("\n Cj");

for(j=1;j<=n+l+1;j++)

printf(" %f ",c[j]);

printf("\n");

for(j=1;j<=n+l;j++)

printf("----------------");

printf("\nB.V. Cb Xb\t\t");

for(j=1;j<=n+l;j++)

printf("X%d ",x[j]);

printf("M.R\n");

for(j=1;j<=n+l;j++)

printf("----------------");

for(i=1;i<=m;i++)

{

dv=a[i][s+1];

if(dv!=0)

mr[i]=a[i][1]/dv;

else

mr[i]=10000;

}

for(i=1;i<=m;i++)

{

printf("\n"); printf("X%d ",y[i]); printf(" %3.2f",b[i]);

for(j=1;j<=n+l+1;j++)

printf(" %f ", a[i][j]);

if(mr[i]!=10000)

printf(" %4.1f",mr[i]);

else

printf(" ---");

}

printf("\n");

for(j=1;j<=n+l;j++)
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printf("----------------"); printf("\n Z=");

for(j=1;j<=n+l+1;j++)

printf(" %f ", zc[j]);

printf("\n");

return(0);

}

14.3 TWO-PHASE METHOD
Simplex algorithm is not applicable if all constraints of a LP problem do not have

“≤” sign. In this situation, some special variables (artificial variables) are to be added

in the given constraints and solution can be found in two phases. Phase I is an attempt

to find initial feasible solution by possible removal of these artificial variables under

some specific conditions.

Consider a LP problem of the type:

Minimize CT x, (14.4)·
subject to Ax = B,xi ≥ 0. (14.5)

By multiplying some rows with −1 if necessary, we can achieve that the right-hand

side B satisfies B≥ 0. From this, we construct a linear program from which an initial

basic solution is readily available:

Minimize z1 + ·+ zm, (14.6)

subject to Ax+ z = B,xi,zi 0. (14.7)≥
The set B = {n+1, ...,n+m} is a feasible basis with BFS (x∗,z∗) defined by x∗ = 0

and z∗ = b.

At the end of Phase I, artificial variables will be removed only when they are non-

basic. If one or more artificial variables are basic, following steps must be performed

to remove them before the implementation of Phase II:

Step 1- Select a zero artificial variable (leaving variable) and mark its row as

the pivot row.

Step 2- Select an entering variable with a non-zero coefficient from the pivot

row, and then, apply simplex iteration.

Step 3- Remove the column of just-leaving artificial variable. If all zero artificial

variables are removed, go to Phase II. Otherwise, return to Step 1.

To obtain initial BFS of a LP problem in obtained in Phase I, an objective function

w is created to find the sum of all artificial variables.

New objective function is then minimized, under the constraints of the given prob-

lem, using simplex method. At the end of Phase I, three cases arise:

1. If minimum value of w is greater than zero and at least one artificial vari-

able appears in the bases at a positive level, given problem has no feasible

solution and the procedure terminates.
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2. If minimum value of w is zero and all artificial variables have been removed

from the bases, a BFS of the given problem is obtained. The artificial vari-

able column(s) is/are deleted before the Phase II computation.

3. If minimum value of w is zero and one or more artificial variables appear

in the bases at zero level, a BFS of the problem is obtained. However, we

must take care of this artificial variable and see that it never becomes pos-

itive during Phase II computations. Zero cost coefficient is assigned to this

artificial variable, and it is retained in the initial table of Phase II. If this

variable remains in the bases at zero level in all Phase II computation, there

is no problem; however, the problem arises if it becomes positive in some

iteration. In such a case, a slightly different approach is adopted in the selec-

tion of outgoing variable. As artificial variable is selected, simplex method

can then be applied as usual to obtain optimal BFS.

However, after adding artificial variables, M-method (also called the Big M-method)

can also be used, but a difficulty arises when the problem is to be solved on a digital

computer, because M must be assigned some numerical value which is must larger

than the values C1,C2,C3, ...Cn in the objective function. However, a computer has

fixed number of digits. Therefore, two-phase method is chosen for solving such type

of LP problems.

14.3.1 CODE TO CHECK FEASIBILITY OF THE SOLUTION
Following code will check the value of w for starting two-phase method according
to abovementioned rules.

int ibfs(int m, int l, int g, int e, float a[50][50])

{

float **A, *tem, app, sum, mult, w;

int i, j, k, N, P;

N=l+g+e;

A = (float**)malloc(N*sizeof(float*));

for(i=0; i<N; i++)

A[i] = (float*)malloc(N*sizeof(float));

tem = (float*)malloc(N*sizeof(float));

for(i=0; i<N; i++)

for(j=0; j<N; j++)

if(i==j)

A[i][j]=1;

else

A[i][j]=0;

for(i=0; i<N; i++)

A[i][N]=a[i+1][1];

for(i=0; i<N; i++)

{

app = A[i][i];

P = i;

for(k = i+1; k < N; k++)
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if(fabs(app) < fabs(A[k][i]))

{

app = A[k][i] ; P = k;

}

for(j = 0; j <= N; j++)

{

tem[j] = A[P][j];

A[P][j] = A[i][j];

A[i][j] = tem[j];

}

for(j=i+1; j<N; j++)

{

mult = A[j][i]/A[i][i];

for(k=0; k<=N; k++)

A[j][k] -= mult*A[i][k];

}

}

for(i=N-1; i>=0; i--)

{

sum = 0;

for(j=i+1; j<N; j++)

sum += A[i][j]*tem[j];

tem[i] = (A[i][N]-sum)/A[i][i];

}

w=0;

for(i=l;i<N;i++)

w = w+tem[i];

for(i = 0; i < N; i++)

free(A[i]);

free(A);

free(tem);

return w;

}

14.3.2 CODE FOR TWO-PHASE METHOD
int t_phase(int l, int g, int e, int m, int n, float c[], int x[],

int y[], float b[50], float a[50][50], float zc[50], float d[50],

float w)

{

int i, j, s, r, check;

float dv, temp, a1[50][50];

for(i=1;i<=m;i++)

for(j=n+2;j<=n+l+1;j++)

if(i+1==j-n)

a[i][j]=1;

else

a[i][j]=0;

for(i=1;i<=m;i++)
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for(j=n+l+2;j<=n+l+g+1;j++)

if(j-i==n+1)

a[i][j]=-1;

else

a[i][j]=0;

for(i=1;i<=m;i++)

for(j=n+l+g+2;j<=n+l+g+g+1;j++)

if(j-i==n+g+1)

a[i][j]=1;

else

a[i][j]=0;

for(i=1;i<=m;i++)

for(j=n+l+g+g+2;j<=n+l+g+g+e+1;j++)

if(j-i==n+g+1)

a[i][j]=1;

else

a[i][j]=0;

for(i=1;i<=m;i++)

for(j=n+1+l+g+g+e;j>=n+2;j--)

if(a[i][j]==1)

{

y[i]=j-1;

if(j>n+1+l+g)

b[i]=-1;

else

b[i]=0;

}

for(i=1;i<=m;i++)

for(j=1;j<=n+1+l+g+g+e;j++)

a1[i][j]=a[i][j];

for(j=1;j<=n+l+g+g+e+1;j++)

zc[j]=z_c(j, m, c, b, a);

s=m_neg(n, l+g+g+e, zc);

if(s==-1)

{

printf("Pivot element could not be found\n");

t_phase_t(s, l, g, e, m, n, c, x, y, b, a, zc);

}

else

{

r=m_rat(s, m, a);

printf("Position of Pivot element is (%d, %d)\n", r, s);

t_phase_t(s, l, g, e, m, n, c, x, y, b, a, zc);

}

do

{

temp=-1;

for(i=1;i<=m;i++)
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if(a[i][s+1]>0)

temp=a[i][s+1];

if(temp>0)

{

dv=a[r][s+1];

for(j=1;j<=n+l+g+g+e+1;j++)

a[r][j]=a[r][j]/dv;

for(i=1;i<=m;i++)

{

dv=a[i][s+1];

if(i!=r)

for(j=1;j<=n+l+g+g+e+1;j++)

a[i][j]=a[i][j]-a[r][j]*dv;

}

y[r]=x[s]; b[r]=c[s+1];

for(j=1;j<=n+l+g+g+e+1;j++)

zc[j]=z_c(j, m, c, b, a);

s=m_neg(n, l+g+g+e, zc);

if(s==-1)

{

printf("Pivot element could not be found.\n");

t_phase_t(s, l, g, e, m, n, c, x, y, b, a, zc);

}

else

{

r=m_rat(s, m, a);

printf("Position of Pivot element is (%d, %d).\n", r, s);

t_phase_t(s, l, g, e, m, n, c, x, y, b, a, zc);

}

temp=zc[2];

for(j=2;j<=n+l+g+g+e+1;j++)

if(temp>=zc[j])

temp=zc[j];

}

if(temp>=0)

{

printf("Optimization achieved.\n");

}

}

while(temp<0);

check=y[1];

for(i=1;i<=m;i++)

if(check<=y[i])

check=y[i];

for(j=1;j<=n+1;j++)

c[j]=d[j];

for(j=n+2;j<=n+l+g+g+e+1;j++)

c[j]=0;
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for(i=1;i<=m;i++)

b[i]=c[y[i]+1];

if(check>n+l+g && w>0)

{

printf("\nPhase-I of Simplex method ends here.");

printf("\nAll artificial variables could not be removed.");

printf("\nThis Problem does not posses a feasible solution.");

printf("\nNo need to enter in phase-II.\nComputation

terminated......\n");

return(-10);

}

else if(check<=n+l+g && w==0)

{

printf("\nPhase-I of Simplex method ends here.");

printf("\nAll artificial variables have been removed.");

printf("\n\nWelcome in Phase-II of the Simplex method:-\n");

l=l+g;

simp_comp(l, m, n, c, x, y, b, a, zc);

return(-20);

}

else if(check<=n+l+g && w>0)

{

printf("\nPhase-I of Simplex method ends here.");

printf("\nAll artificial variables have been removed.");

printf("\n\nWelcome in Phase-II of the Simplex method:-\n");

l=l+g;

simp_comp(l, m, n, c, x, y, b, a, zc);

return(-20);

}

else if(check>n+l+g && w==0)

{

printf("\nPhase-I of Simplex method ends here.");

printf("\nAll artificial variables could not be removed.");

printf("\nHowever, Problem posses a feasible solution.");

printf("\n\nWelcome in Phase-II of the Simplex method:-\n");

for(i=1;i<=m;i++)

for(j=1;j<=n+1+l+g+g+e;j++)

a[i][j]=a1[i][j];

for(i=1;i<=m;i++)

{

b[i]=0; y[i]=n+i;

}

l=l+g+g+e;

simp_comp(l, m, n, c, x, y, b, a, zc);

return(-20);

}

}
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14.3.3 CODE FOR TWO PHASE METHOD

int t_phase_t(int s, int l, int g, int e, int m, int n, float c[],

int x[], int y[], float b[50], float a[50][50], float zc[50])

{

int i,j; float mr[50], dv;

for(j=1;j<=n+l+g+g+e;j++)

printf("----------------");

printf("\n Cj");

for(j=1;j<=n+l+g+g+e+1;j++)

printf(" %f ",c[j]);

printf("\n");

for(j=1;j<=n+l+g+g+e;j++)

printf("----------------");

printf("\nB.V. Cb Xb\t\t");

for(j=1;j<=n+l+g+g+e;j++)

printf("X%d ",x[j]);

printf("M.R\n");

for(j=1;j<=n+l+g+g+e;j++)

printf("----------------");

for(i=1;i<=m;i++)

{

dv=a[i][s+1];

if(dv!=0)

mr[i]=a[i][1]/dv;

else

mr[i]=1000;

}

for(i=1;i<=m;i++)

{

printf("\n"); printf("X%d ",y[i]); printf(" %3.2f",b[i]);

for(j=1;j<=n+l+g+g+e+1;j++)

printf(" %f ", a[i][j]);

if(mr[i]!=1000)

printf(" %4.1f",mr[i]);

if(mr[i]==1000)

printf("----");

}

printf("\n");

for(i=1;i<=n+l+g+g+e;i++)

printf("----------------");

printf("\n Z=");

for(j=1;j<=n+l+g+g+e+1;j++)

printf(" %f ", zc[j]);

printf("\n");

return(0);

}
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14.4 INTEGER CUTTING PLANES
Cutting-plane procedure for convex problems was initially proposed by Kelley [12],

and Cheney and Goldstein [2] in 1959–1960 for obtaining an efficient solutions of

general problems. Dempster and Merkovsky [6] have given an overview and geo-

metrical interpretation of convergence of the procedure.

In recent years, cutting-plane approaches proved remarkably effective for certain

special stochastic programming problems with Integrated Chance Constraints [14],

for minimizing Conditional Value at Risk [15] as well as problems involving the

second-order stochastic dominance [7,16,20]. These problems can be written as LP

problems having a large number of constraints.

