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Preface 

Online education has grown to be a major component of the higher education mar-
ket in both the United States and worldwide. Students take entire degree programs 

online or selected courses online for a variety of reasons. In addition, many instructors 
have adopted online resources to support face-to-face instruction, either as a supplement 
or through “fipping-the-classroom,” which pushes most instruction outside the tradi-
tional classroom. Teaching and learning online introduce a number of complications rang-
ing from efective assessment to managing student engagement. 

In mathematics and statistics courses, these complications emphasize already existing 
difculties in working with students with math anxiety, the abstractness of the material, 
and notation. 

Teaching and Learning Mathematics Online (TLMO) hopes to bridge these issues and 
present meaningful solutions for teaching and learning mathematics online. TLMO 
focuses on the problems seen by mathematics instructors working in the feld and provides 
a set of standard practices which have demonstrated their use and viability to improve the 
quality of online mathematics instruction. 

Tis book includes chapters that present interactive demonstration techniques, and 
addresses the divide between students with access to varying levels of technology, famil-
iarity and comfort with mathematical content, and methods for developing reliable and 
rigorous assessment techniques across digital connections. We believe this will enhance 
our ability as educators to reach students and successfully instruct in a subject with well-
known difculties. 

Te objective of TLMO is to provide a set of practice standards for educators teaching 
mathematics and statistics in the online and hybrid environments. Te text presents sound 
methods for delivering mathematical content to students grounded in both the research 
and practice of mathematics education. It also presents methods and tools for integrating 
online material to students in the traditional classroom. 

We include chapters that focus on empirical research, theoretical frameworks, or 
detailed case studies showing what works in the classroom. Te book is organized around 
four key themes. 

First, we explore the various aspects of course design. In particular, we have several 
case studies meant to demonstrate aspects of course design and apply them to diferent 
course levels across mathematics and statistics. Second, we look at interaction in online 
and hybrid mathematics courses. 

xi 
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Tird, we look at diferent technologies, above and beyond the learning management 
system, to make connections with students. Fourth, we provide two chapters exploring 
teaching the teacher using online learning. Finally, the book ends with a chapter summa-
rizing the key threads of the text. As a whole, TLMO should provide a framework for devel-
oping, implementing, and teaching online mathematics and statistics courses to students 
across disciplines and skill levels. 

Te target audience for TLMO are collegiate educators and administrators, though high 
school and graduate-level instructors may beneft, too. Tese educators are familiar with 
mathematics and statistical instruction, but may be new to the online or hybrid classroom. 
Tese educators may also be interested in integrating online instruction in the traditional 
classroom. 

Instructors will beneft from learning new techniques and approaches to delivering 
mathematical content. Teir students will beneft from the new techniques presented as 
students are better able to assimilate and apply the material. Finally, we expect our readers 
will fnd better methods to work with students across skill levels. 

In addition to practicing educators, TLMO should also appeal to mathematics educa-
tion researchers and instructors of other natural sciences who must integrate mathemati-
cal and statistical content into online and hybrid courses. We hope this volume can be a 
handbook of methods and practices for teaching excellence across mathematical courses. 

MATLAB® is a registered trademark of Te MathWorks, Inc. For product information, 
please contact: 
Te MathWorks, Inc. 
3 Apple Hill Drive 
Natick, MA 01760-2098 USA 
Tel: 508 647 7000 
Fax: 508-647-7001 
E-mail: info@mathworks.com 
Web: www.mathworks.com 

www.mathworks.com
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Teaching Cross-Listed 
Mathematics Courses Online 

Laurie Battle, Atish J. Mitra, and H. Smith Risser 
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1.1 INTRODUCTION 
Tis purpose of this chapter is to provide a detailed description of three cross-listed (com-
bined upper-level undergraduate and graduate) classes that were taught online in the sum-
mer of 2017 at Montana Tech. All three courses were part of a funded project designed 
to prepare current high school teachers for teaching Dual Credit Mathematics Classes. 
Current state-level policies require all Dual Credit teachers within the state of Montana to 
have a Masters degree and 9 credits of graduate-level math. Te rural nature and size of 
Montana are barriers for current teachers wishing to take face-to-face graduate courses. 



        

   
 

  

  
  

 

4 ◾ Teaching and Learning Mathematics Online 

As a result the funded project was designed to support teachers taking online graduate-
level mathematics. Mathematical Modeling and Groups and Geometry were previously 
taught face-to-face to upper-level undergraduates. Advanced Linear Algebra was designed 
specifcally for the project. However, some topics (vector spaces and numerical methods 
for matrix algebra) were previously taught by the instructor in other face-to-face courses 
within the undergraduate curriculum. 

As mentioned above, all three classes had both undergraduate and graduate students 
enrolled. Te students in the undergraduate section were typically current undergradu-
ate students majoring or minoring in mathematics. Te students in the graduate section 
were typically adults working in K-12 or higher education. Te cross-listed nature of the 
courses, along with the online delivery of the materials, provided unique challenges. Each 
of the courses had to accommodate diferent expectations in learning objectives and difer-
ent approaches in evaluation. For example in Advanced Linear Algebra, most of the gradu-
ate students needed substantial review of the prerequisite material in order to succeed. 
Similarly in Groups and Geometry some of the students did not have a previous back-
ground in group theory. Tis required the instructor to introduce the concept of a group 
in the special case of groups of transformations. In this chapter, we discuss how we dealt 
with challenges like assessment, technology use, ensuring rigor, and providing support 
to students at a distance. Tis paper would be relevant to any instructor wishing to teach 
graduate courses or dual-enrollment courses online, especially those including graduate 
students with nontraditional preparation. 

1.2 THE COURSES 
1.2.1 Groups and Geometry 

Te face-to-face version of Groups and Geometry was not cross-listed. It was intended 
for advanced undergraduates, typically seniors, who had already completed a course in 
abstract algebra. Groups and Geometry introduced students to the unity of abstract math-
ematics by demonstrating interconnections between geometry and algebra. Additionally, 
it guided the students into developing and communicating mathematical proofs in both 
oral and written forms. 

Groups and Geometry was developed as a natural successor to a year-long sequence 
of abstract algebra. Te instructor assumed that the student had at least a rudimentary 
background and understanding of algebraic structures, and guided the student through an 
exploration of various geometries and their algebraic connections. Linear Algebra was the 
formal prerequisite of the course. Te course met twice a week for a total of three hours. 

Te face-to-face section started with a gentle review of the algebra of complex numbers 
and its connections to plane Euclidean geometry. Tis topic took about three weeks. By the 
end of this frst topic the students would prove results in Euclidean geometry, starting from 
simpler propositions such as the concurrence of medians/angle bisectors of a Euclidean 
triangle, to more esoteric aspects such as the fact that the adjacent trisectors of the angles of 
an arbitrary triangle form an equilateral triangle. At this stage the proofs largely required 
only a level of comfort with manipulating algebraic expressions involving complex num-
bers, and understanding their geometric signifcance. 
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Once students had a good understanding of the application of complex numbers to 
Euclidean geometry, the concept of isometries of the complex plane was introduced 
with the aim of a complete classification of the isometries of the Euclidean plane. This 
part of the course lasted about seven to eight weeks and was the heart of the course. 
Here the level of the proofs became more conceptual than the algebraic manipulations 
in the first part of the course; students were able to see that non-trivial geometric 
structures can be reduced to study of algebraic structures. Here the group structure of 
the set of Euclidean isometries was introduced, and several non-trivial results, such 
as a study of the subgroups of the Euclidean isometry group, could be reached at this 
stage. 

In the fnal part of the course the students saw how an algebraic structure such as a 
fnitely generated group could be viewed as a metric space. Tis part lasted about two to 
three weeks and was a gentle introduction to geometric group theory. 

Te grade for the face-to-face version of the course was based on homework assign-
ments and exams. Te homework assignments typically were extensions of concepts dis-
cussed in class. 

1.2.2 Advanced Linear Algebra 

Advanced Linear Algebra introduced students to theoretical concepts from algebra using 
matrices. Te frst part of the course focused on building a theoretical understanding of 
algebra and vector spaces. Ten the course showcased applications of linear algebra to other 
disciplines (e.g. the singular value decomposition applied to regression). Finally, students 
learned how numerical methods are applied to problems described within the course. Te 
instructor had previously taught some of the topics in face-to-face Linear Algebra and 
Numerical Computing courses. 

Te face-to-face Linear Algebra class had a prerequisite of Calculus 2 and included ele-
mentary row operations, vector spaces, and eigenvalues. Te class was taught in a lecture 
format and met three hours per week. Students were expected to complete homework 
assignments from the textbook. Tese homework assignments included both computa-
tional work and short proofs. Students were also assessed through face-to-face examina-
tions. Te questions on the examinations were similar to those completed in the homework 
assignments. 

Te Numerical Computing class had a prerequisite of either Linear Algebra or 
Diferential Equations. Te curriculum included a unit on numerical linear algebra. 
Both direct and iterative methods for solving systems of equations were covered. Te 
class was taught in a lecture format and met three hours per week. Te homework 
assignments required students to use MATLAB® [1] to solve systems of linear equa-
tions. Homework assignments were completed in groups. Each group analyzed the 
errors and foating point operations for diferent types of matrices (e.g. ill-conditioned, 
banded). Te homework assignments required students to compare results for the dif-
ferent methods. Students were also assessed using face-to-face examinations which 
required students to solve questions by hand and to analyze errors produced by numeri-
cal algorithms. 
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1.2.3 Mathematical Modeling 

Te Mathematical Modeling course taught students how to devise and analyze models 
in the form of diference equations as well as diferential equations, including systems of 
both types of equations. Applications were taken from a variety of felds with an emphasis 
on population modeling. Students learned methods for fnding analytical and numerical 
solutions, as well as geometric representations, including phase lines and phase planes. 
Spreadsheet sofware was the primary technology that students used to analyze difer-
ence equations numerically. Matrix calculators were used to assist with eigenvalue and 
eigenvector analysis of diferential equations. Te instructor had previously taught this as 
a face-to-face class, but the content was modifed for the online version. Te face-to-face 
class focused on diferential equations only. Methods of analysis included fnding equi-
librium solutions, stability analysis, and fnding both analytical and numerical solutions. 
MATLAB was the primary technology used. Te content for the online course included 
diference equations in addition to a less in-depth selection of topics in diferential equa-
tions. Te primary technology used for the online course was spreadsheet sofware. Te 
face-to-face version required Diferential Equations as a pre-requisite. 

Te face-to-face version met three times per week for 50 minutes. Tis time was used 
primarily for lectures and exams. Te types of assessment included homework, three quiz-
zes, three exams, three group projects, and a fnal exam. Te homework exercises came 
from the textbook and were collected weekly. Students worked in groups of two to three on 
the projects, and each group selected a project from a list of several options. Some of these 
projects came from the textbook, and some were written by the instructor. Each group 
prepared a written report and gave a presentation to the class. Students were asked to use 
MATLAB on homework and group projects, but they did not have access to MATLAB for 
quizzes and exams. As a result, the quizzes and exams tended to emphasize theory while 
the other assignments explored practical analysis in addition to theory. Te face-to-face 
course was also cross-listed for both undergraduate and graduate levels. Te graduate stu-
dents attended the same lectures, but they were assigned additional homework problems, 
additional questions on quizzes/exams, and more in-depth projects. 

1.3 ADAPTING THE COURSES TO ONLINE DELIVERY 
Each of the three courses presented unique challenges for the instructor in conveying 
abstract material, using appropriate symbolic notation, and integrating appropriate activi-
ties using online delivery. 

1.3.1 Groups and Geometry 

Te online version of Groups and Geometry had fve students. Te small size of the section 
meant that no TA was needed, and the instructor was able to provide individual attention 
to the progress of all the students. However, the design of the course allows larger class 
sizes without substantial change. 

Te students who took the face-to-face version of the course were usually well-pre-
pared by the prerequisites; they all had taken a two-semester course in abstract algebra 
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(many of them with the same instructor as Groups and Geometry) and were quite com-
fortable with the constructs of basic group theory. Tis was clearly not the case for the 
online course; only a couple of the students were undergraduate students at the univer-
sity. In fact, many of the students took the course while living in other states across the 
country. In the online course it was assumed that some of the students would not know 
the defnition of a group. Within the frst few days of class the students had to learn 
the concept of an algebraic structure. To make this transition smooth, the instructor 
decided to introduce groups as groups of transformations instead of structures satisfy-
ing abstract axioms as in a usual abstract algebra class. Tis approach helped the stu-
dents become accustomed to group theoretical concepts such as subgroups, center of a 
group, normality of subgroups, and group homomorphisms from the geometric point 
of view. 

Te second challenge was something that arises when adapting any traditional course 
of geometry to an online platform: pictures. Tis issue was more prominent in this course, 
where the main idea was to search for algebraic structures in familiar transformations of 
Euclidean geometry. Each of the recorded lectures contained many pictures and sketches. 
Tis did not pose any real problem, as the (asynchronous) lectures were prerecorded in a 
smart classroom (see Figure 1.1) where both simple free-hand sketches and more compli-
cated Geogebra [2] constructed images were easy to insert. In the synchronous part of the 
course (e.g. regular online ofce hours), the online educational platform WizIQ [3] was 
very convenient for sketching pictures. 

FIGURE 1.1 Picture of smart classroom. 
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Finally, as mentioned earlier, the face-to-face course was not cross-listed. As the online 
course was cross-listed, it was necessary to have extra material for the graduate students 
both in the synchronous and asynchronous parts. In the asynchronous part this was 
achieved by having separate pre-recorded lectures available for the graduate students (in 
addition to the common lectures for both undergraduate and graduate students). As an 
example, one of the special lecture sessions for graduate students had a complete descrip-
tion of the isometry group of the reals. For the synchronous part there were separate online 
ofce hours available for the graduate students where some sample problems were worked 
out on the extra material presented for graduate students. Again, the graduate students had 
separate ofce hours which used a sequence of problems solved by the students to explore 
the properties of various discrete subgroups of the isometry group of the Euclidean plane. 
Tis material and the related extra problem sets were not included in the material for the 
undergraduate students. 

1.3.2 Advanced Linear Algebra 

Five students enrolled in Advanced Linear Algebra the frst time it was ofered. Approximately 
half were undergraduates and half were graduate students. Tere was no teaching assistant 
for the course. Te assignments and lectures were structured in a way to allow a larger 
enrollment without creating signifcantly more work for the instructor. 

Whereas all of the graduate students did have a satisfactory prerequisite in matrix arith-
metic, most had taken such a course more than ten years before attempting Advanced 
Linear Algebra. Te graduate students needed some review of the prerequisite material. 
Tere were two ways in which this prerequisite review was provided. First, each section 
had a list of prerequisite skills for that section and links to open educational resources 
that could be used for review of these skills. Te open educational resources included both 
videos and textbook materials. Second, students were able to ask questions on prerequisite 
material via a free online question-and-answer platform called Piazza [4]. Tis platform 
enabled students in the course to ask questions both of the instructor and other students 
in the course. 

Neither of the face-to-face courses on which this class was based were cross- listed. While 
the cross-listing required the instructor to modify assignments for the graduate students, 
the cross-listing provided a unique advantage; the undergraduate students in the course 
had all recently completed the prerequisite. Tis enabled undergraduates to answer ques-
tions concerning prerequisite material that were posed by students in the graduate section. 

Another issue faced in adapting the face-to-face course online was the availability of tech-
nology. Te undergraduates in the Numerical Computing class all had access to MATLAB 
via the campus computer labs. In Advanced Linear Algebra many of the students did not 
have access to MATLAB. Instead of MATLAB, students used a cloud-based computational 
engine called SAGE [5]. Students in the course were provided with both manuals and video 
tutorials for SAGE. Many of the lectures included step-by-step instructions for using SAGE 
to perform computations. 

Both the face-to-face Linear Algebra and Numerical Computing classes included for-
mative assessments of student understanding. During class meetings students worked 
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problems related to course content. Tese problems were not graded. Instead, the results 
were used to assess student understanding of the course material. In Advanced Linear 
Algebra the instructor included questions between sections of the videos. Students were 
asked to work these questions and to submit answers via the learning management system 
(LMS). Te instructor was able to assess student understanding of the course material from 
answers to these questions. 

1.3.3 Mathematical Modeling 

During the project, approximately 20 students enrolled in Mathematical Modeling, the 
majority of whom were undergraduates. Tere was no teaching assistant for the course. 

Te instructor originally adapted this course to be cross-listed with the face-to-face ver-
sion. Te undergraduate and graduate students attended the same lectures, but there were 
some diferences in assessment. In particular, the graduate students were assigned some 
additional problems in each of the homework assignments. Tese additional problems 
ofen required exploration of generalized abstract concepts. In addition, the quizzes and 
exams for the graduate students included some modifed problems and some additional 
problems to assess student mastery of more advanced concepts. Te projects assigned to the 
graduate students were completely diferent than those given to the undergraduates. Te 
graduate students’ projects require more advanced and more in-depth analysis. Tis same 
system was used for the cross-listed online course. In contrast to the other two courses, all 
of the graduate students in Mathematical Modeling had taken the prerequisite courses and 
had up-to-date mathematical backgrounds, so additional review materials were not neces-
sary. Several modifcations were made in adapting from a face-to-face to an online course, 
and technology is an important factor in these changes. Te face-to-face course required 
students to use MATLAB for numerical solutions to diferential equations. Since many of 
the of-campus students enrolled in the online version did not have access to MATLAB, 
the instructor chose to use spreadsheet sofware as the primary technology. However, this 
type of sofware did not include numerical approximation methods for diferential equa-
tions, so the topics were modifed to accommodate the new technology. Te frst half of 
the course dealt with modeling using diference equations, for which spreadsheet sofware 
is well-suited. Te second half of the course dealt with modeling using diferential equa-
tions, but the focus was shifed to a more theoretical rather than numerical approach. Little 
technology was used in the second half, although spreadsheet sofware was used to per-
form matrix operations. Using this type of sofware has the advantage that most students 
are familiar with at least some basics of spreadsheets. Te instructor provided documents 
explaining some of these basics for students with less experience, and more advanced tech-
niques were covered in the recorded lectures. 

Te online class was structured in four modules, and each module included a reading 
assignment, recorded lectures, one homework assignment, one quiz, and one project. It 
was taught during a fve-week summer session, so each module was just over one week. 
Te balance of work was distributed diferently for the online version, including fewer 
hours of lectures and more time on independent work. To ofer fexibility to the online 
students, most of the learning was asynchronous. All lectures were recorded in the Smart 
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ClassroomTM for students to watch at their convenience. Te only synchronous component 
was an optional discussion session ofered once during each module, in which students had 
an opportunity to ask questions and the instructor reviewed important concepts. Tese 
sessions were recorded and posted for students who could not attend. Te instructor also 
scheduled daily ofce hours as an additional opportunity for students to ask questions. 
Te instructor posted a summary of work at the beginning of each module to make sure 
students were aware of the reading, videos, and assignments. Tis summary included sug-
gestions for pacing their work over the module to ensure all assignments were submitted 
before the deadline. 

Te types of assessment were similar for the online and face-to-face courses, both 
including homework assignments, quizzes, and projects. Te face-to-face course included 
three exams and a fnal exam. All of these exams were dropped for the online course, due 
to the difculty in proctoring. Instead more emphasis was placed on the projects. Tis 
project-focused approach was well-suited for the applied nature of this course. For the 
online version the number of projects was higher, the projects were more in-depth, and 
the work was done independently rather than in groups. For both the online and face-to-
face courses, students were allowed to consult each other, as well as other resources for 
homework and projects. For the face-to-face section, quizzes and exams were closed-book 
independent work administered during the class period. Te quizzes were open-book for 
online students, but students were informed that they should not consult any people about 
the quizzes. Te online course had a much smaller number of homework assignments (four 
in the online and 12 in the face-to-face), but each of these assignments was more extensive. 
Tis adaptation was due mainly to the course being ofered in the summer rather than due 
to being ofered online. 

1.4 TECHNICAL ISSUES 
1.4.1 Creating the Lectures 

In a typical mathematics lecture, the material includes not only theorems, proofs, and 
their applications, but is typically supplemented by worked examples. In an ideal class-
room lecture the instructors narrate the steps along with their writing on the board. Tis 
style of presentation can be challenging to adapt to online environments. All three classes 
discussed here used technology to create video-based lectures. Tese video-based lectures 
combined worked proofs and problems with an audio narration of the steps in the process. 

For two of the courses (Groups and Geometry, and Mathematical Modeling), Montana 
Tech’s Smart Classrooms were used (see Figure 1.1). 

Tese smart classrooms allowed instructors to record their lectures, both the active 
whiteboard and the audio/video accompaniment. As the lectures are recorded without 
requiring technical support staf, instructors were able to record the lectures at their con-
venience. Once a recording was completed to the satisfaction of the instructor, the links for 
these pre-recorded lectures and lecture notes were made available for registered students 
on the LMS. Tis allowed the students in the course to attend the lectures asynchronously. 

For the Advanced Linear Algebra course, pencasts were created using a platform called 
Explain Everything [6]. A pencast is a video that combines handwritten notes with audio. 



          

  

 

   

 

Teaching Cross-Listed Mathematics Courses Online ◾ 11 

Te lecture slides for the pencast (created in LaTex) included important defnitions, exam-
ple problems, and diagrams. Te PDF of the slides was then imported into the Explain 
Everything iPad app. Te instructor could then write on the slides using an Apple Pencil 
and record audio narration. Unlike other pencast sofware, Explain Everything allowed 
the pencast for each slide to be recorded separately. Afer the pencasts for all of the slides 
were recorded, the entire set was exported as a single video. Afer the course had begun 
the instructor discovered that many of the graduate students needed more detailed review 
of prerequisite concepts during the lectures. Because of the features of Explain Everything 
the instructor could insert additional examples into the lectures without having to splice 
together additional video fles. 

1.4.2 Online Interactions with Students 

In the face-to-face courses, the instructors primarily used the LMS to communicate infor-
mation to students between class meetings and to share fles with students. Student home-
work questions were typically addressed either during class meetings or during face-to-face 
ofce hours. With our online students we all had to fnd a way to address student miscon-
ceptions and questions at a distance. In online mathematics courses the heavily symbolic 
notation and necessity of pictures create a barrier to efcient and efective communication 
with students. We used several diferent tools to communicate with students in our online 
courses. Te tools fell into two generic types: asynchronous and synchronous tools. 

1.4.2.1 Asynchronous Tools 
In all three courses, students would submit pictures or PDF scans of work on the assigned 
problems by email or through the LMS and ask for feedback. Many of the assigned prac-
tice problems required several pages of written work to complete. Using this method, it 
was possible for the instructor to locate arithmetic or process errors in a student’s written 
work and respond. Tis type of feedback helped students to understand their mistakes and 
misconceptions. It also made it possible for a student to show the instructor partial work 
on a problem and to ask a question concerning how to proceed. One instructor used an 
iPad app to mark up the student’s written work. Te other two used Wacom tablets [7] to 
mark-up student work. Once the written work was marked, it was returned to the student 
by email or via the LMS. 

Te Advanced Linear Algebra course also used an additional method of asynchronous 
communication: an online text-based discussion tool called Piazza [8]. In Piazza, students 
asked questions not only of the instructor, but also of other students in the course. One 
of the primary benefts of Piazza over the discussion board in the LMS was the ability of 
students to post questions anonymously. Tis feature allowed students to ask questions 
without any risk of embarrassment. Te second feature that made Piazza more desirable 
than the built-in discussion board in the LMS was the ability to use a LaTex-based equation 
editor to add symbols to the post. Te LMS did not include the option of adding equations 
and symbols to discussion posts. During the course, a small number of students posed 
questions to the class. Primarily the students used Piazza to ask questions of the instruc-
tor. Tis was likely due to the small size of the course. In a larger course, Piazza might have 
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been used for student-to-student interactions more frequently. Most of the questions were 
either on prerequisite material or on SAGE. Students in the course mostly used online 
ofce hours or email to ask questions concerning material. 

1.4.2.2 Synchronous Tools: Offce Hours 
Te instructors of Groups and Geometry and Mathematical Modeling used the online 
platform WizIQ [3] to ofer virtual ofce hours. It was also used for the weekly discus-
sion sessions for Mathematical Modeling, which were recorded and posted for students 
who missed the live session. Tis platform allowed students to log in remotely and engage 
in a face-to-face discussion with the instructor. WizIQ included an onscreen whiteboard 
which not only the instructor could use, but (with the instructor’s permission) the students 
could use also. Wacom tablets [7] were used by the instructors for these two courses during 
online ofce hours. Tese tablets, when connected to the instructor’s computers, worked 
as de-facto extended whiteboards which the instructors could use to communicate with 
the students. 

In Advanced Linear Algebra, the synchronous interactions occurred via the videocon-
ferencing tool Zoom [9]. During a session on Zoom, the instructor and students could 
share screens with one another or write on a whiteboard (see Figure 1.2). 

Te sessions could also be recorded and posted to the LMS for students who were not 
able to attend. Zoom was used primarily to host online ofce hours each week. During 
these online ofce hours, students could ask questions of the instructor in real-time. 
Student questions in the online ofce hours were similar to those asked in face-to-face 
ofce hours. Students asked the instructor to work additional examples, discuss graded 
work, and answer questions about assignments. In addition to the scheduled ofce hours, 
which were open to all students in the course, students were able to schedule one-on-one 
ofce hours with the instructor as well. 

1.4.3 Assessment 

One of the primary challenges faced in all three online courses was adapting assessments 
for online students. All three courses had previously used face- to-face exams as one way to 

FIGURE 1.2 Screenshot from an online ofce hour. 
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assess student mastery of learning objectives. Proctoring exams for online students posed 
a signifcant challenge. 

In Groups and Geometry, multiple students took the course from out of state, and two 
students from out of the country. Te course grade was calculated using homework assign-
ments and exams. To make the assessment fair, the exams (both midterm and fnal) had 
a substantial oral part. Each student had an individual assigned time to take a face-to-
face oral exam over WizIQ [3] with the instructor, where the student could answer the 
instructor’s questions using the whiteboard on WizIQ. Tis oral component was efective 
in assessing the student’s understanding of the material. 

All assignments for Mathematical Modeling, except the quizzes, were posted at the 
beginning of each module. Each quiz was posted at 8:00 am on the fnal day of each mod-
ule and was due by 5:00 pm on that same day. For all assignments, students had the option 
to type or write solutions by hand. Most students chose to write by hand because of the 
time required to type equations. When students worked problems by hand, they could 
either scan or take a picture of their work. Students were required to upload their work 
to the LMS. Te instructor used a Wacom to write comments on the student documents, 
which were posted back to the students through the LMS gradebook. 

In Advanced Linear Algebra, all of the students completed weekly home- work assign-
ments. Te undergraduate students took a midterm and fnal examination. Te instruc-
tor had planned to arrange proctors for any under- graduate students who were not able 
to physically travel to the university. However, all of the students enrolled in the course 
that summer were able to come to the campus to take the exams. Te graduate students 
were assigned weekly projects. Te graduate students chose one of the projects for the fnal 
exam. Each graduate student scheduled an individual online meeting with the instructor 
during the last week of the course. At this online meeting, the instructor conducted an oral 
examination of the student. Tis oral examination counted as the fnal exam in the course. 
Te oral component was efective in assessing the understanding of the graduate students 
in the course. 

1.4.4 Ensuring Rigor 

One of the challenges faced in adapting all of the courses to the online environment was 
ensuring that the rigor of the original course was not diluted. All three face-to-face courses 
had closed-book proctored assessments. In an online environment, students have access to 
material that would not be allowed in a face-to-face examination. While it was not possible 
to give the same types of assessments in the online environment, we wanted to ensure that 
the rigor of the course was preserved. In order to ensure rigor, we took several diferent 
approaches. One approach was to set a strict time limit for online assessments. 

Tis strict time limit ensures that students cannot get too much help from outside 
sources. A strong mastery of the subject matter helps students to complete the assignment 
within the time limit. In some cases, we gave our online students more challenging and 
less routine problems than we would have given in a face-to-face examination or quiz. Two 
of us also gave oral examinations in order to ensure that the online students had a strong 
mastery of the course content. Te Modeling online course placed a stronger emphasis on 
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projects and less emphasis on quizzes and exams compared to the face-to- face course. By 
assigning more in-depth projects, rigor could be maintained while focusing on assign-
ments that allow the use of outside resources. 

1.5 CONCLUSIONS 
Tis chapter discusses some of the unique challenges faced by the authors in teaching three 
online cross-listed courses. Te three courses discussed were from a wide cross-section of 
mathematics. While there are obvious diferences between the course structures, instruc-
tion techniques, and evaluation methods of each course, there are noticeable similarities 
also. Te three instructors all faced similar issues while designing the courses. One such 
issue is the cross-listed nature of the courses, where the basic material had to be presented 
at a level suitable for the entire group, and at the same time more advanced material had 
to be presented to the graduate students. One other recurrent theme that all three instruc-
tors faced was the challenge of adapting material from a traditional classroom to online 
delivery, where the theoretical material presented in the lectures had to mesh seamlessly 
with the various sofware used. A third common issue in all three courses was the careful 
choice of assessment methods. New assessment methods were designed to be efective for 
online delivery, and additional assessment materials were created for the graduate students 
in each course. All three instructors also needed to determine an appropriate balance of 
synchronous and asynchronous learning, and to select efective platforms for both types of 
learning. Tese platforms were selected to facilitate online learning and to allow for some 
shared and some diferent materials for the undergraduate and graduate students. 

What comes out from the common experience of teaching these three classes are some 
of the recurring issues instructors need to consider when designing a course that is both 
online and cross-listed. 

1. How will the course content need to be adapted for online students? For all three of 
our courses, the online students ofen had diferent mathematical preparation, access 
to campus, and time constraints than the students typically served by the face-to-
face course. Many of our online students were not taking courses full time at our 
university. Not all of the students had access to university computer labs or campus 
resources like face-to-face ofce hours. In addition, some of our online students were 
working full-time while taking the course. Tis meant that we had ofer online help 
in the evenings as well as during the day. We had to consider how to meet the needs 
of students that were diferent from those served in our face-to-face courses. 

2. What technology will be needed by the students and the instructor? In all three 
courses, the instructors had to fnd technology that would allow both the creation 
of asynchronous lectures and the synchronous interactions with students. We used 
a variety of technologies including Smart Classrooms, tablets, and sofware. We also 
used diferent types of technology to create lectures than we used to interact synchro-
nously with students. In synchronous interactions, it was very valuable to have some 
sort of virtual whiteboard that both students and the instructor could write on. In 
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the asynchronous lectures, either a physical or virtual whiteboard would work. It was 
also necessary to determine what technology students would be able to access from 
of campus. Te instructors for all of the courses relied on freely available sofware 
like Geogebra and SAGE or common ofce sofware instead of the specialized sof-
ware used in the face-to-face course. 

3. How will students be assessed at a distance? In all three courses, instructors modi-
fed some or all of the assessment methods for the course. Typical proctored exams 
were ofen impractical. Instead all of the instructors used other means like projects 
or online oral examinations to measure student learning. Te instructors also had to 
consider what types of assessments would be appropriate for graduate students versus 
undergraduate students. 

4. What support will students need? In all three courses, the instructors had synchro-
nous online meetings for students to ask questions and get help. As the distance stu-
dents did not have access to on-campus support like tutoring services, the instructor 
for each course had to provide regular and extensive individual assistance on course 
material. Even though the lectures were provided asynchronously, all of the instruc-
tors provided opportunities for students to ask questions synchronously. Te stu-
dents appreciated these online ofce hours and help sessions immensely. 

In conclusion, online cross-listed mathematics courses can be quite successful in today’s 
learning environments as such courses ofer students greater fexibility and allow the 
course to be ofered to a substantially larger audience—as compared to traditional face-to-
face courses. However to make such a course successful involves considerable efort and 
involvement of the instructor in terms of course design, preparation of online lectures, use 
of appropriate and conveniently available sofware, use of suitable assessment techniques, 
and willingness to be available for extensive (and ofen individual) virtual ofce hours. 
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In this chapter I summarize the literature about university students’ learning from 
online mathematics homework and use it to inform a list of considerations for instructors 

utilizing online mathematics homework systems in their courses. Te chapter is aimed both 
at researchers and practitioners. Sections 2.1–2.4 are a literature review that will probably be 
primarily of interest to researchers; Section 2.5 is a list of research-based practices aimed at 
instructors looking to use online homework platforms more efcaciously. 

Educators largely agree that homework plays an important role in students’ learning of 
mathematics. Further, research fndings indicate that university calculus I students spend 
more time doing homework than they do in class (Ellis, Hanson, Nuñez, & Rasmussen, 
2015; Krause & Putnam, 2016). As such, homework accounts for the majority of students’ 
interaction with mathematics content. It follows that the choices instructors make regard-
ing homework can greatly afect student learning. Tese choices include selecting prob-
lems, deciding which problems (if any) will be graded, determining the type of feedback 
provided in grading, selecting due dates, and so on. Te increasing availability of online 
homework platforms presents instructors with another important decision: whether to 
assign online homework, traditional paper-and-pencil homework, or a combination of the 
two. Once an instructor has chosen to use an online platform for all or part of the course 
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homework, there are more decisions to make within the online homework platform. How 
many attempts per problem will students have? Must students submit an entire question 
at once, or can they submit each part of a multi-part question individually? Should “see 
similar example”-type features be enabled? 

Te body of education research about online mathematics homework can help instruc-
tors make evidence-based decisions about homework in their courses. To that end, in this 
chapter I summarize the literature about student learning from online mathematics home-
work and provide a list of implications for instruction. For the purposes of this chapter, 
online homework refers to homework students access online and submit answers to online. 
In online homework (for the purposes of this chapter), students receive feedback imme-
diately afer submission. “Afer submission” may difer by platform and instructor choice; 
students might have to submit a whole assignment at once,* or might be able to submit 
each question (or part of a question) individually. Examples of online homework platforms 
include WeBWorK, WebAssign, and MyMathLab. Paper-and-pencil homework refers to 
homework students submit on paper; typically this homework would be a subset of prob-
lems from a textbook. 

In Sections 2.1–2.4 of the chapter, I review the literature about online homework and 
student achievement, students’ perceptions of online homework, and what we know about 
how students engage with online homework systems. Tese emerged as the main themes in 
the set of studies reviewed.†,‡ In Section 2.5, I list evidence-based practices for instructors 
to consider when utilizing online mathematics homework systems in their courses. In the 
fnal section, I provide concluding remarks and suggestions for future research. 

2.1 ONLINE HOMEWORK AND STUDENT ACHIEVEMENT 
A key question about online homework is how it compares to paper-and-pencil homework 
in terms of student achievement. Researchers have focused on such comparisons because 
while online homework benefts instructors (e.g., decreased grading time), it might not be 
worthwhile if it negatively impacts students’ grades. Hence much research has focused on 
comparing online homework to paper-and-pencil homework. Researchers generally agree 
that online homework is at least as efective as paper-and-pencil homework in terms of 
student achievement (e.g., Babaali & Gonzalez, 2015; Burch & Kuo, 2010; Hauk et al. 2015; 
Halcrow & Dunnigan, 2012; Hauk & Segalla, 2005; Hirsch & Weibel, 2003; LaRose, 2010; 
Lunsford & Pendergrass, 2016; Lenz, 2010; Weibel & Hirsch, 2002; Zerr, 2007). Researchers 

* Some authors use the phrase “online quizzes” to describe out-of-class, online assignments to which students submit all 
answers at once, receive immediate feedback, and can re-take multiple times over a period of several days (e.g., Suzuki, 
2003). Tis defnition of “online quiz” fts my defnition of “online homework,” and I use the phrase “online homework” 
throughout the chapter. 

† Te body of literature reviewed includes educational research about online mathematics homework at the undergradu-
ate level published since 1996. I chose 1996 as the cutof date because WeBWorK, one of the frst online homework 
systems, was introduced in this year. In all research reviewed for the chapter, students attended class in person. I did not 
fnd any studies about online homework for mathematics courses that are entirely online; this could be an area for future 
research. 

‡ Several studies reviewed contained fndings about how online homework changes teaching. Tese fndings fall out-
side of the scope of this chapter. Readers are encouraged to see Hauk and Segalla (2005) and LaRose (2010) for more 
information. 
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have investigated relationships between homework and student success by considering 
exam scores, course grades, homework completion rates, and homework grades. I synthe-
size these fndings below.* 

2.1.1 Exam Scores 

Many studies have compared students’ exam scores across sections with diferent home-
work formats. By format I mean whether homework is done online, with paper and pencil, 
or a combination of the two. Exam scores refers to preliminary exams, fnal exams, or pre-/ 
post-test scores, depending on the study. 

In all but one of the studies reviewed for this chapter that used exam scores as a metric, 
researchers found exam scores for students with online homework were slightly higher than 
or the same as the scores for students with paper-and-pencil homework (Hauk, Powers, & 
Segalla, 2015; Hauk & Segalla, 2005; Halcrow & Dunnigan, 2012; Hirsch & Weibel, 2003; 
Lenz, 2010; Mathai & Olsen, 2013; Weibel & Hirsch, 2002; Zerr, 2007). Only Lenz (2010) 
found the opposite result. Lenz (2010) found that students with paper-and-pencil home-
work had a higher mean exam score than students with both paper-and-pencil and online 
homework. 

Hirsch and Weibel (2003) found that students with online homework and paper-and-
pencil homework scored signifcantly higher on the fnal exam than students with just 
paper-and-pencil homework (p < 0.05). Te researchers divided calculus students into a 
control group (n = 296) and an experimental group (n = 715). Both groups were assigned 
the same number of homework problems. Te control group was assigned paper-and-pen-
cil homework. Te experimental group was assigned roughly 11 problems per week on 
WeBWorK and the remaining problems as paper-and-pencil homework. Students in the 
experimental group scored an average of 4% higher on the fnal exam than students in the 
control group. While this result indicates a small increase in exam scores between groups, 
it is statistically signifcant at the α=0.05 level when the researchers controlled for place-
ment score (a measure of students’ incoming skill level). 

Other studies have found statistically signifcant diferences between homework for-
mats for some, but not all, course exams (Halcrow & Dunnigan, 2012; LaRose, 2010). Tese 
fndings support the conclusion that online homework has either no efect or a slight posi-
tive efect on students’ exam scores (as compared to other formats). Halcrow and Dunnigan 
(2012) compared exam grades for four calculus I sections. Tere were two instructors, each 
who taught one section with online homework and one section with paper-and-pencil 
homework. One instructor’s online section scored signifcantly higher than the paper-
and-pencil section on two of three preliminary (non-fnal) exams and the fnal exam (p 
< 0.10). Statistical tests could not be performed on one exam due to skewness in the data. 
Te other instructor’s online section scored signifcantly higher than the paper-and-pencil 
group on one of four exams (p < 0.10) and had no signifcant diference on the fnal exam 

* When I say a p-value is signifcant, not signifcant, marginally signifcant, and so on, I follow the author’s interpretations 
of that statement. Because some authors set = 0.05 and others set = 0.10, I have provided p-values so readers can better 
compare across statistical fndings. 



          

 

 

 

Student Learning from Online Mathematics Homework ◾ 21 

(p > 0.10). In a diferent study with similar fndings, LaRose (2010) compared scores for two 
preliminary exams and one fnal exam for three groups of calculus II students. LaRose’s 
(2010) study focused on the efects of two variables: homework format and whether or 
not homework counted toward the course grade. One group (n = 225) completed paper-
and-pencil homework that did not count toward the course grade. Te second group (n = 
222) completed online homework that did not count toward the course grade. Te third 
group (n = 218) completed online homework that counted for 5% of the course grade. On 
one exam, the group with online homework that did not count toward the course grade 
scored signifcantly higher than the paper-and-pencil group (p < 0.01). On the same exam, 
the group with online homework that counted toward the course grade scored marginally 
signifcantly higher than the paper-and-pencil group (p = 0.06). In all other two-way com-
parisons, there were no signifcant diferences between groups. 

LaRose (2010) also investigated if homework format impacted students’ integration 
skills. One way he measured this was via student performance (pass rates, number of 
attempts to pass) on an “gateway” exam consisting of seven integrals. Students could take 
and re-take the exam during a two-week period; not passing resulted in their course grade 
decreasing by a third to a full letter grade per failed test. LaRose (2010) found no statis-
tically signifcant diference in the pass rates between groups with diferent homework 
formats. However, when grouping students with online homework (those with the home-
work counting toward the course grade and not counting toward the course grade) into a 
single group, students with online homework took signifcantly fewer attempts to pass the 
gateway test than students with paper-and-pencil homework.* Because the gateway test 
was composed of entirely procedural skill problems, LaRose (2010) concluded the online 
homework system may improve students’ procedural competency more than paper-and-
pencil homework does, though he cautions, “this conclusion is confounded by our use of 
the on-line homework system to administer the skills test” (LaRose, p. 678). 

Several studies found no signifcant diference in exam scores based on homework for-
mat (Hauk et al., 2015; Hauk & Segalla, 2005; Lenz, 2010, Mathai & Olsen, 2013; Zerr, 
2007). Hauk et al. (2015) gave a pre- and post-test to college algebra students, some of 
whom were enrolled in sections with WeBWorK and others who were enrolled in sec-
tions with paper-and-pencil homework. Controlling for pre-test score, a signifcant predic-
tor variable of post-test score, Hauk et al. (2015) found no signifcant diference between 
post-test scores based on homework format. Zerr (2007) compared exam scores for calcu-
lus I students with online, graded homework to exam scores for calculus I students with 
paper-and-pencil homework. Te latter group had access to the online homework, and 
the paper-and-pencil homework problems were “suggested” but not graded. Both sections 
were taught by the same instructor. Zerr (2007) found no signifcant diference in exam 
scores between the two groups (p > 0.10). Mathai and Olsen (2013) found no signifcant 
diference in exam scores between students with paper-and-pencil homework and students 

* LaRose (2010) reported the mean number of attempts for the paper-and-pencil homework group was 4.01; the mean 
number of attempts for the group with online homework that did not count toward the course grade was 3.67; and the 
mean number of attempts for the group with online homework that counted toward the course grade was 3.58. LaRose 
did not report a mean number of attempts for the combined online group. 
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with online homework. However, they did fnd signifcant diferences for sub-populations 
(see Section 2.1.3). 

Finally, Lenz (2010) found a mix of signifcant and not signifcant results. However, in 
the signifcant result in Lenz’ study, the students with paper-and-pencil homework scored 
signifcantly higher than the students with both types of homework. Lenz (2010) compared 
exam scores for students from seven sections of a fnite mathematics course, some who had 
online homework (n = 84), some who had paper-and-pencil homework (n = 56), and some 
who had a combination of the two (n = 51). Lenz (2010) found the paper-and-pencil group 
had the highest mean exam score, but it was not signifcantly diferent from the mean exam 
score for the online homework group at the α=0.05 level. Tere was also no signifcant dif-
ference between the online homework group and the group with both types of homework 
at the α=0.05 level. However, the paper-and-pencil group scored signifcantly higher than 
the group with both types of homework at the α=0.05 level. Lenz’ (2010) qualitative fnd-
ings suggested the students with both types of homework felt they had too much home-
work and consequently did less homework overall, even though students in all groups had 
the same number of problems regardless of format. Lenz (2010) found students ofen did 
either the online homework or the paper-and-pencil homework, but not both. 

In the next section, I describe fndings about homework format and course grades. 

2.1.2 Course Grades 

One study reviewed for the chapter included statistical tests involving course grade and 
homework format.* Using a covariate analysis and controlling for signifcant predictor 
variables (GPA, initial ALEKS score), Carpenter and Camp (2008) found students in an 
honors calculus I course with paper-and-pencil homework had statistically signifcantly 
higher course grades than students in the same course who had online homework. Te 
authors followed the paper-and-pencil group through calculus II (where they again had 
paper-and-pencil homework) and calculus III (where they had online homework). Tere 
was no signifcant diference between calculus I course grades (with paper-and-pencil 
homework) and calculus III course grades (with online homework) or between calculus 
II course grades (with paper-and-pencil homework) and calculus III grades (with online 
homework). Using a regression analysis, Carpenter and Camp (2008) concluded that 
homework format was not a signifcant variable in predicting course grades. 

In the next section, I explore fndings about homework format and students’ homework 
completion rates and homework grades. 

2.1.3 Homework Completion Rates and Homework Grades 

Researchers agree that students spend more time on homework and complete more home-
work when it is online (Gage, Pizer, & Roth, 2003; Hauk & Segalla, 2005; LaRose, 2010; 
Lenz, 2010). LaRose (2010) collected survey data about the time students spent on home-
work at three instances during the semester. Statistical tests on data from the frst and third 

* Lenz (2010) discusses computing a “modifed course grade” based on students’ exam grades. Because this grade included 
only exam grades, the results are included in Section 2.1.1. 
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surveys yielded statistically signifcant results, while tests on the second survey yielded a 
not-signifcant result. On the frst and third surveys, LaRose (2010) found students with 
online homework that counted toward the course grade spent more time on homework 
than students with online homework that did not count as part of the course grade (p 
= 0.03). Similarly, students with online homework that counted toward the course grade 
spent more time on homework than students with paper-and-pencil homework that did 
not count toward the course grade (p = 0.003). 

LaRose (2010) also collected survey data about the percentage of assigned homework 
students had completed within the three days prior to the survey. On all three surveys, 
students with online homework that counted toward their grade or paper-and-pencil 
homework that did not count toward the course grade completed a signifcantly higher 
percentage of homework than students with online homework that did not count toward 
their course grade (p = 0.005). Comparing the percentage of assignments that the students 
with online, counting-toward-course-grade homework completed versus the percentage of 
students with paper-and-pencil, not-counting-for-course-grade homework, LaRose (2010) 
found the online group completed marginally signifcantly more (p = 0.06) than the paper-
and-pencil group on the frst survey. Tere was no diference on the second survey and a 
signifcant diference (p = 0.04) on the third survey. Considering the statistical analysis of 
the data from the two survey questions (time spent, % of assignments completed), LaRose 
(2010) concluded, “[the results] suggest that the medium by which the homework is deliv-
ered matters less than whether it is graded” (p. 674). 

Tree other studies reviewed also found students with online homework completed 
more homework than students with paper-and-pencil homework. Hauk and Segalla (2005) 
found about 65% of college algebra students enrolled in paper-and-pencil homework 
sections turned in homework, while 78% of students enrolled in online homework sec-
tions completed the online homework. Similarly, Lenz (2010) found students with online 
homework completed a signifcantly higher percentage of assignments than students with 
paper-and-pencil homework (p < 0.01). Students with both types of homework attempted 
a higher percentage of assignments than students with paper-and-pencil assignments (p < 
0.01; Lenz, 2010). While not a comparative study, in one of the frst papers about WeBWorK 
(Gage, Pizer, & Roth, 2003), the researchers reported “we have been able to document a 
remarkable thoroughness toward full and accurate completion of homework: nearly all 
students using the system here at the University of Rochester completed virtually all of 
their homework sets until their answers are nearly 100% correct” (p. 5). 

Gage, Pizer, and Roth (2003) are not the only researchers who have observed students 
working on homework until they reach perfect or near-perfect scores. Hirsch and Weibel 
(2003) found that the correlation coefcient between number of attempted WeBWorK 
problems and percentage of problems solved was r = 0.944, “suggesting that once students 
began a problem they persisted until they had solved it” (p. 14). Similarly, a study of 27 cal-
culus students with online homework found 65% of assignments the students completed 
had a score of 90 or greater (Butler & Zerr, 2005; Zerr, 2007). Taken together, these studies 
suggest that students with online homework ofen persist until they have solved most of 
the problems correctly. 
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Like the fndings that students seem to complete more homework when it is online, 
there is a consensus in the literature that students’ homework grades tend to be higher with 
online homework. Lenz (2010) found in addition to attempting more homework assign-
ments, students with online homework had higher homework grades than students with 
paper-and-pencil homework. She notes the higher grades likely follow from the higher 
amount of attempted assignments. Multiple attempts per problem also likely contribute to 
higher homework grades; for instance, Gage, Pizer, and Roth’s (2003) students had unlim-
ited tries on each problem. Similarly, Butler and Zerr (2005) and Zerr’s (2005) fndings 
discussed above indicate students had high homework averages. Butler and Zerr (2005) 
commented, “if students were not learning from their mistakes and retaking the assign-
ments, it is likely that the grades would appear more normally distributed” (p. 56). 

Mathai and Olsen (2013) compared the efcacy of online homework for students with 
difering levels of arithmetic and algebra skill. Tey found that students with high arith-
metic skill and online homework had higher homework grades than students with high 
arithmetic skill and paper-and-pencil homework (p = 0.06). Similarly, students with high 
algebra skill and online homework had higher homework scores than students with high 
algebra skills and paper-and-pencil homework (p = 0.01). Te researchers note students 
with online homework had unlimited attempts per problem, which may have contributed 
to their higher grades. Similarly, students with higher skill levels in the online group were 
more likely to complete their homework than students with higher skill level in the paper 
homework group, and so students in the online homework group may have had higher 
grades because they completed more homework overall. Mathai and Olsen (2013) found 
no diference in homework scores based on homework format for the low-skilled groups, 
and students with low skill level and online homework were less likely to complete their 
homework than students with low skill level and paper-and-pencil homework. Tese fnd-
ings support Mathai and Olsen’s (2013) claim that students with higher skill levels beneft 
more from online homework than students with low skill levels. 

In the next section, I review fndings about how students’ homework grades relate to 
their exam grades. 

2.1.4 Homework Grades and Exam Grades 

Two studies investigated possible correlations between homework grades and exam grades. 
Hirsch and Weibel (2003) found a two-letter grade diference (on average, a D to B) between 
students who had done at least 80% of the WeBWorK and students who had done less than 
50% of it. Zerr (2007) divided students with online homework into two groups, those who 
had fewer than 17 perfect homework scores (of 26 possible perfect scores) and those who 
had 17 or more perfect scores. Choosing 17 as a cutof kept the group sizes roughly equal to 
allow for statistical comparisons. Te exam scores for the students with 17 or more perfect 
scores were signifcantly higher than the exam scores for students with fewer than 17 per-
fect scores (p < 0.01). Te two groups had similar Math ACT scores, making it unlikely that 
prior mathematical ability explained the diference in scores. Rather, both Zerr’s (2007) 
and Hirsch and Weibel’s (2003) fndings suggest students who do more homework are 
likely to do better on exams than students who do less homework. 
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For the most part, the fndings I have discussed so far are based on data from all stu-
dents in the researchers’ studies. In the next section, I describe fndings about various 
subpopulations of students. 

2.1.5 Findings about Online Homework for Various Sub-Populations 

Some researchers have sought to investigate if the benefts of online homework difer for 
various sub-populations. Mathai and Olsen (2013) explored the relationships between 
students’ arithmetic skill, algebra skills, homework format, and exam scores. Weibel and 
Hirsch (2002) and Zerr (2007) investigated relationships between homework completion 
rates and students’ class standing. Hauk et al. (2015) sought to determine if there were dif-
ferences in achievement among students of diferent ethnicities and genders. 

Mathai and Olsen (2013) investigated whether the benefts that college algebra students 
received from online homework depended on their incoming arithmetic and algebra skills 
(as measured by a departmental placement exam). An analysis of variance indicated that 
online homework was more benefcial for the students with higher arithmetic skills, while 
students with lower arithmetic skills benefted more from paper-and-pencil homework. 
Mathai and Olsen (2013) found students with higher arithmetic skills and online homework 
(n = 15) scored signifcantly higher on the fnal exam than students with lower arithmetic 
skills and online homework (n = 26). In looking at the efects of students’ incoming algebra 
skill, the researchers found no signifcant interaction efects between homework format and 
algebra skill level. Mathai and Olsen (2013) noted “even though the interaction efect was not 
signifcant, the students with low algebra skills did better with paper homework while stu-
dents with better algebra skills performed better with online homework” (p. 678). Overall, 
the researchers found no statistically signifcant diference (p = 0.28) on the fnal exam score 
between a section of college algebra students with online homework (n = 48) and students 
with paper homework (n = 29). However, the fnding that students with higher incoming 
algebra and arithmetic skills beneft more from online homework than students with lower 
incoming skill level is a good argument for including both types of homework in a course. 

Other researchers have found that homework completion rate varies with population. 
First-year calculus students tend to attempt nearly every problem (Weibel & Hirsch, 2002) 
and have higher homework scores than students who have completed at least one semester 
(Zerr, 2007). Students repeating calculus attempt about a third of the problems (Wiebel & 
Hirsch, 2002). 

Hauk et al. (2015) measured efects of homework format by statistically comparing stu-
dents’ pre- and post-test scores on a test of college algebra content. Controlling for previous 
mathematics achievement, their analysis of covariance found no signifcant diference in 
performance or achievement gain for students of diferent ethnicities or genders (p > 0.10). 
Te authors concluded, “it seems that whatever may be culturally biased in the structure or 
process of college algebra, the use of web-based homework does not appear to signifcantly 
exacerbate or diminish it” (p. 74). 

While statistics are useful in making decisions about homework systems, student per-
ceptions matter as well. In the next section, I turn to literature about student perceptions 
of online homework. 
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2.2 STUDENTS’ PERCEPTIONS OF ONLINE HOMEWORK 
Researchers have found that student perceptions of pedagogy infuence their attitudes about 
mathematics and their decisions to take future math courses (Ellis, Kelton, & Rasmussen, 
2014; Sonnert, Sadler, Sadler, & Bressoud, 2014). Given students spend more time doing 
mathematics homework than they do in class (Ellis et al., 2015; Krause & Putnam, 2016), 
it is likely students’ experiences with homework also infuence their attitudes about math-
ematics and their decisions to take future math courses. Hence instructors should attend 
not only to statistics about achievement, but also to qualitative and quantitative data about 
what students fnd helpful for their learning. Research fndings about student perceptions 
of online homework can help us make decisions about online homework systems so that 
these platforms contribute to positive course experiences for students. 

In this section, I review literature about online homework and students’ beliefs about 
mathematics, what students like about online homework, and what students dislike about 
online homework. 

2.2.1 Online Homework and Students’ Beliefs about Learning 
Mathematics and the Nature of Mathematics 

Hauk and Segalla (2005) investigated if online homework infuenced college algebra stu-
dents’ beliefs about mathematics. Overall, they found students who “evidenced expert-like 
views of mathematics learning as a complex and personal process of building conceptual 
understanding appeared to view WeBWorK as a tool that helped or hindered that process” 
while students who had a “novice-like view of mathematics learning as a disconnected col-
lection of formulae and ‘plug-and-chug’ strategies appeared to view WeBWorK as either 
helping or hindering their procedural approach” (p. 16). Tat is, the online homework 
system did not seem to change students’ views about the nature of mathematics. 

Hauk and Segalla (2005) cited Spangler’s (1992) summary of beliefs college students 
ofen hold about mathematics and mathematics learning: 

(1) mathematics is computation that does not involve refection during task engage-
ment; (2) mathematics must be done quickly, or, spending time is a more important 
task goal than sense-making; (3) mathematics problems have one right answer and 
no further action or evaluation is required once an answer is found; and (4) the 
teacher is the agent of mathematical learning, not the student (i.e., only intentional 
acts on the part of the teacher lead to learning, no intentionality on the part of the 
student is necessary. 

(Spangler, 1992 as cited in Hauk & Segalla, 2005) 

Related to belief 1, Hauk and Segalla (2005) found that some students who viewed math-
ematics as more procedural felt they were not “doing math” in the online homework 
platform because they could input answers like x = (7 – 1)/3 and the computer would do 
the arithmetic. Related to belief 2, Hauk and Segalla’s (2005) subjects commented “math 
homework shouldn’t take so long” (p. 18). Te opportunity to attempt problems multiple 
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times contributed to these students’ complaints that the homework took “too long.” Tis 
fnding has important implications for future research (see Section 2.5). 

Related to belief 3, 11% of Hauk and Segalla’s (2005) students expressed concern that the 
WeBWorK problems could have more than one right answer. Te researchers noted these 
students may not have realized x = (7 – 1)/3, x = 6/3, and x = 2 were equivalent answers. 
Finally, related to belief 4, several studies have found that students express frustration with 
feedback that tells them only that an answer is incorrect, not why it is incorrect or hints 
about how to solve it (Ellis et al., 2015; Hauk & Segalla, 2005). Hauk and Segalla (2005) 
argue the desire for hints may stem from students’ belief that the teacher is the agent of 
learning. 

In the next section, I review literature about what students like about online homework. 

2.2.2 What Students Like about Online Homework 

Students tend to like doing homework online (as opposed to a paper-and-pencil format) 
and fnd it helpful for their learning (Burch & Kuo, 2010; Butler & Zerr, 2005; Ellis et al., 
2015; Gage, Pizer, & Roth, 2003; Lenz, 2010; Lunsford & Pendergrass, 2016; Raines & Clark, 
2013; Yushau & Khan, 2014, Zerr, 2007). Zerr (2007) found students with online homework 
were more likely to agree or strongly agree with the statements “the homework assignments 
in this class were helpful for learning the material” than students with paper-and-pencil 
homework (p < 0.05). Butler and Zerr (2005) found that 17 of 19 calculus students agreed 
with the statement “online homework was a worthwhile addition to this course.” In the 
same study, 82% of high school students taking a college algebra course for college credit 
agreed with the same statement, with 50% of the students saying the online homework was 
the most helpful part of the course (Butler & Zerr, 2005). Lenz (2010) found similarly high 
percentages of students who liked the online homework format. She found 87.5% of students 
who had only online homework liked having online homework, and 69.2% of students who 
had both online and paper-and-pencil homework liked having online homework. Several 
studies have found students feel online homework helped them understand the course mate-
rial better than paper-and-pencil homework (Hodge, Richardson, & York, 2009; Yushau & 
Khan, 2014) and that students feel online homework helps them understand material and 
prepare for exams (Raines & Clark, 2013; Yushau & Khan, 2014; Zerr, 2007). 

Students express feeling more motivated to complete online homework than paper-
and-pencil homework (Hodge, Richardson, & York, 2009). Tis higher motivation may 
explain fndings that students tend to complete a larger percentage of online homework 
than paper-and-pencil homework (Hauk & Segalla, 2005; Gage, Pizer, & Roth, 2003; Lenz, 
2010) and have higher homework grades on online homework (Butler & Zerr, 2005; Lenz, 
2010). Findings mentioned above about students persisting until they had solved most 
questions correctly (Butler & Zerr, 2005; Gage, Pizer, & Roth, 2003; Weibel & Hirsch, 
2002) are also evidence of high student engagement in online homework contexts. Tere 
is also a link between homework format, whether or not it is graded, and student percep-
tions. Specifcally, students with online homework that counts toward their grade are more 
likely to make positive comments about online homework than students whose homework 
(online or paper-and-pencil) does not count toward their course grade (LaRose, 2010). 
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Several studies have linked student perceptions about online homework to other vari-
ables. Leong and Alexander (2014) found students with lower and average mathematics 
achievement were more positive about online homework than higher-achieving students. 
Hauk and Segalla (2005) found student attitudes about online homework were related to 
instructors’ attitudes. Tey classifed college algebra instructors’ views about WeBWorK 
as “quite useful,” “could be useful,” and “not much use.” Surveys from students whose 
instructors felt WeBWorK was not of much use made comments like “‘useless” … ‘hated 
it’ … ‘a colossal waste of time’” (Hauk & Segalla, 2005, p. 21). Students whose instructors 
felt WeBWorK could be useful, but might not be a replacement for paper-and-pencil home-
work, made comments to the efect that the online homework was helpful but they liked 
individual feedback from the professor. Finally, students whose instructors felt WeBWorK 
was quite useful generally commented that the online homework was helpful, and “made 
suggestions for how the interface might be improved. Tese students accepted WeBWorK 
as valuable and wanted to improve their efcacy in using it, a sign of a strong intention 
to engage with mathematics in the way supported by WeBWorK” (Hauk & Segalla, 2005, 
p. 21). Tese fndings indicate that students will be most positive about online homework 
when instructors see it as a useful tool and communicate to students that they value the 
learning opportunities online homework ofers. It also seems important that instructors 
take into consideration student input about the online homework systems. 

Most students may prefer the online format (Hodge, Richardson, & York, 2009; Lenz, 
2010; Raines & Clark, 2013), but they also seem to value the individual feedback they receive 
on paper-and-pencil homework. For example, Hodge, Richardson, and York (2009) found 
that about a third of students felt online homework increased their mathematical under-
standing more than paper-and-pencil homework, but on the whole students in their study 
and in other studies expressed a preference for having both types of homework (Hodge, 
Richardson, & York, 2009; Yushau & Khan, 2014). Similarly, only 57.69% of the students 
with both types of homework in Lenz’ (2010) study indicated that they would prefer to 
take the course with only online homework. Lenz (2010) concluded, “it is possible that the 
students in the [combination online and paper-and-pencil homework] sections recognized 
the benefts of receiving individualized feedback on their traditional homework, making 
them more reluctant to choose a course with purely web-based homework” (p. 239). 

Students like features such as hints, being shown the correct solution when they sub-
mit a wrong answer, or “see a similar example” features (Burch & Kuo, 2010; Halcrow & 
Dunnigan, 2012; Lenz, 2010; Leong & Alexander, 2014; Raines & Clark, 2013; Yushau & 
Khan, 2014; Zerr, 2007). Tey also like having multiple attempts per problem (Ellis et al., 
2015; Halcrow & Dunnigan, 2012; Raines & Clark, 2013; Yushau & Khan, 2014; Zerr, 2007). 
Students like the immediate feedback online homework systems ofer (Ellis et al., 2015; 
Gage, Pizer, & Roth, 2003; Leong & Alexander, 2014; Roth, Ivanchenko & Record, 2008). In 
the next section, I describe fndings about what students dislike about online homework. 

2.2.3 What Students Dislike about Online Homework 

Many researchers have noted students’ negative feedback about online homework cen-
ters around difculties inputting answers into the programs (Ellis, Hanson, Nuñez, & 
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Rasmussen, 2015; Hauk & Segalla, 2005; Gage, Pizer, & Roth, 2003; Heenehan & Khorami, 
2016; Leong & Alexander, 2014; Roth, Ivanchenko, & Record, 2008; Yushau & Khan, 2014). 
Heenehan and Khorami (2016) found students’ attitudes about online homework were 
neutral at the start of the term and decreased over time. Te decrease was correlated with 
an increase in technological issues related to inputting answers. Te particular homework 
platform was inconsistent in the format and notation required for similar problems (e.g., 
“infnity” having to be written as INF, inf, infnity, or ∞ in diferent questions), and stu-
dents became increasingly discontent as the mathematical content became more complex 
and required more notation (Heenehan & Khorami, 2016). Other researchers have found 
that students become frustrated with online homework platforms that do not have a mar-
gin for error (Leong & Alexander, 2014). For example, Leong and Alexander (2014) noted 
that students became particularly frustrated by a problem that required them to graph 
coordinate points and marked answers wrong when the points were of by a tiny amount. 

Solutions to these difculties may lie in choosing a system that is consistent in format-
ting; one that will accept multiple forms of correct notation for infnity, intervals, and 
so on; and one that has error tolerance built into some problems. Researchers have also 
found answer-preview buttons and alerts when a student is about to submit an answer they 
have already tried decrease student frustration with online homework platforms (Roth, 
Ivanchenko, & Record, 2008). 

Aside from technological issues, students’ negative comments about online home-
work tend to be related to the feedback they receive (or lack thereof). Students may like 
the immediate feedback online homework ofers, but some express frustration that they 
receive only a red X when a problem is wrong, because it does not tell them why the answer 
is wrong (Ellis et al., 2015). Similarly, students note that a downside of online homework is 
it does not help them know what professors look for in terms of showing work, as paper-
and-pencil homework would (Lenz, 2010). 

Students also seem to want online homework to align well with the way the instructor 
teaches and poses problems. Some students in Lenz’s (2010) study commented “web home-
work teaches diferently than the teacher does, which makes it hard to follow” (Lenz, 2010, 
p. 240). Students may not feel online homework is useful if the problems are much easier 
than exam problems (LaRose, 2010). 

Finally, while the fndings above are largely logistical in nature, students also care about 
the content of a homework assignment. Ellis et al. (2015) found some students disliked 
the procedural nature of online homework and how it tended to involve “cranking out 
formulas” with few applications. Hauk and Segalla (2005) found that some students did 
not feel like they were really “doing math” in online homework because they could input 
answers that were not in their simplest forms. I return to the importance of content later 
in the chapter. 

2.3 HOW DO STUDENTS ENGAGE WITH ONLINE HOMEWORK? 
In addition to studying the efects of homework format on grades and student perceptions 
of online homework, researchers have investigated what it is that students do when they 
are doing online homework. Te body of research about how students engage with online 
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homework can help instructors make decisions about how many attempts students have 
per problem, whether or not to enable help features, and so on. While the literature about 
how students engage with online homework is not extensive, we know a little bit about how 
students reason in the context of online homework, how multiple attempts per problem 
infuence that reasoning, and the resources students employ while doing online homework 
(including how they use “see similar example” features). 

2.3.1 Multiple Attempts per Problem 

Students tend to attempt online homework problems multiple times when given the oppor-
tunity (Butler & Zerr, 2005; Dorko, 2018; Dorko, accepted; Gage, Pizer, & Roth, 2003; Hauk 
& Segalla, 2005; Hirsch & Weibel, 2003; Suzuki, 2003; Weibel & Hirsch, 2002; Zerr, 2007). 
In Suzuki’s (2003) online homework assignments, students had to submit all their answers 
at once, but could repeat the assignment as many times as they liked. Looking at the num-
ber of attempts for students who did not score a 100% on the frst try, Suzuki (2003) found 
each quiz was attempted an average of 2.3 times. Findings described above about students 
obtaining high homework grades also indicate students attempting assignments/problems 
multiple times (Butler & Zerr, 2005; Gage, Pizer, & Roth, 2002; Suzuki, 2003; Zerr, 2007). 

Students may attempt and re-attempt problems, but their reasoning is not always math-
ematical in nature (Dorko, 2018; accepted; under review; Hauk & Segalla, 2005). For exam-
ple, sometimes students guess answers (Dorko, 2018; accepted; Hauk & Segalla, 2005). In 
a study of the nature of students’ activity while doing online homework, Dorko (2018; 
accepted) found nine calculus II students’ work on online homework problems about 
sequences could be classifed as based on mathematical thinking, guessing, attending to 
didactic features (defned below), or a combination of those categories. Students in her 
study had three attempts per problem and could submit each part of a multi-part problem 
individually. Tere were no “help” features enabled. Dorko (2018; accepted) found most 
students’ answer submissions were based on some mathematical thinking (e.g., comput-
ing terms, applying L’Hopital’s Rule). However, students frequently coupled mathematical 
thinking with guessing or attending to didactic features. For example, consider the prob-
lem shown in Box 2.1,* which a study participant named Susie† completed. 

BOX 2.1 One of Susie’s homework problems (Dorko, 2018; accepted) 

Use the appropriate limit laws and theorems to determine the limit of the sequence or show 
that it diverges. (If the quantity diverges, enter DIVERGES.) 

3/nbn = n 

limn®¥ bn = ______ 

* Te text of the problem is presented exactly as it appeared to students. 
† In accordance with standard guidelines for ethical research, ‘Susie’ (and other student names later in the chapter) are 

gender-preserving pseudonyms. 
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Susie computed b2, b10, b20, and b50. She submitted the answer limn→∞bn=1 and 
explained… 

BOX 2.2 Susie’s explanation of her thinking about 
a problem (Dorko, 2018, p. 55–56) 

Susie: I think I was starting [inaudible] if it was diverging to 1 or 0. 
Interviewer: Okay, so when you typed 1 here [in the answer box] -
Susie: I was, I was thinking it was 1, but it could have also been 0 if you went down 

further… 
Interviewer: So was this, do you think this was one of those things where you like have 

three chances, so – 
Susie: Yeah. 
Interviewer: - try one and then – 
Susie: If it’s wrong try another one … cuz like just a lot of graphs converges [sic] to 0. But 

it was, like it was going to 1, like it had 1 point something, so I fgured it was 1, but 
there was also the possibility that if you went further if it was going to converge 
to 0 or not. 

Interviewer: So it sounds like you were paying attention to both number patterns like the 
1 and the experience that things go to 0 often. 

Susie: Yeah. 

Dorko (2018; accepted) characterized Susie’s reasoning in the problem as based on 
mathematical thinking (computing terms) and guessing. 

Other researchers have also found that students sometimes guess on online homework 
problems. Hauk and Segalla (2005) found that, given unlimited attempts in WeBWorK, 
some students guessed up to 35 answers. Students may guess randomly, but Dorko (2018; 
accepted) found the guesses tended to be based on students’ experience of common answers 
(e.g., Box 2.2) or based on didactic features. She defned a didactic feature as related to the 
didactic contract (Artigue, Haspekian, & Corblin-Lenfant, 2014; Brousseau, 1997), “a set of 
reciprocal obligations and mutual expectations [that is] the result of an ofen implicit nego-
tiation” (Artigue et al., 2014, p. 53). For example, the didactic contract implies that students 
expect teachers to provide opportunities to learn and teachers expect students to engage in 
those opportunities. Rosalyn, one of Dorko’s (2018) students, explained she guessed that a 
particular sequence diverged because she knew convergence and divergence were part of 
the content she was supposed to learn, and up until the problem shown in Box 2.3, all the 
sequences had converged. Rosalyn expected opportunities to learn both convergence and 
divergence (“the whole point is … you learn … a little bit of each”; Box 2.3). 

BOX 2.3 Rosalyn’s work on an online homework problem (Dorko, 2018, p. 57) 

Rosalyn: Infnity to the infnity minus 1 would be, that doesn’t make any sense. I’m going 
to enter diverges and hopefully that’s it. [Submits ‘DIVERGES’, which is correct] 
Okay, it diverged. I don’t know how to solve it, but I guessed. So – and probably 
one more of these diverges. Don’t know which one though but most likely. 

Interviewer: Why do you think probably one more diverges? 
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Rosalyn: Usually like in WebAssign like the fact that there’s four of them [problems that 
read ‘If the quantity diverges, enter DIVERGES’] I want to say like probably at least 
another one diverges … because the whole point is you know you learn like, you 
know a little bit of each. So I feel like if they have one that diverges they most likely 
will have another one diverges. 

In summary, providing students multiple attempts per question results in students 
both engaging in mathematical work and in guessing (Dorko, 2018; accepted; Hauk 
& Segalla, 2005). Guesses may be random but are also frequently related to students’ 
experience with common answers or their expectations of an assignment (Dorko, 2018; 
accepted). 

Te number of attempts students have for a problem infuences how students work on 
the assignment. For example, Dorko (2018; accepted) observed that students were willing 
to guess or make a guess coupled with mathematical thinking on their frst attempt because 
they knew they had two more tries (e.g., Box 2.2). Similarly, students in Dorko’s (2018; 
accepted) study could submit each part of a multi-part question individually. Dorko (2018; 
accepted) found that this structured student work. Students ofen submitted one part of 
a question and used the feedback of whether the answer was right or wrong as formative 
assessment. In contrast to guessing, this provides evidence of students taking advantage of 
the afordances of an online homework system. 

2.3.2 Resources 

We know a little bit about the resources students use to complete online homework. In a 
survey of calculus I students, Krause and Putnam (2016) found students commonly used 
class notes, “see similar example” features, online calculators, YouTube videos, and infor-
mational websites. 

Te vast majority of students use help features like “see a similar example” if such fea-
tures are available to them (Dorko, under review; Krause & Putnamn, 2016; Raines & 
Clark, 2013). Raines and Clark (2013) surveyed college algebra students about their use of 
MyMathLab’s “view a similar example” and “help me solve this” features and found 83.1% 
of students used these tutorial learning aids. Krause and Putnam (2016) found over 75% of 
students said they used a “see similar example feature” ofen or always while completing 
homework. Krause and Putnam (2016) describe, 

[we] observed students using this feature on many problems; this is ofen the frst 
source that students turn to when they are stuck. Sometimes students look at the 
similar example immediately afer they read the problem, other times they look at 
the example afer they have attempted the problem and have submitted an incor-
rect answer, but students almost always turn to this resource frst when they are 
not able to complete the problem on their own … informal conversations with the 
students match the observed behavior in that it appears as though the primary goal 
is to determine similarities in the structure of the problem to try to fgure out how 
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the numbers in the example can be manipulated to yield the answer to the problem 
at hand. 

(p. 273) 

Dorko (under review) found similar themes in students’ use of the “practice another ver-
sion” (PAV) feature in WebAssign. She found students opened the PAV feature to see the 
steps for solving a problem, obtain a template to solve the problem, make sense of a solution 
method, troubleshoot if they had answered a problem incorrectly, check that their method 
was on the right track, obtain extra practice, and to maximize their score. 

In terms of other resources, Krause and Putnam (2016) found students used online cal-
culators both to troubleshoot errors and to circumvent a problem. When troubleshoot-
ing, students would use an online calculator afer having submitted an incorrect answer 
to identify where they made a mistake. When circumventing a problem, students would 
type a question directly into the calculator before attempting it on their own. Krause and 
Putnam (2016) also found students looked at instructional websites and online forums 
when doing online homework. Krause and Putnam (2016) noted how diferent wording 
of web searches lead to diferent learning opportunities. For example, they described how 
one student searched “how do you fnd a second derivative?” and obtained information 
that allowed her to work through her own problem, while another student typed the exact 
wording of a problem into a search engine and found a page with a full solution. Tis 
student read the solution, then copy-and-pasted the answer into her homework platform. 
An implication of this fnding is that instructors might tell students to search more gener-
ally (e.g., “how do you fnd a second derivative?”) if they need help, rather than searching 
problems word-for-word. 

2.4 THE IMPORTANCE OF HOMEWORK CONTENT 
Te fndings from the literature suggest that online homework and paper-and-pencil 
homework have about the same efect on students’ course grades. Both formats have ben-
efts to students, but it is critical that concerns about format not usurp what is most impor-
tant: homework content. 

Ellis et al. (2015) found that one factor that distinguished more successful university 
calculus programs from less successful calculus programs was their homework systems. 
More successful programs were more likely to have an online component to their home-
work (sometimes with a written component), but they were also more likely to assign more 
novel or complex problems than less successful calculus programs. Students at universities 
with more successful programs were also asked to explain their thinking more ofen than 
students at universities with less successful programs. Instructors should keep in mind 
that online homework does not always provide opportunities for students to explain their 
thinking, and hence this opportunity might be important to include in written homework. 

White and Mesa (2014) studied the cognitive orientation of calculus tasks across vari-
ous types of coursework (homework, worksheets, quizzes, exams) for fve diferent instruc-
tors at a two-year university. Tey classifed each task as a simple procedure, a complex 
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procedure, or a rich task, and found variation in the cognitive orientation percentages for 
homework by instructor. Te variation provides evidence that even when instructors use the 
same textbook, students in diferent sections may have diferent opportunities to learn from 
homework. Relatedly, Dorko (2019) studied whether nine calculus II students achieved two 
instructors’ attended learning outcomes from a set of homework problems about sequences. 
She found that students met instructors’ goals of obtaining practice with operations (e.g., 
factorials), notation, and procedures. However, students largely missed goals more concep-
tual in nature, such as realizing there are multiple ways to defne a given sequence. 

One implication for instruction from Ellis et al. (2015), White and Mesa’s (2014), and 
Dorko’s (2019) fndings is that instructors think about the cognitive orientation of the set 
of tasks they assign in homework in any one given assignment and over the entirety of 
the term. While White and Mesa’s (2014) study did not link percentage of tasks at various 
cognitive orientations to student outcomes, Ellis et al. (2015) found successful calculus 
programs assign novel, complex tasks at a higher rate than less successful calculus pro-
grams. Tis fnding suggests that instructors should aim to provide students opportunities 
to work on rich tasks. A review of literature about such tasks and their efects on student 
learning is outside of the scope of this chapter; interested readers should see Ellis et al. 
(2015) to learn more. 

2.5 RESEARCH-BASED, EFFECTIVE PRACTICES FOR 
UTILIZING ONLINE HOMEWORK 

An important goal of research is to inform practice. In this section, I synthesize the research 
fndings into a list of considerations for instructors making decisions about the homework 
structures employed in their classes. 

2.5.1 Instructors’ Attitudes Infuence Students’ Attitudes 

Hauk and Segalla (2005) found that when instructors were positive about online home-
work as a tool for learning, students were similarly positive. Te opposite was also true: 
students whose instructors did not think online homework was useful tended to mirror 
that opinion. Similarly, Halcrow and Dunnigan (2012) found that when two instructors’ 
online homework systems experienced technical issues, one instructor remained positive 
while the other became increasingly negative about the system. Te students with online 
homework whose instructor retained a positive attitude scored signifcantly higher on most 
of the course exams than the students with paper-and-pencil homework (taught by the 
same instructor). Tere was no signifcant diference between groups for students whose 
instructor became increasingly negative in the face of technological issues. Tese fndings 
suggest that instructors should be careful regarding their comments about any particular 
homework format or system, as it may infuence students’ attitudes and achievement. 

2.5.2 Online Homework Has the Same Effects on Student Achievement, or Increases 
Achievement Slightly, as Compared to Paper-and-Pencil Homework 

Researchers generally agree that online homework is at least as efective as paper-and-
pencil homework in terms of student achievement (e.g., Babaali & Gonzalez, 2015; Burch 
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& Kuo, 2010; Hauk et al. 2015; Halcrow & Dunnigan, 2012; Hauk & Segalla, 2005; Hirsch 
& Weibel, 2003; LaRose, 2010; Lunsford & Pendergrass, 2016; Lenz, 2010; Weibel & Hirsch, 
2002; Zerr, 2007). Tis means instructors can likely assign online homework for all or part 
of the homework in their courses without hurting students’ grades. However, having all of 
a course’s homework be online may be contraindicated (see Section 2.4). 

2.5.3 Students Complete Online Homework at Higher Rates 
Than They Complete Paper-and-Pencil Homework 

Research fndings indicate that students complete online homework at higher rates than 
they complete paper-and-pencil homework (Gage, Pizer, & Roth, 2003; Hauk & Segalla, 
2005; LaRose, 2010; Lenz, 2010). Tis may vary by population; one study found frst-year 
calculus students are likely to attempt every problem, while students repeating calculus 
attempted less than a third of the problems (Wiebel & Hirsch, 2002). Tese results suggest 
that if it is important to an instructor that students do the homework, then including an 
online homework component is likely to result in a higher percentage of completed home-
work than would paper-and-pencil homework. 

2.5.4 Students Like Having Both Online and Paper-and-Pencil Homework, 
and Aspects of Both May Be Important for Student Success 

In a nation-wide study of college calculus programs, Ellis et al. (2015) found that institu-
tions with more successful calculus programs (as measured by “students retain[ing] conf-
dence, enjoyment, and interest in mathematics more than comparable universities involved 
in the [study]”; Ellis et al., 2015, p. 2) were signifcantly more likely to assign online home-
work than less successful calculus programs (p ≤0.001). Tis fnding suggests that online 
homework may play a role in student success. Students seem to prefer online homework to 
paper-and-pencil homework, but like to have both types of homework in a course (Burch & 
Kuo, 2010; Butler & Zerr, 2005; Ellis et al., 2015; Lenz, 2010; Raines & Clark, 2013; Yushau 
& Khan, 2014; Zerr, 2007). Research fndings suggest it may be important to assign both 
online and paper-and-pencil homework. In a literature review that included research about 
paper-and-pencil homework, Ellis et al. (2015) concluded, “there are aspects of both writ-
ten and online homework that have been connected to student success” (p. 272). Tey use 
success to mean both grades and afective factors like students’ confdence. Ellis et al. (2015) 
argue that content of homework assignments and the feedback students receive are critical 
factors in successful homework systems. Findings from Ellis et al. and others that students 
value the immediate feedback from online homework and the individualized feedback on 
paper-and-pencil assignments support the practice of assigning homework in both formats. 

However, merely assigning paper-and-pencil homework is a necessary but not likely suf-
fcient condition for supporting student success. Findings suggest that students reap the most 
beneft from paper-and-pencil homework when graded and returned with comments. I draw 
this conclusion from several threads in the literature. First, students are far more likely to 
complete homework when it is graded. Second, one of the features that students seem to value 
about paper-and-pencil homework is the individual feedback. Tird, returning homework 
with helpful comments/feedback is a feature of successful calculus programs (Ellis et al., 2015). 
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Tese fndings suggest that instructors have both paper-and-pencil and online homework 
components, and that the paper-and-pencil homework be both graded and returned with 
helpful feedback (that is, feedback beyond merely correct/incorrect). See also Section 2.5. 

2.5.5 If Employing Both Online and Paper-and-Pencil 
Homework, Be Wary of the Total Workload 

Given fndings that students like online homework but also value the individualized feed-
back on paper-and-pencil homework, it might seem that the ideal solution would include 
both formats. However, Lenz’ (2010) fndings provide a cautionary tale. She found that the 
group of students with both types of homework had statistically signifcantly lower exam 
scores than students with just pencil-and-paper homework. (Contrastingly, Wiebel and 
Hirsch (2003) found students with both types of homework scored signifcantly higher on 
exams). Lenz (2010) noted of the section with both types of homework, “students seemed 
to feel that the homework burden was heavier when receiving assignments in two difer-
ent formats even though the total number of problems was unchanged. Tere were some 
students who chose only to attempt assignments in one format and not the other, and 
some who attempted only one type of assignment per class meeting” (p. 244). Tis sug-
gests that instructors should be wary of the total number of problems assigned. I inter-
pret the comment “students attempted only one type of assignment per class meeting” as 
meaning both types of homework were due on the same day. It is possible that having the 
homework types due on diferent days could mitigate the problem of students doing only 
one type. 

2.5.6 Be Intentional about Due Dates, Particularly If Employing 
Both Online and Written Homework Components 

Due dates partially structure when students work on homework. For example, Butler, 
Pyzdrowski, Goodykoontz, and Walker (2008) found “many students wait to complete a 
frst attempt of a homework quiz until either the evening before or the morning of an 
exam” (p. 134). Butler and Zerr (2005) assigned six online homework assignments, due at 
the end of the term. Students had three attempts per assignment. Students were told which 
assignments corresponded to which exam but at the exam times, many students had not 
done the homework. For example, exam 1 corresponded to homework assignments 1 and 
2. Te day of the exam, 76.5% of students had made at least one attempt on homework 1 
and 50.6% of students had made at least one attempt on homework 2. Completion percent-
ages for other assignments on the days of their corresponding exams fell in this range. 
Krause and Putnam (2016) found roughly 50% of students complete online homework a 
few days before the deadline. Tese fndings suggest that regular due dates (as opposed to 
the end of the term) may increase the percentage of homework students complete. 

Finally, Lenz (2010) found that when students had both written and online homework 
due on the same day, they tended to complete homework in one of the formats but not the 
other. Tis fnding suggests that if instructors employ both online and paper-and-pen-
cil homework, having each format due on a diferent day may increase the percentage of 
homework students complete. 
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2.5.7 Students Become Rapidly Frustrated with Online Homework Platforms That 
Make It Diffcult to Format Answers, or Are Inconsistent in Formatting 

Most of the students’ negative comments about online homework systems relate to for-
matting answers (Ellis et al., 2015; Hauk & Segalla, 2005; Heenehan & Khorami, 2016; 
Leong & Alexander, 2014; Roth, Ivanchenko, & Record, 2008; Yushau & Khan, 2014). 
Implementing features that allay these difculties increases students’ satisfaction with 
online homework (Roth, Ivanchenko, & Record, 2008). Contrastingly, if formatting dif-
fculties increase over the course of the term (say, due to increasingly sophisticated con-
tent), students’ perception of the helpfulness of online homework declines (Heenehan & 
Khorami, 2016). Hence instructors should seek online homework platforms that make 
inputting answers as easy as possible. Students seem to appreciate supports like “preview 
my answer” and warnings that they are about to submit an answer they have already tried 
(Roth, Ivanchenko, & Record, 2008). It also seems important to students that a homework 
platform accept multiple versions of the same correct answer (e.g., “infnity” and “∞”) 
and/or be consistent about how one answer should be inputted (e.g., always “infnity,” not 
sometimes “infnity” and sometimes “inf”; Heenehan & Khorami, 2016). Finally, instruc-
tors can decrease student frustration with online homework by including some error 
tolerances when reasonable, such as graphing coordinate points (Heenehan & Khorami, 
2016). 

2.5.8 Students Do More Homework When It Counts toward Their Course Grade 

Ellis et al. (2015) found that universities with successful calculus programs assigned home-
work more frequently and were more likely to collect homework than universities with less 
successful calculus programs. LaRose (2010) found that students with online homework 
that counted toward the course grade spent signifcantly more time on homework than 
(1) students with online homework that did not count toward the course grade and (2) 
students with paper-and-pencil homework that did not count toward the course grade. 
Students with online homework that counts toward their grade are more likely to make 
positive comments about online homework than students whose homework (online or 
paper-and-pencil) does not count toward their course grade (LaRose, 2010). Research fnd-
ings indicate that including homework in the course grade may support student success 
(Ellis et al., 2015; LaRose, 2010). 

Tese results suggest that if it is important to an instructor that students do the home-
work, then the homework should be part of the course grade. 

2.5.9 Offering Unlimited Attempts per Problem Is Linked to Student Persistence 
in Repeating Assignments/Problems to Obtain High Scores, and It May 
Also Increase Students’ Confdence in Their Ability to Do Math 

Researchers have found evidence that when students have unlimited attempts to re-do 
problems or assignments, they ofen take advantage of it and work on the assignments 
until they have a high grade (Butler & Zerr, 2005; Gage, Pizer, & Roth, 2003; Hirsch & 
Weibel, 2003; Zerr, 2007). Tis may increase student confdence in their ability to do math 
(Halcrow & Dunnigan, 2012). 
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One reason instructors might care that students have higher homework scores is higher 
homework grades may boost overall grades and hence lower DFW rates. Higher grades as 
a result of higher homework scores are higher grades that students have earned, and might 
prevent an instructor from needing to scale grades at the end of a term. 

2.5.10 Offering Unlimited/Multiple Attempts Is Linked Both to Students 
Employing Those Attempts to Make Sense of the Mathematics, 
and in Employing Those Attempts to Guess Answers 

When students have more than one attempt per problem, sometimes they employ the multi-
ple tries to work through the mathematics and sometimes they guess. Dorko (2018; accepted) 
found that, given three tries per problem, students engaged in both mathematical work and 
guessing as they submitted their answers. She noted guesses rarely were random. Rather, 
students ofen used their frst attempt on a problem to test an idea they thought could be 
right, but were not entirely sure of. Students explained that they did this because they knew 
they had multiple tries, and could aford to use one on a guess. Similarly, four of Hauk and 
Segalla’s (2005) students admitted to guessing “many times” (p. 18) if their frst answer was 
incorrect. Reviewing answer submissions, Hauk and Segalla (2005) found some students 
submitted up to 35 guesses. Students may guess even when they have limited, multiple tries. 

Further research is needed to determine if there is an optimal number of attempts per 
question that would minimize guessing behavior while allowing the benefts of multiple 
attempts. However, research fndings support giving students multiple attempts. For exam-
ple, Butler and Zerr’s (2005) and Zerr’s (2007) fndings that a larger percent of students had 
scores 90 or greater on homework suggest that the students were employing the multiple 
attempts to engage with the mathematics. Tat is, it seems unlikely that students achieved 
so many high scores by guessing alone. 

2.5.11 When Students Can Submit Each Part of a Question 
Individually, They Often Employ Feedback on One Part to 
Guide Their Work on the Other Parts of the Question 

Dorko (2018; accepted) found that when students can submit each part of a question 
individually, they ofen do so. Students in her study had multiple attempts per problem. 
Students explained that they submitted answers to parts individually for several reasons. 
First, submitting each part of a question individually limits the number of attempts they 
“lose” if the answer is wrong. Second, they use the feedback for the answer to one part 
as formative assessment. Tat is, if an answer to the submission to part 1 of a multi-part 
question is correct, they know they are solving the problem correctly, and if the answer is 
wrong, they can try a diferent strategy. Tis fnding supports allowing students to submit 
each part of a question individually. 

2.5.12 Students Like “Help” Features. We Do Not Know 
Much about How They Employ These Tools 

Zerr (2007) created an online homework platform that showed students a complete, cor-
rect solution if they inputted a wrong answer. Te system then gave students a diferent 
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(similar) problem. Students made exceedingly positive comments about having the full 
solutions. However, we do not know much about how students make use of full solutions. 
Krause and Putnam (2016) found students’ primary goal when reading a “see similar 
example” feature was to fgure out where they needed to substitute their own numbers. 
However, this fnding is based on a small sample size (interviews and observations of 
four calculus students and survey data for an unreported number of calculus students). 
Further research is needed to determine which “help” features are most efective for stu-
dent learning. 

2.5.13 Content Is Incredibly, Incredibly Important 

Regardless of whether an instructor employs an online homework platform, paper-and-
pencil homework, or a combination of both, the content of homework problems is incred-
ibly important. Homework systems are a distinguishing factor between more and less 
successful university calculus programs (Ellis et al., 2015). In a national study of college 
calculus programs, researchers found that more successful programs were more likely than 
less successful programs to (1) have an online component to their homework (sometimes 
with a written component), (2) assign more novel or complex problems than less successful 
calculus programs, and (3) ask students to explain their thinking on homework (Ellis et al., 
2015). Tese fndings imply that instructors should provide students opportunities to work 
on rich tasks, and opportunities to explain their thinking. 

Te task presented in Box 2.1 is an example of a problem from a textbook that was typed 
directly into an online homework platform by some online-homework-producing com-
pany. Readers might note the problem directs student to “show” something, yet the answer 
space does not allow this. Not all book problems are well-suited for an online format, and 
there is much research work that needs to be done about what sorts of problems are best for 
online environments such that students learn what the instructor intends they learn. Tis 
is a question of both content and format. 

2.6 CLOSING REMARKS 
In this chapter, I reviewed the literature about student learning from online homework and 
ofered a list of considerations for instructors making decisions about the homework for 
their course. While the body of research about student achievement and student percep-
tions of online homework is extensive, there are still many open questions. For example, 
this review located only two studies about how online homework afects students’ beliefs 
about mathematics and about themselves as doers of mathematics (Halcrow & Dunnigan, 
2012; Hauk & Segalla, 2005). I wonder if having unlimited attempts per problem can be 
leveraged to help students shif from a “mathematics problems can be solved quickly” 
mindset to an understanding that mathematical problem solving is a cyclic process, ofen 
involving multiple attempts and reattempts (Carlson & Bloom, 2005; Schoenfeld, 1992; 
2014). 

Another area for research is what students learn from online homework. Tat is, many 
of the studies reviewed here measured learning using exam scores as a metric. A more fne-
grained defnition of learning could help us know more about what students gain from 
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particular problems or assignments, and help us refne the content of online homework 
assignments. It also seems important to conduct research about the details of how students 
employ resources while doing homework and how that relates to their learning. I located 
only one study describing how students use various resources (Krause & Putnamn, 2016). 
When researching online homework, it would be useful to know if student learning and 
resource use difer with population (e.g., college algebra students versus upper-division 
students). Tat is, perhaps students who are more mathematically mature interact with 
online homework in diferent ways than students in developmental math classes. Future 
research about what and how students learn from online homework can help us improve 
student learning. 
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3.1 INTRODUCTION 
In the recent decades, online teaching and learning are spreading among tertiary edu-
cation: from online resources that students can obtain in a few clicks almost on every 
topic, to Massive Open Online Courses (MOOCs) that have become a standard in many 
universities worldwide. As a matter of fact, the majority of tertiary students around the 
world seems to engage in online learning of some sort and, as a consequence, some online 
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mathematics forums have thousands of members and receive hundreds of posts every day 
(van de Sande, 2011). Tese new learning formats, such as MOOCs, promote self-directed 
learning, since the quality of students’ engagement with and their understanding of the 
mathematical content in the MOOC videos depends on the extent to which they search for 
sources of knowledge in order to better understand and deal with the content of the video, 
when this is not immediately clear to them (Fredriksen, Hadjerrouit, Monaghan & Rensaa, 
2017). Furthermore, to engage in learning formats like MOOC videos has been proven to 
be a crucial ability for the success of students in tertiary-level mathematics (Niegemann, 
Domagk, Hessel, Hein, Hupfer & Zobel, 2008). 

Despite positive learning outcomes from MOOC videos and online resources in general, 
and despite the fact that our current and future students are part of an online generation 
by defnition, students should not be assumed to be online learners from birth, at least 
not when mathematics and statistics are under discussion. Indeed, contemporary research 
recurrently shows that online environments are not as helpful as it could be assumed 
in overcoming classical challenges of higher mathematics education (e.g., see Tall, 1991 
for abstractness, formality, and complexity; Moore, 1994 for proving; Bosch, Fonseca & 
Gascon, 2004 for new didactical contracts). Moreover, these environments entail new chal-
lenges of their own (Fredriksen et al., 2017), and tertiary students tend to resist online 
teaching formats. Our claim is that introducing online learning formats at secondary level 
would help both to smooth the transition from high school to university, lowering dif-
culties with mathematics, and to prepare the students to welcome these new formats once 
enrolled at university, getting used to them and appreciating the advantages. Tis claim 
is supported by numerous research fndings, as we briefy recall in what follows. In their 
fundamental study, Clark and Lovric (2008) contend that at the basis of the leap between 
secondary school and university there is a shock: the students have to move from the pro-
cedural mathematics the students are used to at school, to the conceptual understanding 
that university mathematics entails. According to Hibert and Lefevre (1986), conceptual 
knowledge describes knowledge of the principles and relations between pieces of informa-
tion in a certain domain, while procedural is the knowledge of the ways in which to solve 
problems quickly and efciently. Some researchers (e.g., Gamer and Gamer, 2001) found 
that teacher-paced instruction favors the development of procedural knowledge, while 
student-directed instruction favors the development of conceptual knowledge. A teacher-
paced lesson provides the students with a linear and organized exposition of knowledge, 
while a student-directed one engages students in groupwork activities, classroom discus-
sion, and in the production of meanings that are inevitably other than fnal or authorized: 
they are personal and provisional, not universal and absolute. Te use of video clips from 
university lectures in secondary mathematics classrooms has the potential of both accli-
matizing the students to the language and the teaching style of university math professors 
and of promoting student-paced learning formats, since it may happen that the students 
watch the videos and try to get sense of the content without any guidance from the teacher, 
or in case parts of the videos are not clear for the students, search for other sources in 
order to make sense of the content, or propose new activities. All this entails a production 
of meanings, from the students, that is personal and that emerges from the mathematical 



          

 

 

Designing Mathematics Hybrid Classrooms in High School ◾ 45 

activity in which each student is engaged. With Niegemann et al. (2008), we maintain that 
video-based mathematics lessons combine self-directed and externally regulated learning 
types of instructional formats: in fact, the math teacher plays a major role in introducing 
the videos to the class, and the focus of this chapter is on the role that teachers’ beliefs, 
goals, and resources play in shaping the way(s) video clips are introduced in diferent 
mathematics classes. 

Te value of instructional videos for enhancing learning is recognized by many schol-
ars, inside and outside mathematics education. Berk (2009), for example, notes that the 
variety of video formats, the ease with which the technology can facilitate their use in the 
classroom, the number of video techniques an instructor can use, and the research on 
multimedia learning that provides the theoretical and empirical support for their use as an 
efective teaching tool, prompt teachers to use video clips in their teaching. According to 
Berk (2009), fndings from cognitive neuroscience support positive implications for educa-
tional practice, and the use of video clips in teaching is more appropriate for introductory 
courses, for introducing complex topics in any course, for lower-achieving students, and 
for visual/spatial learners. Furthermore, research fndings on the efectiveness of videos 
embedded in multimedia classes are very encouraging: a large number of studies in teacher 
education, for example, have produced signifcant results favoring videos (e.g., Sherin, 
2003). However, and despite the promising fndings in education, few studies are dedicated 
to the use of math videos in classrooms, at secondary level. In order to contribute to this 
problématique, the present chapter focuses on the use of math videos in secondary school. 

More specifcally, the research project Flip Math at the Politecnico di Milano is aimed 
at preparing high school students to tertiary studies through turning their traditional 
face-to-face classrooms into hybrid learning environments. In the last six years, dozens 
of teachers in Italy engaged in the Flip Math project. Te teachers engaged in the project 
driven by their interests in introducing online components into their mathematics lessons 
and in enhancing self-directed learning. Te online components consisted of instructional 
videos that were taken from the frst Italian mathematics MOOC initially developed by the 
Politecnico di Milano. Te MOOC was developed for frst-year engineering students who 
needed a recap of a variety of topics ofen captured under the term of “pre-calculus.” Te 
MOOC emphasized mathematical terminology, formal defnitions, and problem-solving 
skills. Te MOOC is a research-informed initiative that has been developed to be useful 
as a whole but also in a modular mode, where videos and activities can be used in the 
actual classroom to provoke exploratory discussions. Taken together, these characteristics 
turn the MOOC into a rich educational resource that is capable of supporting teachers in 
achieving the desired change.* 

A particular sample of experienced and technology-enthusiast secondary mathemat-
ics teachers engaged in the Flip Math project; until now, all teachers have an average of 
teaching experience of 20 years (fve years is the minimum). Furthermore, all of them 
come with evidence of impressive technological knowledge and skills. Te research project 
turns out to be a project investigating how mathematics teachers with good technological 

* Te interested reader can freely log in the course at www.pok.polimi.it. 

www.pok.polimi.it


        

   

46 ◾ Teaching and Learning Mathematics Online 

knowledge and with long experience in teaching develop new learning formats entailing 
MOOC videos. Two issues related to the sample emerge at this point: one regards the gen-
eralizability of the results of our research, conducted on a purposive sample of experienced 
and technology-enthusiast teachers, and the other one regards the shif of focus that our 
research undertook. As regards the former, we maintain that the issues that emerge have 
a “general” nature, as we will argue in the discussion. As regards the latter, if it is true that 
instructional videos have learning potentialities (as revealed by promising research fnd-
ings on teacher education, for example), and if it is true that learning formats such as the 
fipped classroom are taking the lead in many countries because they are efective, it is also 
true that it is important to investigate how the teachers introduce and use math videos in 
classroom. Up to date, and to our knowledge, this phenomenon has received little attention 
in research. Te research focus is not on examining the efects of introducing online learn-
ing formats at secondary level on students, but it is on understanding the role of teachers’ 
beliefs, goals, and resources in their decision making during the use of instructional videos 
in mathematics classrooms. An outcome of the research is the identifcation of diferent 
ways in which experienced and technologically literate math teachers appropriate MOOC 
videos in their teaching practice. 

Technological literacy is not the only factor that infuences a teacher’s introduction of 
online resources such as MOOC videos in her classroom, as Anthony (2012) noted. Other 
individual characteristics such as a teacher’s beliefs, or the perceived usefulness of technol-
ogy, are essential factors to determine both the frequency and the centrality of MOOC 
video use in mathematics classrooms. We, thus, adopt Schoenfed’s (2011) lens and focus 
on a teacher’s orientations, goals, and resources to examine how they infuence a teacher’s 
choice of using MOOC videos in her class. It is well-known, in fact, that orientations, goals, 
and resources play a key role, but how they interact, especially when a confict between 
two diferent goals, or between two contrasting beliefs, takes place, is less researched. Te 
aim of the present chapter is to showcase examples from our extensive data and discuss 
the role of teachers’ beliefs in shaping their choices when they introduce their classrooms 
to MOOC videos. To this aim, we summarize the conceptual framework that informs our 
lens of analysis in the next section. 

3.2 CONCEPTUAL FRAMEWORK 
Schoenfeld (2011) argues that, when people make decisions in well-practiced domains, as is 
the case for teachers in the domain of teaching, it is possible to model decision making in 
a quite precise way as a function of knowledge and other intellectual, social, and material 
resources, goals, and orientations. “Well-practiced” activities are those for which a person 
has had enough time to develop expertise, knowledge, and routine that shape the majority 
of her actions. According to Schoenfeld (2011), any person enters into a particular context, 
such as a classroom, with a specifc body of resources, goals, and orientations. For example, 
a teacher starts her lesson with a specifc body of resources, goals, and orientations, but a 
teacher engages in a new research project with the same specifc body, as well. Whatever 
the situation, a teacher takes in and orients to it. Certain resources become essential and 
are activated. Goals are either established or recalled (if pre-existing). Consistently with the 
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goals, and within the constraints and the potentialities ofered by the resources, decisions 
are made. An interesting point of Schoenfeld’s model is the distinction between famil-
iar and not familiar situations: in the former case, Schoenfeld (2011) notes that actions 
can be automatic and they can consist mostly of the implementation of scripts, frames, or 
routines. In the latter case, there is not an established routine; hence decision making is 
made by a mechanism that can be modeled as a function of the subjective expected values 
of available options, given the orientations of the teacher. When a teacher joins a research 
project like Flip Math, she fnds herself engaged in both familiar (i.e., routine classroom 
practices) and unfamiliar situations, which can subvert the routine. 

Te basic assumption of Schoenfeld’s (2011) framework is that beliefs and orientations 
are an essential factor shaping teachers’ decision-making, behaviors, and professional 
development. Schoenfeld proposes to understand beliefs as “perceptions on the part of 
individuals that shape the ways in which they frame or orient themselves to any particular 
context, and thus shape they ways they act in that context” (Schoenfeld, 2011, p. 460). Tis 
assumption needs to be complemented with additional considerations. 

First of all, it is necessary to defne what is meant by “beliefs” and “orientations.” To 
this end, Skott (2015) maintains that there are four characteristics of beliefs that seem to 
be shared by almost all researchers: conviction—beliefs can be thought of as knowledge 
that is true at least in the eyes of the beholder; commitment—beliefs are value-laden and 
relate to motivation; stability—beliefs are stable and change only afer substantial, new 
experiences; impact—beliefs infuence one’s individual perception as well as one’s practice. 
In Schoenfeld’s (2011) view, orientations include beliefs, but also values, preferences, and 
tastes. Values are the deep afective qualities which education aims to foster through the 
school subject of mathematics (Bishop, Seah & Chin, 2003). Values and beliefs are related 
to each other since there is a presence of underlying values in beliefs: values are conceptu-
alized as beliefs held by individuals to which they attach special priority or worth, and by 
which they tend to order their lives. As such, values can be thought of as guides to behavior. 
A category of values is related to an individual’s preferences and tastes, i.e., personal values 
(e.g., when choosing a new car, one may consider the price, or the color, or the design, or 
functionality). Economic reasons, design, and functional importance are referred to as 
personal values (see Shimada & Baba, 2015). 

Te second consideration is that orientations are systemic and contextual. Schoenfeld 
(2011) posits that in many situations, an activation of certain beliefs triggers the activation 
of other, related beliefs, and in such a way, a belief system contributes to the choices that 
teachers make. Skott (2015) suggests seeing the context as a constraint on the opportunities 
for “belief enactment,” acknowledging a central role of social interactions that take place 
in the context. 

According to Schoenfeld’s framework, teachers’ decisions and behaviors also depend on 
goals and available resources (including knowledge, materials, and personal and interper-
sonal skills): 

Every sequence of actions can be seen as consistent with a series of goal prioritiza-
tions that are grounded in the teacher’s beliefs and orientations, and the selection, 
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once a goal has been given highest priority, of resources intended to help achieve 
that goal. 

(Schoenfeld, 2011, p. 460) 

A goal, whether explicit or tacit and unarticulated, is something that a teacher wants to 
accomplish. Goals can be classifed in terms of grain sizes. For instance, a short-term goal 
can be associated with a single lesson, while a long-term goal can refer to what a teacher 
wants her students to know as a result of a school experience. In many research projects 
with teachers, their genuine goals become difcult to observe, since the project’s agenda 
dominates teachers’ prioritizations. Tis one, even if it is the most widespread, should not 
be the only possibility, as diferent forms of teacher–researcher interactions may take place 
(see for example Wagner, 1997). Among the forms of teacher–research interaction identi-
fed by Wagner, ours is a case of co-learning agreements. In co-learning partnerships, the 
goals, methods, and principles of inquiry are negotiated openly to maximize the learning 
and the fruits of learning for both researchers and teachers. Terefore, co-learning agree-
ments essentially reduce asymmetry in the roles of the researchers and teachers. According 
to Penuel, Fishman, Cheng, and Sabelli (2011), co-learning agreements focus on problems 
of practice from multiple stakeholders’ perspectives, concerns with developing capacity for 
sustaining change in educational systems, and calls for breaking down barriers that isolate 
those who design and study educational innovations and those who implement them. Rather 
than accepting a readymade research agenda, teachers work with researchers on translat-
ing both sides’ goals into a mutually benefcial agenda. Teachers are invited to work side by 
side with the researchers in developing, validating, and implementing data-collection tools, 
and practice collective refection and data analysis. A particularly important stage in co-
learning inquiry is formulating conclusions and implications. Here teachers can bring forth 
an established sense of what works in education and what makes education work, “a feel for 
the breadth, depth, and complexity of education as an institution that cannot be picked up 
by reading about it or observing it” (Labaree, 2003, p. 16). Our claim is that specifcally in 
this form of teacher–researcher interaction it is possible to “see” a teacher’s goals. 

Finally, Schoenfeld’s (2011) notion of resources includes all kinds of “goods” that are 
available for a teacher, for example, the tools in the classroom, students’ knowledge, teach-
ers’ knowledge, interpersonal skills, and relations with students. To this respect, focusing 
on technology integration in general, Anthony (2012) argues that recent research ofers 
insights into why technology integration eforts have not had a greater impact on teach-
ing practice and student achievement: in Anthony’s view, a strand of research has empha-
sized that teachers’ individual characteristics, such as technological literacy (a resource 
in Schoenfeld’s view), and constructivist beliefs or the perceived usefulness of technology 
(orientations with Schoenfeld’s words), are essential factors that infuence technology use; 
while another strand of research has focused on institutional conditions, such as school 
and district settings, as factors supporting or constraining technology use (resources in 
Schoenfeld’s model). Indeed, Anthony (2012) stressed the role of resources (understood 
in terms of Schoenfeld’s views) in shaping technology adoption by a teacher. Moreover, 
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important for our study is Anthony’s focus on both technology planning at school- or 
district-level, and technology integration that teachers enact in their classrooms. Anthony 
argues that the district-level system of planning and teacher-level system of integration 
connect in ways that mediate teachers’ ability to implement technology with their students. 
Along this line of reasoning, we pay specifc attention to the teacher’s ability to utilize the 
potential of video-integrated lessons for the benefts of students’ learning and, adapting 
Anthony’s (2012) dimensions of technology integration, we focus on “centrality” and “fre-
quency” as dimensions that are useful to understand the ways and the extent of MOOC 
video introduction in mathematics classrooms. Anthony, in fact, understands the central-
ity of technology use as either seamlessly embedded or peripheral to classroom routines. 
Te frequency of technology use is accounted for as ranging from daily to less than once a 
month. “Infrequent” technology use occurs when it is used a few times per month, or less. 
“Frequent” technology use refers to weekly or daily use. Technology use is “peripheral” to 
a majority of classroom routines when technology is used as an add-on resource for reme-
diation or enrichment. It is “central” when technology use is integral to a majority of class-
room routines and is an essential teaching and learning tool. It is so much embedded in the 
classroom activity that learning would have assumed completely diferent forms without it. 

Te focus on frequency and centrality as indicators of “quality” of technology use is 
widespread in literature, since researchers seem to agree that technology promotes student-
centered learning (see Clark-Wilson, Robutti and Sinclair, 2014), and as such it becomes 
central to know how much technology is employed by teachers, especially in those coun-
tries where huge economic investments has been made in order to equip the school with 
a variety of information communication technology (ICT) tools. A general research fnd-
ing is that technology integration mainly depends on a teacher’s orientations. Te gen-
eral fnding on technology use, and in particular on ICT, seems to hold also for MOOC 
videos. Research fndings on teachers’ use of technology, and more broadly of innovative 
pedagogical settings, reveal that there is a considerable gap between the frequency of use of 
these innovative tools and the economic investments that have been made. On one hand, 
researchers report an increase in the students’ academic performance in technologically 
rich environments (Cuban, 2001; Hannafn & Foshay, 2008; Wenglinsky, 2005); on the other 
hand, despite access to funding and equipment, a recent study found that less than 35% of 
teachers in U.S. districts that received specifc funding have integrated online learning in 
their instruction on at least a weekly basis (U.S. Department of Education, 2010). Outside 
U.S., international surveys indicate low ICT integration in mathematics classrooms, though 
such indicators mask considerable variation between and within countries and provide 
little detail into how and why teachers use ICT. For example, in a survey of 42 countries 
within the Organisation for Economic Cooperation and Development (OECD), on average 
32% of students reported that they, or their classmates, performed at least one of a range 
of seven mathematical tasks on a computer in the last month. A further 14% reported that 
only teachers demonstrated the use of computers—consistent with a fnding of infrequent 
computer use in mathematics instruction (OECD, 2015). Te 2011 Trends in International 
Mathematics and Science Study (Mullis et al., 2012) reported that only a quarter of students 
on average used computers at least monthly during mathematics lessons. Like technology 
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in general, also online learning formats in particular are little exploited by teachers and 
their use is infrequent. As it emerges from this literature review, and as it is cogently argued 
in Clark-Wilson, Robutti, and Sinclair (2014), there exists a gap between the corpus of 
research fndings that show how technology of diferent sorts promotes self-directed learn-
ing, and the actual practices that are observed in math classrooms. Videos can contribute to 
promote student-directed instruction, since by their nature they encapsulate both a rather 
transmissive modality, which might attune to the modalities of use that are more wide-
spread among teachers, and they may require the students to activate resources in order to 
understand them and to give them meaning. However, to achieve this purpose a priority is 
to understand the role that teachers’ beliefs, goals, and resources play when videos are used 
in math classrooms. Te metric of success for the use of math videos is not the centrality 
or the frequency per se, but the promotion of self-directed instruction in the diferent sce-
narios that emerge from our observations. 

3.3 METHODOLOGY 
In what ways is enhancing self-directed learning a consequence of video use in terms of cen-
trality and frequency? In order to answer to this question, through the lens of Schoenfeld’s 
(2011) model, we explore the roles that orientations and goals can play in the lessons teach-
ers plan and deliver, and in particular whether MOOC videos are central to classroom 
practices, how frequently are they used, and to what extent non-instructional engagement 
with the mathematical content takes place. So, in this chapter we aim at answering the sub-
question: how are diferent, maybe contrasting, beliefs and goals related when teachers use 
videos in their classes? In this chapter, we analyze two lessons, and in the next chapter we 
analyze other two lessons, which represent a variety of possible scenarios. 

3.3.1 The Context of the Research 

Flip Math is an exploratory, longitudinal research project where teachers and researchers 
collaborate closely towards developing pedagogies that are powerful in hybrid learning 
environments. Teachers join the project on a voluntary basis; hence the sample for data 
analysis is purposive. Being based upon co-learning agreements, at the heart of the proj-
ect are three activities: (i) intensive meetings where teachers develop innovative instruc-
tional methods, (ii) experimental lessons where the methods are implemented, and (iii) 
the theory-driven fne-grained analysis which is carried out and discussed with the teach-
ers. Specifcally, we use Schoenfeld’s (2011) model of resources, goals, and orientations for 
making sense of teachers’ lesson designs and in-the-moment decision-making. Overall, in 
the last six years we have collected data from a variety of classrooms with students across 
skill levels. In particular, three teachers, pseudonymously named as Valeria, Nicoletta, 
and Lorenza, joined the Flip Math project with their classes. In this chapter we consider 
the case of Valeria, while in the next chapter we consider also the cases of Nicoletta and 
Lorenza. We present the methodological details concerning the three teachers in this chap-
ter, anticipating some information about the teachers whose data will be analyzed subse-
quently, because we would like to provide the reader with the full picture regarding our 
sample. 
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3.3.2 Participants: The Teachers and Their Students 

Valeria, Nicoletta, and Lorenza were three highly experienced secondary mathematics 
teachers: Valeria has 30 years of teaching experience, she attends professional development 
courses for in-service teachers regularly, and she is a tutor for beginner teachers; Nicoletta 
has six years of teaching experience, she collaborates in research projects at the Politecnico 
di Milano, and she has an outstanding mathematical knowledge; Lorenza has fve years 
of teaching experience, she has a PhD in Mathematics Education, and she regularly par-
ticipates in international research conferences for researchers in Mathematics Education. 
Nicoletta and Lorenza are also lecturers at university and are used to online teaching for-
mats like online lecturing, forum interactions, and blended learning. Te purposive selec-
tion of a group of teachers who have strong technological knowledge, positive attitudes 
towards online learning, and good teaching expertise allows us to ground our fndings on 
the basis of a rich teaching context, rather than focusing on a teacher’s weaknesses. 

During the school year 2014/15, when our research was carried out, Valeria was teach-
ing two grade-11 classes (the second-to-last year in high school in Italy), which we refer to 
as classes A and B. During the school year 2016/17 Nicoletta was teaching a grade-12 class 
(frst-to-last year in Italy), and Lorenza was teaching a grade-10 class. We refer to them 
as classes C and D, respectively: they will be analyzed and discussed in the next chapter. 
Valeria’s class B, and Nicoletta and Lorenza’s classes C and D are described by the teachers 
as “difcult” to some extent. For Valeria, her class B students are not open to innovation and 
complain every time she proposes something that is not routine. She, thus, wants to include 
them in the project to see if some change can happen. Nicoletta talks about class C as a class 
where the students are not motivated to do mathematics; they rather hate the subject and 
tend to do the minimum requested by the teacher in order to get good marks. Nicoletta 
joined the project because her class was already using math videos and she wanted to coor-
dinate with other colleagues. Lorenza says that her students are very nice, hard-working, 
and collaborative, but have serious difculties with mathematics. She aimed at conducting 
research on her students’ difculties, and she wanted to be part of a team of both researchers 
and teachers. To sum up, we can say that classes B, C, and D are described as “difcult” by 
the teachers in three diferent ways: 

• Class B does not accept anything new and is not used to video-integrated lessons. 

• Class C is not motivated in doing mathematics and is used to math videos. 

• Class D has difculties with mathematics and is not used to videos. 

Interestingly, three out of four classes were chosen by the teachers not because the students 
were “the best possible,” but for rather the opposite reasons, namely because the teachers 
wanted to improve the learning environment for these students, and we believe this is a 
feature of co-learning agreements that has positive outcomes for both the teachers involved 
and the researchers, who have the possibility to meet true, actual students. 

Valeria, Nicoletta, and Lorenza were invited to use videos from the pre-calculus MOOC 
course developed at the Politecnico di Milano for students enrolling in the frst-year 
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university courses. Te mathematical content refects (and recaps) the mathematical cur-
riculum of the last years in Italian high school, namely logic and set theory, pre-calculus, 
algebra, analytical geometry and trigonometry, probability, and statistics. Te course is 
structured in six weeks, each one corresponding to one of the above-listed topics. Each 
week is divided into modules, and each module opens with a theoretical video, which 
serves the purpose of recapitulating the main concepts; then a series of practicum videos 
follow, and they serve the purpose of showing typical exercises; at the end of each module 
there is a quiz. Each week is made of three or four modules. Tese MOOC videos repre-
sented a novelty for all the teachers (also for Nicoletta, who was used to other math videos 
available online). 

3.3.3 Data Collection 

Afer watching the MOOC videos at home, all the teachers were invited to imagine a sce-
nario for integration of some of the videos in their respective classes. Our data come from 
the meetings with the teachers afer they watched the videos, and from video-recorded les-
sons where the chosen videos had some role. We met Valeria four times before entering her 
class, where we observed, took feld notes, and videotaped two lessons of two hours each 
for each class. Valeria shared with us all the material produced online before and afer the 
lessons. Te videotaped lessons took place in two subsequent days, and on the same day 
we were present in class A for the frst two hours, and in class B for the second two hours. 
We met Nicoletta in person two times before the lesson, and we also met her on Skype 
once. She wrote for herself and shared with us many considerations about her class and her 
goals. Since the three lessons took place in three subsequent weeks, we had time to meet 
in between the lessons, and she made comments on what had happened. We met Lorenza 
fve times before her lesson, and we shared with her also the theoretical framework we were 
going to use in order to analyze the data. We observed and videotaped two lessons, in two 
subsequent weeks, but had no chance to meet her in between them. We met Lorenza once 
afer the lessons. Afer their lessons, we presented and discussed with Valeria and Nicoletta 
our theoretical lens of analysis, and they shared various comments. 

Our data analyses was concerned with: (i) the teaching context, which refers to how a 
teacher describes her class, the school, and the pedagogical setting she is used to imple-
ment in the class; (ii) the lesson image, namely the lesson plan paired with the teacher’s 
expectations about the lesson; and (iii) in-the-moment decisions that the teachers made 
during the lessons. 

A teaching context emerges from the analysis of teachers’ resources, orientations, and 
long-term goals. Te aim of this analysis is to understand diferent scenarios for the intro-
duction of MOOC videos. A teacher can be concerned with the technological infrastruc-
ture of the school, teacher’s perceptions of students and their abilities, and ideas regarding 
how videos can be used in a lesson. At this stage, it can emerge how frequently MOOC 
videos are (intended to be) used by a teacher, as well as which technology that may support 
their use is available. 

A lesson image comes into being from the interactions between researchers and teach-
ers afer the teachers have watched the MOOC videos and before enacting the imagined 
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lesson. Following Schoenfeld’s view, at this phase decisions should be made regarding the 
mathematical topics of the lessons that will be carried out, the kind of activity, and the 
(short-term) goals of these lessons. Accordingly, the discussions between researchers and 
teachers are focused on designing students’ engagement with the videos and on the activi-
ties that precede and follow the engagement. For instance, mathematical problems and 
tasks can be created for reaching the lessons’ goals. We analyze how MOOC videos are 
related with the tasks assigned to the students. At this stage, it can emerge whether MOOC 
videos are central or peripheral to the mathematics classroom activity, namely whether the 
use of this resource is unavoidable to reach the learning outcome, or whether it is used as 
a sort of add-on. It is also at this stage that the extent to which teachers want to promote 
self-directed learning emerges. 

A few days afer the meetings during which the teaching contexts and the lesson images 
emerged, Valeria, Nicoletta, and Lorenza went to teach in their respective classrooms. We 
videotaped the lessons carried out in each class. Te videos provided us with data on teach-
ers’ in-the-moment decision making. Te data contain video-recordings, notes of the teach-
ers, students’ worksheets, and feld notes taken by the observing researchers. We look at 
matches/mismatches between the lesson image and the actual lesson. We interpret a match 
as further evidence for the importance of declared resources, orientations, and goals. If 
there’s a mismatch, we will analyze the gap between declared orientations and goals and the 
actual beliefs in use and goals carried over. As a side note on the reliability of our results, 
we specify that all the data were analyzed side-by-side by three of us followed by extensive 
discussions of our interpretations with the teachers, as co-learning agreements entail. 

3.4 THE CASE OF VALERIA 
3.4.1 The Teaching Context 

Valeria teaches in a technologically highly equipped school and has experience in supervis-
ing technology-related projects. Valeria told us that in her teaching she ofen uses various 
technological devices, such as laptops and an interactive whiteboard, as well as sofware, 
such as GeoGebra. She also adopts educational environments like Wikispaces. When we 
asked her to explain how she uses them, she specifed that she devises a learning trajectory 
for each one of her classes, from grade 9 (the frst year at high school in Italy) to grade 13 
(the last year). She does not assume that students are able to work with technology “on their 
own,” and hence, she gradually introduces sofware in grades 9 and 10. At grade 11 she 
starts assigning homework that involves sofware, and designs consequent lessons on the 
basis of students’ submissions. In this way, she believes that the students gradually learn to 
appreciate both mathematics and technology. 

Valeria also shared that technology helps her in representing mathematical ideas, giving 
her spare time and ease in her communication with the students. When we asked Valeria 
to explain her interest in integrating MOOC videos in her lessons, her response addressed 
her personal long-term goals and orientations: 

It is innovative in terms of didactic methods, and it is an opportunity to use videos 
produced by experts to develop the teaching around the students. I am very willing 
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to take part in this because it allows me to sharpen my teaching style, to improve 
myself, and to be involved in new challenges, which is useful for fnding out new ways 
for reducing the gap between students and math. 

Valeria watched a number of MOOC videos from the pre-calculus course. Her reaction 
indicated some of her orientations: 

“It looks like a good way to foster the collaborative learning, which is also a keyword 
in the last ministerial directive.” 

She concluded that she would need to design new practices for integrating the videos. 
Valeria, in fact, is used to working with sofware like GeoGebra, where the students have 
to manipulate mathematical representations and solve problems. In the case of MOOC 
videos, the students are confronted with mathematical content that is somehow ready-
made and not necessarily related to problem-solving activities. 

Regarding her long-term goals related to students’ learning, Valeria explained: 

I want my students to approach technologies and multimedia with critical thinking, 
they should be able to use sofware and applets properly, they should view this kind 
of videos, which are very dense, getting the main idea and being able to discern the 
details. 

Paired with her belief that MOOC videos provide new learning opportunities for her stu-
dents, another belief also emerges from Valeria’s words, related to diferences in her stu-
dents: she anticipates: 

“Not all my classes ft for MOOC videos.” 

3.4.2 Lesson Image 

To recall, Valeria chose two classes for this project, referred to as class A and B. Valeria 
decided to develop two lessons (one for each class), with a common (short-term) goal: to 
recall the properties of monomial functions (e.g., xn) and their inverses, i.e., root functions. 
Valeria’s students learned these topics in lower grades. She chose to use the same six-min-
ute video clip for both classes A and B. In the clip, a lecturer addressed the graphs and def-
nitions of monomial and root functions for natural, integer, rational, and real exponents. 
Te root functions were presented as inverses of monomial functions, and the notions of 
oddness, evenness, and symmetry were briefy explained.* 

3.4.2.1 Class A 
Valeria planned to ask the students of class A to watch the MOOC video at home before 
the lesson and to answer a list of questions that addressed the defnitions, properties, 

* Te video can be watched in Italian at https://youtu.be/15wQiw8fOLs. 

https://youtu.be/
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graphs, and relations among monomial and root functions. At the lesson, she planned to 
divide the students in small groups and to engage them in solving a challenging problem. 
More precisely, her lesson plan was to spend the frst fve minutes dividing the students in 
groups of four, give each group a sheet of paper with the problem on it, and then leave the 
students alone doing problem-solving for about 25 minutes. Te subsequent 15 minutes 
were planned to be dedicated to a classroom discussion of the problem; then she planned 
to show a second video clip on exponential functions for introducing students to a new 
topic.* Te video lasts four minutes, so another ten minutes are lef for Valeria’s short 
frontal lesson. 

Valeria considered diferent challenging problems (some of them have been proposed 
by us), and eventually chose a “paper-folding” problem (see Box 3.1). Te mathematical 
heart of the problem lies at a geometrical progression that emerges when a piece of paper is 
consequently folded in halves. Te connection between the video and the problem should 
be found in the function y = xn. Valeria wants her students to recall the properties of this 
function (and of its inverse, the root function), and then to work on a problem that exploits 
the notion of power (where the basis is fxed and the exponential varies, to introduce the 
class to exponential functions), and reaches an unexpected outcome: afer relatively few 
folds, the paper becomes really thick. 

Valeria explained that she chose this problem because “it comes from the real life and is 
very mathematical. Moreover, it shows a non-trivial connection between functions and geo-
metric sequences.” To discuss the connection with real life and the mathematical nature 
of the problem is outside the aim of this chapter, as well as it is not the aim of this work to 
present and discuss the students’ answers to the problem. What is central to our chapter is 
that, in Valeria’s view, the MOOC video is a tool that can help the students to recall some 
math content, and it is expected to be handled by the students alone, at home, without 
any guidance from the teacher. Valeria’s usage of the video clip is quite similar to her 
usage of the challenging problem: her beliefs and orientations towards class A shape her 
expectation that the students will be able to learn from the MOOC video by themselves. 
In fact, the students are planned to be lef alone watching the video (at home) and lef 
alone in solving the problem (in class), before a (short) classroom discussion. We can say 
that this activity, at least in Valeria’s intentions, promotes non-instructional engagement 
with mathematical content, which is one of the key features of online learning at tertiary 
level. By non-instructional engagement with a learning activity we mean that students 
are lef free to choose what to do, which resources use, and which sources of information 
resort to, in order to complete an assigned learning task. Instead of it being the teacher 
who decides (and has full control) on where the classroom activity should go, the students 
are put in a situation where they have genuine possibilities to choose. Tis a case of self-
directed learning. Are MOOC videos central to the planned activity in class A? To answer 
this question, we should consider that the frst video serves the purpose of recalling math 
content already “seen” by the students, but they are able to participate in the in-class 
activity even without having watched it. Te second video, planned to be watched at the 

* Te video can be watched in Italian at https://youtu.be/MT9dSVmq2Ek. 

https://youtu.be/


        

 
 
 
 
 

 

  
  

   
  

  

56 ◾ Teaching and Learning Mathematics Online 

end of the lesson, serves the purpose of recapitulating concepts that would have emerged 
during small group activity. Hence, group work and problem solving are central to the 
planned lesson in class A, while MOOC videos are peripheral. Moreover, we are prone 
to conclude that the frequency of video use is high, both because it is planned for both 
homework and in-class activity, and because in general this class makes frequent use of 
online resources. 

BOX 3.1 The folding-paper problem designed by Valeria 

Consider a thin piece of paper. At the beginning fold it in half, then fold the folded paper in 
half, then again, and so on. 

1. How can we describe this situation mathematically? 
2. What will be the thickness of the folded paper after 100 folds, if the thickness of the origi-

nal piece of paper is 0.1 mm? 

3.4.2.2 Class B 
Te students of class B were planned to watch the frst video twice during the lesson. Afer 
the frst time (six minutes), the students would create a table with concepts from the video 
that were familiar and unfamiliar for them (ten minutes). Ten, Valeria wanted to replay 
particular parts of the video clip to help the students with identifying defnitions of the 
key concepts (another 20 minutes). Aferwards, the students were to be divided into small 
groups and discuss the concepts of oddness, evenness, and inverse functions. In group 
discussions the students would have been requested to sketch examples of such functions 
with GeoGebra and summarize their group work (the remaining 20 minutes). In the case 
of class B, the teacher did not plan to assign any homework: the video would be watched in 
classroom, and the teacher would have full control of how many times they watch it, and 
on what it is relevant to dwell on. In class B the students were not planned to be lef free to 
explore the video. 

In class B the students are expected to be divided in small groups, but in Valeria’s words 
there’s no indication that she is searching for a challenging problem for her class B students 
(even if, indeed, the assigned task can be perceived as challenging by the students of class 
B). We have commented that Valeria’s usage of the video in class A is quite similar to her 
usage of a challenging problem. It seems that the same pairing can be made for class B: 
teacher-guided watching of the clip and teacher-guided flling of the table. However, the 
MOOC video is central to this lesson plan, since the in-class activity pivots around its frst 
watching and a subsequent replay of some of its parts. Te students of class B are expected 
to work for the entire lesson on the content of the video. But use of MOOC video is infre-
quent in this class, since the students are not used to online learning resources. 

3.4.3 In-the-Moment Decision Making 

Valeria started the lesson in class A by asking if the students watched the video and if they 
had any questions about the concepts that were discussed there. Tere were no questions, 
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and the class turned to the group work on the paper-folding problem. All the groups 
answered question 1 correctly. 

In one of the groups, the students were working on question 2 and asked Valeria how she 
came up with the number of 0.1 mm. Valeria redirected the question to the class and asked 
them to consider possible ways for determining the thickness of a piece of paper. Afer the 
lesson, Valeria told us that this question was unplanned. Te groups approached Valeria’s 
question diferently. One of the groups tried to measure the thickness with standard rul-
ers. When a student in another group noted these unsuccessful attempts, she recalled that 
“there exists an instrument for measuring thin things, but I don’t remember how it’s called.” 
Ten her group engaged in looking for thickness gauges on the Internet and exploring 
how they work. A student in another group made a connection between Valeria’s question 
and the given problem, and suggested to fold the paper several times until the thickness 
becomes measurable with a standard ruler. His group liked the idea and engaged in devel-
oping a formula for the thickness of a piece of paper as a function of the measured thick-
ness of the folded paper and the number of folds. Another student noted that this solution 
is not always practical because the number of times that a piece of paper can be folded is 
quite limited.* 

If we focus on the in-the-moment decisions of Valeria in class A, we can comment that 
the actual lesson resembles her original plans quite well: the students reported that they 
watched the video at home, then the students engaged in the problem-solving activity, and 
the unplanned work on question 2 allowed Valeria to invite the entire class to think about a 
real-life problem from multiple perspectives. We can see a match between declared beliefs 
and in-the-moment decisions in Valeria’s involvement of the entire class in searching for 
an answer to the second question: the students are expected to solve the problem by them-
selves, working in groups. 

A diference with respect to the planned lesson is that the students did not watch the 
second video clip on exponential functions. We can infer that another of Valeria’s beliefs 
emerges, namely her appreciation of students’ work more than a teacher’s “giving knowl-
edge.” Instead of stopping the students’ activity in order to watch the second video (trans-
missive pedagogy) and to stick to the plan, she decided to let the classroom activity go on 
and focus on the mathematical relations between physical quantities (connective peda-
gogy). Her valuing problem-solving activity prioritizes certain actions, so the MOOC vid-
eos in the implemented lesson become even more peripheral than planned. 

In class B, afer showing the video clip for the frst time, Valeria invited the students 
to create a table of familiar and new concepts, as it was planned. However, the students 
asked to watch the video again because they did not pay attention the frst time. Afer the 
second time, they still did not engage in flling in the table and Valeria decided to change 
the plan: she created a table for the whole class on the whiteboard and replayed particular 
segments of the video, around ten seconds each, with the concepts and properties that 
she considered important (e.g., image and domain, graphs). Afer each video-segment, 

* We refer the reader to the work of Gallivan for an exploration of the idea of folding paper n times, and an empirical proof 
for 12 folds. Te reader can also see http://pomonahistorical.org/12times.htm. 

http://pomonahistorical.org
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the students pointed at the central concepts in the segment (practically, repeated the 
concepts’ names) and Valeria explained them by extending the explanations of the lec-
turer in the video clip. Such interactions continued until the end of the lesson and it did 
not leave time for the planned group work. Te way the lesson in class B turned out to 
be managed confrms our inference that Valeria has diferent goals for her two classes, 
and in particular that in class B she is rather concerned with students’ engagement with 
videos. Also for class B, thus, unplanned decisions were driven by the beliefs and orienta-
tions that emerged in the interviews before the lesson start (i.e., the teaching context and 
lesson image). 

3.5 DISCUSSION 
If we compare the lesson images and in-the-moment decisions regarding classes A and 
B, we notice that there are not relevant mis-matches. Valeria’s lesson plan allows us to 
have a “good enough” idea of what actually happened in the two classes, a few days later. 
Even her decisions for unplanned facts do not take us by surprise: in-the-moment deci-
sions align with her declared goals and beliefs. Tis situation is interesting since it is 
not very common: teachers activate diferent beliefs and thus act diferently in diferent 
contexts (as Skott, 2015, observes), and diferent, sometimes contrasting goals emerge. 
However, this is not the case for Valeria: it seems that Valeria is dealing with a familiar 
situation. 

Valeria’s case becomes more interesting, if we consider the striking diferences between 
the two classes: in class A, a high frequency of MOOC video use, despite being peripheral, 
is connected to self-directed learning that (at least, apparently) could have been taken place 
even without the introduction of the MOOC video. In class B, we notice very low frequency 
of online resources, but the MOOC video becomes central to the lesson, where we see a 
teacher-guided activity where the students have a few possibilities to explore and manipu-
late the mathematical content that is ofered to them. However, it is exactly this striking dif-
ference between A and B that can help us fnd a reason for such a strong match between the 
planned and the implemented lesson, the beliefs enacted, and the goals emerged in either 
context: to our interpretation, class A is “too good” and class B is “too poor” in Valeria’s 
expectations, that (with her long and deep teaching experience) she can plan a lesson that 
resembles more or less exactly what that is going to take place in the actual class. In other 
words, self-directed learning takes place in class A even without the introduction of a new 
learning format, which lies in the background. In class B, the MOOC video is brought at 
the foreground by the teacher, exactly because the class is not used to self-directed learning 
formats, but the MOOC video is used in a way that is all but promoting non-instructional 
engagement. 

Te striking diference between classes A and B allows us to further notice that a hier-
archy emerges in Valeria’s belief system, namely, her expectations about her students take 
the priority when it is time to decide the mathematical activity, while the way the video 
can be used in order to promote self-directed learning comes second. Tis tells us that the 
classroom is not passive in the eyes of the teacher: she knows that the students respond to 
her prompts, and she knows how they respond. However, her (negative) expectations about 
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class B somehow freeze Valeria from proposing something “really new” to them. In this 
way, the students’ diferent engagement with the task in classes A and B results in being 
less infuenced by the use of technology and more a refection of the diferent mathematical 
attitudes, or motivation to learn. Tis was anticipated by Valeria in her lesson image, and 
things went the way they were expected: as a conclusion, Valeria’s beliefs about her classes 
shaped the way the two lessons resulted, and the students’ reaction. In order to understand 
the role of a teacher’s beliefs and resources in shaping the use of videos, more nuances need 
to be added before we can make some conclusions. Te cases of Nicoletta and Lorenza are, 
thus, presented in the next chapter. 
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4.1  INTRODUCTION 
Online math videos are spreading, and teaching formats like the fipped classroom resort 
to these resources, especially at university. Our research project aims at understanding 
the possible uses of math videos in secondary mathematics classrooms and focuses on 
the ways teachers can introduce and use the videos. In particular, we resort to the lens of 
analysis provided by Schoenfeld (2011), who understands a teacher’s decision making as 
a selection of goals consistent with her orientations and resources, and we interpret the 
degree of centrality and the frequency of use of videos in relation to the promotion of 
student-directed instruction. In the previous chapter, the case of Valeria was analyzed, and 
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it allowed us to partly respond to our research question, that is: in what ways is enhancing 
self-directed learning a consequence of video use in terms of centrality and frequency? In 
one class, videos are peripheral but self-directed learning is enhanced. In the other class, 
videos are central but teacher-paced instruction takes place. A possible interpretation of 
this is that, in the case of Valeria, beliefs related to the students are stronger if compared 
to those related to the positive impact of the use of technology in promoting self-directed 
learning. Hence, Valeria’s case allows us to provide a frst answer to the question: how are 
diferent, contrasting goals and beliefs related? In order to answer the general research 
question, which involves the ways of enhancing self-directed learning as a consequence 
of video use in terms of centrality and frequency, the cases of Nicoletta and Lorenza are 
added. Te methodology described in the previous chapter applies also to these two cases. 

4.2 THE CASE OF NICOLETTA 
4.2.1 The Teaching Context 

Nicoletta teaches in a poorly technologically equipped school, and yet, Nicoletta’s students 
were used to watching mathematical videos at home. Nicoletta said that she wants her 
students to enroll in the whole pre-calculus MOOC on the platform www.pok.polimi.it, 
and she explicitly added that she expected that class C students’ major difculties would 
be with logging in and with understanding the organization of the courseware, since they 
were used to other websites. 

In the interview, Nicoletta told us that her major goal is to enhance her students’ ability 
to operate and learn from MOOC videos: 

“I want my students to do not panic if some steps in a mathematical procedure are 
not made explicit, if one cannot grasp some mathematical concepts, or terms, at frst 
or if diferent parameters are used.” 

Nicoletta mentions a potential difculty that can arise when an MOOC lecturer makes use 
of terminology and symbols that are diferent from the ones used in a classroom. Nicoletta 
is aware that videos are not interactive: “there exists a chance that the students will not 
engage with videos at home.” Namely, she is worried that, in case a student did not grasp 
a concept or did not see a connection between the content of the video and the in-class 
activity previously done, she would give up. Tis is particularly important for a teacher like 
Nicoletta, who believes that her students tend to do the least possible to succeed in math-
ematics, and hence tend to not complete the tasks assigned if they have a feeling that efort 
is required. Tus, two long-term goals emerge, namely that class C students become both 
fuent with the mathematics discussed in the videos, and resilient. 

4.2.2  Lesson Image 

Nicoletta planned to assign a fve-minute-long video to be watched at home. Te video 
recalls some math concepts that had been already learnt by class C students. In it, the graph 
and some properties of the exponential function f(x) = ax are explained. Te particular 
cases of ex and e– x are discussed, and the logarithmic function is also recalled. (Te reader 

www.pok.polimi.it
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may notice that this video was planned to be watched by Valeria’s class A in the classroom 
at the end of the lesson.) Nicoletta planned to assign some questions to be answered at 
home. In her words, 

I will assign the theoretical video, which recalls defnitions and properties, and 
other two practicum videos which show the solution of exercises. Te questions I will 
assign to my students will enable them to refect on how a video can be watched, 
which questions can one pose to oneself, how exercises can be solved. 

We can notice that Nicoletta’s concern about her students’ becoming able to deal with the 
(new, diferent) mathematical language of the video emerges in the choice of questions she 
wants to assign: no further exercises, but questions about “how” to approach the content. 
Examples of questions posed by Nicoletta are: did you fnd some mathematical words that 
are new to you? If yes, how did you deal with them? In case you did not understand a state-
ment in the video, what did you do? Did you notice some diference between the way an 
exercise is solved in the video, and the way we solve it in class? If yes, which ones? 

Nicoletta continued 

“I want to see my students’ answers in advance, hence I will collect their work through 
emails.” 

Class C homework was expected to be checked by the teacher, even if for them it was not 
the frst time watching a video. We can say that Nicoletta wants to have control of her class 
C, but we can also say that this practice would allow Nicoletta to prepare the lesson in 
advance, in accordance with her students’ answers. In her lesson plan, the centrality of the 
video emerges: Nicoletta declared that in class she would “recall the parts in the video where 
the graphs of exp(x) and of exp(–x) are shown simultaneously.” She, indeed, plans to make 
explicit reference to the video. 

I will ask my students to draw the graph of f(x) and f(–x) for the following functions: 
a parabola of the form ax2 + bx + c, sin(x) and cos(x). Tis will prompt the students 
to notice symmetries in some cases and I will introduce the defnition of an even 
function focusing on the features on examples drawn by the students. Te students 
will work in groups. 

Nicoletta also mentions the good quality of graphs in the MOOC videos, and in fact she 
wants to exploit one of the graphs in the video to introduce the defnition of even func-
tions, instead of drawing her own at the lightboard. Te MOOC video is central through-
out Nicoletta’s lesson image: even a new concept is planned to be introduced using the 
hints ofered by the video. 

Nicoletta’s lesson plan for class C is as follows: she will divide the class in groups of four 
students each and she will assign a paper to each student (fve minutes). Ten, the teacher 
will recall the graphs of y = exp(x) and y = exp(–x) watched in the video at home by the 
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students (fve minutes). She will navigate the class while the students do groupwork activity 
on the basis of the assigned paper (25 minutes). Once the students, in small groups, have 
drawn the graphs of the parabola, of the sine, and of the cosine, she will recall the part 
in the video where f(x) and f(–x) are shown and in a frontal lesson she will introduce the 
notion of even function (15 minutes). In the remaining ten minutes, she plans to answer 
the students’ questions that will arise. 

In the implemented lesson in class C, something unexpected happened that is worthy of 
attention. We now report and analyze it. 

4.2.3 In-the-Moment Decision Making 

We met Nicoletta 15 minutes before the start of her lesson. She said that very few students 
did their homework, and she suspected that the majority of them had not watched the 
video. Her suspicion was grounded in her belief that the class is not motivated and tend to 
do the least possible in mathematics. A frst decision was requested on Nicoletta’s side: to 
either show the video at the beginning of the lesson, or to go on with the planned lesson 
and not to show the video. Eventually, she decided to start the lesson with the video, say-
ing: “it will last just for a few minutes, and to show the video won’t compromise the lesson.” 
We interpret her use of the verb “to compromise” in terms of time: since the video lasts a 
few minutes, her concern about the fact that she would not have enough time to do all that 
was planned is relieved. Tis unplanned decision further speaks to the centrality that the 
MOOC video has for Nicoletta’s lesson: it is not possible to carry it out, without having 
watched the video. 

To our view, however, to show the video at the beginning of the lesson changes the 
planned lesson in a substantial, even subtle way. First of all, the students were requested to 
do the homework, and they did not. Te nature of the homework was refective, and the 
students lost the opportunity to think about their ways of approaching a mathematical 
video. Nicoletta’s goal to exploit the video in order to introduce a graphical approach to 
functions and to defne the concept of evenness is prioritized with respect to her goal of 
having class C working (more) at home, individually, on a refective task. Mathematical 
knowledge is prioritized, in class, with respect to students’ individual refection. Te pri-
oritization of this goal recruits resources throughout the lesson, as we now show, and dis-
cards other resources such as individual worksheets. 

Te students were divided in groups of four, but each individual student received a 
worksheet with some questions on it (as planned). Ten, the class watched the video played 
by the teacher at the smartboard, and on the given, individual worksheets the students 
sketched the graphs of exp(x) and exp(–x), of sin(x) and sin(–x), and of cos(x) and cos(–x), 
while Nicoletta navigated the class and engaged in conversations with the students indi-
vidually. Whilst being divided into groups, the majority of the class worked individually 
without collaborating with their group peers. It seems possible that the interaction of the 
teacher with individual students rather that with their groups promoted this behavior. 
Tere were two interesting exceptions: a group of four students (two girls and two boys) 
was really motivated and willing to do their best, so they interacted all the time proposing 
ideas and checking them within the group. Tey seemed seriously engaged with the task. 
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Another group of four boys interacted a lot, almost having fun: they chatted rather than 
doing mathematics and pretended to be working while the teacher was passing by. Afer 
15 minutes of this kind of “work” in the class, the teacher decided to stop the groupwork, 
to play again the video from the point at which the lecturer introduced exp(x) and exp(–x), 
and to comment on the video. Some students, who had previously worked individually, 
intervened in the discussion. Nicoletta recapped the main features of the graphs of the two 
functions and then invited the students to go on with the worksheet. Te dynamic of the 
class remained the same for another ten minutes, with the students working individually 
and the group of two girls and two boys working together. Te teacher stopped the work 
another time and invited the students to fnd out the general features of the drawn func-
tions. Te students were mostly silent, so she drew the functions at the smartboard and in 
a frontal lesson she introduced the defnition of an even function. 

We comment that there was congruity between the lesson image and the implemented 
lesson, even when unplanned decision making was necessary. For class C, self-directed 
learning was (expected to be) high during homework, but (in the actual lesson) it was low 
for the in-class part. We also notice a mismatch between the lesson image and the actual 
lesson in terms of the extent to which the students had the opportunity to engage with 
the activity. Tis is partly due to these particular students’ unwillingness to work on the 
assigned tasks. 

4.4 THE CASE OF LORENZA 
4.4.1 The Teaching Context 

Lorenza teaches in a medium technologically equipped school. For example, each class 
has a smartboard, but the students do not have tablets or laptops. Lorenza wanted to recap 
exponentials and logarithms, and she wanted to exploit a feature of video-integrated les-
son; in her words 

“Te advantages of using MOOC are: saving time, better understanding since 
the students can stop the videos, and favouring the students’ self-confdence with 
technology.” 

We recall that class D is not used to watching math videos. She adds 

“I also have non-math goals: to favour autonomy, to stimulate curiosity and to pro-
voke critical thinking towards multimedia resources.” 

Lorenza’s goals can be classifed into long-term goals within Schoenfed’s view, since she 
also wants to develop critical thinking. Lorenza also shares with Valeria and Nicoletta the 
awareness that videos are not interactive: 

Video-lessons are attended to at home, where students are comfortable, but at the 
same time there’s a risk they won’t work, compromising the efcacy of this pedagogi-
cal choice. A drawback is the impossibility to make synchronous questions and to 
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receive answers from the teacher in the video. Tis faw can be dealt with the day 
afer, at school, with their teacher. 

Lorenza adds that the teacher is there, in class, to respond to any questions that arise dur-
ing homework. 

Lorenza’s refections on her students make an impression that she sees her students as 
collaborative: 

“It’s a class of only girls and they are really cooperative and collaborative with me. 
Some of them are good in math, but many of them have troubles with the subject.” 

4.4.2  Lesson Image 

Lorenza chose to assign the same videos assigned by Nicoletta at home, i.e., a recap of expo-
nential functions and two practicum videos, where exponential and logarithmic equations 
and inequalities are solved. Lorenza planned to show class D students how to access the 
MOOC, in a previous lesson, and to assign them the exercises in the MOOC, both the ones 
that have a solution provided in the practicum videos and those which are required to be 
solved in solitude. In class, she planned to discuss with the students their solutions, which 
she will collect via email in advance. In Lorenza’s lesson image, we notice that she plans to 
spend a lesson commenting on the videos (“I will discuss with the students their solutions”), 
watched at home. 

“In class, we will do more exercises.” 

In Lorenza’s lesson image, the video is peripheral since it is planned to be watched at home, 
then commented on, but the very focus of the lesson would be on new exercises. Te fre-
quency of use of videos in class D is low, since they were introduced for the frst time in a 
previous lesson, but the students are not used to them. Te students are ofered an oppor-
tunity to engage in a non-instructional way with math at home, but the in-class lesson 
image is rather teacher-guided. 

4.4.3 In-the-Moment Decision Making 

Having asked class D to send homework via email in advance, Lorenza was able to notice 
that some of her students (not the huge majority) did not send her their homework. Once 
in class, Lorenza frstly asked them why. She also asked how the students coped with the 
assignments: “How did you feel with watching all these videos?” To start with a question 
is a choice that is diferent both from Nicoletta and Valeria, but it was not unplanned, if 
we consider that Lorenza wants to start the lesson with a classroom discussion about stu-
dents’ difculties. Te students replied that the videos were clear, but they experienced dif-
fculties with the assigned exercises and asked for teacher’s assistance. Hence, the teacher 
engages the classroom in a rich discussion about “how to do” each exercise. Tey re-did 
the assigned exercises at the blackboard, stopping and commenting several times about 
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general properties that emerged, but also on fne-grain details. We can notice that in class 
D the content of the videos was recalled and “replayed” by the teacher who wrote the exer-
cises on the blackboard. 

Class D students proposed the activity they wanted to do, by asking the teacher to redo 
the mathematical procedures watched at home (this was unplanned by Lorenza), even if the 
teacher was the one who responded to the questions. Te students actively engaged in the 
discussion, which aligns with Lorenza’s opinion about her students’ cooperative mood. We 
also notice that her way of conducting the lesson stimulates the students’ critical thinking, 
since many times during the lesson they were not satisfed with the procedure recapped by 
Lorenza and wanted also to recap “why to do so.” Te students took a lot of notes, and in 
their notes we see many remarks concerning “why” and “how” to proceed, instead of just 
copy-pasting the exercise that was written (by the teacher) on the blackboard. 

4.5  DISCUSSION 
Our research addresses the general imperative to understand how our students are “ready” 
for new-generation learning formats by focusing on teachers’ orientations, goals, and 
resources that shape diferent ways of using online material in secondary mathemat-
ics classrooms. To recall, Lorenza, Nicoletta, and Valeria teach in four classes, and they 
decided to use the MOOC videos to introduce the same mathematical topic, namely, expo-
nentials and logarithms. Tey share the opinion that MOOC videos allow a teacher to 
optimize time and promote the students’ self-confdence with technology. Tey appreciate 
a feature of MOOC videos, that is, the possibility for a student to stop and re-watch any 
segment of the video-lesson, but at the same time they know that videos are not interactive, 
since no one can answer a student’s question that may arise. Asynchronous interactions 
are the sole possibility in the chosen learning environment. In class, both Nicoletta and 
Valeria aim at recapping some mathematical concepts and at introducing new ones. Both 
Nicoletta and Valeria intend to split the class in small groups. Diferently from Valeria and 
Nicoletta, Lorenza plans not to introduce new theory, nor to do problem solving, but to do 
exercises on the basis of class D homework. 

Nicoletta conceives her lesson in a way that we can place somehow in between Valeria’s 
classes A and B. Like class A, indeed, class C students are assigned a video as homework. 
Diferently from class A, where the video was not planned to be recalled for the in-class 
activity, class C is planned to recall the content of the video several times: at the beginning 
of the lesson, recalling the graphs of exp(x) and exp(–x) and focusing on the symmetries; 
during the groupwork, drawing other symmetric/non-symmetric functions; and at the end 
of the lesson, introducing the notion of evenness. Also in Valeria’s class B the video is pres-
ent throughout the lesson, but the kind of work the students are expected to do in class is 
similar to the work that class C did at home, namely, to refect on how to watch a video 
of this sort. To comment on these diferences, Anthony’s (2012) notions of frequency and 
centrality come to be useful to us: we would say that the frequency of video-integration is 
low in class B, where it is used only in that particular lesson because the students refuse 
innovative teaching formats, while it is high in classes A and C, where the students are 
used to working frequently with online material. However, in the specifc lessons under 
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study, the video-integration for class A was peripheral (since the classroom activity pivoted 
around a challenging problem), while it was central for classes B and C. Te lesson in class 
B was designed to analyze the content of the video, and the lesson in class C was designed 
to start from the video watched at home and to bring the class to the defnition of a new 
property of real functions. 

In the implemented lesson of Nicoletta, we can notice that the group work activity 
turned out to be very diferent from Valeria’s class A and to some extent it was much closer 
to class B’s activity, with the teacher having control over what was going on. We further 
comment that self-directed learning was high in class A, both at home and in class, and it 
was low in classes B and C. 

Lorenza’s choice can be seen as an intermediate position between Valeria’s class A and 
class B, too. Namely, in class A, the students are lef alone in watching the video and Valeria 
does not care about possible difculties that may arise, as if she sees her students able to 
deal with them; in class B, she wants to control everything and in the class she plays the 
video and checks how the students deal with it. Lorenza leaves her class D students alone at 
home (like class A), but she takes into account the possibility that some intervention would 
be needed in class (like class B). Tis scenario is similar, to some extent, to Nicoletta’s les-
son image, in which she planned to assign some work to be done alone at home, but to be 
sent to the teacher via email so that she knows the possible difculties arising from the 
students. 

Interestingly, like Nicoletta’s class C, in the case of Lorenza’s class D self-directed learn-
ing was high at home and low in class. However, the students in the two classes reacted very 
diferently to their respective teachers’ proposals: class C discarded homework and in class 
followed the teacher, while class D engaged (at least partly) in the assigned homework and 
co-participated in the teacher-directed lesson by proposing new directions to be taken, and 
the teacher followed them. Nicoletta’s decision seemed not to be afected by her students’ 
actions and behavior during the in-class activity, while Lorenza was open to changing her 
plans upon her students’ requests. Another diference emerges from a comparison between 
classes A and D, which both watched the videos at home: class A had been lef alone in 
dealing with the math content, while class D asked for help from their teacher. Videos are 
played in classes B (and this was planned) and C (but this was unplanned, since the stu-
dents had to watch them at home). Te (content of the) videos had also been “replayed” by 
the teacher at the blackboard in class D. Te reasons why MOOC videos were “replayed” in 
classes C and D are, however, diferent: in the former, it was because the students did not 
watch the assigned videos at home; in the latter, it was because the students did watch the 
videos at home, but asked for the teacher’s assistance. 

Valeria’s case tells us also that in one of her classes self-directed learning is promoted 
even with a peripheral use of videos. And in the other class, despite central use of video, the 
lesson is teacher-guided. MOOC videos are central to both classes B and C. In the former, 
videos are central because the students have to learn how to “use” them, while in the latter 
it is the mathematical content that necessarily needs to be introduced through the graphs 
and the terminology employed by the lecturer in the video. We have already commented 
that in classes A and D the videos are an add-on and diferent mathematical activities are 
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central: problem-solving and exercises, respectively. In classes B and C the videos are cen-
tral, yet unavoidable, in two diferent, contrasting ways. Te four cases and the nuances 
of centrality they bring to the fore show how students deal with the videos and gradually 
become profcient users of online resources. Namely, the four classes under examination in 
this chapter can be further characterized by diferent stages of technology integration (see 
also Ruthven, 2002): Class B represents a case in which the teacher is mostly teaching how 
to use the tool, i.e., the video, hence she is concerned with the way the students learn how 
to manage it, and she proposes an activity that is (inevitably?) teacher-guided and pivots 
around the sense-making of the video. For this reason, the video is inevitably central to 
the math lesson. Class D represents a situation where the video as a tool is still a matter of 
concern for the teacher, and in fact she enacts a teacher-guided lesson where she is involved 
in troubleshooting, namely in answering the questions raised by her students following 
their previous, individual activity with the video(s). Te video can become peripheral at 
this stage of co-evolution of technical and conceptual understanding. Going further along 
the spectrum of stages, we fnd class C, where the teacher makes use of the video not for 
the sake of teaching how to approach it, but for teaching mathematics with it. At this stage, 
the video becomes again central and deeply related to the evolution of conceptual under-
standing, since the technical one is rather advanced. Finally, in class A the students are so 
confdent with online teaching formats that they do not need assistance from the teacher, 
and the mathematical activity can go on with a peripheral role assigned to videos. Tis 
interpretation, of the introduction of MOOC videos as proceeding through subsequent 
and interconnected stages, allows us to give sense to the ups and downs in the centrality 
of video use, and make sense of its diferent uses. Moreover, it leads us to conclude that 
MOOC videos should not necessarily be central to the mathematical activity, nor should 
they necessarily be frequently used, for self-directed learning formats to take place. 

All in all, if we look at the four scenarios, and we try to fnd similarities and diferences 
among them, we can see that the relationship between video use, teachers’ views, teachers’ 
practices, and teachers’ being in their specifc/individual classes is very complex. It is nec-
essary to take this complexity into consideration to authentically understand the phenom-
enon and to contribute to a technologically rich and deeper-thinking school in the future. 
Within such a complex scenario, in our four cases we took into consideration the dimen-
sions of frequency and centrality, and the extent to which self-directed learning is pro-
moted by each teacher in each class. Our conclusions, which follow this section and end the 
chapter, try to understand which scenarios can be understood as successful with respect to 
the promotion of self-directed learning, and sketch possible future investigations. 

4.6  CONCLUSIONS 
Our fndings are briefy summarized in Table 4.1, from which it emerges that, for example 
in Valeria’s case, frequent use of technology goes along with students’ self-directed learn-
ing in class A, while infrequent use of technology is paired with rather traditional, teacher-
guided lessons in class B. Classes B and C, as opposites of the spectrum, confrm a general 
research fnding that having equipped the school with technology is not necessarily related 
to the use of technology in classes: Valeria teaches in a well-equipped school but she does 



        

 

70 ◾ Teaching and Learning Mathematics Online 

TABLE 4.1 A Summary of Our Findings with Respect to the Categories Outlined 

Centrality 
of MOOC Videos 

Class A Peripheral 
(only watched at home) 

Class B Central 
(shape the entire lesson) 

Class C Central 
(home-watched + replayed in class) 

Class D Peripheral 
(meant as exercises) 

Frequency 
of Use of MOOC Videos 

High 
(general use of technology) 
Low 
(very traditional) 
High 
(used to math videos) 
Low 
(general poorly equipped) 

Self-Directed Learning 

Promoted both at home and in 
class 

Not promoted 

Promoted (expected) at home, 
not in class (implemented) 

Promoted at home, not in class 

not use technology in class B, while Nicoletta teaches in a poorly equipped school but her 
use of technology is central and high. Furthermore, Classes B and D relate to cases of 
teachers who, even if engaged in a specifc research project aimed at introducing the use of 
MOOC videos in their class on a voluntary basis, turn out to use the videos infrequently. 

By looking at Table 4.1, which cases can be deemed as “successful” with respect to 
enhancing self-directed learning? In class A, it is enhanced both at home and in class and, 
borrowing a metaphor from clinical research, we can conclude that class A represents a 
“gold standard.” In class D, self-directed learning is encouraged at home, and this can be 
seen as “successful.” Classes B and C represent failures in promoting self-directed learning, 
but grounding a possible explanation on the fact that both classes are “difcult” does not 
satisfy us, because class D is also difcult but the teacher reached a (partial) success with 
respect to the aim. Our interpretation goes beyond a focus on the resources (namely, dif-
fcult students) and, given that all teachers in the study have positive orientations towards 
technology, it exploits the notions of frequency and centrality of video use. In both suc-
cessful classes A and D, videos are peripheral. Being used with either high or low frequency 
seems not to be very relevant with respect to promoting self-directed learning. In both 
unsuccessful classes B and C, videos are central, and the fact that the students were already 
used to them (i.e., high frequency), or not (i.e., low frequency) seems not to play a crucial 
role. To draw the conclusion that central use of a resource does not enhance what it is 
designed to enhance seems confusing, but we need to take into account the fact that these 
particular students have difculties with mathematics, they are poorly motivated in doing 
mathematics, and/or they refuse any innovation coming from the teacher. For this kind of 
student, a smooth approach with respect to the introduction of a new, somehow disrup-
tive, online learning format seems to work better. A smooth approach to the introduction 
of MOOC videos assigns to them a peripheral place. In other words, in the cases of failure, 
the students may have perceived that MOOC videos had invaded their classes in the frst 
time they met them, and as a consequence they have refused to work with MOOC videos. 
A general conclusion that we can draw is that it is advisable to introduce online mathemat-
ics resources in a peripheral way, especially with “difcult” students. 

Te picture that emerges from the four cases is a picture of teachers struggling to fnd 
a way to integrate MOOC videos in their classes, instead of a systematic and well-ordered 
picture of cases where diferent choices perfectly work. We recall that they are all expert 
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teachers, and they are all technological enthusiasts. As a consequence, the picture that 
emerges does not question a teacher’s knowledge, and it does not focus on her lack of either 
mathematical or technological knowledge. It does so on purpose. It is as if what makes 
sense for these teachers is no longer what is clear and precise, but we can use Nathalie 
Sinclair’s words to investigate if they value an aesthetic of ambivalence, namely an aesthetic 
of simultaneous conficting feelings, which brings to the fore confusion and loss in math-
ematics, while putting aside purity, coherence, and connectedness as the very hallmarks of 
mathematics (Sinclair, 2018). Such an investigation is worth carrying out as a follow-up to 
our research, since we agree with Sinclair (2018), who argues that this approach to learning 
phenomena may broaden our understanding of mathematics, and she warns us about the 
tremendous consequences of narrowing our view to consider only the beauty, certainty, 
or the systematic nature of the subject. Along this line of thinking, we aim at going on in 
analyzing “bad cases” that will allow us to unfold relevant issues concerning the uses of 
online resources in secondary math classrooms, and the meanings that underpin them. 
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5.1  INTRODUCTION 
For students of advanced mathematics and statistics, the liberal arts model ofers a deep 
level of engagement in learning with faculty and peers. Due to practical limitations, small 
colleges cannot usually ofer the breadth of courses available at large institutions with grad-
uate programs. To explore collaborative models that may help enrich curricular oferings, 
faculty and technologists from several leading liberal arts colleges are experimenting with 
a consortial hybrid/online course-sharing model. Tese institutions are partner schools in 
the Liberal Arts Collaborative for Digital Innovation (LACOL) (http://lacol.net/). 
Te goal of these explorations is to increase the wealth and frequency of the advanced 
classes our students need, both for future graduate study and to delve deeply in the subject. 

In this chapter we report on the challenges and opportunities encountered in teaching 
three diferent math/stats courses using the hybrid/online course-sharing model: 

• Graduate Real Analysis, Fall 2017 (Stephan Ramon Garcia, Pomona College) 

• Putnam Problem Solving, Spring 2017 (Steven J. Miller, Williams College) 

• Bayesian Statistics, Fall 2017 (Jingchen Hu, Vassar College) 

Te courses were not completely designed from scratch but rather built upon previous 
classes taught by the authors, some standard and some partially online. For these shared 
courses, each instructor opened their course to students across LACOL, sharing lectures, 
assignments, and other class activities through both asynchronous (e.g., recorded lectures 
and screencasts) and synchronous (e.g., real-time video-conference of the lectures, online 
problem-solving sessions, and ofce hours) means. We viewed these classes not just as 
isolated courses, but as opportunities to try diferent techniques and technologies and to 
determine how to structure future classes. 

In this chapter, we report on what we learned. In Section 5.2, Stephan Ramon Garcia 
from Pomona College reports on teaching Graduate Real Analysis through the LACOL 
network. In Section 5.3, Steven J. Miller from Williams College discusses experiences, fnd-
ings, and recommendations on synchronous versus asynchronous instruction. In Section 
5.4, Jingchen Hu from Vassar College presents her experiences, fndings, and recommen-
dations on how to create and foster an online learning community. Section 5.5 discusses 
future work. 

5.2 CASE STUDY: GRADUATE REAL ANALYSIS (GARCIA) 
During the Fall 2017 semester, I taught a graduate-level analysis course at Pomona 
College. As part of a LACOL-sponsored pilot program, the course doubled as a small-scale 

http://lacol.net
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experiment to examine the feasibility of bringing high-level course oferings to other small 
liberal arts colleges. I was motivated by the fact that pure mathematics students at liberal 
arts colleges ofen do not have the opportunity to take the graduate-level courses that would 
make them competitive candidates for elite graduate programs. In addition to a dozen 
or so local students from Pomona College and Harvey Mudd College, two students from 
Swarthmore participated in this project, taking the course remotely and asynchronously. 

Perhaps the greatest lessons to be learned were on the technical side. Unlike big-budget, 
professional endeavors, the video recording, processing, and distribution were handled by 
the instructor. I could not, for example, hire a dedicated camera operator for several dozen 
lectures spread throughout the semester. Tus, some of my main goals in setting up the 
course were the following. 

(1) Minimizing the reliance on expensive sofware. 

(2) Avoiding the use of auxiliary personnel (e.g., a camera operator) 

(3) Minimizing the change to the in-class experience for local students. 

(4) Accomplishing this in a repeatable fashion cost-efectively. 

I focus here mostly on the logistical and technological aspects rather than the pedagogical 
aspects of this experience. Indeed, the technical problems that were encountered and some 
of the solutions that were found may be of interest to a broader audience than the specifc 
pedagogical challenges involved. 

5.2.1  Scheduling 

Te Claremont Colleges, which include both Pomona and Harvey Mudd Colleges, are 
located in Los Angeles County. Consequently, classes there are scheduled according to 
Pacifc Standard Time. Having synchronous classes during normal business hours for all 
participants, while avoiding traditional lunch hours, appeared prohibitive. 

Another signifcant barrier to synchronicity was the incompatibility between the 
Pomona and Swarthmore academic calendars; see Table 5.1. Te schedules contain several 
points of disagreement that would have required signifcant accommodation on the part of 
the Swarthmore students. 

In addition, we had no funding for a technical-support person to be constantly on site, 
so having real-time streaming video to and from the remote students would be difcult. 
Consequently, I decided upon an asynchronous approach (recorded video lectures) early 
in the planning process. 

TABLE 5.1 Fall 2017 Schedules for Pomona and Swarthmore 

Pomona Swarthmore 

Classes begin Sept. 4 Aug. 29 
Fall break Oct. 16–17 Oct. 13–23 
Classes end Dec. 6 Dec. 12 
Finals Dec. 11–15 Dec. 15–23 
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5.2.2  Equipment 

I anticipated many technical challenges early on and began researching possible solutions 
during the Spring 2017 semester. Additional tests and tinkering took place throughout 
the summer of 2017, especially during the weeks leading up to the Fall 2017 semester. I 
worked closely with Joseph Brennan, Pomona’s Director of Media and Classroom Services, 
throughout the entire process. 

Unlike certain other disciplines, in which the instructor lectures with only occasional 
boardwork, mathematics ofen requires technical arguments to be spelled out in detail 
on the board. Although some professors prefer to use Beamer or PowerPoint slides, I felt 
that a traditional “chalk-talk” approach was best suited to graduate analysis. Moreover, I 
did not want to reinvent the wheel because one of my primary motivations was to ensure 
that the in-class experience for local students (most of whom had already taken at least 
one course with me) did not vary dramatically from what they were used to. I also did 
not wish the remote students to simply watch slides accompanied by a disembodied voice. 
Consequently, it was clear that we needed a way to record high-quality video. Te selected 
classroom seats approximately 35 students and features two sets of raisable boards. 

Four boards are typically visible at the same time; see Figure 5.1. Put together, the boards 
encompass approximately 8ʹ × 18ʹ (144 square feet), a relatively large area to maintain 
sharp focus on. In order to utilize all available board space and to keep previous work on 
the board for the longest time possible, it was necessary to have the camera focused on all 
four boards simultaneously. Tis greatly narrowed down the possible cameras that could 
be employed. 

We brought in several models that the Pomona Information Technology Services (ITS) 
department had in stock. For the initial tests, these were attached to tripods located at 
the rear of the classroom. However, all of them lacked sufcient resolution to discern fne 
details on the board. Although most of the writing could eventually be deciphered by the 
attentive viewer, I could not ask remote students to watch videos of such low quality. 

FIGURE 5.1 Te classroom features two sets of raisable boards. Tis is a typical frame from the 
M4V video fles produced for the Graduate Real Analysis course. 
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One possible option was to write larger than normal. However, I suspected that con-
sciously writing larger than normal for the entire semester would be difcult and that I 
would eventually revert to my usual writing style. Tere was also the risk that focusing on 
“font size” would be a constant mental distraction, something that I could ill aford in such 
a high-level course. Consequently, the “font size” approach was quickly panned. 

Fortunately, these experiments occurred during the Spring 2017 semester, and there was 
plenty of time to fnd solutions. Since the in-stock cameras were insufcient for our pur-
poses, we had to purchase a new camera. Trough a combination of LACOL and Pomona 
College funds, a Sony SRG-300H camera was purchased and installed in the classroom; see 
Figure 5.2. Te camera, which cost about 2,000 dollars, can record 60 frames per second at 
1080p. Since the camera would be fxed and the lectures would feature no dramatic move-
ment, we decided to record at 30 frames per second to reduce fle sizes. 

Audio recording proved easier to manage. ITS provided me with a Samson Stage PXD1 
microphone system. Te instructor wears a clip-on lapel microphone and a transmitter, 
about the size of a cell-phone, that can ft in a pocket. A small USB stick attaches to the 
recording computer and communicates with the transmitter. Tere was only one minor 
issue on the audio equipment front: a cellphone could potentially cause interference with 
the transmitter, resulting in poor-quality audio. I had to get accustomed to turning my 
phone of entirely before class. 

5.2.3  Recording 

Te camera was controlled by a joystick/keypad device, located in small cabinet in a 
podium near the front of the classroom; see Figure 5.2. Because the classroom was used by 
several diferent classes and also served as a student study-room in the evenings, I had to 
check the alignment of the camera prior to each lecture. Fortunately, only once did I fnd 
that the settings had been modifed in my absence. 

FIGURE 5.2 Te camera is attached to the rear wall of the classroom and controlled by a joystick/ 
keypad device located in a cabinet located inside a podium at the front of the classroom. 
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With the camera and microphone up and running, it was necessary to identify the 
computer that would be used for the actual recording of the lectures. One obvious solu-
tion was to bring my laptop to class and have the camera record directly to it. However, 
this was undesirable for several reasons. First of all, the power usage necessitated by video 
recording would require the laptop to be plugged in. Tis would mean dragging to class an 
AC adapter, in addition to the microphone, transmitter, chalk, lecture notes, and graded 
homework assignments, not to mention fddling with audio and video cables, and adapt-
ers every day. Surely at some point during the semester I would forget a key ingredient! 
Because of the additional hassle and added risk, I decided that using my own laptop was 
not a viable option. 

It was clear that the built-in podium computer (a dual-boot PC/Mac OS machine), 
which was already connected to the audio-video system, was the best option. However, this 
introduced an additional wrinkle: how to transfer the large video fles from the podium 
computer while packing up and vacating the class for the next instructor. Tat important 
issue is discussed in the following subsection. 

Now that the recording computer was chosen, we (Joseph and I) needed to fnd the 
appropriate sofware. Although there were several alternatives, we settled on QuickTime 
Player. Tis had the advantage of being simple, easy-to-use, and essentially free, since it 
comes preinstalled on Mac OS. Moreover, I felt that there was no need to employ fancy 
video-editing tools or special efects. Tus, QuickTime was perfectly adequate. 

Te generic podium guest account was used by multiple people, meaning that fles could 
be moved or deleted without my knowledge. Tere was also the risk of having audio and 
video settings overridden by other users. Consequently, a special “recording” account was 
created on the podium computer. Tis had the added beneft of eliminating the risk of acci-
dentally leaving my personal account logged in during the rush to pack up. 

5.2.4  File Transfer 

Now that we were able to record lectures at an adequately high resolution, another serious 
problem emerged. Each lecture video needed to be transferred from the in-class podium 
computer to either the hosting computer or, at least, my ofce computer for further tinker-
ing. Tis process needed to be rapid since a computer science course was scheduled in the 
same room immediately afer my class. Afer each lecture I had at most a couple of minutes 
to accomplish this task. 

For a typical 1:15-hour lecture, the resulting QuickTime video fle was approximately 6 
gigabytes (GB). Tis was far too large to post on the internet directly and large enough to 
cause difculty in transferring it from the podium computer in a timely manner. 

One of Joe’s initial suggestions was to use Box, a fle-sharing service similar to Dropbox. 
Perhaps each lecture video could be posted directly from the podium computer to a Box 
account? Ten the students would be able to view the video fles through a suitable link, 
and the high-quality video could be streamed immediately afer class. Unfortunately, this 
proved untenable for two reasons. 

First, the podium computer, despite being hard-wired to the local network via an 
ethernet cable, was unable to transfer the enormous video files to the Box account 
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quickly enough for me to log out of the podium computer in time for the next class 
to start. 

Second, video fles stored on Box and viewed through a web browser are automatically 
streamed. Consequently, the high-resolution video that we worked so hard to capture was 
degraded and pixelated when viewed through Box. Tis would probably be fne for most 
recreational videos, but for a mathematics lecture in which the fne details on the board 
needed to be viewed, this proved unacceptable. Consequently, Box had to be abandoned as 
a viable option. 

Joe’s second suggestion proved the simplest and most efective. He purchased a SanDisk 
Extreme Pro USB 3.0 128 GB memory stick. Tese were signifcantly more expensive than 
standard memory sticks and perhaps they still are. If memory serves me, they ran about 
$75 at the time. Te USB 3.0 interface permitted a 6 GB video fle to be copied from the 
podium computer in less than a minute. As part of my “tear-down routine,” I would plug 
the memory stick into the podium computer and copy over the day’s lecture video. Tis 
permitted me to exit the class room in time for the following computer science class. To 
ensure that I did not lose or misplace this expensive memory stick, I kept it on a “leash” 
and in the same bag as the microphone and transmitter; see Figure 5.3. 

5.2.5  Video Delivery 

Once the raw video fles were transferred to the memory stick, they could be copied onto 
my ofce machine. Tis did not resolve the large fle-size issue, of course. It merely changed 

FIGURE 5.3 Te only additional objects that I needed to take to class were contained in a small 
microphone bag: the lapel microphone, transmitter, receiver, and USB 3.0-capable memory stick. 
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the location of the problem and got things out of the way in time for the next class to use 
the classroom. 

It was clear that the high-resolution video fles needed to be compressed without sig-
nifcant loss of fdelity. Moreover, I wanted to accomplish this without purchasing new 
sofware and fddling with advanced tools on a daily basis. 

Afer several experiments, I settled upon VLC. Tis freely available, multi-format 
video player is standard fare for Apple users. Although many users might be unaware 
of this feature, VLC is able to convert between various popular video formats. A little 
experimentation revealed that the raw QuickTime fles, each about 6 GB in size, could be 
compressed without much loss of clarity to M4V fles around 350 MB in size. Te reduc-
tion in fle size was about 94% and rendered the videos small enough to be posted to a 
course website. 

Each 1:15-long lecture took perhaps 45 minutes to compress on my ofce desktop (an 
iMac that is several years old). Class ended at 10:50 am, and the compressed M4V version 
of the lecture would be ready just before lunch. Te M4V fle, along with the course lecture 
notes, would be posted on the course website about two hours afer the actual lecture. Te 
M4V fle could then be downloaded from the course website or watched in the browser; 
see Figure 5.4. 

All of this was done with local computers and with sofware that was either free (VLC) 
or included with the Mac operating system (QuickTime). Just as importantly, this required 
minimal deviation from my usual teaching routine, and it did not signifcantly afect the 
in-class experience for the Claremont Colleges students. 

5.2.6  Homework 

Te Claremont Colleges use the Sakai course management system. Similar course man-
agement sofware is available at most American institutions. Each course has a Sakai site 
dedicated to it, and instructors can post announcements, assignments, and fles there. 
I personally fnd the system cumbersome and limiting, so I chose to post items on my 
personal course website. However, I used the Sakai system to keep track of grades and 
assignments. 

Te remote students, who were fuent in LaTeX, submitted assignments in PDF form via 
the Sakai “dropbox” feature (this has nothing to do with the company of the same name). 
In principle, a remote student could scan a hand-written assignment and then upload it in 
the same manner. 

Te course graders (there were two of them, and they alternated assignments) were 
given teaching assistant access to the course Sakai site. Tey downloaded the homework 
assignments and marked up the PDFs using Preview, Acrobat Reader, or other similar sof-
ware capable of annotating a PDF. Te graded assignments were uploaded by the graders 
to the Sakai site and placed in the remote student’s personal directory. In this manner, the 
remote students could turn in their assignments and receive the graded assignments back 
entirely online. 

Te process was smooth, and we encountered no technical problems. In particular, it 
seemed to be a reasonable way to handle a small number of remote students. Although 
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FIGURE 5.4 Te course website contained videos of the lectures in M4V format. 

there do not appear to be any signifcant technical issues that prevent scaling things up to a 
dozen or more remote students, there are the matters of money (who pays?) and personnel 
(who grades?) that would have to be resolved. 

5.2.7  Examinations 

Te local students took examinations in class. Remote students took identical exams that 
were proctored by a Swarthmore faculty member. Tis arrangement needed to be set up 
before the course began, since it required a low-intensity commitment from a remote pro-
fessor. Te completed exams were scanned by the proctor and sent to me via e-mail. Tis 
procedure, however, seems less amenable to scaling since it requires each participating 
institution to have an on-campus proctor. Te possibility that an exam might be scheduled 
on an inconvenient day for one campus or proctor could be uncomfortably high if the 
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number of participating institutions were to increase. Perhaps for advanced classes, “take-
home” examinations might be more suitable? 

5.2.8  Summary 

Our small experiment shows that advanced mathematics courses, even those at the gradu-
ate level, can be taught asynchronously online. Perhaps the biggest lesson to be drawn 
from our experience is: plan early! Tere are many technical challenges that may arise, and 
it is hard to anticipate all of them. Do not assume that your current in-class technology 
will be sufcient. Pre-existing cameras in classrooms might not be able to capture video 
at the resolution required for remote students. Rectifying this may take time and money, 
although it is a one-time expense. 

5.3 SYNCHRONOUS VERSUS ASYNCHRONOUS INSTRUCTION (MILLER) 
An important issue in the creation and execution of shared classes is how the material is 
delivered: synchronous or not. Tere are advantages to each. If the lectures are streamed 
live, the of-campus participants are able to fully participate in real-time. Tey are able to 
comment in class, ask questions which guide the lecture, and interact with their fellow 
classmates. Unfortunately, doing so requires more on the technology side, and also pre-
vents students from taking a class that meets at that block. As many colleges are on difer-
ent calendars and time structures for the day, these are non-trivial scheduling issues. If the 
class is entirely asynchronous, many of these issues vanish, though unfortunately now the 
students are not able to participate in classroom discussions. In this section we report on 
some of the successes and challenges of these two approaches. 

5.3.1  Introduction 

For about fve years now I have recorded my classes for multiple reasons. Te initial motiva-
tion was a desire to fip the classroom, either fully or partly, specifcally, my Multivariable 
Calculus class at Williams (where most of the students are freshman, making the transi-
tion from high school to college). In college such classes typically meet three times a week 
for 50 minutes for somewhere between 12 and 15 weeks (though some schools do block 
of a fourth meeting); in high school classes meet daily for more weeks. Tus there are 
signifcantly more contact hours in high school, leading to signifcantly more time to go 
through the same material. Tis gives these instructors a lot of freedom not found in col-
lege, such as going at a slower pace and spending more time on worked-out examples. I 
wanted to be able to assign students videos to watch in future years to move some of the 
more standard material to home viewing, and free up more class time for value-added 
lecturing. 

Over time, however, my use of recorded lectures changed. Many students found the 
recorded lectures useful, as they would occasionally have to miss class (either due to illness, 
family situations, or travel for athletic competitions or job interviews). Further, if there was 
a topic that was confusing they could watch a subset of the lecture again. Tey worry less 
about taking notes during class. Also, this allowed me to assemble a large list of introduc-
tory lectures on a variety of topics which could be used to supplement other courses. For 
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example, if a student in complex analysis has not seen Green’s Teorem, I can refer them 
to my lecture where we cover it. 

Additionally, Williams is a small liberal arts college; we ofen only have one section of 
upper-level classes, and many of these are only ofered every other year (if even that fre-
quently). I would ofen have students wish to take both my course and a class in another 
department meeting at the same time; by recording the lectures the student could do 
that. Tey could still come to ofce hours and TA sessions; they could still work with 
their fellow students. Te only diference is that they could not participate in class, which 
means that I do not have the beneft of their perspective in discussion, and they can-
not immediately ask questions on material that is confusing or that they wish to see in 
greater detail. 

Over the past few years I have been talking about the rewards and challenges of teaching 
at a small liberal arts college with many of my colleagues, who have had similar experi-
ence, which has led to new thoughts on how to use lecture capturing. One of the greatest 
problems we all face is class enrollment. Frequently we do not have the manpower to teach 
all the electives we want, or if we do there is ofen not sufcient interest on our campus to 
justify the class.* Many of us have explored solving these issues by sharing classes across 
campuses. For example, I might teach Complex Analysis at Williams while one colleague 
teaches Algebraic Topology at their campus and a third teaches Functional Analysis at 
their institution. We open our classes up to all students from our institutions. 

Tere are numerous problems with making such class sharing work well. Some are 
administrative issues. What credit do professors get for teaching students at another insti-
tution? How much extra work is it to have remote students, and how should the professor 
be compensated for the additional time demands? What credit do students get for taking 
a class at another institution? How do the classes show up on their transcript? While these 
and related problems are important and ofen challenging to solve (frequently one needs a 
faculty vote to allow credit for a class at another institution, but a work-around ofen exists 
by having a local faculty member at the student’s college enroll them in a guided indepen-
dent study), that is not the point of this contribution. My goal is to talk about two main 
formats for classes with remote students: asynchronous and synchronous. I’ll briefy touch 
upon the technology and administrative issues, but concentrate on some class structures 
I’ve tried, highlighting what works and what the challenges are. 

5.3.2  Asynchronous Content 

As a professor, an asynchronous class is enormously easier to run than a synchronous 
one. Many of the administrative issues and challenges disappear or are easily resolved. In 
particular, if the lectures are recorded and posted online, students can watch at their own 
pace and at whatever schedule works for them. As colleges rarely have aligned academic 
calendars (and further are ofen in diferent time zones, or some have classes starting on 
the hour and others on the half-hour), this is tremendously valuable. 

* Tis is for the more advanced courses; for the introductory classes the problem is the opposite, where courses such as 
Introduction to Statistics ofen turn away as many people as they accept. 
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FIGURE 5.5 Swivl system for tracking lectures, image from their homepage (www.swivl.com/ 
how-to-use/). Note the instructor can see what is being recorded in the iPad screen, and the 
system follows the tracker in real-time. 

Tere are some slight annoyances, as a school that starts later than the host institution could 
have students submitting say the frst homework assignment while the local students are on the 
second or third, but these are minor issues for grading.* Slightly more severe is that it is harder 
for students to collaborate across institutions if they are at diferent places in the course, but this 
can be mitigated by having some schools do more work in certain weeks to force alignment. 

Tis last point, on collaboration across schools, is worth dwelling on as it goes to the 
heart of the goal of such course sharing. Is the primary objective to provide content that 
would not be otherwise available, or to build bonds between students and faculty across 
multiple institutions? In the asynchronous setting it is easier to work towards the former. 
While I try to encourage my remote students in such settings to have at least one friend 
take the course with them, so they have a local study group, this is not always the case. In 
comments from them over the years the most common remarks are that they are glad to 
have had an opportunity to see material that otherwise would not be available and overall 
they are glad they did the course, but that the interactions are not equal to what they have 
in live classes. Te diferences range from the challenges of watching lectures on a small 
screen instead of live in the classroom to feeling more isolated. 

On the technical side, it is very easy now to record and post lectures. As Garcia described 
many of the technologies in depth, I’ll just briefy remark here on two options of varying 
difculty. 