Gomorys cutting-plane algorithm is an iterative process which is solved by mod-

ifying linear-programming problems until integer solution is not obtained. This pro-

cess does not partition the feasible region into subdivisions, but instead works with

a single linear program, which it refines by adding new constraints. The presence of

these new constraints reduces the feasible region until an integer optimal solution is

obtained.

14.4.1 BASIC TERMINOLOGY FOR INTEGER PROGRAMMING

Most of common problems are introduced as mixed integer programming problems

and can be specified as

min x0 =CT x,

subject to Ax = B,x j ≥ 0, j = 1,2, ...,n, x j integer for j ∈N, where N is some subsets

of the set N0 = {0,1,2, ...,n}. When N = N0, problems are reduced to a pure integer

programming problem and quantities Cj, Ai j, Bi are reduced to integers.

14.4.2 CUTTING-PLANE ALGORITHM FOR PURE INTEGER
PROGRAMMING

Gilmore and Gomory [8,9] introduced a finite algorithm to obtain an integer solution.

This approach represents constructions of cutting planes.

Let A1X1 +A2X2 + +AnXn = B (14.8)·

be a relation formed by some non-negative integers X1,X2, ...,Xn and S the set of its

solutions.

Let �ξ� be the largest integer such that �ξ� ≤ ξ . i.e. ξ = �ξ�+ ε , 0 ≤ ε ≤ 1,

where ξ and ε are real quantities.

On using A j = �A j�+ f j and B = �B�+ f in (4.1), we have

n

∑
j=1

(�A j�+ f j)Xj = �B�+ f (14.9)
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and hence

n

∑
j=1

f jXj− f = �B�+ f −
n

∑
j=1

�A j�Xj. (14.10)

For any X ∈ S, both sides of Equation (4.3) are integers. Here, X ≥ 0 and also have

ξ = ∑ f jXj− f and ξ ≥− f <−1 are integers and hence deduce that

n

∑
j=1

f jXj ≥ f ∀X ∈ S. (14.11)

However, if solution is not an integer at this stage, consider a basic variable Xi such

that

Xi +∑
j/I

Bi jXj = Bi0, Bi0 /∈ I. (14.12)
∈

Putting f j = Bi j−�Bi j� and f = Bi0−�Bi0� and deduce that

n

∑
j/I

f jXj ≥ f . (14.13)
∈

for all integer solutions to our problem.

Now, f > 0 since bi0 is not integer, and so Equation (4.6) is not agreed by the

current solution since Xj = 0 for j / I and so Equation (4.6) is a cut.∈
Gomory cuts ∑ f jXj > f are deduced to the form ∑WjXj ≤W if these are ex-

pressed in terms of the original non-basic variables, where Wj and W are integers.

The value of ∑WjXj after solving a problem is W + ε , where 0 < ε < 1 assuming

the current solution non-integer. Thus, the cut is obtained by moving a hyper-plane

parallel to itself to an extent which cannot exclude an integer solution. It is worth

nothing that the plane can usually be moved further without excluding integer points,

thus generating deeper cuts. For further discussion and information in this context,

specialist books on integer programming can be referred.

14.4.3 CODE FOR GOMORY’S CUTS
This is part of the program to find required Gomory’s cuts.

int gomor(int l, int m, int n, float c[50], int x[50],

int y[50], float b[50], float a[50][50], float zc[50])

{

int i, j, k, r, s;

float check, g[50][50], temp[50], dv;

for(i=1;i<=m;i++)

{

g[i][1]=a[i][1];

while (g[i][1]>=1)
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g[i][1]=g[i][1]-1;

}

check=0.0;

for(i=1;i<=m;i++)

if(y[i]<=n && check<=g[i][1])

check=g[i][1];

if(check==0||(1-check>=0 && 1-check <=0.0001))

{

printf("An optimum basic solution is attended.\n");

for(j=1;j<=n;j++)

for(i=1;i<=m;i++)

if(j==y[i])

printf("X%d=%f\n",y[i],a[i][1]);

printf("The optimum value of function is:%f\n",zc[1]);

return(0);

}

check=g[1][1]; r=1;

for(i=2;i<=m;i++)

if(check<g[i][1])

{

check=g[i][1];

r=i;

}

for(j=2;j<=n+l+1;j++)

g[r][j]=a[r][j];

for(j=1;j<=n+l+1;j++)

if(g[r][j]<0)

{

for(k=1;g[r][j]<=-1;k++)

g[r][j]=g[r][j]+1;

}

else if(g[r][j]>1)

{

for(k=1;g[r][j]>1;k++)

g[r][j]=g[r][j]-1;

}

else if(g[r][j]>0 && g[r][j]<1)

g[r][j]=g[r][j];

else

g[r][j]=0;

for(j=1;j<=n+l+1;j++)

if(g[r][j]>0)

g[r][j]=-g[r][j];

for(j=1;j<=n+l+1;j++)

a[m+1][j]=g[r][j];

c[n+l+2]=0;

b[m+1]=0;

for(i=1;i<=m;i++)
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a[i][n+l+2]=0;

a[m+1][n+l+2]=1;

for(j=1;j<=n+l+2;j++)

zc[j]=z_c(j, m, c, b, a);

printf("\nGomory table is:\n");

gom_t(l, m, n, c, x, y, b, a, zc);

for(j=2;j<=n+l+2;j++)

if(a[m+1][j]!=0)

temp[j]=zc[j]/a[m+1][j];

else

temp[j]=-10000;

check=temp[2];s=2;

for(j=3;j<=n+l+2;j++)

if(check<temp[j] && temp[j]<0)

{

check=temp[j];

s=j;

}

printf("Position of pivot element is (%d, %d)\n",m+1,s-1);

dv=a[m+1][s];

for(j=1;j<=n+l+2;j++)

a[m+1][j]=a[m+1][j]/dv;

for(i=1;i<=m;i++)

{

dv=a[i][s];

for(j=1;j<=n+l+2;j++)

a[i][j]=a[i][j]-a[m+1][j]*dv;

}

for(i=1;i<=m+1;i++)

for(j=1;j<=n+l+2;j++)

{

if(a[i][j]==-0.0)

a[i][j]=0.0;

}

x[n+l+1]=n+l+1;

y[m+1]=x[s]-1; b[m+1]=c[s];

m++;

for(j=1;j<=n+l+2;j++)

zc[j]=z_c(j, m, c, b, a);

g_table(l, m, n, c, x, y, b, a, zc);

for(i=1;i<=m+1;i++)

temp[i]=a[i][1];

for(i=1;i<=m+1;i++)

{

while(temp[i]>=1)

temp[i]=temp[i]-1;

}

dv=0.0;



Computations of LP Problems 295

if(y[m+1]<=m)

{

for(i=1;i<=m+1;i++)

if(temp[i]!=0.0)

dv=temp[i];

}

else

{

for(i=1;i<=m;i++)

if(temp[i]!=0.0)

dv=temp[i];

}

if(y[m+1]<=m)

{

for(i=1;i<=m+1;i++)

if(dv==0 || (1-dv>=0 && 1-dv<=0.0001))

{

printf("\nOptimum Solution achieved.\nThe solution is:\n");

for(j=1;j<=n;j++)

for(i=1;i<=m+1;i++)

if(j==y[i])

printf("X%d=%f\n",y[i],a[i][1]);

printf("The optimum value of function is:%f\n",zc[1]);

return(0);

}

else

{

l++;

gomor(l, m, n, c, x, y, b, a, zc);

return(0);

}

}

else if(y[m+1]>m)

{

for(i=1;i<=m;i++)

if(dv==0 || (1-dv>=0 && 1-dv<=0.0001))

{

printf("\nOptimum Solution achieved.\nThe solution is:\n");

for(j=1;j<=n;j++)

for(i=1;i<=m;i++)

if(j==y[i])

printf("X%d=%f\n",y[i],a[i][1]);

printf("The optimum value of function is:%f\n",zc[1]);

return(0);

}

else

{

l++;
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gomor(l, m, n, c, x, y, b, a, zc);

return(0);

}

}

}

14.4.4 CODES TO DISPLAY GOMORY’S TABLES
int g_table (int l, int m, int n, float c[], int x[],

int y[], float b[50], float a[50][50], float zc[50])

{

int i,j;

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------");

printf("\n Cj");

for(i=1;i<=n+l+2;i++)

printf(" %f ",c[i]);

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------");

printf("\nB.V. Cb Xb\t\t");

for(i=1;i<=n+l+1;i++)

printf("X%d ",x[i]);

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------");

for(i=1;i<=m;i++)

{

printf("\n"); printf("X%d ",y[i]); printf(" %3.2f",b[i]);

for(j=1;j<=n+l+2;j++)

printf(" %f ", a[i][j]);

}

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------"); printf("\n Z=");

for(j=1;j<=n+l+2;j++)

printf(" %f ", zc[j]);

printf("\n");

return(0);

}

int gom_t(int l, int m, int n, float c[], int x[],

int y[], float b[50], float a[50][50], float zc[50])

{

int i,j;

printf("\n");

for(i=1;i<=n+l+1;i++)
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printf("---------------");

printf("\n Cj");

for(i=1;i<=n+l+2;i++)

printf(" %f ",c[i]);

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------");

printf("\nB.V. Cb Xb\t\t");

for(i=1;i<=n+l;i++)

printf("X%d ",x[i]);

for(i=n+l+1;i<=n+l+1;i++)

printf("G");

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------");

for(i=1;i<=m;i++)

{

printf("\n"); printf("X%d ",y[i]); printf(" %3.2f",b[i]);

for(j=1;j<=n+l+2;j++)

printf(" %f ", a[i][j]);

}

for(i=m+1;i<=m+1;i++)

{

printf("\n"); printf(" G "); printf(" %3.2f",b[i]);

for(j=1;j<=n+l+2;j++)

printf(" %7.5f ", a[i][j]);

}

printf("\n");

for(i=1;i<=n+l+1;i++)

printf("---------------"); printf("\n Z=");

for(j=1;j<=n+l+2;j++)

printf(" %f ", zc[j]);

printf("\n");

return(0);

}

Example 1. Find the optimum integer solution of the following all integer program-

ming problem:

Max. z = x1 +2x2, subject to the constraints:

2x2 ≤ 7,x1 + x2 ≤ 7,2x1 ≤ 11,x1 ≥ 0,x2 ≥ 0.
Solution:

Enter the number of variables in objective function.......:2

Enter the number of constraints in LPP....................:3

Enter the number of inequalities having sign <= ..........:3

Enter the number of inequalities having sign >= ..........:0

Enter the number of inequalities having sign = ..........:0

This problem is solving by simplex method.
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Welcome by Simplex.

Press 1 for maximization.

Press 2 for minimization.

1

Enter the coefficients of variables in objective function:

C[1]=1

C[2]=2

Constant term:0

Enter the coefficients of constraint having <= sign.....:

Coefficient 1 :0

Coefficient 2 :2

Constant term:7

Coefficient 1 :1

Coefficient 2 :1

Constant term:7

Coefficient 1 :2

Coefficient 2 :0

Constant term:11

Position of Pivot element is (1, 2)

--------------------------------------------------------------------

Cj 0.000000 1.000000 2.000000 0.000000 0.000000 0.000000

--------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 M.R

X3 0.00 7.000000 0.000000 2.000000 1.000000 0.000000 0.000000 3.5

X4 0.00 7.000000 1.000000 1.000000 0.000000 1.000000 0.000000 7.0

X5 0.00 11.000000 2.000000 0.000000 0.000000 0.000000 1.000000 ---

--------------------------------------------------------------------

--------------------------------------------------------------------

Z = 0.000000-1.000000-2.000000 0.000000 0.000000 0.000000

Position of Pivot element is (2, 1)

--------------------------------------------------------------------

Cj 0.000000 1.000000 2.000000 0.000000 0.000000 0.000000

--------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 M.R

X2 2.00 3.500000 0.000000 1.000000 0.500000 0.000000 0.000000 ---

X4 0.00 3.500000 1.000000 0.000000 -0.500000 1.000000 0.000000 3.5

X5 0.00 11.000000 2.000000 0.000000 0.000000 0.000000 1.000000 5.5

--------------------------------------------------------------------

--------------------------------------------------------------------

Z = 7.000000-1.000000 0.000000 1.000000 0.000000 0.000000

--------------------------------------------------------------------

Cj 0.000000 1.000000 2.000000 0.000000 0.000000 0.000000
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--------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 M.R

X2 2.00 3.500000 0.000000 1.000000 0.500000 0.000000 0.000000 ---

X1 1.00 3.500000 1.000000 0.000000 -0.500000 1.000000 0.000000 3.5

X5 0.00 4.000000 0.000000 0.000000 1.000000 -2.000000 1.000000 ---

--------------------------------------------------------------------

--------------------------------------------------------------------

Z = 10.500000 0.000000 0.000000 0.500000 1.000000 0.000000

Optimum Solution Achieved.

The maximization of the problem is as

Maximum of objective function is=10.500000

X1=3.500000

X2=3.500000

Do you want integer solution of the problem?

Press 1 for yes!

Press 2 for no!

1

Gomory table is:

-----------------------------------------------------------------------

Cj 0.000000 1.000000 2.000000 0.000000 0.000000 0.000000 0.000000

-----------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 G

X2 2.00 3.500000 0.000000 1.000000 0.500000 0.000000 0.000000 0.000000

X1 1.00 3.500000 1.000000 0.000000-0.500000 1.000000 0.000000 0.000000

X5 0.00 4.000000 0.000000 0.000000 1.000000-2.000000 1.000000 0.000000

G 0.00-0.500000 0.000000 0.000000-0.500000 0.000000 0.000000 1.000000

-----------------------------------------------------------------------

-----------------------------------------------------------------------

Z = 10.500000 0.000000 0.000000 0.500000 1.000000 0.000000 0.000000

Position of pivot element is (4, 3)

-----------------------------------------------------------------------

Cj 0.000000 1.000000 2.000000 0.000000 0.000000 0.000000 0.000000

-----------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 X6

X2 2.00 3.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000

X1 1.00 4.000000 1.000000 0.000000 0.000000 1.000000 0.000000-1.000000

X5 0.00 3.000000 0.000000 0.000000 0.000000-2.000000 1.000000 2.000000

X3 0.00 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000-2.000000

-----------------------------------------------------------------------

------------------------------------------------------------------------

Z = 10.000000 0.000000 0.000000 0.000000 1.000000 0.000000 1.000000

Optimum Solution achieved.
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Example 2. Find the optimum integer solution of the following integer programming

problem:

Min. z = 4x1 +3x2, subject to the constraints:

x1 ≤ 4,x2 ≤ 6,5x1 +3x2 ≥ 30,x1 ≥ 0,x2 ≥ 0.
Solution:

Enter the number of variables in objective function......:2

Enter the number of constraints in LPP...................:3

Enter the number of inequalities having sign <= .........:2

Enter the number of inequalities having sign >= .........:1

Enter the number of inequalities having sign = .........:0

This problem is solved by two-phase simplex method.

Welcome by Simplex.

Press 1 for maximization.

Press 2 for minimization.

2

Enter the coefficients of variables in objective function:

C[1]=4

C[2]=3

Constant term:0

Enter the coefficients of constraint having <= sign.....:

Coefficient 1 :1

Coefficient 2 :0

Constant term:4

Coefficient 1 :0

Coefficient 2 :1

Constant term:6

Enter the coefficients of constraint having >= sign.....:

Coefficient 1 :5

Coefficient 2 :3

Constant term:30

Position of Pivot element is (1, 1)

-----------------------------------------------------------------------------

Cj 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -1.000000

-----------------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 X6 M.R

-----------------------------------------------------------------------------

The solution is:

X1=4.000000

X2=3.000000

The optimum value of function is:10.000000
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X3 0.00 4.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 4.0

X4 0.00 6.000000 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 ---

X6 -1.00 30.000000 5.000000 3.000000 0.000000 0.000000 -1.000000 1.000000 6.0

-----------------------------------------------------------------------------

Z = -30.000000-5.000000-3.000000 0.000000 0.000000 1.000000 0.000000

Position of Pivot element is (3, 2)

-----------------------------------------------------------------------------

Cj 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000-1.000000

-----------------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 X6 M.R

X1 0.00 4.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 ---

X4 0.00 6.000000 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 6.0

X6 -1.00 10.000000 0.000000 3.000000-5.000000 0.000000-1.000000 1.000000 3.3

-----------------------------------------------------------------------------

-----------------------------------------------------------------------------

Z = -10.000000 0.000000-3.000000 5.000000 0.000000 1.000000 0.000000

Pivot element could not found

-----------------------------------------------------------------------------

Cj 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000-1.000000

-----------------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 X6 M.R

X1 0.00 4.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 ----

X4 0.00 2.666667 0.000000 0.000000 1.666667 1.000000 0.333333-0.333333 ----

X2 0.00 3.333333 0.000000 1.000000-1.666667 0.000000-0.333333 0.333333 ----

-----------------------------------------------------------------------------

-----------------------------------------------------------------------------

Z= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000

Optimization achieved.

PhaseI of simplex method ends here.

All artificial variables have been removed.

Welcome in Phase-II of the Simplex method:-

Pivot element could not found

-------------------------------------------------------------------

Cj-0.000000-4.000000-3.000000 0.000000 0.000000 0.000000

-------------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5 M.R

X1 -4.00 4.000000 1.000000 0.000000 1.000000 0.000000 0.000000 ---

X4 0.00 2.666667 0.000000 0.000000 1.666667 1.000000 0.333333 ---

X2 -3.00 3.333333 0.000000 1.000000-1.666667 0.000000-0.333333 ---

-------------------------------------------------------------------

-------------------------------------------------------------------

Z = -26.000000 0.000000 0.000000 1.000000 0.000000 1.000000

The minimization of the problem is as

Minimum of objective function is=26.000000

X1=4.000000
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X2=3.333333

Do you want integer solution of the problem?

Press 1 for yes!

Press 2 for no!

1

Gomory table is:

--------------------------------------------------------------

Cj-0.000000-4.000000-3.000000 0.000000 0.000000 0.000000

--------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 G

X1 -4.00 4.000000 1.000000 0.000000 1.000000 0.000000 0.000000

X4 0.00 2.666667 0.000000 0.000000 1.666667 1.000000 0.000000

X2 -3.00 3.333333 0.000000 1.000000-1.666667 0.000000 0.000000

G 0.00-0.666667 0.000000 0.000000-0.666667 0.000000 1.000000

--------------------------------------------------------------

--------------------------------------------------------------

Z =-26.000000 0.000000 0.000000 1.000000 0.000000 0.000000

Position of pivot element is (4, 3)

--------------------------------------------------------------

Cj-0.000000-4.000000-3.000000 0.000000 0.000000 0.000000

--------------------------------------------------------------

B.V. Cb Xb X1 X2 X3 X4 X5

X1 -4.00 3.000000 1.000000 0.000000 0.000000 0.000000 1.500000

X4 0.00 1.000000 0.000000 0.000000 0.000000 1.000000 2.500000

X2 -3.00 5.000000 0.000000 1.000000 0.000000 0.000000-2.500000

X3 0.00 1.000000 0.000000 0.000000 1.000000 0.000000-1.500000

--------------------------------------------------------------

--------------------------------------------------------------

Z =-27.000000 0.000000 0.000000 0.000000 0.000000 1.500000

An optimum basic solution is attended.

X1=3.000000

X2=5.000000

The optimum value of function is-27.000000

--------------------------------

Process exited with return value 0

Press any key to continue . . .

14.5 DISCUSSION AND SUMMARY
Some methods are involved in the evolution of LP problems. In practice, where typ-

ical LP model may involve a large number of variables and constraints, the only

feasible way to solve such models is to use the computer. However, if solution is re-

quired in integers, LP problems become more complicated. Some reliable softwares
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such as AIMMS, GAMS, LONGO, MPL, OPL Studio, and X-press model are gener-
ally used to solve such type of problems. As the cost of these commercial packages
are too high, but they are not efficient to solve LP problems and integer program-
ming problems, if M-method and two-phase method are used to find initial feasible
solutions.

The program discussed in this chapter is an efficient way to solve any type of
linear as well as integer programming problems. It is more reliable and can be
used/understood easily by the individuals. If linear or integer programming models
have some ≥ or = signs, two-phase algorithm will be executed. In our subsequent
study, the scope of the research will focus as the uses of Big-M method in place of
traditional two-phase method. It can be observed that the arrays declared in the main
function of the program are static and their sizes are fixed as 50-float memory blocks.
The sizes can be changed according to our requirement. However, if an integer pro-
gramming problem required a number of iterations more than the number of declared
memory blocks, an abnormal termination of computation will be occurred. In this sit-
uation, it will be required to resize the arrays. However, this difficulty can be handled
by the concept of dynamic memory allocations or uses of vector classes in place of
arrays. This version of the program will be enabling to extend or shrink the mem-
ory sizes of declared variables on the time of execution. Suggested amendments by
the author are being postponed for his subsequent study. However, interested readers
have ample opportunities for further explorations.
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15.1 INTRODUCTION
There is an imperative role of demand in the economic order quantity (EOQ) models
for the production process. As customer satisfaction plays a key role in management
of the inventory system, the share in the market, productivity, as well as the total
profit of the company increase. We have developed an EOQ model of the inventory
system for analyzing the effect of demand function which is dependent on reliability
as well as time. The model is developed for perishable products with constant de-
terioration rate. Due to this, there is a shortage of goods in the system, and there is
backlogging which is of partial nature. The classical(crisp) inventory control model
with reliability influence demand and partially backlogged items is to be considered.
The primary motive of an efficient inventory management is to provide a suitable
customer service, thereby keeping a low cost of the inventory system. The cost fac-
tor is to consider as a fuzzy random variable. Here, the ordering cost and reliability
of production process are the decision variables. Thus, the aim of this chapter is to
minimization the cost of the inventory system. This model has been developed for
both crisp and fuzzy system. Due to fuzzy parameters, the model become a fuzzy
quantity and its defuzzify by sign distance method. The facts used in this research
work have been exemplified by the use of appropriate numerical example. Given the
current situation, the competition level is obscenely outrageous, so the acceptabil-
ity of the inventory is prime important in the market. The production and durability
of reliable products, which help to create a good reputation in the market, are also
importance. Generally, it is observed that a product of high quality or meeting all
the guidelines required to be observed a high-grade product is one that is a gen-
uine product, which will firmly ensure an enduring market. The leading objective of
reliability is the depletion of failures over a time period considered. Thus, for real cir-
cumstances, observing product reliability and time-dependent demand are the major
realistic substitute for the complete inventory system. The effect due to deterioration
on the inventory system results in a shortage of things. Various researchers have pro-
vided their thoughts in this regard. Due to the scarcity of goods on the market, the
researchers suggested the concept of totally unsatisfied demand, resulting in a com-
plete backlog of products. Considering the present situation that the customers have
numerous choices in hand but they focus primarily on the goods which have greater
reliability so as to reduce the expenses on maintenance of goods. A globally recog-
nized brand always earns a higher profit and also becomes a dependable product of
repute. The demand of such products increases with an increase in the time span. The
sale of the goods with higher reliability factor generally increases as the time passes
by because such goods have an impact of positive nature on the prospects. Now, we
study an EOQ model in which the demand rate depends on reliability of the product
as well as the time. This model has been considered keeping in view the effect of
deterioration, and shortages have also been allowed in the proposed model. The na-
ture of shortages is such that they are partially backlogged with lost sale. This model
is developed for both crisp and fuzzy environments. Sections 15.5.1 and 15.5.2 give
a detailed description of the model in both the environments. Both the models are
validated by considering appropriate numerical examples.
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15.2 LITERATURE REVIEW
Padmanabhan and Vrat [14] proposed an EOQ model with partial backlogging and
demand rate is a function of the order quantity which is already backlogged at that
time. Sarkar [22] proposed a model on the concept of demand which is stock de-
pendent. Wee [28] erupted the idea of piece and demand which depends on time.
In this sequence, there is a model with generalized demand function was introduced
by Hung [9]. Abdulla et al. [1] erupted his research on the inventory model with
effect of reliable products. Some research works are done by Krishnamoorthi and
Panayappan [11] on imperfect items with shortage in products. Sarkar et al. [23]
also proposed an inventory model with reliability factor on imperfect items. Now,
we consider the crisp inventory models with the effect of deterioration; in real sit-
uation, deterioration has a great effect on the inventory system. Skouri et al. [24]
developed an inventory model where he discussed about perishable products and or-
der level. Some research work done by Papachristos and Skouri [17] on inventory
system with deterioration as a function of time. In this sequence, Dye et al. [6] in-
troduced a model of inventory system with general type deterioration rate. Panda
et al. [16] introduced his model for single-item order level, where the demand rate is
ramp-type time-dependent function and shortages are not allowed. Liang and Zhou
[13] discussed his research work on inventory model with two separate warehouses,
with lower rate of deterioration and a linear demand rate. A single-item single-period
EOQ model introduced by Giri et al. [7] where they discussed a model with short-
age, ramp-type demand and Weibull deterioration distribution. Later, the fuzzy con-
cepts are applied on classical inventory model with ramp-type demand and Weibull
distribution by Pal et al. [15] for finite time horizon. Chu et al. [3] proposed an in-
ventory models with shortages, partially backlog and lost sales. An inventory model
for stock-out period proposed by Park [18] is able to reduce the lost sale and backo-
rder. Hsu [8] discussed the supply chain network with a reliability evaluation method
to evaluate the role of plants under fuzzy demand. Some customers would not like
to wait for backlogging during the shortage period, so Wang et al. [27] studied on
an inventory modeling for deteriorating items with shortages and partial backlog-
ging. N. Rajput [20] proposed an inventory model with different types of demand
function discussed the importance of fuzzy parameters in healthcare industries. Wu
[29] proposed an EOQ model of inventory system with shortages and partial back-
logging, and the backlogging rate is variable and is dependent on waiting time for
next replenishment. Taleizadeh et al. [25] developed a model with special sale price
and partial backlogging, where a constant unit purchase cost is one of the main as-
sumptions in this EOQ model. An EPQ model is developed by P. Anita et al. [2]
with Weibull distribution deterioration and stock dependent demand rate in fuzzy
environment. In this work machine reliability, flexibility and packing cost are con-
sidered and defuzzification with the help of GMI method. N. Rajput [21] in her re-
search work used sign distance method for defuzzification and the optimal inventory
cost. B. Khara et al. [10] deal with an inventory model which has an imperfect pro-
duction process; demand depends on selling price and reliability of the products.
They deal with many problems in this model such as long-run process, lack of labor,
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machinery, and technology. M. Pervin et al. [19] proposed a deterministic control
model with deterioration, stochastic deterioration, and time-dependent demand. In
this chapter, author investigates the optimal retailer’s replenishment decisions to get
minimum total inventory cost. A. H. Tai et al. [26] discussed the inventory model
with two replenishment policies – (i) quantity-based and (ii) time-based policies;
and two inspection positions – (i) one inspection and(ii) continuous monitoring.
In the recent research paper work introduced by Guiping Li et al. [12], they stud-
ied a joint pricing, replenishment, and preservation technology investment problem
for non-instantaneous deteriorating items with price dependent demand and waiting-
time-dependent backlog rates.