Te easiest is to record lectures using an iPad and post them online through YouTube. 
One can buy a tracking system online for a few hundred dollars, put the iPad on it on a 
tripod, and just lecture (see Figure 5.5). Tere is a tracking device one can wear which will 

* Of course, there is the potential for the other problem: the remote schools have a semester starting frst! If the lectures 
have been recorded from a previous iteration this is not an enormous challenge; if not, one easy solution is to have those 
students wait till the local school starts. 

http://www.swivl.com
http://www.swivl.com
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FIGURE 5.6 Snapshot of a lecture as it would appear on YouTube, recorded using an iPad and 
the Swivl system. In this model the lecturer wears the tracking device on their shirt, which the 
base follows. Lecture available online at www.youtube.com/watch?v=NgHIiZUYI6g& 
feature=youtu.be. 

make sure the system follows you, which has the advantage that comments from students 
won’t be detected and recorded. Tis is important as some students feel uncomfortable ask-
ing questions if they know that others will be able to hear them later; for the lecturer, you 
just have to remember to repeat or rephrase the question. If students are comfortable hav-
ing their questions recorded and thus being identifable, you can purchase more advanced 
systems which have multiple audio input devices, and place those throughout the room. 

I prefer to post my lectures online on YouTube rather than through a college course page 
for many reasons. First, it is simple to go to www.youtube.com/upload and upload a 
fle. You can place tags to make it easily searchable, you can create playlists for classes, but 
most importantly anyone on the web can see the material. One of the great advantages of 
this is that you do not need to give remote students accounts at your school. Further, if you 
want to use material from one class in another you do not have to give current students 
access to a former class, or move content. Te material has a permanent home, and you can 
use it wherever and whenever you wish. For me, the only real concern is that anything you 
say is now public domain. In standard and undergraduate elective math courses this is not 
a big deal,* but in a humanities discussion course where very personal discussions are hap-
pening this could be a serious concern. 

Te biggest drawback to this technology is that you cannot zoom in to the material, 
and thus the writing can be a little small and not as crisp and clear as one would like (see 
Figure 5.6); thus it is better for students to watch on a laptop or desktop over a phone or iPad. 

Te other option I have used is to hire a student to record the lectures (see Figure 5.7). 
In addition to excellent tracking, more important is the ability of the student to zoom in 

* Tat said, there are certain stories that I cannot share with the camera rolling, ranging from certain personal anecdotes 
to some issues in applying math in practice; these have to be told outside class hours. 

http://www.youtube.com
http://www.youtube.com
http://www.youtube.com
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FIGURE 5.7 Snapshot of a lecture as it would appear on YouTube, taken by a student 
using a high-quality video recorder. Lecture online at www.youtube.com/watch?v= 
G9d9lcYevnM&feature=youtu.be. 

on the mathematics being discussed. Tis makes the lectures easier for students to follow, 
but requires signifcantly more local resources. Using an iPad and a Swivl is relatively easy 
and can be done without too much work for the professor; hiring a student requires funds 
and ofen processing time for the video. Tat said, if funds are available it is worth having 
the better recording, as it makes the video signifcantly more useful for remote students 
and future classes. 

In summary, the above are just two of the many options available for running asynchro-
nous classes. Te technology is now cheap enough and reliable enough to make this a real 
option. Te minor administrative issues can be overcome without too much trouble; the 
greatest difculty is the lack of alignment among academic calendars (though this is also a 
challenge for synchronous content). Liberal arts colleges pride themselves on close contact 
between students and professors; this is signifcantly lessened in this set-up, but with work 
(such as skyping outside of class, or even better, visiting the remote campuses) personal 
connections can still be forged. 

5.3.3  Synchronous Content 

Slightly diferent technology is required for a synchronous class. To date, I have not done 
a fully synchronous class. Tis is due in part to the diferent academic calendars, but 
also to students at remote schools (or even the local school!) desiring to take not only 
my class but another class at the same meeting time. What I have done is taught classes 
that are mostly asynchronous, but with four synchronous meetings which are scheduled 
outside the normal time block. Doing so allows real interaction between the remote and 
local students. 

Te greatest challenge now is to have the information available to all in real-time. 
I’ve used a Microsof Surface as the input and shared screen technology. At the local 

http://www.youtube.com
http://www.youtube.com
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FIGURE 5.8 Snapshot of a shared lecture. Video online at www.youtube.com/watch?v=DRB 
mLlrztvI&feature=youtu.be. 

school I have my computer connected to a data projector, and thus have the screen 
viewable by the entire class. For the remote students, there normally are not that many 
at each institution, and they can just congregate around one connected machine. Tere 
are programs now that allow remote users to draw directly on my screen, and thus we 
can all see the same material at the same time. I’ve used sofware available through our 
class system, Glow, but there are many applications now. Te bandwidth requirements 
are low as most of the time the content has very little change. In such situations I’m not 
lecturing on the board, but instead I’ve posed a problem that students are pondering and 
then presenting. 

I’ve done this in a problem-solving class. Figure 5.8 shows what a shared screen looks 
like; one of the students is about to move where the red dot lies. Te problem-solving class 
was ideal for synchronous material. I was able to give a short general lecture frst, and then 
the students remotely played a few games* and tried to develop a theory. 

Tese classes were enormously fun, and very diferent from the standard lecture classes. 
Stu- dents from each institution chatted with one another before class began. To make the 
atmosphere more festive and special I arranged for food (typically Dunkin Donuts munch-
kins) at each place; this is also somewhat needed as we met at 8 am, well outside normal 
class hours for today’s college students! 

Tus, the limiting factor in synchronous courses is not technology (and as the technol-
ogy is improving signifcantly each year, any issues on that end will be short-lived). Te 
greatest challenges are the diferent schedules, ranging from unaligned academic calen-
dars to being in diferent time zones. 

Finally, one concern I am always aware of is making sure that having a class remotely 
accessible does not negatively impact the experience for the local students. I will lecture 
slightly diferently with screen capture than I would with chalk on a blackboard; however, 

* Te game depicted is bidding tic-tac-toe. Each side starts with $1000, and each turn consists of making a secret bid; 
whoever bids highest gets the move and gives their bid to the other side; if there is a tie no one moves and you bid again. 
Te game continues until someone wins or all squares are taken. 

www.youtube.com/


        

 

    

 
 

 
 
 
 
 
 
 

 

88 ◾ Teaching and Learning Mathematics Online 

that is not necessarily worse, just diferent. Diferent media have their advantages and dis-
advantages, and one must adjust one’s lecture style to the method used for presentation. 

5.3.4  Summary 

Te technology exists for a variety of shared class experiences, and what we can do will 
only expand in the coming years. Te need is great, especially at small institutions, where 
we cannot ofer all the classes we want with the frequency our students need. Rather 
than viewing this as a disadvantage, we can see it as an opportunity to forge connections 
between students and faculty across institutions. In the course of sharing classes, we also 
assemble a large database of (hopefully!) excellent lectures, which are a valuable resource. 

Right now the challenges surrounding asynchronous classes are easier resolved than 
those for synchronous ones. While both have administrative hurdles, the asynchronous 
format avoids the headaches arising from diferent calendars, as well as allowing students 
to take two classes that meet at the same time. Te value of this latter point should not be 
forgotten; we ofen have so few classes that are appropriate for upper-level students that we 
should do all we can to preserve options. 

Finally, at liberal arts colleges one of our selling points is the personal relationship 
between students and faculty. In the synchronous classes I’ve taught I have made it a point 
to go to each campus for at least one lecture. Tere are several advantages to this. First, 
by visiting for a day or two I get to know the remote students much better than possible 
through email and skype. Second, and more importantly, it gives the local students a sense 
of what the remote students are experiencing! 

5.4 CREATING AND FOSTERING AN ONLINE LEARNING 
COMMUNITY (HU) 

In this section we report on student experiences in our model of sharing a course across 
multiple campuses. Tis approach is unique, and distinct from most of the existing 
hybrid/online models. Our class meets in a real classroom at one campus, providing syn-
chronous and asynchronous access to remote students from other campuses. To local stu-
dents, the class is not so diferent from a traditional face-to-face class, as they can ask the 
instructor questions during ofce hours and/or in person, and interact with other local 
fellow students as they like. However, the experience can be vastly diferent for remote 
students, and it is easy for them to feel isolated and lef out. We discuss challenges, and 
experiments and approaches to those challenges. Te goal is not only to make remote 
students feel part of the class and provide them an enjoyable learning environment, but 
also to create an online learning community involving both remote and local students. 
Te sharing and exchange should not only happen in the instruction and material deliv-
ery, but also students’ involvement and engagement and contribution to a shared learning 
community. 

5.4.1  Introduction 

Vassar College’s MATH 347 Bayesian Statistics was ofered through the LACOL network 
in Fall 2017 for the frst time. Class met in person on Vassar campus, where local students 
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were present in the classroom during lectures. Te lecture delivery was through the con-
ferencing sofware Zoom.* Te course management system was Moodle† at Vassar College. 
Registered Vassar students had a regular Moodle account, whereas remote students had 
sponsored Moodle accounts created for them by Vassar’s Academic Computing Service. 
Te sponsored accounts gave remote students all Moodle functions. 

Typically, I as the instructor started the synchronized lecture via Zoom meeting with 
the classroom desktop computer, and remote students could join class with the Zoom 
meeting ID. I used an iPad Pro to join the Zoom meeting as well, where lecture slides and 
other course material were shared and then projected onto the projector in the classroom. 
Te entire lecture (75 min) was recorded, and then posted on a YouTube list of class record-
ings for anyone to access freely. Terefore, both synchronized and asynchronized access to 
the lecture was available to registered students. 

Te course material and interacting tools were all hosted on the Moodle site. For 
example, lecture slides and R‡ programming scripts were posted and downloadable from 
Moodle. Also, the discussion board function of Moodle allows the instructor to create a 
topic within a module, and everyone has the right to post a thread to the topic. 

Te course started with four remote students. Among them, two were able to join class in 
real-time (synchronized access), and the other two were only able to watch lecture record-
ings due to schedule conficts (asynchronized access). Eventually, only one remote student 
stayed in the class, who only utilized the asynchronized access. Nevertheless, the course 
provided both types of access throughout the semester. 

Te challenges of keeping every student involved became obvious early in the semester. 
With a roughly four-to-one ratio of local students versus remote students, there seemed to 
be no drive for local students to get to know the remote students. To make matter worse, 
the four remote students came from three diferent campuses, and their various schedules 
and availabilities made it difcult to interact even just among themselves. As the number 
of remote students gradually dropped to one, such communication and engagement chal-
lenges only grew greater. 

Trough conversations with experienced colleagues, readings about online teaching and 
learning, and a series of trial-and-error experiments, I have identifed a few useful tools to 
create and foster an online learning community. In each of the upcoming subsections, I 
would like to introduce the tool, illustrate with screenshots when possible, and discuss the 
advantages, my experiences, and my refection. 

5.4.2  Self-Introduction Posts 

Te self-introduction posts idea was introduced to me by a blended learning expert in the 
LACOL network. To me, it was an afer-thought, as it occurred to me soon afer the course 
started that I needed to do something to make everyone get to know everyone else, virtu-
ally in some cases. Te request of a self-introduction post was given to all students in the 

* For more information about Zoom, visit https://zoom.us/. 
† For more information about Moodle, visit https://moodle.com/. 
‡ R is a statistical programming language. For more information about R, visit https://cran.r-project.org/. 

https://cran.r-project.org/
https://moodle.com/
https://zoom.us/
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third week, instead of before the course started or in the frst week, which obviously would 
be more ideal. Still, better late than never. 

I started the frst post to introduce myself, and then invited every student to make a post 
on the following aspects: 

(1) Your name, year, school. 

(2) Your prior statistics exposure (note that we have 22 students from four diferent 
schools, so when you talk about your statistics course experience, be more specifc 
than just writing down the course number). 

(3) Your prior R exposure (be specifc). 

(4) Your potential project interest, if you have already started thinking about it. Even if 
you haven’t, anything that would interest you is good to be put down. 

Afer all posts were made, I went in to read each post carefully, and summarized a list of 
project interest topics and shared on Moodle. Tis process helped me to get to know the 
students better. 

Overall, I think requesting a self-introduction post is a good practice. It not only allows 
students to introduce themselves, but also encourages them to refect on their previous 
experience, ask themselves what they want to get out from this course, and think ahead 
about their course project ideas. 

Tere are a few things to keep in mind to maximize the efectiveness of these self-intro-
duction posts. First, do it early, ideally before the semester starts. Second, try to make 
it more interactive. As you can see in the “Replies” column in Figure 5.9, none of the 
self-introduction posts were replied to at all. Tis does not mean that no one read them 
(well, who knows), but it does mean there was little online interaction activity among the 
students. If some kind of “reply to one” mechanism can be introduced, that might help 
improve the actual interaction among students. Tird, try to make it more personal. In 
the current format, the self-introduction posts were made in words. I later received the 
advice of making a self-introduction video instead of text-based posts, so students can see 
the face and hear the voice, which sounds very appealing and potentially useful. In fact, I 
incorporated the video idea into the project introduction posts, which is the second tool 
that I turn to now. 

5.4.3 Project Introduction Video Posts 

Like many statistics courses, the Bayesian Statistics course had a project component as a 
capstone experience. Te projects can be done individually, or as a pair of two students. 
At the end of the semester, a poster session was held for students to present their projects. 

Te poster session worked in a similar way as any other poster session at academic con-
ferences. All projects were put into two groups. Te frst half of the poster session was for 
the frst group to present, so the students from the second group were able to walk around, 
read posters, and interact with the presenters. Ten the groups switched for the second 
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FIGURE 5.9 Students’ self-introduction posts (frst page). 

half. Between the switch and afer the second group’s presentations, there were allotted 
time for discussion, summary, and Q&A. 

Almost all students were new to the poster session format. To help them prepare their 
posters, and think about how to present the material from the posters in person (smaller 
group or even one-on-one, versus a 10- or 15-min presentation at the front of the room to 
the whole class), I asked each project presenter to prepare a two-min project introduction 
video and post it on Moodle. All students were required to watch all videos before the 
poster session took place. 

Tese two-min project introduction video posts served like a pitch talk of students’ proj-
ects. Many students used their poster slides to go over the project within the time frame. 
Tese videos not only helped the presenters to organize their material, thoughts, and ideas, 
but also gave the other students the chance to get to know the gist of the presenting poster, 
and help them to navigate the poster session more efciently and efectively. Figure 5.10 is 
a screenshot of a sample project introduction video, “Quantifying Prior Opinion.” 

In particular, this project introduction posts tool was useful to engage the remote stu-
dent with the local students. Te only remote student in the course could not attend the 
poster session in person, but other students had the chance to learn about the remote stu-
dent’s project, particularly through the posted two-min video. In fact, the remote student 
created a longer video (around fve minutes, acting as if it was the actual poster in person) 
and posted it on Moodle too. Several local students became very interested in the topic, 
and they had the chance to learn more about it through these two videos. Overall, the proj-
ect introduction video posts tool is a very useful and efective practice. It pairs up well with 
the poster session format in particular. To improve it, in addition to requiring all students 
watch all videos before the poster session, requirements such as “comment on at least two 
videos” could increase out-of-classroom interaction to an even higher level. 
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FIGURE 5.10 Sample project two-min intro video on “Quantifying Prior Opinion.” 

5.4.4 A Learning Environment for Reading a Research Paper 

Reading and discussing accessible research papers are important components of an 
advanced statistics course. When covering the Gibbs Sampler* module in Bayesian 
Statistics, I chose to have my students read Explaining the Gibbs Sampler, a short paper 
by George Casella and Edward I. George, which appeared in Te American Statistician in 
1992. Te paper set up the Gibbs Sampler background nicely, and discussed its features 
and practices through a series of designed simulations. It is a relatively accessible research 
paper, even to undergraduate students. Some practices are diferent from current ones now, 
which make the paper a good reference for learning and discussing the characteristics of 
the Gibbs Sampler, and Markov chain Monte Carlo (MCMC)† in general. 

In addition to the original paper, I provided a six-question reading guide to the students; 
see Figure 5.11 for a screenshot of the list of questions. Some questions were related to the 
verifcation of presented results, while others were more associated with practices of the 
Gibbs Sampler, leading to discussion of similarities and diferences between practices afer 
the introduction of the Gibbs Sampler (when the paper was published) and practices about 
25 years later (what people typically do now). 

To engage students in reading and discussion both in class and outside of class, a request 
of one pre-class post and another post-class post was given to all students. Separate discus-
sion topics for each question on the reading guide were created on Moodle’s discussion 
board (see Figure 5.12). Tere were two more topics added afer the class discussion; one 
was a supplementary topic raised during class, and the other from colleague’s comments. 
As we can see, the efect of the two posts requirement can be seen in the counts in the 

* For more information, visit https://en.wikipedia.org/wiki/Gibbs_sampling. 
† For more information, visit https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo. 

https://en.wikipedia.org/
https://en.wikipedia.org/
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FIGURE 5.11 A six-question reading guide for the paper Explaining the Gibbs Sampler. 

FIGURE 5.12 Discussion board for the paper Explaining the Gibbs Sampler. 
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“Replies” column. In those topics with a good number of replies, actual online discussion 
(e.g., later comments made reference to previous comments) can be identifed (see Figure 
5.13 as an example). 

I went through the pre-class posts before the class discussion to see what students had 
been thinking and how their understandings were. I was able to refer to some comments 
during in-class discussion as well, and students’ reaction and interaction in class showed 
their engagement with the pre-class posts, and overall this practice facilitated in-class dis-
cussion well. 

For the post-class posts, though I was not able to discuss them in detail in later lectures 
due to time constraints, I was able to respond to their posts directly on Moodle, and also 
make a summary of the reading guide questions in general. 

Te online engagement of reading and discussing a research paper complements the 
in-class discussion, and both practices together greatly enhance students’ learning and 
engagement. I strongly recommend creating a reading guide to help students read and 
understand the paper. It helps the orientation and fow of discussion too. Te pre-class 
and post-class posts mechanism worked great for the Bayesian Statistics course, and I can 
imagine variations of this mechanism, depending on the difculty level and suitability of 
the paper to the course material, to be efective. 

5.4.5 A Learning Environment for Guest Introductory Videos 

In traditional face-to-face courses, inviting colleagues or professionals in the community 
for a guest lecture is a great way to connect course material to real applications. For a 

FIGURE 5.13 Discussion board (partial responses to Reading Guide Q1) for the paper Explaining 
the Gibbs Sampler. 
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hybrid/online course, such a guest lecture can be transformed into a video and moved 
online. Additionally, a learning environment for the online guest lecture should be created 
to foster students’ learning and engagement. 

Bayesian hierarchical modeling* is a Bayesian approach that is the basis of a large 
amount of applied scientifc work, which makes the teaching and learning of this topic 
potentially interactive and application-oriented. I have been lucky to have a colleague in 
the Cognitive Science Department at Vassar College who uses Bayesian hierarchical mod-
eling extensively for his research. In particular, he focuses on the development and appli-
cation of Internet-based tools for the study of human cognition. He had kindly agreed to 
create a 20-min introductory video to Bayesian hierarchical modeling based on his applied 
work for my students, so of we started our teaching collaboration. 

Creating and tailoring a video for another class proved to be a very challenging task. 
For a couple of months, my colleague and I met for an hour every other week to discuss 
the topics, the material, the format of the video, etc. It took me a while to grasp his experi-
mental settings as well as the learning theories in cognitive science. Ten it was the period 
of fguring out a common language in two separate felds (statistics and cognitive science) 
for presenting the material. Tere had also been heated discussions about the level of the 
material and the use of programming languages. Tough challenging, the entire process 
turned out to be a great learning and collaborative experience for me as a statistician. 
Curious readers could watch the introductory video at https://www.youtube.com/ 
watch?v=eFmZV67wf4I&list=PL_lWxa4iVNt1TfbsAfv9aW_5KL9rZuAtr&in 
dex=30&t=1s. 

To engage students’ watching of the video and connect the video’s content to our course 
material, a discussion board on Moodle was created, and a request of one pre-class post 
and another post-class post was given to all students. Going through the pre-class posts 
before class helped me greatly to set up the background in class, go about the lecture mate-
rial, and make reference to the video content when possible. 

In addition to posting on the introductory video, there were other topics created for the 
Bayesian hierarchical modeling module (see Figure 5.14). For example, my colleague had 
kindly shared his JAGS† script, and it was posted on the discussion board with his permis-
sion. Our course just started covering JAGS to facilitate model estimation (as opposed to 
regular R script that people need to write by themselves), so topics such as sharing JAGS 
script to replicate results obtained using regular R code from the textbook were also posted. 
Sometimes, there were inconsistent or non-replicable results that I produced and I could 
not fgure out why. I then went ahead and posted those questions on the discussion board 
and asked for help, and amazingly students came to the rescue. For that, I appreciated the 
creation of the online learning environment that makes me comfortable enough to share 
my own obstacles and concerns. I also believe that compared to traditional face-to-face 
in-class discussion, the online learning environment made students more comfortable to 

* For a quick overview, visit https://en.wikipedia.org/wiki/Bayesian_hierarchical_ modeling. 
† Short for Just Another Gibbs Sampler. For more information, visit http://mcmc-jags.sourceforge.net/. 

https://www.youtube.com/
https://en.wikipedia.org/
http://mcmc-jags.sourceforge.net/
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FIGURE 5.14 Discussion board for a guest introductory video on the Bayesian hierarchical model-
ing topic. 

challenge each other or me in an online environment and gave us all more time and space 
to ponder and discuss. 

5.4.6  Summary 

In a hybrid/online course, creating and fostering an online learning community is crucial. 
I have introduced the list of tools that I have found useful: self-introduction posts, proj-
ect introduction video posts, a learning environment for reading a research paper, and 
a learning environment for guest introductory videos. I believe many other tools can be 
developed and proved to be useful. 

Based on my experience, the online discussion board and required students’ account-
ability are central to the success. Only if students are actively engaged in the material and 
the learning community can they connect to each other and to the instructor. I believe 
the optimal way of enforcing students’ accountability highly depends on the instructor’s 
style and the student group. It can be an ongoing, sometimes frustrating, but ultimately 
rewarding experience for the instructor to create the right dynamic in the online learning 
community. 

5.5  FUTURE WORK 
We have run several hybrid/online courses and now have a good sense of what technology 
is available and how we can use it to engage students from across the country. Te next 
step is to increase the diversity of course oferings. Tere are several issues that must be 
resolved. Chief among these are ensuring that faculty and students receive credit for their 
work and coordinating students at diverse campuses simultaneously enrolling in the same 
class. Both of these problems, while surmountable, take work. 

At many institutions one needs the faculty to vote on course credit for students. Te 
departments or the administration also need to support these eforts. Te latter is ofen 
challenging, as many schools have strained resources and are concerned that it is too 
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“expensive” to have faculty teach such classes. Fears are ofen strongest when the course is 
highly specialized, and involves only a few students from the local campus. Tere may even 
be fears that hybrid/online courses will “steal” students away from local courses. 

Our hope is that by showing that shared courses can be taught, without an undue 
amount of work, in a manner compatible with the liberal arts mission that our colleagues 
will be convinced to add their courses to the mix. Doing so spreads the work across many 
institutions, and would increase the diversity of course oferings enormously. In such a 
situation the greater opportunities for students would be clear and help make the case that 
it is worth the additional faculty time required. 

In addition to the more standard advanced classes found at our institution, we hope that 
a collaborative environment would exist to facilitate creating and ofering new courses. 
One example we have discussed is a class on Financial Mathematics. From numerous con-
versations with students it is clear that there is an enormous demand for such a course, but 
most of our institutions do not ofer it. One reason for this is that frequently no school has 
someone who does this type of mathematics/statistics, and creating such a new course is an 
enormous amount of work. However, if this class were shared across schools, the workload 
for each involved faculty member would be very manageable. We are exploring a model 
where three or four faculty members agree to teach a few weeks, thus making the commit-
ment on course development modest and allowing us to build on what we have learned to 
address a need on our campuses. 



https://taylorandfrancis.com/
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6.1  INTRODUCTION 
Statistics is probably one of the most active felds to embrace and engage online teaching 
and learning. Numerous massive open online courses (MOOC) have been developed and 
have attracted a great number of online learners. At the time of writing, there are 346 
courses and specializations with the keyword “statistics” on Coursera,* one of the most 
popular online learning platforms. DataCamp,† a growing online learning platform spe-
cializing in data science education, has 159 courses, 22 tracks, and 122 instructors. A broad 
survey of online statistics education is described in Mills and Raju [1], and a discussion of 
building an online statistics curriculum is contained in Young et al. [2]. 

For statistics courses at all levels, teaching and learning online pose challenges in dif-
ferent aspects. Particular online challenges include how to efectively and interactively 
conduct exploratory data analyses, how to incorporate statistical programming, how to 
include individual or team projects, and how to present mathematical derivations ef-
ciently and efectively. 

Tis chapter draws from the authors’ experience with seven diferent online statistics 
courses to address some of the aforementioned challenges. Section 2.1 is an online explor-
atory data analysis course taught at Bowling Green State University. Section 2.2 is an upper-
level Bayesian statistics course taught at Vassar College and shared among ten liberal arts 
colleges through a hybrid model. Section 2.3 describes a fve-course MOOC specialization 
on Coursera, ofered by Duke University. 

All of these courses are designed for undergraduate or graduate students with calcu-
lus backgrounds. Te general aim in this chapter is to provide overviews of these online 
courses, discuss challenges and approaches, and provide general guidelines for statistics 
educators interested in online teaching and learning of statistics. 

Yang [3] provides an overview of the components of an online statistics course and uses 
student feedback to gain insight into the particular components that appear efective for 
learning the statistics material. Everson and Garfeld [4] discuss the use of student discus-
sions in an online statistics course and focus on the types of discussion that appear to 
facilitate understanding of the statistics concepts. Dunwill [5] provides general comments 
about the challenges of teaching in an online format, and Everson [6] discusses her experi-
ences in teaching online afer teaching face-to-face courses in statistics. 

* For more information, visit www.coursera.org/. 
† For more information, visit datacamp.com. 

www.coursera.org
ww.datacamp.com
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Section 6.2 gives an overview of the seven online statistics courses focusing on the 
intended audience and the course content. Sections 6.3 through 6.6 focus on particular 
components of the online course, and discuss how each course addresses the particular 
component. Section 6.3 discusses the problem of the online course design. How is the 
instructional content presented and organized, keeping in mind the learning objectives of 
the course? Section 6.4 focuses on the use of technology in each course. A statistics course 
will typically include the use of a sofware package. What types of sofware are used in 
each class, and how is the sofware integrated with the learning of the conceptual mate-
rial? Section 6.5 describes the diferent forms of assessment for each course. What types of 
assessments such as homework or projects are used, and do students have the opportunity 
to work together on assignments? Section 6.6 describes how the students interact with 
the instructor in the course and how students interact with other students. How does a 
student get help in the course? Not all of the presented online courses run smoothly, and 
Section 6.7 describes the challenges that the instructors faced when implementing each 
class. Section 6.8 summarizes the general features and challenges of the courses, directed 
towards the instructor who is developing their frst online statistics class. 

6.2 DESCRIPTION OF THE ONLINE COURSES 
6.2.1 An Online Course in Exploratory Data Analysis 

Tis online course, Exploratory Data Analysis at Bowling Green State University, focuses 
on the principles of exploring data following ideas from John Tukey’s EDA book [7]. Te 
audience consists of graduate and undergraduate students majoring in statistics, and there 
is a probability prerequisite. 

Generally, the main intent of the course is to describe an exploratory philosophy in the 
analysis of data. One does not wish to impose any assumptions such as normal sampling 
distributions or equality of variances between groups. Instead, one wishes to explore the 
data, looking for patterns in distributions and relationships. Tere are four “R”s in EDA that 
summarize the general philosophy in data exploration. “Revelation” means that EDA ofen 
uses graphical displays in data discovery. “Resistance” means that it is desirable to use sta-
tistical methods that are resistant or non-sensitive to outlying values. “Reexpression” means 
that it is sometimes useful to reexpress variables by a nonlinear transformation such as a 
log or square root. Last, “residual” means that one usually wishes to look at the deviations 
from a statistical ft. 

Table 6.1 shows the main units for the EDA course. Te course begins with a discussion of 
graphical displays and resistant summaries for a single batch of measurement data. Te next 
general topic is the comparison of batches of measurement data and the use of reexpressions to 
equalize spreads across batches. Properties of the Box-Cox power family of transformations [8] 
are explored in Unit 4, and this family is used to perform an appropriate reexpression to make 
a data distribution symmetric. Scatterplots of two measurement variables are introduced in 
Unit 5, and Tukey’s resistant line is applied as a general method of ftting a straight line to data. 
In cases where the scatterplot pattern is nonlinear, a running-median smoother is described as 
a simple way of smoothing a scatterplot to assess the general pattern. Unit 6 explores a two-way 
table where one summarizes a measurement variable over two categorical variables. Median 
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TABLE 6.1 Unit and Lectures for the Online EDA Course 

Unit Lecture 

1. Introduction 1.1 Introduction to EDA I 
1.2 Introduction to EDA II 

2. Single Batch 2.1 Displays 
2.2 Summaries 

3. Comparing Batches 3.1 Boxplots 
3.2 Spread Level Plots 
3.3 Comparing Batches III 

4. Transformations 4.1 Transformations 
4.2 Reexpressing for Symmetry 
4.3 Reexpressing for Symmetry II 
4.4 Transformations Summary 

5. Plotting 5.1 Introduction to Plotting 
5.2 Resistant Line 
5.3 Plotting II 
5.4 Straightening 
5.5 Smoothing 

6. Two-Way Analyses 6.1 Median Polish 
6.2 Plotting Additive Fit 
6.3 Multiplicative Fit 
6.4 Extended Fit 

7. Counts and Fractions 7.1 Binning Data 
7.2 Binning Data II 
7.3 Fraction Data 

EDA Project 

polish is a resistant method of applying an additive ft by the use of a logarithmic transforma-
tion; this method can also be used to apply a multiplicative ft to these two-way data structures. 
Te course concludes in Unit 7 by describing methods for binning measurement data, assess-
ing if the histogram has a Gaussian shape, and exploring batches of fraction data. 

6.2.2 A Bayesian Statistics Course for Cross-Campus Share 

Te past decades have seen great methodological, computational, and inferential advance-
ment of Bayesian statistics. While Bayesian statistics continues to gain attention and 
becomes ever more popular among data analysts and researchers, the topic itself is rarely 
available to students, especially at the undergraduate level. In most liberal arts colleges, 
with the stafng constraints, ofering a topic course on Bayesian statistics can at most be 
an occasional luxury. More commonly, such a course is not ofered at all. 

Vassar College had the chance to ofer an undergraduate-level Bayesian statistics course 
in Fall 2016. Te extremely positive experience with a small group of motivated students 
has encouraged the instructor to think beyond the boundary of a physical college location. 
Vassar is a member of the Liberal Arts Collaborative for Digital Innovation (LACOL).* Under 

* LACOL is a partnership of ten liberal arts colleges in the United States, founded in 2014. By leveraging the power of 
consortial relationships, LACOL focuses on utilizing and adapting emerging technologies to promote excellent and 
innovative teaching, learning, and research in the liberal arts. For more information about LACOL, visit http://lacol.net/ 
about-the-consortium/. 

http://lacol.net/
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TABLE 6.2 Section and Main Topics for the Cross-Campus Shared Bayesian Statistics Course 

Section Topics 

Inference Bayes theorem, conjugate prior, posterior distribution, 
HPD interval, predictive distribution 

Computation Monte Carlo approximation, Markov chain Monte Carlo 
(MCMC), Gibbs sampler, Metropolis-Hastings alogrithm, MCMC diagnostics, JAGS 

Applications Bayesian hierarchical modeling, Bayesian linear regression, 
latent class modeling, Bayesian cognitive modeling 

the Upper Level Math & Stats Project,* starting from Fall 2017, the Bayesian Statistics 
course at Vassar College is taught locally at Vassar while shared among the LACOL col-
leges through a hybrid model. 

Te Upper Level Math & Stats Project focuses on sharing upper-level mathematics and 
statistics courses among participating campuses, to supplement existing and probably lim-
ited oferings while maintaining the liberal arts favor. Vassar’s Bayesian Statistics course 
in Fall 2017 is one of the three courses in the pilot study (the other two are upper-level 
mathematics courses ofered by two other member colleges). 

Te student audience consists of junior and senior students. Te prerequisite includes 
multivariate calculus, linear algebra, and probability. Te textbook is A First Course in 
Bayesian Statistics Methods by Peter D. Hof [9], a book mainly used at the graduate level. Te 
instructor intentionally borrows more applied material from Bayesian Cognitive Modeling: 
A Practical Course, written by Michael D. Lee and Eric-Jan Wagenmakers [10], making the 
course more accessible to undergraduate students. Occasionally, advanced material from 
Bayesian Data Analysis by Andrew Gelman and others [11] is used to supplement. 

Tere are three general sections of the course: inference, computation, and applications, 
with main topics in each section listed in Table 6.2. Trough the introduction of one-
parameter models such as beta-binomial and normal-normal, the inference section cov-
ers the inferential basics. Moving to multi-parameter models such as normal with two 
unknown parameters, computation techniques are covered. Students are equipped with 
the skills of writing up the Markov chain Monte Carlo (MCMC) sampler when possible, 
as well as the use of Just Another Gibbs Sampler (JAGS) through the rjags R package. 
Ultimately, through various applications, students are exposed to more advanced models. 
Tey are motivated to understand and construct Bayesian models in each application, per-
form simulation by MCMC with appropriate computation techniques, and answer infer-
ential questions in context. 

Participating in LACOL’s Upper Level Math & Stats Project is the frst time that a Bayesian 
statistics course is ever shared among colleges from diferent geographic locations. In addi-
tion to motivating and cultivating students’ learning of such advanced statistics topics, the 
instructor needs to redesign an existing face-to-face course to adapt to a hybrid model. 
Challenges include using sofware to provide both synchronous and asynchronous access 
to the lectures, identifying what material is suitable for being moved online, holding online 
ofce hours for remote students, coordinating with local faculty liaisons from each remote 

* For more information, visit http://lacol.net/category/collaborations/projects/upper-level-math/. 

http://lacol.net/


        

 

 

  

 

104 ◾ Teaching and Learning Mathematics Online 

campus, and creating a learning community involving all students, among other things. 
Tis course uses R extensively for simulations and data analysis, and how to efectively 
incorporate R programming through a hybrid instruction model is also challenging. 

6.2.3 A Five-Course MOOC Specialization: Statistics with R 

Statistics with R is a specialization ofered on Coursera (www.coursera.org/ 
specializations/statistics) comprised of fve massive open online courses 
(MOOCs) designed and sequenced to help learners master foundations of data analysis 
and statistical inference and modeling. Te specialization also has a signifcant hands-on 
computing component. Te target audience is learners with no background in statistics or 
computing. 

Te frst four courses in the specialization are Introduction to Probability and Data, 
Inferential Statistics, Linear Regression and Modeling, and Bayesian Statistics. Tese 
courses cover exploratory data analysis, study design, light probability, frequentist and 
Bayesian statistical inference, and modeling. A major focus of all of these courses is 
hands-on data analysis in R; each course features computing labs in R where learners cre-
ate reproducible data analysis reports as well as fully reproducible data analysis projects 
demonstrating mastery of the learning goals of each of the courses. Te ffh course is a 
capstone, where learners complete a data analysis project that answers a specifc scientifc/ 
business question using a large and complex dataset. Tis course is an opportunity for 
learners to practice what they learned in the frst four courses in the specialization. 

Table 6.3 shows the modules and associated topics for each of the frst four courses in 
this specialization. Each subsequent course assumes learners have either completed the 
previous course(s) or have background knowledge equivalent to what is covered in them. 
Each module is designed to be completed in one week, though learners have the fexibility 
to extend this if they need to. 

Course 1, Introduction to Data, introduces sampling and exploring data, as well as basic 
probability theory and Bayes’ rule. In this course learners examine various sampling meth-
ods, and discuss how such methods can impact the scope of inference. In addition, a vari-
ety of exploratory data analysis techniques are covered, including using data visualization 
and summary statistics to explore relationships between two or more variables. Another 
key learning goal for this course is the use of statistical computing, with R, for hands-on 
data analysis. Te concepts and techniques introduced in this course serve as building 
blocks for the inference and modeling courses in the specialization. 

Course 2, Inferential Statistics, introduces commonly used statistical inference methods 
for numerical and categorical data. Learners learn how to set up and perform hypothesis 
tests and construct confdence intervals, interpret p-values and confdence bounds, and 
communicate these results correctly, efectively, and in context without relying on statis-
tical jargon. Building on computing skills they acquired in the previous course, learners 
conduct these analyses in R. 

In Course 3, Linear Regression and Modeling, introduces simple and multiple linear 
regression. Learners learn the fundamental theory behind linear regression and, through 
data examples, learn to ft, examine, and utilize regression models to examine relationships 

www.coursera.org
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TABLE 6.3 Modules and Topics for the First Four Courses in the Statistics with R Specialization 

Course 1: Introduction to Probability and Data 
1.1 Introduction to data Data basics, observational studies and experiments, sampling and sources of 

bias, experimental design 
1.2 Exploratory data analysis Visualizing data, measures of center and spread, robust statistics, transformations, 

and introduction to exploring bi-/multivariate relationships, introduction to inference via simulation 
inference 

1.3 Introduction to probability Independent and disjoint events, conditional probability, Bayes’ rule, 
introduction to Bayesian inference 

1.4 Probability distributions Normal and binomial distributions, assessing normality 
1.5 Data analysis project Exploratory data analysis of data from the Behavioral Risk Factor Surveillance 

System 
Course 2: Inferential Statistics 
2.1 Confdence intervals Sampling variability and Central Limit Teorem, confdence intervals for a 

mean, accuracy vs. precision 
2.2 Inference and signifcance Hypothesis testing for a mean, decision errors, statistical vs. practical 

signifcance 
2.3 Inference for means t-distribution, inference for a mean and for comparing two or more means, 

multiple comparisons, bootstrapping 
2.4 Inference for proportions Sampling variability and CLT for proportions, confdence intervals and hypoth-

esis tests for two or more proportions, randomization tests for small samples 
2.5 Data analysis project Inference on data from the Behavioral Risk Factor Surveillance System 
Course 3: Linear Regression and Modeling 
3.1 Linear regression Correlation, residuals, least squares line, prediction and extrapolation 
3.2 More on linear regression Outliers. Inference for regression, variability partitioning 
3.3 Multiple linear regression Multiple predictors, adjusted R2, collinearity and parsimony, inference for 

MLR, model selection and diagnostics 
3.4 Data analysis project EDA and single and multiple regression for movies data 
Course 4: Bayesian Statistics 
4.1 Basics of Bayesian Conditional probabilities and Bayes’ rule, diagnostic testing, Bayes updating, 

statistics Bayesian vs. frequentist defnitions and inference, efect size and signifcance 
4.2 Bayesian inference From discrete to continuous, elicitation, conjugacy, Gamma-Poisson and 

normal-normal conjugate families, non-conjugate priors, credible intervals, 
predictive inference 

4.3 Decision making Loss functions, minimizing expected loss, Monte-Carlo sampling, prior choice 
and reference priors, MCMC 

4.4 Bayesian regression Bayesian simple and multiple regression, model uncertainty and averaging, 
decisions under model uncertainty 

4.5 Perspectives Interviews with statisticians on how they use Bayesian statistics in their work 
4.6 Data analysis project Bayesian inference and regression for movies data 
Course 5: Statistics with R Capstone 
5.1 Exploratory data analysis 
5.2 Basic model selection 
5.3 Model Selection and Diagnostics 
5.4 Out of Sample Prediction 

between multiple variables. Model ftting and assessment is done in R, and a substantial 
amount of examples are focused on interpretation and diagnostics for model checking. 

Tese frst three courses were originally ofered as a single, much longer, MOOC, for 
two years, before being split into shorter courses to be bundled up in a specialization. 
Course 4, Bayesian Statistics, was added to the sequence at this point, in order to make 
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this introductory specialization more complete by adding a diferent point of view for 
approaching statistical analysis. 

Course 4, Bayesian Statistics, introduces learners to the underlying theory and perspec-
tive of the Bayesian paradigm and shows end-to-end Bayesian analyses that move from 
framing the question to building models to eliciting prior probabilities to implementing 
in R. Te course also introduces credible regions, Bayesian comparisons of means and 
proportions, Bayesian regression and inference using multiple models, and discussion of 
Bayesian prediction. 

Te last course in the specialization is a capstone course. Te materials provided for this 
course are designed to serve as a reminder of learning goals of earlier courses or expand 
on them ever so slightly. A large and complex dataset is provided to the learners, and the 
analysis requires the application of a variety of methods and techniques introduced in 
the previous courses, including exploratory data analysis through data visualization and 
numerical summaries, statistical inference, and modeling as well as interpretations of 
these results in the context of the data and the research question. Learners are encouraged 
to implement both frequentist and Bayesian techniques and discuss in the context of the 
data how these two approaches are similar and diferent, and what these diferences mean 
for conclusions that can be drawn from the data. 

6.3 ONLINE COURSE DESIGN 
6.3.1 Presentation of Content 

Te EDA course was originally taught face-to-face in the classroom where the instructor 
would introduce and demonstrate the EDA methods in class and the students would work 
on weekly data analysis assignments. Te online course was designed to follow the same 
format as the face-to-face version. 

1. Te lecture material for the class is posted online as PDF documents. Students have 
had difculties understanding the material by reading directly from [7], and so the 
lecture material seems to be a reasonable substitute for the book material. Te core 
EDA material is contained in a series of 23 PDF documents. A particular “lecture” 
motivates and describes the particular EDA method with an illustration using the R 
programming language. 

2. Tere are weekly data analysis assignments and no written exams in the course. It is 
well-known that exams can be challenging to administer in an online format. 

3. Te work on the assignments is a blend of statistical work such as tables and graphs 
and interpretation of the results. Tese assignments are turned in online by the use of 
R Markdown documents saved in html format. 

4. All of the R code in the lecture notes is made available to the students by a collection 
of R scripts. 

In the Bayesian statistics course, regular face-to-face lectures are delivered in the class-
room with students present at Vassar College. Every lecture is broadcast and recorded by 
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Zoom, a video conferencing sofware.* Remote students can join the lecture in real time 
with a Zoom meeting ID. Otherwise, they can watch the recorded videos afer the videos 
are posted on the same day of the lecture. 

6.3.2 Course Material in Video Form 

Tis hybrid model in the Bayesian statistics course made lectures available in video form. 
With the fexibility of making videos and the added familiarity of learning through videos 
on the students’ end, other course material has also been turned into video form. Tis 
material has conventionally been available as a Word- or PDF document. 

For example, when an example is not fully developed during the lecture due to time con-
straints, a short video on this example is created and made available to students to review 
if necessary. As another example, when many students are having problems with the same 
homework question (based on observation from ofce hour visits), a short video providing 
hint on this homework question is created and made available. 

R programming demonstrations are very suited to video form. By watching a video with 
a step-by-step demonstration of programming, students are able to pause when needed, 
see things in action, and practice along the way. Several R programming videos are created 
for students in this course. 

In the Five-Course MOOC, each module includes seven to ten videos roughly four to 
seven minutes in length. Most of these videos introduce new concepts and the remain-
ing provide additional examples and worked-out problems. Te slides that serve as the 
background in the videos are created in Keynote (Apple’s presentation sofware applica-
tion) and feature a substantial amount of animations such that text, visualizations, and 
calculations showed on the slides follow the pace of speech in the videos. Many learners 
have expressed in their course feedback that these features make the videos more engaging 
and easier to follow compared to videos in many other MOOCs. Sample videos from the 
Inferential Statistics course are hosted on YouTube (bit.ly/2LrO6KZ). 

6.3.3  Learning Objectives 

Each module of the Five-Course MOOC featured a set of learning objectives. A sampling 
of learning objectives from the Inferential Statistics course is shown below: 

• Explain how the hypothesis testing framework resembles a court trial. 

• Recognize that in hypothesis testing we evaluate two competing claims: the null 
hypothesis, which represents a skeptical perspective or the status quo, and the alter-
native hypothesis, which represents an alternative under consideration and is ofen 
represented by a range of possible parameter values. 

• Defne a p-value as the conditional probability of obtaining a sample statistic at 
least as extreme as the one observed given that the null hypothesis is true: p-value = 
P(observed or more extreme sample statistic | H0 true). 

* For more information about Zoom, visit https://zoom.us/ 

https://zoom.us/
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Tese learning objectives are constructed using verbs from the revised Bloom’s Taxonomy 
[12] and aim to keep learners organized and focused while watching the videos. Te learn-
ers are recommended to have the learning objectives handy while watching the videos and 
revisit sections of the videos and/or suggested readings for any learning objectives that 
they feel like they have not mastered at the end of the module. 

Te learning objectives are provided as separate stand-alone documents, and afer each 
batch of related learning objectives are a few simple conceptual questions for learners to 
check their understanding before moving on. 

6.3.4 Suggested Readings and Practice 

Suggested readings for the frst three courses of the MOOC course came from OpenIntro 
Statistics [13]. Tis book is free and open-source, meaning that learners enrolled in the 
MOOC do not need to additionally purchase a textbook. Te readings are optional as the 
videos explicitly introduce and cover all required topics for the course; however many 
learners have reported in their feedback that they really like having a reference book that 
closely follows the course material. Practice problems are also suggested from the end of 
chapter exercises in this book. 

For the fourth course on Bayesian statistics, readings are suggested from An Introduction 
to Bayesian Tinking [14]. Tis textbook has been written by the Bayesian Statistics course 
development team (faculty and PhD students) specifcally as a companion to this course 
and is also freely available on the web. 

6.4 USE OF TECHNOLOGY 
6.4.1 R Package 

A special R package LearnEDAfunctions was written for the EDA class. Tis package 
contains all of the datasets used in the lecture notes and the assignments. In addition, the 
package contains special functions for implementing the EDA computations. For example, 
the function rline computes Tukey’s resistant line and the function fit.gaussian fts 
a Gaussian comparison curve to histogram data and outputs the rootogram residuals from 
the Gaussian ft. 

6.4.2 EDA Blog, YouTube Videos 

Diferent methods in the EDA course were used to provide weekly communications with 
the students. For several iterations of the course, the instructor posted weekly articles on 
the blog “Exploratory Data Analysis” (https://exploredata.wordpress.com/). 

In a typical post, the instructor would give an example of the weekly EDA concept and 
give advice on common problems in applying the interpretation of the EDA method. Blog 
postings from previous years are made available for the student who wishes to see addi-
tional illustrations of the statistical methods. Since some students expressed preference 
for learning by watching videos instead of reading notes, the instructor added videos at 
the YouTube channel www.youtube.com/user/bayesball2/videos. A particu-
lar video would show the implementation of a particular EDA method using R and the 
LearnEDAfunctions package. 

https://exploredata.wordpress.com
www.youtube.com
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Tis Bayesian course extensively used videos to deliver content. One of the most creative 
uses of making videos for this hybrid course is to create guest lectures. Conventionally, 
guest lectures are delivered in the physical classroom. Now, to include remote students, 
guest lectures can be created in video form and made available to students online. Tis 
practice also saves class meeting time when possible. For example, a guest lecture video by 
a cognitive science professor at Vassar College is created and used as an introduction to 
Bayesian hierarchical modeling. Students watch the guest lecture before the class meeting, 
become familiar with the topic by themselves outside of the class, then when meeting in 
class, the lecture and discussion can follow from the common ground of the material from 
the guest lecture directly. Tis practice also exposes students to applications of Bayesian 
statistics at various stages of their learning. 

6.4.3  Shiny Activities 

In addition to the weekly data analysis assignments, the EDA class also contains several 
activities where the student uses sliders and other interactive tools in exploring data. For 
example, in choosing the “correct” power of a reexpression, the student can choose a value 
of the power on a slider and see the immediate impact of that particular reexpression in a 
graph of the reexpressed data. 

6.4.4 Use of Technology in Lectures 

Instead of writing on the chalkboard or presenting lecture slides on the projector in front 
of the classroom using a computer, the instructor in the Bayesian course uses an iPad as a 
participant of the Zoom meeting, brings up lecture slides inside the Zoom sofware, shares 
the screen to present the slides to the class on the projector, and uses an Apple pencil to 
write on the slide or a whiteboard. When doing an R programming demonstration, the 
instructor joins the Zoom meeting with a laptop, then shares the screen of R/RStudio on 
the laptop to the projector. Zoom records the video from the projector, and all audio from 
the lecture. Sometimes, the instructor could use a directional mic on the iPad to improve 
sound capturing. 

6.4.5  Computing Lab 

Each module in the MOOC featured a computing lab in R. Te objective of the labs is to 
give learners hands-on experience with data analysis using modern statistical sofware, 
R, as well as providing them with tools that they will need to complete the data analysis 
projects successfully. 

Te statistical content of the labs matches the learning objectives of the respective 
modules they appear in, and the application examples (i.e. datasets and research ques-
tions) are primarily from social and life sciences. Te labs also make heavy use of an R 
package, statsr, which was designed specifcally as a companion for the specialization 
[15]. Two other important aspects of the labs are that (1) they use the tidyverse syn-
tax and (2) they are completed as reproducible R Markdown reports. Te tidyverse is an 
opinionated collection of R packages designed for data science, meaning that the gram-
mar used in the packages is optimized for working with data specifcally for wrangling, 
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cleaning, visualizing, and modeling data [16]. Te choice of the tidyverse syntax for 
beginners is rooted in wanting to get learners exploring real and interesting data and 
building informative and appealing visualizations and drawing useful conclusions as 
much as possible [17]. 

R Markdown provides an easy-to-use authoring framework for combining statistical 
computing and written analysis in one document [18]. It builds on the idea of literate 
programming, which emphasizes the use of detailed comments embedded in code to 
explain exactly what the code is doing [19]. Te primary beneft of R Markdown is that 
it restores the logical connection between statistical computing and statistical analysis 
by synchronizing these two parts in a single reproducible report. From an instructional 
perspective this approach has many advantages: reports produced using R Markdown 
present the code and the output in one place, making it easier for learners to learn R 
and locate the cause of an error and learners keep their code organized and workspace 
clean, which is difcult for new learners to achieve if primarily using their R console 
to run code [20]. Each lab is provided to the learners in an R Markdown template that 
they can use as a starting point for their lab report. Earlier labs in the specialization 
include lots of scafolding, and almost have a fll-in-the-blanks feel to them. As the 
course progresses the scafolding in the templates is removed, and by the end of the 
frst course learners are able to produce a fully reproducible data analysis project that 
is much more extensive than any of their labs. All labs in the specialization are hosted 
in a publicly available GitHub repository at https://github.com/StatsWithR/ 
labs. 

6.5 ASSESSMENTS AND ENGAGEMENT 
6.5.1 Weekly Data Analysis Assignments 

In a typical data analysis assignment of the EDA course, the student works on a particular 
EDA method using a specifc dataset or another suitable dataset chosen by the student. One 
challenge for the student is to fnd a suitable data structure to implement the EDA method. 
For example, if the EDA task is to symmetrize a dataset by the use of a power expression, 
the student needs to fnd a strongly skewed dataset that could beneft with a reexpression. 

6.5.2  Final Project 

In a fnal capstone project of the EDA course, the students select their own dataset, state 
questions of interest, and explore the dataset using several of the EDA methods discussed 
in class. Te focus of this project is not on the implementation of the methods but rather on 
the interpretation of the results in light of the questions that were originally posed. 

Te Bayesian course has a fnal project component, and students can choose from one 
of the following. 

• A Bayesian data analysis on a topic of your choosing 

• A new Bayesian methodology or theoretical fnding 

• A Bayesian research paper or a book chapter (choose from a provided list) 

https://github.com/
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Students submit a project proposal afer the frst midterm exam. Tey are encouraged to 
meet with the instructor to discuss their project ideas and their progress along the way. 

Te fnal project presentation has two parts: a two-min video on Moodle, and a poster at 
the poster session. Te choice of a poster session is to accommodate a relatively large class 
(16 local students). However, it mimics real research settings, as it has become common for 
academic conferences to have a poster session for graduate students and junior research-
ers. Students in the class overall enjoy being able to talk to audience as a small group. Te 
amount of interaction between presenters and the audience is much more than a regular 
presentation. 

Each course in the MOOC ends with a data analysis project, the focus of which is sum-
marized in Table 6.3, and the specialization wraps up with an extended capstone proj-
ect. Each student who turns in a project evaluates three other students’ work using a 
peer evaluation rubric. Learners are also strongly encouraged to seek informal feedback 
on their projects in the course discussion forums. All data analysis projects appearing in 
the courses in this specialization are hosted in a publicly available GitHub repository at 
https://github.com/StatsWithR/projects. 

6.5.3  Homework 

Homework for the Bayesian course is on a biweekly basis. Te assignment usually consists 
of a set of derivation exercises to enhance the understanding of Bayesian methodology, and 
a set of application-based exercises, which require the use of R programming. Tere are 
two midterm exams and no fnal exam. 

Te teaching assistant for this course holds regular ofce hours at Vassar. While these 
ofce hours are held online too, remote students rarely make use of them. Instead, the 
instructor meets with the remote students together during a separately scheduled online 
ofce hour, also through Zoom. 

Homework submission from the remote students is done through scans and emails. 
Exams for remote students are proctored by the local faculty liaison. Exam papers are sent 
to the instructor by scans and emails too. All grading is either done by the instructor or 
the teaching assistant. Graded homework and exams are returned to the remote students 
by scans and emails. 

6.5.4  Case Studies 

For the Bayesian course, towards the latter part of the semester when students have been 
exposed to and gained experience with Bayesian inference, students are grouped to do case 
studies with real data applications. Tese case studies are all open-ended. Students are 
given the chance to freely explore the datasets and come up with their methods and realize 
their inferences through MCMC computation techniques. 

Prior to the case study class meeting, groups need to post their analyses onto the Moodle 
discussion forum to receive credit. Students in the same group take turns to be the lead-
ing writer of the analyses. Such a practice ensures that everyone is prepared to discuss the 
approaches and fndings from the group, and the class meetings usually turn out to be 
great discussion sessions and ideas bounce back and forth. 

https://github.com/
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6.5.5  Quizzes 

Each module of the MOOC course features two sets of multiple-choice quizzes, one for-
mative and one summative. Each question is encoded with feedback that points learners 
back to relevant learning objectives. Learners can attempt the summative quizzes multiple 
times with slightly modifed versions of the questions. 

6.6  INTERACTION 
Currently, there is limited interaction in the EDA course. Students communicate with the 
instructor by means of personal meetings or email or messages sent through the learning 
management system. Tere is no regularly planned interaction between students such as 
an outline chat session, but students are asked to read and review the project presentations 
of two other students in the class. 

In the Bayesian course, to create and foster an online learning community, there are 
extensive uses of the online discussion forum on Moodle.* 

At the beginning of the semester, students make self-introduction posts about their 
basic information (name, year, and school), prior statistics exposure, prior R exposure, and 
potential fnal project interests. 

During the semester, online discussion forums are created whenever sharing of infor-
mation and making comments are needed, and they are for credit sometimes. For example, 
when covering the Gibbs sampler, the class reads a research paper “Explaining the Gibbs 
Sampler” by George Casella and Edward I. George [21]. A reading guide for this paper 
with six questions is provided to the students. Prior to the class meeting, students need to 
respond to any one question on the online discussion forum to receive participating credit. 
Afer the class discussion, students need to make another response to receive credit. Such a 
requirement not only helps students in reading a statistics research paper outside of class, 
but also helps facilitate in-class discussion both by more engagement prior to and post class 
meeting. 

Tere is a fnal project for students in the course. In addition to presenting their projects 
in a poster session at the end of the semester, students need to make a two-min video post 
about their projects on the online discussion forum. Watching a two-min pitch talk prior 
to the poster session helps other students to arrange their poster visits. Tese videos also 
help students to succinctly present their projects in a manner as appealing as possible. 
While the use of the online discussion forum on Moodle is motivated frst mostly to make 
remote students feel included, it ultimately engages local students much better as well. 

In-person student interaction, or the lack thereof, is ofen a major challenge in online 
courses. However, in MOOCs the discussion forums are ofen a major strength of the 
course. Given that at any point thousands of students are enrolled in the course, even if a 
small percentage of these students choose to browse the discussion forums, and an even 
smaller percentage of them interact with other learners on the course discussion forums, 
this still results in a large number of learners interacting with each other. 

* Moodle is the course management system used at Vassar College. 
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Additionally, over the years of the MOOC being ofered, a growing number of very 
knowledgeable and helpful course mentors emerged from the discussion forums. Tese are 
learners who took the courses at an earlier time and now volunteer their time to answer 
student questions and provide direction for new learners. Teir contribution is essential 
to the success of the course discussion forums. In addition to answering student questions 
directly, they also escalate any questions that would beneft from additional input to the 
course instructor. Tis workfow makes it feasible for the instructor to keep tabs on the dis-
cussion forums when most needed, but not get overwhelmed by the number of questions 
posted each day by the learners. 

6.7  CHALLENGES 
Tere are several current challenges in the current version of the EDA online course. 

• Interaction with the student 

It is benefcial if the student can interact with the instructor and fellow students in 
an online course. Unfortunately, attempts for interaction such as online chat sessions 
or online message boards have not been efective in this particular class. Terefore 
most of the communication is done through email and personal meetings. Tere is 
an efort to try out new methods of interaction when they become available. 

• Technology issues 

Students can get frustrated with technology issues such as installing sofware or 
getting their R markdown fles to “knit” properly. It is best to address these issues 
early in the course so the course is more about the EDA concepts and less about the 
associated technology. 

• Balance of computation and interpretation in assignment work 

In a typical assignment, the student will turn in a Markdown fle that blends out-
put from the R system and written text that interprets the R output in the context of 
the particular applied problem. Since the course is really focusing on the interpreta-
tion rather than the implementation of the EDA methods, the assignment should 
emphasize the interpretation component. Depending on the background, the student 
may emphasize instead the computation component, but hopefully the students will 
learn what is expected in future assignments. 

Although the instructor of the Bayesian course has been faced with various challenges, 
advice, suggestions, and sharing from multiple parties have been tremendously helpful. To 
improve the teaching and learning mode of the hybrid model, lecture videos can be edited 
and shortened when resources permit. If done properly, the lecture videos can well be a set 
of learning material for anyone (not necessarily from the LACOL member colleges) who 
is interested in an undergraduate-level introduction to Bayesian statistics. More thought 
and consideration on turning course material into video form can further enhance the 
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teaching and learning. While students’ interaction can be maintained using an online dis-
cussion forum on Moodle, other forms of interaction can be explored and developed to 
further enhance the overall interaction in the course. 

For the fve-course MOOC, there are three main challenges with ofering this content 
on an online platform; two of these are associated with the labs and the other is associated 
with the data analysis projects. 

• Autograding: Given that this is a course with thousands of learners enrolled at any 
given point, human-grading is simply not feasible. Te lab assessments are set up 
as multiple-choice questions. Learners complete the lab exercises by generating R 
Markdown reports in which they analyze a dataset. Ten, they answer a series of 
multiple-choice questions about the data analysis results. Te challenge is that the 
multiple-choice questions do not assess the full spectrum of the skills we want learn-
ers to acquire via these labs—they assess whether they can obtain the correct results 
using R, however they do not assess mastery of R syntax, reproducibility of their 
analysis, etc. 

• Computing infrastructure: Our preferred method for getting students with no com-
puting background started with R is cloud-based access to RStudio in order to avoid 
challenges around local installation and to provide a uniform computing environ-
ment for all learners. However, it is not feasible to ofer a centralized cloud-based 
solution to all learners enrolled in an MOOC, and hence students have to locally 
install R and RStudio and the correct versions of all packages they use in the labs. 

• As a partial solution for this challenge, we ofer students the option to complete the 
labs in the frst course of the specialization on DataCamp (www.datacamp.com), 
an online learning platform that provides in-browser access to RStudio. Tis helps 
students struggling with sofware installation issues early on in the course to get 
started with data analysis and go back to tackling sofware challenges once they feel 
a little bit more confdent with R. 

• Peer evaluation: Autograding is not feasible for open-ended data analysis projects, 
and hence peer evaluation is the only solution for grading of these projects. Even 
with a very detailed rubric, consistency in grading is difcult to attain, and it is chal-
lenging for learners who are just learning the material themselves to evaluate others’ 
work. Additionally, variability in the quality and depth of feedback provided can 
leave learners frustrated. Te option to share their projects on the discussion forums 
and get feedback can be helpful for some learners, but others are not so keen on pub-
licly sharing their projects. 

6.8  CONCLUDING COMMENTS 
Although this is current interest in teaching online introductory statistics courses, the 
online statistics courses described here are directed towards specifc groups of students 
and all of the comments may not be directly applicable to the introductory class. For 

www.datacamp.com
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example, the students in the EDA online course are primarily masters-level or advanced 
undergraduate students who are comfortable in working independently on assignments 
and projects, and this particular course design may not be suitable for an introductory sta-
tistics class with a minimal mathematics prerequisite. Similarly, the Five-Course MOOC 
has been designed for a global audience, assuming no common background and varying 
levels of access to computing resources. Te delivery of the course can be simplifed for a 
university audience where assumptions about common access and background might be 
more appropriate. Nonetheless, there are general common elements to these courses which 
would be helpful for the instructor who is designing the frst online statistics course. 

6.8.1 Presentation of Content 

Although the EDA course features written instructional content, much of the content 
delivery in all of these online courses happens in videos. Te use of videos makes it pos-
sible for several instructors to get involved in the presentation of content. In addition, it is 
possible for the student to learn from the video at their own pace, replaying parts of the 
video to help them understand the material. 

6.8.2 Interaction 

It is important to develop a cooperative learning environment among students in the 
online course. Tese courses suggest useful methods for facilitating this type of envi-
ronment. Discussion forums, as described by the shared Bayesian course and the Five-
Course MOOC, are one good way to foster communication between students. Another 
good opportunity for collaboration is through statistics projects where groups of students 
explore data on case studies. 

6.8.3 Assessment 

It should be noted that traditional forms of assessment such as multiple-choice exams play 
a limited role in assessment for these online statistics courses. Instead, these courses fea-
ture data analysis projects, interactive computer lab assignments, and other projects where 
the student carries out an exploration into a new method or fnding that is not covered 
in the curriculum. However, the necessity for peer evaluation of the projects in the Five-
Course MOOC presents its own challenges. 

6.8.4 Using Software 

All of these online courses use technology or sofware that may not be familiar to the stu-
dent. Specifcally, since these are statistics courses, one would typically use the R language 
together with specialized R packages. Introducing this technology creates challenges since 
the students can vary greatly with their experience with programming in general as well 
as with the R ecosystem. Tese courses have presented various ways to mitigate the tech-
nology challenges by creating special packages (e.g. the LearnEDA package in the EDA 
course, the rjags package in the shared Bayesian course, and the statsr package 
in the Five-Course MOOC) that include all of the datasets and special functions needed 
for the course. Te Five-Course MOOC provides some suggestions to help some of these 
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technology issues such as providing cloud-based access to R via a third-party company, 
DataCamp. Te instructor teaching an online statistics course should think carefully about 
the use of sofware, especially from the viewpoint of the student who is inexperienced with 
technology. 

REFERENCES 
1. Mills, J. D. and D. Raju, “Teaching statistics online: A decade’s review of the literature about 

what works,” Journal of Statistics Education, vol. 19, no. 2, 2011. 
2. Young, D. S., G. F. Johnson, M. Chow and J. L. Rosenberger, “Te challenges in developing 

an online applied statistics program: Lessons learned at penn state university,” Te American 
Statistician, vol. 69, no. 3, pp. 213–220, 2015. 

3. Yang, D. “Instructional strategies and course design for teaching statistics on- line: 
Perspectives from online students,” International Journal of STEM Edu-cation, vol. 4, no. 34, 
pp. 1–15, 2017. 

4. Everson, M. and J. Garfeld, “An innovative approach to teaching online statistics courses,” 
Technology Innovationss in Statistics Education, vol. 2, no. 1, 2008. 

5. Dunwill, E., “Teaching principles transferred to online courses: Strategies to use,” eLearning 
Best Practices, 2016. 

6. Everson, M, “10 things i learned about teaching online,” eLearn Magazine, 2009. 
7. Tukey, J. W., Exploratory Data Analysis. Pearson, 1977. 
8. Sakia, R. M., “Te box-cox transformation technique: A review,” Te Statistician, vol 41, no. 2 

pp. 169–178, 1992. 
9. Hof, P. D., A First Course in Bayesian Statistical Methods. Springer Texts in Statistics, New 

York: Springer-Verlag, 2009. 
10. Lee, M. D. and E. Wagenmakers, Bayesian Cognitive Modeling: A Practical Course. Cambridge 

University Press, 2014. 
11. Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Ve-htari and D. B. Rubin, Bayesian Data 

Analysis. Chapman & Hall/CRC Texts in Statistical Science, 3rd ed., 2013. 
12. Anderson, L. W., D. R. Krathwohl, P. W. Airasian, K. A. Cruikshank, R. E. Mayer, P. R. 

Pintrich, J. Raths and M. C. Wittrock, A Taxonomy for Learning, Teaching, and Assessing: A 
Revision of Blooms Taxonomy of Educational Objec-tives, Abridged Edition. White Plains, NY: 
Longman, 2001. 

13. Diez, D. M., C. D. Barr and M. Çetinkaya Rundel, OpenIntro Statistics. Cre- ateSpace, 3rd ed., 
2014. https://www.openintro.org/. 

14. Clyde, M., M. Çetinkaya Rundel, C. Rundel, D. Banks, C. Chai and L. Huang, An Introduction 
to Bayesian Tinking. GitHub, 1st ed., 2018. https:// statswithr.github.io/book/. 

15. Rundel, C., M. Çetinkaya-Rundel, M. Clyde and D. Banks, Statsr: Companion Package for 
Statistics with R, 2018. R package version 0.1-0. 

16. Wickham, V, Tidyverse: Easily Install and Load the ’Tidyverse’, 2017. R package version 1.2.1. 
17. Robinson, D., “Teach the tidyverse to beginners,” 2017. http://varianceexplained. org/r/ 

teach-tidyverse/. 
18. Xie, Y., J. Allaire and G. Grolemund, R Markdown: Te Defnitive Guide. Boca Raton, FL: CRC 

Press, 2018. 
19. Knuth, D. E., “Literate programming,” Te Computer Journal, vol. 27, no. 2, pp. 97–111, 1984. 
20. Etinkaya-Rundel, M. C. and C. Rundel, “Infrastructure and tools for teaching computing 

throughout the statistical curriculum,” Te American Statistician, vol. 72, no. 1, pp. 58–65, 
2018. 

21. Casella, G. and E. I. George, “Explaining the gibbs sampler,” Te American Statistician, vol. 
46, pp. 167–174, 1992. 

https://www.openintro.org
https://statswithr.github.io
http://varianceexplained.org/


117 

 

 

 

   
   
   
   
   

 

C H A P T E R  7 

Statistics for Engineers 

Charles E. Smith, Kimberly S. Weems, and Reneé H. Moore 

CONTENTS 
7.1 Introduction 
7.2 Project Components 
7.3 Common Mistakes 
7.4 Performance 
7.5 Conclusion 
Bibliography 

7.1  INTRODUCTION 

117 
120 
129 
129 
129 
130 

Upon the request of engineering faculty, the department created a one-semester course 
called Probability and Statistics for Engineers. Tis course consists of about two-thirds 
statistics and one-third probability and has the largest enrollment among calculus-based 
undergraduate service courses in statistics. Approximately 100 students enroll in each of 
the fve to six sections taught during both the fall and spring semesters. One distance edu-
cation (DE) section is available. Statcrunch is the primary sofware used in the face-to-face 
sections. Te DE section ofers the following options regarding sofware: R, MATLAB, 
and JMP. Te course has evolved somewhat over the last 15 years but an essential compo-
nent has been the course project. Our goal in this chapter is to show it is feasible to have a 
designed experiment with two or more factors and its statistical analysis in a one-semester 
course. Some modifcations to the traditional way of presenting a one-semester course 
seem to be required. 

In traditional engineering statistics classes, probability distributions and random vari-
ables as well as estimation and hypothesis testing are usually presented before regres-
sion, ANOVA, and factorial experiments are introduced; for instance, see Navidi (2019), 
Walpole et al. (2016), and Devore (2015). Tis course, however, follows a non-traditional 
sequence of topics: it begins with experimental design, factorial data analysis, ANOVA, 
and multiple regression; the middle sets of topics include probability, random variables, 
random samples, and central limit theorem; and it ends with hypothesis testing and con-
fdence intervals. Tis sequence allows for the students to complete a project, which may 
be done individually or in groups of two to three students. Te objectives of the project 
are to choose, design, perform, analyze, and describe a completely randomized two-factor 
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experiment using ANOVA or multiple regression and descriptive statistics. Students are 
encouraged to select a topic that interests them; it does not necessarily need to be related to 
their feld of study. Students submit approximately a 10- to 20-page report including data 
fles. Te project is worth 20% of their fnal grade. 

Although this course may be the frst college statistics course completed by an under-
graduate student, it incorporates material that is usually taught in second statistics courses 
through its emphasis on experimental design, multi-way ANOVA, and multiple regression. 

Before giving the details of the course project components, a brief review of some previ-
ous work on course projects and other active-learning methods for engineers is presented. 
A more general literature review, not focused on course projects, but on best practices for 
teaching statistics online can be found in Mills and Raju (2011). 

Researchers, for instance Brown and Kass (2009) and Garfeld et al. (2002), have called 
for the inclusion of more real data into statistics education. Te Guidelines for Assessment 
and Instruction in Statistics Education (GAISE) College Report (2016) supports the use 
of real data in teaching statistics and emphasizes the importance of active learning. 
Particularly, this report suggests the following six recommendations: 

1. Teach statistical thinking. 

2. Focus on conceptual understanding. 

3. Integrate real data with a context and purpose. 

4. Foster active learning. 

5. Use technology to explore concepts and analyze data. 

6. Use assessments to improve and evaluate student learning. 

Specifc to engineering, Musharavati and Hamouda (2010), Kvam (2000), and Romero and 
Land (2004) have documented the positive efects of active learning and projects on engi-
neering students’ education. 

Like Hunter (1977), Khan et al. (2018) emphasize the importance of having engineering 
students experience all steps involved in an experimental investigation. Also, they under-
score the importance of using problem-based learning in statistics courses for engineers 
where students are self-directed and work in groups to develop strong problem-solving 
skills. Tese group projects are supplemented with lectures and tutorials. Roughly three-
quarters of their students complete their engineering statistics class online. 

Bergquist and Albing (2006) surveyed their engineering alumni to examine the useful-
ness of statistics in the workplace. Teir results suggest that courses should be practical and 
teach students how to perform experiments with a focus on the statistics involved, what 
can go wrong in an experiment, and how to handle non-textbook problems. Te courses 
should include a broad discussion about the importance of randomization and encourage 
students to work on projects that they can relate to, such as “testing optimal settings of a 
video game.” 
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Bradstreet (1996) argues for teaching statistical reasoning frst, with less computation, 
and then statistical methods, that is, using exploratory data analysis before teaching clas-
sical methods. He supports workshop (problem-based and active learning) classes so that 
students can experience statistics. Tis order is what is used for the NCSU course consid-
ered in this paper. 

Stephenson (2001) describes two-semester sequence distance-education applied sta-
tistics courses for industry. Emphasis is placed on students’ appreciation for statistical 
thinking with a focus on designed experiments. Teir class is taught face-to-face as well as 
online, with asynchronous delivery of material to DE students. Teir class included a data 
analysis project component which was deemed “the most efect means of actively engaging 
distance education students in the practice of statistics.” Teir students worked individu-
ally or in groups on a variety of topics that may or may not be work-related. Most of their 
DE students chose work-related topics 

Ojeda et al. (2012) discuss problem-based approaches to teaching statistical thinking in 
statistics courses designed for several felds, including engineering. Te authors stress the 
need to relate statistics to real-world problems as instructors should avoid “teaching with-
out context.” Te authors strongly advocated for the use of projects—students learn how to 
apply appropriate stat techniques, use sofware, strengthen/develop communication skills, 
and make conclusions from statistical analyses. 

Butt, Fredericks, and White (2004) discuss integrating active learning into statistics for 
engineers. Weekly two-hour lectures are paired with three hours of lab exercises (in a com-
puter or engineering lab). 

Kvam (2000) examined the efects of active learning in calculus-based engineering 
statistics classes. Primarily, he studied the diferences in retention of statistics material 
between students in a traditional class and a problem-based class. Te problem-based 
classes included four group projects on topics such as DOE, ANOVA, and regression. Te 
challenges of the problem-based course include students being able to think of original 
topics, stronger students feeling as if they had to carry less prepared students, and the 
workload for the instructor. Te author presented the types of projects used, feedback 
from students, how students were selected to participate in the study, data comparison, 
and analysis. Te study did not detect any statistical diferences in the retention of students 
from the two teaching methods; however, the data suggested that average students beneft 
from the active learning. 

Grima, Rodero, and Tort-Martorell (2016) discuss explaining variability in an intro-
ductory statistics course for undergraduate engineering majors. Te course uses a simple 
circuit and the Wheatstone Bridge to introduce the concept of variability and illustrate the 
efect of variability. Tere are short exercises related to circuits in which random variables, 
probability distributions, functions of random variables, and sampling distributions are 
covered. 

Romero et al. (1995) describe changes in their university system that refect eforts to 
design active-learning courses that focus on what students can learn and retain. 

Bisgaard (1991) argues that engineering practice and problems should inform how one 
teaches statistics. He discusses a one-semester engineering problem-solving course that 
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begins with a helicopter experiment. Tis experiment leads to discussions about blocking, 
paired comparisons, randomization, and fractional factorial design. Later, data resulting 
from the instructors’ consulting projects are used to create homework assignments. Tere 
is a fnal group project in which students select their own topic and design, conduct, and 
analyze data from an experiment. 

Te asynchronous NCSU distance course brings together several of the above-men-
tioned components. Te project is an active-learning experience dealing with real data 
that the students have chosen and have some interest in, c.f. Ojeda et al., 2012. Te 
project components are taught by a problem-based approach (Kvam, 2000; Ojeda et al., 
2012), and all steps of the experimental investigation are performed (Khan et al., 2018) 
Te distance sections of the course tend to have more projects done alone than the face-
to-face sections. For example, last semester in the sections taught by Smith the distance 
section had 21 of 94 students working alone on the project, while the two face-to-face 
sections had 6 of 97 and 10 of 74 students working alone. Te distance section students’ 
projects tend to be more work-related than the face-to-face sections. Later we present 
some of the students’ feedback about their view of the project. Te distance section relies 
primarily on a message board for fnding project partners and the instructor trying to 
pair students submitting similar proposal topics and also emailing students about other 
students that are geographically close to their location. Te distance section has also 
benefted from pointers by the faculty in the College of Education who teach Massively 
Open Online Courses (MOOCs) on using innovative approaches and appropriate tech-
nology tools (Lee and Stangl, 2017), such as assigning a large number (26) of smaller 
homework sets. 

7.2  PROJECT COMPONENTS 
For the face-to-face sections, students submit the parts of their project in stages which 
allows for feedback throughout the entire experience. Tese components include the proj-
ect proposal, executive summary, initial report, and final report, which are described below. 

Te distance section is handled a little diferently, with a detailed project proposal (illus-
trated below) and a fnal project following an annotated template. Te proposal must be 
approved by the instructor and the average number of iterations for the proposal is 2.3 
submissions. Final projects that are submitted more than one day early receive detailed 
feedback and the opportunity to correct any errors noted by an initial assessment. 

Many students have trouble choosing a topic on their own and struggle to truly under-
stand the diference between a genuine experiment and an observational study. Te 
instructors provide a list of topics and a photo gallery on the course webpage. Tere are 
also about 100 sample projects that may be accessed through the libraries’ electronic 
reserves. Students may use ideas from previous projects, but they are required to make 
some modifications. Several homework questions present previous project proposals and 
ask them to ascertain whether they are an observational or experimental study and to 
explain their reasoning. For the distance section, at the project proposal stage, the topic 
is checked against an archive of previous projects for the course and several websites that 
contain engineering/science projects in an efort to prevent plagiarism. 
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In the project proposal, students present the title and a brief description of their 
experiment. Some recent projects are given in Box 7.1. While a small number of stu-
dents have access to testing machines in the labs of their major or employer, such as 
steel or concrete strength, most students choose simpler projects that involve more 
accessible and cost-efective materials. Details such as variables, treatments and experi-
mental units, analysis methods, etc., are listed in Box 7.2. Tey estimate how much time 
will be required for data collection, discuss important sources of experimental error, 
and describe how randomization and replication will be used. Tis process allows stu-
dents to reflect on important topics covered during lectures or videos of them for the 
distance section, such as the need for a numerical approximately continuous response 
variable. Students explain whether they will use ANOVA or regression methods and 
discuss their expected outcomes. Two full models are required so that the students 
can assess which model is the better fit. Te second model is ofen a log or square root 
transformation of the response. At least one factor must have three or more levels. Te 
signifcance of the interaction term between the two factors is also emphasized and 
provides a clearer understanding for the students of the need for log or square root 
transformations. 

BOX 7.1: SAMPLE PROJECTS 

• Distance traveled by three brands of toy cars from ramp at three angles 
• Fishing line breakage strength by brand and heat stress testing 
• Comparison of the porosity of coffee flters, paper towels, and cotton fabric and their 

response times with three liquids 
• Effect of liquid and environment on egg shell corrosion 
• Optimal kicking method and ball type for achieving maximum fight distance 
• Effect of packet size and distance on fle transfer speeds 
• Heart rate differences with respect to swim stroke type and swimming experience 
• Tennis ball or superball bounce height or time between frst and second impact with var-

ied ball brand and surface type 
• The effect of mass and swing length on the period of a pendulum’s oscillation 
• The effect of number of hidden layers and number of neurons per layer on image 

classifcation 
• The effect of ball size and drop height on diameter of impact craters in sand 

BOX 7.2: PROJECT PROPOSAL FORM FOR DISTANCE SECTION 

ST370 DISTANCE—PROJECT PROPOSAL FORM 

Fill out at least items 1–9 below and paste into an e-mail to the instructor. 
1. Name(s) ____________________________________ 
2. Title and brief description of experiment: 
3. The response variable is ________________ 

and is measured in 
units of ________________. 
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4. Factors: 
Factor 1 is: 
Its levels are: 
Factor 2 is: 
Its levels are: 
If needed Factor 3 is: 
Its levels are: 
What is your “experimental unit”? How many experimental units will be 

needed to run your experiment? 
Draw the DESIGN MATRIX and indicate the random order that the trails 

will be run (if three replications then EACH cell has three numbers in it, those num-
bers are the order that combination of factors will be run). 

Fill in the names of your factors and their levels; don’t use generic level 1, 
level 2, etc. 

Factor 2 

level 1 level 2 level 3 level 4 

Level 1 |_______|___________|___________|____________| 

Level 2 |_______|___________|___________|____________| 

Factor 1 Level 3 |_______|___________|___________|____________| 

Level 4 |_______|___________|___________|____________| 

Use “sample” function in MATLAB or R to determine random ordering 
and put order of runs in the matrix 

5. How will randomization and replication be used? 
6. How will you analyze the data? With means table and ANOVA (lm with class variables, 

i.e. with qualitative explanatory variables) or regression (lm with quantitative explanatory 
variables) or both? 

[Note ALL project must have: stats output, side-by-side boxplots, mft (ftted 
effects), mplot (interaction plots), and rplots (residual plots). You need to also show 
the model statement for at least two full (main effects and interaction) models in 
MATLAB or R; typically one has response and other log(response) or sqrt(response); 
see the four example proposals if you are unclear how to do this.] 

7. Briefy, what do you expect to happen? 
8. Are there any safety concerns? Will you wear protective eyewear? Gloves? Mask? 
9. Any additional comments: 

For the face-to-face sections, afer the proposal has been approved, students are asked to 
submit an executive summary. Te one-page summary must give enough detail so that the 
reader can conduct the experiment exactly as intended. Students are required to specify 
the random order in which trials will be run by completing a design matrix for their facto-
rial experiment. Completing the executive summary requires the students to decide upon 
all details of the experiment within the first fve weeks of the 16-week semester. Te initial 
project report should be as close to the finished product as possible. Students are expected 
to tie together all of their graphical, numerical, and inferential methods. Tey include a 
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statement of the practical implications of their study as well as a discussion of further ques-
tions raised by the study. Students include at least one photo taken while the experiment 
was being conducted. 

For the distance section, the proposal is submitted afer the ffh or sixth week, depend-
ing on the timing of fall or spring break. Te proposal is more detailed than the face-to-
face section and has two or three iterations of feedback with the instructor. Te feedback 
may include doing a pilot or prototype experimental run for the corners of the design 
matrix to show the experiment is doable and that the levels are chosen appropriately, e.g. 
it doesn’t take 72 hours to get each data point. Having the student send images or video 
of their apparatus or setup and of a prototype run are a valuable aid for the instructor to 
provide detailed feedback. Te fnal project submission is usually four to fve weeks later 
using the template shown below. Distance students are strongly encouraged to submit 
their project or a detailed draf early to check for analysis errors and to circumvent any 
miscommunication between the student and instructor about the implementation of the 
actual experiment. Early submissions receive one point per day up to a maximum of 
seven points. 

BOX 7.3: PROJECT WRITEUP TEMPLATE 

0. TITLE, NAME, SECTION NUMBER, and TABLE OF CONTENTS 
1. An Executive Summary (goals and major fndings). 

This part should be about three-quarters to one page and state: 
• What is the question you are trying to answer? 
• Your response variable. 
• Your factors and levels. 
• How you randomized, how many replications you did, and if you blocked on any 

factor. 
• It should summarize your statistical results: which terms were and were not statistically 

signifcant in both your models including interaction terms. 
• Main conclusions. 

2. A description of the reason for your study. Why is this study of interest, what did you 
expect to learn? 

3. A statement of how your a priori expectations for the study turned out, that is, how did you 
think it would come out before doing the experiment? 

4. What you did and how you did it (in enough detail that your instructor could replicate it if 
he/she wished, without having to ask you for more details of exactly what equipment and 
materials were involved, how they were used, etc.). You may need to include sketches of 
the physical apparatus used. 

5. A list of the raw data you obtained and circumstances surrounding their collection (order 
of collection, randomization, etc.) and the design matrix. Raw data table should have one 
column as order of the runs or trials. 

6. Appropriate statistical analyses of the data (use graphics as well as numerical summaries). 
All projects should include stats (statistics by each factor), mft, mplot, and side-by-side 
boxplots by each factor. 

For example, if datastructure is called b from b=readfle 
then stats(b.y,b.x1) and stats(b.y,b.x2) 
mft(b.y,b.x1,b.x2) 
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mplot(b.y,b.x1,b.x2) 
bplot(b.y,b.x1) 
bplot(b.y,b.x2) 
Each project needs the two ANOVA or the two regression models or a 

combination of ANOVA and regression that were stated in your approved proposal. 
Additional models can be examined as well. 

If ANOVA, remember to use the class statement and to include the interac-
tion term. After running each model do an rplot by X1 and by X2 where X1 and X2 are 
factors 1 and 2. 

If REGRESSION, do at least main effects and interaction terms, model Y = 
X1 + X2 + X1*X2; also do a rplot by X1 and by X2 where X1 and X2 are factors 1 and 2 
to see if other terms need to be added to model or if log(Y) is appropriate. Syntax is: 
rplot by X1 

rplot by X2 

For each model, state which terms are signifcant. Compare this to the 
results from mft which indicated the relative importance of each factor and interac-
tion. Give the coeffcient of determination, R2, and standard error for each model. 
Compare the two or more models; indicate which one has the higher R2 and if there 
are differences in which terms were signifcant. Did the residual plots indicate that 
the assumption of equal variances across levels was met? 

From the mplot and side-by-side boxplots, is an interaction suggested? 
(Was the interaction term signifcant in ANOVA or regression?) Is the mean change 
across levels linear? Are the data in the boxplots highly skewed? 

From the means table: which treatment gave the highest mean response? 
The smallest mean response? 

Give the prediction for these treatments using the mft results and also from 
your best regression model if you did regression instead of ANOVA. 

7. A statement of the practical implications of your study. What is the take-home lesson from 
your study? Give the main conclusions. 

8. A discussion of further questions raised by your study (that might be investigated in a sub-
sequent experiment). For example, if you were doing the project again, what would you 
change? What other factors might be considered? Should levels of factors be changed, and 
did the experiment suggest some new questions to explore? 

9. Copy of your approved project proposal. 
10. The data fle as .txt fle (with columns being X1, X2, Y, and run-order). 

Portions of two student projects will be shown to illustrate the types of analysis per-
formed. For the frst example, students examined the efectiveness of insulated cups. Tey 
produced an interaction plot (also known as mplot) given in Figure 7.1. Te two factors 
were liquid temperature and cup type. Tey explained that the parallelism of the lines sug-
gests a lack of interaction between cup type and initial water temperature in the change of 
water temperature. Tey also noted that initial water temperature has a greater efect on 
the response than cup type. Later, they produced ANOVA and ftted efects (also known as 
mft) results (see Boxes 7.4 and 7.5 respectively) which supported these conclusions. Te 
students determined that an additive model is appropriate. Teir results revealed that the 
cups were better insulators for cold drinks than for hot drinks. 
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BOX 7.4: ANOVA TABLE FOR INSULATED CUPS EXPERIMENT 

BOX 7.5: MFIT TABLE FOR INSULATED CUPS EXPERIMENT 

FIGURE 7.1 Interaction plot for efectiveness of insulation project. 
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Another example project used regression rather than ANOVA. Te project had a response 
variable of time the parachute was in the air. Te factors were the height that parachutes 
were dropped from with levels one, two, and three stories, and the weight attached with 
levels zero, one, and two binder clips. In Figure 7.2, the experimental units are shown. In 
Box 7.6 the regression models for responses of time and log(time) are given. Te R2 for the 
log model was slightly better, and Figure 7.3 indicates that the residual plots for the two 
models are similar and have roughly equal variances across factor levels. Box 7.7 shows 
the design matrix for this completely randomized experiment with four replications. Te 
side-by-side boxplots in Figure 7.4 reinforce the conclusions reached from the regression 
analysis. 

BOX 7.6: QUADRATIC REGRESSION MODELS FOR THE PARACHUTE EXPERIMENT 

BOX 7.7: DESIGN MATRIX FOR THE PARACHUTE EXPERIMENT 
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FIGURE 7.2 Experimental units for parachute experiment with zero, one, and two binder clips. 

FIGURE 7.3 Residual plots for regression models in parachute experiment. 

Afer submitting the project, students are asked to evaluate the contributions of each 
person, including themselves, toward the completion of the project. Tese evaluations 
are done anonymously and submitted electronically. Lazar et al. (2009) noted that the 
peer evaluations “give the students a chance to engage in self-criticism, and to give their 
perspectives on how the team functioned.” On a few occasions, students have submitted 
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FIGURE 7.4 Side-by-side boxplots for the parachute experiment. 

complaints in person, but the instructors have observed that most teams prefer to work 
out diferences among themselves. Students are more likely to give honest, constructive 
feedback via the peer evaluations completed at the end of the project. Te feedback is usu-
ally positive. 

A sample of the “reasons for the study” comments in the project writeup provides some 
insight into how the students regard the project requirement for the course. 

• “All three members of our team have taken an engineering dynamics class and 
learned about free falling objects, so we decided to test this concept with varying 
weights and heights of falling parachute men.” 

• “We started this experiment inspired by collapsing of the structure especially the col-
lapse of the Tacoma Narrows Bridge on the morning of November 7, 1940.” 

• “Tis study was of interest because of the idea on a larger scale. How are wooden 
structures afected by material altering substances on an everyday basis?” 

• “A month ago at a family outing to a local golf course, Asa lef his putter at home and 
had to use his other clubs to make his shots. Tis did not go over well because all the 
other clubs have a lot of diferences to the putter.” 

• “Tis experiment was chosen by our group, because it related to our common inter-
est in astrophotography, and it gave us a chance to explore the factors involved in the 
formation of the craters we so ofen see. We varied the size of our projectiles while 
maintaining a fxed mass, in order to see how crater size related to the buoyancy/ 
density of projectiles.” 
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7.3  COMMON MISTAKES 
Many of the common mistakes involve improper implementation of sofware, misreading 
of sofware output, or omission of required elements. Also, graphs and tables are ofen 
presented without proper or any discussion. 

Besides the somewhat routine errors listed above, the most common mistake is improper 
use of randomization. Ofen, there is confusion between randomization and simple ran-
dom sampling. For instance, related to the insulation example, a student might say, “we 
randomly selected a cup from the package to use in our experiment” and consider this 
process as randomization. Some students, particularly computer science majors, argue that 
randomization is not necessary in their experiment. 

Another major stumbling block is the interaction between factors as indicated in the 
interaction plot, fitted efects table, and ANOVA table. Rather than discussing the impor-
tance of main efects and interaction, some students solely focus on factor combinations 
that support their a priori expected results. A means or interaction plot that is not parallel 
and an ANOVA table that says that interaction is not significant presents a dilemma in 
their report for some students until they examine the size of the standard error in their 
model. 

Te distance course project webpage includes a section on the 13 most common errors 
in projects. An email reminding the students to read this section is sent to the students 
several times in the two weeks before the project is due. 

7.4  PERFORMANCE 
In this section the performance of distance vs. lecture students is compared for sections 
taught by the same instructor. Te median of the course average for students in the dis-
tance section over the last fve semesters is: 86.77 (n = 94), 84.40 (n = 99), 82.12 (n = 98), 
82.14 (n = 101), 82.14 (n = 98). Te corresponding median for the lecture section in four of 
the last fve semesters is: 84.69 (n = 97), 79.41 (n = 89), 81.84 (n = 73), 79.43 (n = 90), 83.84 
(n = 92). 

Te percentage of the class receiving a letter grade of A over the same fve semesters for 
the distance section is: 42.6, 37.4, 36.7, 25.7, and 40.8, and for the lecture section is: 26.9, 
29.2, 30.1, 25.6, and 37.0. 

Both measures indicate that the distance section, in terms of fnal grade average and 
percentage of As, is doing as well as, if not better than, the lecture section. 

Several comparisons of distance vs. lecture traditional vs. lecture fipped have been 
made for business statistics (Dutton and Dutton, 2005) and for a statistical literacy course 
(Gundlach et al., 2015), but none for calculus-based engineering statistics that we are aware 
of. 

7.5  CONCLUSION 
Te capstone project is an important component of students’ learning experience in the 
engineering statistics course. Most students produce a very good report, earning an A 
grade. In fact, a student project from the distance education section won a prize in the 
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Undergraduate Statistics Project Competition (USPROC). Te discussion of the project 
details with group members clarifies and solidifies the homework and lecture or video 
concepts. In addition, the project promotes creativity and allows students to relate statistics 
to their extra-curricular or academic interests. 

Tere are some challenges. Te assessment is time-intensive for the instructor. Also, the 
selection of project partners may be difcult, particularly for the online sections. Using 
a message board and having evening or virtual brainstorming sessions have helped with 
partner selection. Also, some distance students are at a common location such as the 
interning students at Havelock, NC, for the Mechanical Engineering Department. Te 14 
students there last semester all formed groups rather than working alone. 

In summary, it is feasible for students to perform a two-factor ANOVA or regression 
experimental project in a single semester. Having the frst half of the course emphasize 
statistical reasoning over computation seems to be required to meet the one-semester time 
constraint (Bradstreet, 1996). 

More details can be found at the course’s project website: www4.stat.ncsu.edu/~bmasm 
ith/NewST370WEB/project.html 
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8.1 WHAT IS THIS CHAPTER ABOUT? 
What sequence of isometries moves the fgure on the lef to ft exactly on top of the fgure 
on the right (Figure 8.1)? 

Student 1 Answer 

To move the fgure on the lef to ft exactly on top of the fgure on the right, you will need 
to fip the fgure at least once. To do so, I fipped the fgure up just once. Te colors are 
all on the same place already so I would not worry about it. When you fip the fgure, 
you will have to rotate it clockwise at least 35–40 degrees to match the right fgure. 
When you are done rotating, the fgures should match. 

Another way to do it is, fip the fgure sideways and keep rotating either counter clock-
wise or clockwise until it matches the right fgure. 

I was also wondering: What if there was a limit of how many moves we can do to fgure 
A to match fgure B? 

Student 2 Reply to Student 1 

Might you have used mathematical names for the steps? You know, rotate, refect, and 
translate. 

Student 3 Reply to Students 1 and 2 

Actually, the response does use the term “rotate.” But don’t you also have to shif (trans-
late) the fgure to the right to lie exactly on top of the other one? 

Student 4 Reply to Student 1 

I like that you gave two methods and explained them. Your last question might be how 
to do it with the fewest moves. I think it might be done with one refection, but I’m 
having trouble seeing where the refection line is. 

Do you fnd this snippet of a conversation among students as appealing as I do? Would 
it surprise you to learn that the conversation took place in an online forum for a hybrid 
mathematics course? 

FIGURE 8.1 From Copes, Challenge 39 in Odyssey Mathematics for Elementary Teachers F14. 
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Why do I like it? Tere are numerous reasons. 

• All of these students seemed to understand and be able to apply the concept of an 
isometry. 

• Student 1’s response shows a willingness to describe two approaches, even though the 
question could be interpreted as asking for only one. 

• Student 3 realized that Student 1 didn’t fully answer the question. 

• Student 2 wanted more use of mathematical terminology. 

• Student 3 challenged Student 2’s claim that mathematical terms weren’t used. 

• All of the students seemed to be thinking for themselves, without relying on an 
authority such as a teacher. 

• Students 1 and 4 posed an extension question: How to do it in the fewest moves? 

• Student 4’s willingness to engage with Student 1’s musing wins my mathematical 
heart (and makes me grab a pencil and paper). 

Tis kind of reasoning goes beyond rote memorization and applying algorithms to solve 
problems with single answers. It is ofen called higher-order thinking, which I abbreviate 
as HOT. 

What questions might you have about HOT? In the rest of this chapter I’ll address some 
of them, in the context of online and hybrid mathematics and statistics courses. 

8.2 WHAT IS HOT? 
You may recognize some of thinking revealed in the conversation above as representing 
diferent categories in Bloom’s (1956) Taxonomy of Educational Objectives. In fact, that’s 
the reason that I extracted this conversation from the online forum. HOT starts with 
Bloom’s structure but goes beyond it. 

Bloom is best-known for his classifcations of kinds of thinking (as modifed over time; 
see, for example, Westbrook, 2014): 

• Remember (describe, identify) 

• Understand (explain, interpret, predict) 

• Apply (classify, illustrate, use) 

• Analyze (see patterns, compare, contrast, critique) 

• Evaluate (assess, rate, conclude, justify) 

• Create/synthesize (integrate, plan, imagine, hypothesize, fnd analogies) (Figure 8.2) 
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In the opening conversation, Student 3’s careful reading might fall into the Analyze and 
Evaluate categories, and Student 4’s questioning could be classifed as Create. 

Te conversation, however, illustrates intellectual mindsets as well as skills. For exam-
ple, Students 1 and 4 embrace multiple answers and pose a question to extend the inquiry. 
Student 4, when admitting to have failed in solving a problem, demonstrates self-aware-
ness. I was also struck by the willingness of Students 2, 3, and 4 to take the intellectual risk 
of critiquing the response of a peer. Moreover, the communication was clear. 

Tese positions go beyond what are ofen called higher-order thinking skills (HOTS) or 
critical thinking skills. I’m using the term HOT to encompass not only the skills but these 
other intellectual characteristics: 

• Comfort with multiplicity and ambiguity 

• Independence of authority 

• Curiosity and questioning 

• Self-awareness 

• Ability to note inaccuracies 

• Risk-taking 

• Communicating efectively 

Hence the opening conversation illustrates some HOT. But let’s take a step backward and 
ask, is it even good to be teaching HOT in mathematics and statistics? 

FIGURE 8.2 Bloom’s taxonomy. 
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8.3 WHY TEACH HOT, AND WHY NOT? 
Because this chapter is about teaching HOT, you might rightfully conclude that I believe 
teaching HOT should be included in mathematics and statistics courses. Here are some of 
my reasons: 

• HOT is necessary for solving novel problems. 

• HOT is used to determine whether answers by calculation make sense. A com-
mon example, from the National Assessment of Educational Progress, cites the 
many students who calculated that a fractional number of army buses were 
needed to transport soldiers. (For example, see Schoenfeld, 1988.) The field of 
statistics is especially notorious for being cited to defend dubious claims that 
rely only on calculation. 

• HOT is important for understanding mathematical and statistical concepts well 
enough to apply them. How many of us teaching elementary combinatorics have 
heard the complaint, “I don’t know when to add and when to multiply?” 

• Te knowledge of terminology and theorems and even techniques from probability 
and statistics doesn’t by itself keep us from getting jerked around by politicians and 
marketers; we must be able to apply that knowledge to note inaccuracies in all we 
encounter. 

• From early school days, students have been taught that mathematics means arith-
metic. In fact, the phrase do the math refers to calculations. But mathematics and 
statistics go well beyond calculations. HOT is what professional mathematicians and 
statisticians do. 

It’s not just me. Really! Te U.S. National Research Council is one organization that cited 
cognitive research backing up its claim that HOT is important even in elementary school. 
(See Resnick, 1987.) 

Unfortunately, so ofen in mathematics and statistics courses we focus only on Bloom’s 
Remember or perhaps Understand. Some courses venture into Apply, but few address 
Bloom’s higher-order skills or HOT as a whole. 

We justify our restraint by claiming that one can’t analyze without knowing facts. Before 
doing higher-level thinking, one must build a strong foundation of lower-level thinking. 
Tis is mastery learning. (See Guskey, 2010.) In fact, Bloom himself was an early adherent 
of this theory. One has to walk in order to run. 

Tis claim of walking and running reminds me of our daughter as an infant. She was 
a very fast crawler. Who knows why she even tried to stand? She certainly couldn’t walk 
faster than she could crawl. Anyway, she was no sooner steady on her feet than she was 
running. Running was why she learned to stand and walk. 

I am also reminded of the community chorus in which I sing. Te conductor pushes 
us hard to be excellent. Even when we frst read through a new piece of music, he’s 
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critiquing our pronunciation, our phrasing, our dynamics, and the emotions we’re project-
ing. Sometimes I want to scream, “Just let me learn the notes frst.” I mutter to myself, “I 
have to walk before I can run.” But then I realize that, while we go over and over the music 
to improve our pronunciation of vowels, we’re learning the notes also. Te goal of running 
makes us learn to walk. 

As Westbrook (2014) says, 

Te diferent skills can and should be used in a more integrated way. For this rea-
son, it can be helpful to consider them as a circle, with no start or fnish, and where 
the skills can be integrated in any order. 

To do my own HOT, I’ll point out that not everyone agrees on its importance. Although 
outdated now, an earlier platform of the Republican Party of Texas (2012) cites one argu-
ment very clearly: 

We oppose the teaching of Higher Order Tinking Skills (HOTS) … [which have] 
the purpose of challenging the student’s fxed beliefs and undermining parental 
authority. 

Without addressing the question of parental authority, I’ll claim that challenging students’ 
beliefs can be a good thing. Tis argument actually supports my belief in the value of HOT. 

Another challenge to teaching HOT does not deny its importance but only its practical-
ity. How do we as instructors assess HOT? How do we fnd time to teach it? And how would 
we teach it if we did have time? 

I’ll address the frst and second of these questions in Section 8.8. For now, let’s consider 
the “How” question. 

8.4 HOW TO TEACH HOT? 
Much has been written about teaching HOT in face-to-face situations. Some of these ideas, 
such as using appropriate tasks for students, can easily move online. In this section, I’ll 
start with those suggestions and move on to other teaching techniques; in Section 8.5 I’ll 
consider how to transport these techniques into online and hybrid courses. 

So, frst, here are tasks for students, organized by Bloom’s categories. 

8.4.1  Analyze 

Let’s begin with a challenge that might induce thinking in Bloom’s Analyze category— 
looking for assumptions being made—even while practicing understanding a statistical 
graph: 

Challenge 1: In Figure 8.3 there is a graph taken from a web site. Without getting into 
moral or legal issues about abortion, what is your response? 
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FIGURE 8.3 Schield, Challenge 9 in Odyssey Augsburg 2019A Spring MIS 264. 

A lower-order prompt might have been, “How is this graph misleading?” Tat phrasing 
assumes that the graph is misleading rather than inviting students to consider the assump-
tions being made. 

8.4.2  Evaluate 

A question requiring only lower-order thinking is: 

Challenge 2a: Fill in the blank: Two geometric fgures are congruent if ______. 

To address this challenge, all that’s needed is to Remember (or look up) the defnition 
given by some authority, such as the text book. Te kind of thinking required might be 
categorized as Apply if several fgures are given with the task of identifying those that are 
congruent. 

A more HOT-oriented challenge might be: 

Challenge 2b: Online or in text books, fnd at least three diferent defnitions of congru-
ence (in a geometric sense) and critique them. 
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or 

Challenge 2c: One common defnition of congruence is 

Geometric fgures are congruent if they have the same size and shape. 

A student once drew a 6 × 3 rectangle and a 5 × 4 rectangle. Because the rectangles have 
the same size (perimeter 18) and shape (rectangle), the student claimed they were 
congruent. Do you agree? 

Each of Challenges 2b and 2c asks students to Evaluate. Te concept of congruence can be 
replaced with virtually any mathematical or statistical notion. 

8.4.3  Create/Synthesize 

Synthesizing ofen involves comparing and contrasting. Here’s a HOT example: 

Challenge 3: Please describe diferences among: 

• Te identity equation x2 – 4 = (x + 2)(x – 2) 

• Te conditional equation x2 – 4 = 0 

• Te equation y = x2 – 4 to be graphed 

• Te function f(x) = x2 – 4 

Lower-order tasks might ask for calculations or applications involving any one of the four 
objects. 

Beyond Bloom’s categories, we can address other aspects of HOT. 

8.4.4 Comfort with Multiplicity and Ambiguity 

A straightforward task in elementary mathematics might be: 

Challenge 4a: Please calculate the perimeter and area of a rectangle with length 6 and 
width 3. Do the same with a rectangle of length 5 and width 4. 

(Yes, the task might be broken into parts and the caution added to show work. In this 
chapter I’ll condense some of the problem statements. Later I’ll say more about justifying 
results.) 

Tis task requires lower-level thinking to Apply known methods for calculating areas 
and perimeters. 
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FIGURE 8.4 Copes, Challenge 2 in Odyssey Teaching Secondary Mathematics F15. 

Here’s a version of the problem that requires more HOT: 

Challenge 4b: What are the base and height of two rectangles that have the same perim-
eter but diferent areas? 

Challenge 4b asks for the same calculations as Challenge 4a—with even more practice— 
but also encourages HOT with multiple answers. (Moreover, attempts to generate two 
appropriate rectangles require experimentation that may lead to deeper comprehension of 
the concepts of area and perimeter.) 

Another example requires multiple interpretations: 

Challenge 5: Here’s a table of completely fctitious data about some people and their pets 
(Figure 8.4). 

What's the most popular pet among these people? 

A lower-order question might ask only for Understanding the table: What kind of pet is 
owned by the most people? or What’s the largest number of pets owned by anyone in this 
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group? Te HOT question is intentionally ambiguous to require students to see that the 
question can be interpreted in either of these ways. 

8.4.5  Self-Awareness 

Tasks conducive to multiplicity might be extended to help with self-awareness: Tey might 
ask for a student’s favorite approach (justifed) or answer. For example, not just 

Challenge 2b: Online or in text books, fnd at least three diferent defnitions of congru-
ence (in a geometric sense) and critique them. 

But perhaps 

Challenge 2c: Online or in text books, fnd at least three diferent defnitions of congru-
ence (in a geometric sense). Either choose one that is your favorite or create one you 
prefer. What is it about you that makes it your preferred defnition? 

Tus tasks can be used to encourage HOT. But teaching HOT goes well beyond the tasks. 
Also important is interaction in face-to-face classes. 

My usual approach is to pose a challenge on which the students work in groups while 
I observe and circulate. I’ll ask selected groups to share their ideas. Ten I’ll summarize, 
introducing mathematical terms and drawing connections to previous topics. Tis is 
standard problem-based learning (PBL) (Schmidt et al., 2011), frst introduced in medical 
schools and adopted in business curricula (Scherpereel and Bowers, 2006), Malaysia (Win 
et al., n.d.), Singapore (Chun and Wong, n.d.), and elsewhere. It resembles the Socratic 
method of questioning through scenarios. (See Murray, n.d.) 

In PBL, students see each other’s ideas. As Schinkten (2017) points out, when students 
encounter a multiplicity of answers or approaches, and when they interact with their peers, 
they can begin to develop awareness of their own thinking. 

Can this kind of interactive teaching transfer to online courses? Tat’s a question for 
Section 8.5. 

8.4.6  Questioning 

Te topic of questioning is frequently addressed in mathematics education: What ques-
tions should teachers ask? How should they be phrased? In contrast, little attention is paid 
to teaching students to ask questions that are not only for clarifcation. (See Brown and 
Walter, 2005.) As Schinkten (2017) says, 

We need people who can ask the right questions … Start by placing more emphasis 
on the importance of questions. Foster this with class discussions, online forums 
and assignments asking students to generate questions. 

I add a questioning component to my PBL teaching. In the course of a class discussion, 
and/or explicitly afer the summary, I ask the class to generate extension questions. Tese 
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are questions that we don’t answer, though I might mold some of them into challenges for 
later class periods. Early in the course, students need a lot of help with this activity, so I 
introduce some question stems, such as: 

Over time, the prompts fall by the wayside. Even though many of the students’ questions 
show limited understanding, I display them. Eventually many students seem to feel some 
freedom in asking questions without worrying about answers. 

A question we must address in Section 8.5 is Are there ways to transfer this teaching to 
online situations? 

8.4.7  Independence 

Independence is a controversial goal. Colleagues have objected, “But students shouldn’t 
be thinking independently until they know enough to be experts.” Some have even whis-
pered, “But I went into teaching so I could be the center of attention.” 

To the latter, I would whisper back, “Get over it.” In a more benign moment, I might 
inquire, “Can you boost your self-esteem by feeling rewarded when your students come up 
with ideas on their own?” 

My response to the former objection is to ask, “Does graduating from high school or 
obtaining a higher degree magically bestow an ability to think independently?” We need 
to help our students, like our own children, to learn to run on their own. 

What kinds of tasks might we give to encourage independent thinking? 
Please recall: 

Challenge 4b: What are the base and height of two rectangles that have the same perim-
eter but diferent areas? 

Consider this slight rephrasing: 

Challenge 4c: Are there two rectangles that have the same perimeter but diferent 
areas? 



        

  

 

 

 

146 ◾ Teaching and Learning Mathematics Online 

I asked a tiny focus group of one how Challenges 4b and 4c difer. She thought that the 
latter was more inviting. It would draw the student into an investigation rather than look-
ing for an answer already known to the questioner. In my words, it would encourage more 
independent thinking. 

For teaching HOT, some experts (e.g., Boostrom, 2005) stress the importance of the 
student–teacher interaction as I “circulate” among groups in my class. 

What I have observed—have you as well?—is that students will wait until I arrive at 
their group and then turn to me for help. Even if I only ask questions, any response I make 
increases dependence on my authority instead of emboldening the students to think for 
themselves. 

I have learned that my best reaction is to defect a student’s question to the group, prefer-
ably by simply looking at another student or, if necessary, by asking for another student’s 
opinion. Students quickly learn that they must rely on their peers or themselves to answer 
their questions. Sure, some just sit there and wait for their peers to have ideas. Some con-
clude that I am incompetent for not knowing the answers. (One very astute student con-
cluded that I was brilliant.) 

Is it possible to accomplish this kind of redirection online? Tat’s yet another question 
for Section 8.5. 

8.4.8  Risk-Taking 

To develop psychological and emotional comfort, in a face-to-face class I try to reward all 
student contributions, with at least a “thank you” and ofen with enthusiasm. I wonder, 
though: How much of the students’ goal is to please the teacher? How independent is it to 
exhibit questioning, or self-awareness, or even independent thinking, only to impress an 
authority? Perhaps doing so is all we can ask. But can we do better? 

And is it even possible to accomplish online? Yep. Section 8.5. 

8.4.9  Communicating 

Te goal is clear communication, orally and in writing. I’m sometimes criticized for “try-
ing to teach English in a math course,” but I focus primarily on clarity. My response of “I 
don’t understand” ofen leads both the student and me to a comprehension diferent from 
what I had initially guessed. 

Online teaching must somehow reward and perhaps teach clarity of communication, 
even in mathematics and statistics. Can it? 

It’s time for Section 8.5! 

8.5 CAN HOT BE TAUGHT ONLINE? 
We arrive at the much-heralded Section 8.5, in which you (unless you’re using HOT) expect 
answers to the questions raised earlier. 

Many writers (for example, Clark and Mayer, 2012; Oh et al., 2018; McDonald, 2018) 
have addressed teaching HOT online. All of the articles that I’ve read claim that it’s more 
difcult to accomplish online than in face-to-face interactions. 
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When I frst started teaching hybrid and asynchronous online courses, I used stan-
dard learning management systems—Moodle, WebCT-Blackboard, D2L—provided by 
my institution. By assigning appropriate tasks, I could begin to address Bloom’s Analyze, 
Create, and Evaluate. Having students read various approaches to a concept or solutions to 
a problem and asking which they preferred also led to some self-awareness. 

Unfortunately, I found no ways to encourage the rest of HOT: Questioning, risk-taking, 
and independent thinking. Moreover, student participation was tentative and minimal. 

McDonald (2018) suggests, 

In addition to elaborating on the discussion question, you can engage students by 
addressing their responses. In doing so, you can ask various types of questions to 
get students to address problematic argumentation, elaborate on incomplete ideas, 
or think through the implications of their assertion(s). In other words, you can 
help students use their initial response as a springboard into deeper and meaning-
ful thinking. 

Tat’s all good stuf, but posing the questions for the students did not encourage them to 
question on their own or to wean them from my authority. 

So I began to dream of an online forum with several characteristics: 

• I would pose challenges that encouraged Bloom’s higher-order skills and 
self-awareness. 

• To encourage risk-taking, students would post anonymously. 

• To encourage self-awareness, students would critique each other’s work, rating each 
post on the basis of explicit criteria that rewarded clear communication, addressing 
the challenge, and questioning. 

I hope you have asked, “Wouldn’t such an anonymous forum degenerate into the incivility 
we ofen see online?” In answer, my fantasy forum would include 

• Part of the rating system could be on civility. Posts would lose status if they were 
uncivil. 

But would this kind of forum be more engaging than the forums I’d already used? 

• Perhaps for engagement my dream forum could take the format of a multi-player 
game, in which students gain “power” for clear communication and posing extension 
questions. 

Moreover, if the teacher’s contributions to the forum were also anonymous (and didn’t 
state explicitly, “I am the teacher, so Heed my Truth”), I might be able to ask MacDonald’s 
suggested questions without students depending on me as authority. 

Te points earned could be part of a student’s grade despite the anonymity if I alone 
could see which student contributed what post. But would that really be necessary? Could 
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I, like the students, give ratings based on the quality of a post without knowing who its 
author was? For grading purposes, would it sufce for me to know how many points each 
student had earned? Or perhaps for helping students who were foundering, I could know 
how many posts each student had made. 

Could there be such an online forum? 

8.6 MIGHT THE O2S FORUM ALLOW TEACHING HOT? 
As a test, my colleague Benjamin Cooper and I adapted a game-like forum called Odysseys 
to Sense (O2S) (2019) that we’d originally designed to cut down on trolls in online media. 

How does O2S work? I’ll provide a few of the many details. You can fnd information 
about availability in Section 8.9 of this chapter. If you want to know more specifcs about 
its functioning, please contact me. 

8.6.1 Challenges and Responses 

Trough the course, the instructor puts up challenges. For example, below is a challenge 
similar to that of Challenge 4b above. (All text in this font, complete with errors, is copied 
directly from Odyssey forums.) 

Challenge 6: Areas and Perimeters 

What are the base and height of two rectangles that have the same perimeter but difer-
ent areas? 

What are the base and height of two rectangles that have the same area but diferent 
perimeters? 

Copes, Challenge 52 in Odyssey Mathematics for Elementary Teachers F14. 

Students then post, anonymously, responses to the challenge, ideally before the deadline 
the instructor has specifed. Here are two of the 16 responses to this challenge posted by 
students in this course: 

Response 1 
Part A. Rectangle 1: Rectangle has a base is 5f Height is 5f. Te perimeter is 

5f+5f+5f+5f= 20feet. Te area is 5fX5f = 25f squared 
Rectangle 2: Base is 7f height is 3 f. Te perimeter is 7f+3f+7f+3f=20f. Te area is 

7fX3f=21f squared 
Te perimeters are the same but the areas are diferent. 
Part B. Rectangle 1: Rectangle has a base of 5f and a height of 4f. Te area is 4f X 5f = 

20f squares. Te perimeter is 4f + 5f +4f +5f =18f. 
Rectangle 2: Rectangle has a base of 2f and a height of 10 f. Te area is 10f X 2f =20f 

squared. Te perimeter is 10f + 2f +10f + 2f = 24f. 
Te areas are the same but the perimeters are diferent. 
Note: Creating the 2 rectangle with the same area was easier for me than creating the 2 

rectangles with the same perimeter, possibly, because fnding the area involved multiply-
ing 2 numbers and fnding the perimeter involved adding 4 numbers. 
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Ext: What if the rectangle were a box or cube? What if we were using decimals or frac-
tions? What if there were labels with inches and feet instead of just feet? 

Response 2 
When the perimeter is the same we can fnd that the area can be diferent. For example i 

the picture that I uploaded [Figure 8.5] the perimeter is 12 cm, but the area for 1 rectangle is 
8cm^2. Base=4 and height=2 the 2nd rectangle has an area of 6cm^2. Base=6 and height=1. 

With these two rectangles, I frst draw  them to have the same perimeter assuming that 
my measurement is equal.  Having same perimeter it does not mean that we will have the 
same area, it will depend on how we draw the rectangle. 

Te recatangles with same area of 18 cm^2 have a diferent perimeter. the rectangle 1 
has a perimeter of18cm. 

Base=6 and height=3 
the 2nd rectangle has a perimeter of 23 cm. 
Base=9 and height=2 
So I will say that either the base or the height will determine the area of the rectangles. 
Extension: How the perimeter or area will change if there is a diferent shape? for exam-

ple a polygon. 

You ask, “What are the ‘ext’ in Response 1 and the ‘extension’ in Response 2?” Tese are 
extensions—either questions or connections that go beyond the challenge. Why would a 
response include them? Te student is trying to satisfy reviewers of the post. 

Reviewers? Afer the student posts a response, but before it actually appears in the 
forum, its author must review a number of sofware-selected responses that have already 

FIGURE 8.5 All student posts are used by permission of the Institute for Studies in Educational 
Mathematics. 
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FIGURE 8.6 O2S challenge, responses, and reviews. 

been posted (with exceptions for the frst few responses). Tis choreography is intended to 
diminish group-think. Afer a response is posted, the student may review as many of the 
other responses as desired (Figure 8.6). 

A review consists of a numerical rating and a comment explaining the rating. Te rating 
is given by checking options on the criteria that appear at the O2S site (used by permission 
of the Institute for Studies in Educational Mathematics): 

Responsiveness 

Acceptable, comprehensive, professionally written answers to ALL questions (+1) 

Partially acceptable or less than comprehensive or unprofessionally written answers to 
SOME questions (+1/2) 

Minimally acceptable or unacceptable or missing answers to SOME questions (+0) 

Explanation 

Valid, professionally written, comprehensive, AND insightful justifcation/explanations 
of ALL answers (+1) 

Inadequate, unprofessionally written, not fully comprehensive, OR not very insightful 
justifcation/explanation for SOME answers (+1/2) 

Minimal or missing justifcation/explanation for SOME answers (+0) 

Extension 

Tought-provoking question, or connection to other concepts, that extends the chal-
lenge (+1) 

Superfcial extension question or connection (+1/2) 

No extension question or connection (+0) 

(All rating criteria copied by permission of the Institute for Studies in Educational 
Mathematics.) 
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Tese criteria encourage work toward some of our HOT goals: 

• Responsiveness encourages Bloom’s category of Remember. 

• Explanation encourages Bloom’s Understand category. 

• Extension encourages questioning and, to some extent, Bloom’s Create. 

• All encourage clear communication. 

Coupled with challenges that address self-awareness, multiplicity, and Bloom’s Apply, 
Analyze, and Create, the system seems to show potential for HOT teaching and learning. 

As an example, one of the two reviews given to Response 2 above assigned it a rating of 
3 with this comment: 

Review of Response 2 
i must admit i found your explanation just a tad bit confusing and for the 2 rectangle for 

the problem of same area but diferent periemeter, you said your perimeter = 23 cm, with a 
base of =9 and height =2, but 9+9+2+2= 22 not 23. Good try though i kinda see where you 
were going with it. 

I’m sure that you could write a better review! 
Each response has a score, a weighted average of ratings given in reviews. Responses 

automatically receive 1 point. Te maximum rating is 4 points, so that’s the maximum 
score. Tis rubric mimics ofen-stated grading standards: 

• D for trying 

• C for meeting expectations 

• B for exceeding expectations 

• A for excellent 

The score of the first example response was 3.75. The score of the second response 
was 3.0. 

Te game-like aspect of the forum comes from amalgamating a student’s response 
scores and participation into a power. Te power afects the weight the student’s ratings of 
others have. 

But what if others—teacher or students—disagree with the rating or comment posted 
in a response? 

8.6.2  Critiques 

Participants can reply to each other’s reviews through critiques (Figure 8.7). 
Students can critique critiques in an unlimited chain. Like reviews, critiques include 

comments, as well as ratings based on criteria: 



        

 
 

 

 

152 ◾ Teaching and Learning Mathematics Online 

FIGURE 8.7 O2S challenge, responses, reviews, and critiques. 

Accuracy 

O Rating about right (+2) 

O Rating of by a point (0) 

O Rating of by more than a point (–2) 

Interest 

O Comment very helpful or thought-provoking (+2) 

O Comment somewhat helpful or thought-provoking (0) 

O Comment minimal (–2) 

Civility 

O Civil enough (0) 

O Uncivil (–2) 

O Unusually civil (+2) 

Te Accuracy rating encourages work toward Bloom’s Evaluate. Interest encourages help-
fulness and self-awareness, and Civility helps tame trolling impulses that might arise from 
the anonymity conducive to risk-taking. 

When a review is critiqued, its score is adjusted according to the rating given by the 
critique, afecting the score of the original response. 

8.6.3  Dynamics 

Changes appear immediately on every page opened to the site. Students can view all posted 
comments, including ratings, but the only scores and power they see are their own. (Tey 
also see the median power of the class.) 
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Although students can participate in the discussion of one of their own responses, the 
ratings they give do not afect the scores of any posts in that conversation. 

What about us instructors, or teams of instructors? Our power is automatically high, 
so that our ratings carry maximum weight. We have more privileges than the students in 
that we can display reports on each challenge and on the Odyssey as a whole, seeing each 
student’s scores, powers, and amount of participation. We cannot, however, identify the 
author of any particular post other than our own. 

8.6.4  More Examples 

Here are two examples that might clarify the full fow. Te frst is similar to Challenge 2 
above, quoted exactly from an Odyssey shared by two statistical literacy courses taught by 
the same instructor. 

Challenge 1 Revisited: Planned Parenthood Graph 
Te attached graph [Figure 8.8] was presented by US Representative Jason Chafetz 

(Republican) to the US President of Planned Parenthood during her 2013 appearance 
before the US House Oversight Committee. Planned Parenthood provides health care ser-
vices and information to women. Tese services include cancer screening and abortions. 
Copy at www.StatLit.org/images/2013-Planned-Parenthood-Services.jpg. 

Challenge: In what ways is this graph misleading? Be specifc. Assume that the num-
bers shown are correct for each service provided. Do not comment on or argue about the 
morality or legality of abortion. 

FIGURE 8.8 Schield, Challenge 9 in Odyssey Augsburg 2019A Spring MIS 264. 

http://www.StatLit.org
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Students posted 46 responses to the challenge. Here’s one that was chosen at random: 

Response 
Te graph regarding Planned Parenthood services is misleading in the way it presents its 

data. Te graph shows that the number of abortions increased from 2006 to 2013 while the 
number of cancer screenings and prevention services decreased. Te two lines on the graph 
imply that the increasing abortion amount and the decreasing cancer screening/prevention 
services amount are numerically similar, but they are not. Te number of abortions increased 
by 37,250 - an increase of 12.9%. Te number of cancer screening/prevention services decreased 
by 1,071,798 - a decrease of 53.4%. Te pink line (cancer screening & prevention services) 
should be much more steep than the red line (abortions) in order to accurately depict the data. 

Tis response received ten reviews. Here are a few: 

Review giving rating 4 
I really liked how you included the percentages in your response it was helpful in seeing 

your point. 

Review giving rating 3.75 
I agree with this analysis. It is also important to consider why these two variables were 

compared and who was doing the comparing. Te group which created the graph most 
likely has a certain bias and wanted to portray their desired outcome with a simply glance 
at the graph, as most people are not expected to look at it closely and see the numbers you 
outlined in your response. 

Review giving rating 4 
Tis graph even lacks labeling the units, its assumed that the fgures are suggesting the 

amount of services rendered but given these congressional graphs I see I wouldn't be sur-
prised if it is funding. 

Te ten review ratings, as weighted by the powers of the reviewers, gave this response a 
score of 3.9. 

A second example of a challenge comes from an Odyssey for a geometry course for pro-
spective secondary mathematics teachers. Fifeen students were enrolled. 

Challenge 7: Te Surfer 
Here’s a problem, adapted from Harold R. Jacobs, Geometry, Freeman, 1974: 

You are shipwrecked on an island whose shape is an equilateral triangle. You’re a surfer, 
and the waves are great, so you’re in no hurry to be found. You want to spend your time 
on the beaches along the sides of the triangle. And you want to build your hut to have a 
minimum sum of distances to those beaches. Where should the hut be? 

Experiment with Te Geometer’s Sketchpad or other dynamic geometry sofware. As 
you do so, try to record all of your thoughts (relevant to the problem!) and what you 
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tried. Your challenge is to summarize those thoughts in order and refect (with the 
advantage of hindsight) on what a better approach might have been. 

Copes, Challenge 15 in Odyssey Problems in Secondary Geometry 

Te challenge elicited 15 responses. Most responses went into detail and gained scores of 
approximately 3.5 (out of 4). I’m showing you this response because you might fnd the 
conversation revealing and even amusing: 

Response 
I didn't need sketchpad for this. 

1- I'd put my hut on the vertex of a triangle so I'd have immediate access to two beaches 
whenever I woke up. Zero travel time to two beaches is the perfect solution. 

2- Surf. 

Te ensuing dialog resulted in a response score of 2.366: 

Review giving rating 3 
Your idea of putting the hut on vertex of a triangle and that you only have access to 2 

sides of the beach, what is the third side? I think that is your frst thought. I encourage 
that and my frst thought is the same as yours. My appraoch is the hut wil be located at the 
intersection point where all 3 lines meet to create a balance for each side ans each corner of 
triangle. What do you think? 

Review giving rating 3 
I defnitely agree that this would work, but would it be any diferent from putting it 

anywhere else on the island? 

Critique 

Of course it would be diferent. I wouldn't be living on two beaches (unless I chose one 
of the other vertices). 

I fgured since no matter where you choose the total distance is going to be the same, so 
I went with maximum number of beaches for zero travel. Roll outta bed and party on! 

Review giving rating 1 
What about the third beach? Would putting your hut on the vertex of the triangle mini-

mize your distance traveled to the third beach?

 Critique 

Because it doesn't matter where you put it, it's always the same. 
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I found being at two beaches always to be preferable to only being at one or zero. Tat 
third beach isn't very nice anyway. Too many jellyfsh. 

Critique 

How do you know it's always the same? Justifcation is always key. Besides, you still have 
to get to the third beach even it it has too many jellyfsh. Te waves are killer. 

Critique 

"How do you know it's always the same?" 

Honestly? Common knowledge. I've seen the problem 1,000 times. Te problem didn't 
ask for justifcation. It asked for my thought process. Tat was my thought process. I 
chose immediate access to two beaches. 

Tat was all. Maybe the problem wasn't rich enough. (I'm not sure if I'm too internet 
savvy because I wan't to put a little winky smiley here. I realize I put out the bare 
minimum efort, but again, this problem asked me something that was to me was 
the equivalent of asking me, "What is the capitol of Wisconsin? How did you decide 
that?" 

A challenge for you, dear reader: How would you contribute to this conversation? Can you 
do reply without revealing that you’re the instructor? 

8.7 DOES O2S WORK? 
Now the big question: How efective is the O2S game-like forum for teaching? 

We have some data, because since 2009 nine faculty members in six institutions of 
higher education have used O2S for over 1,100 students in 68 courses, many of which were 
online or hybrid. Using the forum besides mathematics, mathematics education, statis-
tics, and statistical literacy courses have been courses in children’s literature and an online 
module in veterinary ethics. 

In fact, the only published research on the efectiveness of O2S concerned its use in that 
ethics module for 200 veterinary students over two years. Comparing the module of case 
studies presented one year without O2S and the next two years with this forum, Kustritz 
and Copes (2013) found evidence that the O2S students had signifcantly better under-
standing and retention of content than students not using O2S. Apparently HOT improved 
Bloom’s Remember category. 

Other research has addressed the question of student satisfaction, based on end-of-term 
surveys in statistics and mathematics courses. Tese studies (Schield, 2011a, 2011b, 2014; 
Schield and Copes, 2011) indicate that students had mixed reactions, but the O2S forum 
seems to have been especially attractive to students accustomed to defending their opin-
ions in non-quantitative courses. Because adults should be able to support claims with 
evidence in quantitative felds, these data can be interpreted as an indication of growing 
pains. 



          

 

 

 

 

 

  
 

 
 

  

 

 

 

Higher-Order Thinking in Online and Hybrid Courses ◾ 157 

For our question about the efectiveness of the forum for teaching HOT in mathemat-
ics and statistics courses, I must turn elsewhere. I looked at a variety of those courses 
and rated, on HOT criteria, a randomly chosen sample of the anonymous posts. I found 
that the Odysseys for some courses showed impressive improvements in student posts, but 
other Odysseys did not. 

What factors were diferent? My investigation led to several observations. 

• Te most efective challenges for meeting the HOT goals seem to have several 
characteristics: 

• Tey encourage multiplicity: Multiples in perspectives (like “Te Surfer” exam-
ple), multiples in answers (as in the “Planned Parenthood Graph” example), or 
multiplies in approaches (as in the challenge about isometries in the opening 
conversation). 

• Tey encourage the use of external resources. (For example, from a statistics 
course: “Please read about the friendship paradox in sociology. How might the 
friendship paradox relate to statistical sampling?”) 

• Challenges do not say “Defend your answer” or “Show your work” or the equiva-
lent. Justifying opinions is built into the forum’s culture via the rating criteria, 
toward the goal of instilling the habit of doing so. 

• Odysseys with several challenges per week are more likely to produce HOT than 
those with only one challenge per week. 

• HOT goals seem to be met only in Odysseys in which we instructors are active in the 
forum, at least at the beginning of the course. We mold the culture of the forum as we 
anonymously post responses of both high and low quality, review them, and give low rat-
ings to posts that don’t meet the criteria. If we are not active in an Odyssey, student posts 
do not seem to demonstrate much HOT; for example, the class as a whole apparently will 
ignore the Extension criterion, not having any examples of how it might be met. (You 
may have noticed that this was the case with the Planned Parenthood Graph challenge.) 

8.8 HOW CAN O2S BE USED EFFECTIVELY? 
First, I’ll consider the questions raised about time and efort needed to teach HOT and 
about assessment. Based on my experiences and those reported by instructors through the 
years, I have learned: 

• Designing challenges that require HOT can be time-consuming. But if we already 
have a collection of them, then entering them into an Odyssey requires only copying 
and pasting. Challenges may also be imported from our own earlier Odysseys. 

• Te time required to set the standards and mold the environment by entering our 
own responses and reviews can be extensive at the beginning of a course, though not 
necessarily more so than actually grading papers. 
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• In addition, our interaction can diminish as students gradually practice HOT and 
take over the role of maintaining the desired class culture. If student posts are saying 
what we would say, there may be no need for us to add anything. 

• With appropriate challenges, a student’s power is a fairly accurate assessment of HOT. 

I can also add these observations: 

• If we, working anonymously, can place ourselves in the mindset of a student with 
HOT who is frst encountering the course ideas, then our comments can be under-
stood. Consequently, students seem to believe that it’s possible for them to think the 
same way rather than be awed, or at least silenced, by our authority. 

• Playing the role of intelligent student makes it more fun for some of us than respond-
ing as authorities. Others of us, however, may be reluctant to hide our hard-won 
expertise and to give up the limelight. 

• On the reverse side, if we accidentally post something less than brilliant, it will be 
anonymous. If students don’t point out our error, we have yet another opportunity to 
model civil, constructive criticism. 

I’m sure that you, in practicing your own critical thinking skills, have other questions. 
Here are my current answers to a few: 

• Not being able to associate individual posts with their authors can at frst be discon-
certing to us instructors. We fnd ourselves having to base our opinion of each post 
on its content, unafected by any knowledge of the writer. 

• Many students are uncomfortable with having to deal with multiplicity or being 
“graded” by their peers. Te forum does not replace the encouragement we must pro-
vide for learners who are encountering not only new concepts but also more mature 
ways of experiencing knowledge, thinking, and learning. (As needed, I point out to 
students that I’m still responsible for assigning actual grades.) 

• O2S allows us to address misconceptions more immediately than through the pro-
cess of collecting and grading and returning individual submissions. If responses and 
reviews show widespread misconceptions, we can address them in a general comment 
to students (or, for hybrid courses, as early as the next class session). 

• Similarly, O2S can be integrated into a course by our written or oral comments giv-
ing advice about how to practice HOT when posting. To make our points, we can cite 
individual (and anonymous) posts. 

• Contrary to expectations, only rarely could students identify authors of the posts. An 
extreme case was an Odyssey in which a student and his mother were both enrolled. 
Te mother told the instructor at the beginning, “Of course I’ll be able to identify 
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what he writes. I’ve seen his writing all his life.” But she couldn’t, even though there 
were only fve participants. 

I must add a comment about the possibility of trolling. Incivility in the forum is extremely 
rare; over the years only one review in any of my courses ever qualifed as remotely uncivil. 

Tere were more problems with students’ “gaming” the forum. Some time ago, we noted 
the appearance of many identical and vapid reviews, such as “Good job.” A small amount 
of power is given for participation, and a few students apparently were copying and pasting 
many times to increase their power. Te sofware was modifed to reject, with feedback, 
reviews that were too short or too similar to others by the same author, and the practice 
seemed to dissipate. In the spring of 2018 it re-emerged in one course, however. So from 
then on credit for reviews in each challenge decreased to 0 afer a few posts beyond the 
required minimum. 

I’ll conclude this section with an excerpt from a critique in a course for prospective sec-
ondary mathematics teachers. Afer reviewing others’ responses to a challenge, a student 
demonstrated notable synthesis, self-awareness, and risk-taking: 

Te sound you hear is my palm slapping my forehead. 

How many hints do I need to make this connection? I feel a bit stupid. 

I’m going to stop feeling stupid and just marvel at the connections among these three 
apparently-diferent things 

8.9 IS O2S AVAILABLE? 
You can visit the forum (Odysseys2Sense, 2019) at no cost. You can see discussions of sam-
ple topics and can access Odysseys that the instructors have made public over the years. 
You can view a video of an actor thinking aloud while making posts. 

Anyone can set up an Odyssey. In order to maintain the website, there’s a small cost. 
Te most popular option is to charge each student $5 US for fve months of posts. (Students 
may make ten posts—responses and reviews—for free to get started.) Alternatively, the 
instructor can choose to pay the $5 per student up front. (Other options for payment, more 
relevant to the forum’s use by online news media, are available as well.) 

If you wish, you can contact me for sample instructions to students for enrolling in an 
Odyssey, as well as other advice and answers to questions. 

8.10 WHAT CAN WE CONCLUDE? 
To summarize, Odysseys2Sense (O2S) is an online forum adapted for teaching higher-
order thinking (HOT) in online and hybrid academic courses. Students anonymously 
respond to challenges posted by the instructor and discuss the responses through posts. 
To each post, students give a numerical rating based on set criteria that reward careful 
higher-order thinking, clear communication, and civility. Tese ratings afect other stu-
dents’ power and infuence, adding a game-like feel to the forum. 



        

 

 

 

 

 
 
 

     

            

       
      

      
       

 

    
            

160 ◾ Teaching and Learning Mathematics Online 

Apparently O2S can be a helpful tool in teaching HOT if the instructor: 

• Posts challenges that require HOT. 

• Posts several challenges a week. 

• Integrates the forum with the rest of the course. 

• Is engaged anonymously in the forum, molding its culture to adhere to the rating 
criteria and to exclude superfciality. 

To date, no published research has determined whether or not the use of O2S actu-
ally correlates with improvement in HOT. I am comfortable, however, in claiming that 
this forum can be used as a tool consistent with HOT goals. Furthermore, I can testify 
from experience that participating in it can be more fun for instructors than traditional 
grading. 
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Online learning has become a regular part of educational opportunities at many 
post-secondary and K-12 schools. Te rapid growth of these online environments has 

lef a gap in the “how to” aspects of teaching in the online environment specifc to math-
ematics (Engelbrecht & Harding, 2005). While there has been some gap flling in general, 
this chapter provides several examples specifc to the gap of how to teach mathematics 
online and how to help students learn mathematics online. Personally, having eight years 
of experience in teaching mathematics online to K-12 students, three years of teaching 
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post-secondary mathematics, having been an online student for my master’s in mathemat-
ics education, and attended numerous meetings or conferences that had a focus on online 
teaching, have helped me fll some of this gap. Tis chapter is written with the purpose to 
help others fll the gaps that they fnd. 

Tis chapter is a case study that ofers many insights into the teaching and learning of 
mathematics from largely a K-12 perspective. Sourcing to research for any of the larger 
ideas is provided, but where there is not yet sufcient research, the content can be consid-
ered as specifc to the author’s experience. Tis case study is one of reporting the phenom-
enal experiences of myself and other online instructors to then bring out the important 
aspects of teaching mathematics within the online format. Tese experiences have been 
gathered from my own experience or the experience of colleagues over the years that has 
been shared with me. 

In this sharing of experience, I want to frst take a few lines and help house this as an 
example of the pedagogical content knowledge (Shulman, 1986). Te content of mathemat-
ics is clear from the title of the book. “Designing online courses is substantially diferent 
from designing courses for traditional courses” (Akdemir, 2010, p. 50). Te pedagogical 
aspect will have a larger focus on online teaching. Some examples use the broader brush 
of online teaching and then focus in on the mathematical aspects. With this in mind, 
the frst major section is about the types of data that can be found in online courses as 
compared to the face-to-face classroom. Tese data are helpful to develop a relationship in 
the online environment that can be the foundation for teaching mathematics (Eichhorn, 
DiMauro, Lacson, & Dennie, 2019). Additionally, tools and supports that can be used are 
provided, starting with the locations and people, followed by a sample of online tools that 
have been found to be helpful. Knowing each of these sources, as well as how to use that 
source, will help instructors gather data they are more comfortable with in the teaching 
of mathematics. 

9.1 TRACKING DATA ON STUDENTS FOUND IN THE 
LEARNING MANAGEMENT SYSTEM (LMS) 

A student on my online summer course was emailing back and forth with me in a rapid 
manner with a series of quick questions. Te student stopped emailing, though there were 
still questions unanswered, and I went back to work in my ofce. A few minutes later 
there was a knock on my door and the student walked in. Tough the student was tak-
ing the course online, they were on campus some of the time during the semester. Te 
face-to-face interaction was their preferred method and they were only taking the course 
online because they were not able to always attend face-to-face. In our short conversation, 
I learned so much about the student who had only been an online profle previous to our 
conversation. Getting to know students requires more work and knowing where to fnd the 
information in the online environment. 

One of the most important things to know about students is the amount of time that 
they are spending in a course (Akdemir, 2010). Te learning of mathematics takes time. 
A signifcant feature of many LMSs is the ability to track the time of students within the 
course and content. Tis ability to track when and for how long a student is accessing 
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a course and what they are accessing helps the instructor in knowing what priority 
the course and content are. Students who mistake an online course to be easier may 
neglect the available resources that the course provides and make attempts to complete 
all graded assignments and not take the time and energy to learn from the resources 
provided. When this happens students ofen fnd out how much they do not know. Some 
students respond to their lack of knowledge as the instructor’s fault (Bambara, Harbour, 
Davies, & Athey, 2009). Tat fault may be viewed as making the course too difcult 
or that the instructor did not communicate the specifc resources required to pass the 
graded assignments. 

Using the online tools of requiring students to view or complete some component of the 
course is a good way to ensure that the student’s lack of knowledge is not due to a lack of 
opportunity to learn. Te old adage of “you can lead a horse to water, but you can’t make 
it drink” describes well the issue of students not learning, even with many great learn-
ing resources available. Instructors need to ensure that every opportunity for learning has 
been made available to the students. An LMS can help to track each of these opportunities 
to learn and how much time students use them. When students return to a page multiple 
times, it can mean that there is a key piece of information that they use there or that the 
information confuses them. As a student, I would refer to certain examples in the course 
every time I had some similar problem. Te LMS tracks the number of visits to pages as 
well as how long they are viewed. Several short views are ofen more about referencing the 
material. Longer visits are eforts to understand. 

Multiple attempts on assignments can also be a good source of information. Some 
instructors limit the number of attempts while others allow students to attempt as 
many times as they will take the time for. Both strategies have advantages and dis-
advantages. Te limited attempts help to have students focus more on the individual 
attempts and put their best foot forward. Some students do this even with unlimited 
attempts available. If this approach is used, be sure that students have clearly seen all 
the problem types assessed. Tis is their time to shine and show what they know. On the 
other hand, multiple attempts allow the assignment to be a learning experience for the 
students. Feedback given in the assignments is used to improve their score on the next 
attempt. Te assignment is still part of the learning process rather than the end result 
(Akdemir, 2010). How students use their attempts can also be seen in the LMS data. 
Multiple attempts done back to back show a rushed pace for completion rather than 
an efort to improve. When instructors can compare the multiple attempts of students, 
trends in the answers to similar questions can be found. Are the students moving closer 
to the answer? Are they using the feedback? Are they making all the same mistakes? 
Tis helps as the instructor works to make a diference for the students and the com-
munication that is provided. How long students take on assignments and tests can tell 
an instructor if students are putting in the efort or not. Also, if it is too right and too 
short, that might be a fag for cheating. 

Some of the expectations for a course are built from tools within the course. Students 
need to use a specifc tool to get the correct answers. Example: Loan calculator. Within 
one of the courses that I have taught several times is the calculating of loans by using a 
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spreadsheet fle created and loaded into the course. Due to the technical issue of using 
diferent devices or not having the capability to open a spreadsheet, students did not 
use the tool provided. Since the students used diferent tools, the instructions for per-
forming the calculations did not match with the tools that the students attempted to 
use. Much confusion and many questions were had by students as they tried to problem 
solve their self-created problem. I’ve had parents take their students to professional loan 
ofcers to check their calculations. Some students have even worked to point out the 
fault of the course and that all the calculations are incorrect in the course. All of these 
other tools helped to provide answers well within the margin of error for the calcula-
tions. Te difculty is that the students and LMS system expected answers to match 
exactly. Exact calculations require exact use of tools and the tools be the same. Te 
requirement of a single tool felt like a bottlenecking of resources to meet the needs of 
the course to the students. Tis is an important balance that is required with an online 
course as there are multiple tools available to students on the internet. If instructors 
allow the use of a wide range of tools, then they must accept the wide range of answers 
that will come from each of the tools. For my course, the choice was made by course 
developers to use one tool so that the instructor could be an expert on that one tool and 
method and be most helpful to the students. Instructors need to select their methodol-
ogy for the course. 

Tracking of where a student goes in the course is also nice to see if they have looked at 
the resources that were required. If they have not looked at the resource, then it becomes 
clear why they have the question. If they have looked at the resource, then the instructor 
knows to answer the question diferently. Students may be skipping the learning resource 
of a topic as they feel they already know it. If they are continually getting incorrect answers, 
it is important to look for error patterns to determine if the students have a misconcep-
tion (Ashlock, 2006). Being able to view the multiple attempts of students and the multiple 
types of questions on a specifc topic can help provide the necessary data. With all the 
work of students saved and tracked in the course, the amount of data available is ready for 
analysis. 

9.2 HOW TO ENGAGE STUDENTS IN AN ONLINE ENVIRONMENT 
Engagement of students is ofen a key factor evaluated within a face-to-face classroom. 
Engagement is readily measured by eye contact, body language, and interaction of stu-
dents. In the online environment, engagement happens in diferent ways. Te engagement 
of a student should not be only within the confnes of a course and content but should 
extend to other interactions. In the same way that a teacher builds relationships with stu-
dents outside of the classroom interactions, an online instructor should engage students 
outside of their online course. One of the frst steps to meaningful interactions is to under-
stand the tools available for communication. 

Te available methods of communication for students include, but are not limited to, 
phone calls, emails, texting, announcements, lesson content, video, and face-to-face inter-
actions. Te teaching of content in an online environment does not necessarily eliminate 
the possibility of face-to-face interactions. 
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Te additional methods of communication that are listed previously should all be read-
ily accessible for a good online instructor. Te use of a telephone call is ofen a method of 
communication to engage parents of K-12 students. Clear specifc communication shows a 
respect for the parents’ time but can also come of as gruf for not taking the time for “nec-
essary” small talk and pleasantries. Phone conversations need to have a clear purpose for 
the receiver. With K-12 students, a call to their parents or home number for each student 
to get some background information about them and their situation helps to gather infor-
mation that is readily accessible in face-to-face situations. Start by asking for the parent or 
guardian by name, as this information is provided in the data management system. Ten 
ask if they have the time to talk about their student. Comparing a phone call with the par-
ents that come by the classroom during a back to school night helps to show the time and 
place that these conversations would happen, but with the online environment. During a 
back to school night, parents come and happily share the information about the history of 
their student in mathematics. Tis type of information gathering can happen in an online 
assignment that students fll out within the course as well with post-secondary students. 

Te three questions that are always the focus of this phone call are to ask about the stu-
dent’s experience in online learning, the student’s experience with mathematics content, 
and why they are taking this course. Within these three questions, there are several details 
that will help the instructor to better understand the students. Te fnal question, about 
taking this course, provides a wealth of information about the students. Tat there is a typ-
ical order for taking mathematics courses and there is a need to complete courses in this 
order are considered in this answer. Te need to retake a course or to take the course out 
of sequence are ofen part of the answer provided. Tere is also the consideration of why 
they are taking this course in the online format. Tough this question is not directly asked, 
it is ofen answered. If students are catching up or working ahead of their general educa-
tion tells much about the students. Any difculties with mathematics content, or school in 
general, are brought up in this answer. Ability levels and knowledge levels provide a good 
set of data about the students. 

Another important data set is student profles within a Learning Management System 
(LMS). Tese profles may have some system-created information or may need to be built 
by the student. An early assignment to build this profle with the necessary information 
to help make connections can be a nice tool in interaction eforts. Profle pictures that are 
actual pictures of the student are helpful to visualize and recognize the students and their 
work. Allowing the picture to either be a picture of the student or a picture that represents 
them is a nice way to work around students who may not be willing to share their personal 
appearance in a new environment. 

Ofen within the profle, there are places that students can include information like 
their major, interests, and other information. Some students have used this as a social 
networking opportunity and written pages of information. Others fulfll the minimum 
requirements of the profle and never think about it again. As students are looking for 
other students to interact with the development of these personal profles tells much about 
if the students are willing to interact in the online environment. Of course, an instructor’s 
profle should be more than the minimum, but also not be excessive. 
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9.3 COMMUNICATING USING ONLINE TOOLS 
With a set of background data to build from, instructors can then move into their com-
munication with the students. Students engage in electronic communication so regularly 
that their expectations for engagement are very diferent than the expectations of many 
instructors. For students, the most important information is going to be stated clearly and 
concisely. With communications being limited by the number of characters, like Twitter, 
lengthy messages are not even possible. Understanding that longer communications dis-
engage students, the difculty of getting enough information to students now requires 
greater frequency in electronic communication. 

Many mathematical concepts require a large base of pre-knowledge for students to then 
learn the next step. Te ability to shorten a communication to a comparable tweet of 140 
characters was once compared to a single slide of a PowerPoint slide show. Te trouble 
is that this is not the frst slide in the presentation. Placement of the information helps 
students to understand the content of the slide. Additionally, it is helpful to provide the 
links to the previous “slides” of information so that the information is available but not all 
included and overwhelming to the students. 

9.4 SET TIMES FOR COMMUNICATION 
Communication can be done in multiple ways with students in the online environment. 
Students ofen expect communication at the moment that they are communicating. Google 
provides thousands of responses within a second for any search done. Tis can be one of 
the biggest difculties of working in the online environment, that is, most of the work is 
done out of sync or asynchronously. Unless instructors are going to be available all the 
time, setting up regular times for synchronous communication is necessary. Tis can be 
done in several diferent ways and using multiple means of communication. 

A common method for approaching the need for synchronous communication is the 
use of ofce hours. Having online ofce hours on a regular basis serves much the same 
purpose as it would with face-to-face courses. It is a time that students know they can fnd 
the instructor in a set location and the instructor is ready and willing to help them. Tis 
“location,” and how students reach it, needs to be clearly communicated to the students. It 
may be that students can count on an instructor to be at their computer and responding to 
emails within minutes. Similarly, the instructor is by the phone and will answer the phone 
calls of students. Finally, it may be that there is a virtual room that students can come into 
and ask the instructor or other students questions about the course. Understanding the 
timing of students and when they need feedback is one aspect of knowing students that 
afects their relationships within the course (Akdemir, 2010). 

One common type of feedback that many students require in mathematics is the check-
in that their process is being done correctly. Tese simple check-ins for students as they 
work a problem in the early stages of their learning help them to see that they are follow-
ing the methodology that the instructor provides well enough that they will then get the 
correct answer. Te tutoring requests that turn into watching a student work and giving 
positive reinforcement on their work are an aspect of the face-to-face class that students 
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miss as they move into the online environment. In place of the instructor being the only 
provider of this feedback, small groups can meet and check in to share the work that they 
are doing. Tis can group students who may come to the instructor with a question and the 
instructor can then answer many students’ questions all at the same time. 

Te interaction within the classroom can include the written messaging option, call-
ing or use of the computer microphone, and video conferencing. Te comfort level of the 
instructor usually dictates what ofce time includes. An additional beneft of a virtual 
room for students to come to is that of recordings of these ofce hours. Tese recordings 
can be edited to create a resource in the course. When several students have a question on 
an assignment or content item it is nice to create the resource that answers that question 
and have it ready in the course. Ten future questions are just a reference to the resource 
rather than having to repeatedly respond to the same question. Tese resources are great 
for helping to meet the needs of students. Ten as students are struggling with diferent 
assignments an instructor can help to personalize what resources to refer them to. All the 
resources are available, but as an instructor reaches out to a student with a specifc pre-
scription of resources for them to use, they feel a connection and realize that the instructor 
is a human who is working to help them with their specifc needs. 

A word of caution about using online rooms when teaching mathematics: Inputting 
mathematical symbols or equations can be very difcult. Ensure that instructors are famil-
iar with any mathtext tools available so that they can explain to the students how to use 
them. Some of these tools are based on some other sofware package that may not be avail-
able on all systems. To help work around this, a whiteboard tool can be shared. If the vir-
tual classroom does not have such a whiteboard tool, it can be worked around by sharing 
screens and opening a drawing program, like paint. Students can do this same process if 
they are learning what a symbol is. 

One particular difculty I’ve had was when a student asked what the e symbol was. 
No more context was given. I assumed the student meant e for the natural log. I jumped 
into a long explanation of the natural log. Afer a few minutes, the student responded that 
this was all information that seemed to be far from the rest of the content of the lesson. 
Tey followed up with questions about what the number on top and on the bottom were. 
Tis took a minute for me to process as e is typically only involved with exponents, num-
bers above. I thought about the subscripts with logarithmic functions. As I was typing out 
another long description for all these parts of logarithmic functions the student shared a 
picture of what they were trying to describe: . As this picture popped up on my screen, I 
felt a wave of frustration at all the time and energy I had just wasted explaining the wrong 
symbol to the student. Since then I have worked to make sure I fully understand and even 
see what the students are asking as I approach my ofce sessions. Getting the visual of what 
is being discussed is essential to make sure that instructors have efective communication 
with students. 

9.5 COMMUNICATING OUT OF SYNC 
Apart from the synchronous communication opportunities that the instructor schedules, 
there is much asynchronous communication that happens in the course. Every part of the 
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course that the students can access within a time frame of the course is asynchronous. It 
is something that the instructor, or content developers, put into the course and that can 
be used by the students at a time that works for the student. Most of the resources and 
experience in fully online courses are asynchronous. Tat is one of the major reasons that 
students take courses in the online format (Deal III, 2002; Li & Irby, 2008) Tey do not 
have the regular time to connect with a teacher, that fts the schedule of the school, teacher, 
or 20 other students. Tese many other “communications” are the bulk of course content 
and online interactions. Tey are ofen just referred to as resources in the course. Many of 
the diferent types will be discussed specifcally later on in this chapter. 

With the sequential nature of mathematics, adaptations to some of these resources help 
students to see the content as more than just several disconnected resources. When pos-
sible, having a specifc sequence that can be referred to and help guide the students through 
creates this cohesiveness. Leading into a new lesson with a reference to previous content 
and learning is a best practice for helping to prime students’ minds in all learning situa-
tions (Skemp, 1987) and works well in the online environment. Referencing solving sys-
tems of equations by graphing before starting on substitution is a little thing that helps the 
students to see order in the course, even if it is not in sync. 

A consistent difculty that students have expressed in online courses is a feeling of iso-
lation (Bambara et al., 2009). Even when they have a great instructor who interacts with 
them regularly, the students long for student-to-student interactions. Like most interac-
tions in the online environment, student-to-student interactions take efort to make hap-
pen. Te instructor is usually the one who needs to create these opportunities for students. 

Planning out each of these details of the course helps students to get to know their 
instructor. When an instructor develops a course, they have a connection to the content 
and it is a representation of them personally (Eichhorn et al., 2019). One colleague expressed 
feeling vulnerable when asked to give access to others to see how well their online course 
worked. Tis colleague had put in much personal time and efort for their students to see 
their teaching style and personality represented. Courses should have a personal aspect to 
the instructor, even with a standardized curriculum. If a course does not have a personal 
touch, then why have a person connected to it? Afer revamping a course several times, I 
received a new standardized course with many of my personalized updates included. It 
was a bit disheartening to me to see my personal work applied to the masses, but then I 
realized that I must be doing something right if my school wanted my work to be used by 
all students. Being recognized for creating good online resources is important. Be sure to 
use other great ideas and to credit them. Setting up a course is the frst step in engaging 
students. Additional suggestions are included in the following sections. 

A common interaction for online course work is the use of a discussion board. Te dis-
cussion board has been seen as an essential tool for student engagement (Eichhorn et al., 
2019). A discussion board is a tool in the course where the instructor provides a prompt 
that the students will create replies to, ofen called threads. Each student should create a 
new discussion thread so that other students can respond directly to them. In mathemat-
ics, discussion boards require open discussion prompts. Te discussion cannot be focused 
on the right answer to a problem. As these prompts are created, the goal of interaction and 
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a discussion needs to be the focus (Engelbrecht & Harding, 2005). Consider the diferent 
levels of questions and even the wording (Wiederhold, 1995). A discussion prompt needs 
to be very open in the responses that students can provide. A correct answer focus ends the 
discussion once the answer is found and limits the interaction. 

What is expected of the student in these discussion boards also needs to be very clear. 
Te minimum expectations for discussion boards that I have used as a student and a teacher 
are one thread that responds to the instructor’s prompt and then at least two replies to other 
students’ threads. Te openness of the prompt needs to consider that every thread can then 
be carried on with a discussion. One good prompt that I’ve been able to use in my courses 
has been to provide students with a system of equations. Te prompt provides the system of 
equations in a story problem format so that students may use a variety of approaches to the 
problem aside from the typical writing of equations. Students have learned the graphing, 
substitution, and elimination methods for solving systems of equations. Te prompt has 
students choose a method and work out the problem. Te replies are to ask a student who 
selected a diferent method and ask what made their method easier or more difcult. Tis 
wider range of discussion is not easy for many students in mathematics. Te early prompts 
will need to help students through step by step. 

Additionally, the timeline of diferent parts is very important. Students need to have 
enough discussion threads to choose from. To help with this, I’ve ofen scheduled out the 
time frame for original discussion threads and a diferent time for replies. Usually the 
replies time frame can begin right afer the original threads. Tis should create a time 
frame in which all can put out their original posts. Ten when they come back during the 
reply phase, they have all possible threads available and the students have the widest range 
of options to pick from. A major issue that I’ve dealt with in all LMSs that I’ve worked with 
is that there is not a separate time frame for each of these parts of the discussion board. It is 
a single grade and a single due date. Even with an explanation of the need for two separate 
parts to the discussion board and two separate times to get into the course, students work 
to do the minimum and will participate on only the last day to attempt to get points. Tey 
do not give anyone a chance to respond to their original thread and no one can respond to 
their replies. It is a large disservice to the interactions of the course. It is a hurdle that needs 
to be laid out early and a clear expectation repeatedly reinforced. 

Te expectations of the replies should also be very clear in these discussion boards. As 
the goal of these is to have students interact, replies need to be more than a comment, but 
rather add to the discussion. Tinking about a bad social interaction, it may be someone 
who only answers with single words or vague comments. Te discussion takes more work 
than it is worth. Students need to continue the discussion with additional information or 
questions. Again, the instructor should be an example of this, but clear expectations and 
some examples should also be provided. 

Another opportunity for student-to-student interaction comes from group work 
(Engelbrecht & Harding, 2005). Group work has always been a sore spot for me as a stu-
dent. Te group projects or presentations that I have had to do as a student were graded 
on a group basis. While this does simplify the grading process for the instructor, consid-
erations should be made for when a group does not work well. As part of that, instructors 
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should think about the method for grouping students. If the course is set up with the 
ability to have students select their own groups, this can be useful to start out. Tis is a 
time when the initial interactions would greatly infuence how students select other group 
members. Tis can provide interesting information to the instructor about connections 
that have been made or if there are difculties in the course that they should be aware of 
between students. Tese infuences would then be considered when the instructor selects 
the groups for students on later projects. Even just an exchange of papers between stu-
dents online can be a very helpful thing. I have had great success in having two students, 
who both understood parts of a mathematics concept but could not put the whole thing 
together, suddenly understand as they shared between the two of them. As a key reason 
that students choose to take a course online is the inability to meet the schedule needs of 
the school, instructor, or other students, instructors should be clear about what schedul-
ing requirements are included in the course for any group projects at the start. I use the 
peer review setup in which students need to leave a fle by a certain time and then have a 
time frame to peer review and return the fle. Tis allows the fexibility in schedules that 
students prefer. 

Te grading of group work needs to be done individually whenever possible. All the 
information on grades should be fltered through the instructor to ensure that grading is 
fair and appropriate. If the end product of the group work is poor, but the majority of the 
group did their part and contributed greatly the instructor needs to provide individual 
grades that represent this. In like manner, one person may make a great end product while 
the majority of the group failed in their part of the group work. Careful consideration of 
what is graded and how it is evaluated should be done at an early stage of planning. 

9.6 COMMUNICATION THROUGH THE COURSE CONTENT 
Communication in an online course is easier and harder. Communication is a key part of 
all learning. It is the method by which instructors package their knowledge and deliver it 
to students. In a face-to-face environment, communication can be done with kinetic, audi-
tory, and visual methods. Having this wide range of communications is not what makes 
the online learning environment diferent, rather it is the interactions of these communica-
tions. In fact, the methods of communication in the online environment can be better than 
those on the face-to-face environment in certain aspects. Face-to-face communications are 
received at the broadest ability of the receiver. Tis means that everything that the receiver 
can see, hear, and feel is part of that moment for learning. Tis allows the interaction of 
people on the broadest levels. Each person communicates, even unconsciously. Tese inter-
actions are the basis for all communication at the earliest stages of life. Communications in 
an online environment are fltered. 

Te online environment is created through the communications that people are willing 
to share. Tis puts major limits on the methods of communication and what information 
is actually shared. As a result of the limited communication that we receive but are not 
used to the human mind works to fll in any gaps in the communication. Tis flling in of 
gaps happens as we read books and work to provide emotion to the words on the page. In 
this same manner, actors provide meaning and emotion to their lines in a script. Te more 
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information that is provided to them the more they can fll in the gaps to provide the whole 
communication that was originally intended. 

Misinterpretations of the meaning of communication occur ofen as the context of 
the communication may be unknown or diferent from the one that the communication 
is received in. Tis gap of environment can be a change of location or a change of time 
(Aboujaoude, 2011). Some astounding piece of information is common news at a later time. 
Te day that World War II ended was a monumental day and was deeply felt by all who 
received the news. Now to read the history lesson about the end of World War II has little 
direct meaning for the world’s population. In this same manner, the day the end of World 
War II was announced was a day of victory or defeat based on the geographical location. 
Even the mental and emotional states of each person who heard the news afected how it 
was received. 

In the teaching of mathematics, there is ofen a removal of context to help solve prob-
lems. When this is done the parts of the problem have to be boiled down to their most 
specifc and pertinent information to solve the problem. Mathematicians do this type of 
context removal very smoothly and naturally afer some practice. In like manner, the mes-
sage or the information that the instructor is working to send to students needs to be 
delivered without any additional information. Tis is the frst step to good communication 
in the online environment. Sometimes this is achieved as all the information from a class-
room environment is repackaged to the online environment, and other times it is the only 
step done and students feel a lack of relevance and context that takes away the meaning of 
the knowledge. 

Tis simplifed message needs to only be the frst step. For some students, it may be 
enough for them, but many will need more than raw knowledge. Tey will need more 
context, application, and meaning to have a lasting memory or use of the knowledge. Te 
minimum knowledge that is published in the online course needs to be required by all 
students. Additional direct applications should also be included so that students receive 
the knowledge and can use it. Additionally, the relevance of the knowledge is what helps 
students understand the meaning. Each of these additional aspects of the communication 
should be optional for students to use. Instructors need to provide all methods of commu-
nication in the online course for students to access, but not require all parts to be accessed. 
Tis will overlabor many of the students, and they will shut down or quit the course. Tis 
is an important balance that needs to be had in the tools and resources within an online 
course. 

One aspect of communication that is easier is that it can be standardized. Standardizing 
communication helps the instructor to provide the same level of information and expecta-
tions for all students (Akdemir, 2010). Sending out an email or providing an announcement 
to all participants of a course means that all participants have access to the communica-
tion. Te priority of these may be diferent to diferent students. Te multiple methods for 
communication are necessary to meet the preferences of all students. By being able to pro-
vide the same written communication in the multiple methods helps to provide the same 
expectations. Te recording of all these communications in the online environment is also 
helpful to instructors. I’ve ofen had questions from students, parents, or schools about 
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some detail that I can simply refer to a previous communication. I have ofen even re-sent 
the original communication. As an instructor, I have kept my email inbox as a to-do list for 
keeping up with my students’ questions. As someone who is nagged by seeing these each 
time that my email is opened, I am told that I respond to emails much quicker than most 
other online instructors. Sorting and fling the communications that are received as an 
instructor is helpful in keeping up with student needs. 

Instructions need to be perfectly clear on what to do, but not give away all the parts of 
how to do it. Providing written instructions can be great and should include as much infor-
mation about the expectations as possible. Rubrics are instrumental when there is more 
than a right answer required. In addition to written instructions, video demonstrations 
are helpful. Each of these diferent methods has to be built by the instructor or content 
developer, even if not all of them will be used by the student. Te more that can be built 
ahead of time the fewer issues that will need to be addressed in the moment. A colleague 
recently expressed their preference for teaching online as it involves much setup work and 
then simpler maintenance during the course. I would generally agree with this feeling for 
time allocation for online mathematics courses. 

All methods of communication need to say the same thing. Due dates in every part of 
the course need to be the same or the work of the instructor will have to go to clarifying 
the communication more than teaching. Consistency across the course communications 
is an important thing that instructors should pay attention to before students have access. 
When I have taught a course that has been preloaded with content, checking all the com-
munications is a top priority. Some previous due dates or variation of expectation from 
my own are quickly found by students. Even my own reuse of course content requires the 
update of due dates. Te reuse of a previous resource may also require the checking of links 
and surrounding information. 

9.7 USING LOCAL SUPPORTS 
One aspect of mathematics that math teachers ofen have engrained in them is to remove 
the context of a problem. Te context is ofen what helps the answer make sense. In that 
same light, each student comes from a specifc context that helps them, their knowledge, 
and their abilities make sense. Teaching in a school that has multiple feeder schools is 
a good way to understand this. Multiple teachers have taught the group that is found 
in any course. Each teacher made a skill or concept a high priority in their classroom. 
Students now have diferent priorities because of the diferent teachers that they had 
before. 

One diference in priorities is what technology is available to students. One interesting 
thing that I have had to develop through the years is a checklist for what technology the 
students have available to complete the course. Ensuring that students have all the right 
technology for success should be an early and high priority of the instructor. I have certain 
assignments in my course that require the students to use an online graphing tool, take a 
picture of their graph, and then upload it to the course. Having a practice assignment to get 
all of this troubleshooting out of the way early can be a nice approach. Mathematics ofen 
requires the use of special symbols or particular ways of writing things. Ensure, before the 
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students are working with content, that these technical aspects are not going to get in their 
way. Te use of Flash is not an option on certain devices. If there is an online tool that can 
only be used on a certain type of device, be sure that this is clear at the beginning of the 
course. If printing and scanning are part of the workaround for symbols, be sure that this 
is upfront as well. 

9.7.1  Schools 

Online courses mean diferent things to diferent schools. Some schools use online math 
classes as a supplement for students who are above or below where their mainstream group 
is at. Te courses are not supported by time or personnel. Te students have to do all the 
work outside of the school time, and that makes the online instructor the most important 
resource for the students. 

Other schools use online mathematics courses as part of their curriculum and supple-
ment the courses with an in-house assistant. “Assistant” can mean many diferent things. 
Tis assistant may have no content knowledge and be there to make sure that students are 
working. Te assistant can be a teacher who allows students to work in their room during a 
prep hour and is a content expert but does not have the course time to teach. Te assistant 
may be a full teacher who has not received their license, and so the students are getting the 
course from a certifed teacher and being helped with daily lessons from another teacher. 

Knowing what supports from the school are available to each student helps to determine 
some of what can be expected from each student. It also helps the instructor know who 
they will be hearing from ofen and who they should talk to as local support rather than 
the student directly. 

9.7.2  Parents 

Parental expectations for an online mathematics course vary as much as for students. With 
that in mind, the support that parents provide will vary too. Some parents will work every 
problem right along with their child. Others will never even know the student is in an 
online mathematics course. In the K-12 system, it is important to keep parents in the loop 
of expectations and coordinate with the school supports too. Alignment between school 
supports and parent supports can be difcult. I have had parents who knew that the stu-
dents had time at school to do the online coursework and then never expected that there 
would be any time required out of school for the students. I ofen have to follow up with 
the question of if their student has homework from their face-to-face classes. Tat same 
expectation should extend to the time commitment for online classes, if not increase as 
online courses take more time than face-to-face courses. 

Parents should be treated as an important part of the teaching team, in the K-12 system. 
Tey are among the frst people I go to for getting background information about a student 
and their individual situation. When I frst introduce myself to parents, via phone or email, 
I warn them that they will be included in any important information emails about how the 
student is doing. Tis helps me to be able to communicate directly with students and just cc 
parents in the email. It is nice to not have to write a whole separate email. Tis initial con-
tact with parents is also to be sure that their lines of communication are open. When I call, 
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I ask that they save my number. If I email, I write out my email for the parents to contact 
me. (Some email systems block the email or have a reply to another address.) 

Communication with parents needs to start as soon as instructors can so that they are 
helping set up the learning space for the students. Te largest factor that students struggle 
with is making sure they have enough time allotted for the course and the work. Whether 
it is a course done at school or in addition to the regular school day, the online course will 
need some extra time. I like to tell my K-12 students that they should plan on fve to ten 
hours a week to work online. Te range may increase if mathematics is a difcult subject 
or if the student has not had much online experience before. Parents help students regulate 
their time. Many students need some help as they develop the life skill of time manage-
ment. Parents can be the biggest help in getting students working and dedicating enough 
time to be successful. Students who are pressed for time generally do not perform well. 
Students rarely win the catch-up game. 

An outline of the course, due dates, and the syllabus are tools that parents need if they 
are to help. Outlining the course for the parents helps them know what the students are 
doing, how it connects to previous work, and how it connects to future work. Tis outline 
should also include due dates so that parents can ask about specifc assignments done by 
certain times. Specifc due dates in an online format need to fulfll a specifc purpose. 
Te reason that students take an online course is for the fexibility of work time. When 
required to log in daily to stay on an instructor’s schedule, that can be of-putting. Te due 
dates need to serve a purpose, and the purpose needs to be clear to parents so that they can 
reinforce it with students. Due dates are a big deal for any interactive part of the course 
as the students need things from classmates to continue their progress. Tis makes sense 
to parents as many of them have jobs that require them to depend on others or others to 
depend on them. 

Te syllabus needs to be very clear about expectations and grading. Grading is always 
the largest focus as it is the result of the course that will continue with them afer the 
course. A clear description of the weighting of diferent parts needs to be in the syllabus. 
It always amazes me how much work students will put into fguring out their grade but 
refuse to do a percentage assignment to improve their grade. Te diferent weights help to 
show the importance of diferent parts of a course to students and parents. Consider what 
information is sent when the tests are most of the grade. Test-heavy courses are possibly 
why a student failed a face-to-face course. If an instructor wants the parents on their side, 
they should include some justifcation for anything that may be diferent from the parents’ 
expectations. A syllabus should include how the course is set up for student success. I do 
this in my college courses as a secret video. It is not hard to fnd, but by labeling it secret it 
has some excitement in it. In this video, I lay out how each of the parts of the course helps 
the students and how the many parts are connected and build meaning and purpose for 
later parts. In mathematics, it is very easy to help bring out how one part leads to the learn-
ing in the next and how they all come together into a new skill that they will need in real 
life or a future math class. 

Aside from time allotment, parents are the next closest people to the students to get help 
from. Te initial communication with parents ofen includes some feedback from parents 



          

 
 
 
 
 

 
 

 

Tools for Communication and Interaction ◾ 177 

about their feelings on mathematics. Knowing this is a key for gauging how much time 
and attention they will provide to the students. If they had success, then they will work 
with their student. Also, parents will ofen see the struggle that requires time and atten-
tion from the instructor. Ensuring that parents are ready to call on the instructor for help 
or refer their student to the instructor is key. I really have appreciated when I got a text or 
email from a parent asking that I reach out to their child on a particular assignment. It 
gives me a place to start the conversation rather than the general “can I help you?” I can get 
specifc to the assignment and the content to help the student. 

Te efectiveness of an instructor’s online help is also tough to gauge from the student. 
Following up with the parents afer interventions with the student is a nice third-party 
perspective. I have found out that my well-written example was way of-base and that the 
students are now more frustrated and confused. Occasionally, the students or parents 
need a face-to-face third party too. Face-to-face tutors may be necessary for students to 
be successful. Online instructors should not take this as a failure. It is important to rec-
ognize the reality that not every student can be successful in an online course. Tutors 
would need to be set up with parents and should be considered if the student’s needs are 
not being met. 

9.8 USING ONLINE TOOLS 
Tere is some interesting research about the use of digital manipulatives that should also 
be considered when thinking about the use of online tools. Discussion about the levels of 
abstraction should be taken into consideration when selecting tools for teaching math-
ematics (Lee & Tan, 2014). Initial learning in many cases needs to have a physical repre-
sentation that students use to begin their understanding. Even the use of fngers to count 
fulflls this purpose. Te students’ fngers are a tangible object that students can see and 
touch. Te earliest concepts need to have this physical representation. For more mature 
students who have moved into a later stage of abstraction, digital manipulatives can be 
used for representations. Te later stages of abstraction are the pictorial representation of a 
physical object, the symbolic representation of the physical object, and fnally the abstrac-
tion that has no visual reference but uses the idea of the physical object. For more informa-
tion about the levels of abstraction see Lee and Tan (2014). 

Now the use of these tools can serve a great purpose for the teaching of mathematics. 
Many students do not begin their mathematics education online; therefore much more 
of the teaching of mathematics online can use these tools without the precautions of stu-
dents’ developmental level of abstraction. Knowing that any use of digital manipulatives 
requires a level of abstraction in the thinking of students should inform the instructors 
that a digital tool may need some supplemental instruction for students to understand. If 
students have never seen the actual physical thing that is being represented digitally, then 
the students will have a gap in understanding. Keeping this in consideration, I ofen have 
my students purchase some physical items. Tis could be the course cost as many times an 
online course will not require a textbook. 

Te use of online textbooks is not the focus of this section but is an important consid-
eration for the online tools that are used. Te reading material that can be provided in 



        178 ◾ Teaching and Learning Mathematics Online 

an online course is limited only by the access of the student. Tis brings up the impor-
tant consideration of necessary limits to students and their access. While instructors may 
consider using the openness of access to the internet for research and learning a fountain 
of truth that they will send students to, it is more ofen a hazardous cascade of misinfor-
mation and uncreditable ideas. Students ofen provide blogs and wikis as a source unless 
specifc guidelines are put in place. Tese guidelines need to be put up with the idea that 
they are guardrails for success rather than “No Trespassing” signs meant to keep students 
away from real-world truths. Guardrails serve the purpose of limiting exposure to danger. 
Te danger in the online learning of mathematics appears as shortcuts or misconceptions. 
Many credible sources discuss errors and mistakes in great detail to help readers know 
how to avoid or fx such problems. Unless students will put in the dedication to read these 
sources in full, they can easily short-circuit their own learning and fall for the very traps 
that the sources are seeking to help them avoid. 

Providing several structured readings and activities to be completed to learn a math-
ematics concept is a great use of the online environment. An important part of setting 
up an online course will be the decisions on what is necessary and sufcient to learn the 
mathematics concept and what is supplemental. Te supplemental is not required of all 
students and should not be directly tied to a grade in the course. Experienced instructors 
see the developing problem in this balance. Many students will not do anything that is not 
required to pass the class. Tey are minimalists. Tey will do the least that is required of 
them. Ofen these students are the ones who need the most exposure and interaction with 
the mathematics content. Tis quandary leads to a great online tool. 

Diferentiation in an online classroom can be utilized by restrictions on the content 
or pathways required. Tese pathways can be developed by having specifc activities and 
assignments that must be completed at certain levels. In my own online course, I require 
students to pass a mathematics content quiz at a specifc level. Tis quiz can be taken 
multiple times and has a large question bank to pull from so the quiz is never the same. 
I do this so that students must show that they have mastered enough of the content that 
they are ready for the next mathematical concept. By creating these gateways my learning 
management system will help to diferentiate for me. Students with the necessary level of 
understanding can move on in the course. Students who need more time on a concept are 
not allowed to work on anything else until the current concept is mastered. Tis kind of 
setup may be new to students and should be explained. Most people understand the pro-
gressive nature of mathematics and that a foundation must be in place to understand the 
next topics. 

Additionally, this same gateway setup can be used for students who have mastered cer-
tain topics and can be expedited to topics that will provide them an academic challenge. 
Te use of early assessment to gather these data should not directly afect grades. Tis gate-
way can then directly afect if a student is required to complete other activities or assign-
ments in the course. Using these gateway tools, the instructor needs to ensure that even 
the very best student who may test out of many activities or assignments is still exposed to 
all that is necessary and sufcient for the course. On the other end of the spectrum, there 
must be enough content and direction that students are not going to be stopped in their 
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FIGURE 9.1 Screenshot of NCTM’s adjustable spinner with default settings. 

progression through the course materials. A default screen afer several failed attempts to 
have the student contact their instructor is a nice guardrail to prevent students from going 
too far looking for answers or to quit the course without some chance for the instructor to 
intervene. 

Apart from the course setup and content that would be housed in a course shell, other 
tools that can help students in their learning of mathematics should also pique the interest 
of instructors. One online tool that I prefer over any similar real-world tool is the use of 
the NCTM’s adjustable spinner. Tis tool is ready to use from the frst click to accomplish 
many things and can be found at NCTM’s Illuminations page.* Te default tool has a spin-
ner with six sections that have diferent colors and are equally distributed (Figure 9.1). For 
use as an instructor, this tool can be displayed through a screen share or screen recording. 
Te user may select the number of spins that will be done. Te user then clicks spin, and 
each spin is done in real time on the spinner. Tere is an option to skip to the end of the 
number of spins that were put in. Tis allows instructors to let the spinner go while they 
explain more about the use of this spinner or to jump to a specifc number of spins more 
quickly. Te adjustable spinner can do thousands of spins in a short time. Calculations of 
the outcomes are tracked within this tool and are displayed alongside the theoretical prob-
ability based on how the spinner is setup. Tis tool does a side-by-side comparison of the 
theoretical probability with the experimental probability. Tis type of information helps to 
expose students to the need for a larger sample size when gathering statistical data. Many 
of the calculations are done within this tool. By having the tool do much of the calculation 

* www.nctm.org/Classroom-Resources/Illuminations/Interactives/Adjustable-Spinner/. 

www.nctm.org
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work for students, the course can then focus on deeper levels of conversation about how to 
interpret the calculations and data. 

Apart from this use for equal distribution of six colors the spinner may be adjusted for 
more or fewer colors. Each of the sections can be adjusted in size to represent unequal dis-
tributions. All the same tools for spins function in the same way. Also, calculations within 
the tool are adjusted with every drag or adjustment. Tis allows this tool to be used in a 
variety of ways and levels. Te tool can even be used in a much simpler way to just help 
pick colors out of a set, or, if numbers relate to the colors, to fnd random numbers from a 
specifc sized set. It may be a tool that is shown and used but not explained until students 
are ready for it. 

9.9  GEOGEBRA 
As students move into higher levels of mathematics that require graphing, one tool is 
especially helpful to use that can then be returned to for later topics of mathematics. It is 
GeoGebra. GeoGebra is a universal tool that can be used on all devices and can do many 
diferent things. Because of its diversity as a tool, it has not been developed as the most 
user-friendly tool. Once someone has had some practice with it then many parts work 
smoothly. It requires some time and practice to get to the point of smooth operation. Te 
use of this tool for online learning is very diverse. It can be used as a simple graphing cal-
culator, to understand what is graphed by manipulating a graph, to draw any pictures or 
representations by the instructor, for constructions, to graph 3D objects, to work spread-
sheets, for data representations, and many other things. 

Te graphing capability of GeoGebra is greater than that of a graphing calculator. Other 
online calculators, like DESMOS, function strictly like a hand-held graphing calculator. 
GeoGebra has a graphing capability in the traditional sense. Tere is a spot to input equa-
tions as a y equals as would be done on a handheld graphing calculator; see Figure 9.2. In 
addition to this function, equations can be put into GeoGebra in diferent forms. Linear 
equations can also be put into GeoGebra in a slope-intercept form and can be changed to 
standard form or vice versa. Tis function can help students learn the diferent versions 
of how an equation can look. Te input of equations and what GeoGebra uses is the only 
limitation that I have found. GeoGebra does not keep fractions in the equations. Tough 
fractions can be put into GeoGebra, it will convert the fraction to a decimal and round it 
to the nearest hundredth as a default; see Figure 9.3. Te program is more accurate than to 
the nearest hundredth in the graphing that it does, but the accuracy does have its limits. 

Tis limitation of GeoGebra is a nice opportunity to stress the importance of accuracy 
and exactness in the tools that are used. Tis is a mathematical practice of the common 
core standards that should be discussed some at each level of mathematics (Center for 
Best Practices, National Governors Association, Ofcers, & Council of Chief State School 
Ofcers, 2010). Graphing accuracy may be the frst place this conversation begins as an 
online course may require the students to print a graph and to hand-draw a line. Te 
accuracy of that line and extending it through the whole graph are both common issues 
that come up during these early attempts of graphing. As the hand graphing translates to 
using a program, like GeoGebra, the idea that the graph that we see is only a window of 
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FIGURE 9.2 Screenshot of GeoGebra, highlighting the input aspect. 

FIGURE 9.3 GeoGebra using decimals even with the input of fractions. 
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the whole graph is difcult for students to understand with the paper-and-pencil method. 
With graphing utilities like calculators or sofware, shifing the view of the graph to see 
more of the infnite that is represented on the graph can be done. Te simple zoom func-
tion of GeoGebra by scrolling up or down automatically changes the labeled scale on the 
axes of the graph so that students see the change and realize how small of a distance or how 
large of a distance is being represented in the window of the screen. 

An additional aspect of using a graphing utility on a computer or more expensive calcu-
lator is the ability to see multiple colors for the lines and even shading. Tis helps students 
to track things more easily from the paper to the electronic representation. While other 
graphing utilities, like DESMOS, allow this same capability, GeoGebra features an addi-
tional aspect that helps students who struggle with the multiple things on a graph. Each of 
the equations in the Algebra window has a dot that, when flled, means that the equation is 
being shown on the graph. By clicking that flled dot it becomes empty and the representa-
tion on the graph also is removed; see Figure 9.4. Doing this allows students to focus on 
just the part of the graph they want for that part of the problem. Tis has allowed me as an 
instructor to have the same graph with many diferent equations graphed, but I only show 
the ones that I want at the time. It is as easy as the click of the dot to show or not show an 
equation. 

Additionally, as I have used GeoGebra to teach about systems of equations, another fea-
ture comes in quite handy. Te ability to click on the graph itself and manipulate objects 
there has been very useful. Te ability to add additional objects that are freely drawn onto 
the graph helps to test points on a graphed equation. My particular method for showing 
a solution is to begin with the point that is supposed to be a solution to the system. I can 
plot this point by clicking that point in the open graph or through the input area. I then 
add each of the graphed equations to the graph. Tis allows me to see which of the equa-
tions does not cross the point in question. Ofen students have a point that works for one 
equation, but not both; see Figure 9.5. Tis way we can see which equation may be giving 
them trouble. 

Tis ability to manipulate items on the graph is also helpful in the early stages of learn-
ing what each part of an equation does. My personal approach to this learning again starts 
with placing an object on the open graph. Tis time I do it with two points and then con-
nect them with a line. GeoGebra’s Algebra window lists the information of each point and 
the equation of the line that connects them; see Figure 9.5. By placing objects in the open 
graph area, they can continue to be moved around in the graph, and the input area infor-
mation will change based on where objects are placed. Tis ability to see the equations or 
coordinates move as I move things on the graph is a nice start for the early introduction 

FIGURE 9.4 Te Algebra window of GeoGebra with the display dots for two lines. 
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FIGURE 9.5 Screenshot of testing a solution to a system of equations with a point and each line as 
separate objects. 

of coordinates. I can move a point lef and right and students will see that the x part of the 
coordinates is what changes while the y stays the same. I can then move a point up and 
down and show the vertical placement is tied to the y part of the coordinate. Tis also helps 
students to see where coordinates move into the negatives. I’ve used this to help students 
determine the types of coordinates in each of the quadrants; see Figure 9.6. 

Te use of the points on a line is very helpful as I can then move the points around and 
the line equation changes automatically. At the early introduction, I only use lattice points, 
points that have integer coordinates. Tese lattice points help students to be comfortable 
as they need to do the calculations to start to determine slope. I do not call it slope but 
reference the number that represents slope in the equation that is automatically created 
in the input part of GeoGebra. By doing this I can ask the students where the program 
is coming up with the slope and the y-intercept parts of the equations. Having students 
build these connections with the graphical representation of the equations has also helped 
them to realize that any point on the graphical representation is a solution for the x and y 
of the equation. GeoGebra also can free write over the graphing window. Tis allows slope 
calculations within the program rather than in a separate drawing program. Even college 
students miss this connection between equations and graphs. I can manipulate the points 
and line to create new equations and test each of the points as a solution to the equation. 
As students test diferent ideas about how the slope and y-intercept are determined for each 
of the equations, the multiple methods reduce the calculations of the slope and the point 
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FIGURE 9.6 Equations created by connecting free points on the graph. 

where the graphical representation crosses the y-axis. I’ve used a similar methodology for 
the graphing of non-linear equations. Having students graph multiple similar equations or 
draw them and watch what happens to the equations helps them to see what the a, b, and c 
represent in a standard form of a quadratic equation, ax2+bx+c=0. 

Te ability to freely draw objects in GeoGebra is a nice tool to help meet some of the 
Common Core State Standards for Mathematics (Center for Best Practices et al., 2010). Tis 
latest integration of mathematics standards to sweep the nation has a few standards that 
require constructions to be included in geometry content. Tese standards also specify that 
students use technology to complete the constructions, as well as other methods. Te use 
of technology in these standards can be especially helpful for instructors. As students are 
already at a computer, they can enlist the help of a screen recording program, like screen-
castomatic, to record their work in GeoGebra to perform these constructions. Screen-
recording programs can be another useful tool for students to utilize as they need to explain 
their work or justify a solution. Each student can record their individual work and submit it 
to the LMS for the instructor to review on their own time. Tis allows the instructor some 
individualized time with each student’s work. Te difculty to consider is that it takes more 
time to do this then just checking correct answers. However, the recorded aspect does pro-
vide some reprieve as an instructor can skip around in the recording to fnd the key points 
of the explanation. Tis handy tool, like all others, has its advantages and disadvantages. 