15.3 PRELIMINARIES

Definition 1 The Fuzzy Number: Let X be a crisp set of objects, whose elements
are denoted by x. Membership function in a crisp subset S of X is written as µS̃(x)

µS̃(x) =
1, x ∈ S
0, else

{

A fuzzy set S̃ ⊆ X is said to be normal if ∃ at least one x0 ∈ X such that µS̃(x0) = 1.
A fuzzy set S̃ ⊆ X is said to be convex if ∀x1 ∈ X ,∀x2 ∈ X , and λ ∈ [0,1] such that

µS̃(λx1 +(1−λ )x2)≥ min(µS̃(x1),µS̃(x2))

A covex normalized fuzzy subset x̃ ∈ R with membership function µx̃ : R → [0,1] is
called a fuzzy number (Dubois Prade [5]).

Definition 2 L-R Representation of Fuzzy Numbers: A fuzzy number S̃ ⊆ R is
said to be an L-R-type fuzzy number if its membership function is given by Dubois
Prade [5].

µS̃(x) =
L m−x

α
, for x 6 m,α > 0

R
(

x−m
β

)
, for x > m,β > 0

{ ( )

Definition 3 α-Level set: α-Level set(interval of confidence at level α) of a fuzzy
set S̃ in X is a crisp subset of X denoted by S(α) and is defined by S(α)={x ∈
X/µS̃ } ∀ ∈(x)≥ [ , ].

α
α 0 1 Let F be the set of all fuzzy numbers.

Then, for any P̃, Q̃ ∈ F and for any λ ∈ R,
(P̃* Q̃)(α) = P(α)*Q(α),(λ P̃)(α) = λP(α) (Bector Chandre [4])
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Definition 4 Trapezoidal Membership Function: A fuzzy number is a convex
fuzzy set, defined on given interval of real numbers, each with a grade of member-
ship between 0 and 1. A trapezoidal fuzzy number η̃ = (η1,η2,η3,η4). The repre-
sentation of its membership function is shown in Figure 15.1

µη̃(x) =

{'''{'''{
x−η1

η2−η1
, if η1 < x < η2

1, if η2 < x < η3
η4−x

η4−η3
, if η3 < x < η4

0, otherwise

In the case of trapezoidal fuzzy number, the membership value is obtained for a
particular range, which is more realistic with defuzzification method.

Definition 5 Arithmetic Operations: Suppose τ̃ = (τ1,τ2,τ3,τ4) and ς̃ =
(ς1,ς2,ς3,ς4) are two trapezoidal fuzzy numbers, then arithmetical operations are
defined as:
1: Addition: τ̃ ⊕ ς̃ = (τ1 + ς1,τ2 + ς2,τ3 + ς3,τ4 + ς4)
2: Subtraction: τ̃ � ς̃ = (τ1 − ς4,τ2 − ς3,τ3 − ς2,τ4 − ς1)
3: Multiplication: τ̃ ⊗ ς̃ = (Ω1,Ω2,Ω3,Ω4)
where A = {τ1ς1,τ1ς4,τ4ς1,τ4ς4} and B = {τ2ς2,τ2ς3,τ3ς2,τ3ς3} ,Ω1 = min(A),
Ω2 = min(B),Ω3 = max(A),Ω4 = max(B);
5: If 1, 2, 3, 4, 1, 2, 3, and 4 are all nonzero positive real numbers, then division
of two trapezoidal fuzzy number is

τ τ τ τ ς ς ς ς

τ̃ � ς̃ =
τ1

ς4
,

τ2

ς3
,

τ3

ς2
,

τ4

ς1

( )
Definition 6 Signed Distance Method: If η > 0, then distance between η and 0 is
do(η ,0) = η . If η < 0, then distance between η and 0 is −do(η ,0) =−η . do(η ,0)
is signed distance between a and 0. We have that the signed distance of the interval
[SL (α) ,SR (α)] measured from 0 is,

do([SL (α) ,SR (α)],0) =
1
2
[[SL (α) ,0]+ [SR (α) ,0]] =

1
2
[SL (α)+SR (α)]

Figure 15.1 Graphical representation of trapezoidal fuzzy number.
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Since S̃ is a fuzzy number, SL (α) and SR (α) are left and right α-cut of S̃ (Definition
2.2) and they are integrable and exist for αε(0,1) ; then, the distance between S̃ and
0, which is known as signed distance, is given by∫

d(S̃,0) =
1
2

1

0
[SL (α)+SR (α)]dα

d(S̃,0) =
1
2

∫ 1

0
[s1 +(s2 − s1)α + s4 − (s4 − s3)α]dα =

1
4
(s1 + s2 + s3 + s4)

Definition 7 Graded Mean Integration Method (GMI): Graded Mean Integra-
tion method has been introduced by S.H. Chen and C.H. Hsieh in (1999). Let
L̃ = (s1,s2,s3,s4), be a trapezoidal fuzzy number, then the GMI representation of
L̃, is defined as

G(L̃) =
1
2
∫ 1

0 α[LL(α)+LR(α)]dα∫ 1
0 αdα

=
1
6
(s1 +2s2 +2s3 + s4)

15.4 NOTATIONS AND ASSUMPTIONS
15.4.1 NOTATIONS

µ = Demand Parameter.
θ = Rate of deterioration taken as a constant.
ω = Rate of reliability factor.
b = Rate of backlogging.
I(t) = Level of inventory at time t.
cD = Cost of deterioration.
cO = Ordering cost for items.
cH = Cost of holding inventory.
cS = Shortage cost.
cL = Cost of lost sales.
t0 = Time when inventory level becomes zero.
T = One complete cycle under consideration.
TC = Total cost of the inventory system.
T C = Fuzzy total cost.
(∼) = tilde symbol is representation of fuzzy.

15.4.2 ASSUMPTIONS

1. The flow of demand is taken to be a non-negative function with respect to
time t and is influence by reliability parameter ω that is d(t) = µtω t .

2. The rate of deterioration of the items is taken to be constant.
3. Shortages occur and is partially backlogged. The backlog function is to be

consider f (x bx) = e− .
4. Time horizon is infinite and there is a replenishment of good in the next

cycle.
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15.5 FORMULATION OF MATHEMATICAL MODEL

15.5.1 CRISP MODEL

This model of the inventory system begins with shortage of goods. There is a replen-
ishment of the goods when the time t = 0 and the level of the inventory is highest at
this time. When the time approaches t0, there is a reduction in the level of the inven-
tory system. From the Figure (15.2), when time is t = t0, the level of the inventory
system becomes equivalent to zero and there is a shortage of goods in the inventory
system up to time t = T .

Thus, the levels of inventory are as follows:

d
dt

I(t)+θ I(t) =−µtω t for 0 < t < t0

d
dt

I(t) =− f (T − t)µtω t for t0 < t < T

After integrating above equations, we get inventory levels:

I(t) = µe−tθ
∫ t0

t
sω

sesθ ds for 0 < t < t0 and

I(t) = µ

∫ t0

t
f (T − s)sω

sds for t0 < t < T

Cost of deterioration (DC) in the time interval [0, t0] is;

DC = cD ×
[

I(0)−
∫ t0

0
µsω

sds
]
= cD

∫ t0

0
µsω

s(esθ −1)ds

= cDµ

[
(t0logω −1)ω t0(et0θ (logω)2 − (θ + logω)2)

(logω)2(θ + logω)2

+
θ t0eθ t0ω t0

(θ + logω)2 +
θ(2logω +θ)

(logω)2(θ + logω)2

]

Figure 15.2 EOQ model representation with inventory and time.
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Cost of holding inventory (HC) in the time interval [0, t0] is;

HC = cH
0

0
I(t)ds = µcH

0

0
e−tθ 0

t
sω

sesθ dsdt =
cH

(θ + logω)2

×

[
ω t0(t0(θ + logω)−1)((et0θ −1)logω −θ)

θ logω
+

θ(ω t0 −1)
(logω)2 +

ω t0 −2
logω

]
∫ t ∫ t ∫ t µ

Cost of shortage items (SC) in the time interval [t0,T ] is

SC = cS

T

t0
−I(t)dt = µcS

T

t0

t

t0
f (t − s)sω

sdsdt

= µcS

[
(T ωT − t0ω t0)

(b+ logω)logω
− (2logω +b)(ωT −ω t0)

(logω)2(b+ logω)2

+ω
t0(t0(b+ logω)−1)

(eb(t0−T )−1)
b(b+ logω)2

]

∫ ∫ ∫

Cost of lost sales (LS) in the time interval [t0,T ] is

LS = µcL
t0
[1− f (T − t)]tω tdt

=
µcL

(logω)2(logω +b)2

[
eb(t0−T )

ω
t0 [t0(b+ logω)−1](logω)2 +ω

t0(1− t0logω)

× (logω +b)2 +bω
T [T logω(logω +b)− (2logω +b)]

]

∫ T

Therefore, the total cost for crisp inventory is

TC(t0) = T
[cO +DC+HC+SC+LS]

TC(t0) =
1
T

[
cO + cDµ

[
(t0logω −1)ω t0(et0θ (logω)2 − (θ + logω)2)

(logω)2(θ + logω)2 +
θ t0eθ t0 ω t0

(θ + logω)2

+
θ(2logω +θ)

(logω)2(θ + logω)2

]
+

µcH

(θ + logω)2

[
ω

t0(t0(θ + logω)−1)

× ((et0θ −1)logω −θ)

θ logω
+

θ(ω t0 −1)
(logω)2 +

ω t0 −2
logω

]
+µcS

[
(T ωT − t0ω t0)

(b+ logω)logω

− (2logω +b)(ωT −ω t0)

(logω)2(b+ logω)2 +
ω t0(t0(b+ logω)−1)(eb(t0−T )−1)

b(b+ logω)2

]
+

µcL

(logω)2(logω +b)2

[
eb(t0−T )

ω
t0 [t0(b+ logω)−1](logω)2

+ ω
t0(1− t0logω)(logω +b)2 +bω

T [T logω(logω +b)− (2logω +b)]
]]

(15.1)

1



Fuzzy EOQ Model 313

15.5.2 FUZZY MODEL

The cost functions of this model have been assumed to be trapezoidal fuzzy num-
bers, and they are defuzzified by using signed distance method. This model of the
inventory system begins with shortage of goods. From Figure (15.2), there is a re-
plenishment of the goods when the time t = 0 and the level of the inventory is high-
est at this time. When the time approaches t0, there is a reduction in the level of the
inventory system. When time is t = t0, the level of the inventory system becomes
equivalent to zero, and there is a shortage of goods in the inventory system up to
time t = T . Therefore, the trapezoidal fuzzy ordering cost, fuzzy deterioration cost,
fuzzy holding cost, fuzzy shortage cost, and fuzzy cost for lost sale are, respectively,

c̃O = (cO1 ,cO2 ,cO3 ,cO4), c̃D = (cD1 ,cD2 ,cD3 ,cD4),

c̃H = (cH1 ,cH2 ,cH3 ,cH4), c̃S = (cS1 ,cS2 ,cS3 ,cS4),

c̃L = (cL1 ,cL2 ,cL3 ,cL4).