Constructing in GeoGebra can be done in multiple ways. GeoGebra provides many 
tools that are a simple clicking of the mouse but would require many steps using a compass 
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and straightedge approach. To help students appreciate the amazing abilities that have been 
built into GeoGebra, limiting their tools to the compass and line tools of GeoGebra would 
serve this same purpose. Many constructions can grow in complexity very quickly, but one 
of the previous attributes of GeoGebra helps in this area too. Being able to hide some of 
the lines or circles that are drawn can help students to focus on the next step of the equa-
tion rather than getting lost in the complexity of the whole construction; see Figure 9.7. 
GeoGebra uses free-moving objects and fxed objects that are based on the construction 
and intersection of other objects in the plane. When constructions are done correctly the 
dragging of the freemoving points can be a nice way to check the accuracy of the construc-
tion. Tis can be a nice alternative to watching all the construction and explanation videos. 
As an instructor, if students submit their completed constructions, checking just the sub-
mitted fle can reduce the time load. Ten if a student has done it by a diferent or incorrect 
method, the video can be used to help clarify the error for better feedback or understand 
the diferent method used. 

Apart from constructions to meet the standards, the free drawing of shapes can also 
be useful to see all the diferent variations of a given situation. I have ofen used this abil-
ity in my face-to-face classrooms and online videos to show that many diferent types of 
triangles all have an angle sum of 180 degrees. Objects can be animated to move within 
any restrictions that have been created. Totally free-moving objects will move in random 
patterns and directions. I like to at least fx a point on a line or line segment. Tis gives the 
point a direction, and using a segment gives it an endpoint so that it will reverse directions 

FIGURE 9.7 Free-placed points on the graph and the coordinates listed in the Algebra window. 
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when it reaches the end. Points can be paused and moved within the restrictions to create 
each of the diferent types of triangles. Ten I’ll allow the points to animate freely so that 
students can see that the few examples that I provide are not the only ones that work. Te 
showing of calculations on the graph is also a great utility of GeoGebra. Tis does take 
some practice as the measurements are assigned various symbols that then need to be used 
in the equation for the calculation; see Figure 9.8. 

As mentioned above, GeoGebra can cut out many additional steps for constructions. 
One part of this is that it will do all the measurements of a shape and list them all out. 

FIGURE 9.8 Comparison of the same construction (trisection of a segment), frst with all objects 
seen required to be completed with the compass and straightedge and the second with many of the 
objects hidden so that the result is shown. 
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FIGURE 9.9 A triangle with measured angles and showing the relationship of the angles to sum 
to 180 degrees. 

GeoGebra also has options for drawing a free-form polygon or a regular polygon. Te free-
form polygon tool can be useful for fnding general attributes of polygons and pointing 
out the diference between concave and convex types. Tis tool is also helpful in creating 
a unique shape that can be used to identify diferent transformations taking place. Te 
regular polygon tool has the user specify a length and then the number of sides. Tis can 
be great for seeing what each regular shape looks like and gathering data about angle sums 
for interior and exterior angles (Figure 9.9). 

9.10 A STANDARDIZED METHOD OF DELIVERY 
One aspect that has been helpful in the creation of courses and the use of other instructors 
is the ability to standardize the course content. Te online course format allows the cre-
ation of assessments and tools that can be distributed to all instructors and that will afect 
students in the same way. “Te main purpose of using Learning Management Systems is 
to provide a consistent schema for online courses to facilitate the monitoring of students as 
their learning progresses” (Akdemir, 2010, p. 53). Te preloading of a gradebook will stan-
dardize how grades are calculated between sections of the same course. Some instructors 
are only at the level of providing the online course content to students. Advising students 
about courses to take includes discussion of the method, face-to-face or online, and who 
to take the course from. 

Online courses that have been standardized remove the variation of the value of a course 
changing based on the instructor for each of the standardized parts. Tis is also helpful 
for courses across multiple campuses and multiple schools. Acceptance of a course from 
another school is much more likely if the courses are standardized within a larger system. 
Te more instructors who teach a standardized course, the larger the pool of people who 
can help improve the course and develop tools that can be used by all. Te spreading of 
work to develop content and resources helps to lighten the workload. 



        

 

 

 

 

 

 
 

 

 

188 ◾ Teaching and Learning Mathematics Online 

9.11  CONCLUSION 
Te teaching of mathematics through the course and communication and the learning 
by the students are greatly infuenced by the instructor's comfort level with the tools in 
an online environment. Te course and communication are the two major tools that an 
instructor has for helping students learn the content required. Taking the time to set up the 
course and using all the tools available within the course to cater the course to students’ 
needs and instructor preferences is what separates experienced and preferred instructors 
from the novice. Using the many methods of communication is helpful for meeting the 
needs of students in a non-traditional environment as well as making communication 
clearer. Building relationships with students depends on a foundation being built by the 
instructor before the start of the course and maintained throughout. 
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10.1 ANXIETY IN THE TEACHING AND LEARNING OF MATHEMATICS 
Mathematics anxiety afects a wide variety of learners regardless of age, gender, race, 
or mathematical ability, although with inconsistent regularity and efect (Betz, 1978; 
Hembree, 1990; Ho et al., 2000; Meece, Wigfeld, & Eccles, 1990; Tobias, 1993; Wigfeld & 
Meece, 1988). While it is ofen assumed that mathematics anxiety is most commonly expe-
rienced by students in the early grades, it is at least equally as prevalent at the secondary 
(Wigfeld & Meece, 1988) and undergraduate levels, even among students who self-select 
into STEM disciplines (Betz, 1978). Managing students’ mathematics anxiety is therefore 
not the exclusive concern of primary school teachers; all mathematics instructors have 
the responsibility to understand what mathematics anxiety is, recognize what causes it, 
and develop strategies to help students manage it. Moreover, because mathematics anxiety 
is more frequent among females, Hispanics,* and pre-service elementary school teachers 
(Hembree, 1990), attending to students’ anxiety is essential for ensuring equitable access to 
mathematics and for enhancing future elementary school teachers’ interest in, and knowl-
edge of, the subject. 

Although the feld lacks a normative defnition of mathematics anxiety (MA), it is 
widely acknowledged that MA involves a complex interaction of physiological, emotional, 
cognitive, and behavioral entailments that manifest from one’s appraisal of a mathematical 
experience as having potentially negative consequences for the self. Being elicited through 
an appraisal process, MA is a situational experience, not a psychological trait. Some indi-
viduals, however, possess a heightened tendency to perceive situations as dangerous or 
threatening, and thus maintain a greater degree of anxiety-proneness (Zeidner, 2014). For 
this reason, Cattell (1950) proposed the distinction between trait anxiety and state anxi-
ety—a contrast later popularized by Spielberger (1972). Te former refers to an individual’s 
relatively stable disposition to appraise situations in a way that results in state anxiety—a 
temporary reaction involving somatic sensations of tension accompanied by worrying and 
self-deprecatory cogitations (Ashcraf, 2002; Epstein, 1972; Ho et al., 2000; Öhman, 2008; 
Richardson & Suinn, 1972). 

Students’ mathematics anxiety has been a major topic of concern for educational 
researchers and practitioners for decades. Research into MA has prioritized the identifca-
tion of biological, environmental, and personal factors that contribute to its emergence, as 
well as the documentation of its psychological and behavioral consequences for students’ 
mathematical activity (Ashcraf, 2002; Batchelor, Gilmore, & Inglis, 2017; Eden, Heine, & 
Jacobs, 2013). Regarding its biological origins, Öhman (2008) emphasizes that the auto-
matic and unconscious perceptual processes that precede the conscious experience of anx-
iety were naturally selected in our evolutionary history. Consistent with its roots in natural 
selection, Zeidner (2014) notes that “about 50% of the observed variance in trait anxiety 
can be accounted for by genetic factors” (p. 271). Scholars have also documented various 
environmental determinants of anxiety, including early childhood experiences and the 

* Hembree (1990) explains that there was no observed diference in levels of anxiety between white and black students, but 
in two studies researchers reported that Hispanics were more anxious than these other two groups. Te participants of 
these studies were limited to college students. 
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infuence of teachers and parents (Drake & Kearney, 2008; Krohne, 1992; Mcleod, Wood, 
& Weisz, 2007). Personal causes of MA include beliefs in myths regarding mathemati-
cal ability, fear of appearing too intellectual or ignorant, self-distrust, an inability to han-
dle frustration, and maintaining a predominantly performance-goal orientation (Bong, 
2009; Hembree, 1990; Meece, Wigfeld, & Eccles, 1990; Tobias, 1993). Poor cognitive abili-
ties are also associated with MA (Ashcraf & Kirk, 2001; Faust, Ashcraf, & Fleck, 1996; 
Hopko et al., 2003; Miller & Bichsel, 2004; Maloney, Ansari, & Fugelsang, 2011; Morsanyi, 
Busdraghi, & Primi, 2014), as are perceptions of underdeveloped mathematics capability 
(Maloney et al., 2010; Maloney, Ansari, & Fugelsang, 2011; Ma & Xu, 2004; Rubinsten & 
Tannock, 2010). 

Te vast majority of research into MA has investigated its consequences for students’ 
mathematics learning and performance. Meece, Wigfeld, and Eccles (1990), for example, 
suggest that lower levels of MA “may facilitate achievement striving, whereas more extreme 
levels appear to be more disruptive of cognitive and attentional processes, especially on 
tasks involving higher order thinking skills” (p. 68). Similarly, Wigfeld and Meece (1988) 
claim that while worry can motivate students to invest efort, if the worry becomes too 
strong it can interfere with performance. Other studies have reported that students’ MA 
is negatively related to their mathematics achievement (Betz, 1978; Hembree, 1990; Ho et 
al., 2000; Fennema & Sherman, 1977; Richardson & Suinn, 1972; Wigfeld & Meece, 1988). 
Specifcally, MA impairs problem-solving ability through a reduction of working memory 
capacity (Ashcraf, 2002; Ashcraf & Kirk, 2001; Trezise & Reeve, 2017). Generally, the 
adverse cognitive consequences of anxiety are many, and include compromises to infor-
mation encoding, storage, processing, and retrieval (Zeidner, 2014). Researchers have also 
revealed that MA is negatively correlated with students’ plans to enroll in future math-
ematics courses (Betz, 1978; Hembree, 1990), their mathematical self-efcacy (Hackett, 
1985), and their selection of and perseverance in STEM majors (Hackett, 1985). 

Tese and other efects of MA make it prudent for instructors and curriculum designers 
to consider how they might manage students’ anxiety, particularly in the context of online 
learning, which is becoming an increasingly common instructional medium for math-
ematics at institutions of higher education. While research on the causes and consequences 
of anxiety is extensive, far fewer studies have investigated the efectiveness of interventions 
intended to reduce students’ MA. Moreover, the majority of such studies employ quan-
titative and correlational analyses that enable instructors to adopt the particular treat-
ment under consideration, if demonstrated efective. Te theoretical contribution of such 
research with respect to clarifying the phenomenology of MA is limited, and thus does not 
enable teachers to enact interventions informed by an understanding of the psychosomatic 
mechanisms that contribute to experiencing MA (Eden, Heine, & Jacobs, 2013). Common 
treatment programs attempt to mitigate the symptoms of anxiety by reducing levels of 
physiological arousal and/or equipping the anxious subject with strategies for coping with 
worry, negative expectations, and task-irrelevant thoughts. Tese interventions, which 
seek to moderate the emotional and cognitive experience of anxiety, are of little utility to 
mathematics instructors who hope to intervene prior to students becoming anxious. Such 
proactive interventions require a thorough understanding of the cognitive entailments of 
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MA and how they relate to students’ assimilatory schemes, goal structures, and identities 
as learners of mathematics. 

Te purpose of this chapter is to ofer such a genetic account of MA that makes explicit 
the cognitive processes from which it originates. Our objective is to elaborate a conceptu-
alization of the eliciting conditions of MA to inform instructional and curricular innova-
tions that seek to decrease the likelihood that students will experience unproductive levels 
of MA in online learning environments. In addition to being useful for mathematics teach-
ers, our genetic account of MA provides a theoretical foundation for empirical research on 
MA interventions. We rely heavily on the general theory for the cognitive basis of emo-
tional experience proposed by Ortony, Clore, and Collins (1988)—commonly referred to 
as the “OCC model”—and add nuance as it relates to anxiety by incorporating a number of 
related lines of inquiry in the felds of genetic epistemology, identity, and goal theory. We 
then leverage our conceptualization of the cognitive origins of MA to identify concrete cur-
ricular and instructional design principles for online learning environments—grounded 
in radical constructivism (von Glasersfeld, 1995)—that not only dissuade the cognitive 
appraisals and constructions that contribute to students feeling anxious, but which pro-
mote the conceptual activity that enables students to experience mathematics positively. A 
key argument emerging from our theoretical analysis is that constructivist curricula and 
pedagogy, although traditionally justifed with reference to their potential afordances for 
students’ mathematical cognition, can also be supportive of students’ positive afect.* 

10.2 A GENETIC ACCOUNT OF MATHEMATICS ANXIETY 
10.2.1 Emotions and the Role of Cognition in Their Elicitation 

Our intention to specify the cognitive antecedents of MA, and to infer instructional and 
curricular recommendations from them, suggests a temporal order of psychological and 
somatic infuences in the experience of an emotion. So as not to give the impression that 
we categorically dismiss the William Jamesian view that refexive visceral reactions precede 
conscious emotional experience, let us say a few words about the nuanced role of cog-
nition in the process of emotion elicitation. We share the perspective expressed by Clore 
and Ortony (2008) that emotions ofen originate from physiological refexes, but that their 
conscious experience is shaped by cognitive appraisals of both environmental stimuli and 
somatic sensations. Tese appraisals have the potential to then intensify, reduce, or alter 
the feelings associated with the initial physiological refex, and to transform general afec-
tive reactions into a diferentiated emotional experience (Cunningham & Zelazo, 2007). 
Te contribution of cognition and feeling in the experience of an emotion is therefore nei-
ther additive nor sequential; emotions emerge from the complex co-occurrence of cogni-
tive activity and arousal of the autonomic nervous system. In this model, one can think of 
emotions as emergent constructions, progressively elaborated and refned through iterative 
cognitive appraisals of environmental stimuli and somatic states (Clore & Ortony, 2008). 

* We refer the reader who might consider the phrases “constructivist pedagogy” and “constructivist curricula” paradoxi-
cal, or at least nebulous, to Tompson (1991, p. 287). 
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Privileging a defnition of emotion that emphasizes the structure of cognitive appraisals 
from which they arise—as opposed to the process of such appraisals—Ortony, Clore, and 
Collins (1988) described emotion as a valenced afective reaction to an individual’s inter-
pretation and evaluation of the realized or anticipated consequences of events, actions of 
agents, or aspects of objects. Te focus of the appraisal, whether an event, agent, or object, 
constitutes the primary criterion that distinguishes emotions of qualitatively diferent 
types. Te desirability of an event, Ortony et al. (1988) explain, is appraised with reference 
to an individual’s goal structures, the praiseworthiness of an agent’s actions is appraised 
with reference to an individual’s standards, and the appealingness of an object is appraised 
with reference to an individual’s attitudes. Emotion-inducing stimuli achieve their value 
through appraisals made with reference to these interwoven elements of an individual’s 
afect. Specifc emotional experiences are therefore conditioned by the particular goal 
structure, standard, or attitude that respectively informs an individual’s appraisal of the 
consequence of an event, action of an agent, or aspect of an object. Since goal structures, 
standards, and attitudes are subjective cognitive constructions, emotions are an adaptive 
response to an individual’s interpretation and evaluation of her experiences; they do not 
issue directly from a reality independent of one’s construction. 

10.2.2 Mathematics Anxiety as a Prospect-Based Emotion 

Figure 10.1 displays the macrostructure of the OCC model. Te boxes represent distinct 
emotion classes. Te location of these classes within the structure is determined by the 
specifc cognitive appraisals that contribute to experiencing the emotions within them. 
Te objects of these appraisals and the potential considerations they involve are indicated 
by the unboxed upper-case text. Te lower-case emotion words within each box represent 
subclasses of emotions that vary in intensity, but which emerge from structurally isomor-
phic appraisal processes. For instance, well-being emotions within the subclass “joy” might 
include “elation” and “contentment”—respectively high- and low-intensity forms of joy. Te 
words representing these subclasses of emotions are themselves not important, and were 
chosen because they serve as neutral examples of qualitatively distinct emotion types. 

Anxiety is a prospect-based emotion, and as such results from one’s recognition of the 
prospect of experiencing the personal consequences of an undesirable event. In particular, 
anxiety is a variant of fear where the emphasis of the appraisal is on the potential psycho-
logical (rather than physical) consequences of an event (Ortony, Clore, & Collins, 1988, 
p. 15). Being an emotion within a class that extends from the lef-most branch of Figure 
10.1, the appraisals that contribute to experiencing anxiety are made with reference to an 
individual’s goal structures. Te intensity of an individual’s anxiety—as with any pros-
pect-based emotion—varies directly with the extent to which the individual appraises the 
potential consequence of an event as undesirable. Bearing principally upon this appraisal 
is the value of the focal goal the event inhibits the individual from achieving (ibid., p. 50). A 
focal goal is situated within an organic goal structure and is the specifc goal against which 
an individual assesses the desirability of a prospective event. Its value depends on the posi-
tion of the highest-level goal in the structure whose attainment is facilitated by achieving 
the focal goal; the higher in the structure it resides, the greater the assessment of (un) 
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FIGURE 10.1 Structure of qualitatively distinct emotion types (Ortony, Clore, & Collins, 1988, 
p. 19). 

desirability. Te number of sub-goals upon which its achievement is contingent determines 
the position of this higher-level goal in the structure. 

10.2.2.1  Goal Structures 
Inferring instructional and curricular recommendations from the infuence of goals on 
one’s experience of anxiety requires a discussion of goal structures in the context of math-
ematics learning. Generally, the goals one establishes for oneself defne a state of being one 
desires to enter—they are a projection of an anticipated future (Middleton, Tallman, Davis, 
& Hatfeld, 2015). Goals are always situated within a structure, a kind of fuid hierarchy 
where the accomplishment of subordinate goals facilitates the achievement of superordi-
nate ones. Fulflling a goal is rarely a fnal act; doing so merely serves as a precondition 
for achieving a higher-level goal in the hierarchy. Any mathematical experience that is 
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goal-directed involves an end state that is both cognitive and afective (Middleton et al., 
2015). For instance, a student who seeks to solve a problem, and does so successfully, will 
not only have a new or modifed understanding of some mathematical idea, but will also 
experience satisfaction as a result of having achieved his or her goal. 

Te nature of the goals one pursues depends on the perceived challenge of the task at 
hand. For example, as Middleton et al. (2015) argue, if a student has a poor view of his or 
her mathematical ability, the goal of obtaining an “A” on a particular assignment might 
seem unattainable, whereas this might not be the case for a student with strong math-
ematical self-efcacy. Such perceptions can infuence a student’s behavior and as a result, 
a student who does not consider him- or herself profcient in mathematics might avoid 
trying to earn a high grade in a mathematics class and instead focus on simply passing 
the course. Goals also difer in the extent to which they address immediate versus future 
needs. A proximal goal is one that can be fulflled in a short amount of time, whereas distal 
goals take longer since they require achieving a sequence of pre-requisite proximal goals 
(Middleton, Jansen, & Goldin, 2017; Middleton et al., 2015). Te highest-level distal goals 
are ofen (implicitly) defned in terms of desired identity states. 

Te literature on goal orientations identifes two distinct types of goals: learning/mas-
tery goals and performance/ego goals (Ames & Archer, 1988; Ames, 1992; Dweck & Leggett, 
1988; Middleton, Jansen, & Goldin, 2017; Middleton et al., 2015). Learning/mastery goals 
are consistent with a growth mindset and are defned in terms of developing understand-
ing, increasing competence, and mastering course material (Ames, 1992; Dweck, 1986; 
Dweck & Leggett, 1988; Middleton, Jansen, & Goldin, 2017; Middleton et al., 2015). 
Performance/ego goals, in contrast, are compatible with a fxed mindset and prioritize the 
demonstration of innate ability and the promotion of self-worth through the display of 
competence to others (Ames, 1992; Ames & Archer, 1988; Dweck, 1986; Dweck & Leggett, 
1988; Middleton, Jansen, & Goldin, 2017; Middleton et al., 2015). 

Te diference between approach and avoidance orientations is an additionally relevant 
distinction that explains meaningful diferences in the behavior of students who adopt learn-
ing/mastery versus performance/ego goals (see Table 10.1). A student who has an approach 
orientation and establishes learning/mastery goals will attempt to construct understanding 
and achieve mastery of challenging course material. A student with the same orientation 
who seeks to achieve performance goals will attempt to be perceived as superior in relation 
to his or her peers (Middleton et al., 2015). With an avoidance orientation, a student who 
sets mastery goals might attempt to avoid non-normative understandings, whereas a stu-
dent who pursues performance goals will try to avoid appearing incompetent (Middleton, 
Jansen, & Goldin, 2017). 

TABLE 10.1 Behaviors Associated with Combinations of Goal Types and Orientations 

Approach Avoidance 

Learning/mastery goals Construct understanding and achieve mastery of 
course material 

Avoid non-normative 
understandings 

Performance/ego goals Convey perceptions of superiority in relation to 
peers 

Avoid perceptions of 
incompetence 
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To summarize, goals vary along four dimensions: specifcity (precise versus vague), 
proximity (proximal versus distal), type (learning/mastery versus performance/ego), and 
orientation (approach versus avoidance) (Middleton, Jansen, & Goldin, 2017; Middleton 
et al., 2015). Managing students’ MA involves attending to these four interrelated dimen-
sions. With respect to goal specifcity and type, reducing students’ anxiety requires fos-
tering their construction of precise learning goals by engaging them in mathematical 
tasks that promote or require understanding. Doing so will enable students to be better 
equipped to make appropriate evaluations of their mathematical abilities and to address 
defciencies therein. With respect to goal type and orientation, several researchers have 
demonstrated that students who seek to achieve performance goals tend to link failure and 
lack of ability, which ofen results in avoidance tendencies and in extreme cases learned 
helplessness (Ames, 1992; Ames & Archer, 1988; Dweck, 1986; Middleton et al., 2015). In 
contrast, students pursuing learning goals tend to link efort and progress, thus resulting 
in approach tendencies, which reduces anxiety and promotes perseverance (Ames, 1992; 
Ames & Archer, 1988; Dweck, 1986; Middleton et al., 2015). We later return to the impor-
tance of instructors promoting students’ construction of learning goals and ofer specifc 
strategies to this end. 

10.2.2.2 Identity 
Students’ current and desired identities as learners of mathematics are particularly conse-
quential for the degree to which they experience MA. In the case of anxiety, the highest-
level distal goal whose achievement is contingent upon the focal goal (which infuences the 
extent to which an individual assesses the potential consequences of an event as undesir-
able) is a desired identity state. Favored identities are therefore high-level goals that are 
facilitated by the achievement of the focal goal. We follow Blumer’s (1986) defnition of 
identity from his theory of symbolic interactionism, in which he characterizes identity as 
the kind of object one is to oneself. In contrast to other conceptions of identity commonly 
cited in the mathematics education research literature (e.g., Cobb, Gresalf, & Hodge, 2009; 
Sfard & Prusak, 2005), this simple defnition places the construction of identity within the 
individual to whom it is an identity. Moreover, Blumer’s conception underscores the notion 
that individuals interact with their identities, and that such interaction is consequential in 
the formation of his or her behavior. Indeed, to be conscious is to engage in a process of 
indicating objects to oneself and acting towards these objects on the basis of their meaning 
for the actor. Te objects an individual acts upon are not limited to those that exist external 
to him or her, but include the self-object (or identity), which is treated as if it exists inde-
pendently of one’s construction. Referencing Piaget (1937), von Glasersfeld (1995) explains, 

just as we construct a model of a world, externalize it, and then treat it as though 
its existence were independent of our doing, so we construct a model of the entity 
that we call our self, and externalize it so that it ends up as ‘a thing among other 
things’. 

(p. 123, emphasis in original) 
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Tis reifed self emerges from the process of interacting with the world and internalizing 
what one’s experiences reveal about oneself. Specifcally, as Blumer (1986) observes, the 
development and evolution of one’s identity is a product of his or her interaction with 
others: 

Like other objects, the self-object emerges from the process of social interaction 
in which other people are defning a person to himself … [I]n order to become an 
object to himself a person has to see himself from the outside. One can do this only 
by placing himself in the position of others and viewing himself or acting toward 
himself from that position … We form our objects of ourselves through such a 
process of role-taking. 

(p. 12–13) 

von Glasersfeld (1995) articulated a similar perspective regarding the generation and 
refnement of one’s self concept. He argued that constructing knowledge of the self is a 
meta-cognitive process in which an individual becomes aware of what they are doing or 
experiencing, primarily through interaction with others. 

Tis constructivist conceptualization of identity has implications for students’ experi-
ence of MA and for instructional and curricular innovations that seek to minimize its 
negative infuence. Students are ofen anxious while engaged in mathematical experiences 
because they recognize the possibility that their genuine mathematical activity will reveal 
characteristics of their mathematical competence in particular, and intellectual potential 
in general, that are antithetical to their desired identities as students and/or future profes-
sionals. Mathematical symbols, expressions, and problems, when assimilated by students, 
frequently represent potential threats to the kind of individual they aspire to be, rather 
than objects to be interpreted meaningfully and acted upon on the basis of their mean-
ing. As Ortony et al. (1988) explain, the intensity of the prospect-based emotions (which 
include anxiety) depends on the appraised value of the highest-level distal goal whose ful-
fllment is contingent upon achieving the focal goal, not the proximal goals that would 
need to be accomplished en route to achieving the focal goal, such as solving a particular 
problem, completing an assignment, or even earning a desired grade in a course. Because 
a sought-afer identity constitutes the most signifcant type of distal goal, threats to its 
achievement can result in cognitively debilitating levels of anxiety. 

10.2.2.3 Intensity of Emotional Experiences 
In addition to the value of the focal goal being impeded by the potential of an unfavorable 
event, Ortony et al. (1988) identify several “global” and “local” intensity variables that 
afect the severity of emotional experiences. Among the global intensity variables most rel-
evant to MA is the existing level of arousal variable. Global variables afect the intensity of 
all types of emotions, and their efects infuence whether or not there is an emotional expe-
rience at all (Ortony et al., 1988). Te existing level of arousal variable refers to physiological 
arousal, which is a product of the cognitive appraisal processes (Ortony et al., 1988, p. 65). 
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Although arousal is not cognitive in nature, it does infuence cognitive processes and prod-
ucts as we previously described. It is important to note that since arousal decays slowly 
over time, it can carry over to a later emotional experience and thus increase the intensity 
of reactions to a subsequent situation. 

Likelihood is among the local intensity variables most relevant to MA. Local intensity 
variables only afect the intensity of particular emotion classes (Ortony et al., 1988). Te 
likelihood variable refers to someone’s belief regarding an event’s plausibility (ibid., p. 70). 
Since anxiety is based on uncertainty, it is intensifed when an individual believes that pos-
sible outcomes of an event are equiprobable. For example, a student who considers it fea-
sible that he or she will fail at a particular task will experience greater levels of MA than a 
student who has a high degree of confdence in the outcome of the event, whether success 
or failure. Te experience of MA has an efect on other local intensity variables—namely 
efort—that infuence the intensity of other prospect-based emotions. Efort is sometimes 
infuenced by an individual’s assessment of the likelihood of particular outcomes of an event 
(Ortony et al., 1988). Tat is, individuals will ofen expend more efort if they believe doing 
so can change the likelihood of a specifc outcome. In such cases, the efort is referred to as 
instrumental efort, which is expended (or not) for the purpose of changing the likelihood 
of a(n) (un)desirable event (Ortony et al., 1988, p. 73). In the case of MA, the more efort 
expended, the greater the undesirability of the prospective outcome, which makes the anxi-
ety experience more severe. It is for this reason that anxiety tends to immobilize efort. Tis 
is to be expected if one considers that the desirability of a prospective event is appraised 
with reference to its implications for one’s identity. Because characteristics of an individual’s 
identity are constructed through refection upon his or her experiences (von Glasersfeld, 
1995), fully investing oneself in mathematical tasks more clearly reveals to the individual 
his or her mathematical aptitude and intellectual capabilities. Tus, students who experi-
ence MA ofen expend little efort to decrease the likelihood of an undesirable outcome. On 
the surface this seems contradictory, but it is essential to bear in mind that the distal goal 
that the desirability of a potential outcome is appraised with reference to is a desired iden-
tity state, not the more proximal goals of completing a mathematics assignment, achieving 
a high mark on a test, or even earning a particular grade in a course. 

As previously stated, anxiety is based on a degree of ambiguity regarding the outcome of 
an event (i.e., a mathematical experience), and in the context of mathematics learning this 
ambiguity is ofen refective of how a student appraises his or her psychological resources 
(i.e., mathematical self-efcacy). Zeidner and Matthews (2011) note, “worry develops when 
a person perceives his or her ability to cope with a task as unsatisfactory and is uncertain 
about the consequences of inadequate coping” (p. 15–16). It is important to note that an 
anxious student, to some degree, recognizes that a positive outcome is at least possible (or 
else the student would not be anxious but would rather be disappointed or relieved). Hence 
the reassuring implication that anxious students possess motivation capable of being culti-
vated by instructors through their encouragement, thoughtful task design, and purposeful 
orchestration of learning experiences. Reducing a student’s perception that their mathe-
matical activity might have negative personal outcomes requires engaging the student in 
experiences that enhance his or her self-image as a learner and doer of mathematics. 
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10.2.2.4  Somatic Markers 
Te OCC model we have discussed is one among many appraisal theories for the cogni-
tive entailments of emotional experience. However, we have not yet clarifed the cogni-
tive processes that constitute the appraisals students make that contribute to the onset of 
MA. We conceptualize the cognitive appraisals that initiate and sustain the experience of 
an emotion in terms of Piaget’s concept of assimilation to a scheme. Piaget and Inhelder 
(1969) defned a scheme as “the structure or organization of actions as they are transferred 
or generalized by repetition in similar or analogous circumstances” (p. 4). Piaget broadly 
defned action to encompass all movement, thought, or emotion that responds to a need 
(Piaget, 1967, p. 6). Jonckheere, Mandelbrot, and Piaget (1958), as quoted in Montangero 
and Maurice-Naville (1997, p. 72), explained, “Assimilating an object to a scheme involves 
giving one or several meanings to this object” (p. 59, our emphasis). One’s meaning for an 
object or experience is hence the scheme with which one assimilates it (Tompson et al., 
2014). Refecting Piaget’s view that actions (the contents of schemes) maintain behavioral, 
psychological, and emotive dimensions, Damasio (1994) posed what he called the somatic 
marker hypothesis, which states that individuals construct learned associations between 
particular feelings and specifc classes of actions or stimuli, which represent a potential 
outcome of an event. Tese associations have afordances for automating decision-making 
processes and were naturally selected in our evolutionary history as a result of the survival 
advantages such automaticity afords. Damasio’s somatic marker hypothesis implies that 
one’s assimilation of a stimulus to a scheme activates somatic sensations that indicate to 
the individual the value of the stimulus, and which mobilizes action patterns indepen-
dent of conscious cognitive processing. It is in this sense that somatic sensations (i.e., feel-
ings) “mark” the stimuli that are assimilated. Ultimately the somatic sensation becomes a 
learned association that is refexive, and is thus an element of an individual’s assimilatory 
scheme. For students who experience MA, mathematical objects (e.g., tasks, expressions, 
symbols) are “marked” with somatic sensations that co-occur with their assimilation. 
Tese somatic markers, abstracted from prior experience, increase students’ existing level 
of physiological arousal, which intensifes their anxiety as these somatic sensations register 
in consciousness. 

10.3 STRATEGIES FOR MANAGING STUDENTS’ MATHEMATICS 
ANXIETY IN ONLINE LEARNING ENVIRONMENTS 

Since MA emerges from a variety of subjective appraisals and cognitive constructions in 
the ways we have described, mathematics teachers can manage students’ MA by structur-
ing various features of the learning environment—including the curricular artifacts we 
design for students—to reduce the likelihood that they will engage in the cognitive activity 
that results in their feeling anxious. In this section, we leverage our theoretical analysis of 
the cognitive antecedents and entailments of MA to propose principles of instructional 
and curricular design for online learning environments that might lessen or even prevent 
students’ MA while simultaneously supporting their construction of productive mathe-
matical conceptions. We justify our proposals by clarifying how they infuence the specifc 
cognitive constructions and appraisals from which students’ experience of MA manifests. 
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10.3.1 Assist Students in Establishing Meaningful Learning Goals 

A performance-goal orientation invites students to leverage unproductive coping mecha-
nisms* that ofen undermine an instructor’s or curriculum designer’s intentions for stu-
dents’ learning. Tis is because performance goals are fulflled through accomplishing 
behavioral tasks; the means by which one does so is irrelevant. Te positive afect a student 
experiences upon having achieved a performance goal is ofen tempered by the realization 
that he or she has failed to develop transferable competencies that might facilitate subse-
quent successes. Tere is little to no transfer aforded by leveraging coping mechanisms to 
satisfy the immediate need of solving a problem or completing an assignment into other, 
more genuine, mathematical experiences. It is for this reason that a performance-goal 
orientation is ofen associated with low mathematical self-efcacy. While pursuing per-
formance goals, students regularly experience the limited contexts to which their coping 
mechanisms apply, while also accepting that they have no other recourse but to persist in 
attempting to utilize them. Tis contributes to students’ perception of low mathematical 
ability. In such situations, it is possible that a student recognizes that he or she has not 
developed particular mathematical sensibilities, understandings, or ways of reasoning that 
will enable him or her to fexibly engage with novel mathematical tasks. Te restricted 
range of applicability of coping mechanisms makes students uncertain as to whether 
they will be efective in attempting to solve a particular problem, which increases their 
uncertainty regarding the outcome of their mathematical engagement. Tis uncertainty 
intensifes students’ anxiety in a way consistent with the likelihood local intensity variable 
discussed previously. 

Managing students’ MA therefore involves instructors supporting students’ develop-
ment of a learning-goal orientation. One can accomplish this by encouraging students to 
recognize that genuine mathematical profciency entails the cognitive characteristics of 
their desired identities as learners, which might include creativity as well as logical, fex-
ible, innovative, and critical thinking. Students tend not to associate these competencies 
with mathematical ability, privileging instead the capacity to efciently associate rehearsed 
problem-solving procedures to particular tasks by identifying their surface-level features. 
Te regularity, even alacrity, with which individuals profess incompetence in mathemat-
ics, evidently without disappointment or embarrassment, demonstrates their lack of regard 
for the intellectual faculties they attribute to mathematical aptitude; it is only marginally 
self-defeating to proclaim that one has failed to master the skill of determining which of 
the rehearsed problem-solving procedures residing within a vast mental library applies 
to an esoteric class of procedural exercises. Such proclamations might even be gratify-
ing or self-promotional if the individual making them maintains a zero-sum conception 
of cognitive ability,† and so interprets the essential skill set required for mathematical 

* An example of such a coping mechanism might be, “A function’s derivative at a point is the slope of the tangent line.” We 
consider this a coping mechanism because it enables students to reason about derivatives in a limited range of contexts, 
but does not allow them to fexibly apply their conception of derivative functions to novel problem-solving situations, 
nor does it support a conceptual understanding of the relationship between rate of change and accumulation that is 
essential to understanding the Fundamental Teorem of Calculus (Tompson, 1994). 

† Such zero-sum conceptions are not uncommon among those persuaded by the lef- versus right-brain fallacies, for 
example. 
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profciency as being developed at the expense of more desirable psychological competencies. 
Consequently, it is an instructor’s responsibility to teach mathematics in a way that sup-
ports students’ acknowledgement that valued conceptual tendencies such as creative, logi-
cal, fexible, and critical thinking are essential to mathematical profciency, as well as being 
enhanced through its pursuit. Consistent with Blumer’s (1986) interactionist conception of 
identity and von Glasersfeld’s (1995) perspective on the construction of the self, for students 
to defne learning goals in terms of cognitive (rather than observable) states, they must 
experience in their mathematical activity the utility of employing habits of mind that con-
stitute the cognitive characteristics of their desired identities as learners of mathematics. An 
instructor can accomplish this by engaging students in accessible tasks for which they have 
not developed coping mechanisms, and which require mathematical reasoning and sense-
making, though on a limited scale. Such tasks are ofen stated in terms of an applied context 
that enables students to engage in mathematical reasoning without having to interpret and 
manipulate symbols for which they do not have meaning (a point to which we later return). 
Once a student develops an orientation to establish meaningful learning goals, her ability 
to accomplish them is dependent upon her belief that the material and, more importantly, 
psychological resources at her disposal are sufcient for coping with task demands. 

10.3.2 Enhance Students’ Appraisal of Their Psychological Resources 

Te specifc nature of students’ learning goals depends on their perceived challenge of the 
present task. Since challenge is always appraised with reference to an individual’s abili-
ties, and since individuals pursue only those goals they feel capable of accomplishing, it is 
important that instructors attempt to infuence students’ perception of challenge by shap-
ing students’ image of their cognitive resources and, by extension, their anticipation of the 
afective experiences needed to sustain their mathematical activity when they encounter 
difculties. Because challenge is a necessary condition for cognitive re-organization, the 
intention is not to eliminate students’ perception of challenge but rather to foster their 
appraisal of task demands as manageable. A student’s perception of challenge is optimal 
for her conceptual learning when two conditions are satisfed: (1) the student feels that the 
resources at her disposal (primarily psychological in the case of mathematics learning) are 
sufcient for accomplishing the task, and (2) successful completion of the task requires the 
student to leverage and even enhance the psychological qualities of her desired identity as 
a mathematics learner, including her reasoning and sense-making capacities and domain-
specifc mathematical conceptions (Middleton et al., 2015). 

Students perceive mathematical tasks, and learning experiences generally, as excep-
tionally challenging when they assume that productive engagement in them requires 
knowledge of an expansive catalog of disconnected facts and procedures. Te assump-
tion that mathematical profciency is based principally on one’s ability to efciently recall 
declarative knowledge increases students’ uncertainty as to whether they can successfully 
participate in mathematics. If, on the contrary, a student recognizes that a small num-
ber of essential ways of reasoning are sufcient for engaging productively in a variety of 
tasks, and if the student has experienced her capacity to engage in these ways of reason-
ing in several mathematical contexts, then she is more likely to appraise task demands 
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as manageable. Reducing the possibility that students will experience anxiety therefore 
requires an instructor to understand the role of foundational ways of thinking (e.g., quan-
titative and covariational reasoning)* on students’ construction of particular mathematical 
ideas, and to be deliberate in promoting students’ refection on their successful application 
of these ways of thinking so that they might become explicit, thereby afording students 
a level of control over them (Tallman & Frank, 2020). Tis confdence in and control over 
mathematical ways of thinking (Harel, 2008) reduces a student’s uncertainty about the out-
come of their mathematical activity, thus reducing their anxiety. 

Te essential point is that students develop the perception of their psychological 
resources as sufcient for satisfying task demands through guided refection on their 
learning experiences (Blumer, 1986; von Glasersfeld, 1995). Specifcally, an instructor can 
support students in enhancing their appraisal of their psychological resources by provid-
ing repeated opportunities for them to refect on how the cognitive components of their 
desired identities as mathematics learners contributed to their achievement of particular 
cognitive states, or learning goals. Doing this enables students to recognize that they pos-
sess the intellectual capabilities necessary to understand mathematical ideas in a meaning-
ful way, and contributes to their development of a disposition to appraise the challenges 
they encounter as manageable. Instructors should therefore strive to provide students with 
repeated opportunities to experience in their mathematical activity the afordances of 
employing particular ways of reasoning in a variety of contexts. 

10.3.3 Support Students’ Construction of Quantitative Meanings for 
Mathematical Symbols, Expressions, and Equations 

Since somatic sensations activated upon an anxious student’s assimilation of mathemati-
cal stimuli enhance his or her level of physiological arousal, which then intensifes their 
anxiety (in a way consistent with our prior discussion of the existing level of arousal local 
intensity variable), it is important for instructors to engage students in experiences that 
enable them to construct meaning for mathematical objects so they feel confdent acting 
with and performing operations on these objects on the basis of their meaning. Doing so 
decreases students’ uncertainty about the implications of their mathematical engagement 
for the proximal goals they seek to achieve, and for their identities as learners and doers 
of mathematics generally. Moreover, if students can assimilate mathematical symbols to 
schemes of mental images, actions, and operations, then their cognition is less likely to 
be immobilized by the particular somatic sensations that accompany their assimilation of 
these symbols in the absence of such meaning. 

We can state this third recommendation in terms of Piaget’s distinction between fgura-
tive and operative aspects of thought: students’ anxiety is reduced if they are equipped to 
assimilate mathematical stimuli to schemes for which the fgurative aspects of cognition 
are subordinate to the operative aspects. Te advantage of this framing is that it posi-
tions us to leverage features of Piaget’s genetic epistemology—specifcally refecting and 

* See Smith and Tompson (2007) and Tompson (1990, 2011) for characterizations of quantitative reasoning. See 
Saldanha and Tompson (1998), Carlson et al. (2002), and Tompson and Carlson (2017) for descriptions of covaria-
tional reasoning. 
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refected abstraction—to clarify how one might support students’ construction of quanti-
tative meanings for mathematical representations with the goal of diminishing the refex-
ive somatic sensations that intensify their anxiety. 

An afordance of online instruction is that it can support students’ construction of 
operative structures by allowing them to engage with dynamic applets and interact with 
virtual manipulatives in ways that are not possible during face-to-face instruction. As we 
stress below, the efective design of these applets and virtual manipulatives would require: 
(1) an awareness of the mental process involved in conceptualizing mathematical ideas in 
particular ways, (2) an awareness of productive ways of reasoning (e.g., quantitative and 
covariational reasoning), (3) a general theory for the development of mathematical con-
cepts, and (4) an explicit learning trajectory. 

10.3.3.1 Figurative Versus Operative Modes of Thought 
Piaget (1970) described the distinction between fgurative and operative aspects of thought 
as follows: 

Te fgurative aspect is an imitation of states taken as momentary and static. In 
the cognitive area the fgurative functions are, above all, perception, imitation, 
and mental imagery, which is in fact interiorized imitation. Te operative aspect 
of thought deals not with states but transformations from one state to another. 
For instance, it includes actions themselves, which transform objects or states, 
and it also includes the intellectual operations, which are essentially systems of 
transformation. 

(p. 14) 

Müller (2009) summarized the contrast between these two aspects of thought in terms 
of assimilation: “Te operative aspect represents the structuring activity of assimilation, 
the fgurative aspect provides the material for this activity” (p. 223). Being responsible 
for the organizing function of assimilation, the operative mode of thought is comprised 
of actions and operations* used to interact with and modify the world. Tese actions can 
be either overt or internal depending on the cognitive stage at which a child is operating: 
a child’s operative thought takes the form of behavioral actions during the sensorimotor 
period and mental actions during the stage of concrete operations (Ginsburg & Opper, 
1988, pp. 161–162). Although distinct, these two aspects of thought are complementary and 
interdependent. Te operative mode of cognition infuences how one experiences reality 
through the fgurative functions of perception, imitation, and mental imagery. Conversely, 
the perceptual, imitative, and imagistic constituents of fgurative thought provide objects 
of action and transformation by operative schemes. 

Tompson (1985) generalized the distinction between the fgurative and operative forms 
of cognition by emphasizing the control exerted by the latter over the former, and in doing 

* Operations are reversible mental actions that can be applied to a generalized class of objects without regard to an initial 
state. 
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so broadened the defnition of fgurative aspects of thought beyond only those features of 
cognition based in perception, imitation, and mental imagery: 

When a person’s actions of thought remain predominantly within schemata asso-
ciated with a given level (of control), his or her thinking can be said to be fgurative 
in relation to that level. When the actions of thought move to the level of control-
ling schemata, then the thinking can be said to be operative in relation to the level 
of the fgurative schemata. Tat is to say, the relationship between fgurative and 
operative thought is one of fgure to ground. Any set of schemata can be charac-
terized as fgurative or operative, depending upon whether one is portraying it as 
background for its controlling schemata or as foreground for the schemata that it 
controls.

 (p. 195) 

Te control over fgurative material by operative structures allows one to anticipate the out-
come of applying a scheme and to make propitious decisions in relation to prior events and 
current circumstances (Tompson, 1985, p. 194; von Glasersfeld, 1995, p. 65). In our prior 
discussion of the likelihood local intensity variable, we explained that anxiety is maximized 
when an individual considers possible outcomes of an event with either positive or nega-
tive implications for the self as equiprobable. Te expectations and guidance in decision-
making enabled by operative thought lessens anxiety by reducing one’s uncertainty about 
the outcome of one’s cognitive engagement and, relatedly, decreasing the possibility that 
somatic markers will initiate unproductive behaviors in response to a student’s assimilation 
of a mathematical stimulus. State anxiety occurs when an individual experiences limited 
control over the fgurative aspects of thought, and trait anxiety develops when such experi-
ences become habituated. Tompson’s (1985) generalization of Piaget’s notable distinction 
therefore demonstrates the essential role of operative thought in reducing students’ MA by 
emphasizing the structure it imposes on fgurative experience. 

We previously stressed the importance of instructors enabling students to construct 
meaning for mathematical objects so they feel confdent acting with and performing 
operations on these objects on the basis of their meaning. Piaget’s (1970) description and 
Tompson’s (1985) generalization of the operative form of cognition clarifes how con-
structing schemes that foreground the operative mode of thought is essential to acting 
with and performing operations on mathematical objects on the basis of their meaning 
for the actor. If the fgurative aspects of a student’s thought are uncontrolled by opera-
tive structures—that is, if a student’s conception of a mathematical idea is dominated by 
her re-presentation of fgurative material without this material being the object of action 
or transformation—then she is unlikely to be able to assimilate novel fgurative material 
and experiences. Tis inability establishes the conditions for thought-inhibiting visceral 
reactions, and for attempting to leverage unproductive coping mechanisms, which as we 
previously emphasized increases students’ uncertainty about the outcome of their mathe-
matical activity, thus increasing their anxiety. If, on the contrary, a student has constructed 
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FIGURE 10.2 Linear functions represented in Cartesian and polar coordinates: a source of anxiety 
for students with a fgurative conception of rate of change. 

operative structures that control her action on and transformation of fgurative material, 
then she is at least positioned to reason productively about unfamiliar mathematical prob-
lems and situations. 

To exemplify the afective consequences of students’ activity guided by fgurative versus 
operative modes of thought, we consider how two students might respond to the task of 
approximating the constant rate at which one quantity varies with respect to another by 
examining two graphs, one in Cartesian coordinates and another in polar coordinates (see 
Figure 10.2). 

Te familiar idiom “rise-over-run” is suggestive of a meaning for rate of change based 
in and constrained to fgurative material. Operationally, “rise” refers to the vertical change 
between two points on the Cartesian graph (ofen with integer ordinate values) and “run” 
refers to the corresponding horizontal change (where “change” is measured in units deter-
mined by the axes of the coordinate system). Tis conception is dominated by fgurative 
thought because of its reliance on sensorimotor experience (i.e., moving up and over) and 
re-presentation of perceptual material (i.e., directed magnitudes that respectively represent 
“rise” and “run”). Moreover, this meaning is constrained to a particular representation, 
which is an essential feature of conceptions that foreground fgurative aspects of cognition 
(Moore, Stevens, et al., 2019). A student who operates with this meaning will respond to 
the task of determining the constant rate at which y varies with respect to x by identifying 
two points where the graph intersects lattice points of the Cartesian coordinate plane and 
then computing the ratio of the vertical change (rise) and horizontal change (run) between 
these points. Although the student might recognize that the selection of points that deter-
mine these directed lengths is arbitrary, he does not conceptualize the resulting ratio as 
a rate since, for the student, it has no meaning in terms of the constrained covariational 
relationship between x and y.* 

* A ratio is a multiplicative comparison of the measures of two constant (non-varying) quantities while a rate defnes a 
proportional relationship between varying quantities’ measures (Tompson & Tompson, 1992). Constructing a rate 
therefore involves images of smooth continuous variation (Tompson & Carlson, 2017), as well as the expectation that as 
two quantities covary, multiplicative comparisons of their measures remain invariant. 
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Rather than unhesitatingly trying to leverage this “rise-over-run” conception of rate 
of change to the function represented in polar coordinates, the student will likely notice 
perceptual novelties that he is not positioned to accommodate (e.g., the gridlines are circles 
centered at, and lines passing through, the origin; the graph fails the “vertical line test”). 
Being generally underequipped with operative mathematical structures, over time the stu-
dent has constructed associations between novel mathematical stimuli and the negative 
feelings he experienced when expected to reason with or about them. Tese somatic asso-
ciations or “markers” enable the student to react refexively (and ofen unproductively) to 
mathematical objects that represent potential threats to the achievement of his learning 
goals or desired identity state. Te immediate visceral reactions that occur in response to 
the student’s recognition of novelties in the polar representation are subsequently refned 
into a nuanced and diferentiated emotional experience. Tis occurs primarily through his 
refection on the extent to which the accomplishment of his learning goals are dependent 
upon the results of his activity in this context, and whether he considers these results rep-
resentative of his mathematical ability or intellectual capacity in general. Tis is how the 
existing level of arousal global intensity variable is operationalized: conscious cognitive 
processing of refexive somatic sensations (i.e., somatic markers) infuences one’s appraisal 
of an object, agent, or event (experienced or prospective), which results in more intense 
emotional experiences. 

For contrast, consider a student who conceptualizes constant rate of change as a propor-
tional relationship between corresponding changes in the continuously varying measures 
of a function’s input and output quantities. Rather than being constrained by particular 
perceptual material or sensorimotor experience, these aspects of fgurative thought are 
controlled by operative structures of action and transformation. Although the student who 
possesses this operative conception might demonstrate similar behaviors as the student 
whose understanding for rate of change is limited to “rise-over-run,” what distinguishes 
the result of her ∆y/∆x computation is that it represents the constant of proportionality 
relating the measures of covarying magnitudes ∆y and ∆x; it is not the direct application 
of a mnemonic device. 

Importantly, the student who possesses such an operative conception will also recog-
nize perceptual novelties of the polar graph, but will nonetheless expect that her meaning 
is sufcient for coping with them to sensibly determine the constant rate at which the out-
put quantity varies with respect to the input quantity. As a result of this expectation, the 
task neither represents a threat to the student’s ability to accomplish her proximal learning 
goals nor her identity as a mathematics learner. Te student simply has no reason to expect 
that her engagement with the task will reveal untenable defciencies in her mathematical 
knowledge or ability. Confdent in the general applicability of her understanding, the stu-
dent recognizes that she must frst conceptualize corresponding changes in the input and 
output quantities and then multiplicatively compare these changes as they covary. Tis, of 
course, requires a robust understanding of the polar coordinate system (Moore, Paoletti, 
& Musgrave, 2014)—including what it means to measure an angle in radians—and a par-
ticular way of conceptualizing the covariation of the input and output quantities in this 
context (Tompson & Carlson, 2017). Equipped with such an understanding and way of 
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FIGURE 10.3 Constant rate of change in polar coordinates (Δr=2Δθ). (Note that the length of the 
green arc representing Δθ is measured in units of the radius r.) 

reasoning, the student can coordinate changes in an angle’s measure (θ) with correspond-
ing changes in radius (r) to determine the constant rate at which r varies with respect to θ 
(see Figure 10.3). 

In sum, as a result of constructing and repeatedly leveraging mathematical schemes 
grounded in operative thought, students develop the expectation that their meanings are 
sufcient for efectively coping with novel tasks. Tis expectation has the potential to 
reduce or even eliminate the refexive somatic sensations that “mark” mathematical stim-
uli as potential threats to one’s identity, and which tend to initiate unproductive behav-
ioral reactions (e.g., task avoidance, memorization, the unreasoned employment of coping 
mechanisms). 

Provided the frequency with which mathematics curricula and instruction promote 
conceptions that are constrained by fgurative aspects of thought, it is difcult to over-
state the potential for operative structures to reduce students’ anxiety. Examples include 
the “vertical line test” to determine whether a graph represents a functional relationship, 
conceptualizing the derivative of a function at a point as the slope* of a tangent line, and 
understanding defnite integrals as representing bounded areas, not to mention the pre-
dominant focus in mathematics curricula on “the graph,” which has the efect of con-
straining students’ understanding of function classes to visual properties of their graphical 
representations and to the arbitrary conventions of particular representational systems 
(Moore, Silverman, et al., 2019). 

* Indeed, “slantiness” might capture with greater accuracy the meaning for derivative at a point promoted in common 
calculus curricula. 
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Te potential of operative schemes and the problematic nature of students’ fgurative 
conceptions are well-documented in the research literature. Moore and Tompson (2015) 
and Moore (in press), for example, introduce the theoretical construct static shape think-
ing to describe students’ meanings for graphical representations grounded in perceptual 
features of a graph. A student who engages in static shape thinking makes associations 
between mathematical terms or inscriptions and visual properties of (or actions on) a graph 
as an object so that these perceptual associations constitute one’s meaning for such terms 
and inscriptions (e.g., constant rate of change means “straightness”; exponential growth 
means “curving up”; quadratic means “U-shaped”; inverse functions mean “fip over the 
diagonal”). Tis is in contrast with emergent shape thinking, which involves conceiving fg-
urative properties of a graph as having emerged from representing the simultaneous varia-
tion of quantities’ measures in a coordinate system. A student who engages in emergent 
shape thinking interprets fgurative aspects of a graph as representing properties of con-
strained covariation (Moore & Tompson, 2015, p. 786). Moore, Stevens, Paoletti, Hobson, 
and Lang (2019) document the problematic nature of students’ static shape thinking and 
provide evidence of the afordances of emergent shape thinking for enabling students to 
accommodate novel fgurative material and experiences. Moore et al.’s (2019) conclusions 
support those of other researchers (e.g., Carlson et al., 2002; Moore, Paoletti, & Musgrave, 
2014; Moore & Tompson, 2015; Tallman, 2015) who in their diferent ways have demon-
strated the generativity of operative structures or illustrated the limitations of conceptions 
that foreground fgurative aspects of thought. 

O’Bryan (2018) and O’Bryan and Carlson (2016) provide other notable examples of the 
benefts of operative structures and the defciencies of fgurative conceptions. O’Bryan 
(2018) introduced the theoretical construct emergent symbol meaning (a term that inten-
tionally parallels emergent shape thinking) to characterize students’ instrumental use of 
symbols to reason quantitatively. Specifcally, a student who engages in emergent symbol-
ization uses mathematical symbols representationally, and thus expects that actions on 
symbols have quantitative signifcance and that expressions and formulas refect a quanti-
tative structure (Tompson, 1990) that can be discerned through analysis of their composi-
tion. O’Bryan (2018) demonstrated that students who lack these expectations “struggle to 
produce accurate mathematical models and interpret the implications of the mathematical 
structures in the models they do generate” (p. 234). More encouragingly, O’Bryan and 
Carlson (2016) document a shif in the rigor and conceptual focus of the mathematical 
discourse facilitated by a middle school teacher afer having engaged in an intervention to 
support her development of emergent symbol meaning. 

Together the defciencies of fgurative conceptions of graphs and mathematical for-
mulas/expressions respectively documented by Moore, Stevens, et al. (2019) and O’Bryan 
(2018) are relevant to a substantial portion of students’ mathematical activity at the sec-
ondary and tertiary levels. Although these researchers did not explicitly analyze the emo-
tional experiences of students whose mathematical activity was predominantly informed 
by fgurative aspects of thought, the preceding theoretical discussion suggests that the 
uncertainty regarding the outcome of one’s mathematical engagement and the refexive 
somatic sensations that “mark” mathematical stimuli as potential threats to one’s identity 
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FIGURE 10.4 Refecting abstraction. 

can co-occur with or be products of students’ frequent use of fgurative meanings. Tis 
uncertainty and somatic marking increases the intensity of students’ anxiety in a way con-
sistent with our discussion of the likelihood and existing level of arousal intensity variables 
(Ortony, Clore, & Collins, 1988). Te rationale for supporting students’ development of 
operative structures is therefore not exclusively cognitive; constructing operative math-
ematical schemes also has the potential to reduce students’ anxiety and to promote their 
positive afect generally. However, the issue of how an instructor or curriculum designer 
might accomplish this objective remains to be addressed. It is to this issue that we now 
turn. 

10.3.3.2 Piagetian Abstraction as the Mechanism for the 
Construction of Operative Structures 

Piaget proposed refecting and refected abstraction as the mechanism for constructing 
operative structures. As the frst author has previously written (Tallman, 2015; Tallman & 
Frank, 2020), refecting abstraction involves the subject’s reconstruction on a higher cogni-
tive level of the coordination of actions* from a lower level, and results in the development 
of logico-mathematical knowledge, or schemes at the level of operative thought (Chapman, 
1988). Refecting abstraction is thus an abstraction of actions and occurs in three phases: 
(1) the diferentiation of a sequence of actions from the efect of employing them, (2) the 
projection of the diferentiated action sequence from the level of activity to the level of 
representation, or the refected level, and (3) the reorganization that occurs on the level 
of representation of the projected actions (see Figure 10.4) (Piaget, 2001). A subject must 
diferentiate (dissociate) actions from their efects before she can construct an internal-
ized representation of them, a process Piaget referred to as projecting actions to the level 
of representation (i.e., the level of cognition). Additionally, the subject must coordinate 
the actions that produced the efect before she can project and represent them on a higher 
cognitive level. Once a subject diferentiates actions from their efect and then coordinates 

* Piaget (1967) defned action broadly to encompass all movement, thought, or emotion that responds to a need (p. 6). 
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them, she is prepared to project these coordinated actions to the refected level where they 
are organized into cognitive structures, or schemes. 

Refected abstraction is a higher form of abstraction that involves performing mental 
operations on the internalized actions that are the product of prior refecting abstrac-
tions. Engaging in refected abstraction results in a coherence of actions and operations 
accompanied by conscious awareness of them. To consciously operate on actions at the 
level of representation suggests that one has symbolized coordinated actions at this higher 
cognitive level. Refected abstraction thus relies on what Piaget called the semiotic func-
tion, or the subject’s capacity to construct mental symbols to represent aspects of her 
experience. Te subject symbolizes coordinated actions at the level of representation so 
as to reify the material actions the symbol represents into a form she can use as an object 
of thought at the level of representation. On this higher cognitive level, the subject can 
consciously manipulate these symbols independently of re-presenting the coordinated 
actions they signify, all the while being capable of doing so. Te semiotic function is thus 
the essential mechanism by which refecting abstraction becomes refected abstraction. 
As a result of the conscious awareness of internalized actions that occurs as a byprod-
uct of refected abstraction, the subject’s ability to purposefully assimilate new experi-
ences to the refected level provides evidence that she has engaged in refected abstraction. 
Additionally, performing conceptual operations on the symbols the subject constructs to 
represent coordinated actions at the level of representation results in increasingly orga-
nized cognitive structures. Refected abstraction is therefore the means by which sys-
tems of organized actions at the level of representation become progressively coherent 
and refned. 

Being the mechanisms responsible for the construction of operative structures, engag-
ing students in experiences that engender refecting and refected abstractions is essential 
to reducing or preventing their MA. 

10.4  CONCLUDING THOUGHTS 
We have suggested that mathematics teachers can design curricular resources and man-
age online learning environments to minimize students’ experience of mathematics anxi-
ety by engaging students in instructional experiences that (1) assist them in establishing 
meaningful learning goals to pursue en route to achieving a desired identity state, (2) 
enable them to appraise their psychological resources as sufcient for accomplishing 
their learning goals, and (3) support their construction of operative schemes for math-
ematical symbols, expressions, and equations. By repeatedly engaging students in learn-
ing experiences that (1) require mathematical reasoning, (2) reveal their possession of 
the intellectual competencies essential to mathematical profciency, and (3) provide an 
experiential basis for mathematical representations, students can begin to have conf-
dence in their abilities and will perceive their mathematical experiences not as a threat 
to achieving their desired identities as learners and future professionals, but as an oppor-
tunity to strengthen valued cognitive capacities that constitute the psychological dimen-
sion of these identities. Additionally, such sustained learning experiences will ultimately 
make the anticipated outcome of students’ mathematical engagement predictable, thus 
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decreasing the uncertainty that they will experience negative outcomes from their math-
ematical engagement. 

We hope to have demonstrated that an instructional commitment to fostering stu-
dents’ positive afect does not have to be in opposition to supporting their meaningful 
mathematical learning. Conversely, a dedication to constructivist pedagogy does not 
necessarily introduce greater potential for students to experience unproductive levels of 
anxiety. On the contrary, the instructional and curricular recommendations we have pro-
posed to address the cognitive antecedents of mathematics anxiety can emphasize signif-
cant mathematical understandings while also fostering the type of afective engagement 
essential for their construction. We argue that the recommendations above can be more 
efectively applied in online learning environments that allow students to interact with 
virtual manipulatives in ways that are not possible in traditional classroom instruction. 
Even if a classroom instructor did provide an opportunity for students to interact with 
virtual manipulatives, time constraints might still interfere; online instruction circum-
vents several of these issues. 

Tere are many normative practices in mathematics instruction and curriculum design 
that are antithetical to supporting students’ afect, and which actively encourage the cog-
nitive appraisals and constructions that contribute to students experiencing mathematics 
anxiety. Tese include but are not limited to a predominant focus on supporting conceptions 
grounded in fgurative aspects of thought, the expectation that conceptual understanding 
depends on or emerges from procedural fuency (Kieran, 2013), a systemic inattention to 
the meaning and coherence of mathematical ideas (Tompson, 2013), assessment practices 
that emphasize performance rather than understanding (Niss, 1993), the relative absence 
of explicit pedagogical theories guiding mathematics instruction and curriculum develop-
ment (Simon, 2013), a general failure of mathematics instruction to meaningfully build on 
viable models of students’ mathematical thinking (Jacobs, Lamb, & Phillip, 2010), and the 
infrequency with which instructors engender in students an afective and intellectual need 
for learning what they intend to teach them (Harel, 2013). 

Te pervasiveness of some of these practices partially refects a lack of opportunity 
for mathematics instructors to develop the knowledge base required to efectively imple-
ment the recommendations we propose. While this knowledge base is extensive, hav-
ing a clear image of what it means to understand particular mathematical ideas and 
being aware of a trajectory by which students might construct them are at its foundation 
(Tallman, 2015). To this point, specifying what one wants students to do is diferent than 
articulating how one wants students to understand. Instruction that is guided by an 
image of behavioral outcomes instead of a coherent and explicit characterization of the 
conceptual activity an instructor seeks to engender rarely afords students the opportu-
nity to construct productive mathematical meanings. It is therefore essential to enacting 
our recommendations that curriculum designers and instructors defne learning goals 
for students in cognitive rather than behavioristic terms, which involves articulating the 
mental actions and conceptual operations that comprise the understandings the cur-
ricula or instruction seek to promote (Tallman, 2015). Tis entails characterizing what 
students need to imagine, interpret, visualize, attend to, and conceive to construct the 
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meaning one envisions. Additionally, an instructor must possess a theory for the devel-
opment of mathematical concepts in general, and an explicit learning trajectory for spe-
cifc mathematical ideas in particular. Without them, instructors have no recourse but to 
adopt a “transmission” model of teaching, guided by the implicit assumption that com-
plex mathematical ideas can be transferred to students through clear explanations and/ 
or demonstrations (Simon, 2013). In essence, a particular character of content knowledge 
is essential for designing and facilitating online learning experiences that reduce stu-
dents’ mathematics anxiety; accomplishing this goal is not reducible to a list of peda-
gogical prescriptions without consideration for the mathematical conceptions they are 
supposed to support. 
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11.1 INTRODUCTION 
Historically, mathematics courses have been viewed as obstacles to student success and 
to access to science, technology, engineering, and mathematics (STEM) careers. To over-
come these obstacles institutions of higher education have provided a variety of ways to 
meet and support the needs of ever larger, more diverse groups of students (Watkins & 
Mazur, 2013). STEM-intending students who begin their mathematics study at levels sub-
stantially lower than calculus encounter multiple of these potential barriers as they prog-
ress through a sequence leading to the courses needed for their majors. As students move 
through courses, diferent aspects of their experiences, life events, and internal afec-
tive states can afect their studies. Anxiety has been shown by a number of researchers 
(Ashcraf & Krause, 2007; Hembree, 1990) to play a role in the efciency and efectiveness 
of mathematics students. For students entering developmental mathematics courses, the 
impact of these underlying afective states can be compounded both positively and nega-
tively by the multiple, sequential courses needed to reach the level of mathematics needed 
in STEM disciplines. As this population grows at major universities the need for better 
understanding of the interaction of larger, more diverse populations with technology-
driven and other support systems as they move through multiple mathematics courses 
has grown. 

At the same time, researchers have shown that peer-mentoring creates a supportive 
environment that allows students to engage in learning while connecting with role mod-
els to whom they can identify more readily (Fox & Stevenson, 2006; Morales, Ambrose-
Roman, & Perez-Maldonado, 2016; Rios-Ellis et al., 2015; Dennehy & Dasgupta, 2017). 
We describe in this paper a face-to-face peer-mentoring program that was implemented 
to support students in self-paced, computer-based developmental mathematics course at 
a large university in the Eastern United States and its efect on their levels of mathematics 
anxiety and their overall success. We specifcally wanted to answer the following research 
questions: 

• How does participating in a face-to-face peer-mentoring program help support student 
success in an online developmental mathematics course? 

• How does participating in a face-to-face peer-mentoring program afect the mathemat-
ics anxiety of students in an online developmental mathematics course? 

11.2  LITERATURE REVIEW 
As reported by Radford, Pearson, Ho, Chambers, and Ferlazzo (2012), approximately 42% 
of students in the United States enter college needing a mathematics course below the level 
of college algebra. Tese students need additional support to gain the mathematical back-
ground needed to begin the expected progression of mathematics courses for their chosen 
majors. At the same time, more than one-third of all students pursuing a STEM degree in 
the US enroll in mathematics courses such as intermediate algebra (Radford et al., 2012), 
and, in most cases, these students will need to progress to at least a frst semester calculus 
course. (Intermediate algebra in the US typically covers material that students have been 
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exposed to in secondary schools and is a level below college algebra). Tis creates a num-
ber of chances for students to depart from their STEM program and is one of the reasons 
that the number of students graduating with a STEM degree remains relatively stagnant. 
Overall diminishing student retention rates (Hurtado, Eagan, & Chang, 2010; Tompson 
& Bolin, 2011) were noted in the United States’ President’s Council of Advisors on Science 
and Technology (PCAST) report (Olson & Riordan, 2012) that highlighted a need for more 
than a million additional STEM professionals in the US over the next decade, and so this 
population of STEM-intending, developmental mathematics students at institutions from 
across the US is a resource from which we can retain potential members of this future 
workforce. 

11.2.1 Students and Computer-Supported Instruction 

In addition, the availability of computer-supported instructional platforms and the 
changing landscape of higher education has allowed universities to seek more efcient 
ways of instruction including the use of distance learning and other technologically 
supported classroom models. Studies have noted consistently increasing oferings of 
online developmental mathematics courses (Epper & Baker, 2009; Jaggars & Bailey, 
2010) as well as the use of computer-assisted instruction to provide low-cost access 
to large numbers of students at both the two- and four-year college levels (Lei, 2010). 
Tese courses pose a specifc challenge to higher education in that they are a signifcant 
point of access for many students (Zavarella & Ignash, 2009), but the students enter-
ing STEM pathways tend to need strong supports if they are to be successful. Several 
researchers (Bray & Tangney, 2017; Meletiou-Mavrotheris et al., 2017; Senn, 2008) have 
noted the capacity for change that technology presents in these hybrid/online settings. 
From online homework systems and computer-based testing (Lei, 2010; Senn, 2008) to 
the use of online platforms to build learning communities (Swenson & Evans, 2003), 
researchers and practitioners have utilized diferent tools to increase access to courses 
as well as to improve the instructional environment (Young, 2017). Tese tools espe-
cially tend to focus on online assessments ranging from homework to quizzes and 
exams and may potentially put students in situations where they are combining a high-
stakes learning activity with the cognitive load of the content as well as the additional 
barriers presented by the technology being used (Young, 2017). In particular, serving 
large numbers of students who need high levels of instructor contact with models that 
lower the contact level in order to make it more cost-efective can create structures that 
inhibit student success (Ashby, Sadera, & McNary, 2011; Boylan, Bliss, & Bonham, 1997; 
Lei, 2010). 

One aspect of this potential for inhibition can be traced to the ways in which students 
respond to the instructional environment (Berland & McNeill, 2010; Kalyuga, 2007). 
Student attitudes towards coursework (Alexander & Martray, 1989; Catsambis, 1994; Hofer 
& Pintrich, 1997) and the beliefs they hold regarding their ability to succeed (Bandura, 
1997; Hall & Ponton, 2005) can create internal confict when their preconceived notions 
do not agree with the feedback they receive from a course. Many students fnd themselves 
overwhelmed by the demands of a mathematics classroom, and in courses where students 
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have been placed that contain content that they have already encountered in high school, 
for example, the added coursework presents multiple opportunities for departure when 
they feel disillusioned about their academic progress. As noted by Hembree (1990), student 
interaction with mathematics courses tends to induce an anxious state and this anxiety 
(Ashcraf & Krause, 2007) in turn tends to inhibit both the ability to reason mathemati-
cally as well as the development of mathematical concepts over time. As a result, it is criti-
cal that students in early mathematics courses encounter supportive environments so that 
they can build both the mathematical knowledge needed to be successful and the internal 
sense of mathematical self-efcacy needed to persist in their courses. Tis is especially 
true in courses that incorporate technological supports such as computer-based testing or 
homework systems (Boylan et al., 1997; Lei, 2010). In these course environments, students 
encounter both the difculty of the mathematical material and the potentially negative 
impacts of the technology involved (Taylor, 2008). Computer-based homework and testing 
environments present additional failure points to at-risk students by combining the cogni-
tive load of the material being learned with the potential difculties of the system used to 
present the material and/or exams. 

Researchers have identifed other factors impacting anxiety as well. Stoet, Bailey, Moore, 
and Geary (2016) found that anxiety in mathematics manifests in female students more 
strongly. In other work, Willig, Harnisch, Hill, and Maehr (1983) found that anxiety levels 
were predictive of mathematics outcomes for Hispanic students but not all groups. Studies 
(Jaggars & Bailey, 2010) have also suggested that online courses in particular have com-
plex interactions with frst-generation and other underprepared students, and that these 
students require more substantial supports in these environments to be successful. Tese 
complicated interactions of content, course structure, and assessment indicate that eforts 
to monitor and dispel anxiety may lead not only to increased success but also to more 
inclusive classrooms. 

11.2.2  Peer-Mentoring Supports 

As one response to this complexity, studies have shown that peer-mentoring can be an 
efective way to support students in mathematics. In areas such as chemistry (Wamser, 
2006) and physics (Crouch & Mazur, 2001; Watkins & Mazur, 2013), peer instruction has 
been shown to have a positive impact on student work in mathematical areas and to sup-
port higher levels of retention (Weissman et al., 2011). Peer-mentoring has also been spe-
cifcally shown to reduce anxiety (Rodger & Tremblay, 2003). Peer-mentors provide many 
of the needed study and time management skills, both aspects of potential struggle (Culler 
& Holahan, 1980; McKeachie, 1984) for students in hybrid situations where they may lack 
a high level of instructor interaction. 

To develop a program of support, a review of the peer-mentoring literature (Anderson & 
Boud, 1996; Crisp & Cruz, 2009; Jacobi, 1991; Topping, 1996) was conducted and identifed 
four categories of support for college students: psychological or emotional support, role 
models, assistance in goal setting and career paths, and subject-specifc expertise. Cramer 
and Prentice-Dunn (2007) further argue that psycho-social support infuences identity 
formation and belonging, but contend that a mentoring program should span multiple 
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areas since these psychological processes work in the context of many other infuences. 
Based on the work in these other settings we implemented a program that intended to 

1. Provide a support system for students struggling with the content in developmental 
mathematics. 

2. Increase developmental mathematics students’ feelings of campus connection. 

3. Help developmental mathematics students navigate curriculum and locate university 
resources. 

4. Increase developmental mathematics students’ confdence, involvement in learning, 
and retention. 

5. Cultivate relationships between students who have successfully completed develop-
mental and subsequent mathematics courses and current students in the course. 

6. Develop current developmental mathematics students into potential future mentors. 

7. Help developmental mathematics students address adjustment issues and improve 
decision making. 

Tese goals target a number of areas that research indicates are potential failure points for 
students at a variety of levels. 

11.2.3  Theoretical Framework 

In order to analyze the ways in which students’ attitudes and beliefs in a course environ-
ment (Alexander & Martray, 1989; Catsambis, 1994; Hofer & Pintrich, 1997) and sense of 
self-efcacy in mathematics (Bandura, 1997; Hall & Ponton, 2005) impact their success in 
a course, we view failure as a departure from their academic plan and adopt Tinto’s model 
of retention and departure (Tinto, 1990). In this framework student persistence is said to 
depend on both academic integration and social integration. For academic integration, 
support structures such as online homework systems and tutors provide access to content 
(Sims & Schuman, 1999). On the other hand, students in courses that are hybrid or online 
may feel isolated (Murphy & Stewart, 2017), and as a result the social integration aspect 
also weighs heavily on their retention likelihood. We hypothesize that peer-mentoring in 
this context bridges the gap between academic and social integration by providing content 
support at the same time that connections are being made with peers with whom students 
can strongly identify socially (Rice et al., 2013). 

11.3  INSTITUTIONAL SETTING 
Our study was conducted at a university established as a land-grant institution—an insti-
tution supported through the use of federal land provided to the states to fund education 
that would include agriculture and mechanics in addition to traditional liberal arts stud-
ies. Tis university is also a comprehensive research university but maintains the original 
goals of a land-grant institution in that it seeks to facilitate the education of the citizens of 



        

           

 

 
 
 

 

 
 
 
 
 

 
 

222 ◾ Teaching and Learning Mathematics Online 

the state at all levels. As such, it attracts a signifcant number of frst-generation students— 
students who are the frst in their families to attend college and therefore come from envi-
ronments that likely lack the understanding of the supports a college student might need. 
In addition, a large proportion of these students have declared a major within a STEM 
discipline as indicated by the National Science Foundation categorization of programs and 
so are considered STEM-intending. 

11.3.1 A Course before College Algebra 

Although many students at the university will begin their mathematics study in calcu-
lus or precalculus, roughly 30% of frst-year students admitted to the institution are not 
prepared for college-level mathematics courses (Fuller, Deshler, Kuhn, & Squire, 2014) at 
the level of college algebra, defned at this university to be a beginning study of functions 
and their algebraic and graphical structure. As a result more than 1,000 students per year 
enroll in a mathematics course ofered at the university whose content typically precedes 
college algebra and would more typically occur in their secondary mathematics courses. 
Approximately 70% of these students who succeed move on to additional mathematics 
courses, and we estimate that 48% these successful students enter successor mathematics 
courses while pursuing STEM degrees. 

Te course that is the focus of this study is taught as an intermediate algebra course 
covering foundational topics such as integer and fractional arithmetic, the manipulation 
of expressions involving unknowns including polynomial, rational, exponential, and 
logarithmic equations, solving equations, and factoring. Te course is ofered in a self-
paced, hybrid format course based on the completion of online modules while on-campus 
in a classroom with an instructor who does not lecture and instead ofers individual-
ized explanations to students as needed and assists with homework, practice, and exam 
problems. Students are assigned homework quizzes (HWQs) for seven chapters’ worth 
of material in an intermediate algebra textbook implemented using an online homework 
system. Students must complete the HWQs with scores of at least 80% that then lead 
to chapter exams that students must complete with at least 70% mastery. Students are 
allowed three attempts on an exam before they must redo the HWQs. Once a student suc-
cessfully completes a chapter exam, he or she may move on to the next chapter of material. 
Upon completion of all chapter exams, students must pass a comprehensive fnal exam 
with at least 70% mastery. 

In order to complete material in the course, students use the Pearson My Math Lab 
online system (Pearson, 2019) to complete homework exercises, HWQs, and exams. Te 
modules are supported by an online text with background content, and students can 
access that material electronically during class, during homework exercises, and between 
attempts on HWQs but not during exams. Questions are generally posed as open answer, 
and students may ask for help during class and HWQs either by clicking a button in the 
browser or by asking a lab attendant for help. Each student works at a separate computer 
in a 48-seat or 120-seat laboratory. Tey may work together at any time other than during 
exams. Tey meet four days per week in this lab for one hour, but it is stressed that they 
must complete material outside the lab as well as during class time. 
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11.3.2 Peer-Mentoring Program Description 

During the fall semester of 2016 we implemented a pilot peer-mentoring program and 
developed material to support this program using a small group of students and mentors. 
We selected peer-mentors from past intermediate algebra students who successfully com-
pleted the course with a grade of A and subsequently succeeded in a college-level math-
ematics course (non-remedial) with a grade of A or B. We solicited volunteer mentees for 
this stage of the program and conducted meetings throughout the term while developing 
mentor training material, mentor/mentee activities, and establishing assessment protocols. 
During the pilot we had eight students serve as peer-mentors and only 24 students request 
to participate in the peer-mentoring program. 

In the spring semester of 2017, we implemented the peer-mentoring program by setting 
up parallel course sections taught during the same time periods each day. We chose two 
time periods to examine and provided two classes during each time period. Afer students 
had enrolled, we chose one section randomly at each time period to be a control section 
with no intervention and one in which to implement the peer-mentoring. Two instruc-
tors were chosen to lead the two parallel sets of classes. Tat is, each instructor had one 
mentored and one non-mentored section of the course. We referred to the two mentored 
sections as “treatment” and each of the 87 students in those sections was required to par-
ticipate in peer-mentoring activities for the duration of the term. Tere were a total of 77 
students in the two control sections of the course. 

Students were assigned to meet with a peer-mentor in groups of eight and were required 
to attend meetings once per week during the semester. Students were considered to have 
completed the peer-mentoring if they missed no more than four meetings for the entire 
15- week semester. During this phase of the study we had seven of the original eight men-
tors return as mentors. 

11.4  METHODS 
In total there were 450 students enrolled in the course during the peer-mentoring study 
including those in the treatment, control, and other sections of the course. Te population 
consisted of 199 female and 251 male students, and it contained 108 STEM-intending stu-
dents. Te population also contained 136 frst-generation students. 

In order to measure the impact of the peer-mentoring process we gathered data related 
to student success in the course along with data collected from survey instruments. 
We used the Abbreviated-Mathematics Anxiety Rating Scale (AMARS) (Alexander & 
Martray, 1989), a 25-item shortened version of the Mathematics Anxiety Rating Scale 
(MARS) instrument of Richardson and Suinn (1972) to measure the anxiety levels of our 
students. Tis instrument has been validated and measures anxiety levels in the three areas 
of exam anxiety, course anxiety, and numerical task anxiety using a collection of Likert 
scale prompts such as “Please indicate your level of anxiety when studying for a math test.” 
Student responses ranged from 1 = Not at all, to 5 = Very much. Tree factors have been 
identifed in the survey including exam anxiety (EA—items 1 to 15), numerical task anxi-
ety (NTA—items 16 to 20), and course anxiety (CA—items 21 to 25). A composite score 
total for each factor was computed with EA ranging from 15 to 75, NTA and CA from 5 to 
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25. We surveyed students at the beginning of the semester and again at the end to exam-
ine changes in anxiety levels. Participation in the peer-mentoring program was required 
for students, but participation in the research study was voluntary and response rates are 
reported in the results section. We also collected data on student success in the course to 
examine the efects of the peer-mentoring program. 

To identify diference in outcomes, we compare success data from the treatment and 
control groups, frst using a χ2 test and then a comparison of mean GPA. For comparison 
of subgroups such as gender, frst-generation, or STEM-intending groups, an analysis of 
variance of grade point average on a 0 to 4 scale was performed between groups. Finally, 
to analyze the impact of anxiety, a repeated measures analysis of variance (ANOVA) was 
performed using data from the pre-survey and post-survey. 

11.5  RESULTS 
Of the 450 students enrolled in the course, 82 responded (18.2%) to the initial AMARS 
survey with an average score of 69.29 on a scale of 25 to 125. Tis group maintained simi-
lar proportions with respect to gender (54 female, 28 male), STEM-intending (N = 25), 
and frst-generation (N = 35) students. We administered a follow-up AMARS survey to 
measure anxiety levels at the end of the semester, and 43 (9.6%) responded with an average 
of 65.74 on the same scale. In total, 38 responded to both pre- and post-surveys, and the 
average decrease was 2.08 points. 

11.5.1  Student Success 

We found that students in the peer-mentoring program were more successful in the course 
and demonstrated lower levels of mathematics anxiety at the end of the course than stu-
dents who did not participate in the program. From the treatment group, 54 of the 87 stu-
dents completed the peer-mentoring (by missing four or fewer meetings) and, as shown in 
Table 11.1, 83.3% of these succeeded in the course (defned as a grade of A, B, or C). While 
the result was not statistically signifcant (t(129) = −1.4222, p = 0.1574), it is an indication 
that students supported in this way tend to succeed at a higher rate. Te lack of statistical 
signifcance is likely due to the low population of students in the treatment groups relative 
to the efect size measured. Specifcally, we fnd an efect size (Cohen’s d) of d = 0.2443 for 
the diference in the mean success rate of the treatment and control populations. With this 
efect size, a power analysis indicates that a sample size of N = 172 would be necessary to 
establish a signifcant diference in mean likelihood of success for an independent sample 
t-test (α = 0.05). 

TABLE 11.1 Success Rates for Students Completing the Peer-Mentoring Program 

Success Fail Total 

N % N % N 

All non-mentored sections 
Paired instructor control group 
Mentoring treatment sections 

216 
56 
45 

75.2 
74.0 
83.3 

70 
21 

9 

24.8 
26.0 
16.7 

286 
77 
54 
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FIGURE 11.1 Means and estimated confdence intervals for grade point average of mentored and 
non-mentored students. 

Te performance of both mentored and non-mentored students can be better analyzed 
in general by comparing the mean GPA of the populations of the treated and control 
groups using the typical 4.0 scale. Using this scale, the marginal means of the populations 
can be computed and 95% confdence intervals imputed that provide some insight into the 
expected variation in this performance. Tese data are shown in Figure 11.1. In this plot 
we can see that with the current population size, the ability to predict with confdence the 
actual mean is constrained, and so while we see a diference in the success rates, we cannot 
rule out the possibility that this increase is due to random chance. It is, however, a large 
diference and suggests that a larger implementation of the program would likely provide 
more conclusive results. 

11.5.1.1  Gender Subgroups 
As summarized in Table 11.2 and depicted graphically in Figure 11.2, student success 
results difered by gender for this study. Success rates for male students were similar to 
the overall trend observed for the entire population in that the treatment group exhibited 
a higher rate of success. However, female students do not appear to have benefted in the 
same way as their male counterparts from the program despite the same success rates in 
the course. 

Again, the diferences were not observed to be signifcant (t(60) = −0.51142, p = 0.6109), 
but a larger sample size may be able to clarify these efects and their signifcance. Te efect 
size within the female population is smaller, however (d = 0.12419), and a power analysis 
in this case indicates that a population of at least N = 693 would be needed to establish a 
signifcant diference in the likelihood of success. 

11.5.1.2  STEM-Intending Subgroups 
One of the primary concerns of this study was to observe the impact of the course and 
the peer-mentoring program on students planning to complete STEM majors. Te success 
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TABLE 11.2 Success Rates of Students Completing Peer-Mentoring by Gender 

Success Fail 

F 

M 

Other 
Control 
Treatment 
Other 
Control 
Treatment 

N 

94 
25 
25 

122 
31 
20 

% 

77.0% 
78.1% 
83.3% 
74.4% 
68.9% 
83.3% 

N 

28 
7 
5 

42 
14 

4 

% 

23.0% 
21.9% 
16.7% 
25.6% 
31.1% 
16.7% 

FIGURE 11.2 Means and estimated confdence intervals for GPA of mentored and non-mentored 
students by gender. 

TABLE 11.3 Success Rates of Students Completing Peer-Mentoring by STEM Major Choice 

Success Fail 

Non-STEM major 

STEM major 

Other 
Control 
Treatment 
Other 
Control 
Treatment 

N 

165 
42 
31 
51 
14 
14 

% 

76.0% 
71.2% 
81.6% 
73.9% 
77.8% 
87.5% 

N 

52 
17 

7 
18 

4 
2 

% 

24.0% 
28.8% 
18.4% 
26.1% 
22.2% 
12.5% 

rates of STEM-intending students overall were similar to the non-STEM-intending popu-
lation (Table 11.3), while the success rate for STEM-intending students in the peer-men-
tored group was higher. Tey succeeded at a rate that was 9.7% higher than the control 
population and 13.6% higher than the remaining population of STEM-intending students. 
In Figure 11.3 we see that the peer-mentoring program had a more positive efect on STEM 
majors when compared to the non-STEM majors. 
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FIGURE 11.3 Means and estimated confdence intervals for GPA of mentored and non- mentored 
students by STEM major choice. 

TABLE 11.4 Success Rates of Students Completing Peer-Mentoring by First-Generation Status 

Success Fail 

Not frst-generation 

First-generation 

Other 
Control 
Treatment 
Other 
Control 
Treatment 

N 

153 
43 
31 
63 
13 
14 

% 

79.3% 
74.1% 
79.5% 
67.7% 
68.4% 
93.3% 

N 

40 
15 

8 
30 

6 
1 

% 

20.7% 
25.9% 
20.5% 
32.3% 
31.6% 

6.7% 

Te diference was not found to be signifcant as noted above (t(32) = −0.72599, p = 
0.4731), but the efect size for STEM-intending students is similar to the general popula-
tion at d = 0.2294. To distinguish efects in this case, a sample size of N = 197 is indicated. 

11.5.1.3  First-Generation Students 
In addition to considering the STEM intention of our students, we analyzed outcomes for 
this population. As shown in Table 11.4 and in Figure 11.4, we see a substantial increase 
in success compared to other frst-generation students not in the peer-mentoring program 
with more than 90% of these students successful if mentored compared to less than 70% if 
not. Due to the small number of peer-mentored students, none of these results were found 
to be statistically signifcant (t(32) = −1.8177, p = 0.07849). Te efect size in this case was 
medium, however, at d = 0.54473, and so this result would be easily confrmed or invali-
dated with a larger population. 

11.5.2  Measured Anxiety 

Student anxiety was measured by the AMARS instrument in the second week and again 
in the last week of the semester. In Table 11.5 we see the average total anxiety for students 
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FIGURE 11.4 Means and estimated confdence intervals for GPA of mentored and non- mentored 
students by frst-generation status. 

TABLE 11.5 Anxiety Levels of Responding Students 

Total Anxiety (Pre) Total Anxiety (Post) 

Other sections 66.25 (N = 53) 63.87 (N = 30) 
Control 78 (N = 12) 76 (N = 4) 
Peer-mentoring completed 72.58 (N = 12) 66.57 (N = 7) 

FIGURE 11.5 Measured anxiety in treatment and control groups. 

by group (control, treatment, or other). Te observed diferences are again too small for 
the size of the sampled population to be able to conclude signifcance of the outcome over-
all. Te overall trend for all students was a slight drop in anxiety, and this was paralleled 
within the treatment and control groups. Figure 11.5 shows the estimated variance in mean 
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TABLE 11.6 Pre- and Post-Survey Anxiety Means by Population Groups 

Pre-survey Post-survey 

Mean N Mean N 

Non-STEM 70.74 57 64.34 29 
STEM 66.00 25 79.00 9 
F 70.89 54 64.41 27 
M 66.21 28 76.18 11 
Non-frst-generation 68.68 47 65.56 25 
First-generation 70.11 35 72.15 13 

FIGURE 11.6 Measured anxiety controlling for population diferences: STEM majors. 

anxiety levels for the treatment and control groups for the two time periods. In this plot we 
see that there is a small decrease in the anxiety levels of the treatment group but that this 
decrease cannot be considered diferent from a number of other possible outcomes. 

As shown in Table 11.6, however, the anxiety response across population subgroups had 
interesting patterns. Students in these sub-populations within the control and treatment 
groups exhibited diferences in the change in anxiety response that were signifcant. A 
repeated measures ANOVA shows the diference of means to be signifcant from the pre- to 
post-survey (F (1, 7) = 26.339, p < 0.001) for STEM-intending students while the between-
subjects variance compared to non-STEM-intending students was not. Te comparison 
of the predicted variance in the means for the STEM- and non-STEM-intending student 
populations shown in Figure 11.6 illustrates the likelihood that peer-mentoring appears to 
actually increase levels of anxiety among STEM students while decreasing anxiety in non-
STEM-intending participants. 

On the other hand, a similar analysis for frst-generation students (Figure 11.7) fnds a 
decrease in anxiety during the course that is signifcantly diferent from what would be 
expected from random chance (repeated measures ANOVA F (1, 7) = 30.640, p < 0.001) 
over time. Non-frst-generation students demonstrated an increase. 
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FIGURE 11.7 Measured anxiety controlling for population diferences: frst-generation students. 

Unfortunately, the gender demographics of the post-survey respondent population 
within both the treatment and control sections difered too much from the pre-survey 
group, and the results there were encouraging in their support for female students but not 
enough data points were available for both genders for analysis. 

11.6  CONCLUSIONS 
In this chapter we report the outcomes from a pilot project that implemented a peer- men-
toring support system for students in a hybrid, online developmental mathematics course 
using computer-based homework and testing systems in the instruction of a large number 
of students. In this work, we implemented this peer-mentoring program with 87 students 
from a total population of 450 entering the course in the spring of 2017. From this group, 
54 students completed the mentoring activities, and we present outcomes from this group 
and compare them with a group of 77 students in a comparison group that controlled for 
time of day and instructor efects. Students were not assigned at random, but the sections 
were chosen randomly. 

We observed increases in student success for the mentored population but could not 
determine if these diferences were related to the peer-mentoring program specifcally. 
Tese increases were supported for female, STEM-intending, and frst-generation students 
as well, but no statistical signifcance could be identifed between groups in these cases 
either. 