Fuzzy cost of deterioration (D C) in the time interval [0, t0] is

 DC = c̃D[I(0)−
t0

0
µsω

sds] = c̃D

t0

0
µsω

s(esθ −1)ds

= µ(cD1 ,cD2 ,cD3 ,cD4)⊗
[
(t0logω −1)ω t0(et0θ (logω)2 − (θ + logω)2)

(logω)2(θ + logω)2

⊕ θ t0eθ t0ω t0

(θ + logω)2 ⊕ θ(2logω +θ)

(logω)2(θ + logω)2

]

∫ ∫

Fuzzy cost of holding inventory (H C) in the time interval [0, t0] is

 HC = c̃H

∫ t0

0
I(t)ds = µ c̃H

∫ t0

0
e−tθ

∫ t0

t
sω

sesθ dsdt =
µ(cH1 ,cH2 ,cH3 ,cH4)

(θ + logω)2

⊗
[

ω t0(t0(θ + logω)−1)((et0θ −1)logω −θ)

θ logω
⊕ θ(ω t0 −1)

(logω)2 ⊕ ω t0 −2
logω

]

Fuzzy cost of shortage items (S C) in the time interval [t0,T ] is

 SC = c̃S

∫ T

t0
−I(t)dt = µ c̃S

∫ T

t0

∫ t

t0
f (t − s)sω

sdsdt

= µ(cS1 ,cS2 ,cS3 ,cS4)⊗
[
(T ωT − t0ω t0)

(b+ logω)logω
	 (2logω +b)(ωT −ω t0)

(logω)2(b+ logω)2

⊕ω t0(t0(b+ logω)−1)(eb(t0−T )−1)
b(+logω)2

]
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Fuzzy cost of lost sales (L S) in the time interval [t0,T ] is;

 LS = µ c̃L

∫ T

t0
[1− f (T − t)]tω tdt

=
µ(cL1 ,cL2 ,cL3 ,cL4)

(logω)2(logω +b)2 ⊗
[
eb(t0−T )

ω
t0 [t0(b+ logω)−1](logω)2

⊕ω
t0(1− t0logω)(logω +b)2 ⊕bω

T [T logω(logω+)b− (2logω +b)]
]

Therefore, total fuzzy cost is

 TC(t0) = T
 cO ⊕  DC⊕  HC⊕ SC⊕ LS

=
1
T

[
(cO1 ,cO2 ,cO3 ,cO4)⊕  DC⊕  HC⊕ SC⊕ LS

]
1 [ ]

Using arithmetic operations of fuzzy numbers defined in Definition 5 and with the
help of Definition 6, we get fuzzy optimal total cost is

 TC(t0) =
1

6T

(
cO1 +2cO2 +2cO3 + cO4

)
+

(
cD1 +2cD2 +2cD3 + cD4

)
µ

(Log[ω]+θ)2(Log[θ ])2

×
(

ω
t0 (t0Log[ω]−1)

(
Et0θ (Log[ω])2 − (Log[ω]+θ)2

)
+θ t0ω

t0Et0θ (Log[ω])2

−θ(2Log[ω]+θ)

)
+

µ
(
cH1 +2cH2 +2cH3 + cH4

)
(Log[ω]+θ)2

(
1

θLog[ω]
ω

t0(t0(Log[ω]

+θ)−1)
((

Et0θ −1
)

Log[ω]−θ

)
θ (ω t0 −1)
(Log[ω])2 +

ω t0 −2
Log[ω]

)

+µ
(
cS1 +2cS2 +2cS3 + cS4

)( T ωT − t0ω t0

(Log[ω]+b)Log[ω]
−

(2Log[ω]+b)
(
ωT −ω t0

)
(Log[ω]+b)2(Log[ω])2

+ω
t0 (t0(Log[ω]+b)−1)

(
Eb(t0−T )−1

)
b(Log[ω]+b)2

)
+

µ
(
cL1 +2cL2 +2cL3 + cL4

)
(Log[ω]+b)2(Log[ω])2

×
(

Eb(t0−T )
ω

t0 (t0(Log[ω]+b)−1)(Log[ω])2 +ω
t0 (1− t0Log[ω]) (Log[ω]+b)2

+bω
T (T Log[ω](Log[ω]+b)− (2Log[ω]+b))

))]
(15.2)

[ (

15.6 OPTIMALITY CRITERIA
To get the optimal value of the average total cost TC(t0) with respect to t0. The
method used to minimize t0 as follows:
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Step 1: First start with TC(t0).
Step 2: Take the first derivative of TC(t0) with respect to continuous time variable t0
and equate the results to zero (dTC/dt0 = 0) and get the critical points (t0).
Step 3: Evaluate TC(t0) with the help of t0, which is found in Step 2.

Step 4: Repeat Steps 2 and 3, until we get d TC(t0)
2 > 0 for t0.Thus, we get the optimal

dt0
number t*0 for which the total cost function TC(t0) is convex (shown in Appendix)

2

Step 5: Now, we can find the optimal total cost TC(t0).

15.7 NUMERICAL EXAMPLE

Suppose we have an example production factory. µ = 0.5, ω = 0.4, cO = 300, cH =
Rs. 100 per unit, cD = Rs. 75 per unit, θ = 0.005, cS = Rs. 150, cL = Rs. 50, T = 2
year, and b = 0.5. From the equation 15.1 and 15.2, we get optimal total cost in
different environments as shown in Table (15.1);

From the Table (15.1), we see that the decrease in total cost will 0.62% from crisp
model to fuzzy model. The total cost will decrease and gives more appropriate result
with fuzzy parameters(from Figure 15.3).

Table 15.1
Effect on Total Cost in Crisp and Fuzzy Models

t0 1.1 1.15 1.17731 1.2 1.24

Crisp total cost 161.205 161.148 161.141 161.146 161.184
Fuzzy total cost 160.185 160.133 160.127 160.135 160.175

Figure 15.3 Total cost in crisp and fuzzy sense.

crisp total cost

fuzzy total cost

1.0 1.1 1.2 1.3 1.4 1.5

t0160.0

160.5

161.0

161.5

162.0
TC(t0)
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15.8 SENSITIVITY ANALYSIS
15.8.1 FOR CRISP MODEL

We have to study that how the parameters affect the optimal solution in crisp envi-
ronment. Due to some uncertainties in different situations, there are some changes
in the value of parameters occurs. To examine the ramification of these changes, the
sensitivity analysis will work as a tool in decision-making. Using the numerical ex-
ample given in the previous Section 15.7, sensitivity analysis with respect to various
parameters on total system cost is carried out as follows.

The main conclusion of sensitivity analysis revealed in Table 15.2 as

• There is no effect in total cost due to any change in deterioration cost (cD)
(Figure 15.4) and deterioration rate (θ ) (Figure 15.5).

• The effect of changing in the ordering cost (cO) (Figure 15.6), holding cost
(cH ) (Figure 15.7), shortage cost (cS) (Figure 15.8), and lost sale cost (cL)
(Figure 15.9) is also relatively sensitive to the total cost (TC(t0)).

• There are minor changes in TC(t0) due to change in rate of reliability
(ω)(Figure 15.10), demand parameter (µ) (Figure 15.11), and rate of back-
logging (b) (Figure 15.12). Total cost is increasing with respect to these
parameters.

Table 15.2
Percentage Effect on Crisp Parameters

% change in cD −50 −25 0 25 50
TC(t0) 161.141 161.141 161.141 161.141 161.141
% change in cH −50 −25 0 25 50
TC(t0) 156.486 158.037 161.141 162.692 164.244
% change in cS −50 −25 0 25 50
TC(t0) 159.026 160.083 161.141 162.198 163.255
% change in cL −50 −25 0 25 50
TC(t0) 160.788 160.964 161.141 161.317 161.493
% change in cO −50 −25 0 25 50
TC(t0) 86.1405 123.641 161.141 198.641 236.141
% change in µ −50 −25 0 25 50
TC(t0) 155.57 158.355 161.141 163.926 166.711
% change in θ −50 −25 0 25 50
TC(t0) 161.134 161.137 161.141 161.144 161.147
% change in ω −50 −25 0 25 50
TC(t0) 155.363 158.155 161.141 164.309 167.65
% change in b −50 −25 0 25 50
TC(t0) 161.102 161.123 161.141 161.154 161.165
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Figure 15.4 Change in total cost due to deterioration cost.

Figure 15.5 Change in total cost due to holding cost.

Figure 15.6 Change in total cost due to shortage cost.
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Figure 15.7 Change in total cost due to lost sale cost.

Figure 15.8 Change in total cost due to ordering cost.

Figure 15.9 Change in total cost due to demand parameter.
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Figure 15.10 Change in total cost due to deterioration rate.

Figure 15.11 Change in total cost due to reliability factor.

Figure 15.12 Change in total cost due to rate of backlogging.
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15.8.2 FOR FUZZY MODEL

Here, we have to see that how fuzzy total cost affected due to change in some
parameters.

The main conclusion of sensitivity analysis revealed in Table (15.3) as;

• There are no effect found in fuzzy total cost with the change in deterioration
rate (θ ) (Figure 15.13).

• There are minor changes in fuzzy total cost TC̃(t0) due to change in rate of
reliability (ω) (Figure 15.14), demand parameter (µ) (Figure 15.15) and rate
of backlogging (b) (Figure 15.16). Total cost is increasing with respect to
these parameters.

Table 15.3
Percentage Effect on Fuzzy Parameters

% change in µ −50 −25 0 25 50
TC(t0) 154.564 157.346 160.127 162.909 165.691
% change in θ

TC̃(t0)

−50
160.12

−25
160.124

0
160.127

25
160.131

50
160.134

% change in ω

TC̃(t0)

−50
154.361

−25
157.147

0
160.127

25
163.289

50
166.622

% change in b

TC̃(t0)

−50
160.082

−25
160.107

0
160.127

25
160.144

50
160.158

Figure 15.13 Change in total cost due to fuzzy demand parameter.

0.003 0.004 0.005 0.006 0.007
q

160.05

160.10

160.15

160.20

TC



Fuzzy EOQ Model 321

Figure 15.14 Change in total cost due to fuzzy deterioration rate.

Figure 15.15 Change in total cost due to fuzzy reliability factor.

Figure 15.16 Change in total cost due to fuzzy backlogging rate.
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15.9 CONCLUSION

Here, we have explored the concept of optimal management of the inventory system
with respect to the time and also the demand function dependent on reliability fac-
tor. Proposed system of inventory is also dependent on the rate of deterioration and
the partial backorder of the items. We conclude that the total cost for the inventory
system under fuzzy environment has been reduced comparatively to the crisp envi-
ronment. Thus in the future scope, there is a wide applicability of this model of the
inventory in various domains as it helps in reduction of the total cost of the inven-
tory system. This chapter provides an compulsive topic for the further study of such
kind of important inventory models, and it can be extended in numerous ways for
future research with exponential demand, ramp-type demand, Verhulst’s model-type
demand rate, trapezoidal demand rate, inflation etc.

APPENDIX

Lemma 1: Optimality process for total cost TC(t0) Section (15.1) with respect to t0
is given below.

Step 1: Take the derivative of total cost TC and put it equals to zero;

µω t0 b
(
−1+ eθ t0

)
θcD +b

(
−1+ eθ t0

)
cH + −1+ eb(−T+t0) θ (bcL + cS) t0

bT θ
= 0

(15.3)

( ( ) )

From the Figures 15.17 and 15.18, dTC dTC< 0 at t0 = 0 and >dt0 dt 0 in [0, T ]. Then
0

there exists a unique critical value t*0 lies between [0, T ] (using Mathematica 7).

Figure 15.17 First derivative of total cost is negative at some point in the interval [0, T].
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Step 2: Now check the value of double derivative d2TC
dt2 at t*0 ;

0

1
bT θ

µω
t0

[
bθcD

(
−1+ eθ t0 +

(
eθ t0θ +

(
−1+ eθ t0

)
Log[ω]

)
t0
)

+bcH

(
−1+ eθ t0 +

(
eθ t0 θ +

(
−1+ eθ t0

)
Log[ω]

)
t0
)
+θ (bcL + cS)

×
(
−1+ eb(−T+t0)+

(
beb(−T+t0)+

(
−1+ eb(−T+t0)

)
Log[ω]

)
t0
)]

(15.4)

From the Figure 15.19, the slope of double derivative d2TC
2 at t*0 is positive, thus we

dt0

have d2TC
2 > 0 at t*

dt 0 . Hence we say that t*0 is the minimum value.
0

Figure 15.18 First derivative of total cost is positive at some point in the interval [0, T].