We observed decreases in anxiety as measured by the AMARS instrument for the 
treated group that were not signifcant, but underlying efects in the STEM-intending and 
frst-generation groups that were shown to be diferent than what would be expected from 
random efects. In particular, peer-mentoring as we have structured it decreased anxiety 
among frst-generation students in a signifcant way, but STEM-intending students show 
increased levels of anxiety. It may be that the interaction with mentors made STEM intend-
ing students more cognizant of their situation which manifested as reported anxiety, while 
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this same interaction with frst-generation student decreased anxiety levels by resolving 
concerns these students were developing. Encouragingly, the mentoring supported female 
students as well, although, again, not enough data were obtained for analysis. Tinto (Tinto, 
1990) notes that the two aspects of integration, academic and social, must be present for 
optimal retention of student populations, and anxiety in mathematics is an inhibitor for 
both mathematical cognition (Hembree, 1990) and social interaction (Degnan & Fox, 
2007). A possible conclusion here is that some portion of the increase in success for stu-
dents, in particular frst-generation and students who perceive themselves as underpre-
pared or challenged in some way, is due to a decrease in their level of anxiety in the course 
from peer-mentoring. Tis efect may be small enough that much larger numbers of men-
tored students would need to be studied in order to clarify the nature of any impacts, but 
the result is encouraging. 

In all this, one immediate observation is that the response rates for both the pre-survey 
(18.2%) and the post-survey (9.6%) were relatively low, and so some of these conclusions 
need further work in a larger implementation of the program to see if they can be repeated 
or better understood. It appears that anxiety is lowered for target sub-populations but pos-
sibly not overall, and so our peer-mentoring process may need adjustment to better serve 
students more broadly. Most encouraging is the increase in success, though it is not yet 
clear from this work if the impact on anxiety is related to the increase in success. Given 
that the size of the efect of the treatment on rates of success for most populations is in 
the range of d = 0.2, further study with a population roughly twice the size of this study, 
around N = 200, would shed more light on some of these fndings. 

11.7 RECOMMENDATIONS FOR PRACTITIONERS 
Student interaction with technology continues to evolve as technology improves and more 
advanced tools for instruction are developed. Te ubiquity of online and computer-assisted 
instructional platforms has broadened the scope of student interaction with these systems. 

Te peer-mentoring program we have described in this chapter is a useful approach for 
supporting students in situations where student interaction with online or computer-based 
instruction will be high. Given the trends we observed during the implementation of our 
program, we also suggest monitoring student anxiety levels. Student anxiety related to 
their interaction with online systems can be quite high and can increase during the semes-
ter as they may become frustrated with systems that seem agnostic about their success. 
Support should be put in place that considers student progress as well as their attitudes 
towards the instructional systems to which they are exposed. As indicated by Tinto (Tinto, 
1990), social and academic integration are necessary for student persistence, and this 
integrative process is driven by student attitudes towards their classroom environment. 
Peer-mentoring can provide a sense of community to students, especially frst-generation 
students, who are at risk of departing their academic studies prematurely. 

Additionally, developing some means of engaging with students such as discussion 
boards or chat groups that allow instructors to measure student afect either formally or 
informally can enhance the sense of belonging felt by students, and the information devel-
oped can be used to move students towards more positive engagement. 
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12.1  INTRODUCTION 
Online learning can be seen as the historical continuation of distance education that began 
with the correspondence courses of the 1800s, followed by the radio “school of the air” 
in the 1920s and 1930s, and the telecourses in the latter half of the 20th century (Kentor, 
2015). Tis history can cloud how people view online learning—as if it is, at its heart, a 
correspondence course, with its most important component being written lecture notes, 
perhaps with some videos thrown in. However, to view online learning in this manner is 
to ignore one of its most important and powerful features—the online discussion board. 

In this chapter, we will make the particular case for using discussion boards in online 
mathematics courses. We will outline our research on the best way to give students the 
opportunity to engage in online discussions, using the strands of mathematical thinking 
(Kilpatrick, Swaford & Findell, 2001) as a lens through which to view these discussions. 
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We will also provide some practical advice for managing and assessing student participa-
tion in this component of an online mathematics course. 

12.2 THE VALUE OF DISCUSSIONS IN AN ONLINE COURSE 
Online discussion boards are a way for students to communicate with both faculty and 
other students. Communication is typically asynchronous—one student may post to the 
discussion at 3 in the afernoon, while another student posts at 1 am. Tis ability to com-
municate at any time keeps online learning fexible, ideal for working students and parents. 

While no experimental research has been conducted that isolates the efect of online dis-
cussion boards per se, there is strong evidence that the type of communication that discus-
sion boards facilitate has a direct efect on student learning in online mathematics courses. 
Jaggars and Xu (2016) studied four aspects of online course design (organization and pre-
sentation, objectives and alignment, interpersonal interaction, and technology). Of these, 
the only factor that signifcantly afected student outcomes in the course was interpersonal 
interaction, comprising both student–instructor and student-to-student interaction. Tey 
found “that students view an efective online instructor as one who … encourages students 
to interact with their classmates, their instructor, and the course material” (p. 281). Te 
discussion board is one area of the online course where this interaction can occur. Te 
authors rated the quality of the interaction in each course in their study, where quality was 
defned as interaction that reinforces course content and objectives. In those online courses 
rated more highly for the quality of interaction, students’ course grades were signifcantly 
higher than in courses with less high-quality interaction. In fact, the authors found that 
either a high level of student-to-student or a high level of faculty-to-student interaction will 
sufce to improve student learning. 

Bliss and Lawrence (2009) also discussed the relative importance of faculty participa-
tion in discussion boards. Teir study of the use of discussion boards in online college 
mathematics courses found that there seems to be an optimal level of instructor interac-
tion in discussion boards in such courses: too many faculty posts discourage student-to-
student interaction, but too few faculty posts leave students feeling that their problems are 
not being sufciently addressed. Te main focus of their inquiry was on evaluating the 
quality of student posts. Using the quality measure developed, they determined that “the 
measure of quality of posts was correlated with presence of feedback.” Ofenholley (2012) 
found similarly that instructors infuenced the types of discussions in which their students 
engaged: when instructor posts were evaluative (by rating, clarifying, and expanding what 
was said), there was a positive correlation with the number of times students posted, and 
when the instructor’s evaluations contained more mathematics, so did the student’s. 

12.3 MATHEMATICIANS COMMUNICATE AND COLLABORATE 
Given the benefts of online discussions, it is alarming to hear people ask, “Do you really 
need a discussion board in a math class?” Tis is ofen followed by, “What do you even talk 
about?” as if mathematics were a world apart, in which numbers and variables could exist 
without words to connect or explicate them. It is perhaps forgivable when non-mathema-
ticians express such ideas, but it is most concerning when our fellow mathematics faculty 
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say the same things, because the true work of the mathematician is so ofen a collabora-
tive, communicative process. Te most famous of all collaborative mathematicians is, of 
course, Paul Erdos, whose prolifc work with other mathematicians gave rise to the “Erdos 
number”—the number of co-authorships away one is from a co-authorship with Erdos. 
Grossman and Ion (1995), keepers of the Erdos Number Project, write that collaboration 
among mathematicians in general is on the rise, at least insofar in terms of published works: 

while over 90% of all papers ffy years ago were the work of just one mathemati-
cian, today scarcely more than half of them are solo works. In the same period, 
the fraction of two-author papers has risen from under 10% to about one third. 
Also, in 1940 there were virtually no papers with three authors, let alone four or 
more; now about 10% of all papers in the mathematical sciences have three or 
more authors. (Grossman (2002), p. 8) 

Since mathematicians so ofen work collaboratively, it is natural that students of math-
ematics ought to work in this way as well. Moreover, the online format lends itself to the 
development of this mode of working and thinking about mathematics, since discussion 
forums are part of most course management systems. 

In addition, employers that will be hiring our students are increasingly looking for “sof 
skills,” such as the ability to collaborate and communicate, along with ability in the feld 
(Schanzenbach, D. W. et al., 2016). Te intent of mathematics educators should be to trans-
mit to students the importance both of doing mathematics and being able to “communi-
cate mathematical ideas clearly and coherently both verbally and in writing to audiences 
of varying mathematical sophistication” (Zorn, 2015, p. 18). Our courses can and should 
encourage students to be the best future mathematicians that we could wish them to be, 
or to be the best at any other career that requires communication of technical knowledge. 

12.4 ONLINE DISCUSSIONS AND LEARNING 
“I struggle every semester to fnd proper discussion prompts. Many students simply don’t 
want to complete them.” 

Te instructor above was writing in response to a survey sent out by the authors, which 
asked online faculty to describe their best and worst discussion prompts. It is clear from 
this response and from conversations over the years with colleagues that fnding ways to 
encourage online discussion is not always easy. It is the authors’ intention in this chapter to 
provide systematically a framework for creating good online discussion prompts, so that 
colleagues, both novices and experts in teaching mathematics online, can have tools to 
fnd the prompts they need to encourage discussion in their classes. 

Tis study is informed by the results of questions sent out to mathematics faculty who 
teach online from two-year and four-year colleges across the United States. Faculty were 
asked to describe their best and worst online discussion prompts, and to write about what 
they saw as essential in an online mathematics discussion. Surveys were sent via email 
to addresses obtained from membership lists of committees of mathematics professional 
organizations and from faculty lists at a large university system in an urban area. In total, 
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38 faculty responded. We considered each response to be akin to an individual interview 
in a qualitative study. Faculty wrote at length and provided thoughtful responses. It was 
clear that most of our respondents had thought about what worked, what did not, and why. 
Tese respondents form a self-selected group that does not represent all online college 
mathematics faculty, but a representative statistical sample was not our intention; rather, 
we hoped to use these faculty responses to create a framework for what constitutes a good 
discussion prompt, one that will get students to engage more in the class. 

12.5  THEORETICAL MODEL 
Te Strands of Mathematical Profciency (Kilpatrick, Swaford & Findell, 2001) describe 
core competencies that mathematics educators should develop in their students and are 
evident in the standards promulgated by mathematics education organizations at many 
levels (Zorn, 2015; Koestler, 2013; and CCSSI, 2010). Teir usefulness across so many lev-
els of mathematics education regardless of the branch of mathematics made them ideal 
for categorizing the respondents’ discussion prompts. Te fve strands, as described by 
Kilpatrick et al., are as follows: 

conceptual understanding—comprehension of mathematical concepts, operations, 
and relations 

procedural fuency—skill in carrying out procedures fexibly, accurately, efciently, 
and appropriately 

strategic competence—ability to formulate, represent, and solve mathematical 
problems 

adaptive reasoning—capacity for logical thought, refection, explanation, and 
justifcation 

productive disposition—habitual inclination to see mathematics as sensible, use-
ful, and worthwhile, coupled with a belief in diligence and one’s own efcacy. 

(p. 116) 

Tese strands were originally conceptualized as strands woven into rope, to show how 
each aspect is interwoven with the others. For clarity, Figure 12.1 shows the fve strands 
as circles, so that our mapping of discussion topics onto these strands can be shown more 
clearly in the subsequent fgure. 

Te fve categories of mathematical profciency relate in a nearly one-to-one correspon-
dence with the categories that emerged from reading the discussion prompts that faculty 
found successful: prompts that encourage synthesis and analysis, social and emotional 
prompts, study strategy prompts, prompts that ask students to solve content problems, 
prompts that ask for applications, and prompts that ask students to explain and justify 
their reasoning (see Figure 12.2). 

Kilpatrick et al. (2001) write, in referring to the strands, 

Tese strands are not independent; they represent diferent aspects of a complex 
whole … Te most important observation we make here, one stressed throughout 
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FIGURE 12.1 Strands of mathematical profciency. 

this report, is that the fve strands are interwoven and interdependent in the devel-
opment of profciency in mathematics … Mathematical profciency is not a one-
dimensional trait, and it cannot be achieved by focusing on just one or two of these 
strands. 

(p. 116) 

Similarly, the discussion categories that emerged from the respondents are not indepen-
dent, but overlap and infuence each other, with no one discussion type being sufcient to 
engage students in all the types of mathematical thinking necessary for a deep understand-
ing of the material. However, as with the mathematical strands, presenting these prompts in 
separate categories has the advantage of showing that multiple approaches are necessary to 
achieve mathematical understanding and student engagement with the material. 

12.6 SYNTHESIS AND ANALYSIS 
Synthesis and analysis prompts encourage conceptual understanding. Synthesis and analysis 
are two components of the original Bloom’s taxonomy ofen referred to as higher-order 
thinking skills. Analysis represents the “breakdown of a communication into its constitu-
ent elements or parts such that the relative hierarchy of ideas is made clear and/or the 
relations between ideas expressed are made explicit” (Bloom, 1956, p. 201). Having stu-
dents compare and contrast topics helps them to discern which technique to apply to a 
given problem (sometimes referred to as meta-cognition). Some have posited that online 
courses have an advantage over face-to-face courses by giving students the time needed to 
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FIGURE 12.2 Mapping discussion prompts. 

think more deeply about a question before ofering their response (Lee, 2014). Tis time 
for refection can make it possible for questions requiring higher-order thinking skills that 
require “slow thinking” (Kahneman & Egan, 2011). 

It is understood that it is difcult, if not impossible, to address conceptual understand-
ing alone—of course, procedural fuency must also be present in order for students to fully 
understand the underlying concepts. However, separating conceptual prompts into their 
own category allows faculty to focus specifcally on getting students to think about, and 
have an appreciation for, the mathematical concepts in the course. 

Examples of synthesis and analysis prompts. One instructor has a simple, elegant solu-
tion to getting students to think about the concepts in her class. She writes, “My most pop-
ular conceptual question is where students are asked to post their muddiest, clearest, and 
most important points in the chapter. Tat is always an active discussion.” In particular, 
by having students fnd the most important points, students can refect on the overarching 
mathematical goals and theory. 
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Ten instructors in the survey pointed out the need to fnd a way to elicit specifc, diferent 
examples from each student, so that one well-written response comparing and contrasting 
topics does not prematurely end the discussion. Tis prompt on the topic of probability 
shows an example of asking for students to make the relations between ideas explicit, and 
by asking for an example, gets diferent responses from diferent students: 

Describe, in a short paragraph, the relationship between independent events and 
mutually exclusive events. Are independent events also mutually exclusive? Your 
answer should include (but should not be limited to) an answer to the following 
questions: 
Give an example of two events A and B that are mutually exclusive, and explain 
why they are dependent events. Give an example of two events that are dependent, 
but are not mutually exclusive. Explain! 

Notice that the instructor provides some scafolding for students in the form of the type of 
examples a response requires, examples that should lead to the more explicit relationship 
between the concepts of independence and mutual exclusivity. 

Another instructor uses the following prompt: 

How does replacing x by –x afect the domain of any given function? Is the domain 
always diferent? Give two examples to justify your answer. Provide the graph of 
your example equations. (HINT ** Look at any given function and its refection 
function and see if the domain changes. Tis question should be answered afer 
doing this investigation.) 

Again, this prompt allows for a variety of diferent answers, and gives students time to 
refect and explore a concept. 

Asking students to evaluate, another key verb in Bloom’s taxonomy of higher-order 
thinking (Bloom, 1956), can also help students with conceptual understanding. One 
instructor had success when he 

shared an article by Keith Devlin on how early work in probability paved the 
way for mortgages. Students were asked to comment on the article, decide if they 
thought mortgages were good or bad (or maybe a mix), and why? 

Te instructor commented that, “I believe the question worked for two reasons: it went 
beyond what we were focused on in the classroom and it didn't have a right or a wrong 
answer.” 

Synthesis involves the “putting together of elements and parts so as to form a whole” 
(Bloom, p. 203). Discussion board prompts of this type require students to investigate an 
example from diferent perspectives and describe the relationship between the equivalent 
solutions from diferent approaches. For example, students might be asked to solve a prob-
lem graphically, numerically, and analytically and then comment on the relative merits of 
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each of the approaches. Tis leads students to a synthesis of the various viewpoints and a 
more profound understanding of what a function is. 

Similarly, compare-and-contrast questions, such as completing the square versus fac-
toring for a quadratic equation, combined with the requirement of giving examples (so that 
multiple responses are possible) will aid students in developing the important mathemati-
cal skill of choosing the appropriate, most efcient technique for a particular problem. 

12.7 SOLVING CONTENT PROBLEMS 
Solving content problems assists in procedural fuency. Students typically gain procedural 
fuency by solving multiple problems of graded difculty level for a particular topic. In a 
traditional course, this is usually accomplished via textbook problems or an online home-
work system, but incorporating skill building into the discussion board as well can con-
tribute to the needed sense of community and encourage collaboration among students. 

Examples of content prompts. Again, the challenge is to create a discussion of the content 
as opposed to just one problem for which there is essentially one correct solution that, once 
posted, would efectively end discussion. Faculty respondents to the survey ofen remarked 
that their worst discussion prompts were those in which they asked a question with only 
one answer. Instructors in the survey had versions of doing this by customizing a param-
eter in the content problem for each student, having students select diferent problems, or 
having each student post a troublesome problem and having classmates post solutions. In 
all cases, it helps to continue the discussion when students are encouraged or required to 
comment on their classmates’ posts. 

One instructor’s clever idea to vary the parameters of a problem is through what she 
calls “round-robin” problems. In a round robin, the instructor presents a typical prob-
lem and then a numbered list of varied values of key parameters in the problem. Te frst 
student respondent solves the problem (with detailed explanation, of course!) Te second 
student to post will post the answer with the second set of values for the parameter, and 
so forth. In this way, every student gets a chance to work the problem and can add his or 
her own explanation for their unique version of the problem. But, also, all students, except 
the frst, have the beneft of having a solved example or examples on which to model their 
work, giving the weaker students a relatively easy way to get that crucial frst step towards 
solving a given type of problem. Asking students to buy a real bag of M&M candies and 
then do a hypothesis test in several steps on the proportion of the candies of a certain color 
also provides an applied version of this type of post (since the steps all essentially follow the 
same form to conduct the hypothesis test, but the numbers and conclusions are diferent). 

A variation of the above is to fnd problems that can be solved in several ways, for exam-
ple, a set of algebra problems that can be solved graphically, or by substitution, or by elimi-
nation. Each student must join a discussion thread to solve the problem one way, then join 
a diferent discussion to solve a diferent problem using one of the other methods, and 
fnally, join a third discussion to solve another problem using a method they have not tried 
yet. In each discussion, the answer should be the same using all three methods, which 
provides verifcation that the student is doing the work correctly. At a higher level of math-
ematical sophistication, calculus students might be asked to come up with three diferent 
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graphs that have the same limit as x approaches a given number, or to fnd three diferent 
ways a derivative could fail to exist as x approaches a given number. 

Another elegant way to get students to give many diferent answers was ofered by one 
instructor who wrote, “I also love non-routine questions, with no one, correct answer. 
Something that is NOT just another homework question. Like, ‘A very steep line goes 
through the point (3, –5). What could be the equation of the line?’” 

Some instructors have reported success in asking students to post exam questions or 
textbook questions for solutions from other students or the instructor. One instructor 
writes, “I ask students to post a problem they are having trouble with, and they ask their 
classmates for help in solving it.” She fnds this to be a successful prompt for any of the 
courses she teaches. But other instructors reported that students do not post a sufcient 
number of solutions or solutions that are too brief. Te successful prompt must clearly 
mandate participation and specify the type of questions and the level of detail and rigor 
required in posted solutions. For example, one instructor tells students to “explain the 
steps you used as if you were explaining to a fellow student who does not know how to 
work this problem.” 

One calculus professor reported moderate success having students create their own 
related rates or optimization problem for another student to solve, with the stipulation 
that, “Tis problem must be your own creation – it cannot come out of a book, from a 
lecture, from another student, or from somewhere on the web.” In the second post, the 
student must solve another student's posted problem, and in a third, must check another 
student's solution and either suggest specifc corrections or explain why it is correct. 

Be sure to provide SPECIFIC MATH DETAILS in all posts, including this one. 
Also, be sure to respond to any questions or comments that other students make 
to your work, either by correcting your own work, or explaining the answers to the 
student questions, or both. 

Notice the level of detail required in the prompt in order to get students to answer 
appropriately. 

12.8 APPLICATIONS OF MATHEMATICS 
Applications of mathematics encourage strategic competence. Kilpatrick et al. (2001) describe 
strategic competence as “the ability to formulate mathematical problems, represent them, 
and solve them … similar to what has been called problem solving and problem formula-
tion in the literature of mathematics education and cognitive science” (p. 124). Allowing 
students to choose their own application can be powerful motivation as students learn how 
the mathematics topic might be relevant to their own life, including to their personal aca-
demic or career interests. As one survey respondent wrote, “Te best prompts enable stu-
dents to rethink the material and see other ways it may applied, to also make the material 
they have learned personally relevant, and thus to achieve much deeper understanding.” 

Examples of application prompts. Many respondents had students watch videos, read 
articles, or do other internet research as a way to fnd applications. Te prompts they then 
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chose varied widely in complexity. For example, one instructor of quantitative literacy 
simply asked students to fnd a topic they were studying in the news and post about it. 
“It was awesome because they had to relate what we were learning to the class.” From a 
diferent instructor, a slightly more complex prompt for a quantitative literacy class asked 
students to “…fnd the highest interest rate you can on a savings account and fnd the low-
est interest rate you can on a credit card (ignore 0% temporary teaser rates—fnd the rate 
that kicks in afer the temporary time period expires) … It put the textbook problems in 
a realistic light. You cannot fnd a savings account that pays 9% compounded quarterly.” 
Tis prompt could be changed to include more mathematics by having students then use 
those rates to describe (with detailed computations) an investment strategy that could 
result in them having a million dollars. Note that we do not make a value judgment as to 
which type of prompt is better—ofen a simple prompt can be a quick entry point to get 
students interested, while the additional problem solving can be useful if students need 
the practice. 

Again, varying from simple to complex, but this time in a statistics course, one instruc-
tor had students select and describe a TED Talk of their choice that incorporated the statis-
tics learned in the class. Another instructor had students fnd an article in which sampling 
was used; students then had to write out the population, parameter, sample, statistic, and 
the type of data in the study. Students found articles on an immense variety of non-trivial 
topics of interest to them. Tis prompt required that the instructor provide copious feed-
back, but resulted in the students having over 20 examples for this topic which forms the 
foundation of a typical introductory statistics course. 

In algebra, one of the most inventive prompts was the following: “Given what you have 
learned so far about functions, create a scenario that is somewhat relevant to an experience 
you have had or hope to have and represent with all four views (words, equation, table, and 
graph). In addition to your response, determine an appropriate domain and range for a 
classmate's scenario.” Te instructor wrote, “My students have been very creative in their 
responses and it gives me some ideas about what they are interested in.” 

For a similar type of question at a higher level of mathematics, calculus students can be 
asked to fnd a variable in their life that is, for example, “increasing at a decreasing rate”— 
the students must then give the value of their function, its derivative, and second derivative 
at a certain time (citing the appropriate units for each). 

Finally, for a very basic, easy-to-use personal prompt for any class, one respondent asked 
students to give an example of how a particular topic might be used in their major or future 
occupation. “Makes students think outside their math class box,” he wrote. 

An application prompt can have also personal signifcance to a student without being 
directly about his or her own life. For example, an instructor in a foundations of math-
ematics course (liberal arts mathematics) asked students to analyze an argument made by 
a public fgure in terms of a formal assessment of the logical validity. Te instructor found 
that “students love discussing this question. It connects to current events, and it gets them 
to mathematize their thoughts with logic.” 

“How does probability relate to gambling?” Te rather general nature of the prompt 
allows for varied responses, but clearly asks students to apply course content to an 
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application that most have at least some familiarity. For a more specifc version of this 
prompt, one can ask students to compare the probability of winning the lottery with the 
probability of other events of interest to them, such as being hit by a car or being struck by 
lightning. 

Finally, one instructor has a way to do an application prompt that could work in any course: 

I assign an objective covered in the course to each student. Tey must supply an 
example of an application of that objective … Te students really get involved with 
this discussion post. I see students reply with ‘oh, wow. I didn’t realize what we 
were learning in this class could be used to build a rocket’ or ‘it is interesting to see 
an application that doesn’t involve Peter buying 20 watermelons. Tis is actually 
real life!’ 

12.9 SOCIAL AND EMOTION PROMPTS AND STUDY TIPS 
For the productive disposition strand, the discussion prompts fall into two categories: those 
that ask students to address their feelings directly in reaction to prompts about math anxi-
ety and other afective issues, and those that ask students to advise other students, through 
study tips and test-taking strategies. Both types of prompts can encourage students to feel 
more positively about mathematics, whether through sharing feelings or through helping 
others and getting help. 

Social and emotional interaction. Prompts of this type aim to explore students’ motiva-
tions and their confdence to do mathematics (self-efcacy). Ofen, by having less conf-
dent students engage with peers and the instructor, students’ perceptions of their ability 
can change, and that, in turn, increases their achievement (Kim, Park, & Cozart, 2014). 
Examples of engaging prompts of this type asked students to comment on past math expe-
riences or to read articles about the efects of math anxiety. Sometimes a direct approach 
is the best way to dispel the fear of mathematics or tendency of students to express the self-
defeating mantra “I hate math.” 

Introductions. In many online classes, it is the introduction that sets the tone for the 
class, and that begins the processes of collaboration through group discussion. Yet instruc-
tors ofen found that the introduction was their least successful prompt, partly because 
their directions were too broad or too vague, such as, “Introduce yourself.” Te instruc-
tors that mentioned the introduction as their best prompt had detailed directions for what 
they wanted their students to post, ofen accompanied by their own introductory post 
that modeled what the instructor wanted to see. What follows are two examples of such 
prompts. 

A good and bad math experience: 

I ask my students to write about a bad math experience and a good math experi-
ence as part of our introductions – I model with my own bad experience (trying to 
memorize times tables) and my good one – thinking about infnity while angling 
two mirrors to refect myself infnitely. Using this as part of our intro week airs out 
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anxieties of the past, allows students to fnd commonalities of experiences and to 
sympathize with each other, but also accentuates the positive. Students cheer each 
other on, and my own example shows that math is not just about numbers. 

How statistics impacts your life: 

Please read “Course Overview: Te Big Picture” before posting. Please post a 
couple of paragraphs about yourself. Please include information (as much as you 
are willing to share) about your academic interests, extracurricular activities, and 
career goals. Tink of ways that statistics, as it is defned in my essay, might have 
impacted your life up to now or might impact your life in the future (in light of 
your academic or career goals). Te main goal of this is an “ice breaker” – a way 
for you, the students, to start to get to know one another. Te secondary goal is to 
get you thinking about how central mathematics in general and statistics in partic-
ular is in today’s society. I will react to your posts with any additional applications 
I can think of to the areas that you express as your academic and non-academic 
interests. But please notice the bold type faced section above. Tis assignment is 
graded and I must be able to determine from your post that you have read my essay 
and included a response to the bold part of my prompt in your post. 

While the frst prompt specifcally mentions feelings, the second one does not, yet both 
encourage students to think about themselves in a deeply personal way in connection to 
mathematics. Both prompts are broadly applicable across a variety of mathematics classes. 
Although the frst prompt was for liberal arts mathematics and the second for a statistics 
class, faculty who teach calculus or higher-level mathematics classes could certainly ask 
about career goals and future plans; faculty who teach developmental mathematics classes 
could ask about good and bad math experiences, and about future jobs in which the stu-
dents might use mathematics. 

It is also worthwhile noting that both prompts are graded. Te second prompt mentions 
this explicitly within the post, while the frst professor has this written elsewhere in her 
grading policies. 

For a lighter touch, one of our respondents simply asks students to “Post a trivia fact 
about yourself,” and then to “Look for 2 or 3 ‘kindred spirits’ and respond to their posts.” 

Social and emotional posts during the semester. Relating mathematics to our students’ 
lives and emotions need not be limited to the introductions at the beginning of the 
semester. In a math class for future elementary school teachers, a middle-of-the-semes-
ter prompt asks students to read an article about teachers and math anxiety, and then 
discuss the efect that teachers have on their pupils’ attitudes about math. Students are 
then asked to name at least two things they will do to help their students be less anxious 
about math. Note that students discuss math anxiety but end the post with what they 
can do about it. Care must be taken to end these types of posts on a positive note of 
some kind. One respondent found that her worst prompt occurred when she asked stu-
dent why they liked or disliked a particular topic because “inevitably they will say they 
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dislike the topic and that just builds to utter dislike by most if not all of the students in 
the discussion thread.” 

Several faculty members had students watch a video on some aspect of self-efcacy or 
math anxiety. For example, one had students watch “A Math Major Talks About Fear” and 
then comment on it. Te instructor reported that, “Everyone said it was so helpful, and it 
made them less stressed out about the class.” 

Study skills and tips. Many instructors found that prompts asking students how they 
prepared for exams or asking students to identify online resources that are helpful is a way 
to transfer the skills of successful students to their peers who have not been successful yet. 
Te idea that mathematics is learned, rather than an innate ability, is related to a growth 
mindset (Dweck, 2014); when weaker students actually hear the work that good students 
do to become good students, they can be encouraged to do the same. In addition, these 
discussions contribute to the students’ productive disposition for learning the course con-
cepts and content. 

Instructors contributed creative approaches to this type of prompt. One asks students, 
“What more can YOU do to help yourself succeed in this course?” Tis can be an efective 
catalyst in changing student behavior. Te results might also constitute useful forma-
tive assessment for instructors. Flipping this question around to focus on the instruc-
tor, another asks: “What more can I do to assist you in reaching your academic goals 
(other than giving extra credit)?” which makes the feedback even more useful in forma-
tive assessment. 

Another subtle and creative way to delve into and perhaps improve student study habits 
is this prompt: 

1) Are you keeping up with the reading, assignments, etc.? Do you think this course has 
the ‘right’ amount of learning material, homework, etc.? 

2) Do you ‘believe’ in homework as an efective means of increasing mathematics 
learning? 

Te frst prompt helps students who might not have anticipated the amount of work in 
an online course to come to terms with their efort vis-à-vis the course requirements. Te 
second could promote a lively discussion about student perceptions of what is required to 
learn mathematics. 

Finally, students can be asked to share websites or other resources they have found. 
To merit giving credit for students who share learning resources, one could require more 
explanation and specifcity as this instructor does: 

Post a link to a video that explains one of the concepts from class. Briefy describe 
the video. Do you think that the video does a good job explaining the concept? 
Can you think of any ways that it could have been improved? 

Tis thread actively encourages students to seek help in areas that are difcult for them as 
well as providing additional resources that all students can use. 
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Asking students to share study tips and resources can give students a sense of agency 
and can help build the classroom community. In addition, instructors are spared the time 
required to make lists of resources, and can chime in to give just a few of their own favorite 
ideas within the discussion. 

12.10  ADAPTIVE REASONING 
Te fnal strand, Adaptive Reasoning, as described by Kilpatrick et al (2001), 

refers to the capacity to think logically about the relationships among concepts 
and situations … In mathematics, adaptive reasoning is the glue that holds every-
thing together, the lodestar that guides learning … [it includes] not only informal 
explanation and justifcation but also intuitive and inductive reasoning based on 
pattern, analogy, and metaphor. (p. 129) 

In online learning, nearly all types of online discussion prompts should address this 
strand, because nearly all prompts should ask students to use logic and inference, and then 
to explain and justify their reasoning. 

12.11 CONCLUSION AND RECOMMENDATIONS 
Successful communication is just as important in online as in face-to-face mathematics 
courses, but clearly there are diferences, so that instructors may have to spend time learn-
ing how to elicit fruitful discussions in an online environment. 

For instructors embarking on your frst online course, or for those looking to expand 
current online discussions, hopefully these discussion categories will be useful to you. As 
you plan, here, again, are the fve categories, but now with some ways for you to think about 
adding your own ideas: 

1. Synthesis and analysis—think of key concepts that students should be able to com-
pare and contrast or to communicate in non-technical terms. 

2. Solving content problems—think of certain key skills that could be practiced online 
in a collaborative format, with students using other students’ work as a model for 
their own. 

3. Applications of mathematics—think of how the mathematics could be applied and 
what would personalize the concepts for your students. 

4. Social and emotional interaction—think of how students can share their feelings 
about mathematics with other students, without ending on a negative note—what 
would encourage a growth mindset around mathematics learning? 

5. Study skills and tips—think of how students share their strengths and ideas with 
other students, and how to help students understand that working hard at mathemat-
ics is what helps them become better. 
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Common characteristics of successful prompts include some efort to personalize the 
course content, providing an opportunity for students to make the course content rele-
vant to their academic or career interests. Successful prompts tend to be very specifc, and 
expectations for the quantity and quality of student responses should be very explicit. It 
may help to think about how the responses will be assessed when creating the prompt. For 
certain problems where students are asked to create their own examples, a sample post is 
usually benefcial if not essential. Not many survey respondents used the discussions in a 
group format; that may be a useful subject for future studies. Instructors who put efort 
into designing creative prompts and signal to students that their participation is valued 
through consistent feedback should be rewarded with more interaction leading to better 
student performance in the course. 

A common thread among survey respondents was that not only do online math discus-
sions require good prompts, they also require an appropriate structure in the course, in 
which the grading and expectations for the posts are made clear, including the quantity, 
the quality, and the frequency (for example, if all students only post right before a dead-
line, then not much discussion will occur). Ten students need formative and summa-
tive assessment of their participation to maintain the desired quantity and quality of their 
posts. Having discussion posts be a graded part of the course will highlight their impor-
tance, giving extrinsic motivation while the students come to gradually understand the 
intrinsic value of classroom collaboration. Successful instructors gave clear signals that the 
discussion is a valued part of the course. 

Now, given a clear structure of expectations as outlined above, we can begin to answer 
the question, “What do you even talk about?” Te answer is as clear as the goals of our 
courses: that students be able to do more than just solve problems; they should be able 
to think deeply about these problems and compare and contrast them with others, they 
should be able to apply the mathematical knowledge, they should be able to communicate 
about mathematics with clarity and precision, and they should develop as life-long learners 
acquiring techniques for learning mathematics specifcally but also learning skills that can 
transfer to other disciplines as well. 
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13.1  INTRODUCTION 
Massive Open Online Courses (MOOCs) in higher education have enjoyed a phenomenal 
rise in popularity in recent years. Esposito (2012) described MOOCs as a distance edu-
cation environment providing open content that any individual anywhere on earth can 
freely register to and take courses; they are a fexible and open form of self-directed, online 
learning designed for mass participation. Harding (2012) emphasizes international student 
participation systems that provide the opportunity to take courses from respected univer-
sities by students in developing countries through online tools such as videos, discussion 
forums, and even peer-marked assignments. 

Te nature of the traditional courses contrasts with online courses because anyone can 
sign up for the MOOC. Te learners do not have to be enrolled at a university. Te tradi-
tional institution restricts the type of learner based on economics, geographical distance, 
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pre-requisites, and attendance limits (Liyanagunawardena, Adams, & Williams, 2012). 
MOOC developers break these barriers by providing free and equal access to the courses 
for all. Te MOOCs are typically paced around a weekly structure, and the enrolled stu-
dents access relevant sources during their own time. Due to the ubiquitous nature of the 
Internet, it can be argued that these MOOCs are vital for low-income students and coun-
tries of the Tird World, in which most of the African countries belong. In addition, many 
universities and schools do not have qualifed teachers for some advanced courses, and the 
MOOCs can provide such services since the leading universities are typically the develop-
ers and instructors for the MOOCs (Aditomo, 2009). 

Some researchers, e.g. Atkeson (2014), suggest that it would be better to use MOOCs 
as a supplement in blended learning where there is instructor presence for feedback and 
following an anticipated pacing of activities. Yet, others have argued for the heutagogical 
approach, e.g. Blaschke (2012), to teaching and learning where learners are highly autono-
mous and self-determined and where emphasis is placed on the development of learner 
capacity and capability with the goal of producing learners who are well-prepared for the 
complexities of today’s workplace, partially due to the ubiquity of Web 2.0, and the afor-
dances provided by the developments in Internet and multimedia technology. Tey argue 
that with its learner-centered design, Web 2.0 ofers an environment that supports a heuta-
gogical approach, and that MOOCs can richly provide such experiences. 

Learning theory suggests that learning happens best under conditions that are aligned 
with the human cognitive architecture. Te structure of human cognitive architecture, 
discernible through the results of experimental research, indicate that short-term memory 
is limited in the number of elements it can contain simultaneously. Sweller (1988) builds a 
theory that treats schemas as the cognitive structures that make up an individual’s knowl-
edge base. Tese schemas, that may contain other schemas acquired over time, allow learn-
ers to treat multiple elements as a single element. Te contents of long-term memory are 
sophisticated structures that permit us to perceive, think, and solve problems (Sweller, 
1994). Tus, the diference between an expert and a novice is that a novice has not acquired 
the schemas of an expert. Learning requires a change in these schematic structures of long-
term memory seen as infnite (Figure 13.1). 

FIGURE 13.1 Information processing model. (Adapted from Atkinson, R. C. and Shifrin, R. M. 
(1968): Human Memory: A Proposed System and its Control Processes.) 
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Cognitive load theory is concerned with techniques for reducing the working memory 
load which has limited capacity to process information from the environment in order 
to facilitate the changes in the long-term memory associated with schema acquisition. It 
can, however, access extremely large amounts of previously processed and organized infor-
mation from long-term memory (Brünken, Plass, & Leutner, 2003; Chandler & Sweller, 
1991; Chen, Woolcott, & Sweller, 2017; Sweller, 1988). From an instructional perspective, 
the information contained in instructional material must frst be processed by working 
memory. For schema acquisition to occur, instruction should be designed to reduce work-
ing memory load (Mayer, Grifth, Jurkowitz, & Rothman, 2008; Mayer & Moreno, 2003). 

Tere is not much that we can do about the intrinsic cognitive load because some tasks 
are generally more complex than others, and the level of learning material will have difer-
ent levels of intrinsic cognitive load depending on the experience of the learner. Extraneous 
load occupies working memory but is irrelevant to the intended objectives of content mate-
rial. It requires extra working memory for learning and problem-solving, and instructional 
designers have dedicated much research to the reduction of this load (Gillmor, Poggio, & 
Embretson, 2015). Te third, called germane, is the mental efort that learners dedicate to 
learning and solving a problem. It increases with student motivation to participate in the 
learning process. Te three are additive to comprise the total working memory. Content 
needs to be transferred from the learner’s working memory to their long-term memory in 
such a way that it reduces the extraneous cognitive load, and if possible present content in 
a way that increases the germane cognitive load (Gillmor et al., 2015; Mayer et al., 2008; 
Mayer & Moreno, 2003). 

Tis chapter examines higher education mathematics content in MOOCs’ impact on 
the cognitive load of the students. Our aim is to analyze how the contributions from the 
cognitive load theory in particular and learning theories are being refected in the design 
of courses in MOOCs. A qualitative focus group strategy is used from university students 
enrolled for a MOOC. Interview questions were mainly based on strategies that have been 
suggested from research literature, e.g. by Mayer and Moreno (2003) and by Chen et al. 
(2017). 

13.2  MOOCS IN MATHEMATICS 
Current researchers agree that the current MOOCs emerged from the work of Canadian 
scholars Stephen Downes and George Siemens (Anders, 2015) at the University of 
Manitoba. Since then, the success of open online course in artifcial intelligence created 
by Stanford University and MIT (Chapman, Goodman, Jawitz, & Deacon, 2016), which 
attracted over 160,000 learners from 190 countries, led to the creation of online learn-
ing platforms that ofer MOOCs such as Coursera, Udacity, and edX (Chapman et al., 
2016) to service the production and delivery of MOOCs. Tese courses provide quizzes, 
peer-graded assignments, projects, and/or exams. Courses are provided on demand, and 
users do not necessarily have to complete a course during a defned time. All materials are 
provided including videos, lecture notes, and assessment materials. Critics of the MOOC 
movement cited low completion rates, high development costs (Fischer, 2014), and peda-
gogical issues (Blaschke, 2012; Doug, 2013). 
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Two distinct types of MOOCs may be distinguished; cMOOCs and xMOOCs, the 
former referred to as connectivist MOOCs, the reason being that Canadian researchers 
George Siemens, Stephen Downes, and Dave Cormier prepared the concept based on the 
principles of the theory of connectivism (Kesim & Alt, 2015). cMOOCs are designed to 
generate network efects for learning, facilitating self-organized patterns of collaborative 
learning. Learners are allowed to participate using their own blog sites and social media 
accounts. In contrast, xMOOCs platforms predominantly employ a cognitive-behaviorist 
pedagogical approach (Anders, 2015). It is exemplifed by content-based training delivered 
at scale through a one-to-many distribution model, e.g. as professionally produced short 
video lecture series, typically delivered by one instructor, and integrated quizzes, readings, 
practice problems, and testing to help the student with maintaining focus and material 
retention. Tese possibilities have been brought about due to the recent developments in 
sofware and hardware, specifcally developments in Internet technologies and multimedia. 

Results from various studies indicate that students highly rated MOOCs in which tutors 
were willing to interact with students (Hew, 2016), where there was social interaction, i.e. 
students could share the knowledge and ideas among themselves (Chu, Chen, & Tsai, 2017; 
Hew, 2016; Zheng, Rosson, Shih, & Carroll, 2015), and the availability of online learning 
resources and activities that engaged students depending on their diverse learning prefer-
ences. However, some researchers, e.g. Fischer (2014) and Bali (2014), have emphasized 
the importance of learning design and environmental factors. It is clear that there is a gap 
for studies in pedagogical studies in MOOCs. Te future design of MOOCs needs to be 
grounded in human cognition for efective instruction. 

13.3 COGNITIVE LOAD THEORY AND MATHEMATICS LEARNING 
Studies by Gillmor et al. (2015) and by Mayer et al. (2008) indicate that extraneous cogni-
tive load does not contribute to the learning process. Learning is slowed when cognitive 
load exceeds working memory capacity. Tese studies encouraged maximizing the signal, 
i.e. the message to communicate, to noise, i.e. the extraneous information that detracts 
from learning, ratio, and argued for the elimination of extraneous visuals and text informa-
tion, an approach they called weeding. Mathematical cognitive load is mainly exacerbated 
by problems in symbolic decoding, computational fuency, and conceptual understanding. 

Chen and Wu (2015) investigated the use of videos in sustained attention, emotion, 
cognitive load, and learning performance, and found video lecture types enhance perfor-
mance, and that sustained attention induced by the voice-over presentation type is mark-
edly higher than that in picture-in-picture type. 

Many studies recommend breaking down mathematics content into smaller segments, 
and also allowing the learner to control the pace of learning (Chen & Wu, 2015; Inventado 
& Scupelli, 2016; Kirschner, Paas, & Kirschner, 2009; Shadiev, Wu, & Huang, 2017). Also, 
content designers should opt to present information using various media, i.e. combining 
video, pictures, and animations (Chen & Wu, 2015; Yung & Paas, 2015). Tis assists in shar-
ing the content between the visual and the verbal channel. Incidental processing (Mayer 
& Moreno, 2003) should be removed by removing non-essential music, or/and decorative 
graphics from the content to decrease extraneous load (Ayres, 2006; Chen & Wu, 2015; 
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TABLE 13.1 Desirable Features to Reduce Learners’ Cognitive Load 

Features 

Breaking down subject content 
into manageable chunks 

Sequencing content delivery 
from the easier to the more 
difcult 

Inclusion of clear objectives/ 
goals 

Clear instructions 

Relate learning material to 
assessment 

Worked examples 

Explanation 

Divide content into manageable units to allow students to focus their 
attention on the key concepts and enhance the power of retention and 
recall. 

Simple-to-complex sequencing allows for the thoughtful release of content 
that encourages motivation and retention of learning. 

Well-formulated goals tell the learners what is expected of them, and the 
direction in which teaching leads. 

Too much time is spent on problem-solving the instructions as opposed to 
new schema formation due to lack of clarity in instructions. 

Assessment determines whether the objectives have been achieved or not, 
and provides data for tutors and learners to measure success/failure, and 
provides the necessary feedback and self-refection. 

Learning in mathematics can be seen as a process of generalizing from 
specifc examples, and to reduce the “noise” during concept formation to 
reduce the working memory load. 

Shadiev et al., 2017). Tus instructional designers have to be aware of the cognitive require-
ments that designs impose (Table 13.1). 

As instructional designers, we need to be aware of the cognitive requirements our 
designs impose and ensure that our learners can meet those requirements. Tus, reduc-
ing extraneous cognitive load alleviates student stress and anxiety which are correlated to 
the learner’s performance (Gillmor et al., 2015; Renkl & Atkinson, 2003; van Merrienboer, 
Kirschner, & Kester, 2003). 

13.4  METHODOLOGY 
A systematic review of the literature was conducted to identify seminal papers about 
MOOCs and the relevant educational literature, mainly on the cognitive load theory. 
Various MOOCs on Coursera, edEx, and Udacity were visited to access common core 
mathematics content courses accessed by students at the University of Botswana. One 
course was identifed for use with the students taking a mathematics course, and study-
ing for a mathematics education program. Te researchers used the course to collect the 
data and analyze how the course had been designed, if the designers took into account the 
learning theories and in particular the cognitive load of the course content and materials 
when designing, how the course has impacted on student learning, and how the course 
infuences learning outcomes. 

Te following questions guided the study: 

1. Do MOOCs follow a sound pedagogy and organizational approach to online learning 
that leads to quality outcomes and experiences for students in mathematics? 

2. What new pedagogies and organizational mechanisms might be required if MOOCs 
are to deliver high-quality learning in mathematics? 
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Afer perusing mathematics courses from the three online MOOC platforms, a popu-
lar MOOC from edX was identifed. We selected a calculus course, Calculus BC link 
www.edx.org/course/ap-calculus-bc-0, specifcally designed for students who had taken 
a pre-calculus course, and were currently enrolled for a calculus course at the University 
of Botswana Mathematics Department during the frst semester of the academic year 
2017/18, running from August 2017 to December 2017. Te course generally satisfes the 
general education requirements at the university, and is self-paced, allowing the enrolled 
students to achieve mastery in one concept before moving to the next. Te course had 
content in diferentiation, series, and integration techniques. It was scheduled for about 
11 weeks, almost the same period a similar course should take at our university. Te 
course was also chosen due to the reason that basic calculus skills continue to be a prob-
lem for a signifcant proportion of higher education students (Loch, Jordan, Lowe, & 
Mestel, 2014). 

We employed a focus group strategy, identifying themes and looking for associated 
data ftting under the categories of intrinsic and extraneous cognitive loads. Te partici-
pants were all from the Department of Mathematics and Science Education undertaking 
a program in mathematics education. Tey were initially conducted using their university 
emails. Te purpose of the study was established, and a plan of study was developed. We 
coded the same data that we had transcribed onto a word processor in pairs as researchers, 
and discussed our fndings to assess coding similarities and diferences. 

13.5 RESULTS AND DISCUSSION 
Four asynchronous virtual focus group (Saldana, 2008) discussions comprising three to 
fve in-service teachers taking the MOOC course in mathematics were conducted. A total 
of 17, six males and 11 females, participated in the study. All were studying for a Bachelor 
of Education specializing in Mathematics Education. 

Te participants largely agreed that the MOOC selected for assisting in the calculus 
course helped to enrich their knowledge in calculus. All the students have vast experience 
using YouTube videos for learning and some Internet resources in other mathematics and 
education courses. 

In terms of our fndings, we can see examples and evidence of a reduction of cognitive 
load by the use of MOOCs in mathematics teaching and learning from the responses of 
the focus groups. In the excerpts below from focus group interviews, we can note that 
the designers of the MOOC in calculus factored the cognitive load into the content of the 
course. Responses indicate that the tutors have broken down course content into manage-
able chunks that is digestible by the learners, and the content is sequenced in chapters that 
are easy to follow. Te instructions were clear and easy to follow, with some exercises and 
worked examples that were easy to follow but a little more basic than challenging mate-
rial, thereby lacking in the ability to provoke thinking and their arousal of interest. Te 
objectives for each of the sections were clearly written with what all that the students were 
expected to do to achieve them. Te assessment material was available, though there were 
responses indicating that they could have more of the assessments. Te increased use of 
multimedia made it easier to understand much of the content. All these contributed to 

http://www.edx.org
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lessening the cognitive load, and helped in the learning of calculus content, though more 
could be done to reduce the load (Table 13.2). 

One learner participant said: 

“I was able to choose my own path within each lesson, and could jump between les-
sons to review some material done earlier that I could understand.” Tis indicates 
that the MOOC was broken down and sequenced into some chunks that the stu-
dents could tackle individually. 

Also, another one said: 

“Each topic was broken down into small chunks, with short instructional videos, 
interactive graphs,” and providing cognitive aids one student said “the course pro-
vided many practice problems.” 

Tis indicates that the course designers attempted to factor in the signal-to-noise ratio 
by “weeding” (Mayer & Moreno, 2003) the extraneous content and avoiding incidental 
processing not relevant to the task. Te practice problems provided, the multimedia use, 
including graphics and text, worked as cognitive aids, assisting in ofoading some of the 
cognitive demands of working memory. 

TABLE 13.2 Summary of Perceptions and Action Ideas Expressed by Learners Enrolled for the Calculus 
MOOC 

Perceptions Expressed by Learners Enrolled for the Calculus MOOC 
Positive Perceptions of Learners 
Increased use of multimedia in teaching 
Hands-on experience 
Inclusion of many worked examples in calculus 
Breaking down subject content into manageable 
chunks 

Sequencing content delivery 
Inclusion of clear objectives/goals 
Clear instructions 
Relate learning material to assessment 
Move beyond traditional/established classroom 

Concerns Raised 
Tere is minimal interaction between the tutors 
and the students. 

No feedback for contributions/some assignments 
except for some quizzes. 

Some students who enrolled did not have any 
background, making it difcult to interact. 

Te course was graded on a pass/fail basis, not a 
percentage. 

Te work-as-you-please environment does not 
motivate the learner to complete all tasks. 

Technical problems with accessing the MOOC 
sometimes. 

Lack of scafolding during attempts to solve 
calculus problems. 

Action Ideas to Make Improvements to the MOOC 
Enroll only learners with enough background, not by 
interest. 

Assessment should be carried out and tasks graded 
frequently and by the tutors if a MOOC has to be 
taken seriously. 

Tere is need for frequent interaction between the 
lecturers and the students which is not possible due to 
the large numbers. 

No feedback for contributions/some assignments 
except for some quizzes. 

Need to include more practice examples to assist 
the learners. 

More support from peers doing the same course. 
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And another one said: 

“Engage in video instruction, exam style questions and interactive videos” and also 
“Te tutors made sure that the learning objectives were explained,” and that “I liked 
most the fexibility of the course. I could always fnd time to study the content mate-
rial. I could also get assistance sometimes from the other students enrolled for the 
same course.” 

Another one said: 

“Te course tutors concentrate only on the calculus content of the course, no other 
distracting content. Te objectives were always clear.” 

Te tutors were consistent in how they developed their videos, starting always with some 
introduction, followed by the content and some examples, and then some summary, and 
practice problems to consolidate the content taught. For example, one student said: 

“Te tutors were consistent with their videos, starting with the introduction stuf, 
and then some developed content material, followed by some examples, and the con-
clusion. Ten they gave some exercises to work on.” 

One participant added: 

“Te tutors always provided feedback for all the questions I asked, including some 
feedback and some collaborative ideas from some students who enrolled for the same 
course.” 

According to the cognitive load theory, individual learning becomes less efcient as the dif-
fculty of content increases. Terefore opportunities for collaboration must always be pro-
vided to divide the cognitive processes among the learners, and thereafer re-integrate the 
information and coordinate the learning. In our case, the students reported that the tutors 
provided feedback in acceptable times, although some said they never received feedback on 
some tasks they undertook. And the students on the focus group got some feedback from 
the other students who were enrolled for the same calculus course. At the same time, there 
was a lot of scafolding also provided by some student and tutor feedback throughout the 
course if they noted some concern from the students. 

Tere were various concerns that the learners raised about the course, including that 
the interaction between the learners and the tutors was minimal. Although there was some 
feedback from the tutors, and mainly from the peers, learners felt that their understanding 
of the course material, of the instructions, and of the examples could be improved if there 
was frequent interaction between the learners and the tutors, thereby increasing the learn-
ers’ cognitive load. Te tutors cannot individualize the learning because of the numbers 
involved in most MOOCs. Tis desirable frequent interaction could provide the necessary 
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feedback for assignments and scafolding whenever the learners encountered the problems. 
And related to this was the concern that some the students did not contribute much to the 
betterment of the others probably because they did not have the background to enter the 
course which also led to a very high dropout among the enrolled learners. And the envi-
ronment did not motivate the learners to work, or to complete any tasks that were assigned. 

Collaboration with other students in other environments was a positive among the 
learners, though, sometimes, learners had to resort to their tutor teaching a similar course 
at the university for informal assessments. Te MOOC tutor was not available for assess-
ing enrolled learners’ work except for a few multiple-choice quizzes. Tere was no feedback 
from the tutors. If the MOOCs are to be successful, there is need for one-on-one interac-
tion with every learner. Te sheer number of the learners makes it really difcult for the 
teacher to have a one-on-one relationship with the learners, making the tutor unable to 
assist the learners adequately. Some responses indicated that the practice examples and 
worked examples on the MOOC were below standard, and were easy to follow for the 
university level. Tis problem has been identifed with most of the MOOCs that enroll any 
learner interested without the basic knowledge requirements of the course, and eventually 
dwell much on the basics of the course. 

13.6  DISCUSSION 
Te study sought to examine to what extent the design of MOOCs in mathematics fol-
lows a sound pedagogy and organizational approach, taking cognizance of the cognitive 
load on the students in higher education, and to analyze the user refections on new orga-
nizational mechanisms that might be required for efective learning and teaching in the 
design of MOOCs. Guidelines, e.g. Alraimi et al., (2015); Leppink (2017); Margaryan et 
al., (2015); Sweller (2018), revolve around minimizing extraneous cognitive load so that 
only a minimum of working memory resources is required for cognitive processes that do 
not contribute to learning, always working around specifc learning goals and appreciat-
ing the multifaceted relation between learning and assessment. Data collected from the 
focus group discussion indicate that the MOOC that was selected employed some strate-
gies to reduce the extraneous cognitive load and optimize germane cognitive load. Te 
learners highly rated the MOOC, indicating that the MOOC designers broke down the 
content into manageable chunks and sequenced the content, thereby reducing the cogni-
tive load. Objectives were clear and included in the sections of the MOOC. Some assess-
ment was included though below what was expected by the learners. Teir reported level 
of assessment meant that the MOOC catered for the basic learner in calculus, and did not 
have strict pre-requisites for entry into the course. Although there was sharing of content 
and examples by the learners, the content shared was of much lower level than what the 
students expected. Te tutors did not interact much with the learners; there was sharing 
of knowledge and resources by peers. Te participants agreed, however, that the content 
helped to enrich their knowledge in calculus. 

Lack of provision of assistance is one of the most frustrating elements in learning math-
ematics. Educators use the metaphor of scafolding to refer to the strategy of a temporary 
support for learning how to support the learning of complex tasks (Brahimi & Sarirete, 
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2015; Margaryan et al., 2015; Phan, Ngu, & Yeung, 2016). In MOOCs, this support can be 
provided by the tutors, and by peers, thus, the importance of provision of possibilities for 
collaboration when designing MOOCs. Our fndings indicate that the tutors are generally 
not present, and they could not provide the necessary scafolding whenever required. No 
feedback was provided for the tasks. Te respondents reported that the tutors only pro-
vided the original material, and no follow-up. Te enrolled numbers for the MOOC could 
hinder the capability of the tutors to interact with individual learners. Te peers could pro-
vide some assistance but generally came late, or never came. Te MOOC also provided the 
students with opportunities to practice by providing many worked problems as examples 
and many exercises for the consolidation of concepts, though most of the examples were 
mainly for the beginner level. 

Te fndings indicate that there is more to do before mathematics MOOCs follow a 
sound pedagogical approach. Te organizational approach would be similar to other 
online courses, but they lack the necessary support that the learners need to reduce their 
cognitive load. Te recommendation of using a simple-to-complex approach sequencing 
(van Merrienboer et al., 2003), chunking, inclusion of learning goals and objectives, relat-
ing learning to assessment, and the use of worked examples that work with conventional 
teaching, is not as efective because the learners have no immediate scafolding (Renkl & 
Atkinson, 2003) when required. Te MOOC used partially followed some organizational 
approach to online learning with some experiences for learners in mathematics learning. 
Te use of multimedia, including short videos, text, and voice (Chen & Wu, 2015; Chen et 
al., 2017; Mayer & Moreno, 2003), or a combination would be seen to reduce the cognitive 
load of the learners though it would not be enough on its own. 

13.7  CONCLUSIONS 
Cognitive load theory builds upon established models of human memory that include 
working memory and long-term memory. Working memory can only process a limited 
number of information elements at any given time. When the cognitive load exceeds the 
learner’s working memory capacity, performance and learning are impaired. Education 
researchers have developed and tested a number of instructional techniques that decrease 
extraneous load and optimize germane load so that learners are not overwhelmed. In this 
chapter, we argue for the need to rethink and develop MOOCs, taking the conditions for 
learning into account if we are to understand learning on MOOCs. Instructional design in 
MOOCs has to incorporate the cognitive architecture when designing media for use with 
learners. And the learners have to receive the necessary support during the learning period 
if the MOOCs have to remain relevant for some time to come. 

Te literature shows fairly consistent views on pedagogical considerations that MOOCs 
should involve and aim for. Tese include the constant interaction between the tutors and 
the learners, peer collaboration, providing scafolding during the learning, making avail-
able support of online resources and activities, and a problem-oriented course with clear 
explanations (Hew, 2016). Te efects of the use of diferent multimedia should also be 
considered (Chen & Wu, 2015). Tis actually assists in reducing the cognitive load of math-
ematics content in MOOCs. 
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MOOC tutors need to be mindful about how they approach designs for teaching in 
complex mathematics environments. Activities that are germane in nature lead to rapid 
schema development in learners. Extraneous load not directly related to learning needs 
to be minimized or eliminated if possible. Many worked examples and practice questions 
should be used within a course to make efcient use of the learners’ working memory and 
develop learner schemas. Tese MOOCs could provide the needed assistance as heutagogi-
cal approaches take center stage with adult learners. 

13.8  RECOMMENDATIONS 
Te study sought to examine if the designers in mathematics courses on MOOCs consider 
the cognitive load of the materials they develop, and to encourage the use of the human 
cognition architecture. Designs that factor in the cognitive load reduce the efort that the 
learner has to put in in order to understand the content. Solving problems requires a great 
deal of mental efort directed at understanding the problem. Studying an appropriately 
structured problem involves less extraneous load. And there are various strategies that 
can be used, including removing unnecessary complexity and distraction, providing con-
stant scafolding, and providing learners with opportunities for collaborative learning in 
MOOCs. MOOCs in mathematics have to break down content and sequence it for teaching 
and learning. Te objectives should be clear, with clear instructions on how to do tasks. 
Te inclusion of many, varied examples and practice questions is also crucial. All this is 
necessary during the design of instruction. During instruction, the learners have to have 
frequent interaction with the tutors, and scafolding and feedback have to be provided, 
with deadlines given to assignments. 

13.9 LIMITATIONS OF THE STUDY 
Focus group strategy results cannot be generalized; however they could provide a base-
line to future researcher and mathematics content designers and teachers. And conducting 
research on the Internet is challenging because of “Internet time” (Karpf, 2012), i.e. the 
rapidly changing context of content modifcations that need to be taken seriously. Te 
sample of the study was also small. 
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14.1 INTRODUCTION 
Tis chapter begins to examine the design, appropriation, and transformation of an online, 
dynamic, visualization exploration activity for multivariable calculus. Because both how a 
digital resource is actually used in the classroom and the teacher’s evolving knowledge of 
how a resource can aid in student understanding are intertwined (Borys & Choppin, 2017; 
Gueudet & Trouche, 2009; Lawless & Pellagrino, 2007), in this study we focus on a single 
digital resource (the CalcPlot3D cross product exploration) through multiple lenses. 

Te development of an online learning resource, such as a mathematical applet, should 
take into account not only the target audience, but also the mathematical content itself, 
related pedagogical issues, and technological implementation challenges. For example, the 
ways that content can be represented, where the content fts into the curriculum (includ-
ing the prior knowledge expected of students), common student misconceptions, system 
requirements (related to memory and compatibility), and types of digital devices that might 
be used are just a few of the issues that a developer must consider. Many, but not all, must 
also be contemplated by instructors along with some additional considerations that are 
particular to their local settings. For instructors, introducing an applet in the classroom 
may require attention to pedagogical factors, such as activity types appropriate for teaching 
specifc content with particular technology (Grandgenett, Harris, & Hofer, 2011; Harris, 
Mishra, & Koehler, 2009) and social arrangements for classroom participation. However, 
applet adoption should also entail self-refection regarding the instructor’s understand-
ing of the content (especially when the online tool allows for exploration), preferences for 
pedagogical strategies, and knowledge of the technological platforms (including hardware 
and browsers) to be used to support the online tool. Furthermore, many of the mathemati-
cal, pedagogical, and technological issues to consider overlap with one another (Harris 
et al., 2009). Te developer and individual instructors using the resource may have sig-
nifcant variations in their knowledge of the mathematics, pedagogy, and technology (and 
the connections between the three) that could limit implementation (Drijvers, Tacoma, 
Besamusca, Doorman, & Boon, 2013; Harris et al., 2009), but these variations can also be 
leveraged by the developer to improve and transform the online tool (Hansen, Mavrikis, 
& Geraniou, 2016). 

Instructors’ varied experiences and knowledge, along with other factors such as their 
working environment and the needs of their students, impact how an online resource is 
actually implemented in the classroom (Gueudet & Trouche, 2009). Teachers ultimately 
choose how to use a resource based on their preferences and needs, and not on the design-
er’s intent or teaching guides (Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010). 
Terefore, a designer must be sensitive to these complexities surrounding the appropria-
tion of an online resource into heterogeneous classrooms and must understand instructors’ 
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agency in the design process as they make choices on how to adapt the resource to ft their 
circumstances and needs (Borys & Chopin, 2017). 

Tis self-study focuses primarily on the developer (the third author) and one early-
adopting instructor (the frst author) over ten years of development, implementation, and 
revision of the CalcPlot3D cross product exploration for multivariable calculus. Te sec-
ond author is an educational researcher who facilitates this self-study. Identifying how 
teachers structure a lesson using an artifact in the classroom (e.g., group work, teacher 
demonstrations, etc.) can help designers in revision stages of the design cycle. Terefore, 
in this study we will examine the variety of ways in which the CalcPlot3D cross product 
exploration was used by the developer and an early-adopting instructor who has used the 
tool in her classroom for eight years. We aim to answer two questions which are made 
explicit in the section of this paper titled Teoretical Framework and Research Questions. 

While this self-study examines one exploration in a particular dynamic visualization 
applet for multivariable calculus, our results are more universally applicable since they 
demonstrate fundamental knowledge that afects the design cycle and rollout of online 
educational manipulatives and underlying models of appropriation of curricular resources 
(Trgalová & Rousson, 2017). Tis research could be used to inform the design of new online 
learning tools, to help support teachers as they shif to implementing new technologies, 
and to prepare pre-service teachers and graduate teaching assistants for their professions. 
Tis study also adds to the emerging, but limited, body of research exploring the collabora-
tive design of a virtual manipulative within a community of practice and the connection 
between the design and the professional knowledge of the instructors (Hansen et al., 2016). 
Finally, on a theoretical level, this study tests the synergy of two frameworks (i.e., instru-
mental orchestration and Technological Pedagogical Content Knowledge (TPACK) for 
meaningful learning in information and communication technologies) to research ques-
tions in undergraduate mathematics education. 

14.2 CROSS PRODUCT 
We begin with a general review of the literature surrounding the mathematical content, 
pedagogy, and technology related to teaching the cross product. We take the social con-
structivist view of Olive and colleagues (2009) that the integration of digital technolo-
gies into the mathematics classroom has changed both the nature and construction of 
mathematical knowledge. “Technology is likely to change not only the content of school 
mathematics but also the processes of school mathematics and the nature of mathematical 
understandings” (Heid, 2005, p. 357). Trough technology, students are likely to develop 
multi-representational views of mathematics and a nearly kinematic understanding of 
concepts (Heid, 2005). Terefore, as we describe the challenges in instruction and imple-
mentation of online tools in this section, we will underscore issues related to multiple rep-
resentations and visualizations of the content. 

Critical features of the cross product in mathematics. One way in which the nature 
of mathematical knowledge has changed is that technology allows students to manipulate 
representations of mathematical objects as tangible objects and observe invariant relation-
ships (Olive et al., 2009). According to variation theory, a student learns a concept when 
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they perceive the invariant relationships between its critical features. Critical features are 
aspects or conditions of a topic that are necessary for understanding (Runesson, 2006). 
Te critical features of vectors and of the cross product include: magnitude, direction, 
angle between two vectors, location of the vectors, and relative orientation of two vectors 
(VanDieren, Moore-Russo, Wilsey, & Seeburger, 2017). 

Technology has shifed the emphasis of mathematics, allowing students to play with 
ideas before mastering algebraic manipulations, to visualize dynamic relationships, and to 
connect formal and informal mathematics (Olive et al., 2009). By manipulating a mathe-
matical object to observe properties of invariance, students can transition from conjectur-
ing to formalizing about a mathematical concept (Olive et al., 2009). What this means in 
terms of the cross product is that students need not know how to compute the cross prod-
uct, fnd its length, nor decipher the symbolic representations in order to gain some under-
standing about the concept such as articulating the efect of changing the angle between 
vectors u and v of fxed length on the magnitude of u × v, or predicting and observing the 
direction of u × v based on the directions of u and v. 

Pedagogical challenges related to student understanding of the cross product. 
Although vectors are regularly presented in both high school and preliminary college 
courses, students ofen will not be exposed to the vector cross product until they under-
take college-level calculus coursework. Both students (Kustusch, 2016; Scaife & Heckler, 
2010; Van Deventer, 2006) and pre-service physics teachers (Govender & Gashe, 2016) tend 
to struggle with the concept of the cross product. Students can become confused with 
choosing one of the many mechanisms for applying the right-hand rule, and this may lead 
to incorrect execution of the rule (Kustusch, 2016; Scaife & Heckler, 2010; Van Deventer, 
2006). One source of difculty with the right-hand rule may be that students do not recog-
nize the diferences between relative orientations of two vectors (Govender & Gashe, 2016; 
VanDieren et al., 2017). In other words students may struggle to distinguish between the 
orientation of the pair of vectors u and v and the pair u and w in Figure 14.1. 

To help alleviate some of the difculties students have with the right-hand rule (Kustusch, 
2016), several mnemonics (Greenslade, 1980), paper manipulatives (Van Domelen, 1999; 

FIGURE 14.1 Two pairs of vectors (u and v, u and w) with the same interior angle, but diferent 
orientations. 
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Nguyen & Meltzer, 2003), and online resources (e.g., the vector and cross product tools 
listed on the repository site www.merlot.org/merlot/index.htm) are available for teachers 
to implement in their instruction. 

Technological limitations related to student understanding of the cross product. 
Beyond the pedagogical challenges that arise from the content, technologically based chal-
lenges add to the complexity of teaching the cross product. Tese stem from students’ rela-
tionships with the technology, their spatial reasoning and visualization abilities, and any 
hardware and sofware limitations. 

Students tend not to question the output of a computer. However, even with digital 
mathematical resources that have undergone the strictest testing, there are still limitations 
in terms of foating point computations, round-of errors, graphical glitches around sin-
gularities, etc., that may, at best, confuse, or at worst, mislead a student (Olive et al., 2009). 
Additionally, students may develop unintended and unwanted approaches (such as short-
cuts) through their use of technology (Kosheleva & Giron, 2006). It is, therefore, important 
for instructors to have the technological, pedagogical, and mathematical understanding to 
manage these situations (Olive et al., 2009). 

While research is mixed on how well multi-representational environments support stu-
dent learning, one common fnding is that learners have difculties translating between 
diferent representations (Ainsworth, 2006; Kozma, 2003). In particular, students struggle 
with visualization (Miller-Young, 2013) and spatial reasoning (Kustusch, 2016) of vectors 
in three dimensions. Furthermore, the complex learning tasks associated with multiple 
representations stand in the way of the potential advantages of using them. For instance, 
while online visualization tools provide students with a similar reference frame as an 
instructor’s use of a whiteboard when executing the right-hand rule, online visualization 
may thwart the transfer of knowledge and skills between diferent media, in particular 
between the computer screen and paper. Tis presents a concern since exams are usually 
in pen-and-paper format (Kustusch, 2016). 

To help better design online visualization tools, Ainsworth (2006; 2008) identifes fve 
areas of understanding necessary for learning with multiple representations. Tese are 
understanding: (a) the form of the representation, (b) which operations to apply to a rep-
resentation to retrieve the relevant domain information, (c) how to select an appropriate 
representation, (d) how to construct an appropriate representation, and (e) how to relate 
representations. Research on student understanding of vectors indicates that students have 
difculties with each of these areas: 

a. Students ofen confuse the syntax and semantics of v × u, u × v, and ||u × v|| (VanDieren 
et al., 2017; Zavala & Barniol, 2010) and do not distinguish the graphical relationships 
of the pair of vectors u and v and the pair u and w in Figure 14.1 (Govender & Gashe, 
2016; Scaife & Heckler, 2010; VanDieren et al., 2017). 

b. Students tend to inappropriately apply operations and ideas from trigonometry and 
measure the angle between two vectors as a negative value or as an angle greater than 
180 degrees (Kustusch, 2016; VanDieren et al., 2017). Tey may also interpret the dot 

http://www.merlot.org
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product as a vector rather than a scalar value (Van Deventer, 2006), or the cross prod-
uct as a scalar rather than a vector (VanDieren et al., 2017; Zavala & Barnial, 2010). 

c. Students do not use real-life contextual clues to aid in interpreting vector diagrams 
and they tend to rely on formulas in their responses even if a formula is unnecessary 
or insufcient to answer the problem (Miller-Young, 2013). 

d. Students ofen do not realize the need to relocate vectors via parallel transport to con-
struct graphically the sum of two vectors (Nguyen & Meltzer, 2003) or to visualize a 
cross product (Kustusch, 2016). 

e. Students also may have difculty consistently interpreting vectors when they are pre-
sented in multiple representations (e.g., vectors presented graphically, symbolically, 
numerically, or situated in a physical context) (Nieminen, Savinainen, & Viiri, 2013). 

Finally, inherent in any digital resource are technological issues such as portability, acces-
sibility, interconnectibility, and interface that may afect teaching and learning (Heid, 
2005). We will not address all of these issues here; instead we will focus on a major change 
that took place in 2015 when most mainstream browsers began to phase out their support 
of Java. When this occurred, instructors and students were required to change the way 
they accessed the digital resource, CalcPlot3D. First, error and warning messages had to be 
overridden, then only certain browsers would load CalcPlot3D, and fnally a new version of 
CalcPlot3D running in JavaScript had to be accessed. Instructors and students unfamiliar 
with the shif to JavaScript from Java may have been deterred from continuing to use the 
resource during this time period when they experienced problems loading the CalcPlot3D 
Java applet in their preferred browser. 

14.3 THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 
Tis study is framed by two related theories: instrumental orchestration and Technological 
Pedagogical Content Knowledge (TPACK).* Tabach (2011) frst used these two comple-
mentary frameworks together in research. Tey have since been combined productively to 
study the impact that co-designing a virtual manipulative has on the professional develop-
ment of teachers (Hansen et al., 2016) and to examine the teaching practices and knowl-
edge of mid-adopting mathematics teachers using a digital resource (Drijvers et al., 2013). 
Together instrumental orchestration and TPACK framed a study on the appropriation 
of digital resources by mathematics teachers, allowing for the analysis of an instructor’s 
adaptation of the resource to ft his needs and the context of his classroom as well as the 
evolution of his professional knowledge and practice (Trgalová & Rousson, 2017). While 
these studies all involve future or current K-12 instructors, our study will further test the 
appropriateness of bringing together these two frameworks to study the implementation of 

* Tere is some disagreement in the literature concerning notation. Sometimes this model is abbreviated TPCK and other 
times TPACK. TPCK is sometimes also used to refer to the intersection of the technological, pedagogical, and content 
knowledge areas in the Venn diagram, while TPACK refers to the entire model (Ruthven, 2014). In this paper we will 
follow the convention of using TPACK to refer to the model. 
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a digital resource from the points of view of the developer and an early-adopting instructor 
at the undergraduate level. 

14.3.1 Instrumental Orchestration 

To better understand human–tool interactions, it is helpful to distinguish artifacts and 
instruments. An artifact is any created object or tool; note that an artifact is man-made 
but may be digital rather than physical. In our study the artifact is a cross product explo-
ration that draws upon the CalcPlot3D multivariable calculus applet. An instrument is an 
artifact for which an individual has identifed some use; therefore, there is only an instru-
ment when an individual has appropriated an artifact for a specifc purpose. Instrumental 
genesis (Trouche, 2004) refers to the process of an unused artifact becoming a useful, used 
instrument. Instrumental genesis is dependent on the tool, the individual using it, and the 
purpose for which the tool is being used as an instrument (Trouche, 2004). 

Instrumental orchestration refers to the external steering on the part of an instructor 
(Trouche, 2004) to help students with the instrumental genesis process. Although, the 
instructional intentions, organization, and facilitation to support instrumental genesis 
are so important (Drijvers, Doorman, Boon, Reed, & Gravemeijer 2010), these aspects are 
ofen overlooked and not considered in the textbooks and experiments involving digital 
learning environments (Trouche, 2004). 

Te instrumental orchestration framework for technology-rich mathematics classrooms 
classifes classroom practices as either teacher-centered or student-centered. Originally six 
categories were identifed from videotapes of three teachers (Drijvers et al., 2010), but as 
this framework was tested on diferent populations new categories have emerged (Drijvers, 
2011; Drijvers et al., 2013; Tabach, 2011, 2013). Although the global taxonomy of orchestra-
tions is still under development (Drijvers et al., 2013), a sufciently detailed taxonomy exists 
for us to use to identify instructor preferences in employing the CalcPlot3D cross product 
exploration. We will examine the following categories of instrumental orchestration: 

• Technical-demo: demonstration of tool techniques (Drijvers et al., 2010). 

• Link-screen-board: instructor explains the relationship with what happens in the 
technological environment with representations on the board, paper, or in the book 
(Drijvers et al., 2010). 

• Explain-the-screen: instructor explains to the whole class what happens mathemati-
cally on the screen in an example (Drijvers et al., 2010). 

• Discuss-the-screen: whole-class discussion of what happens mathematically on the 
screen in an example (Drijvers et al., 2010). 

• Spot-and-show: instructor brings the work of a student or group of students to the 
attention of the class to facilitate discussion (Drijvers et al., 2010). 

• Sherpa-at-work: a student “Sherpa” uses the technology to present his/her work to 
others in the class or to carry out actions dictated by the teacher (Trouche, 2004). 
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• Work-and-walk-by (a.k.a. monitor and guide): students work in pairs or individually 
as the teacher circulates the classroom, engaging at times with individuals as the need 
arises (Drijvers, 2011; Tabach, 2013). 

• Technical support: teacher supports the students with technical problems that extend 
beyond the tool itself (e.g., login problems, hardware issues, etc.) (Drijvers et al., 2013). 

• Discuss tech without it: instructor discusses the digital resource but without accessing 
the technology, such as in a classroom with no computers (Tabach, 2013). 

14.3.2 TPACK 

Tabach (2011) suggests complementing instrumental orchestration with TPACK as a means 
to better understand teacher implementation of technological tools. While “(t)he orches-
tration model provides means to describe what the teachers actually do in their technol-
ogy-rich lessons, the TPACK model helps to identify the skills and knowledge needed to be 
able to exploit these orchestrations” (Drijvers et al., 2013, p. 996). TPACK is a technology 
integration framework that identifes three types of knowledge instructors must combine 
to successfully implement a digital resource in their teaching. Tis framework, intro-
duced by Mishra and Koehler (2006), is an extension of Shulman’s (1986) work. One goal 
of Shulman’s (1986) work is to characterize the complex ways that teachers think about 
teaching by confronting both the content and pedagogy. It describes how a teacher makes 
mathematical content accessible to students by identifying diferent ways to represent the 
material (Mishra & Koehler, 2006). Shulman suggests three categories of teacher knowl-
edge: content knowledge, pedagogical content knowledge, and curricular knowledge. 

Since then, the abundance and diversity of digital resources entering the classroom have 
presented new challenges that warrant a reconsideration of Shulman’s three categories. 
Mishra and Koehler (2006) ofer a model that extends Shulman’s framework. Tis model, 
displayed in Figure 14.2, involves three categories (and their intersections): knowledge of 
content, pedagogy, and technology. 

Operationalizing TPACK as a framework. Te TPACK framework has been criticized 
(e.g., Cox & Graham, 2009) for lacking clear and operational defnitions of the knowledge 
constructs (i.e., technological knowledge, pedagogical knowledge, and content knowledge) 
and their intersections. Ruthven (2014) argues that the full system of seven TPACK cat-
egories is appropriate for designing professional development courses for teachers and as 
a lens to raise research questions about the interaction between technology, pedagogy and 
content; however, in order to be used as a research tool, TPACK must be supplemented by 
other frameworks. Additionally, for economy of scale, research on TPACK is ofen orga-
nized around prototypical teaching situations (Ruthven, 2014) or learning activities (e.g., 
Harris et al., 2010b). Terefore, the focus of this study will not be on measuring the sources 
of TPACK as shown in Figure 14.2, but will be on assessing TPACK for meaningful learn-
ing with information and communication technologies (ICT) as applied to specifc learn-
ing activities. 

TPACK for meaningful learning with ICT. TPACK for meaningful learning with 
ICT considers how technological, pedagogical, and content knowledge can be leveraged 
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FIGURE 14.2 Technological Pedagogical Content Knowledge. (Reproduced by permission of the 
publisher, © 2012 by tpack.org.) 

to create meaningful learning experiences for students through the selection of appropri-
ate learning activities (Koh, 2013). “What drives [meaningful] learning, more than any-
thing else, is understanding and persisting on some task or activity. Te nature of the 
tasks best determines that nature of the students’ learning” (Howland, Jonassen, & Marra, 
2012, p. 2). An instructor’s TPACK manifests itself with his or her selection, sequencing, 
and redesign of learning activities, and the choice of learning activities is highly content-
dependent (Harris et al., 2010b). Research on technology integration should be similarly 
focused on learning activities and how these learning activities promote meaningful learn-
ing (Howland et al., 2012). In this study, we consider not only the type of the learning activ-
ity, but also the pedagogical dimension of each activity. 

Taxonomy of learning activities. While there is no known taxonomy of learning 
activities for undergraduate mathematics instruction, a taxonomy for K-12 mathemat-
ics instruction, based on NCTM process standards, has been developed and organized 
into seven synergetic categories: consider, practice, interpret, produce, apply, evaluate, 
and create (Grandgenett et al., 2011; Howland et al., 2012). Although created from K-12 
data, we feel that these activity categories are expansive enough to capture the potential 
learning activities in undergraduate instruction of vector cross products, the focus of 
our study. 

Activities categorized as consider involve lower-level student engagement with founda-
tional knowledge. Tey may include reading a text, recognizing a pattern, or attending a 

https://tpack.org
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demonstration. Practice activities drill students on computational or algorithmic skills. 
Activities classifed as interpret help students internalize the meaning of abstract con-
cepts and relationships. Tey include posing a conjecture, developing an argument, and 
interpreting a representation. Produce activities are characterized by students producing 
mathematical works involving the communication of mathematical content. For example, 
describing a concept mathematically, producing a representation, giving a demonstra-
tion, and generating text would all be classifed in this category. Apply activities not only 
encompass real-world applications, but also include applications of knowledge to solve 
problems. Tese activities include choosing a strategy, taking a test, and applying a rep-
resentation. Evaluate activities encourage students to evaluate the mathematical work of 
others or themselves by making comparisons, testing solutions or conjectures, and inte-
grating feedback from others into their work. Create activities require some of the highest 
levels of student engagement and knowledge. Students are engaged in imaginative think-
ing processes in which they are inventing, developing, or creating content (Grandgenett 
et al., 2011). 

Pedagogical dimensions of learning activities. Learning activities can be analyzed for 
meaningful learning across fve pedagogical dimensions: active, constructive, intentional, 
authentic, and cooperative (Howland et al., 2012). Building on Howland and colleague’s 
work, Koh (2013) created a rubric for TPACK for meaningful learning for each of these 
(pedagogical) dimensions to emphasize the knowledge of the subject matter (content) 
needed to be supported by the ICT (technology) in learning activities. Tese pedagogical 
dimensions are summarized in Table 14.1. 

14.3.3 Research Questions 

Now that we have established the theoretical framework for this study, we can articulate 
the two research questions guiding our work: 

1. What instrumental orchestrations do diferent instructors employ in conjunction 
with the cross product exploration; in other words how do individual instructors use 
the cross product exploration in the classroom? 

TABLE 14.1 Pedagogical Dimensions of Learning Activities for TPACK for Meaningful Learning 

Pedagogical 
Dimension Description 

Active Is measured by the percentage of the activity duration that a student used and manipulated the 
technology to learn the material. 

Constructive Captures the extent to which students used the technology to engage in divergent thought (i.e., 
organization of, integration of, and refection upon the content). 

Authentic Takes into account the degree to which the technology helps students to make connections 
between the content and real-world phenomena and/or their personal experiences. 

Intentional Captures the extent to which the technology provided opportunities for the students to engage 
in self-diagnosis and remediation of learning gaps during the activity. 

Cooperative Measures the extent to which the technology allowed for group work during the lesson activity 
that involved divergent discussion either around or through the computer. 

Note: Information on table from (Koh, 2013). 
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2. How have the type of learning activities and pedagogical dimensions of the cross 
product exploration evolved as a result of the changing TPACK of the developer and 
early-adopting instructor? 

14.4 RESEARCH CONTEXT 
Te research questions in this study are addressed in the context of a larger project on 
a digital resource for visually exploring multivariable calculus, the CalcPlot3D applet. 
CalcPlot3D is a freely available, interactive, online applet, which has been available and in 
continual development for over ten years (Seeburger, 2020). Te CalcPlot3D applet helps 
students and instructors to visualize multivariable calculus content in three dimensions. 
Te applet* receives over 150,000 page views per year. Te CalcPlot3D applet provides visual 
representations of many multivariable calculus concepts including vectors, parametric 
curves, multivariable functions, parametric functions, and vector felds. Accompanying 
the applet are several discovery-based activities that facilitate the exploration of geometric 
interpretations of the content. Te focus of this paper will be on the design, development, 
and implementation of just one of these explorations, the CalcPlot3D cross product explo-
ration, and not on the applet in general. 

Te cross product exploration was initially designed in 2008 by Paul Seeburger and was 
frst tested by fve professors at four universities. Since then, professors and high school 
teachers at several other institutions have added the cross product exploration to their 
instructional materials. Te CalcPlot3D cross product exploration consists of a series of 
questions about the geometric relationship between the cross product and the two vectors 
that form it, and it makes use of some features of CalcPlot3D. Tis artifact is what is being 
investigated; it has undergone two major redesign phases: the frst using a Java applet with 
exploration questions administered in SurveyMonkey and the second using a JavaScript 
app with exploration questions administered in either WeBWorK† or Blackboard.‡ 

Troughout each of these redesign phases, the questions on the pre-test, exploration, and 
post-test have also evolved. 

Screenshots of the cross product exploration in the Java and JavaScript versions of the 
applet appear in Figures 14.3 and 14.4, respectively. In both of these artifacts, users can 
change the direction and length of the red and blue vectors in the two-dimensional graph 
on the lef, and the cross product along with the red and blue vectors is automatically 
graphed in the three-dimensional plot to the right. Te angle between the red and blue vec-
tors and the length of the cross product is also given at the top of the screen. In the Java ver-
sion, the red and blue vectors could not be moved of of the xy-plane, but in the JavaScript 
version users have the option of changing the z-components of the red and blue vectors. In 
both versions of the artifact, all three vectors are always graphed from the origin. 

Te CalcPlot3D cross product exploration activity has developed over time. Te activity 
is grouped into pre-test questions, exploration questions, and post-test questions, which 

* c3d.libretexts.org/CalcPlot3D/index.html 
† WeBWorK is a comprehensive, open-source online homework system. 
‡ Blackboard is a learning management system which has limited homework capabilities. 
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FIGURE 14.3 Screenshot of the Java version of the cross product exploration in CalcPlot3D. 

FIGURE 14.4 Screenshot of the JavaScript version of the cross product exploration in CalcPlot3D. 
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are identical to the pre-test questions. Te intent is that students answer the pre-test ques-
tions online before engaging with the applet; students use the applet to answer the explora-
tion questions; and students answer the post-test questions without the applet afer they 
have completed the activity questions. Student answers are sent to the instructor electroni-
cally. In the SurveyMonkey version, students did not receive feedback on their responses 
until afer the instructor downloaded the answers and provided written comments. In the 
WeBWorK and Blackboard versions, some questions were automatically graded in real-
time. Tables 14.2 and 14.3 list the questions that were administered in SurveyMonkey 
during the initial phase of the cross product exploration implementation. Over time, the 
questions have been modifed and imported into WeBWorK and Blackboard. 

14.5 METHOD 
14.5.1 Self-Study 

Tis research is framed as a self-study. A self-study allows the developer and an early-
adopting instructor to act as participant-observers and examine notes, plans, and refec-
tions about the process of planning and teaching. As such the teaching styles and other 
factors of the developer and instructor become part of the study instead of variables to be 
controlled. Te fve methodological characteristics of a self-study identifed by LaBoskey 
(2004) apply to this study: self-initiated and focused; improvement-aimed; interactive; 
multiple, primarily qualitative methods; and exemplar-based validation. 

Self-initiated and focused. We frame our research as a critical self-study because it 
allows us to closely examine how the knowledge and experiences of the developer and 
an instructor-adopter afect the advancement of one of the CalcPlot3D applet exploration 
activities. Beyond studying the developer and the instructor-adopter, we also examine oth-
ers involved in the practice, including other instructors and students. 

Improvement-aimed. In a self-study, 

it is important to be cognizant of the continual interplay between research and 
practice within the practice setting (i.e., as the research unfolds so the learn-
ing through the research infuences practice and, because the practitioner is the 
researcher, practice inevitably changes through feedback, thus infuencing what is 
being researched) (Loughran, 2007, p. 15). 

As our knowledge of mathematical, pedagogical, and technological knowledge has changed, 
so have plans for improvements of the exploration and ways in which it was introduced in 
our classroom settings. Refection on instrumental orchestration and TPACK is a crucial 
step in the design cycle of the CalcPlot3D sofware and exploration activities. 

Interactive. LaBoskey (2004) suggests not only collaborating with others, but also using 
research literature as a means for researchers to interact with others. To this end, we have 
consulted the literature in framing our interpretations and challenging our assumptions. 
Also, the second author of the paper is neither the developer nor a multivariable calcu-
lus instructor, but an educational researcher. Her collaboration helps the instructor and 
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TABLE 14.2 Fall 2009 Cross Product Exploration Activity Pre-Test and Post-Test Questions Classifed by 
Learning Activity 

Learning Activity 
Question Type(s) 

1. Which pair of [unit] vectors below will have the cross product with largest Consider 
magnitude? 

2. Which pair of [unit] vectors below will have the cross product with smallest Consider 
magnitude? 

3. Given two vectors of fxed length, and allowing the direction of one vector to vary, 
what angle between the two vectors will produce a cross product with maximum 
magnitude? (Select all that apply.) 
a. 90° b. 45° c. 0° d. 180° e. I don’t know 

4. Given two vectors of fxed length, and allowing the direction of one vector to vary, 
what angle between the two vectors will produce a cross product with minimum 
magnitude? (Select all that apply.) 
a. 90° b. 45° c. 0° d. 180° e. I don’t know 

5. What can cause the magnitude of the cross product to be zero? (Select all that 
apply.) 
a. Te angle between the vectors is 0°. 
b. Te angle between the vectors is 180°. 
c. Te angle between the vectors is 90°. 
d. Te angle between the vectors is 45°. 
e. One of the vectors is the zero vector. 
f. One of the vectors is a unit vector. 

6. What is the geometric relationship between the cross product vector and the two 
vectors that form it? 

Consider 

Consider 

Interpret, Evaluate 

Consider, Produce 

developer to improve and understand their practices and reveal their biases. Additionally, 
the frst and third authors interacted with other power-users of CalcPlot3D in both math-
ematics and engineering courses to inform the continual development of CalcPlot3D and 
their own teaching. 

Multiple, primarily qualitative methods. To assess an instructor’s TPACK, ideally sev-
eral sources of data including planning documents, instructional actions, interactions with 
students, and refections should all be examined (Harris, Grandgenett, & Hofer, 2010a). 
Terefore, this study draws on several sources of data to triangulate emergent themes. 
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TABLE 14.3 Fall 2009 Cross Product Exploration Activity Questions Classifed by Learning Activity 

Exploration Question Learning Activity Type(s) 

1. How is the cross product vector related to the two vectors that form it? Consider, Produce 
2. For vectors of fxed length, but varying the direction of one of the vectors, Consider, Interpret, 

when is the magnitude of the cross product at a maximum? Produce, Evaluate 
3. For vectors of fxed length, but varying the direction of one of the vectors, Consider, Interpret, 

when is the magniitude of the cross product at a minimum? Produce, Evaluate 
4. When does the cross product vector point in the positive z-direction? Consider, Interpret, 

Produce, Evaluate 
5. When does the cross product vector point in the negative z-direction? Consider, Interpret, 

Produce, Evaluate 
6. What two things can cause the magnitude of the cross product to be 0? Interpret, Produce, Evaluate 
7. Which order is the cross product in this exploration? Practice 

a. Red × Blue b. Blue × Red 
8. Which of the geometric properties from questions 1–6 are made clear by the Interpret, Produce, Apply 

following formula? Please specify these by question number. Explain. || a × b || 
= ||a|| ||b|| sin t, where t is the angle between vectors a and b. 

Tese include (a) curricular content (e.g., iterations of the cross product exploration ques-
tions that were developed and changed over time); (b) student responses to early formats of 
exploration questions; (c) refective accounts and notes of the developer and the instructor-
adopter; (d) outcomes assessment reports of the instructor-adopter; and (e) email commu-
nication between the developer and early-adopting instructors. Further detail is provided 
below in the Data Collection and Data Analysis sections. 

Exemplar-based validation. LaBoskey (2004, p. 821) defnes this as “[advancing] the 
feld through the construction, testing, sharing, and retesting of exemplars of teaching 
practice.” By creating new curricular materials, testing them, making our work public and 
open to scrutiny, and retesting the material, we aim for the outcomes of the study to have 
an impact beyond the individual self (Loughran, 2007). 