Figure 15.19 Second derivative of total cost is positive in the interval [0, T].
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Lemma 2: Optimality process for total cost TC̃(t0) Section (15.5.2) with respect
to t0 is given below.

Step 1: Take the derivative of total cost TC̃ and put it equals to zero;

d ˜TC
dt0

=
1

4bT θ
µω

t0

[(
−1+ eθ t0

)
θcD1 +a

(
−1+ eθ t0

)
θcD2 −bθcD3 +beθ t0θcD3

−bθcD4 +beθ t0θcD4 −bcH1 +beθ t0cH1 −bcH2 +beθ t0cH2 −bcH3 +beθ t0cH3

−bcH4 +beθ t0cH4 −bθcL1 +beb(−T+t0)θcL1 −bθcL2 +beb(−T+t0)θcL2 −bθcL3

+beb(−T+t0)θcL3 −bθcL4 +beb(−T+t0)θcL4 −θcS1 + eb(−T+t0)θcS1 −θcS2

+ eb(−T+t0)θcS2 −θcS3 + eb(−T+t0)θcS3 −θcS4 + eb(−T+t0)θcS4

]
t0 (15.5)

T˜From the Figures 15.17 and 15.18, d C < >dt 0 and dTC̃
dt 0 in [0, T ]. Then there exists

0 0
a unique critical value t*0 lies between [0, T ].

Step 2:
2 ˜Now check the value of double derivative d TC
dt2 at t*0 ;

0

d2 ˜TC(t0)
dt2

0
=

1
4bT θ

µω
t0

[
b
(
−1+ eθ t0

)
θcD1 +b

(
−1+ eθ t0

)
θcD2 −bθcD3

+beθ t0θcD3 −bθcD4 +beθ t0θcD4 −bcH1 +beθ t0cH1 −bcH2 +beθ t0cH2 −bcH3

+beθ t0cH3 −bcH4 +beθ t0cH4 −bθcL1 +beb(−T+t0)θcL1 −bθcL2 +beb(−T+t0)θcL2

−bθcL3 +beb(−T+t0)θcL3 −bθcL4 +beb(−T+t0)θcL4 −θcS1 + eb(−T+t0)θcS1

−θcS2 + eb(−T+t0)θcS2 −θcS3 + eb(−T+t0)θcS3 −θcS4 + eb(−T+t0)θcS4

]
t0

(15.6)

T˜From the Figure 15.19, the slope of double derivative d2 C
2 at t*0 is positive, thus we

dt0

have d2TC̃
2 > 0 at t*

dt 0 . Hence we say that t*0 is the minimum value.
0
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16.1 INTRODUCTION
We normally observe that improved inventory levels offer the purchaser an extensive
collection of good quality goods and boost the possibility of production. In this case,
the demand rate is internally associated with the seller and is a functional level of
inventory. Therefore, the retailer has reason to preserve higher levels of inventory
and inventory level-dependent demand function which is increased. Mostly, models
are expanded with the particular storage space facility. On the other hand, in the field
of supply chain system the seller can purchase a bulky collection of items when the
supplier offers the cut rate on bulkiness purchases. Therefore, the retailer purchased
the items in surplus amount. Surplus number of products cannot be accumulated
in on-hand own warehouse (OW) due to limited space. So, it is always essential to
maintain additional stock of items in a new warehouse, i.e., called rented warehouse
(RW) of unlimited capability which is near to OW. In addition an extensive, cost of
inventory of RW is larger than that of OW. Therefore, retailer must initiate putting
up their sale from RW in place of OW to keep away from the situation of stock out.
Mostly, researchers do not consider simultaneously the observable fact to develop
model with two warehouses. Because these phenomena are not special in actual time,
we include them in our model.

In the existing models, two warehouses are considered one is OW, and the other
is RW— having limited capacity and involving the present value of total cost for the
whole planning horizon with different cases.
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Sarma [1] developed a deterministic inventory model (Economic Order Quantity)
with two levels of storage and an optimum release rule under OW and RW. Yang H.L.
[2] considered a two-warehouse inventory model for deteriorating items with short-
ages under inflation by assuming the demand rate is deterministic and is completely
backlogged.

Singh and Malik [4] presented an inventory model with inflationary environment
on two-warehouse production inventory organization with exponential demand and
changeable deterioration rate. Kumar et al. [3] proposed a deterministic inventory
control model for fading items with price-dependent demand and time-varying car-
rying cost under permissible delay in payment. Kumar et al. [6] developed an optimal
payment policy with price-dependent demand and three parameters dependent dete-
rioration rate under the influence trade credit. Huang [7] described the best possible
cycle time and best possible payment time under the permissible delay in payment
and cash discount strategies. Kumar et al. [8] proposed a deterministic inventory con-
trol model for fading items with price-dependent demand and time-varying carrying
cost under permissible delay in payment. Liao et al. [9] investigated the effects of
inflation and time value of money on a fading inventory when the supplier permitted
allowable delay in payments, with a fix demand rate. Inventory models for deteri-
orating items with stock-dependent selling price were formulated by Padmanabhan
and Vrat [10].

16.2 ASSUMPTIONS AND NOTATIONS
16.2.1 ASSUMPTIONS

The demand rate D(t) at time t is{
α +β I(t)−η p, I(t)> 0,

D(t) =
α −η p, I(t)< 0,

where α and β are positive constants, α ≥ β , p is selling price, and I(t) denotes the
inventory at time t.

• Consider the shortages are permitted to arise, and assume a fraction of de-
mand is backlogged. Moreover, the higher the waiting time, the lesser the
backlogging rate. Let B(t) represent fraction where t is the waiting time up
to the next replenishment. We consider B(t 1) = (1+δ t) , where δ > 0 is the
backlogging parameter.

• The deterioration time (product life) t has a probability density function
f (t) = θe−θ(t−td) for t > td , where the duration of time (td) in which we
consider fresh products which has no deterioration rate. At the end of this
stage (td), a constant fraction 0 < θ < 1 of the on-hand inventory deteriorates
and there is no replacement or repair of the deteriorated products. The c. d. f.
of time t is known as

F(t) =
t

td
f (x)dx = 1− e−θ(t−td); t > td .

∫
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• td is the duration time in which there is no deterioration of the products.
• In the permissible delay time M, the account is not developed. A sales profit

is generated and submitted interest in account. At the end of the time, the
retailer pays off all bought units and starts to pay the capital opportunity
cost (OC) for the items in stock.

• The model is considered for infinite planning horizon.
• A borrowed warehouse is used to build up the too much units over the fixed

capacity W of the OW, and we assumed that the deterioration rate in RW is
the same as that in OW. The holding cost in RW > OW. The transportation
cost is not considered when stocks of RW are transported to OW in continu-
ous release pattern.

• The items in RW are consumed first and then the items in OW for economical
purpose.

• The OW has restricted capacity of W units, and the RW has unlimited
capacity.

16.2.2 NOTATIONS

The following are the notations used:

Q: Denotes order quantity.
T: Denotes length of order.
A: Denotes ordering cost.
W: Denotes capacity of the owned warehouse (OW).
k: Denotes unit stock holding cost for items in RW.
h: Denotes unit stock holding cost (HC) for items in OW.
c: Denotes purchase cost.
p: Denotes selling price.
µ: Denotes inflation rate.
s: Denotes shortage cost (SC) for backlogged items per unit per year.
π: Denotes unit cost of lost sales per unit.
Ip: Denotes capital opportunity cost (OC) in stock per dollar per year.
Ie: Denotes interest earned (IE) per dollar per year.
tw: Denotes the period in which the inventory becomes zero in RW and no

deterioration rate.
td : Denotes the period at which the inventory stage in OW and no deterioration

rate.
t1: Denotes the time at which the inventory level reaches zero in OW and length

of time with no shortage.
Ir(t): Denotes the level of positive inventory in RW at time t (0 ≤ t ≤ tw) in

which products are not deteriorated.
I01(t), I02(t): Denotes the level of positive inventory in OW at time t (0 ≤ t ≤

tw and tw ≤ t ≤ td) in which product are not deteriorated.
I03(t): Denotes the level of positive inventory in OW at time (td ≤ t ≤ t1) in

which the products are deteriorated.
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IS(t): Denotes the level of negative inventory at time t (t1 ≤ t ≤ T) at this stage
shortage occurred.

M: Denotes the permissible delay period.
TC (t1, T): Denotes the total yearly inventory cost.

16.3 MATHEMATICAL FORMULATION AND SOLUTION
OF THE MODEL

In this study, we discussed the two-warehouse inventory system. Considering replen-
ishment problem of a single non-instantaneous deteriorating item with partial back-
logging rate, W units of goods are stored in OW and the remaining is dispatched to
the RW. The RW is utilized only after OW is filled, but stocks in RW are dispatched
first. During the time period [0, tw], the inventory level is decreasing only remaining
to stock-dependent demand rate from RW. At the same time, the inventory level is
equal to the W in OW. At the period [tw, td], the inventory level is decreasing only
remaining to stock-dependent demand rate from OW. The inventory level becomes to
zero due to the combined effect of order, and items deteriorate in the interval [td , t1].
Then, the shortage continues till the last of the present-order cycle, and the complete
process is repeated (Figure 16.1).

Differential equations for the inventory conditions at RW and OW are as follows:

I'r(t) =− [α +β Ir(t)−η p] , 0≤t ≤ tw (16.1)

I01(t) =W, 0≤t≤tw (16.2)

I'02(t) =− [α +β I02(t)−η p] , tw≤t≤td (16.3)

I'03(t)+θ I03(t) =− [α +β I03(t)−η p] , td≤t≤t1 (16.4)

with the boundary conditions Ir (tw) = 0, I02 (tw) = w, I03 (t1) = 0.

Figure 16.1 Two warehouse graphical representation of inventory system.
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Solving Equations (16.1), (16.3), and (16.4), the inventory stage is as follows:

Ir(t) =
(α −η p)

β
eβ (tw−t)−1 , 0≤t≤tw (16.5)
[ ]

I01(t) =W, 0≤t≤tw (16.6)

I02(t) =Weβ (tw−t)+
(α −η p)

β
eβ (tw−t)−1 , tw≤t≤td (16.7)
[ ]

I03(t) =
(α −η p)
(θ +β )

e(θ+β )(t1−t)−1 , td≤t≤t1 (16.8)
[ ]

Due to continuity of I(t) at t = td , from Equations (16.7) and (16.8), it can be
written as

I02 ( d) = 03 ( d)

Weβ (tw−td)+
(α −η p)

β

[
eβ (tw−td)−1

]
=

(α −η p)
(θ +β )

[
e(θ+β )(t1−td)−1

]t I t

This implies that

tw =
(α −η p) t1 −W (1−β td)

(α −η p+βW )
(16.9)

Here, tw is a function of t1.
Differentiating Equation (16.9) with respect to t1, we obtain

dtW
dt1

=
(α −η p)

(α −η p+βW )
(16.10)

For the duration of the shortage period [t1, T], at time t the demand rate is partially
backlogged at fraction B(T − t).

Thus, the inventory at time t is developed as

I's(t) =−(α −η p)B(T − t) =− (α −η p)
1+δ (T − t)

, t1 ≤ t ≤ T (16.11)

with the Boundary condition Is(t1) = 0. Thus, Equation (16.11) has the solution:

Is(t) =−(α −η p) (1−δT )(t − t1)+
δ

2
(
t2 − t2

1
)

, t1 ≤ t ≤ T (16.12)
[ ]

16.4 TOTAL COST CALCULATIONS
The total inventory cost (TIC) per cycle consists of the following costs:

16.4.1 PRESENT WORTH ORDERING COST

The ordering cost per cycle is A.
OC = A (16.13)
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16.4.2 PRESENT WORTH HOLDING COST FOR RW

Inventory holding cost (IHC) in RW is obtained in the following two cases:

16.4.2.1 Case 1: When Q ≤ W

For the above case, there is no requirement for RW. Thus, the holding cost for items
in RW is zero.

16.4.2.2 Case 2: When Q > W

The IHC in RW per cycle is shown in Figure 16.2.

(HCRW) = k
∫ tw

0
Ir(t)e−µtdt

=
k (α −η p)

β

[
1

(β +µ)

(
eβ tw − e−µtw

)
+

1
µ

(
e−µtw −1

)]
(16.14)

16.4.3 PRESENT WORTH HOLDING COST FOR OW

The following two cases define the IHC in OW:

16.4.3.1 Case 1: When Q ≤ W

IHC in OW per cycle is shown in Figure 16.3.

Figure 16.2 The holding cost in RW for Q > W during the period (0, T).
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Figure 16.3 The total holding cost in OW for Q ≤ W during the period (0, T).