14.5.2 Data Collection and Analysis 

Tis self-study primarily focuses on the developer (the third author) and an early-adopter 
(the frst author) over eight years of interaction. During the eight years, we shared assign-
ments and student work; communicated about experiences using the cross product explo-
ration via email, at conferences, and over Skype; collaborated on joint research proposals; 
and we revised and reanalyzed the ways we used the exploration. Te developer is situated 
at a public community college where he regularly teaches both in-person (once a year) and 
online (twice a year) multivariable calculus sections of 20–30 students. Te early-adopter is 
also an instructor teaching 15–30 students per semester in an in-person course with access 
to a computer lab at a medium-sized, private four-year college. 

Collectively, we analyze the data through two theoretical lenses: instrumental orches-
tration theory and TPACK for meaningful learning. We use an iterative process, identify-
ing new themes as they emerged, challenging and analyzing our fndings throughout. 

Instrumental orchestration analysis. Our analysis focuses on the teacher’s intended 
learning objectives and their selected instrumental orchestrations in relation to a specifc 
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digital artifact, the cross product exploration. In short, we study how each used this arti-
fact as an instrument; this was recorded as part of the refective lesson plans and outcomes 
assessment reports. 

TPACK for meaningful learning. Versions of pre-test, exploration, and post-test ques-
tions from the artifact from 2008 to present are categorized along two dimensions: learning 
activity type and pedagogical dimension. Outcomes assessment reports, student responses 
to exploration questions, emails between the developer and instructors, and notes from 
meetings between the three authors provide rationale for the changes made in the content, 
ordering, and wording of the questions and for choices in instrumental orchestrations of 
the exploration over time. 

14.6 RESULTS 
14.6.1 Instrumental Orchestrations of the Cross Product Exploration 

Tis self-study reinforces a prevailing observation in the literature that even though digital 
tools ofen pre-structure how individuals interact with and consider mathematical ideas 
(Rabardel, 2001), how a tool is ultimately used impacts how efective it is for the individual 
who is using it and the purpose for which it is being used (Owston, 1997). In fact, a tool 
may not be used in a way that the designer originally intended (Rabardel, 1995). Tis is 
evidenced in the present study in not only the diferences in intended learning objectives 
of the frst and third author, but also in their exploitations of instrumental orchestrations 
of the cross product exploration. 

Exploitations of instrumental orchestrations of the cross product exploration. Te 
most noticeable diference between the lesson plans of the developer and the early-adopt-
ing instructor is the positioning of the cross product exploration in their curriculum. 

When designing this cross product activity, the developer envisioned it as an out-of-
class exploration. In both his on-ground and online courses, after providing written 
instructions and/or a demonstration, he assigns the cross product exploration to be 
completed individually outside of class. The developer teaches the cross product con-
tent in class before assigning the cross product exploration. He presents the properties 
of the cross product and a proof of the fact that the magnitude of the cross product 
of two vectors is equal to the area of the parallelogram determined by the two vectors 
forming it. Additionally, after demonstrating the computation of the cross product, he 
asks students to observe the fact that the cross product is orthogonal to the vectors that 
form it by graphing the cross product vector along with the two vectors. Following the 
completion of the assignment, he discusses the assignment in class with the students 
without the technology. The developer’s instrumental orchestrations can be classified 
as technical demo (Drijvers et al., 2010) and discuss tech without it (Tabach, 2013). 

On the other hand, the early-adopting instructor uses technical demo, work-and-walk-
by (Drijvers, 2011), technical support (Drijvers et al., 2013), and explain-the-screen (Drijvers 
et al., 2010) instrumental orchestrations. Te early-adopting instructor only provides a 
geometric defnition of the cross product to her students before taking them to a com-
puter lab during class time to work through the exploration. Afer one semester in which 
she gave this exploration as an out-of-class assignment and felded student complaints of 
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having difculty with using the applet and answering the questions, she ceased assigning 
this as out-of-class work. Instead, she now assigns this activity in class so that she can foat 
around the room to assist students with both the content and the technology, occasionally 
stopping the class and discussing a problem on the computer projected on the screen. In 
her class, students are allowed to work together in groups and are encouraged to discuss 
their answers with one another. 

One other distinction between the instrumental orchestrations of the frst and third 
authors is that the third author assigns a dot product exploration and the cross product 
exploration to the students at the same time, while the frst author has her students com-
plete the dot product exploration in class prior to introducing the cross product content 
and exploration. Te sequencing of these activities may have an impact on student under-
standing. Students tend to confuse the dot product and the cross product and confound 
their properties, such as interpreting the dot product as a vector (Van Deventer, 2006) or 
the cross product as a scalar (VanDieren et al., 2017; Zavala & Barniol, 2010). Whether or 
not this is mediated better by separating the dot product and cross product assignments 
over time or connecting the assignments together is unknown. 

Learning objectives of the cross product exploration. Linking educational tech-
nologies more directly with learning objectives and pedagogical practice can support an 
artifact’s successful implementation (Harris et al., 2010b). Because the developer and the 
early-adopting instructor have difering expectations of pre-requisite content knowledge of 
their students when engaging with the cross product exploration, they also aim for difer-
ent learning objectives. Since the frst author provides minimal introduction to the cross 
product before her students engage with the exploration, her learning objectives leverage 
pre-existing knowledge about scalar multiplication and include the objective of relating 
the symbolic equation (cu) × v = u × (cv) = c(u × v) with a visual or geometric representa-
tion. She intends for students to begin to visualize the orthogonal relationship of the cross 
product with the two vectors that form it, while the third author expects that students 
recognize the order of the cross product using an understanding of the right-hand rule. 

14.6.2 TPACK for Meaningful Learning with ICT of the Developer and Instructors 

Troughout the timeframe of this study, the TPACK of both the frst and third authors has 
developed. In addition to teaching multivariable calculus, diferential equations, and cal-
culus, the third author has over a decade of extensive experience developing visualization 
tools for calculus, multivariable calculus, and diferential equations during which time 
his perspectives and knowledge of technology, pedagogy, and mathematical content have 
evolved. Notable among the changes in TPACK of the developer was the necessity of learn-
ing JavaScript when browsers halted support of Java. 

Afer attending a mini-course on CalcPlot3D taught by the third author at the 
Mathematical Association of America’s MathFest over eight years ago, the frst author 
began using the cross product exploration activity in her multivariable calculus course. 
She began developing other exploration activities using CalcPlot3D to help students visu-
alize other multivariable calculus concepts. Tis led her to transition her model theoretic 
research program into one that included research on undergraduate education. Both the 
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knowledge she acquired while learning how to conduct research on undergraduate educa-
tion and the research that she conducted on student understanding afected change in her 
perspective of the pedagogical, technological, and mathematical issues related to success-
ful implementation of the cross product exploration in her classroom. 

Before describing the transformation of the cross product exploration over time as the 
developer and the early-adopting instructor’s TPACK changed, we frst summarize the 
pedagogical dimensions of the activities communicated in their lesson plans and refec-
tions. Some of the diferences in the pedagogical dimensions have led to changes in the 
cross product exploration. 

Pedagogical dimensions of the activities. Since both the developer and early-adopting 
instructor assign the same pre-test questions, exploration questions, and post-test ques-
tions in their implementation of the cross product exploration, they both use the same 
learning activities inherent in the questions: consider, interpret, produce, apply, and evalu-
ate (see Tables 14.2 and 14.3). However, when further analyzing the lesson plans of the 
developer and early-adopting instructor, diferences in two of the fve pedagogical dimen-
sions of these activities become apparent. Tere is no evidence for diferences between the 
frst and third author with regard to the active and constructive pedagogical dimensions, 
but distinctions in the cooperative, intentional, and authentic dimensions surface. 

Te cooperative pedagogical dimension is more sustained in the frst author’s instrumen-
tal orchestration than the third author’s. Her lesson plans indicate that students engage in 
the cross product exploration in groups in class while she walks around the room to facili-
tate discussion throughout the completion of the assignment. Te third author also engages 
in this dimension by discussing the results in class following the assignment completion to 
be sure everyone is clear on the relationships they were supposed to have observed. 

Diferences in the intentional pedagogical dimension between the frst and third authors 
become apparent in early discussions about the delivery and grading of the exploration 
questions, and later materialize when the frst and third authors take diferent approaches 
to implementing the questions on WeBWorK and Blackboard, respectively. In particular, 
the frst author prefers to use the technology to help students self-diagnose their learn-
ing gaps during the activity by providing immediate and automatic feedback on student 
responses, while the third author encourages students to discover and explore without 
intervention, delaying feedback and grading until afer the assignment is completed. 

Finally, the authentic dimension, which measures the degree to which technology helps 
students make connections between the content and their personal experiences (Koh, 
2013), varies between the frst and third authors. How a visual representation can be used 
to deepen student understanding depends on the learners’ knowledge and experience with 
the material (Ainsworth, 2008). Because the third author situates the cross product explo-
ration assignment afer he provides the students with a substantial introduction to the 
topic while the frst author only provides students with a brief introduction to the topic, the 
authentic dimension of the learning activities difer. Additionally, because the third author 
assigns the cross product and dot product explorations to be completed concurrently, his 
students may have more opportunity to explore the dissimilitude of the cross product and 
dot product. 
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Evolution of the cross product exploration resulting from changing TPACK. While 
every digital tool is anticipated to transform over time as new hardware and sofware make 
older versions obsolete, the cross product exploration has undergone not just technological 
upgrades to adapt to the times, but also the mathematical content and pedagogical dimen-
sions of the exploration have shifed. 

Technological updates to the cross product exploration. Technological problems have 
directed many changes to the cross product exploration. Some modifcations relate to 
the delivery of the exploration questions, and others involve the translation from Java to 
JavaScript. 

During her frst semester using the cross product exploration in class, the frst author 
observed that the students in her section required more than the allotted 50 minutes to 
complete the assignment. Since there was no mechanism for students to save their work, 
the delivery of the exploration questions in SurveyMonkey required that students complete 
their work in one sitting. Tis presented a technological problem that inhibited her ability 
to implement the exploration to ft her classroom needs and restrictions. When contacted 
about this problem, the third author was able to provide a work-around that would allow 
students in her class to save their answers and return to them later to fnish the assignment. 
Unfortunately, it was too clumsy to implement on a large scale to all potential users of the 
exploration. 

Te lack of a save feature was one of many limitations of SurveyMonkey that 
prompted the developer to consider alternative delivery mechanisms. Another problem 
is that in order for instructors to receive their student work through SurveyMonkey, 
they are required to email the developer and ask for him to run a report to generate 
their students’ responses in one large PDF fle. Tis fle format is awkward for grading 
and re-distributing back to students. Tis extra step discouraged more instructors from 
using the cross product exploration in their classes. In fact the majority of users of the 
CalcPlot3D applet do not use the explorations in their classes. To avoid these issues, 
the frst author and the third author have imported the cross product exploration ques-
tions into WeBWorK and Blackboard, respectively. Tis not only avoids the problems 
presented by SurveyMonkey, but it has advantages because these platforms are designed 
for student–teacher communication. We discuss these advantages in this chapter in a 
subsequent subsection. 

Te large-scale revision of the cross product exploration stems from the shif from Java 
to JavaScript among web browsers. When it was announced that the mainstream web 
browsers would no longer support Java, the developer hurried to rewrite the CalcPlot3D 
applet in JavaScript. Tis granted the developer not only the opportunity to refect on the 
cross product exploration and make additional pedagogical and mathematical improve-
ments described in the next sections, but, also, it aforded students and teachers the option 
of accessing the applet not just on desktop computers, but also on tablets and cell phones, 
thereby increasing the assortment of potential instrumental orchestrations of the cross 
product exploration. 

Revision of the mathematical content of the cross product exploration. Since the devel-
oper found himself rewriting the cross product exploration tool, he was able to incorporate 
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his own ideas and the suggestions both from the frst two authors and from other instruc-
tors. Some changes have been made to the wording, content, and type of questions in the 
exploration, while other signifcant modifcations have been made to the visualization 
applet. Te revisions are informed both by instructor feedback and by research on student 
understanding of vectors. 

Revision to the applet. Research indicates that students have trouble with the right-hand 
rule. Furthermore the positioning of the vectors (e.g., the ease of applying the right-hand 
rule without needing to twist one’s arm; the plane on which the vectors are situated; and 
the alignment to a local reference frame) have measurable efects on students’ ability to 
apply the right-hand rule (Kustusch, 2016). One of the limitations of the original cross 
product exploration is that vectors are always situated on the xy-plane. Tis may have led 
to students incorrectly over-generalizing responses to question 1 in the exploration (see 
Table 14.3). For instance, one common response to this question was “[Te cross prod-
uct] point[s] in the z axis direction” (VanDieren et al., 2017). Since Marton and Booth’s 
Variation Teory suggests that activities be structured to ensure students experience a 
diversity of examples (Lo, 2012), students should experience vectors in a variety of orien-
tations, not just those on the xy-plane. Terefore, the developer has added a feature (and 
questions) to the cross product exploration designed to engage students with examples of 
vectors of of the xy-plane (see Figure 14.3). 

Another limitation to the original applet was that it always graphed the cross product 
of the red vector with the blue vector (Red × Blue). For students who are not too familiar 
with the right-hand rule, it is not apparent that there is a diference between the cross prod-
uct Red × Blue and the cross product Blue × Red. To address this, the developer created 
another feature that allows students to toggle the order of the cross product that is graphed 
(between Red × Blue and Blue × Red). 

Another change, indicative of many others, resulted from email correspondence between 
the developer and another instructor. Tis instructor required his students to use radians 
when referring to angles between vectors, and he, therefore, requested that radians be sup-
plied in the applet. Te developer incorporated this request and included both radians and 
degrees in the new instance of the applet. 

Revision to the questions. Troughout the years several questions on the original activity 
in Tables 14.2 and 14.3 have been reworded, and others added. Early on, the frst author 
suggested adding two questions about the efect of scalar multiplication on the cross prod-
uct to better align with her learning objectives: 

• Keeping the red vector fxed, vary the length of the blue vector but do not change its 
direction. What happens to the magnitude of the cross product of the red and blue 
vectors when the blue vector’s magnitude is doubled? Tripled? Cut in half? 

• How do the geometric interpretation of the magnitude of the cross product and your 
exploration in the previous problem help explain the formula: 

c(u v) ( ) v u  cv ?´ = cu ´ = ´( )  
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 Another change has been made to the questions because students seem to have the most 
difculty answering questions 4 and 5 in Table 14.3. Ofen the student responses involve 
a negative angle (VanDieren et al., 2017); so, in addition to rewording these questions, 
another question about the possible angles between two vectors has been added. Even with 
these modifcations, students still struggle with questions 4 and 5 (VanDieren et al., 2017), 
which is consistent with the research literature (e.g., Kustush, 2016). To address this, the 
frst author has added another question to the exploration to potentially help students to 
focus on the orientation, as opposed to the location or angle, between two vectors: can you 
fnd two sets of vectors (two red and two blue) in the xy-plane for which the cross product 
of one pair is in the positive z-direction and the cross product of the other is in the nega-
tive z-direction, but the angle between each pair of vectors is the same? (Give an example 
or explain why this is not possible.) 

Although the most demanding aspect of the cross product for students seems to be 
the right-hand rule, the original pre- and post-tests do not directly question students 
about this topic. Furthermore, question 7 (see Table 14.3) may not validly measure stu-
dent understanding of the right-hand rule since it is a multiple-choice question involving 
only two options which encourages guessing and does not capture the common misunder-
standing of students that the cross product is a commutative operation. Terefore, in later 
versions of the cross product exploration, question 7 in the exploration has been rewritten 
to include more incorrect options, and new right-hand rule questions have been added to 
both the pre- and post-test to better align with this learning objective. 

Finally, research indicates that the positioning of the vectors (relative to one another 
and to an axis) can afect how well a student can execute the right-hand rule (Kustusch, 
2016). By refecting on the wording of the questions in the pre- and post-test it has become 
apparent that the multiple-choice options only include vectors in the frst two quadrants. 
To better test student understanding and to encourage students to think about other con-
fgurations of vectors outside of the frst two quadrants, a greater variety of multiple-choice 
incorrect options have been added to questions 1 and 2 of the pre- and post-test which 
depict vector pairs outside of the frst two quadrants. 

Variety of pedagogical options for implementing the cross product exploration. With 
the changes to the delivery method, the activity questions, and the applet, there is an 
increased variety of pedagogical options for implementing the cross product exploration. 

By moving the questions from SurveyMonkey to Blackboard and WeBWorK, more 
agency is given to instructors to select, redesign, and create new questions and learn-
ing activities. Additionally, in both WeBWorK and Blackboard more intentional learn-
ing activities may be assigned as these platforms allow for instant grading, automated 
feedback, and instructor comments—even if there is concern the students do not access 
instructor comments afer the assignment is turned in. 

Giving instructors agency to create new problems leads to a greater diversity of types and 
levels of pedagogical dimensions of learning activities. For instance, the new question— 
asking students to fnd two pairs of vectors with the same interior angle, but cross products 
in opposite directions—may be considered a produce and/or create learning activity with a 
signifcant degree of constructive and active student engagement. 
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Finally, several changes have been made to the applet itself that may lead to new peda-
gogical implementations. Up until the translation from Java to JavaScript, instructors 
using the cross product exploration were limited to in-class demonstrations on a pro-
jected lectern computer, in-class assignments in which students had access to laptops 
or desktop computers (e.g., a computer lab or 1:1 laptop schools), or out-of-class assign-
ments. Now that the applet runs on cell phones and tablets, teachers have more options 
for classroom implementation. Another feature of the new version of the applet is the 
“encode view in URL” option. Tis feature allows students and instructors to save their 
work in CalcPlot3D as a URL. Tis gives instructors more options for designing new 
classroom activities and provides students with a way to submit images from the applet 
as part of their solutions to learning activities. Te frst author has implemented this 
feature in several learning activities for other multivariable calculus content. For exam-
ple, students are asked to fnd a Bezier curve which describes a path of an object that 
begins at the point (2,0,0), ends at the point (–2,1,1), and does not intersect the sphere 
of radius 1 centered at the origin. Since there are infnitely many solutions to this, an 
easy assessment mechanism for the instructor is to ask students to graph their solution 
in CalcPlot3D to visually verify that it is correct and then copy their encoded URL into 
an essay prompt box. Te instructor can follow the link to see and assess the student’s 
solution. 

14.7 DISCUSSION AND CONCLUSION 
Tis study aims to determine the instrumental orchestrations diferent instructors employ 
in conjunction with the cross product exploration and how the cross product explora-
tion has evolved as a result of the changing mathematical, pedagogical, and technological 
understanding of the creator and early-adopting instructor. Although the study examines 
documentation of use from only two individuals, it provides insights into the cyclic pro-
cess of planning, designing, and implementing an online digital resource, in general, and 
on the future development of the CalcPlot3D applet, in particular. Furthermore, the study 
has tested the synergy of the two theoretical frameworks (TPACK for meaningful learning 
with ICT and instrumental orchestration) in an undergraduate-level mathematics con-
text; it has also highlighted limitations of the instrumental orchestration framework in an 
online context. 

While a self-study has inherent limitations in scope and generalizability, there are 
some benefts to this approach over the existing literature. Our analysis of eight years’ 
worth of correspondence and documentation covers a broader timeframe than most other 
studies on larger samples, allowing us to examine not just one instance or version of an 
online resource but how one resource has changed over time. Additionally, although much 
research on the appropriation of technology into the classroom focuses on the instructors 
and developers, viewing students as passive recipients of change (Lin, 2001), our study 
incorporates student feedback (documented informally through email correspondence 
or more formally in outcomes assessment reports and research studies) in the form of 
responses to exploration questions and in the form of comments on the usability of the 
exploration. Te feedback from students has not only contributed to the assessment of the 
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efectiveness of the cross product exploration, but has been an impetus for changes in the 
activity and its instrumental orchestrations over the years. Furthermore, undertaking this 
study has served as a catalyst to further the discussion and research among the authors on 
not only how to improve the appropriation of the cross product exploration activity and 
CalcPlot3D in general, but also on how to improve student understanding of multivariable 
calculus concepts. 

14.7.1 Further Development of Online Resources 

Tis study points to the variation in instrumental orchestrations of instructors implement-
ing an online resource in their classroom. In particular, the prerequisite knowledge of the 
students and the positioning of the artifact in instruction cannot be assumed to be the 
same across all appropriations of a given resource. Tis has, in part, inspired the developer 
to create an online help manual* for the CalcPlot3D applet, which may provide instructors 
with a variety of options and information (e.g., useful prerequisite knowledge) for imple-
menting the exploration in their classes. 

Another diference in instrumental orchestrations observed in this study involves the 
intentional pedagogical dimension. Tis may be useful to consider as we develop other 
exploration activities for complex concepts using multiple representations that may require 
several layers of understanding (e.g., Ainsworth’s (2006; 2008) six types of understanding). 
Te intentional dimension can be realized by providing immediate feedback as to whether 
a student has responded correctly to a problem. Tis feedback can prompt students to 
search for alternative solutions and refne their thinking iteratively as they work, rather 
than at the end of the process, thereby minimizing the formation of misconceptions (Olive 
et al., 2009). As we build new explorations in Blackboard and WeBWorK we will criti-
cally examine the option to provide immediate feedback to students as they work through 
problems. 

Tis study also demonstrates that providing instructors agency in adapting the 
resource to ft their needs and circumstances can improve the resource overall. As the 
CalcPlot3D applet continues to evolve, the developer and early-adopting instructor will 
continue to communicate with each other and with other instructors so that they may 
incorporate instructors’ experiences with the applet into future revisions and provide 
instructors more opportunities for adapting the resource. Tis study may also encourage 
others as they develop and revise digital resources to communicate with early-adopting 
instructors. 

14.7.2 Synergy and Limitations of the Theoretical Frameworks 

Because the TPACK framework draws criticism for not having efective operational defni-
tions, we used the TPACK for meaningful learning with ICT framework to analyze our 
data instead of identifying specifcally the pedagogical, technological, and content knowl-
edge of the developer and the early-adopting instructor. With this approach, the TPACK 
is implicit in the choice of the learning activities and pedagogical dimensions. Overall the 

* c3d.libretexts.org/CalcPlot3D/CalcPlot3D-Help/index.html. 
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two frameworks employed in this study worked well together and allowed us to refect on 
the planning, design, and revision of the cross product activity. Although the taxonomy for 
learning activities was developed for K-12 mathematics content, it was well-suited for our 
undergraduate-level context. 

One drawback of the frameworks that we observed was that the categories for instru-
mental orchestrations may be insufcient to capture the types of orchestrations that 
instructors use in hybrid or online courses or in resources accessed on cell phones or tab-
lets. Te categories were originally developed through observations of on-ground teach-
ing, but there appear to be diferences in orchestrations between on-ground and online 
courses. For example, the developer has used this cross product exploration activity in 
his online courses for several years. His instrumental orchestration of providing students 
a video lesson or PDF description of how to use the applet may not squarely ft into the 
technical demo category, and there may be signifcant diferences between this orchestra-
tion and another instructor showing the students in person how to use the instrument. 
Another example concerns the work-and-walk-by orchestration. Would being available for 
students via email to answer a question be considered the same as an instructor walking 
around the room guiding students on work that she observes and ready to answer a student 
who raises his/her hand? Tese examples indicate the need for further research on instru-
mental orchestrations in online learning environments. 

Since the ability to use the applet on cellphones and tablets is relatively new, the early-
adopting instructor and developer have not yet had the chance to explore how this may 
change their instrumental orchestrations and their students’ instrumental genesis of the 
artifact. Orchestrations using the cell phone or tablets may not be represented in the cur-
rent taxonomy. Future research on a larger sample of instructors may be needed to identify 
new categories or clarify existing categories of instrumental orchestrations when using a 
cell phone or tablet instead of a computer. 
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15.1  INTRODUCTION 
Te Math and Statistics Learning Centre (MSLC) at the University of Toronto Scarborough 
(UTSC) has been established as a collaboration between the departments of Computer and 
Mathematical Sciences and the Centre for Teaching and Learning both to support students 
taking undergraduate mathematics courses and to enrich their learning experience in 
mathematics in general. Various small group sessions, review modules, and seminars have 
been developed and ofered. Special attention has been given to understanding the sources 
of students’ challenges in learning mathematical concepts and exploring new methods to 
engage students. It is our goal to create a vibrant, welcoming environment for students to 
come to appreciate the beauty and utility of mathematics. 

Of the various learning activities developed at the MSLC, the series of review modules 
has proven to be particularly successful. Te material covered in these review modules 
include algebraic manipulations, inequalities, and functions (including trigonometry 
and inverse functions). Tese review modules have been developed in diferent formats 
over the past several years. Tey are ofered at the beginning of each term on a volun-
tary basis for students who wish to improve their skills in mathematics fundamentals. 
Additionally, a short non-credit summer course has been created which covers much of 
the content of the review modules. Te impact of this short course on students’ learn-
ing has been studied in collaboration with the UTSC psychology department. It was 
discovered that in addition to improving students’ mathematical skills, the students 
also found the course enjoyable and rated it positively. Students also indicated that the 
course helped them adjust to the transition from high school to university [1]. In the 
spring of 2015, the MSLC received funding from the Council of Ontario Universities 
(COU) to develop online video versions of the review modules. We were able to develop 
12 online modules by the end of the summer of 2015. Modules 1–8 cover foundational 
concepts, and modules 9–12 cover advanced concepts. Currently, the online modules 
are used as self-directed learning support in various UTSC calculus courses. In addi-
tion, UTSC ofers an Online Mathematics Preparedness Course during summer, which 
makes use of the online modules. Te design and implementation of the various com-
ponents of the learning modules in multiple support contexts are discussed in Sections 
15.2–15.5 of this chapter. Te resources may be accessed at: www.utsc.utoronto.ca/ 
math-instruction/ 

In order to develop students’ writing and communication skills in mathematics, the 
MSLC launched its annual magazine and Math In Action Journal in 2014 and 2017 respec-
tively. MSLC Magazine is a resource for what is happening at UTSC’s Math & Statistics 
Learning Centre. Math In Action (MIA) is an undergraduate research journal developed 
using a Teaching Enhancement Grant. Te journal aims to provide a platform for mathe-
matics undergraduates to share their work with peers and academics alike. Math In Action 
may also be used for research assignments in senior undergraduate and graduate math-
ematics courses. It is our hope that this journal will help to foster greater student engage-
ment in mathematics programs. It will also give researchers the opportunity to interact 
with students and inspire greater interest, with the hope of creating stronger generations 

www.utsc.utoronto.ca/
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of future researchers. Submissions to MIA are accepted in the form of video presenta-
tions, along with a two-page extended abstract. Students are encouraged to use creative 
approaches in presenting their work. Te design and implementation of MSLC Magazine 
and Math In Action Journal will be discussed in Sections 15.6–15.7. Te journal may be 
found at: www.mathinactionjournal.com/. 

15.2  PEDAGOGICAL APPROACHES 
In the design stage of the online modules and MIA, we have considered well-established 
pedagogical approaches, theories, and best practices such as constructivism, backward 
design, educated assessments, promotion of active learning, and creativity. Below I will 
explain the implementation of such approaches in modules and MIA design in more 
detail. 

15.2.1 Integrating Technology in Teaching Mathematics 

Te Principles and Standards for School Mathematics state that: “Technology is essen-
tial in teaching and learning mathematics; it infuences the mathematics that is taught 
and enhances students’ learning” [2, p. 11]. Tere are many opportunities to integrate 
technology into teaching methods. Tablets, smartphones, and internet access can all be 
efectively incorporated into teaching. Selwyn [3] indicates that the use of technology 
will individualize and personalize learning. Teachers can create videos of their lessons 
and stream them online to allow multiple viewings for students [4]. Videos should cover 
the main topics for 10 to 15 minutes, and can be posted on the teacher’s course website 
[5]. Teachers can verify students’ viewing of videos by embedding questions, tasks, or 
quizzes [6]. Moreover, students’ development of questions while watching a video lesson 
will increase their conceptual understanding of the subject [5, 6]. Efective integration 
of technology allows students to use their current understanding of topics to acquire 
more advanced knowledge. Tis notion is consistent with the constructivist theory of 
learning in mathematics education. Constructivism advocates an active learning envi-
ronment in which students construct their own knowledge through senses and social 
negotiations, with the aid and guidance of their mentors [7]. In this model, instructors 
are considered facilitators rather than dispensers of knowledge, and students construct 
their own knowledge through realistic exercises and social interactions. In the 1980s, 
the National of Council of Teachers of Mathematics [2] published documents which 
described the importance of encouraging students to construct their own mathemat-
ical knowledge in order to become profcient and efective learners of mathematics. 
Tis new approach to teaching and learning mathematics is referred to as reform in 
mathematics education. In the design of the modules, we attempted to model an active 
learning environment to better guide students in the process of building their new 
knowledge. Consequently, we created diagnostic tests that students could use to exam-
ine their knowledge. Once a weakness is identifed, students can watch the relevant 
video lessons to enhance their skills. Te video lessons typically start with a question. 
While the instructor tries to solve the problem, she covers the background concepts and 

http://www.mathinactionjournal.com
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formulae. Te message here is that questions are the most valuable starting points for 
building new knowledge. 

15.2.2  Backward Design 

Research has shown that relevant learning objectives promote deep learning [8, 9, 10, 11]. 
Learning objectives are statements that describe knowledge or skills that students should 
have acquired by the end of a particular assignment, class, course, or program. Properly 
selected learning objectives can help to challenge students to learn concepts beyond the 
level of basic factual recall. In the design stage of the modules, we used a backward design 
process by identifying content objectives with reference to the cognitive domain of Bloom’s 
Taxonomy [12]. Bloom’s Taxonomy describes a way to organize skills into three domains: 
cognitive, psychomotor, and afective. Each domain consists of six or seven levels, from the 
most basic to the most complex (see Figure 15.1 for more details). Te backward design 
process emphasizes the instructor’s role as the designer of student learning processes, link-
ing learning goals to corresponding assessments of student understanding, all of which are 
supported by efective, scafolded learning activities. 

For example, the content goals for Module 1 are listed below: 

Module 1: Algebraic Manipulations 
At the end of this unit students will be able to: 

• Recognize diferent types of numbers (natural numbers, integers, rational and irra-
tional numbers) based on a criterium or a simple justifcation 

• Use proper interval and set notations and operations for expressing a given set of 
numbers 

• Apply proper algebraic manipulations and operations for simplifying an expression 

Dee Fink presented an alternative taxonomy of learning objectives in 2003, which shifs 
the emphasis from content to the skills that students will retain from the course [13]. It 
argues that learning objectives should include certain humanistic dimensions, such as 
caring about a subject, personal and social implications of knowing a subject, etc. Fink’s 
Signifcant Learning Taxonomy integrates cognitive and afective learning domains in a 
non-hierarchical form, and can be used to complement Bloom’s Taxonomy. 

FIGURE 15.1 Cognitive, afective, and psychomotor hierarchies in Blooms Taxonomy. 
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With Fink’s Signifcant Learning Taxonomy in mind, a list of human dimensional 
goals were identifed in the module design stage to support mathematical thinking and 
understanding: 

• Provide students with a set of resources that would help with increasing students’ 
interest in the subject. 

• Provide a set of resources for students to enable students to easily monitor their own 
progress and identify their own weaknesses. 

• Help students to realize and apply better learning strategies. 

• Develop mathematical thinking and understanding in students by guiding them 
towards deep thinking rather than “memorizing all of the rules” by providing chal-
lenge questions in the assessment tests. 

While the Bloom’s Taxonomy was useful for choosing the modules content, Fink’s 
Taxonomy was more useful for identifying successful methods in mathematical learning 
and modeling such methods. For example, the idea of creating an animated overview of 
each module helped to raise students’ interest in the subject 

To have a product with a strong design that helps students to learn topics deeply, we 
attempted to come up with teaching and learning activities that were well-aligned with 
our learning goals and assessment tools. Ten we could hope that even years later, students 
would be able to recall what they had learned from the modules. Te diagram in Figure 
15.2 emphasizes this idea based on the Integrated Design model [13] (Figure 15.2). 

We attempted to design the learning support modules in such a way that instructors 
would have the fexibility to use them anytime, anywhere, at whatever pace suits their spe-
cifc teaching goals. In order to achieve this objective, the online materials are provided as 
a set of sequenced resources, illustrative of a sequence of scafolded lesson units. In other 

FIGURE 15.2 Integrated design model. 
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words, the lesson modules are in order from most basic to most advanced. We have also 
considered accessibility throughout the entire design process in order to maximize the 
usefulness of these modules for all learners. 

15.2.3  Educated Assessments 

Te module structure refects a student-centric design. One key component is the orien-
tation stage, which links to additional guides and supporting resources. Materials and 
assignments are organized into “chunked” units to support ease of access and students’ 
progression through sequenced and scafolded learning activities. Screencast segments 
present content, but also model approaches to problem solving. To maximize student 
engagement, the activities emphasize individual learning, but may also be adapted by 
instructors for group activities using synchronous learning environments or discussion 
boards, or for use within academic success/skills centers. In addition to self-directed activ-
ities, the modules include optional activities for individual or group assignments in online 
courses or in the classroom component of hybrid courses. An instructor’s guide accompa-
nies each of these activities. Both the content and activities are supplemented with a fex-
ible assessment framework, allowing course instructors to adopt assessments as iterative 
formative assessment, or as part of their overall summative grading scheme [14]. 

15.2.4 Promotion of Active Learning 

Research shows that students who have active, inquiring minds are more likely to be suc-
cessful in learning mathematics [11, 15]. Student retention rate will be signifcantly higher 
if a course makes use of appropriate activities [16]. In each module, we model the inquiry 
process and guide students in asking questions, as well as answering them. Te modules 
are designed to strengthen the foundational skills needed for success in all standard frst-
year calculus courses, as well as to provide thorough explanations of the relevant cal-
culus topics. Students may use these modules independently or follow the guidance of 
their instructor. A scafolded progression through the various activities will support the 
development of the active level of mathematical thinking appropriate for university under-
graduate courses. Te aim of these activities is to improve students’ skills, enthusiasm, 
motivation, and confdence. 

15.2.5 Promotion of Creativity 

In many mathematics programs, the course design is usually focused on lower levels of 
thinking such as memorization, understanding, and application of concepts and methods. 
However, we need to consciously develop students’ higher-order thinking processes such 
as analysis, evaluation, and creation. Consider the fact that creativity sits at the top of 
Bloom’s Pyramid. What is creativity? Can we train ourselves to be more creative? Can we 
teach creativity to students? And how can we teach creatively? 

According to Tony Buzan, 

creativity, by its very nature, implies getting away from the norm. Normal is that to 
which your brain has become accustomed; that which gives you no surprises; that 
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which remains the same; that which no longer shocks, startles, surprises or pro-
vokes you; that which does not stretch your imagination. To create means virtually 
the opposite: to bring into existence something new; to give rise to; to establish an 
association that has never been established before 

[17]. 

Te primary way that our brains learn is by association and connection. Te way a central 
idea connects to related concepts shapes how we think about a subject. In order to generate 
new ideas, we need to make more and more connections between diferent ideas, just like 
a mind map. Creativity is a conscious and associative process. Our minds’ potential for 
generating new ideas is all but limitless, considering the infnite possibilities of connecting 
details to one another. A practical deliberate efort toward thinking creatively could help 
us to design more innovative lectures and activities in order to stimulate our students’ 
creative thinking in turn. 

Another way to look at creativity is illustrated by Edward Bono’s Six Hats Tinking 
Model. According to Edward Bono, one can break down the process of thinking into six 
stages and represent each stage with a colored hat. We can imagine ourselves constantly 
changing these hats until we fnd an appropriate solution to a given problem. In this model, 
the blue hat is responsible for defning a problem clearly, managing our use of time and 
fow of ideas, and assisting in communication between wearers of diferent hats. Te hat 
is blue like the sky, which demonstrates its leading role. Some of the types of questions 
that we might ask while wearing this hat could be: “what is the problem that we are fac-
ing? What are our goals and desired outcomes?” Te white hat looks like a blank piece of 
paper, ready to record whatever data our inquiry uncovers. Te types of questions that we 
might ask while wearing this hat might be along the lines of: “what do I know and what 
don’t I know about this problem?” Te yellow hat represents the initial optimistic stage of 
thinking about a problem. It provides us with a roadmap to our ultimate goal, and gives us 
the motivation to work towards it. It deals with questions like: “what are the benefts and 
potential positive outcomes of our proposed solutions?” Te black hat represents the pes-
simistic stage of thinking, which is every bit as necessary as the optimistic stage, because it 
can help us to avoid making mistakes as we carry out our solutions. Te types of questions 
we might expect from the black hat could include: “what are some possible faws of this way 
of thinking? What are the drawbacks of our method?” Te red hat is all about emotions 
and intuition. While wearing this hat, we are concerned with internal conficts, which is 
why the hat is the color of the blood that courses through our veins. Te types of questions 
that we might ask at this stage could include “is this the right approach? Intuitively, what 
seems to be the best way to solve this problem?” Finally, the green hat is concerned with 
creativity itself, which is why it bears the color we most associate with the natural world. 
While wearing this hat, we strive to bring new methods and ideas into the foreground, in 
a way that surprises the wearers of other hats. While wearing this hat, we might ask ques-
tions like: “could we solve this problem more easily using another method? What other 
approaches might we consider?” 
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As discussed in [18, 19], we allow our students to wear the white hat more ofen than the 
others, and in my opinion, we ought to strive for a more complete wardrobe of hats. Tis is 
why we created MIA—to encourage students to wear their green hats more ofen, both as 
undergraduates and beyond. 

15.3 ONLINE CALCULUS MODULES: DESIGN 
OBJECTIVES AND ORGANIZATION 

It is common for frst-year students to have difculties passing their frst-year calculus 
courses. One of the main reasons for this is that they have generally not been taught the 
foundational skills required to succeed in these courses very well in high school. In order 
to help students to understand required concepts, we have developed review modules for 
students who wish to brush up on foundational concepts, which are ofered at the begin-
ning of each term. Over the past several years, frst-year calculus instructors have included 
these modules in their course syllabi in various ways. For example, students have been 
ofered bonus marks for attending extra-curricular sessions involving the review modules. 
Trough using the modules for numerous semesters, we have been able to identify com-
mon issues that students have had in learning foundational concepts. Tis opportunity 
has helped us to refne our methods for teaching the key topics with a particular emphasis 
on active learning and carefully chosen examples. Both students and course instructors 
express that the modules have been very useful in improving students’ understanding of 
basic calculus topics. In addition, we have developed a short non-credit summer course 
using the content found in the review modules. Te impact of this course on students’ 
learning has been studied in collaboration with the UTSC psychology department. We 
found that in addition to improving students’ mathematical skills, students found the 
course enjoyable and rated it positively. Students also expressed that the course helped 
them to adjust to the transition from high school to university [1]. Afer the study was 
completed, we started to think about creating an online version of the modules with a 
similar structure that students could use on their own. In the spring of 2015, the MSLC 
received funding from the Council of Ontario Universities (COU) to develop these online 
video modules. We were able to develop 12 online modules by end of the summer of 2015. 
Modules 1–8 cover foundational concepts, and Modules 9–12 cover advanced concepts. 
Te design and implementation of the various components of the learning modules in 
multiple support contexts were discussed briefy in [20]. In this section, we review the 
process in more depth. 

15.3.1  Module Components 

We have developed 12 online modules: Modules 1–8 cover foundational concepts, and 
Modules 9–12 cover advanced concepts. Each module contains the following: 

Introductory Animation: Each module begins with a three- to four-minute animation, 
totaling 39 minutes across all modules. Te main purpose of the animations is to introduce 
the module topics in an engaging way. Te animations are also useful for the purposes 
of visualizing more the abstract topics. Our goal was to create a learning tool that would 
help improve students’ (ofen negative) attitudes toward learning mathematics. We formed 
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a team consisting of an educational developer, a lead instructor, and a creative advisory 
team which included two students. Te team worked together to write the mathematical 
content as well as the animation scripts. Te videos were created in collaboration with 
the animation company Flikli Video Content Studios. Our team contributed to several 
rounds of revisions of the storyboards, provided feedback to the animation company, and 
sent the animations to collaborators and reviewers from other universities for additional 
feedback. For accessibility purposes, the animations are provided with audio transcripts 
and descriptive video scripts. 

Te fnal product impressed the reviewers; they remarked that the cartoons were not 
only educational, but also fun to watch. In my own calculus courses, I ofen use the ani-
mations to introduce topics or reinforce key concepts. I usually start calculus courses for 
mathematics and computer science majors by explaining proof techniques, making use of 
a number of examples. I show Module 12 as a part of my introductory lecture. Students 
tend to assume that I found the animation somewhere online, until they see the little car-
toon fgure of me appear on screen, which never fails to get a laugh (Figure 15.3). 

Te details of the scenes and visual tools that we used to create the animation for Module 
12 are provided in the appendix. 

Lessons: each module includes two to fve videos, which model approaches to problem 
solving as relates to the module’s content. Te combined length of the videos is around ten 
hours. All that was used to create these lessons was a USB camera, a microphone, printed 
card stock, pencil, and lined paper. Each instructional video begins with a few questions. 
For example, in the module which covers solving inequalities, we used fve examples of 
diferent types of inequalities. We listed important rules and laws relating to a specifc 
concept on a couple of pieces of card stock. Te instructor used the card stock to write out 
solutions to the practice questions for the unit. Te learning atmosphere of the videos is 
meant to be simple, just like traditional teaching on the blackboard. Te purpose of the 
lessons is to engage students as they learn mathematics in a simple, natural, and construc-
tive manner. Te lessons have been organized into “chunked” units for ease of access, and 
the lessons and activities are sequenced in such a way that the students’ skillsets improve 
gradually and fuidly. 

Tese videos were also sent to University of Toronto Mississauga (UTM), Ontario 
Institute for Studies in Education (OISE), and McMaster collaborators and reviewers for 
additional feedback. 

FIGURE 15.3 Animations characters Susie and Tommy. 
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FIGURE 15.4 A lesson snapshot. 

For accessibility purposes, the lessons are provided with audio transcripts (Figure 15.4). 

15.3.1.1  Modules 1–8 
Diagnostic Test + Solutions: Tere is an initial diagnostic test in order to determine the 
students’ understanding of basic mathematical skills. Te test is in multiple-choice for-
mat and includes questions related to Modules 1–7. Te test includes 56 questions (eight 
questions from each of Modules 1–7). Further diagnostic assessments are provided at the 
end of Module 7, which is a transition point between foundational and advanced concepts 
[21, 22]. 

Practice Questions + Solutions: Additional questions (and their solutions) are pro-
vided on a variety of topics for each module. Tese questions were designed using Bloom’s 
Taxonomy. Some more challenging problems have been added to the problem sets to stim-
ulate students’ creativity and innovative thinking in mathematics. Our hope is that stu-
dents will learn how to be critical thinkers through attempting to solve these problems. 
From there, we hope that students will apply these skills to other courses, and experience 
more “Eureka!” moments as they continue to learn. Students are referred to the instruc-
tional videos for additional support if they have difculties with the practice questions. 

Assessment Test + Solutions: Once students feel they have achieved a solid understand-
ing of the module’s content, and are ready to test their skills, they can try the assessment 
test. Ideally they won’t look at the answers until afer they have taken the test. If students 
do well on the test, they are likely prepared to excel in this topic when it arises in their 
coursework. If they fnd the test difcult, it likely means that they should spend some more 
time with the videos and other materials provided. 

15.3.1.2  Modules 9–12 
Calculus Notes: Tis is a 40-page handbook explaining selected topics through carefully 
chosen examples, including an additional set of practice questions (and their solutions). 
Tis is expected to help students to gain a better understanding of the concepts in general 
and improve their ability to solve related problems. 

LaTeX fles are available for accessibility accommodation purposes. 
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15.3.2  Implementation 

Since the fall of 2015, the modules have been used extensively in MATA31 (Calculus for 
Computer and Mathematical Sciences) at UTSC as an additional resource. In addition, 
Modules 1–7 were used as primary resources for a new online mathematics preparedness 
course ofered at UTSC, a course designed for students lacking a solid background in high 
school mathematics. In this section, we discuss the structure of this course, which was 
ofered in the summer of 2016. 

15.3.3 Online Mathematics Preparedness Course—2016 

Te course covered seven modules in three weeks during the summer. Te weekly struc-
ture was as follows: 

Tuesday and Wednesday—students watched the animations and lessons within the 
assigned modules. 

Tursday—students did the practice questions within each module as well as the diag-
nostic tests. 

Friday—students completed the assessment test for each module by 5 pm. 

Sunday—grades were posted on Blackboard. 

Te course assessment was based on seven assignments worth 5% each and a fnal exam 
worth the remaining 65%. Te assignments and exam were all available online, and stu-
dents were required to submit their solutions online by a certain time. Te fnal exam was a 
three-hour test with ten multiple-choice and nine problem-solving questions. Students were 
required to submit their solutions on the course Blackboard page. Since the course was not 
for credit, we were not particularly concerned with any possible cheating. However, students 
who received a grade of more than 65% in the course were permitted to use it as a pre-req-
uisite instead of the equivalent high school course. Eighteen students completed the course 
assignments and exam, 12 of whom passed the course with a grade of more than 65%. 

Te facilitator of the course was assigned a total of 25 hours for the following course 
activities: 

• Preparation of course management system 

• Monitoring students’ progress 

• Answering students’ questions online 

• Marking three sets of assignments and the fnal assessments 

• Moderating students’ posts on the discussion board 

In my undergraduate mathematics courses, I employ active learning techniques such as 
Tink-Pair-Share, Say Something, and Ticket Out Te Door. My observations over years 
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of using these techniques afrm the idea that active learning increases interest among stu-
dents and promotes critical thinking. Additionally, active learning leads to a deeper under-
standing of the content, higher grades, improved self-esteem, and a stronger tendency to 
stay on task. Efective usage of active learning techniques can help to better engage stu-
dents. In fact, as shown in Figure 15.9, active learning and motivation are two main com-
ponents of student engagement. In the Venn diagram, student engagement is described as 
a product of motivation and active learning. In the Double Helix model, however, active 
learning and motivation interact and intensify each other’s efect [16]. However, designing 
these types of activities is both difcult and time-consuming for the instructor. It’s just 
like Sandra Grifths says: “Successful small group teaching does not happen by chance. 
Planning for efective small group teaching is as important as planning any other teaching 
activity” [23] (Figure 15.5). 

Our main concern going forward is which types of activities we can design for the Online 
Mathematics Preparedness Course to engage students even further. One solution we have 
tried in the summer of 2017 is using an online discussion board. During each step of the 
process, the instructor encouraged students to post their questions on the Blackboard dis-
cussion board. She closely monitored the discussion and responded to students’ questions. 
Students were reminded of the value of peer-to-peer learning. In addition, a participation 
grade was assigned for these Blackboard posts which were worth a total of 5% of the course 
grade. Te fnal exam’s weight in the syllabus was reduced to 60% to accommodate this. 
Figures 15.6 and 15.7 are screenshots of the discussion board and a sample student answer to 
one of the posted questions. For this summer, we extended the time line of the course from 
three weeks to one month to allow students more time to absorb the concepts (Figure 15.8). 

Te total page views or on-click actions for videos from May 1, 2017 to April 22, 2018 
were 20,801, while 13,848 unique page views were recorded during the same time slot. 

15.3.4  Challenges 

Working with a team of people with diverse skills, experience, and attitudes from vari-
ous institutions helped us to achieve our goal. Gathering information on the students’ 

FIGURE 15.5 Student engagement models [1]. 
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FIGURE 15.6 Discussion board snapshot. 

FIGURE 15.7 A sample student post. 

FIGURE 15.8 Stats on video hits or views. 

perspectives enriched the project, and we believe it has helped to foster student engagement 
and will perhaps even help students to learn other concepts more easily in the future. At 
the beginning of the project, it was difcult to accurately estimate the efort required to 
meet our quality standards. Constant efort was required to rein in the pacing and scope 
of the project. We could have made good use of an additional two to three months to com-
plete the project at a more comfortable pace. 

Te idea of creating video animations for calculus courses was quite ambitious, since 
none of us had any prior experience with video production. Because of this, we had to 
spend quite a lot of time making sure that the videos were mathematically accurate while 
also being interesting and engaging to watch. Despite the challenges, it was a lot of fun to 
see how the animation company used our scripts and turned them into animations. 

Another challenge arose from the fact that the course instructor did not have any expe-
rience teaching online. It was difcult to fnd tools to help her feel comfortable teaching 
in this way. Because of this, we decided to use simple tools such as a USB camera, micro-
phone, card stock, pencil, and paper to simulate a teaching environment more familiar 



        

  

 

 

308 ◾ Teaching and Learning Mathematics Online 

FIGURE 15.9 Te homepage of MIA. 

to the instructor. It also took us quite a long time to tape the frst few video lessons, as we 
were ofen interrupted by unwanted background sounds—birds chirping, loud colleagues 
passing by, and so on. 

15.4 MATH IN ACTION JOURNAL 
We have used what we learned developing these online modules to develop a new online 
journal called Math In Action (MIA). Te journal is meant to provide students studying 
mathematics and statistics with a platform to share their research with colleagues and 
faculty alike. MIA aims to serve as a stepping stone for aspiring mathematical researchers 
on their path to academia. It may also be used for research assignments in senior under-
graduate and graduate mathematics courses. Tis journal will help to foster greater stu-
dent engagement in mathematics programs. It will also give researchers the opportunity 
to interact with students and inspire greater interest, with the hope of creating stronger 
generations of future researchers. Te journal may be found at: www.mathinactionjournal. 
com/. 

MIA is frst and foremost a tool meant to foster students’ creative thinking. 
I came up with the idea for this journal while I was teaching a fourth-year undergraduate 

course called “Classical Geometries and their Transformations.” One of the assignments 
for the course is a research project on modern topics in geometry. My goal in including this 
assignment on the syllabus is to give students the opportunity to apply their highest levels 
of thinking to mathematics, such that they can produce creative work in a mathematical 
context—something that does not happen ofen at the undergraduate level. For the assign-
ment, students are divided into groups of three or four and assigned a research topic in 
modern geometry. Te purpose of the assignment is to write a ten-page research report in 

http://www.mathinactionjournal.com
http://www.mathinactionjournal.com
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the format of a standard academic mathematics journal. In addition to the reports them-
selves, students must give ten-minute presentations of their work four times during the 
semester. On a single presentation day, there are three distinct topics per group and the 
group members will be randomized each presentation day to allow students to listen to a 
variety of topics. At the end of these short presentations, peers ask questions and provide 
feedback to each other for fve minutes. Tis active exchange of ideas helps students to 
understand topics on a deeper level, keeps them motivated, and ultimately helps them to 
improve their own fnal reports. My role as course instructor during these presentation 
days is to monitor the students’ progress and facilitate conversation. Te atmosphere of 
the room is rich and exciting on these days. Some students bring physical models, some 
use digital images, and some use pencil and paper to illustrate concepts (Figure 15.10). Te 
combined hustle and bustle of the class’s 40 students can get quite noisy, but this particular 
type of noise makes me proud, as I scan the room and see every student contributing. Tis 
learning environment reminds me of professional mathematics conferences, and I am glad 
that I can give my fourth-year students a taste of this sort of environment while they are 
still undergraduates. Students are instructed to listen carefully to each other’s presenta-
tions and provide written feedback to each other on the evaluation papers I provide them. 
Each presentation session is graded by a former student of the course using these evalua-
tion papers, which are worth 2.5%. 

I make use of other tools to improve students’ confdence in writing about mathematics 
as well, such as the assignment rubric or the cue cards that I hand out to students to jot 
down notes during the lectures. For example, one student visited me afer class because he 
was confused about models in hyperbolic geometry. As a result of his concern, I decided 
to create a page of images of the four models with their interpretation of points, lines, and 
parallel lines (see Figure 15.11). Talking with students like this has helped me to under-
stand their difculties better, and consequently to develop better solutions. 

FIGURE 15.10 A student working with a model. 
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FIGURE 15.11 A cue card dialogue. 

In addition, I designed a hands-on workshop in collaboration with Te Writing Centre 
on academic writing skills in mathematics. We used student work from previous years 
as examples, as well as a sample geometry topic from a book to discuss the qualities of a 
strong academic report. At the end of workshop, students were better able to understand 
the role of various components of an academic report in communicating ideas, how to bet-
ter organize their thoughts, the value of explaining concepts clearly, how to communicate 
goals and objectives, and how to reference and label fgures and tables, as well as learning 
about various writing styles. We also asked students to identify the strengths of the sample 
student paper and to suggest ideas to improve its organization or fow. Lastly, we gave them 
a number of tips for producing better work. To understand students’ learning needs fur-
ther, we designed a pre- and post-workshop survey. I will discuss the details of this study 
in Section 15.7 of this report. 

15.4.1  Survey Results 

Written communication plays an important role in the development of the feld of math-
ematics. Students can practice learning challenging topics by writing about them. Writing 
exercises enable them to think on a deeper level as well as practice using the correct nota-
tion and conventions. I also believe that writing academic reports can help students to 
appreciate and enjoy mathematics more, and yet so few instructors employ this tool in 
their course designs. I believe that student anxiety toward writing is the reason that so 
many instructors choose not to explore this option. Te main question that we need to 
answer is why do mathematics students experience writing anxiety so much more com-
monly than students in other felds, and what methods can we employ to help students to 
feel more comfortable writing about mathematics? 

Informal interviews with students, TAs, and colleagues have led me to believe that lack 
of practice and support is the main reason for math students’ shaky confdence in writing. 
To help students to improve their writing skills, I provide many opportunities for students 
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to write in my courses, including short written exercises on cue cards and research reports 
in my upper-level courses. In addition, in collaboration with Te Writing Centre, we have 
provided tailored support for individual students’ specifc needs. 

Based on our observations and experiences, we have designed pre- and post-work-
shop surveys to better understand students’ learning needs related to writing skills. We 
used a seven-point Likert scale for items 1, 3, and 4 to assess the level at which they 
are comfortable writing academic papers, as well as formulating questions and com-
ments about mathematics both verbally and in writing. For items 2, 5, and 6 we asked 
how many mathematics courses they had taken in which they were required to write a 
research paper, as well as their perceptions of the value and challenges of such writing 
assignments. 

Tirteen students completed both the pre- and post-workshop surveys, which assessed 
their writing experiences in upper-year undergraduate mathematics courses. Te mean 
grade of these students was 79.38 with a standard deviation of 8.52. Teir exam grades 
had a mean of 74.46 with a standard deviation of 14.35. Teir research assignments had 
a mean of 75.08 with a standard deviation of 6.28. Te responses to items 1, 3, and 4 on 
the survey showed that on average, students were somewhat more comfortable writing 
academic papers (M = 3.23, SD = 1.48) afer the workshop, and they were somewhat more 
comfortable formulating questions and comments about mathematics verbally (M = 3.54, 
SD = 0.97), and in writing (M = 3.62, SD = 0.87) afer completing their geometry courses. 
About 47% of the students reported that they did not have a research paper assignment in 
any of their previous undergraduate mathematics courses. 

Correlation analyses revealed that students’ grades on research assignments had 
increased marginally and had a statistically signifcant and positive correlation with their 
exam mark (r = 0.55, p < 0.10). Tis result suggested that those students who obtained 
high marks on their research assignments also received high marks on their exams. Tere 
were statistically signifcant high and positive correlations among the three survey items 
(items 1, 3, and 4). Te correlation between students’ level of comfort in writing academic 
papers and their level of comfort formulating questions and comments about mathemat-
ics verbally was r = 0.72 (p < 0.05); the correlation between students’ level of comfort in 
writing academic papers and their level of comfort formulating questions and comments 
about mathematics in writing was r = 0.72 (p < 0.05); and the correlation between students’ 
level of comfort formulating questions and comments about mathematics verbally and 
in writing was r = 0.66 (p < 0.05). All together, these results indicated that students who 
felt comfortable in writing academic papers also felt comfortable formulating questions 
and comments about mathematics verbally and in writing. Moreover, students who felt 
comfortable formulating questions and comments about mathematics verbally also felt 
comfortable formulating questions and comments about mathematics in writing. 

None of the three survey items had statistically signifcant correlations with course 
grades, exam grades, or research assignments grades. Tese results indicated that neither 
students’ perceptions of their level of comfort in academic writing, nor their level of com-
fort formulating questions and comments about mathematics verbally or in writing con-
tributed to their research assignment grades, exam grades, or overall course grades. 
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In terms of students’ responses to how they perceive the value of research assignments 
in their mathematics courses, an analysis of qualitative data revealed fve major themes, 
which are listed below: 

1. Feeling comfortable and confdent exploring mathematical ideas independently 

2. Being able to communicate mathematical ideas verbally (e.g. group discussions, 
working cooperatively) 

3. Acquiring mathematical knowledge through gaining a deeper understanding of their 
respective research topics 

4. Realizing the importance of mathematics beyond coursework (e.g. future endeavors) 

5. Appreciating the beauty of mathematics 

In terms of students’ perceptions of the challenges and benefts of completing a research 
assignment in their mathematics courses, an analysis of qualitative data revealed the fol-
lowing three major themes: 

1. Realizing that writing a research paper in mathematics is a difcult but worthwhile task 

2. Being able to communicate complex mathematical ideas in simple ways 

3. Developing (new) skills in academic writing, particularly in the feld of mathematics 

Many students noted in the survey that just one research assignment in one course can 
only go so far in improving their writing skills in mathematics. Tis inspired me to design 
and develop new tools to provide opportunities for students to develop their skills further. 
One such tool is MSLC Magazine, which was launched in 2014. Te magazine includes 
articles submitted by UTSC faculty members and students related to mathematics or sta-
tistics, their personal experiences teaching or learning mathematics, probability challenge 
problems, interviews, and more (Figure 15.12). Te magazine may be found at: www.utsc. 
utoronto.ca/mslc/mslcmagazine. 

Another such tool is Math In Action Journal (MIA), which was developed using a 
Teaching Enhancement Grant. Submissions to MIA take the form of short video presen-
tations, along with a two-page extended abstract. Students are encouraged to be creative 
in how they present their work. Te journal allows mathematics undergraduates to share 
their work with peers and academics alike. For example, students in my geometry course 
are encouraged to submit video versions of their mini-presentations to MIA. Te experi-
ence of creating the online calculus modules inspired me to create a digital magazine con-
sisting of short videos, rather than a more traditional (but less engaging) print journal. In 
addition, guidelines for how to write mathematics papers and sample video submissions 
are available on the MIA website for those who are interested in submitting. 

Math In Action Journal has enriched my geometry course considerably. Tose students 
who have done well on their research papers now have a legitimate platform to share their 

www.utsc.utoronto.ca/
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FIGURE 15.12 Te cover page of the frst issue. 

work, which they can use on their CVs as a stepping stone to academia. Take for example 
one of my students from the fall 2017 semester, who chose to study Pick’s Teorem. In her 
work, she frst discusses the history of the problem, and then defnes key concepts and com-
ponents clearly using the appropriate mathematical notation and relevant images. Next, she 
states and proves the theorem for basic geometrical shapes and extends the proof for more 
complex objects. Te progression of the work from simple shapes such as rectangles to more 
complicated lattice shapes is what makes her work both elegant and exciting. It is interest-
ing that she was able to discover the link between Pick’s Teorem and Euler’s Characteristic 
Invariant in Algebraic Geometry for the case of simple lattice polygons. All of her proofs 
are accurate, and she references credible resources such as Te American Mathematical 
Monthly. She uses IEEE reference style and properly links the content to her references. She 
received the UTSC Research Library Award for her work, which will appear in MIA. 
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APPENDIX 
Details of Scenes and Visual Tools 

General production comments 
Happy, light music plays in the background. 

Scene 1 
Voice over n/a 

Visuals 
Module 12: Proof Techniques 

At the end of this module you will be able to: 

• Understand the justifcation of calculus facts and relations by applying methods of 
direct proof, proof by contradiction, proof by contrapositive, and proof by induction 

• Have a deeper understanding of math as a discipline of study 

Scene 2 
Voice over Te history of mathematics goes a long way back into the past. Since antiquity 
math has taken a central role in advancing the development of the world, as we know it! 

Ancient Greeks were using pebbles for counting and doing simple algebra. Tey called 
a “pebble” a “calculus.” 

Playing with pebbles led their curious minds to think about very small and very big 
quantities. 

Visuals Something with pebbles. Perhaps a bunch drop on the screen to create a pile, and 
then a few roll to one side to be a smaller batch in line with VO “very small.” Ten have a 
whole lot fall onto other pile in line with VO “very big.” 

FIGURE A.1 
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Scene 3 
Voice over Although the modern calculus that we study today is able to answer mathe-
matical questions with much more precision, it is amazing to know that these accomplish-
ments are the result of hard work of individuals working in diferent parts of the world, 
over the centuries. 

Visuals Susie jetpacks past to create timeline in line with VO, “over the centuries.” 

FIGURE A.2 

Scene 4 
Voice over Our number system with digits from 0 to 9 originates from ancient Egypt. 

Te Pythagorean Teorem and its understanding of geometry comes from ancient 
Greece. 

In third-century China, we fnd the early forms of integral and diferential calculus and 
a calculated value of pi correct to fve decimal places! 

By the sixth century in India, we fnd defnitions of trigonometric functions and an 
accurate approximation of pi that recognized it as an irrational number. 

By the end of the frst millennium, a Persian mathematician was the frst to demonstrate 
proof by mathematical induction, proving the binomial theorem. 

Troughout medieval Europe and during the scientifc revolutions, the study of math 
exploded with numerous discoveries! 

Visuals All based in timeline, with boxed information showing on screen including dates 
and details as provided. 

Visuals on this is tricky—we don’t want to do any stereotypical (cultured) depiction. So 
I’m thinking text only. But I also don't want to have VO read everything below—so I’ve 
provided a summarized retelling in the voice over section above. 
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Big question is on pacing: we can use the stacked boxes approach like you’ve done on other 
modules (like #10). But how long can they stay on screen? We want this module to be short 
(as other modules are longer than expected) but it’s important that we don’t compromise 
the readability of module. Possibly this is a good candidate for the interactive component. 

(Note: we’ll need to source this information. But likely to do so outside of the video itself— 
unless we’re doing the interactive vid in which case we can defnitely embed this. Source: 
www.storyofmathematics.com/mathematicians.html) **I wrote the contact from this site to 
clear copyright. 

Egyptian 
2700 bc (Egyptian): earliest fully developed base 10 number system in use 

Greek 
570–495 bc (Pythagoras): expansion of geometry, rigorous approach building from frst 

principles, square and triangular numbers, Pythagoras’ theorem 

Chinese 
220–280 ad (Liu Hui): solved linear equations using matrices, leaving roots unevalu-

ated, calculated value of π correct to fve decimal places, early forms of integral and dif-
ferential calculus 

Indian 
476–550 ad (Aryabhata): defnitions of trigonometric functions, complete and accurate 

sine and versine tables, solutions to simultaneous quadratic equations, accurate approxi-
mation for π (and recognition that π is an irrational number) 

Islamic/Persian 
953-1029 ad (Muhammad Al-Karaji): frst use of proof by mathematical induction, 

including to prove the binomial theorem 

Medieval European 
1170–1250 (Italian, Leonardo of Pisa – a.k.a. Fibonacci): Fibonacci Sequence of num-

bers, advocacy of the use of the Hindu-Arabic numeral system in Europe, Fibonacci's iden-
tity (product of two sums of two squares is itself a sum of two squares) 

Renaissance mathematics 
1522–1565 (Italian, Lodovico Ferrari): devised formula for solution of quartic equations 

Scientifc revolutions in 17th and 18th century 
1596–1650 (French, René Descartes): development of Cartesian coordinates and ana-

lytic geometry (synthesis of geometry and algebra), also credited with the frst use of super-
scripts for powers or exponents 

http://www.storyofmathematics.com


        

 

 

  

 

318 ◾ Teaching and Learning Mathematics Online 

1643–1727 (British, Isaac Newton): development of infnitesimal calculus (diferentia-
tion and integration), laid ground work for almost all of classical mechanics, generalized 
binomial theorem, infnite power series 

Modern math 
1792–1856 (Russian, Nikolai Lobachevsky): developed theory of hyperbolic geometry 

and curved spaces independently of Bolyai 
1928– (American, John Nash): work in game theory, diferential geometry, and partial 

diferential equations, provided insight into complex systems in daily life such as econom-
ics, computing, and military 

Scene 5 
Voice over Even to the present day math is continuing to develop. 

Here’s Professor Zohreh Shahbazi [zoh (like sew) reh … shah bah zee]. You may recog-
nize her from the instructional videos in these modules! 

Because it is important to learn the techniques that are used to develop our knowledge 
in calculus, this module happens to be Zohreh’s favorite topic! 

Proofng methods are logical tools that are essential for expanding mathematics. 
In this module you will learn the proof techniques such as direct proof, proof by contra-

diction, proof by contrapositive, and proof by induction. 

Visuals Cartoon-ifed version of Zohreh (Prof. Shahbazi) waving, or holding some math 
items (like in end of module 10) Also, in line with VO: “In this module you will learn the 
proof techniques such as direct proof, proof by contradiction, proof by contrapositive, and 
proof by induction.” → Show thought bubble or something like listing the four diferent 
proofng techniques covered, shown in text. 

Scene 7 
Voice over Whether you are hoping to become the next big mathematician, or just look-
ing to survive your frst-year calculus courses, remember that you are the future of math! 

Visuals Zohreh character slides/shifs to lef (still in frame), with timeline showing reveal-
ing future dates, and revealing Susie and her jetpack. Susie does a bit of a loop to remain 
on screen and line traced from jetpack fzzles out showing just Susie. Somehow Tommy 
should be there too, maybe she’s holding his hand carrying him along. End frame has the 
three characters on screen. 

With VO: “you are future of math,” all three characters wave. Perhaps have applause and 
freworks or something to adequately end the series! 
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16.1  INTRODUCTION 
Tis is the age of Information and Communication Technology (ICT). In the last few 
decades, the roles of technology in the educational sector have been increasing tremen-
dously. Because of the availability and accessibility of various technological tools and Open 
Educational Resources (OERs), the online education system is rapidly expanding around 
the world. Teaching and learning via online delivery formats have emerged as a popular 
alternative to face-to-face classroom instruction (Crawford-Ferre & Wiest, 2012) because 
of their various benefts such as saving time, providing greater fexibility, and eliminat-
ing travel distance by ofering equal opportunities and resources to every learner (Dede, 
Ketelhut, Whitehouse, Breit, & McCloskey, 2009; Isman & Altinay, 2006). Terefore, 
online course oferings are increasing at a faster rate than on-campus course oferings 
(Beck, 2010), and almost 100% of public institutions report online instruction as a critical 
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part of their long-term plans (Major, 2010). Furthermore, demand to develop online math-
ematics method courses in teacher education programs has also increased extensively (Ko 
& Rosen, 2010). However, teaching mathematics method courses in online environments 
can be difcult and challenging. In this chapter, an efort has been made to explore some 
of the main OER, which can be utilized to make online courses as efective and interactive 
as on-campus courses. 

Despite some variations, there is a consensus among scholars in defning the meaning of 
interactive in the educational arena. Kahveci and Imamoglu (2007) defne interaction as a 
kind of action that occurs as two or more objects have an efect upon one another. Sessoms 
(2008) relates interactive with student-centered instruction, where tools and technologies 
help learners to engage actively in their learning. He further states that “the transforma-
tive nature of technology integration changes the process of teaching and learning to an 
interactive learning environment” (p. 88). Wagner (1994) associate interaction with learner 
control, self-regulation, and motivation. Tus, interactive learning environment refers to a 
student-centered instructional approach, where learners actively engage in their learning 
process. Furthermore, in an interactive learning environment, learners get the opportu-
nity to explore knowledge while interacting with teachers and or with technology. For the 
purpose of this chapter, interactive refers to learners’ active engagement in their learning 
process by utilizing Open Educational Resources, in particular Web-based tools and tech-
nology, including educational audio-video resources. 

16.2 CHALLENGES AND ISSUES 
Despite the various benefts, there are challenges and issues in teaching courses in an 
online delivery format. Kebritchi, Lipschuetz, and Santiague (2017) state that it is chal-
lenging and difcult to efectively transfer what is taught in the face-to-face classroom 
to an online delivery format. Furthermore, three main issues and challenges they sug-
gest are online learners, instructors, and content development. Issues related to content 
consist of the integration of multimedia and the role of instructional strategies in content 
development. Whereas Fein and Logan (2003) suggested that instructors face challenges 
at three phases with online courses: the design, the delivery, and the follow up. Similarly, 
Anderson, Imdieke, and Standerford (2011) suggested that one of the main challenges in 
online education is how the course content must be delivered efectively in online environ-
ments. Furthermore, the challenges and issues can vary from course to course since the 
nature of courses and subjects of study are diferent. For example, teaching a mathematics 
method course in an online format certainly would be diferent from teaching a history 
course in an online environment. 

Generally, mathematics method courses aim to focus on pedagogical content knowl-
edge. How to teach mathematics in efective ways is one of the main goals of mathematics 
method courses. Similarly, focus on conceptual understanding and meaningful learning 
is the other important aspect of method courses. Terefore, mathematics instructors tend 
to utilize diferent types of materials, hands-on activities, tools, and technologies in order 
to create learning environments where learners get a chance to explore and discover math-
ematical ideas in meaningful ways. Additionally, mathematics instructors demonstrate 
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efective teaching by utilizing various hands-on activities, manipulatives, tools, and tech-
nologies. Tus, instructors need to create and design various material as well as integrate 
diferent tools and technologies in method courses regardless of the format of the course 
delivery: online or on-campus. Apparently, preparing various hands-on activities and 
other relevant materials for mathematics method courses certainly needs a lot of time. But 
more importantly, creating various materials and adjusting them from face-to-face courses 
to online courses can be even more time-consuming and challenging (Li & Irby, 2008). 

Another important aspect of the usage of hands-on activities in mathematics method 
courses is to promote learning environments where students get opportunities to explore, 
experiment, and discover mathematical ideas. Indeed, such learning environments would 
enhance the theory of constructivism since learning would be an active meaning-seeking 
process. For example, both physical and virtual manipulatives have various benefts such 
as (1) providing immediate feedback to learners so that students avoid misconception, (2) 
providing connection and visualization between numeric and visual representation, (3) 
helping mathematizing, and (4) ofering opportunities to teach in and represent mathemat-
ical ideas in nontraditional ways (Suh, Johnston, & Douds, 2008). Similarly, technological 
tools such as Dynamic Geometry Sofware (DGS) (GeoGebra) can be used for demonstra-
tion and visualizations of objects, as well as for discovering various mathematical concepts 
(Hohenwarter et al., 2004), which ofers students opportunities to formulate theories and 
to draw their own conclusions (Hannafn et al., 2001). Tus, in order to enhance mathemat-
ics learning, diferent hands-on learning activities including, but not limited to, Geoboard, 
Tangram, Base Ten Blocks, Algebra Tiles, AngLegs, mathematical sofware, and mathe-
matics apps are commonly utilized in face-to-face mathematics method courses. However, 
the questions come in online courses: how can instructors utilize similar materials in the 
online learning environment? Tus, it is challenging to use similar activities in the online 
courses since, regardless of the format of delivery, online or on-campus, the learning out-
comes need to be same for a specifc mathematics method course. 

Teaching online mathematics method courses at a college and university level is even 
more challenging due to the nature of the content of method courses. Furthermore, engag-
ing distance learners in methods courses is not easy due to the limitation of the online 
learning platform. Mathematics instructors who teach both on-campus and online mathe-
matics method courses may fnd it difcult to apply the same teaching strategies and learn-
ing activities that can be used in face-to-face classroom to online. Te fact is that diferent 
instructional strategies that instructors tend to integrate in online courses from their on-
campus sections might not work (Coppola, Hiltz, & Rotter, 2001). Tus, math instructors 
who teach both on-campus and online courses may fnd it more difcult to engage distance 
learners in their learning as compared to their on-campus sections. Additionally, there can 
be various other challenges including, but not limited to, how to translate instructional 
strategies and activities designed for traditional face-to-face courses to the online courses 
(Baran, Correia, & Tompson, 2011). 

Educators and other related experts have been trying to implement various strategies as 
well as resources in an online learning environment in order to resolve various challenges 
and issues that are encountered in online learning environments, and one of the strategies 
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is the utilization of OER. Tere are diferent types of OERs that can be integrated in math-
ematics method courses in order to make online courses more efective and interactive. 
Moreover, OERs will help to save time for instructors since they are easy to integrate in the 
online courses. Some of the OERs that can be utilized particularly in online mathematics 
method courses will be discussed. 

16.3 OPEN EDUCATION RESOURCE (OER) 
According to the United Nations Educational, Scientifc and Cultural Organization 
(UNESCO) (2017), an OER is any type of educational material that is in the public domain 
or introduced with an open license. Te nature of these open materials is that anyone 
can legally and freely copy, use, adapt, and re-share them. OERs range from textbooks 
to curricula, syllabi, lecture notes, assignments, tests, projects, audio, video, animation, 
technological tools, and sofware packages. According to the William and Flora Hewlett 
Foundation, an OER is: 

Open Educational Resources are teaching, learning, and research resources that 
reside in the public domain or have been released under an intellectual property 
license that permits their free use and re-purposing by others. OER include full 
courses, course materials, modules, textbooks, streaming videos, tests, sofware, 
and any other tools, materials, or techniques used to support access to knowledge. 

(Hewlett Foundation, [N.D.]) 

Whereas the Organization for Economic Co-operation and Development (OECD, 2007) 
defnes as: “Open Educational resource are digitized materials ofered freely and openly for 
educators, students and self-learners to use and reuse for teaching, learning and research.” 
Such resources are accumulated assets that can be enjoyed without restricting the possi-
bilities of others to enjoy them. Tis means that they should be non-rival (public goods), 
or that the value of the resource should be enlarged when used (open fountain of goods). 

It is clear from the above two defnitions that OERs include various ranges of resources 
as long as they are freely available. Furthermore, OER also includes various types of vir-
tual manipulatives and mathematics applets, which can be utilized in mathematics lesson 
activities. Similarly, OER also includes diferent types of mathematics lesson-teaching vid-
eos, which demonstrate problem-solving strategies that students utilize while completing 
mathematical tasks. 

Te purpose of the OERs movement is to make education more afordable and help 
the learners to better achieve the proposed learning outcomes. Hilton, Gaudet, Clark, 
Robinson, and Wiley (2013) suggested that the utilization and integration of OERs into 
academic programs coordinated at the educational institution level likely save money for 
students and make education more afordable. Sapire and Reed (2011) further suggested 
that careful selection, adoption, modifcation, and implementation of the OERs by content 
experts have the potential to help students achieve quality-learning experiences. 

Te wide range of available OER for instructors to use in their courses is pro-
vided by various organizations/institutions or even by individuals. For example, MIT 
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OpenCourseWare (MIT OCW, https://ocw.mit.edu/index.htm) comprises a wide range of 
open resources for diferent types of courses. Te resources include, but are not limited 
to, notes and slides from class lectures, recordings, reading lists, and so forth. Similarly, 
the University of Nottingham (https://rdmc.nottingham.ac.uk/handle/internal/79), the 
University of Oxford (http://openspires.oucs.ox.ac.uk/), Humbox (http://humbox.ac.uk/), 
and the Annenberg Foundation (https://annenberg.org/) also have a repository of wide 
ranges of OERs. Moreover, Massive Open Online Courses (MOOCs) can be utilized for 
online learning environments; however, MOOCs resources are only accessible for the dura-
tion of the courses. As a part of MOOCs movement, many institutions have been creating 
platforms, for example YouTube, where resources are available for the use of public. Tere 
are also other open resources, which can be found in certain network or repositories in 
the World Wide Web. MRLOT (www.merlot.org/merlot/index.htm), and OER Commons 
(www.oercommons.org/) are two examples of OER repositories. 

Te complex nature of teaching and learning processes, particularly for mathematics 
education, can be made simple with the appropriate integration of OERs. Te OERs, in 
particular such as technology, are becoming important tools for imparting knowledge and 
skills to learners. Te integration of OERs for teaching and learning purposes, particularly 
in mathematics education, is a high priority for many nations and diferent educational 
systems. Mathematics teachers, educators, and researchers in mathematics education need 
to revise mathematics curricula and instructional strategies to take advantage of various 
OER including electronic information technology (Fey, 1989). Te National Council of 
Teachers of Mathematics (2000) also emphasized the importance of the use of technology 
(OER) in mathematics education by stating that technology is essential in teaching and 
learning mathematics; it infuences the mathematics that is taught and enhances students’ 
learning. Tus, various OERs do not only contribute to students’ learning but also facili-
tate the instructional strategies for teachers in an online as well as on-campus learning 
environment. 

OER can play an important role particularly for online courses for various reasons. 
Some of the benefts include, but not are limited to, time-saving, easy integration, being 
interactive in nature, and freely available resources. Moreover, OER also helps to save cost 
for students since they can get free books for example (Ko & Rossen, 2017), as well as help-
ing to save instructors’ time since they can directly incorporate ready-made resources and 
activities in their lessons. More importantly, the OER replaces similar learning materials, 
allowing for the same functionalities (Orr, Rimini, & Damme, 2015) as compared to face-
to-face learning. 

16.4  OER’s UTILIZATION 
Due to various challenges and issues as aforementioned, instructors may hesitate to teach 
online mathematics method courses. Despite that unwillingness, however, instructors 
might have to teach online courses due to the increasing demand for online learning envi-
ronments. Moreover, university administrators may request instructors to design and 
teach online courses due to increasing demand. Tus, instructors need to fnd ways to inte-
grate various activities in online courses that are ofen utilized in on-campus courses. For 

https://rdmc.nottingham.ac.uk
http://openspires.oucs.ox.ac.uk
http://humbox.ac.uk
https://annenberg.org
http://www.merlot.org
http://www.oercommons.org
https://ocw.mit.edu
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example, Base Ten Blocks are commonly used materials while teaching place value con-
cepts, as well as basic operation of whole numbers. Similarly, Geoboard is also widely used 
while teaching geometry concepts in mathematics method courses. Base Ten Blocks and 
Geoboard are two examples that instructors tend to use in lesson activities to enhance the 
conceptual understanding in face-to-face courses. But it might be challenging for instruc-
tors to utilize similar lesson activities in online courses because of the nature of the online 
learning environment. Tus, instructors need to think about how they can utilize lesson 
activities in online courses that are similar to what is used in face-to-face classes. 

OERs can be utilized in online courses to substitute similar functionalities of the face-
to-face courses in order to make online courses as efective and interactive as on-campus 
courses. In order to make teaching online courses efective, however, instructors must 
be willing to integrate and adopt new technologies and relevant OERs that best address 
learner needs (Ludlow, 2001). If appropriately selected and utilized, OERs certainly help to 
equate online courses with diferent facets of on-campus sections of similar courses. 

Tere are various types of OERs available in the digital age that can be utilized in online 
mathematics method courses. However, instructors need to be careful in selecting and 
utilizing them in the mathematics lessons. One of the important aspects of utilizing OER 
in online courses is that to be aware of the authenticity, quality, and appropriateness, and 
need to select them carefully based on the learning outcomes and objectives of the online 
courses. Miller (2016) suggested various criteria while selecting OER. Sometimes the 
appropriateness of OER also depends on the mathematics lesson being taught. Instructors 
are the ones who can understand and select the OER that best fts in the mathematics les-
sons. Tus, an efort has been made to provide insight and ideas as to how we can utilize 
OERs in online mathematics method courses to make them more efective and interactive, 
similar to on-campus courses. In that regard, some of the OERs would be discussed in 
conjunction with teaching online mathematics method courses. However, this chapter is 
not aimed to describe every OER available in the digital age that can be utilized in online 
mathematics method courses. 

16.4.1  Virtual Manipulative 

Te utilization of virtual manipulatives has increased in the last couple of decades in the 
teaching and learning of mathematics. More importantly, in the digital age, its role is 
becoming even more important for online mathematics method courses. Generally, two 
types of manipulatives are available for educational purposes: virtual and physical. Virtual 
manipulatives are computer-based, whereas physical manipulatives are an actual hands-on 
activity. Moyer and Bolyard (2016) suggest that virtual manipulatives are “an interactive, 
technology-enabled visual representation of dynamic mathematical object, including all 
of the programmable features that allow it to be manipulated, that present opportunities 
for constructing mathematical knowledge” (p. 13). Diferent types of physical manipula-
tives include, but are not limited to, Geoboard, Base Ten Blocks, Tangram, Counter Chips, 
and Algebra Tiles. Te physical manipulatives also include diferent hands-on activities, 
which can be designed using diferent materials such as construction paper. However, 
these diferent types of physical manipulatives can also be found in the digital format as 
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virtual manipulatives. Normally, the virtual manipulatives can be found on the World 
Wide Web network, and they are compatible with certain computer system requirements. 
Spicer (2000) states that the two types of representations on the World Wide Web are called 
virtual manipulatives—these are static and dynamic visual representations of concrete 
manipulatives. Static virtual manipulatives are the static representation of concrete objects 
(physical manipulatives), whereas dynamic visual representation can be manipulated in 
the same ways as concrete manipulatives. In fact, virtual manipulative is an interactive, 
Web-based visual representation of a dynamic object that presents opportunities for con-
structing mathematical knowledge (Moyer, Bolyard, & Spikell, 2002). 

In mathematics method courses, instructors generally utilize diferent types of physi-
cal manipulatives in order to teach various mathematical concepts. For example, Base Ten 
Blocks can be used to explain the concept of the place value system, as well as for the 
grouping-regrouping concept of addition and subtraction of the whole number system. 
Similarly, Geoboard can be utilized to explore various aspects of triangles. Te utilization 
of physical manipulatives is almost impossible in online courses, but virtual manipulatives 
can be employed in online courses to substitute the physical manipulatives used in on-
campus courses. Tus, instructors tend to use diferent types of virtual manipulatives in 
their online courses. In doing so, distance learners are aforded opportunities and learning 
environments similar to on-campus learners. Examples of two virtual manipulatives are 
discussed below in order to demonstrate how mathematics instructors can utilize virtual 
manipulatives in methods courses. 

16.4.2 The National Library of Virtual Manipulatives (NLVM) 

Te National Library of Virtual Manipulatives (NLVM) began in 1999 to develop a library 
of uniquely interactive Web-based virtual manipulatives or concept tutorials, mostly in the 
form of Java applets, for mathematics instruction (K-12 emphasis) (http://nlvm.usu.edu/ 
en/nav/vlibrary.html). Te NLVM contains various types of virtual manipulatives for wide 
a range of mathematics content for K-12 grades. Te virtual manipulatives are classifed 
based on fve mathematics content areas: number and operation, algebra, geometry, mea-
surement, and data and probability, as well as four grade level bands: pre-K–2, 3–5, 6–8, 
and 9–12. Te collection also includes various quizzes, games, and drag-and-drop activi-
ties, which can be easily incorporated in mathematics lessons. 

Base Ten Blocks are one of the widely used physical manipulatives, particularly in ele-
mentary mathematics method courses, in order to teach the basic operation of the whole 
number system, including the concepts of carry over, grouping, and regrouping. Moreover, 
Base Ten Blocks are designed to provide conceptual understanding of the basic operation 
of whole numbers. Te fact is that learners can manipulate, arrange, and rearrange the 
Base Ten Blocks to understand how, for example, addition can be performed without using 
the standard algorithm. For example, consider an addition problem: 128 + 622 completed 
using Base Ten Blocks without using the standard algorithm. In Base Ten Blocks, the cube, 
rod, and fat respectively represent 1, 10, and 100. In order to complete the addition task, 
we need to start with two groups of Base Ten Blocks that represent 128 and 622. We need 
to have eight cubes, two rods, and one fat for 128 and two cubes, two rods, and six fats 

http://nlvm.usu.edu
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for 622. Combining these two groups of Base Ten Blocks is the same as adding 128 and 622. 
When we combine these two groups, we want to start by combining cube to cube, and then 
rod to rod, and fnally fat to fat. When we combine eight cubes and two cubes, we get ten 
cubes. We can trade these ten cubes for one rod since ten cubes exactly make a rod. Tus, 
trading the ten cubes for a rod can be connected to the concept of carry over as well as the 
place value concept, while adding 8 and 2 using the standard algorithm approach. 

Instructors can easily utilize Base Ten Blocks in their on-campus courses; however, it 
is difcult to integrate those physical manipulatives in the online courses for the distance 
learners. Te Base Ten Blocks can be easily incorporated into online methods courses as the 
substitution of physical manipulatives. Moreover, the virtual Base Ten Blocks may even be 
more manageable, clean, fexible, and extensible than their physical counterpart (Sarama 
& Clements, 2016). Furthermore, the virtual Base Ten Blocks environment ofers greater 
control and fexibility to students than actual physical Base Ten Blocks (Char, 1989). Tus, 
the virtual manipulatives can be great resources for online methods courses. A screenshot 
of the Base Ten Blocks is shown in Figure 16.1, which represent an example of the addi-
tion problem 128 + 622. Te cubes and blocks can be grouped and regrouped as shown 
in Figure 16.1. For example, eight and two cubes are in the unit place in Figure 16.1. We 
can select all cubes to combine together to get ten, which will provide one rod (one ten) 
as shown in Figure 16.1(b). Ten we can drag the rod from the unit place to the ten place. 

Tis activity illustrates the utilization of Base Ten Blocks in the online method courses, 
where physical manipulatives are not feasible to utilize as in on-campus courses. Instructors 
can embed the NLVM link or other OER in the online course and require distance learners 
to play with the virtual Base Ten Blocks and complete mathematical tasks. Furthermore, 
instructors can provide assignments, where distance learners are required to explain the 
addition concept based on virtual Base Ten Blocks and connect it with the standard algo-
rithm. At the same time, instructor may require the distance learners to attach a screen-
shot of the Base Ten Blocks to demonstrate their reasonings. 

16.4.3  Illumination (NCTM) 

Te Illuminations (http://illuminations.nctm.org/) is a project designed by Te National 
Council of Teachers of Mathematics (NCTM), which is aimed to serve mathematics 

FIGURE 16.1 (a) Base Ten Blocks addition. (b) Base Ten Blocks addition result. 

http://illuminations.nctm.org
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learners, teachers, and educators by increasing access to quality standards-based resources 
for teaching and learning mathematics, including interactive tools for students and instruc-
tional support for teachers. Te Illumination virtual manipulatives are chosen based on 
the grade level, mathematics content area, Common Core State Standards (CCSS), and 
NCTM mathematics standards. It covers fve content areas of mathematics: number and 
operations, algebra, geometry, measurement, and data analysis and probability. Options 
are also available to choose a complete lesson or lesson with interactive manipulative. Te 
grade band ranges from pre-K–2 to 9–12. 

Algebra Tiles are a commonly used resource at middle and high school mathematics 
to teach algebraic concepts, including linear and quadratic equations. Instructors can use 
physical Algebra Tiles in the on-campus courses for preservice teachers to demonstrate 
how to teach algebraic concepts in efective ways by focusing on conceptual understand-
ing. Algebra tiles are made up of small squares, rectangles, and large squares. Te areas of 
the small square, rectangle, and big square respectively are 1, x, and x2 units. Each of the 
tiles are related in terms of area. For example, the length of the small square is the same 
as the width of the x tile, and the length of the x tile is the same as the dimension of x2. 
Te Algebra Tiles also consist of two colors: one to indicate positive values and another 
to indicate negative values. Combining a positive and a negative tile with the same area 
yields a zero, called zero pairing. For example, to solve a simple linear equation: 2x – 3 = 5, 
we need to have two rectangles with positive values and three small squares with nega-
tive values on one side, and fve small squares with positive values to the other side. In 
order to solve it, we need to add two small squares tiles with positive values to both sides, 
which will give us zero pairing between three small squares with positive and negative 
values. Ten we have lef over two rectangles on one side and eight small squares on the 
other side. If we distribute the two rectangles equally between eight small squares, it will 
yield four small squares. Tus, a rectangle (x) is equal to four units (x = 4). However, it 
is difcult to use physical Algebra Tiles for the online courses in order to teach the same 
concepts as compared to face-to-face classes. Terefore, instructors can incorporate vir-
tual Algebra Tiles from Illuminations (www.nctm.org/Classroom-Resources/Illuminatio 
ns/Interactives/Algebra-Tiles/) for the distance learners in order to meet the same learn-
ing goals with similar activities. A screenshot of the Algebra Tiles is shown in Figure 16.2. 
Figure 16.2(a) indicates a linear equation to be solved using interactive Algebra Tiles. 
Instructors can build an algebraic model using Algebra Tiles to represent the given equa-
tion as shown in Figure 16.2(b). We can see there are four modes as shown in the fgure: 
Solve, Substitute, Expand, or Factor. In Solve and Substitute, vertical lines indicate “is 
equal to” (=). In Expand and Factor, the large area is the product of the top and lef areas, 
as in a standard multiplication table. In Algebra Tiles, the big square represents x2 units, 
the rectangle represents x units, and a small square represents one unit. Te diferent col-
ors represent positive and negative units. 

Place tiles equal to the expression to the lef and right side of the workspace. For 
example, the expression is 2x – 3; place two green x tiles and three red tiles on one lef 
side of the workspace. You will need to fip the tiles to get the red inverse tiles. Place 
fve yellow tiles on the right side of the workspace. Check your model to move on to the 

http://www.nctm.org
http://www.nctm.org
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FIGURE 16.2 An example Algebra Tiles. (a) A linear equation. (b) Modeling equation with Algebra 
Tiles. 

next step. To solve the equation, we can rearrange tiles so only a single green tile remains 
in one half of the workspace. Remember, only equal values can be removed from both 
sides, such as a yellow tile from the lef and a yellow tile from the right. To “move” a tile, 
frst add the inverse value to both sides. If we want to move a red rectangle, add a yellow 
rectangle to both sides. Ten we can remove the zero pair from one side. We need to add 
three yellow tiles on both sides to eliminate three reds in the lef side. Now, we can erase 
three red and three yellow tiles in the lef side. Ten, we have two green rectangles in the 
lef side and eight small tiles in the right side. Each green rectangle in the lef side rep-
resents four tiles in the right side, i.e. x = 4. We can solve diferent problems in a similar 
way including quadratic equations. For more details, we can go to NCTM-Illumination 
Web page. Instructors can assign mathematical tasks for online learners, where they 
are required to solve algebraic problems using virtual Algebra Tiles. Additionally, along 
with assignments submission, instructors may require the distance learners to explain 
each step of the given problem utilizing virtual Algebra Tiles including some screenshot 
of Algebra Tiles. 

Tis is an example to demonstrate how instructors can utilize virtual manipulatives in 
an online methods course for distance learners. Diferent types of virtual manipulatives 
are available in NCTM’s Illuminations portal, which can be incorporated in various les-
son activities for the distance learners in an online learning environment. In doing so, the 
online method courses are likely to have the same learning goals with similar activities 
compared to on-campus courses. 