(HCOW) = h
[∫ td

0
I(t)e−µtdt +

∫ t1

td
I03(t)e−µtdt

]
(SeeAppendixI)

= h
[
(α −η p+βQ)

(β +µ)β

(
1− e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd −1

)
+

(α −η p)
(θ +β )

×
{

1
(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
(16.15)

16.4.3.2 Case 2: When Q > W
IHC in OW per cycle is shown in Figure 16.4.

(HCOW) = h
[∫ tw

0
We−µtdt +

∫ td

tw
I02(t)e−µtdt +

∫ t1

td
I03(t)e−µtdt

]
= h

[
W
µ

(
1− e−µtw

)
− (α −η p+βW )

β (β +µ)

(
eβ (tw−td)−µtd − e−µtw

)
+

(α −η p)
β µ

(
e−µtd − e−µtw

)
+

(α −η p)
(θ +β )(β +θ +µ)

×
(

e(θ+β )(t1−td)−µtd − e−µt1
)
+

(α −η p)
(θ +β )µ

(
e−µt1 − e−µtd

)]
(16.16)
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Figure 16.4 The total holding cost in OW for Q > W during the period (0, T).

16.5 PRESENT WORTH DETERIORATION COST
The deterioration cost (DC) per cycle is

DC = cθ

t1

td
I03(t)e−µtdt

=
cθ (α −η p)
(θ +β )

[
1

(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
(16.17)

∫

16.6 PRESENT WORTH SHORTAGE COST
The SC per cycle due to backlog is

SC = s
t1

−{Is(t)}e−µtdt

= s(α −η p)
[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
+

δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}]
(16.18)

∫ T
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16.7 PRESENT WORTH OPPORTUNITY COST
The OC per cycle due to lost sale is

OC = π
T

t1
[1−B(T − t)] (α −η p)e−µtdt

=
π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
(16.19)

∫

16.8 INTEREST PAYABLE
Finally, permissible delay period (M) for positive inventory stock of the items is less
than or equal to the length of period (M ≤ t1), payments for goods are settled, and
the retailer starts paying the assets OC for the products in stock with rate Ip.

Interest payable per year is obtained, when Q ≤ W and Q > W.
Thus, the OC per cycle is shown in Figure 16.5.

16.8.1 CASE 1: 0 ≤ M ≤ td
16.8.1.1 When Q ≤ W

IP1 = cIp

[∫ td

M
I(t)e−µtdt +

∫ t1

td
I03(t)e−µtdt

]
(seeAppendixI)

= cIp

[
(α −η p+βQ)

(β +µ)β

(
e−(β+µ)M − e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd − e−µM)

+
(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
(16.20)

Figure 16.5 Graphical representation for case 1 (0 < M ≤ td).
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16.8.1.2 When Q > W

IP1 = cIp

[∫ td

M
I02(t)e−µtdt +

∫ t1

td
I03(t)e−µtdt

]
= cIp

[
(α −η p+βW )e−β tw

(β +µ)β

(
e−(β+µ)M − e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd − e−µM)

+
(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
(16.21)

16.8.2 CASE 2: td ≤ M ≤ t1 (SHOWN IN FIGURE 16.6)

16.8.2.1 When Q ≤ W and Q > W

IP2 = cIp

∫ t1

M
I03(t)e−µtdt

=
cIp (α −η p)

(θ +β )

[
1

(θ +β +µ)

{
e(θ+β )(t1−M)−µM − e−µt1

}
+

1
µ

(
e−µt1 − e−µM)]

(16.22)

16.8.3 CASE 3: WHEN M ≥ t1

There is no OC for Q ≤ W and Q > W (shown in Figure 16.6)

Therefore, IP3 = 0 (16.23)

Figure 16.6 Graphical representation for the Case 2 (td ≤ M ≤ t1) and graphical representa-
tion for the Case 3 (M > t1).
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16.9 INTEREST EARNED (Ie) FROM SALES REVENUE
Following special cases are given to determine the interest earned, and at this time,
we assume that the account is not established, the retailer sells the products, collects
sales revenue, and earns the interest with rate (Ie).

Thus, the interest earned (Ie) per cycle is given for the following three cases:

16.9.1 CASE 1: 0 < M ≤ td

16.9.1.1 When Q ≤ W

IE1 = pIe

M

0
{α +β I(t)−η p} te−µtdt

= pIe (α −ηp+Qβ )

({
(

1− e−(β+µ)M
)

(β +µ)2 − Me−(β+µ)M

(β +µ)

)} (16.24)

[∫ ]

16.9.1.2 When Q > W

IE1 = pIe
w

0
{α +β Ir(t)−η p} te−µtdt +

tw
{α +β I02(t)−η p} te−µtdt

= pIe

[
(α −η p)

{(
eβ tw − e−µtw

)
(β +µ)2 − twe−µtw

(β +µ)

}
+(α −η p+βW )

×

{{{
(

eβ tw−(β+µ)M − e−µtw
)

(β +µ)2 +

(
Meβ tw−(β+µ)M − twe−µtw

)
(β +µ)

}}}
]| (16.25)

[∫ t ∫ M
]

16.9.2 CASE 2: td < M ≤ t1

16.9.2.1 When Q ≤ W

IE2 = pIe
d

0
{α +β I(t)−η p} te−µtdt +

td
{α +β I03(t)−η p} te−µtdt

= pIe

[|(α −η p+βQ)

{{{
(

1− e−(β+µ)td
)

(β +µ)2 − tde−(β+µ)td

(β +µ)

}}}+
(α −η p)

µ2

×
{

e−µtd (1+µtd)− e−µM (1+µM)
}
+

β (α −η p)
(θ +β )

{
−e(β+θ)(t1−td)−µtd

×

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)
− e(β+θ)(t1−M)−µM

(
M

(β +θ +µ)

+
1

(β +θ +µ)2

)
− β (α −η p)

(θ +β )µ2

{
e−µtd (1+µtd)− e−µM (1+µM)

}]
(16.26)

[∫ t ∫ M
]
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16.9.2.2 When Q > W

IE2 = pIe

∫ tw

0
{α +β Ir(t)−η p} te−µtdt +

∫ td

tw
{α +β I02(t)−η p} te−µtdt

+
∫ M

td
{α +β I03(t)−η p} te−µtdt

]

= pIe

[
(α −η p)

{
eβ tw

(β +µ)2 − e−µtw

(
tw

(β +µ)
+

1

(β +µ)2

)}
+(α −ηp+βW )

×

{
eβ (tw−td)−µtd

(
td

(β +µ)
+

1

(β +µ)2

)
− e−µtw

(
tw

(β +µ)
+

1

(β +µ)2

)}

+
(α −η p)θ

µ2

{
e−µtd (1+µtd)− e−µM (1+µM)

}
+

β (α −η p)
(θ +β )

×

{
e(β+θ)(t1−td)−µtd

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)

− e(β+θ)(t1−M)−µM

(
M

(β +θ +µ)
+

1

(β +θ +µ)2

)}]
(16.27)

[

16.9.3 CASE 3: M > t1

16.9.3.1 When Q ≤ W

IE3 = pIe

[{∫ td

0
{α +β I(t)−η p} te−µtdt +

∫ t1

td
{α +β I03(t)−η p} te−µtdt

}
+ (M− t1)e−µt1

{∫ td

0
{α +β I(t)−η p}dt +

∫ t1

td
{α +β I03(t)−η p}dt

}]
= pIe

[
(α −η p+βQ)

{
1

(β +µ)2 − e−(β+µ)td

(β +µ)2

(
td

(β +µ)
+

1

(β +µ)2

)}

+
(α −η p)θ

µ2

{
e−µtd (1+µtd)− e−µt1 (1+µt1)

}
+

β (α −η p)
(θ +β )

×

{
e(β+θ)(t1−td)−µtd

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)

− e−µt1

(
t1

(β +θ +µ)
+

1

(β +θ +µ)2

)}
+ e−µt1 (M− t1)

{
(α −η p+βQ)

β

×
(

1− e−β td
)
+

θ (α −η p)(t1 − td)
(θ +β )

+
β (α −η p)

(θ +β )2

(
e(β+θ)(t1−td)−1

)}]
(16.28)
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16.9.3.2 When Q > W

IE3 = pIe

∫ tw

0
{α +β Ir(t)−η p} te−µtdt +

∫ td

tw
{α +β I02(t)−η p} te−µtdt

+
∫ t1

td
{α +β I03(t)−η p} te−µtdt

}
+(M− t1)e−µt1

{∫ tw

0
{α +β Ir(t)}dt

+
∫ td

tw
{α +β I02(t)}dt +

∫ t1

td
{α +β I03(t)}dt

}]
= pIe

[
(α −η p)

{
eβ tw

(β +µ)2 − e−µtw

(
tw

(β +µ)
+

1

(β +µ)2

)}
+(α −η p+βW )

×

{
eβ (tw−td)−µtd

(
td

(β +µ)
+

1

(β +µ)2

)
− e−µtw

(
tw

(β +µ)
+

1

(β +µ)2

)}

+
(α −η p)

µ2

{
e−µtd (1+µtd)− e−µM (1+µM)

}
+

β (α −η p)
(θ +β )

×

{
e(β+θ)(t1−td)−µtd

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)

− e−µt1

(
t1

(β +θ +µ)
+

1

(β +θ +µ)2

)}
+ e−µt1 (M− t1)

×
{
(α −η p)

β

(
eβ tw −1

)
−Weβ (tw−td)+W +

(α −η p)
β

(
eβ (tw−td)−1

)
+

θ (α −η p)(t1 − td)
(θ +β )

+
β (α −η p)

(θ +β )2

(
e(β+θ)(t1−td)−1

)}]
(16.29)

[{

16.10 PRESENT WORTH TOTAL COST
Total inventory cost (TIC) of the retailer for entire planning horizon is the summation
of the individual costs given by Equations (16.13) to (16.29) according to different
cases (Figures 16.7 and 16.8).

Thus, TIC per unit time is

TC(t1,T ) = 1/T [Inventory OC+ Inventory HC per cycle in RW
+ Inventory HC per cycle in OW+ DC per cycle
+SC per cycle due to backlog+OC per cycle due to lost sales
+Interest earned− Interest payable]

The total cost when Q ≤ W, which depends on t1, and T is given by{
TC(t1,T ) =

{{ TC1 (t1,T ) if 0 < M ≤ td
TC2 (t1,T ) if td < M ≤ t1
TC3 (t1,T ) if M > t1
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Figure 16.7 Convexity of the TC for proposed model when Q ≤ W.

Figure 16.8 Convexity of the TC for proposed model when Q > W.

where

TC1 (t1,T ) =
1
T

[
A+h

[
(α −η p+βQ)

(β +µ)β

(
1− e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd −1

)
+

(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
+

cθ (α −η p)
(θ +β )

[
1

(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
+ s(α −η p)

[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
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+
δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}
+

π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
+ cIp

[
(α −η p+βQ)

(β +µ)β

(
e−(β+µ)M − e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd − e−µM)

+
(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]

− pIe (α −η p+Qβ )

({
(

1− e−(β+µ)M
)

(β +µ)2 − Me−(β+µ)M

(β +µ)

)}]| (16.30)

]

TC2 (t1,T ) =
1
T

[
A+h

[
(α −η p+βQ)

(β +µ)β

(
1− e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd −1

)
+

(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
+

cθ (α −η p)
(θ +β )

[
1

(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
+ s(α −η p)

[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
+

δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}]
+

π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
+

cIp (α −η p)
(θ +β )

[
1

(θ +β +µ)

{
e(θ+β )(t1−M)−µM − e−µt1

}
+

1
µ

(
e−µt1 − e−µM)]

− pIe

[|(α −η p+βQ)

{{{
(

1− e−(β+µ)td
)

(β +µ)2 − tde−(β+µ)td

(β +µ)

}}}+
(α −η p)

µ2

×
{

e−µtd (1+µtd)− e−µM (1+µM)
}
+

β (α −η p)
(θ +β )

{
−e(β+θ)(t1−td)−µtd

×

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)
− e(β+θ)(t1−M)−µM

(
M

(β +θ +µ)

+
1

(β +θ +µ)2

)
− β (α −η p)

(θ +β )µ2

{
e−µtd (1+µtd)− e−µM (1+µM)

}]]
(16.31)
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TC3 (t1,T ) =
1
T

A+h
(α −η p+βQ)

(β +µ)β

(
1− e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd −1

)
+

(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
+

cθ (α −η p)
(θ +β )

[
1

(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
+ s(α −η p)

[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
+

δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}]
+

π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
+ cIp

[
(α −η p+βQ)

(β +µ)β

(
e−(β+µ)M − e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd − e−µM)

+
(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]
− pIe

[
(α −η p+βQ)

{
1

(β +µ)2 − e−(β+µ)td

(β +µ)2

(
td

(β +µ)
+

1

(β +µ)2

)}

+
(α −η p)θ

µ2

{
e−µtd (1+µtd)− e−µt1 (1+µt1)

}
+

β (α −η p)
(θ +β )

×

{
e(β+θ)(t1−td)−µtd

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)

− e−µt1

(
t1

(β +θ +µ)
+

1

(β +θ +µ)2

)}
+ e−µt1 (M− t1)

{
(α −η p+βQ)

β

×
(

1− e−β td
)
+

θ (α −η p)(t1 − td)
(θ +β )

+
β (α −η p)

(θ +β )2

(
e(β+θ)(t1−td)−1

)}]]
(16.32)

[ [

The total annual cost when Q > W, which is a function of t1 and T, is given by

TC(t1,T ) =
{{ TC4 (t1,T ) if 0 < M ≤ td

TC5 (t1,T ) if td < M ≤ t1
TC6 (t1,T ) if M > t1

{

where

TC4 (t1,T ) =
1
T

A+
k (α −η p)

β

1
(β +µ)

(
eβ tw − e−µtw

)
+

1
µ

(
e−µtw −1

)
+h
[

W
µ

(
1− e−µtw

)
− (α −η p+βW )

β (β +µ)

(
eβ (tw−td)−µtd − e−µtw

)
[ [ ]
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+
(α −η p)

β µ

(
e−µtd − e−µtw

)
+

(α −η p)
(θ +β )(β +θ +µ)

(
e(β+θ)(t1−td)−µtd − e−µt1

)
+
(α −η p)
(θ +β )µ

(
e−µt1 − e−µtd

)]
+

cθ (α −η p)
(θ +β )

×
[

1
(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
+ s(α −η p)

[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
+

δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}]
+

π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
+ cIp

[
(α −η p+βW )e−β tw

(β +µ)β

(
e−(β+µ)M − e−(β+µ)td

)
+

(α −η p)
β µ

(
e−µtd − e−µM)

+
(α −η p)
(θ +β )

{
1

(β +θ +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)}]

− pIe

[
(α −η p)

{(
eβ tw − e−µtw

)
(β +µ)2 − twe−µtw

(β +µ)

}
+(α −η p+βW )

×

{{{
(

eβ tw−(β+µ)M − e−µtw
)

(β +µ)2 +

(
Meβ tw−(β+µ)M − twe−µtw

)
(β +µ)

}}}
]|]| (16.33)

TC5 (t1,T ) =
1
T

A+
k (α −η p)

β

1
(β +µ)

(
eβ tw − e−µtw

)
+

1
µ

(
e−µtw −1

)
+h
[

W
µ

(
1− e−µtw

)
− (α −η p+βW )

β (β +µ)

(
eβ (tw−td)−µtd − e−µtw

)
+

(α −η p)
β µ

(
e−µtd − e−µtw

)
+

(α −η p)
(θ +β )(β +θ +µ)

(
e(β+θ)(t1−td)−µtd − e−µt1

)
+
(α −η p)
(θ +β )µ

(
e−µt1 − e−µtd

)]
+

cθ (α −η p)
(θ +β )

[
1

(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
+ s(α −η p)

[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
+

δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}]

[ [ ]
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+
π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
+

cIp (α −η p)
(θ +β )

[
1

(θ +β +µ)

{
e(θ+β )(t1−M)−µM − e−µt1

}
+

1
µ

(
e−µt1 − e−µM)]

− pIe

[
(α −η p)

{
eβ tw

(β +µ)2 − e−µtw

(
tw

(β +µ)
+

1

(β +µ)2

)}
+(α −η p+βW )

×

{
eβ (tw−td)−µtd

(
td

(β +µ)
+

1

(β +µ)2

)
− e−µtw

(
tw

(β +µ)
+

1

(β +µ)2

)}

+
(α −η p)θ

µ2

{
e−µtd (1+µtd)− e−µM (1+µM)

}
+

β (α −η p)
(θ +β )

×

{
e(β+θ)(t1−td)−µtd

(
td

(β +θ +µ)
+

1

(β +θ +µ)2

)

−e(β+θ)(t1−M)−µM

(
M

(β +θ +µ)
+

1

(β +θ +µ)2

)}]]
(16.34)

TC6 (t1,T ) =
1
T

[
A+

k (α −η p)
β

[
1

(β +µ)

(
eβ tw − e−µtw

)
+

1
µ

(
e−µtw −1

)]
+h
[

W
µ

(
1− e−µtw

)
− (α −η p+βW )

β (β +µ)

(
eβ (tw−td)−µtd − e−µtw

)
+

(α −η p)
β µ

(
e−µtd − e−µtw

)
+

(α −η p)
(θ +β )(β +θ +µ)

(
e(β+θ)(t1−td)−µtd − e−µt1

)
+
(α −η p)
(θ +β )µ

(
e−µt1 − e−µtd

)]
+

cθ (α −η p)
(θ +β )

[
1

(θ +β +µ)

(
e(θ+β )(t1−td)−µtd − e−µt1

)
+

1
µ

(
e−µt1 − e−µtd

)]
+ s(α −η p)

[
(1−δT )

µ2

{
((t1 −T )µ −1)e−µT + e−µt1

}
+

δ

2µ3

{((
t2
1 −T 2)

µ
2 −2T µ −2

)
e−µT +2(t1µ +1)e−µt1

}]
+

π(α −η p)δ

µ2

[
e−µT −{(t1 −T )µ +1}e−µt1

]
− pIe

[
(α −η p+βQ)

{
1

(β +µ)2 − e−(β+µ)td

(β +µ)2
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× e(β+θ)(t1−td)−µtd td
(β +θ +µ)

+
1

(β +θ +µ)2

− e−µt1

(
t1

(β +θ +µ)
+

1

(β +θ +µ)2

)}
+ e−µt1 (M− t1)

{
(α −η p+βQ)

β

×
(

1− e−β td
)
+

θ (α −η p)(t1 − td)
(θ +β )

+
β (α −η p)

(θ +β )2

(
e(β+θ)(t1−td)−1

)}]]
(16.35)

{ ( )

16.11 NUMERICAL ILLUSTRATIONS AND ANALYSIS
On the basis of the previous studies, the following data in proper units have been
measured for solving the equations of both the OW and the RW. We discuss two
examples based on trade credits.

16.11.1 EXAMPLE

When M ≤ td : A = 250; W = 300; α = 800; β = 1.5; δ = 0.58; h = 15; k = 18; s = 30;
p = 75; c = 60; η = 0.1; µ = 0.09; π = 25; Ip = 0.15; Ie = 0.12; M = 0.1856; td = 0.2064
in proper units.

When M > td : A = 250; W = 300; α = 800; β = 1.5; δ = 0.58; h = 15; k = 18;
s = 30; p = 75; c = 60; η = 0.1; µ = 0.09; π = 25; Ip = 0.15; Ie = 0.12; M = 0.2432;
td = 0.2094 in proper units.

With these values, we find different solutions of the system for the two cases:
M ≤ td and M > td .

Optimal values of t1, T, and TC have been computed for Example 16.11. Evalu-
ated outcomes are tabulated in Tables 16.1 and 16.2:

16.12 SENSITIVITY ANALYSIS
With the provided data, we also perform a sensitivity analysis of most favorable
system cost with respect to the various system parameters for Example 16.11 (Case
Q > W). The results obtained are tabulated in Tables 16.3 and 16.4

Table 16.1
Optimal Solution for the Model When Q ≤ W

Cases t1 T Total Cost (TC)

M ≤ td 1.1835 3.3118 13206.9
1.0989 2.9032 13982.7

M > td 1.7638 1.8797 8631.13
1.3229 1.6523 8124.43
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Table 16.2
Optimal Solution for the Model When Q > W

Cases t1 T Total Cost (TC)

M ≤ td 0.2269 1.2785 10618.2
0.2649 1.8519 10958.0

M > td 0.2186 0.8582 4476.48
0.2293 0.8746 4329.59

Table 16.3
Effects of Changes in Parameters Ordering Cost (A), Selling Price (c), Shortage
Cost (s), and Capacity of OW (W) of the Inventory Model

M ≤ td M > td
Parameters % Change in Parameters % Change in Total Cost % Change in Total Cost

A −50 −0.9235 −3.2449
−25 −0.4622 −1.6224
+25 +0.4622 +1.6222
+50 +0.9244 +3.2446

P −50 +2.4663 +17.8597
−25 +1.2332 +8.9299

25 −1.2322 −8.9301
50 −2.4654 −17.8599

S −50 −48.2945 −63.7561
−25 −24.1471 −31.8781

25 +24.1480 +31.8778
50 +48.2952 +63.7559

W −50 +4.2219 +23.8285
−25 +2.3749 +12.7261

25 −2.7732 −13.9478
50 −5.8532 −28.8378

16.13 OBSERVATIONS
16.13.1: From Table 16.3, it is clear that the % change in the total cost is decreasing
for the parameters p and W, whereas it is increasing for the parameters A and s, when
the trade credit period is ≤td .

16.13.2: From Table 16.3, it is observed that the % change in the total cost is
highly sensitive with respect to parameters p and W, whereas it is increasing for the
parameters A and s, when the trade credit period is >td .

16.13.3: From Table 16.4, it is clear that the % change in the total cost is decreas-
ing for the parameter β , whereas it is increasing for the parameters c, α , δ , h, and
Ip, when the trade credit period is ≤td .
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Table 16.4
Effects of Changes in Purchasing Cost (p), Demand Parameter (α), Backlog-
ging Rate (δ), Stock Parameter in Demand Rate (β ) and Holding Cost of
the OW (h), Capital Opportunity Cost (Ip), and Interest Earned (Ie) of the
Inventory Model

M ≤ td M > t
Parameters % Change in Parameters % Change in Total Cost % Change in Total Cost

c −50 −0.2071 +3.1293
−25 −0.1035 +1.5647

25 +0.1045 −1.5648
50 +0.2080 −3.1295

A −50 −55.4209 −77.1029
−25 −27.3647 −37.4909

25 +26.9598 +36.2472
50 +53.6618 +71.7030

∆ −50 −2.9332 −3.8724
−25 −1.4666 −1.9362

25 +1.4666 +1.9362
50 +2.9332 +3.8724

B −50 +13.2182 +51.7885
−25 +3.4547 +13.6720

25 −1.2134 −4.9619
50 −1.4713 −6.1868

H −50 −0.1054 −0.1160
−25 −0.0537 −0.0580

25 +0.0537 +0.0578
50 +0.1064 +0.1158

I p −50 −0.2071 +3.1293
−25 −0.1035 +1.5647

25 +0.1045 −1.5649
50 +0.2080 −3.1295

Ie −50 +2.4663 17.8619
−25 +1.2331 8.9299

25 −1.2322 −8.9301
50 −2.4654 −17.8599

d

16.13.4: From Table 16.4, it is clear that the percentage change in the total cost is
decreasing for the parameters c, β , and Ip, whereas it is increasing for the parameters
α , δ , and h, when the trade credit period is >td .

16.14 CONCLUDING REMARKS

This inventory model comprises the some practical features that are feasible to
be related to some types of inventory models. We developed a model, which will
help the retailer find out the optimal replenishment policy for non-instantaneous
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deteriorating products with restricted storage capacity. In this model, shortages are
allowed and partially backlogged. Mostly, few customers will wait for backorders,
and a few others will satisfy their needs from other sellers. The whole study is
prepared in inflationary atmosphere. This model is very useful for an inventory
control of constructive non-instantaneous deteriorating products, such as ration,
electronic machinery, and designer products. In the future study, this model will
incorporate some other assumptions, such as probabilistic order and a restricted
replenishment.

APPENDIX I
From Figure 16.3, in the time period [0, td], at time t in OW, the stage of inventory
is governed by the following differential equation:

dI(t)
dt

=− [α +β I(t)] 0 ≤ t ≤ td

under the boundary condition I(0) = Q. The solution of the above differential
equation is

I(t) = Qe−β t +
α

β
e−β t −1 , 0 ≤ t ≤ td
( )

APPENDIX II
Necessary conditions for the TIC per unit time of Equations (16.30)–(16.32) for the
case when Q ≤ W and Equations (16.33)–(16.35) for the case when Q > W to be
minimum, the optimal values (t1 = t*1 and T = T*) can be evaluated using successive
equations,

∂TCi (t1,T )
∂ t1

= 0 (16.36)

and
∂TCi (t1,T )

= 0, (16.37)
∂T

i = 1,2,. . . ,5,6 for both cases when Q ≤ W and Q > W, provided

∂ 2TCi (t1,T )
∂ t2

1

||||
(t*1 ,T

*)
> 0,

∂ 2TCi (t1,T )
∂T 2

||||
(t*1 ,T

*)
> 0 and

(
∂ 2TCi (t1,T )

∂ t2
1

)(
∂ 2TCi (t1,T )

∂T 2

)
−
(

∂ 2TCi (t1,T )
∂ t1∂T

)2
|||||
(t*1 ,T

*)

> 0,
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