16.4.4  Mathematics Software 

Various mathematical sofware, such as GeoGebra, Desmos, etc., are available to utilize in 
mathematics method courses. GeoGebra is a free multi-platform dynamic mathematics 
sofware for all levels of education that joins geometry, algebra, tables, graphing, statistics, 
and calculus. It has several features, including an easy-to-use package, useful for learn-
ing and teaching mathematics at all levels, and joins interactive geometry, algebra, tables, 
graphing, calculus, and statistics. 
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We can utilize GeoGebra to teach various mathematical concepts. For example, we can 
use it to explore the nature of quadratic equations (ax2 + bx + c) including the function 
of a, b, and c. Te sofware can be easily used to explore, for example, how the graph of 
a quadratic equation will change as we change the values of a, b, and c. Te sofware is 
freely available in a public domain so instructors can easily integrate it in online methods 
courses. With diferent available tutorial videos that demonstrate how to design specifc 
mathematics lesson activities using GeoGebra, instructors may require distance learners 
to design simple math applets for the lesson. 

Despite integrating the sofware itself in the online mathematics method course, dif-
ferent types of GeoGebra applets are also available to use in method courses. Tere are 
tremendous numbers of freely available ready-made GeoGebra applets, created by mathe-
matics teachers and educators, which can be easily integrated in mathematics lesson activi-
ties for online method courses. A fraction bar is a commonly used physical manipulative 
to teach the concept of fractions. Instructors can purchase fraction bars, or they can con-
struct their own fraction bars for their lesson activities. In order to substitute the role of 
a physical fraction bar, instructors easily can employ a virtual fraction-bar applet, which 
is based on GeoGebra. Te various GeoGebra applets can be found at: www.geogebra. 
org/materials. A screenshot of a fraction bar created (www.geogebra.org/m/U2szXnVe) by 
using GeoGebra is shown in Figure 16.3. In this interactive applet, the fraction bar can be 
divided into diferent parts. Te two diferent fractions bars can be compared and con-
trasted as shown in Figure 16.3. 

Mathematics instructors can create simple GeoGebra applets and require learners to 
explore the applets to get a conceptual understanding of fractions. Moreover, instructors 
may require distance learners to watch GeoGebra tutorial videos and can assign them to 
make GeoGebra applets to explore mathematical concepts, such as demonstration of the 
slope-intercept form (y = mx + b). Instructors may also provide assignments such as a 
technology-integrated lesson plan, where distance learners are required to fnd ready-made 
GeoGebra applets and utilize them in the lesson plan to enhance mathematical under-
standing. Furthermore, an online discussion board can be formed, where distance learners 
can discuss and share their ideas in regard to the role of applets to explore given specifc 
mathematics concepts. In doing so, the distance learners are likely to engage actively in 

FIGURE 16.3 GeoGebra fraction bar applet. 

http://www.geogebra.org
http://www.geogebra.org
http://www.geogebra.org
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online courses by sharing ideas and providing feedback to their peers in class. As a result, 
online learning tends to be more interactive and efective. 

Desmos is an advanced graphing calculator implemented as a browser application and a 
mobile application (www.desmos.com/). It has diferent features including graph functions, 
plot data, evaluate equations, etc., that can be used to enhance mathematics teaching and 
learning. Instructors can easily incorporate Desmos lesson activities into the online courses 
to explore various mathematical concepts. Furthermore, instructors may require students 
to solve mathematics problems utilizing Desmos. Since distance learners easily get access to 
Desmos, instructors can assign mathematics problems to be done by exploring and utiliz-
ing Desmos. Moreover, Desmos also has several videos demonstrating various mathemati-
cal concepts, which can be easily integrated in the online methods courses. 

16.4.5  Mathematical Apps 

With the emergent of mobile device technologies, various educational tools, including 
mathematical apps, have been developed. Namukasa et al. (2016) state, “Mathematical 
Apps are computer applications in which virtual manipulatives are delivered on touch-
screen mobile devices” (p. 276). Because of their mobile-friendly features, apps can be use-
ful resources for online methods courses. Some of the apps are freely available while others 
need to be purchased. Geoboard is one of the most commonly used physical manipulatives 
used in mathematics method courses. It is difcult, if not impossible, to use Geoboard in 
an online mathematics method course. However, freely available mathematics apps can be 
integrated into online courses in order to achieve the same learning goals compared to the 
face-to-face method courses. A screenshot of a virtual Geoboard adapted from Te Math 
Learning Center (https://apps.mathlearningcenter.org/geoboard/) is shown in Figure 16.4, 
where a triangle and a rectangle are constructed. 

FIGURE 16.4 An example of Geoboard. 

http://www.desmos.com
https://apps.mathlearningcenter.org
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Instructors can get diferent types of mathematics apps that can be easily incorporated 
both in on-campus and online mathematics method courses. However, we need to be care-
ful in selecting and utilizing the apps for our mathematics lessons. Namukasa et al. (2016) 
suggested various criteria for app selection, which may help instructors to make a decision 
for the app choice for their mathematics lessons, whereas Larkin (2013) shares a list of dif-
ferent types of apps for mathematics lessons. 

Physical Geoboard is a common and popular manipulative to explore various geometri-
cal concepts, and instructors tend to use it in on-campus courses. Te Geoboard apps can 
be used in online courses to substitute the function of the physical Geoboard that can be 
used in face-to-face courses. Instructors in online methods courses further assign math-
ematical tasks, where distance learners are required to use Geoboard to explore and solve 
the given problems. Tis is an example to demonstrate how we can incorporate math apps 
to replace the role of physical Geoboard for the online course. 

16.4.6 Mathematics Teaching Video 

Te teaching and learning strategies vary from course to course since the nature of the 
content of each course is uniquely diferent. For example, in mathematics method courses 
instructors tend to demonstrate some exemplary lesson activities for preservice teachers to 
provide better insights as to what types of misconceptions and errors they are likely see in 
their future teaching careers. Moreover, instructors in method courses are likely to pres-
ent real classroom caveat of school-teaching mathematics for preservice teachers in order 
to better prepare preservice teachers as how to deal with various types of misconceptions 
that they will likely encounter in their future mathematics lessons. Additionally, instruc-
tors want to explain various mathematics concepts for distance learners. Te fact is that 
instructors can easily explain and demonstrate such math misconceptions in the face-to-
face classes; however, it is very difcult for the online courses. Producing several recorded 
videos of instructors teaching mathematics lessons for their distance learners could be one 
strategy. However, producing several videos for online classes may be cumbersome and 
time-consuming as well as technically challenging. 

Diferent types of OERs can be utilized to overcome the difculty of making video of 
instructors teaching mathematics lessons because various types of videos teaching math-
ematics lessons are available in the digital format. Tus, instructors can utilize these OERs 
in online courses afer carefully analyzing them based on the needs of online courses. Two 
of the resources will be discussed below, which can be integrated into online courses. 

Khan Academy: Khan Academy produces short lectures in the form of YouTube vid-
eos. Its website also includes supplementary practice exercises and tools for educators. All 
resources are available to users in the Khan Academy website (www.khanacademy.org/). 
Te short video lectures cover a wide range of mathematics topics for K-12 grades and 
above. Te videos are divided into diferent sections based on grade level and mathematics 
content areas. Students can select the exact video they need to watch for certain math-
ematics content. More importantly, learners can watch them whenever and wherever they 
want and watch as many times as they want (Parslow, 2012). Depending on the needs of 
courses, instructors can choose the videos and easily incorporate them into the online 

http://www.khanacademy.org
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methods courses. Rather than producing their own videos, instructors can utilize Khan 
videos in the online course for distance learners to watch. Furthermore, instructors can 
assign homework and mathematics problems for distance learners from Khan Academy. 

Teaching Channel: Teaching Channel is a multi-platform service delivering profes-
sional development videos for teachers over the Internet and on television (www.teach-
ingchannel.org/). Te channel has many showcasing, inspiring, and exemplary teaching 
videos from real classroom settings. Teachers can watch, share, and learn diverse teach-
ing techniques to help every student grow (Teaching Channel). Te teaching channel 
does not only have mathematics lesson teaching videos but also videos for various felds 
of study. 

Understanding diferent types of instructional strategies that can be utilized to teach 
mathematics efectively at school level is an important aspect in mathematics method 
courses. In online mathematics method courses, providing caveat of real classroom sce-
narios is important for preservice teachers to understand various misconceptions preser-
vice teachers are likely to see in their future math lessons. Tus, instructors may require 
distance learners to watch exemplary mathematics lessons-teaching videos from the 
Teaching Channel. More specifcally, instructors may require distance learners to watch 
teaching lesson videos and can pose questions as how they will reteach/fx the mathemat-
ics misconception or errors presented in the videos. In doing so, preservice teachers will 
get a better picture of a real classroom setting with real students making mathematical 
errors. Moreover, instructors may require distance learners to refect and write commen-
tary for specifc mathematics content afer watching Teaching Channel videos. Tis would 
likely help distance learners to think about the misconception and errors students made, 
analyze errors, and come up with ideas/activities to fx the misconception that they notice 
in Teaching Channel videos. 

Te Khan Academy and Teaching Channel are just two examples of OER that can 
be utilized to make online mathematics method courses more efective and interactive. 
However, there are certainly more resources we can utilize in online courses. One of them, 
for example, is whyU (http://whyu.org/). WhyU animated videos are designed for K-12 
and college-level mathematics. Te animated videos contain various mathematical topics 
including pre-algebra, algebra, topology, and infnite series. We can also utilize diferent 
types of YouTube videos, but we need to be careful in selecting them. Not all of them would 
be reliable, useful, and authentic, and they would not necessarily enhance teaching and 
learning mathematics in online environments. 

16.5  CONCLUSION 
Te recent development in technology supports online education systems around the 
world. Tus, academic institutions have begun to ofer more online courses, including 
mathematics method courses. Despite various benefts, there are also issues and challenges 
in online learning environments and the degree of challenges may vary based on the nature 
of content of the online courses. Mathematics method courses, for example, can be chal-
lenging to teach in online learning environments. However, to embrace the ongoing trend 
in online education systems, instructors need to fnd ways to overcome the challenges in 

http://www.teachingchannel.org
http://www.teachingchannel.org
http://whyu.org
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online learning environments. In an efort to overcome the challenges, instructors can 
utilize various OER in online mathematics method courses. 

Despite it being a recently emerging field, the growing number of research studies 
reported different type of benefits of OER. For example, OER has positive impacts on 
learners’ attitudes and perceptions of learning; it enhances the learning interest, and 
is open access to all (Gourley & Lane, 2009; Weller et al., 2015). It also helps to expand 
teachers’ roles and to make them more active in sharing information and learning from 
each other (Petrides, Jimes, Middleton-Detzner, & Howell, 2010). Another important 
facet of distance learning is the independence and increased responsibility for self-
learning, which can be enhanced by integrating appropriate usage of OER. Andreatos 
and Katsoulis (2012) further assert that OER helps distance learners to be more inde-
pendent of instructors, authors, and textbooks. More importantly, utilizing OER in 
an online learning environment enables the instructor to bridge the gap between on-
campus and online courses in terms of classroom activities and interaction. The role 
of OER appears to be even more relevant and important to the rapidly growing online 
educational system. However, more research studies need to be conducted as it relates 
to the roles and effects of OER for online mathematics method courses in general, 
since fewer studies have been done in this area. Just simply integrating OER does not 
necessarily enhance the learning. “There is a need to continue the development of 
the tools and resources to support the transition to OER” (Miller, 2016, p. 254). The 
author has not collected data formally yet, but based on course evaluations, students’ 
feedback, interactions with students, and other online activities, the author noticed 
that OER helps to make online learning more effective, as well as helping to reduce 
the gap between online and on-campus courses. Thus, more research in this area is 
recommended in order to investigate the role and effects of OER, particularly in online 
mathematics method courses. 

REFERENCES 
Anderson, D., Imdieke, S., & Standerford, N. S. (2011). Feedback please: Studying self in the online 

classroom. International Journal of Instruction, 4, 3–15. 
Andreatos, A., & Katsoulis, S. (2012). Using open educational resources in course Syllabi. Te 

American Journal of Distance Education, 26, 126–139. 
Baran, E., Correia, A., & Tompson, A. (2011). Transforming online teaching practice: Critical 

analysis of the literature on the roles and competencies of online teachers. Distance Education, 
32(3), 421–439. 

Beck, V. S. (2010). Comparing online and face-to- face teaching and learning. Journal on Excel- 
lence in College Teaching, 21(3), 95–108. 

Char, C., & Education Development Center, Inc., Newton, MA. Center for Learning Technology. 
(1991). Computer graphic feltboards new sofware approaches to children’s mathematical explo-
ration. Report No. 91-1, Washington, D.C. 

Coppola, N. W., Hiltz, S. R., & Rotter, N. (2001). Becoming a virtual professor: Pedagogical roles and 
ALN. System sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference. 

Crawford-Ferre, H. G., & Wiest. L. R. (2012). Efective online instruction in higher education. Te 
Quarterly Review of Distance Education, 13(1), 11–14. 

Dede, C., Ketelhut, D. J., Whitehouse, P., Breit, L., & McCloskey, E. M. (2009). A research agenda for 
online teacher professional development. Journal of Teacher Education, 60(1), 8–19. 



        

 

     
      

 

 

 

 
 

        

334 ◾ Teaching and Learning Mathematics Online 

Fein, A. D., & Logan, M. C. (2003). Preparing instructors for online instruction. New Directions for 
Adult and Continuing Education, 100, 45–55. 

Fey, J. T. (1989). Technology and mathematics education: A survey of recent developments and 
important problems. Educational Studies in Mathematics, 20, 237–272. 

Gourley, B., & Lane, A. (2009). Re‐invigorating openness at Te Open University: Te role of Open 
Educational Resources. Open Learning: Te Journal of Open, Distance and e-Learning, 24(1), 
57–65. doi:10.1080/02680510802627845. 

Hannafn, R. B., Burrus, J. D., & Little, C. (2001). Learning with dynamic geometry programs: 
Perspectives of teachers and learners. Te Journal for Educational Research, 94(3), 132–144. 

Hilton III, J. L., Gaudet, D., Clark, P., Robinson, J., & Wiley, D. (2013). Te adoption of Open 
Educational Resources by one community college math department. International Review of 
Research in Open & Distance Learning, 14(4), 37–50. 

Hohenwarter, M., & Fuchs, K. (2004). Combination of dynamic geometry, algebra and calculus in 
the sofware system GeoGebra. Electronically. Retrieved from http://www.geogebra.org/en/ 
wiki/index.php/Publications. 

Isman, I., & Altinay, Z. (2006). Self-Perceptions and roles: How eastern Mediterranean university 
students and teachers view online program and courses. Turkish Online Journal of Distance 
Education, 7(1), 75–90. 

Kahveci, M., & Imamoglu, Y. (2007). Interactive learning in mathematics education: Review of recent 
literature. San Antonio, TX: Society for Information and Technology and Teacher Education. 

Kebritchi, M., Lipschuetz, A., & Santiague, L. (2017). Issues and challenges for teaching successful 
online courses in higher education: A literature review. Journal of Educational Technology, 
46(1), 4–29. 

Ko, S., & Rosen, T. (2010). Teaching online: A practical guide. New York, NY: Rutledge. 
Larkin, K. (2013). Mathematics education: Is there an app for that? In V. Setinele, L. Ball, & C. 

Bardino (Eds). Mathematics education: Yesterday, today and tomorrow. Proceedings of the 
36th annual conference of mathematics education research group of Australasia (pp. 426–433). 
Melbourne, VIC: MERGA. 

Li, C., & Irby, B. (2008). An overview of online education: Attractiveness, benefts, challenges, con-
cerns, and recommendations. College Student Journal, 42, 449–458. 

Ludlow, B. L. (2001). Technology and teacher education in special education: Disaster or deliver-
ance. Teacher Education and Special Education, 24(2), 43–163. 

Major, C. H. (2010). Do virtual professors dream of electric students? University faculty experi-
ences with online distance education. Teacher College Record, 112(8), 2154–2208. 

Miller, H. (2016). A practitioner’s guide to Open Educational Resources: A case study. In P. Blessinger, 
& T. Bliss (Eds). Open Education (pp. 237–255). Open Book Publishers. 

Moyer, P., & Bolyard, J. (2016). Revisiting the defnition of a virtual manipulatives. In P. Moyer (Ed), 
International perspectives on teaching and learning mathematics with Virtual Manipulatives 
(pp. 2–24). Switzerland: Springer International Publishing. 

Moyer, P., Bolyard, J., & Spikell, M. (2002). What are virtual manipulatives? Teaching Children 
Mathematics, February 2. 

Namukasa, I. K., Gadanidis, G., Sarina, V., Scucuglia, S., & Aryee, K. (2016). Selection of apps 
for teaching difcult mathematics topics: An instrument to evaluate touch-screen tablet 
and smartphone mathematics apps. In P. Moyer (Ed), International perspectives on teaching 
and learning mathematics with Virtual Manipulatives (pp. 275–300). Switzerland: Springer 
International Publishing. 

National Council of Teacher of Mathematics. (2000). Principles and standards for school mathemat-
ics. Reston, VA: Author. 

Organization for Economic Co-operation and Development (OECD). (2007). Giving knowl- edge 
for free: Te emergence of open educational resources. Paris: Author. Retrieved from http:// 
www.oecd.org/education/ceri/38654317.pdf. 

http://www.geogebra.org
http://www.geogebra.org
http://www.oecd.org
http://www.oecd.org


          

 

 

      
                

       

       
    

Making Online Mathematics Method Courses Interactive and Effective with OER ◾ 335 

Orr, D., Rimini, M., & Van Damme, D. (2015). Open educational resources: A catalyst for innova-
tion. Paris: Educational Research and Innovation, OECD Publishing. 

Parslow, G. R. (2012). Commentary: Te Khan academy and the day-night flled classroom. 
Biochemistry and Molecular Biology Education, 40(5), 337–338. 

Petrides, L., Jimes, C., Middleton-Detzner, C., & Howell, H. (2010). OER as a model for enhanced 
teaching and learning. In Open ED 2010 proceedings. Barcelona: UOC, OU, BYU. 

Sapire, I., & Reed, Y. (2011). Collaborative design and use of open educational resources: A case 
study of a mathematics teacher education project in South Africa. Distance Education, 32(2), 
195–211. 

Sarama, J., & Clements, D. H. (2016). Physical and virtual manipulatives: What is “concrete”? In 
P. Moyer (Ed), International perspectives on teaching and learning mathematics with Virtual 
Manipulatives (pp. 71–93). Switzerland: Springer International Publishing. 

Sessoms, D. (2008). Interactive instruction: Creating interactive learning environment through 
tomorrow’s teachers. International Journal of Technology in Teaching and Learning, 4(2), 
86–96. 

Spicer, J. (2000). Virtual manipulatives: A new tool for hands-on math. ENC Focus, 7(4), 14–15. 
Suh, J. M., Johnston, C. J., & Douds, J. (2008). Enhancing mathematical learning in a technologi-

cal–rich environment. Teaching Children Mathematics, 15(4), 235–241. 
United Nations Educational, Scientifc, and Cultural Organization (UNESCO). What are Open 

Educational Resources (OERs). (n.d.). Retrieved from http://www.unesco.org/new/en/c 
ommunication-and-information/access-to-knowledge/open-educational-resources/what 
-are-open-educational-resources-oers/. 

Wagner, E. D. (1994). In support of a functional defnition of interaction. American Journal of 
Distance Education, 8(2), 6–29. 

Weller, M., Arcos, B., Farrow, R., Pitt, B., & McAndrew, P. (2015). Te impact of OER on teaching 
and learning practice. Open Praxis, 7(4), 351–361. 

William and Flora Hewlett Foundation. (n.d). Retrieved from https://hewlett.org/strategy/open-e 
ducational-resources/. 

http://www.unesco.org
http://www.unesco.org
http://www.unesco.org
https://hewlett.org
https://hewlett.org


https://taylorandfrancis.com/


337 

 

 
 

 

 

   
  

 
  

 
   
   
   
   
   
   

 
 

C H A P T E R  17 

Developing Interactive 
Demonstrations for the 
Online Mathematics 
Classroom 
Interactive Diagrams 

Mina Sedaghatjou, Harpreet Kaur, and Kelly A. Williams 

CONTENTS 
17.1 Introduction 337 
17.2 Incorporating Features of an Efective Mathematics Classroom in a Hybrid 

Setting 338 
17.3 Interactions, Communication, and Assessments in an Online Mathematics 

Classroom 340 
17.4 Research Method 342 
17.5 Exploration-Based Activities: Mysterious Geometrical Transformation 343 
17.6 Dragging as a Conceptual Tool: Interplay between Dragging and Variation 346 
17.7 Diagrammatic Argumentation Using IDs 347 
17.8 Constructing a Golden Rectangle 348 
17.9 Conclusion 351 
Acknowledgment 351 
References 351 

17.1  INTRODUCTION 
In today’s digital era, technology plays an important role in teaching and learning. Tere 
is increased demand for online courses in all subjects, including mathematics, due to their 
fexible scheduling, capability of digital media integration, self-paced learning, lower costs, 
and ability to provide an inclusive education catering to students with diferent needs. 
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Most online learning occurs through an institution’s Learning Management System (LMS), 
which is a sofware application for delivering, maintaining, sharing, and tracking educa-
tional resources. In such an environment (as with in-person mathematics classes), graphs, 
sketches, and diagrams play a crucial role in teaching and learning mathematics. Stylianou 
and Silver (2004) write, “indeed, the abstract arguments presented in Euclid’s Elements rely 
heavily on the use of diagrams, and this use of visual representations remained an accept-
able practice in mathematics well into the eighteenth century” (p. 354). Tis emphasizes 
the vital role of diagrams and visual presentations in geometrical argumentations. In an 
online mathematics learning environment, argumenting and conjecturing are made pos-
sible through using IDs. Te term Interactive Diagram (ID) refers to dynamic embedded 
diagrams that require action and participation from learners. IDs can be preconstructed 
or constructed; they can be modifed, manipulated, or explored in any dynamic geometry 
environment such as GeoGebra (Hohenwarter, 2002), Cabri (Laborde & Strässer, 1990), 
Geometer’s Sketchpad (Jackiw, 2001), or Cinderella (Richter-Gebert & Kortenkamp, 1999), 
while also exploring concepts of geometry, calculus, algebra, and other areas of mathemat-
ics. In addition, a well-constructed interactive embedded diagram provides an environ-
ment enriched by multiple representations as well as direct, continuous, real-time, and 
interactive manipulation in an online mathematics platform (Abrahamson & Sanchez-
Garcia, 2016; Arzarello, Robutti, & Tomas, 2015; Battista, 2008; Kaur, 2015; Nasim, 2008; 
Sinclair & Moss, 2012; Sinclair & Yurita, 2008). 

Studies have shown that a well-integrated Dynamic Geometry Environment (DGE) in 
a hybrid learning environment such as GeoGebra can be used to explore geometrical con-
tent in an interactive and adaptive environment. Additionally, in-session instruction can 
be intertwined with ID-based activities in a variety of settings, individual or collaborative, 
synchronous or asynchronous, inside or outside the classroom (Santos & Quaresma, 2012; 
Santos, Quaresma, Marić, & Campos, 2018). However, it is still unclear how utilizing DGE-
based embedded dynamic and interactive diagrams in LMS facilitates learning mathemat-
ics in general and geometry in particular. 

In this chapter, we use our study implementing interactive diagrams in a hybrid learning 
environment to present some ideas that facilitate learning geometry in an online environ-
ment. Tis study was conducted in a teacher education introductory level mathematics course 
for teacher candidates. Te overarching question in this study is “how does utilizing DGE-
based embedded dynamic and interactive diagrams in LMS facilitate learning geometry in a 
hybrid mathematics classroom?” In the following pages, we provide examples of embedded 
dynamic interactive diagrams and analyze their usage in an online LMS. We present tasks 
that invite both individual and collaborative learning in an online environment. We also 
discuss how IDs can trigger diagrammatic thinking, reasoning, and argumentation. 

17.2 INCORPORATING FEATURES OF AN EFFECTIVE 
MATHEMATICS CLASSROOM IN A HYBRID SETTING 

Researchers have recently highlighted the importance of developing students’ mathemati-
cal thinking and making it visible (see Suurtamm, Quigley, & Lazarus, 2015) by posing 
engaging and appropriate questions. Tey encourage students to work cooperatively and 
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collaboratively with each other and interact in ways that both support and challenge one 
another’s strategic thinking (Artzt, Armour-Tomas, & Curcio, 2008; Davidson, 1990). 
Activities should be structured in ways that allow students to explore, explain, extend, and 
evaluate their progress (National Research Council, 1999). 

Protheroe (2007) describes an ideal mathematics classroom where students actively 
engage in doing mathematics, making interdisciplinary connections, sharing mathemati-
cal ideas with each other, and using manipulative strategies to solve mathematical prob-
lems. Te teacher also demonstrates acceptance of students’ divergent strategies and ideas, 
infuences learning by posing challenging and interesting questions, and projects a posi-
tive attitude towards mathematics. Liljedahl’s (2016) research on “thinking classrooms” 
provides another example of ideal mathematics classrooms where students engage in 
collaborative problem solving. One can easily imagine this happening in a face-to-face 
mathematics classroom, but maintaining this approach in an online environment would 
be challenging. 

In face-to-face classrooms, teachers take moment-by-moment actions and make deci-
sions that are informed by evidence of student understanding in order to facilitate stu-
dent learning (Leahy, Lyon, Tompson, & Wiliam, 2005). Teachers elicit students to think 
through many tactics, such as observations during problem-solving, informal interviews 
during class, or using focused questions during mathematical discussions, so that they can 
adjust their instruction accordingly. However, keeping such strategies up in an online or 
hybrid classroom becomes challenging for both teachers and learners. It seems difcult 
to preserve the crucial roles of all forms of mathematizing in students’ lived experiences, 
including reading, writing, speaking, drawing, and doing mathematics, as well as assess-
ment (self or teacher), in an online classroom. 

Over the past few years, the concept of hybrid learning has become popular among 
mathematics teachers and educators. Hybrid learning, or blended learning, is a formal 
education program that integrates face-to-face learning with technology-based, digital 
instruction. Learning takes place in online, mobile, or classroom environments, or some 
combination of the three. Te implementation varies from teacher to teacher. Some teach-
ers like to use the fipped classroom model, where students review lecture videos online 
at home and use the class time for solving problems and doing a portion of homework 
(Jungić, Kaur, Mulholland, & Xin, 2015; Lo & Hew, 2017). Others give homework assign-
ments using online sofware like LonCapa, MapleTA, or CourseCompass by Pearson/ 
Addison-Wesley (Burch & Kuo, 2010) that students can attempt and submit individually. 
Some teachers prefer to blend classroom instruction and online activities using their insti-
tute’s LMS like Canvas, Blackboard, Brightspace, or Moodle, Sakai, etc. Te interactive 
diagrams can be used through such LMS platforms where students can create, modify, and 
manipulate mathematical embedded dynamic diagrams to explore and discuss various 
mathematical concepts. In mathematics education literature, diagramming has been used 
as a technical term in two diferent ways: diagrammatic reasoning/thinking and diagram-
matic argumentation. Diagrammatic reasoning is seen as informal reasoning. It is basically 
a heuristic approach to problem solving (Radford, 2008). Diagrams also have prescribed 
sets of rules that describe how to produce a diagram. Tese types of diagrams are used as a 
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tool to demonstrate, clarify, warrant, or back up claims in verbal interactions, hence facili-
tating diagrammatic argumentation (Krummheuer, 2013). Tus, it invites readers to think 
about what kinds of diagrammatical interactions and communication generally happen 
in a mathematics classroom, as well as what kinds of interactions and communication are 
possible in a hybrid dynamic geometry environment in particular. 

17.3 INTERACTIONS, COMMUNICATION, AND ASSESSMENTS 
IN AN ONLINE MATHEMATICS CLASSROOM 

Tere is no doubt that interactions and communication are essential for any kind of learn-
ing. In an online classroom (or any classroom), efective teacher–student, student–content, 
and student–student interactions build community and lead to robust communication. 
While these interactions seem easy and natural in face-to-face classrooms, in an online 
environment, purposeful, organized, and systematic discussions and interactions are nec-
essary for successful learning (Vaughan, Cleveland-Innes & Garrison, 2013). Te teacher 
needs to take on a range of roles as students’ “guide, facilitator, and teacher” (Ragan, 2009, 
p. 6) in order to inspire students and build an active, student-centered learning environ-
ment in an online setting. 

Research indicates that online discussion forums can help in formative assessment and 
can be an important part of the learning process (Cross & Palese, 2015; DeCosta, Bergquist, 
& Holbeck, 2015). Te idea of formative assessment emerged from Bloom’s (1956) work, 
which noted that formative assessment could become part of the teaching cycle. Formative 
assessments difer from summative assessments in the sense that they are intended to 
inform the teacher and the student of their current progress. In addition, “formative feed-
back actualizes and reinforces self-regulated learning strategies among students” (Clark, 
2012, p. 1). It helps teachers to adapt their teaching practices, which in turn may help stu-
dents move towards understanding. Over the years, diferent types of techniques for for-
mative assessment have been suggested, and hence diferent teaching methods for online 
classrooms emerged. Classroom Assessment Techniques (CATs) are one popular form of 
formative assessment put forth by Cross and Angelo (1988). CATs have been widely used 
in face-to-face classrooms and come in many forms, such as assessing prior knowledge to 
understand mastery of concepts. Tey are designed to gather information about both the 
learner and the teacher. Cross and Angelo used diferent versions of CATs in their research 
studies, such as Documented Problem Solution CAT, where students document, in written 
form, how they solve a particular problem as a way to reason through the steps. 

Studies about using CATs in online environments are beginning to emerge (Cross & 
Palese, 2015; Steele & Dyer, 2014). Cross and Palese (2015) conducted a study with fve full-
time online mathematics instructors teaching intermediate algebra classes to test using 
discussion forums as a space for formative assessments. Tey reported that discussion 
forum posting frequencies and quiz scores were signifcantly higher for the sections that 
used CAT as compared to non-CATs sections. Tus, Cross and Palese established the idea 
that “using classroom assessment techniques … may actually elicit more discussion forum 
conversation from students and positively impact student quiz scores” (Cross & Palese, 
2015, p. 98). In our study, the students were asked to do constructions and explorations 
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with interactive embedded diagrams that resulted in student–content interactions and 
indirect student–teacher interactions. Students’ written responses about a pre-constructed 
sketch and interactive embedded student constructions served as a tool of formative 
assessment. Communication is defned as “a process by which information is exchanged 
between individuals through a common system of symbols, signs, or behavior” (Merriam 
Webster’s Collegiate Dictionary, 2018). Terefore, mathematical communication entails 
human senses and cognitive skills like comprehension, interpretation, visualization, and 
expression of mathematical ideas, as well as non-linguistic methods of communication. 
In other words, mathematics communication and conceptualization have strong embod-
ied components (Arzarello et al., 2014; Arzarello, Robutti, & Tomas, 2015; Campbell, 
2010; Charoenying, 2015; de Freitas, 2016; de Freitas & Sinclair, 2012, 2013; Kaur, 2015; 
Mowat, 2010, Nemirovsky & Ferrara, 2008; Nemirovsky, Kelton, & Rhodehamel, 2012; 
Nemirovsky, Kelton, & Rhodehamel, 2012, 2013; Radford, 2013, 2014; Sedaghatjou, 2018; 
Tall, 2006). It means, not only is mathematical communication inherently multimodal 
and embodied, it is also grounded on gesticulation, pointing, gaze, and body language. In 
addition, the processes of comprehending, interpreting, and visualizing mathematical and 
pictorial graphs all play a vital role in learning mathematics in general. One of the central 
tasks for learning mathematics is to understand, draw, and interpret mathematical graphs 
and objects (Healy & Fernandes, 2011). Te important role of diagramming is explored by 
Menz (2015), who goes further and suggests diagramming is a place of mathematizing. 
Understanding given static diagrams or graphing in an online classroom become chal-
lenging tasks in the absence of face-to-face interactions with the instructor; however, being 
in the classroom doesn’t necessarily mean understanding what the instructor graphs or 
draws. In such a situation, DGE, with its dynamic features, seems like a great environment 
for students and teachers to experience mathematics. IDs help in promoting student–con-
tent communication in an online environment through embodied interactions. 

In addition, any LMS has some basic components that enable collaborative engage-
ments for teaching and learning mathematics in an online platform. For example, there 
are forums for sharing ideas and discussions. Each student may also use the LMS Wikis 
or blogging to write journals or refections. Current technology makes it possible to use a 
variety of interactive diagrams/graphs and representations in a desired LMS. GeoGebra, 
a free ID, can be embedded in all above LMS components as they are Java-enabled. In 
such an environment, IDs promote mathematical communication through diagrammatic 
argumentation and/or diagrammatic thinking. Nafaliev and Yerushalmy (2017) set out 
various functions served by IDs that help in mathematizing, which are described in detail 
in the next section. 

Nafaliev and Yerushalmy (2013, 2017) conducted a semiotic analysis based on Kress 
and van Leeuwen’s (1996) visual social-semiotic theory. Tey defned three types of ID 
functions in teaching and learning mathematics as “presentational,” “orientational,” and 
“organizational.” “Presentational” function is a dynamic illustration of the geometry con-
cept that helps the learner analyze a situation with its given geometrical and mathematical 
constraints. Presentational function can happen in two diferent ways. Te frst way is to 
provide random examples of the geometrical rules by presenting diferent presentation 
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information in various times for each learner. For example, the “Mysterious Geometrical 
Transformation” task that we present later in our study can be sorted in this category. Tat 
is because the task keeps changing the examples by generating similar or new examples. 
Te second approach of presentational function is through providing a generic example 
when the ID serves as a generic view of a concept. In other words: 

“a generic example is an actual example, but one presented in such a way as to 
bring out its intended role as the carrier of the general; this is done by means of 
stressing and ignoring various key features, of attempting to structure one’s per-
ception of it” (Mason & Pimm, 1984, p. 287). 

Te “Golden Ratio Activity,” which we will discuss later in the chapter, is a generic example. 
It is important to consider generalities and presentation when designing generic examples 
(Nafaliev & Yerushalmy, 2017). 

“Orientational” function of IDs refers to the subject design decision in terms of “sketch-
iness” vs. “rigorousness.” It means a graph may highlight important elements instead of 
accurate appearance and complete picture. So, it can provide a variety of fnal products 
that share the same geometrical properties. In our study, both “Mysterious Geometrical 
Transformation” and “Golden Ratio Activity” tasks depict sketchiness and rigorousness 
features respectively, hence illustrating the orientational function of IDs. Tus, the role of 
interactive embedded diagrams in the LMS as a form of CATs, and their presentational and 
orientational functions in online and nonverbal environments, can open another realm to 
teaching and learning mathematics online. 

In the following sections, we share our study of teaching and learning mathematics in 
a hybrid classroom, where IDs play an important facilitating role. We frst present some 
background information about our study setting, then highlight the main attributes of 
the interactive and dynamic diagrams as used in the online component of the classroom 
through an LMS known as Canvas. 

17.4  RESEARCH METHOD 
Te participants of this study were 30 teacher candidates registered in an introductory 
mathematics class. None of the participants had a science or mathematics background. 
Te teacher candidates’ knowledge of geometry and mathematics was minimal. No par-
ticipants had taken any mathematics courses at a university level prior to this course. Te 
study occurred over 13 weeks in the spring semester of the academic year. Te course 
was designed in the form of a hybrid classroom. Tis means the teacher candidates had 
a chance to participate in some three hours of face-to-face class time per week, as well as 
some online activities and classes. Prior to registration in the course, they were informed 
that they must adapt to a new sofware program, GeoGebra, while minimal instruction 
would be provided (other than some resources). During the study, lessons were conducted 
either in face-to-face classes or through Canvas. 

Te classroom was equipped with six large touchscreen-based computers attached to 
the walls. GeoGebra was installed on all the touchscreen-based computers, and teacher 
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candidates could interact with them using their hands, specialized pens, and/or external 
keyboards. In addition, all the teacher candidates were asked to install GeoGebra on their 
own handheld devices. During class time, the teacher candidates were asked to work as 
groups of fve. Te main component of online classes was to construct, manipulate, and 
explore geometrical concepts through interactive and dynamic diagrams, make conjec-
tures, prove or disprove open-ended questions, and/or explain what teacher candidates did 
observe. In this chapter, as we move forward, we present evidence of how utilizing DGE-
based embedded dynamic and interactive diagrams in the LMS facilitates learning geom-
etry. Next, we provide some examples of the use of embedded IDs and analysis of their 
usage in Canvas based on the semiotic and diagrammatic communication frameworks 
discussed in previous sections. 

17.5 EXPLORATION-BASED ACTIVITIES: MYSTERIOUS 
GEOMETRICAL TRANSFORMATION 

For the online component in the hybrid mathematics classroom, the frst author and 
researcher presented diferent mathematical tasks to the teacher candidates throughout 
the course. For example, one such task that took place in an online classroom was the 
“Mysterious Geometrical Transformation” task. Te teacher candidates were asked to 
explore the interactive worksheets, move the image around point A, remain attentive to 
the traces that they may create, and identify what kind of geometrical transformation each 
task was (see Figure 17.1). Tey were also asked to explore how ofen the two points (the 
image and preimage) would ever meet. Te teacher candidates were expected to realize that 
the two points meet on the center/line of transformation. 

As shown in Figure 17.1, the ID provides both sketchy and rigorous diagrams through 
a “generic” example in a dynamic format. It means that, although coordinate values and 
scales are intentionally hidden in ID (sketch-like drawings on a piece of plain paper), the 
line and center of symmetries are rigorously fxed with the given degree and direction for 
each transformation. In such a dynamic environment, the ID produces sketchy freehand 
drawings, which are rigorously ordered by mathematics rules and laws. So, it produces a 
variety of the random fnal products (by starting from scratch), although they all share the 
same mathematical idea. In addition, these IDs invite and promote diagrammatic thinking 
and reasoning in an online classroom. Tey challenge teacher candidates by moving from 
the prototype and static examples illustrated in the textbook to a freehand drawing in an 
ID. Te discussion forum in this activity was set in a way that the teacher candidates were 
not given permission to view peers’ input before posting their work; thus minimal collab-
orative discussion on each other’s posts was observed. Te main aim of this setting was to 
give a chance for each teacher candidate to explore the task, refect, and reason individually 
before jumping to conclusions based on others’ responses. In other words, the discussion 
and interaction here took place between the IDs, the teacher candidates, and mathematics. 
Table 17.1 illustrates some of the teacher candidates’ thematic written explanations on the 
“Mysterious Geometrical Transformation” task. 

Te ID in this activity enriched the mathematical environment by providing multi-
ple real-time “representations” that difer from paper-based solutions. We found written 
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FIGURE 17.1 In this task, only two points were shown on the screen. Students could drag only 
point A and not the image. In the frst task, a translated shape can be constructed with moving 
point A, and therefore its image, A′, by creating a trace. Te points meet on the refection line. In 
tasks two and four, the points turn about a fxed center, which is the place that the they also meet. 
In task three, the two points refect and meet on the vertical line. (Drawings here are random and 
made by the authors.) 

diagrammatic reasoning in teacher candidates’ responses that was rooted in their lived ID 
exploration. Tey described geometrical transformation using dynamic verbs like moves, 
creates, mirrors, and follows. For example, teacher candidate A refers to the fexible, free-
drawing nature of the exploration while preserving “translation” transformation (where 
the lines move in unison a constant distance apart from one another). Teacher candidate 
B acknowledges the role of perseverance in ID exploration. Task 4 is a bit trickier in that 
it appears to be refecting; however, afer “playing around” with it, she discovered it was, 
in fact, a rotation. In addition, teacher candidate C refers to the both sketchy and rigorous 
nature of the ID by mentioning the free but mathematically regulated movement of points 
using “always” and “exactly” adverbs. Although teacher candidate E did not answer the 
question as she was asked to, she remained attentive to the invariants and learned that the 
image of the point moves if, and only if, the original point moves. She also noticed that the 
movement speed afects the trace formations, which is part of the GeoGebra features. 

Tus, in the above activity, the teacher not only invited the teacher candidates to explore 
the concept of geometrical transformation using the embedded IDs, but also to present and 
share their explorations in written format in the discussion forum, which was intentionally 
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made accessible to other teacher candidates only afer they posted their work. Tis helped 
the teacher candidates to see each other’s mathematical and diagrammatical reasoning 
based on the same set of dynamic IDs, which in turn facilitated collaborative learning by 
providing diferent explanations for the same mathematical task. Tis strategy is similar 
to the classroom assessment techniques (CATs) used by Cross and Angelo in their face-
to-face classroom in the sense that it helped with formative assessment and informed the 
teacher about teacher candidates’ understanding of the concept. 

17.6 DRAGGING AS A CONCEPTUAL TOOL: INTERPLAY 
BETWEEN DRAGGING AND VARIATION 

Tere are ample research fndings in which the afordances of IDs, and dragging in particu-
lar, can help to support students’ reasoning, as well as their ability to formulate conjectures 
and proofs. Te researchers go so far as to claim that no counterpart in traditional learning 
environments could raise the same level of conjecturing, thinking, and reasoning as IDs in 
DGE (Battista, 2008; Hollebrands, 2003; Mariotti, 2000; Yu & Barrett, 2002). For example, 
as we discussed earlier, the “Mysterious Geometrical Transformation” task merely relies on 
the dragging feature of the ID, plus the other features of the LMS. Tis communicative ID 
ofers construction of diverse, dynamic, and complex examples in real time. 

Dragging fgures/constructs ofers continuous and real-time transformations that 
maintain the geometrical relationships integrated among the construct’s compo-
nents. In this case, constructs, unlike drawings, move and transform while pre-
serving the invariant geometric properties. For instance, dragging a rhombus may 
produce any desired orientation, shape, side-lengths rhombus (visually apparent) but 
the transformed shape is always a parallelogram, even if it transforms to a square. 

(Sedaghatjou, 2017, p. 78) 

Tis is also in line with the presentational and orientational function of IDs as suggested 
by a semiotic framework. 

Te notion of “continuous motion” was introduced by J.V. Poncelet in 1864. Te prin-
ciple states: 

If we suppose a given fgure to change its position by having its points undergo 
a continuous motion without violating the conditions initially assumed to hold 
between them, the … properties which hold for the frst position of the fgure still 
hold in a generalized form for all the derived fgures. 

(as cited in Nasim, 2008, p. 144) 

Battista (2008) postulated that geometric relationships could be perceived “as invariants in 
the continuous moving of the draggable fgures” (p. 350), which supports humans’ abilities 
to notice invariance. Specifcally, in absence of an instructor and a face-to-face classroom, 
an ID facilitates the alteration of a shape’s representation through dragging and thus the 
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way it is perceived, while the learner remains attentive to the visual modes of what changes 
or remains invariant. Tis is an instance of a generic example as described in the semiotic 
framework. Furthermore, such a component prompts an environment for reasoning, in 
addition to explicit descriptions of geometric relationships and shapes. Also, direct manip-
ulation allows students to conceive a construction closer to the theoretical defnition of a 
geometrical fgure (Pratt & Ainley, 1997). 

As discussed above, prior studies on the use of DGEs have considered dragging to be the 
main feature of DGE. Also, diferent types of dragging in a DGE can indicate various levels 
of cognitive domain of mathematical thinking (Arzarello, Olivero, Paola, & Robutti, 2002). 
Arzarello et al. (2002) suggest that dragging mediates the relationships between concep-
tual and perceptual entities: “dragging supports the production of conjectures: exploring 
drawings by moving them, looking at the ways afer which their forms change (or do not 
change), [and] allows users to discover their invariant properties” (p. 66). Te tracing fea-
ture of GeoGebra in the “Mysterious Geometrical Transformation” task is a good example 
of such a mediation. Te tracing afordance of GeoGebra also maintains the sketchiness 
feature of the orientational function of semiotic framework. 

Studies have investigated the growth of knowledge of geometrical transformations by 
identifying changes in mental schemas (Flanagan, 2001; Yanik & Flores, 2009). Te funda-
mental assumption for these studies is that the concepts are mental representations which 
develop in diferent stages and are located in individual minds. Terefore, learning means 
developing a representation (Cobb & Yackel, 1996). However, this approach suppresses the 
learner’s experiences as well as her interactions with the physical and social world by fol-
lowing learning trajectories and looking for mental schemas, mainly done in clinical inter-
views. We were interested neither in studying what happens in the learner’s mind when she 
solves a task in a DGE, nor in analyzing the learner’s utterances, as we did not have access 
to such data. Instead, we used the dragging and tracing feature of IDs because it provided 
instant feedback to the learner and helped the learner to assess her constructions, as well as 
those of her peers. Tus, the assumption is that IDs could work best for an online classroom 
as they provide instant sketchy or rigorous feedback to learners. 

17.7 DIAGRAMMATIC ARGUMENTATION USING IDS 
Mathematical proofs, disproofs, and conjectures are at the heart of mathematical under-
standing. Hoyles (1997) argues that many of the mathematical ideas that a teacher asks stu-
dents to prove are known to be true by themselves. For example, it seems meaningless for 
students to prove each angle in a square is 90 degrees. However, in a DGE, it is unavoidable 
to pay attention to the geometrical properties throughout the construction of a square in 
a way that the construction passes the drag-test. In such a situation, diagrammatic think-
ing and reasoning in a tacit way are involved. Furthermore, in an online platform using 
DGE, a diagrammatic argumentation can occur during object construction or exploring a 
pre-constructed ID. For example, in a preconstructed equilateral triangle when the learner 
examines and conjectures that the perpendicular bisector and angle bisector are the same, 
or when she constructs an equilateral triangle using the same property, she is doing a dia-
grammatic argumentation. 
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17.8 CONSTRUCTING A GOLDEN RECTANGLE 
As another task, the teacher candidates were asked to construct a golden rectangle, then 
embed and share the construction in the discussion forum. Both Fibonacci numbers and 
golden rectangles were taught to the them in the face-to-face classroom. Te requested 
GeoGebra construction had to pass the drag test. It means, if the golden rectangle was 
constructed correctly, it always remained that same ratio, regardless of how the vertices 
were dragged. Te teacher candidates were also asked to examine their construction geo-
metrically (to fnd the ratio of the sides). 

A quick look at Table 17.2 reveals some ideas about teacher candidates’ work. As shown in 
the table, diferent solutions are given to the same problem. In fact, diferent types of com-
munication are involved. For example, the ID itself communicates with the teacher can-
didates and provides feedback simultaneously during and afer the construction process. 
Te drag test feature plays the role of a teacher and enables teacher candidates to refect on 
their work. However, when the drag test feature is ignored, the teacher challenges teacher 
candidates to do a drag test, as with teacher candidate II. In addition, ID construction 
steps on the lef sides of the fles provide the teacher with evidence of teacher candidates’ 
understanding of the geometrical concept and the steps that were taken for construction. 
Tis feature assists the teacher in evaluating teacher candidates’ work, even without any 
written explanation. Te teacher could analyze teacher candidates’ submissions based on 
mathematical objects and relations shown in the diagram even in the absence of written 
verbal explanations. Below we provide some examples of interpretation of the teacher can-
didate’ golden rectangles constructions. 

Teacher candidate I: construction steps are explained clearly, and the shape passed the 
drag test. It seems that the teacher candidate is proud of herself. However, no algebraic 
measurement is followed. 

Teacher candidate II: it seems this teacher candidate did not understand the meaning 
of construction. So, the teacher challenged the teacher candidate with a drag test. Also, 
she did not insert an algebraic formula that shows G1H1/H1B1 changes while dragging. 
However, she certainly had examined the rectangle and knows this is a drawing and not a 
precise construction. 

Teacher candidate III: this teacher candidate took a diferent strategy and used 
a b  a+ = = j  (see Figure 17.2). She also included the construction protocol and algebraic 

a b 
view, so everyone could follow the construction steps (as shown in Table 17.2). 

Teacher candidate IV: this teacher candidate did not include a written explanation; 
the diagram itself demonstrates her understanding in the form of an extended solution. 
We would call this pure diagrammatic reasoning. Tis diagram passes the drag test suc-
cessfully and shows a higher level of thinking by expanding and repeating the construc-
tion steps and therefore creating the third golden rectangle. It also demonstrates teacher 
candidates’ tool fuency, which can explain mathematical understanding (Nemirovsky et 
al., 2013). Sometimes only diagrammatic constructions are enough to illustrate students’ 
mathematical fuency, but it might not be the same for all students. In such a situation, the 
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TABLE 17.2 Examples of Teacher Candidates’ Shared Solutions 
I Here I constructed a 

golden ratio. I do this by 
creating a circle where EC 
is the radius, and C was 
used as a point of the 
circle. I then made a line 
that extends AB to the 
point that it meets the 
circle. I then made a line 
that ran parallel to CB, 
which fall on the farthest 
right point of the circle. I 
then fnished of the 
rectangle by extending 
DC to the line I had just 
created. Voila! A 
rectangle with a golden 
ratio. 

II Te length of the large 
rectangle (G1H1) is 6.6, 
while the width of the 
large rectangle (H1B1) is 
4.08. L/W 

Te width of the small 
rectangle (E1B1) is 2.52 
while the length of the 
small rectangle (H1B1) is 
4.08. 2.52/4.08 = 1.6190. 

Tis will not happen all the 
time, but only in a golden 
rectangle, which this is. 

Afer Drag test 

(Continued) 

https://2.52/4.08
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TABLE 17.2 (CONTINUED) Examples of Teacher Candidates’ Shared Solutions 
III To fnd whether the blue 

rectangle is in golden 
ratio, I used (a+b)/g = 
(6.43+3.97)/6.43 = 
1.61741… 

To fnd whether the green 
rectangle is in ratio I used 
g/b = 6.43/3.97 = 1.61…, 
so both rectangles are in 
ratio 

Te ratio of a/b is 1.62, 
which is similar to phi 
(the golden ratio). 

Tis remains the same 
even if the rectangles 
move or increase in size 

IV 

FIGURE 17.2 Golden rectangle. 
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teacher can explicitly ask students to do a drag test of their construction before submitting 
their work. 

17.9  CONCLUSION 
Mathematical diagrams play a crucial role in mathematics and are highly appreciated in 
geometry. Geometry—as one of the earliest felds of mathematics, and a visual feld— 
keeps succinct, sketchy, rigorous, and expressive diagrams at its heart. Such diagrams 
involve shapes, solids, and spatial fgures, as well as their properties and relationships. 
Alternatively, interactive and dynamic diagrams play the most crucial role in mathemat-
ical diagramming, and hence mathematizing, in an online platform. IDs in the digital 
format provide a rich environment to identify covariants and/or invariants under varia-
tions, as well as forming, examining, and verifying conjectures. Tis is an epistemologi-
cal approach to mathematics that emphasizes experiencing mathematics, which is enabled 
through diagrammatic thinking, argumenting, and reasoning. 

In this chapter, we discussed why a tool-based environment enriched with IDs is nec-
essary in an online mathematics class. It opens up pedagogical spaces for exploration, 
examination, and conjecturing, somehow in a total diagrammatic and tacit way. IDs invite 
learners’ bodily engagement in online collaborative mathematizing. In such a situation, 
task design plays a crucial role. Te diagrams then can be turned into a meaningful rep-
resentation for the uttered or unuttered mathematical processes. IDs also play the role of 
mediator between mathematics, teaching, and learning. In addition, our study supports 
Azzouni’s (2013) argument and shows how diagrammatic argumentation can be perfectly 
rigorous in a DGE. IDs provide a rich, dynamic environment that enables the instructor 
to assess every taken step. IDs also lif the confusion of proof expression procedures when 
compared with language proofs. Te dynamic features of IDs in DGE diminish the impos-
sibility of naturally generalizing a diagrammatic proof procedure, if any chance of that 
exists. 

In this chapter, we argued that not only are IDs in an online mathematics course neces-
sary, they are central. Tere will be little meaning lef for mathematizing if IDs are taken 
out of the LMS because discussions, object constructions, and geometrical explorations 
heavily rely on IDs. We strongly recommend integrating IDs in online mathematics classes 
because of the diferent roles they can play in thinking, reasoning, argumenting, and prov-
ing. Further studies incorporating other felds of mathematics and Massive Open Online 
Courses (MOOCs) using embedded interactive diagrams are suggested. 

ACKNOWLEDGMENT 
Te authors would like to thank Abby Williams for technical editing and proofreading of 
the manuscript. 

REFERENCES 
Abrahamson, D., & Sanchez-Garcia, R. (2016). Learning is moving in new ways: Te ecological 

dynamics of mathematics education. Te Journal of the Learning Sciences, 25(2), 203–239. doi 
:10.1080/10508406.2016.1143370. 



        

 

 

 

          
         

 

 

        
 

 
           

 

 

 

 

352 ◾ Teaching and Learning Mathematics Online 

Artzt, A. F., Armour-Tomas, E., & Curcio, F. R. (2008). Becoming a Refective Mathematics Teacher. 
New York, NY: Lawrence Erlbaum Associates. 

Arzarello, F., Bairral, M. A., & Danè, C. (2014). Moving from dragging to touchscreen: Geometrical 
learning with geometric dynamic sofware. Teaching Mathematics and Its Applications, 33(1), 
39–51. doi:10.1093/teamat/hru002. 

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises 
in Cabri environments. ZDM, 34(3), 66–72. doi:10.1007/BF02655708. 

Arzarello, F., Robutti, O., & Tomas, M. (2015). Growth point and gestures: Looking inside 
mathematical meanings. Educational Studies in Mathematics, 90(1), 19–37. doi:10.1007/ 
s10649-015-9611-5. 

Azzouni, J. (2013). Tat we see that some diagrammatic proofs are perfectly rigorous. Philosophia 
Mathematica, 21(3), 323–338. 

Battista, M. T. (2008). Development of the shape makers geometry microworld. Research on 
Technology and the Teaching and Learning of Mathematics, 2, 131–156. Teses. University of 
Guelph (Canada), Canada. Retrieved from http://proxy.lib.sfu.ca/login?url=http://search.pr 
oquest.com/docview/304890426?accountid=13800. 

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., Krathwohl, D. R. (1956). Taxonomy of educa-
tional objectives: Te classifcation of educational goals. Handbook I: Cognitive domain. New 
York: David McKay Company. 

Burch, K. J., & Y. Kuo. (2010). Traditional vs. online homework in college algebra. Mathematics and 
Computer Education, 44, 53–63. 

Campbell, S. R. (2010). Embodied minds and dancing brains: New opportunities for research in math-
ematics education, In: B. Sriraman, & L. English (Eds.), Teories of Mathematics Education: 
Seeking New Frontiers (pp. 309–331). Berlin: Springer. doi:10.1007/978-3-642-00742-2. 

Charoenying, Timothy. (2015). Fostering Embodied Coherence: A Study of the Relationship Between 
Learners’ Physical Actions and Mathematical Cognition. (Doctoral dissertation). UC Berkeley: 
Education. Retrieved from http://escholarship.org/uc/item/5wz5f6zh. 

Clark, I. (2012). Formative assessment: Assessment is for self-regulated learning. Educational 
Psychology Review, 24(2), 205–249. 

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the con-
text of developmental research. Educational Psychologist, 31(3–4), 175–190. 

Communication. (n.d.). In Merriam Webster’s Collegiate Dictionary. Retrieved 08 08, 2018, from 
https://www.merriam-webster.com/dictionary/communication. 

Cross, K. Patricia (Kathryn Patricia), Angelo, Tomas A., & National Center for Research to 
Improve Postsecondary Teaching and Learning. (1988). Classroom Assessment Techniques: A 
Handbook for Faculty. Ann Arbor, MI: National Center for Research to Improve Postsecondary 
Teaching and Learning, University of Michigan. 

Cross, T., & Palese, K. (2015). Increasing learning: Classroom assessment techniques in the online 
classroom. American Journal of Distance Education, 29(2), 98–108. 

Davidson, N. (Ed.). (1990). Cooperative Learning in Mathematics: A Handbook for Teachers. Menlo 
Park, CA: Addison-Wesley. 

DeCosta, M., Bergquist, E., & Holbeck, R. (2015). A desire for growth: Online full-time faculty’s 
perceptions of evaluation processes. Journal of Educators Online, 12(2), 73–102. 

de Freitas, E. (2016). Material encounters and media events: What kind of mathematics can a body 
do? Educational Studies in Mathematics, 91(2), 185–202. doi:10.1007/s10649-015-9657-4. 

de Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: Teorizing embodiment in the 
mathematics classroom. Educational Studies in Mathematics, 80(1), 133–152. doi:10.1007/ 
s10649-011-9364-8. 

de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: Te 
body in/of mathematics. Educational Studies in Mathematics, 83(3), 454–470. doi:10.1007/ 
s10649-012-9465-z. 

http://proxy.lib.sfu.ca/login?url=http://search.proquest.com
http://proxy.lib.sfu.ca/login?url=http://search.proquest.com
http://escholarship.org
https://www.merriam-webster.com


            

   

 

 
              

 

Interactive Diagrams ◾ 353 

Flanagan, K. (2001). High School Students’ Understandings of Geometric Transformations in the 
Context of a Technological Environment. (Unpublished doctoral dissertation), Pennsylvania 
State University. 

Healy, L., & Fernandes, A. (2011). Te role of gestures in the mathematical practices of those who 
do not see with their eyes. Educational Studies in Mathematics, 77(2–3), 157–174. doi:10.1007/ 
s10649-010-9290-1. 

Hohenwarter, M. (2002). GeoGebra. Retrieved from http://www. geogebra. org/cms/en. 
Hollebrands, K. F. (2003). High school students’ understandings of geometric transformations in the con-

text of a technological environment. Te Journal of Mathematical Behavior, 22(1), 55–72. 
Hoyles, C. (1997). Te curricular shaping of students’ approaches to proof. For the Learning of 

Mathematics, 17(1), 7–16. 
Jackiw, N. (2001). Te Geometer’s Sketchpad (Version 4.0) [Computer sofware]. Emeryville, CA: 

KCP Technologies. 
Jungic, V., Kaur, H., Mulholland, J., & Xin, C. (2015). On fipping the classroom in large frst year 

calculus courses. International Journal of Mathematical Education in Science and Technology, 
46(4), 508–520. 

Kaur, H. (2015). Two aspects of young children’s thinking about diferent types of dynamic tri-
angles: Prototypicality and inclusion. ZDM, 47(3), 407–420. 

Kress, G. R., & Van Leeuwen, T. (1996). Reading Images: Te Grammar of Visual Design. Psychology 
Press. London: Routledge. 

Krummheuer, G. (2013). Te relationship between diagrammatic argumentation and narrative 
argumentation in the context of the development of mathematical thinking in the early years. 
Educational Studies in Mathematics, 84(2), 249–265. 

Laborde, J. M., & Strässer, R. (1990). Cabri-Geometre: A microworld of geometry for guided discov-
ery learning. Zentralblatt für didaktik der mathematik, 5, 171–177. 

Leahy, S., Lyon, C., Tompson, M., & Wiliam, D. (2005). Classroom assessment minute by minute, 
day by day. Educational Leadership, 63(3), 18–24. 

Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem solving. In: P. Felmer, J. 
Kilpatrick, & E. Pekhonen (Eds.), Posing and Solving Mathematical Problems: Advances and 
New Perspectives. New York, NY: Springer. 

Lo, C. K., Hew, K. F. T., & Chen, G. (2017). Toward a set of design principles for mathematics fipped 
classroom: A synthesis of research in mathematics education. Educational Research Review, 
22, 50–73. 

Lo, C.K. & Hew, K.F. (2017). A critical review of fipped classroom challenges in K-12 educa-
tion: possible solutions and recommendations for future research. Research and Practice in 
Technology Enhanced Learning, 12 (4). https://doi.org/10.1186/s41039-016-0044-2 

Mariotti, M. A. (2000). Introduction to proof: Te mediation of a dynamic sofware environment. 
Educational Studies in Mathematics, 44(1–2), 25–53. 

Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational 
Studies in Mathematics, 15(3), 277–289. 

Menz, P. (2015). Unfolding of Diagramming and Gesturing Between Mathematics Graduate 
Student and Supervisor During Research Meetings. (Published doctoral thesis). Simon Fraser 
University. 

Mowat, E. (2010). Making Connections: Network Teory, Embodied Mathematics, and Mathematical 
Understanding. (Doctoral dissertation). University of Alberta. 

Nafaliev, E., & Yerushalmy, M. (2013). Guiding explorations: Design principles and functions of 
interactive diagrams. Journal of Computers in the Schools, 30(1–2), 61–75. 

Nafaliev, E., & Yerushalmy, M. (2017). Engagement with interactive diagrams: Te role played by 
resources and constraints. In: A. Leung, A. Baccaglini-Frank (Eds.), Digital Technologies in 
Designing Mathematics Education Tasks: Mathematics Education in the Digital Era, vol. 8. 
Cham: Springer, 

https://doi.org
http://www.geogebra.org/


        

 

 

             
            

   
               

 

      
  

 

 

 

354 ◾ Teaching and Learning Mathematics Online 

Nasim, O. (2008). Bertrand Russell and the Edwardian philosophers: Constructing the world. 
Basingstoke: Palgrave Macmillan. 

National Research Council (NRC). (1999). How People Learn: Brain, Mind, Experience, and School. 
J. D. Bransford, A. L. Brown, & R. R. Cocking (Eds.), Washington, DC: National Academy 
Press. 

Nemirovsky, R., & Ferrara, F. (2008). Mathematical imagination and embodied cognition. 
Educational Studies in Mathematics, 70(2), 159–174. doi:10.1007/s10649-008-9150-4. 

Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2012). Gesture and imagination on the constitu-
tion and uses of phantasms. Gesture, 12(2), 130–165. 

Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: 
Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for 
Research in Mathematics Education, 44(2), 372–415. doi:10.5951/jresematheduc.44.2.0372. 

Pratt, D., & Ainley, J. (1997). Te construction of meanings for geometric construction: Two con-
trasting cases. International Journal of Computers for Mathematics Learning, 1(3), 293–322. 

Protheroe, N. (2007). What does good math instruction look like? Principal, 7(1), 51–54. 
Radford, L. (2008). Diagrammatic thinking: Notes on Peirce’s semiotics and epistemology. PNA, 

3(1), 1–18. 
Radford, L. (2013). Sensuous cognition. In: D. Martinovic, V. Freiman, & Z. Karadag (Eds.), Visual 

Mathematics and Cyber Learning (pp. 141–162). New York, NY: Springer. 
Radford, L. (2014). Towards an embodied, cultural, and material conception of mathematics cogni-

tion. Mathematics Education, 46, 349–361. doi:10.1007/s11858-014-0591-1. 
Ragan, L. (2009). Defning competencies for online teaching success. Distance Education Report, 1, 

3–6. Retrieved from http://www.magnapubs.com/newsletter/distance-education-report/135/ 
defning_competencies_for_online_teaching_success-8536-1.html. 

Richter-Gebert, J., & Kortenkamp, U. H. (1999). CINDERELLA: Te Interactive Geometry Sofware. 
Version 1.2. Springer. 

Tall, D. (2006). A theory of mathematical growth through embodiment, symbolism and proof. 
Annales de didactique et de sciences cognitives, 11, 195–215. Retrieved from http://homepage 
s.warwick.ac.uk/staf/David.Tall/pdfs/dot2006e-theory-math-growth-annales.pdf. 

Santos, V., & Quaresma, P. (2012). Integrating DGSs and GATPs in an adaptative and collaborative 
blended-learning Web-environment. arXiv preprint. arXiv:1202.4833. 

Santos, V., Quaresma, P,. Marić, M., & Campos, H. (2018). Web geometry laboratory: Case studies 
in Portugal and Serbia. Interactive Learning Environments, 26(1), 3–21, doi:10.1080/1049482 
0.2016.1258715. 

Sedaghatjou, M. (2017). Mathematical Tool Fluency: Learning Mathematics via Touch-based 
Technology. (Published doctoral thesis). SFU. Retrieved from http://summit.sfu.ca/identife 
r/etd10260. 

Sedaghatjou, M. (2018). Advanced mathematics communication beyond modality of sight. 
International Journal of Mathematical Education in Science and Technology, 49(1), 46–65. doi 
:10.1080/0020739X.2017.1339132. 

Sinclair, N., & Moss, J. (2012). Te more it changes, the more it becomes the same: Te develop-
ment of the routine of shape identifcation in dynamic geometry environment. International 
Journal of Educational Research, 51, 28–44. 

Sinclair, N., & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. 
Research in Mathematics Education, 10(2), 135–150. 

Steele, J., & Dyer, T. (2014). Use of KWLs in the online classroom as it correlates to increased par-
ticipation. Journal of Instructional Research, 3, 8–14. 

Stylianou, D., & Silver, E. (2004). Te role of visual representations in advanced mathematical 
problem solving: An examination of expert-novice similarities and diferences. Mathematical 
Tinking and Learning, 6(4), 353–387. 

http://www.magnapubs.com
http://www.magnapubs.com
http://homepages.warwick.ac.uk
http://homepages.warwick.ac.uk
http://summit.sfu.ca/
http://summit.sfu.ca/


            

 

Interactive Diagrams ◾ 355 

Suurtamm, C., Quigley, B., & Lazarus, J. (2015). Making space for students to think mathemati-
cally. What Works: Research into Practice, Research Monograph, 59. 

Vaughan, N. D., Cleveland-Innes, M., & Garrison, D. R. (2013). Teaching in Blended Learning 
Environments: Creating and Sustaining Communities of Inquiry. Athabasca University Press. 

Yanik, H. B., & Flores, A. (2009). Understanding rigid geometric transformations: Jef's learning 
path for translation. Te Journal of Mathematical Behavior, 28(1), 41–57. 

Yu, P., & Barrett, J. E. 2002. Shapes, actions, and relationships: A semiotic investigation of stu-
dent discourse in a dynamic geometric environment. In: D. S. Mewborn, P. Sztajin, D. White, 
H. Wiegel, R. Bryant, & K. Nooney (Eds.), Proceedings of the Twenty-Fourth Conference of 
PME-NA (pp. 775–784). Columbus, OH: Clearing House for Science, Mathematics, and 
Environmental Education. 



https://taylorandfrancis.com/


PART 4 
Teacher Education 

357 



https://taylorandfrancis.com/


359 

 

 

 

 

   
   
   
   
   

   
   

   
   
   

   
   
   

 
 

C H A P T E R  18 

MOOCs for Mathematics 
Teacher Education 
New Environments for 
Professional Development 

Eugenia Taranto 

CONTENTS 
18.1 Introduction 359 
18.2 Teoretical Framework 361 
18.3 Math MOOC UniTo and Its Methodological Choices 364 
18.4 MOOCs’ Materials and Trainees’ Interactions 366 
18.5 Examples from MOOC Geometria 368 

18.5.1 Diference between Perpendicular and Vertical 368 
18.5.2 Diference between Arc and Angle 371 

18.6 Examples from MOOC Numeri 374 
18.6.1 MERLO Methodology 374 
18.6.2 Arithmetic and Algebra 377 

18.7 Results 378 
18.8 Discussion and Conclusion 380 
18.9 Limitation of the Study and Future Research 382 
Acknowledgment 383 
Bibliography 383 

18.1  INTRODUCTION 
Massive Open Online Courses (MOOCs) are free online courses, open to all and intended 
for distance learning of a large number of participants coming from very diferent cultural 
backgrounds and from diferent geographical areas. Tey were frst introduced in 2008 
and emerged as a popular mode of learning in 2012 (Pappano, 2012). Access to education 
signifcantly improves people’s lives and can bring changes to communities. With MOOCs, 
growth opportunities become available to everyone, all over the world: not only does the 
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access to education increase exponentially, but also an unheard-of quality of teaching is 
ofered, thanks to the digital tools available. Students from anywhere with an Internet 
connection can access free courses facilitated by some of the top educators and experts in 
every subject area, and they may customize their workload according to their needs (Daza, 
Makriyannis & Rovira Riera, 2013). “From mathematics to computer science, to philoso-
phy, to business design, MOOCs give learners unprecedented access to some of the most 
valuable knowledge, from some of the most prestigious universities, for free” (www.teach 
thought.com/archived/list-75-moocs-teachers-students/). Most of the courses do not ofer 
actual credit towards a degree. However, some MOOCs ofer certifcates, additional credit 
options, and other enhanced learning services for nominal fees. Students have also been 
able to submit course work done through MOOCs to their own universities and be granted 
credit or research units (ibid). Te activities provided in these courses range from watching 
certain videos, posting on forums or blogs, sharing experiences on social media, respond-
ing to quizzes, doing learning tasks for individuals or workgroups, and/or conducting peer 
review activities (Daza et al., 2013; Abeer & Miri, 2014). Students are involved to various 
degrees: many just want to check out the resources and the new educational model, while 
others are really motivated and follow every aspect of the course, ofen interacting with 
other MOOC participants. Likewise, educators’ involvement varies substantially: in some 
courses, the educators disappear when the course starts; in others, they are intensively 
involved, injecting dynamism to the proposed activities and providing their students with 
feedback (Daza et al., 2013). 

If the MOOC presents itself as a training opportunity that is easy to access and open 
to many, the experiences show that it is not easy for everyone to complete the path: in 
fact, the drop-out rate of these courses is very high (Yang, Sinha, Adamson & Rosé, 2013; 
Bayne & Ross, 2014; Onah, Sinclair & Boyatt, 2014). As Onah, Sinclair, and Boyatt (2014) 
observe, “although many thousands of participants enroll on these courses, the comple-
tion rate for most courses is below 13%” (p. 5825). Feng, Tang, and Liu (2019) show that 
the low completion rate can be determined by some factors: “Age is an important factor 
— young people are more inclined to drop out; Gender is another important factor— 
roughly, female users are more likely to drop science courses and male users are more 
likely to give up non-science courses; fnally, educational background is also important” 
(p. 1). Te completion rate continues to remain at the thresholds declared in the literature 
even for MOOCs where the trainees are teachers. For example, the experience of Panero, 
Aldon, Trgalová, and Trouche (2017) with a MOOC for French-speaking mathematics 
teachers, with the aim to improve their practices in using technology in their classrooms, 
shows a completion rate of 12%. 

It is worth noting that the emergence and use of MOOCs for professional teacher devel-
opment are still uncommon, especially in mathematics. In fact, although there is a wide 
choice of many diferent topics, when looking specifcally for a MOOC aimed at math-
ematics teacher education the range is limited (Aldon, Arzarello, Panero, Robutti, Taranto 
& Trgalová, 2017; Avineri, Lee, Tran, Lovett & Gibson, 2017; Borba, Askar, Engelbrecht, 
Gadanidis, Llinares & Aguilar, 2017). Nevertheless, there is a growing interest in MOOCs 
involving mathematics teachers as participants, as shown by Topic Study Group 44 

http://www.teachthought.com
http://www.teachthought.com
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(TGS44) work during the 13th ICME.* Terefore, MOOCs for teacher education are on 
the verge of gaining a foothold. For example, Avineri et al. (2017), in North Carolina, ofer 
some MOOCs for improving mathematics and statistics instruction, more precisely to help 
K-5 teachers teach fraction concepts and to think about statistics teaching in ways likely 
diferent from current practices in middle school through introductory statistics; Borba et 
al. (2017) describe the use of a MOOC in Costa Rica to meet the challenge of implementing 
new curricular standards, namely supporting in-service teachers in the gradual implemen-
tation of the new curriculum. 

Precisely because of the fact that the MOOCs for teacher education are still expand-
ing, not only the literature on this subject is scarce, but the research has not yet developed 
a theoretical framework sufcient to explain how changes in knowledge (understood as 
teachers’ professional development) can possibly occur as a product of the activities in 
these new environments totally online. Tere is, however, a wide literature (Goos, 2005; 
Campbell, 2009; Joubert, 2013; Clark-Wilson, Aldon, Cusi, Goos, Haspekian & Robutti, 
2014; Robutti et al., 2016) that deals with the way in which the teachers can develop their 
professional learning in traditional, face-to-face courses, particularly when the theme of 
the update concerns the relationship between education and technology. Based on the fact 
that there are no theoretical frameworks in the literature aimed at explaining professional 
development specifcally in MOOCs, in my doctoral thesis (Taranto, 2018), I developed a 
new theoretical framework aimed at understanding the complexities of the learning tra-
jectories of the participants in a MOOC. Te protagonists that I considered are the in-ser-
vice secondary school mathematics teachers enrolled in the MOOC and the mathematics 
teacher educators involved in the MOOC design and delivery. With this learning trajec-
tory, I mean how these protagonists interact online, both with the platform and with each 
other, in particular, if and how these interactions change their knowledge and beliefs and 
generate a perception of change in the practices. 

In this chapter, I will give a partial description of the theoretical framework, illustrating 
the elements that allow the following research question to be answered: What are benefts 
for professional development that mathematics in-service teachers can derive from attend-
ing a MOOC? 

In particular, I will show an Italian experience with MOOCs for mathematics teacher 
education, within the Math MOOC UniTo project, in which I am involved as an educa-
tor, illustrating some examples taken from the concrete experiences of teachers who have 
enrolled in these MOOCs. I will also highlight how the completion rates of these MOOCs 
are diferent than those reported in the literature, and justify why. Finally, I will mention 
how a study so set up represents a new research trail in relation to the modalities of interac-
tion that new technologies ofer for the teachers’ professional development. 

18.2  THEORETICAL FRAMEWORK 
A MOOC is a very complex environment in which several protagonists alternate their 
roles. In fact, in the design phase, when the MOOC starts to take shape, it is inhabited 

* For more information, see www.icme13.org/fles/tsg/TSG_44.pdf. 

www.icme13.org/
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by designers and trainers who propose the materials and/or the resources to be included 
in it. When the MOOC is ready, it is still at an inert state; then it is opened in order to 
accommodate the entry of the trainees. Tey will discover it weekly, moving far and wide. 
“Far” because they will wait for the next module opening to see new materials and “wide” 
because every week a new module is opened, but the previous ones are kept open until the 
end of the course. So, the trainees can discover the novelty of the new module, but at the 
same time may come back and see in depth the previous material and resources. 

In order to describe and analyze the dynamics that take place within a MOOC, I have 
developed a theoretical framework called MOOC-MDT (Taranto, 2018). It integrates 
three theoretical frameworks in a new form: the Meta-Didactical Transposition* (MDT: 
Arzarello et al., 2014), the Instrumental Approach (Vérillon & Rabardel, 1995), and the 
Connectivism (Siemens, 2005). In what follows, I give a synthetic idea of this framework. 

First, a MOOC can be considered as an artifact (Vérillon & Rabardel, 1995), that is, a 
static set of materials. Connectivism allows to picture the MOOC-artifact with its own 
network of knowledge: its nodes are the content, the ideas, the images and videos used; the 
connections are the links between their node pairs. When a MOOC module is activated, it 
dynamically generates a complex structure that I call ecosystem: “all the relations (exchange 
of materials, experiences and personal ideas/point of view) put in place by participants of 
an online community, thanks to the technological tools through which they interact with 
each other, establishing connections within a given context” (Taranto, Arzarello, Robutti, 
Alberti, Labasin & Gaido, 2017 b, p. 2481). 

In a MOOC there are two communities, a community of designers and researchers (from 
here and afer the trainers) and a community of enrolled and participating teachers (from 
here and afer the trainees). Each trainee has her own didactical praxeologies, namely the 
concrete practices used by the teachers in their professional activities. Te trainers have the 
objective of transposing a certain piece of knowledge, related to the teaching and learning 
of mathematics, to favor the professional development of the trainees, according to the 
reference institutions (national curricula, textbooks, etc.). Tis trainers’ knowledge to be 
communicated constitutes the trainers’ meta-didactical praxeologies (m-dp). 

Learning within a MOOC happens in a Connectivist modality: each trainee is part of a 
community, with which she comes into contact and has the opportunity to share her own 
views, self-organizing information, creating new connections, and questioning existing 
ones. Moreover, what is shown in the MOOC should encourage trainees to experiment 
in their classrooms. In fact, during the implementation of the MOOC-artifact network of 
knowledge, the trainers foster its ecosystem nature, sharing tools and posing appropriate 
key questions. In addition, since the tasks are designed by the trainers, this more or less 
explicitly suggests to trainees that they should use the proposed material in their classes. 
In this way, the MOOC is enriched with reports about trainees’ teaching experiences: this 

* MDT is a model that describes the process of teachers’ professional development, involved in a face-to-face educational 
course, with the aim of grasping its complexity. It is a tool to analyse the dynamic aspects of this process, namely the 
evolution of teachers and researchers’ activity over time. Tis activity is described through teachers and researchers’ 
meta-didactical praxeologies (Arzarello et al., 2014, pp. 353–355), which consist of the task in which they are engaged in 
the educational program, with the techniques used to solve it, along with its theoretical justifcation. 
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process produces an organic cycle that encourages other trainees to experience the same 
materials. 

Te community of trainees is made of subjects who are involved in the MOOC-
ecosystem and who transform it into an instrument. As in many social platforms, every 
participant develops her/his own way through the system, but within the afordances that 
the system itself supports. Te trainee has to solve tasks, through techniques, properly 
justifed. In fact, she must look at the proposed material, share her thoughts through shar-
ing tools, and experience the MOOC activities. Tese tasks are not predetermined, they 
depend on the time, approach, and depth with which each trainee addresses them. Te 
techniques are the ways in which the trainee extends and modifes her network of knowl-
edge, drawing on the ecosystem, and infuencing it in turn, thus impacting all other train-
ees. Terefore, the MOOC-ecosystem network of knowledge is dynamic: it evolves as the 
MOOC-artifact network, thanks to each participant’s contribution. Also, each MOOC 
participant’s network of knowledge evolves as personal self-organization (Siemens 2005, 
p. 4) of the ecosystem. Te process of transformation from artifact to instrument (Vérillon 
and Rabardel, 1995) is here reinterpreted by the evolution from artifact to ecosystem/ 
instrument—a process Taranto et al. (2017b, p. 2482) call the double learning process. Te 
double learning process has the following components, intertwined and self-feeding each 
other: 

i. Instrumentation/self-organization (from the ecosystem to the individual): process by 
which the MOOC-ecosystem’s network expands the individual’s network of knowl-
edge. In particular, the instrumentation (Vérillon & Rabardel, 1995) is the phase by 
which the chaos (in the sense of Siemens, 2005) of the ecosystem network reaches the 
individual. Te many novelties of views and experiences make sure that the individ-
ual compares himself with new usage schemes. A phase of self-organization (Siemens, 
2005) of the MOOC’s information follows: when the individual selects which usage 
schemes proposed by the MOOC are valuable and which are not. 

ii. Instrumentalization/sharing (from the individual to the ecosystem): process by which 
the individual’s network of knowledge expands the MOOC-ecosystem’s network. Te 
instrumentalization (Vérillon & Rabardel, 1995) is the phase by which the individual, 
with her/his renewed network of knowledge, independently builds new connections. 
Te individual is stimulated by a task requested by the MOOC and (s)he caters to 
the ecosystem to turn it according to her own (new) usage schemes. (S)he wants to 
integrate it with her/his own cognitive structures. Sharing is the phase by which the 
MOOC welcomes the contribution of the individual and makes it available to all: 
information goes towards all members. 

Since the MOOC participants are massive, the process is iterated: a moment of sharing 
is followed by a new instrumentation; a self-organization by an instrumentalization. It 
should be emphasized that the two processes are “intertwined”; there is no moment in 
which one ends and the next one begins. 
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Within this complex, iterative learning process lies the inherent diference between 
the frame of the MDT and the MOOC-MDT. In fact, in the MDT, the trainers shape their 
proposal according to the practices they consider appropriate (which can also be decided 
on the moment, depending on how the group to which the training is addressed is 
responding). Te in-presence comparison helps trainers to understand how much train-
ees learn this proposal. On the contrary, inside the MOOC-MDT the process appears to 
be more difcult to control. Te trainers do not know “what” the user has really looked 
at among the presented materials, nor they can know how (s)he interpreted them. At the 
same time, the trainees beneft from material provided not only by trainers but also by 
other trainees who share some of their ideas using the space for online communication. 
Te process evolves stochastically: a determining role is played by the individual train-
ees, and by their feeling as a community with whom to collaborate, to inspire, and to 
share results. 

18.3 MATH MOOC UNITO AND ITS METHODOLOGICAL CHOICES 
Math MOOC UniTo is an Italian project for the development of MOOCs aimed at the edu-
cation of Italian secondary school mathematics in-service teachers. It was born in spring 
2015 at the Department of Mathematics “G. Peano” in Torino. Te MOOCs are designed, 
implemented, and delivered through the collaboration between some researchers in math-
ematics education (to which I belong) from the mentioned department and some in-ser-
vice teachers (from here and afer experienced teachers), graduated from the second level 
Master “Trainers in Mathematics Education” held at the same department from September 
2013 to June 2015. In the following, in the light of the theoretical framework, I refer to this 
entire group of engaged people as trainers. 

Four MOOCs were designed, one for each of the main topics in the ofcial Italian pro-
grams for secondary school: Geometry, Arithmetic and Algebra, Change and Relations, 
Uncertainty and Data. So far, the frst three have been delivered (Table 18.1). Te last one is 
work in progress, and it will be delivered at the beginning of 2019. 

Tese MOOCs are open, free, and available online on a Moodle platform called DI.FI. 
MA (i.e., Didactics of Physics and Mathematics: http://difma. i-learn.unito. it/), managed 
by the mentioned department. Tey ofer access to materials (e.g., mathematical activities, 
media resources like GeoGebra applet) through technological tools, which foster commu-
nication and sharing. 

All the trainers are involved in the design, the courses’ delivery, and monitoring their 
evolution in terms of interaction among participants and educational resources made 
available. In particular, a group of the experienced teachers creates the activities delivered 

TABLE 18.1 MOOCs Duration 

MOOCs of Math MOOC UniTo From … to … 

MOOC Geometria, based on Geometry content October 2015–January 2016 
MOOC Numeri, based on Arithmetic and Algebra content November 2016–February 2017 
MOOC Relazioni e Funzioni, based on Change and Relations content February 2018–May 2018 

http://difima.i-learn.unito.it/
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in the MOOCs, adapted from the m@t.abel project* and revised by the university research-
ers. Moreover, the trainers help MOOC learners (namely, the trainees) to solve technical 
problems (thanks to some tutorials too), to recall the tasks to be done week by week with 
weekly emails. 

Te mathematical resources inside the MOOCs provide trainees with suggestions to 
support their teaching. Te mathematics curricula, to which the activities refer, are in line 
with the Italian curriculum. Te activities do not exhaust all the topics of the curricula but 
have the goal to provide detailed methodological indications on how to deal with some 
conceptual nodes of particular importance for the mathematical education of the students. 

Each week, trainees worked individually to become familiar with diferent approaches. 
In our MOOCs, these activities included watching videos where an expert introduced the 
mathematical topic of the week or reading about mathematical activities based on a labora-
tory methodology, explicitly suggested by the Italian curriculum, and, optionally,† experi-
menting with these in their classroom. Te trainees were invited to share thoughts and 
comments about the activities and their contextualization within their personal experi-
ence, using specifc communication message boards (CMBs, i.e., the forum, as we will see 
in the following, but not only this). In each activity, MTEs inserted a specifc question to 
be answered or a title that served as a talking point. In this way, the trainees collected their 
weekly badges, which acknowledged their diferent kinds of participation. In fact, once all 
the module requests were accomplished, the platform released a badge. In this way, it is 
quite easy for the trainers to monitor the progress of the trainees, knowing the number of 
badges they had collected. 

On the one hand, choosing resources that support interactions (e.g., the CMBs) that 
increase the birth of new connections and/or nodes in the trainees’ network of knowl-
edge is a methodological choice that fosters the development of the instrumentation/self-
organization phase. On the other hand, inserting specifc stimulus questions or titles in 
the CMBs or inviting trainees to experiment with the activities with their own students 
is a methodological choice that promotes and increases the interactions among trainees, 
hence the development of the instrumentalization/sharing phase. Moreover, the trainers 
chose to limit their own interventions in the CMBs to a minimum in order to support the 
birth of a “trainees-only” online community. In fact, our MOOCs methodology aims to 
create collaborative contexts for teachers’ work, where trainees can learn from these kinds 
of practices. 

At the end of the whole MOOC, each trainee is asked to design a teaching activity 
(Project Work) and to review another activity prepared by a colleague (Peer Review). For 
all those who complete the course in all its stages, namely if all the badges are collected, a 
participation certifcate is issued. Only for the people who have registered in the MOOCs, 
the materials remain available to allow future consultation. Te communication spaces are 
closed. A refective analysis of all the problems encountered during the evolution of this 

* A plurennial Italian program that promoted innovation in mathematics teaching, based on concrete activities proposed 
to teachers and discussed with them in suitable professional learning programs (https://goo.gl/Q30Dn0). 

† If the trainees liked them; if the trainees were explaining at that time topics close to those proposed in their own classes. 

https://goo.gl/
mailto:m@t.abel
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experience of MOOC can be consulted in Aldon, Arzarello, Panero, Robutti, Taranto, and 
Trgalová (2018). 

In the following, we concentrate the analysis on the frst two delivered MOOCs— 
Geometria and Numeri—because the data relative to the third one are under investigation. 

18.4  MOOCS’ MATERIALS AND TRAINEES’ INTERACTIONS 
In Table 18.2 there are some signifcant data to describe the trainees of MOOC Geometria 
and MOOC Numeri. 

Focusing only on the level of design, the MOOC-artifact, which is the place where 
only the trainers have access, is the container of specifc products, i.e., materials rich in 

TABLE 18.2 Te Trainees of MOOC Geometria and Numeri 

Trainees of MOOC Geometria Trainees of MOOC Numeri 

# trainees 424 278 
Gender Women: 82%; Men: 18% Women: 86%; Men: 14% 
Geographic 

origin 
(all Italians) 

Educational 
levels 

Trainees had 88% 31% 
never 
attended a 
MOOC 

(50% of the MOOC Numeri trainees had 
been enrolled in the MOOC Geometria) 

Completion 
rate 

36% 42% 
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TABLE 18.3 MOOC Geometria and Numeri Modules 

MOOC Geometria MOOC Numeri 

Title 

Module 1 Ramps, sails, park 
and folding paper 

Module 2 From watches, 
pinwheels, 
skaters to the 
Christmas show 

Module 3 Heritage, a 
Polyaag problem 
and that 
demonstration? 

Module 4 Assessment & 
INVALSI 

Module 5 MERLO 
methodology 

Final Project work and 
module peer review 

Content 

Approaching distance 
with laboratory activity, 
using GeoGebra as 
we11 

Approaching angle with 
laboratory activity, 
using GeoGebra as well 

Arguing, conjecturing, 
prying, using GeoGebra 
as well 

Evaluating diferent skills 

Recognizing diferent 
representations with the 
same meaning 

Designing a teaching 
situation with a specifc 
web-based tool and 
reviewing an activity 
designed by another 
colleague 

Title 

Meteorites, 
bacteria and 
rice grains: the 
numbers and 
their meaning 

MERLO 
methodology 

Assessment & 
INVALSI 

Climbing stairs 

Arithmetic, 
algebra and 
mathematical 
languages 

Project work and 
peer review 

Content 

Approaching order of 
size and number sense 
math laboratory 
activity, using 
GeoGebra as well 

Recognizing diferent 
representations with 
the same meaning 

Evaluating diferent 
skills 

Approaching the 
concept of 
inductton'''recurs1on, 
using GeoGebra as well 

Approaching arithmetic 
and algebraic language 
and meaning of the 
symbols, using 
GeoGebra as well 

Designing a caching 
situation with a specifc 
web-based tool and 
reviewing an activity 
designed by another 
colleague 

innovative teaching methods and specifc technological tools. Terefore, we can under-
stand it as a repository from which teachers can draw inspiration (Taranto et al., 2017a). 

Both in MOOC Geometria and MOOC Numeri, fve modules, with captivating titles, 
were created on specifc contents, plus a fnal one (Table 18.3). 

In each module specifc methodologies of mathematics education are proposed, such as 
laboratory-based methodology (Anichini et al., 2004) with attention to considering activi-
ties that are inspired by real contexts, therefore familiar or easily imaginable for students; 
group work to incite a collaborative perspective and to encourage mathematical discus-
sion (Bartolini Bussi, Boni & Ferri, 1995); MERLO* methodology (Arzarello, Robutti & 
Carante, 2015); use of technology (especially GeoGebra with guided examples of construc-
tion), but also simple tactile materials (cardboard, string, etc.). Te duration of each mod-
ule varies from one to two weeks, depending on the content proposed and the estimate of 
time needed for their assimilation according to the trainers’ opinion. 

In our project, we have collected and analyzed data coming from trainees’ posts from 
the CMBs, questionnaires, interviews with a sample of trainees, and resources that they 

* MERLO stands for Meaning Equivalence Reusable Learning Objects. 
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designed and uploaded in the MOOC platform. In the following, we will report some of the 
mathematical activities proposed by trainers in the MOOCs modules, and we will focus 
more on some data that come from trainees’ intervention on the forum regarding these 
materials. Ten we will see how these elements of the MOOC-artifact have then given 
rise to specifc learning processes implemented by the trainees in the MOOC-ecosystem/ 
instrument. 

To analyze the trainees’ posts in the CMBs, in the light of the double learning process, 
it is important to note which verbs are used by the trainees. 

• For instrumentation/self-organization the verbs are in the future tense (I will do it, 
I will re-propose, I will test it, I will use it, etc.) or there are verbs or adjectives to 
express the trainees’ own judgment (I have noticed, I really appreciated, nice idea, 
etc.). 

• For instrumentalization/sharing instead the verbs refer to one’s own self (I refect, I 
know, I thought, etc.) when one is creating new connection stimulated by the MOOC-
ecosystem; while the verbs are in the present tense when one shares one’s didactical 
praxeologies (I do this, I use that, etc.). 

All the interventions are written in a normal type. If you fnd bold or underlined word, 
those will be “signs” inserted by me to accomplish the analysis. It is also important to note 
that all discussions take place asynchronously, at any time of day. 

Each MOOC also includes three questionnaires (initial, intermediate, fnal) to assess the 
degree of satisfaction/appreciation for the educational oferings and how much/how the 
online course afects their professional development. We will then conclude the analysis by 
focusing on a question posed in the fnal questionnaires of the two MOOCs, relating to the 
sense of belonging to the online community felt by the trainees. 

18.5 EXAMPLES FROM MOOC GEOMETRIA 
18.5.1 Difference between Perpendicular and Vertical 

Module 1 of MOOC Geometria is focused on the concept of distance between a point and 
a line (connected to other concepts, including perpendicular and height). Te proposed 
activities are directed to avoid or overcome student misconceptions related to these con-
cepts. One activity is “Te mainmast” (for full version see: https://goo.gl/4F4rJW), for 
lower secondary school students (grades 6–8), and is developed from a concrete situation: 
the teacher gives each student a white circular sheet with a sketch of a boat on a sea wave 
(Figure 18.1). 

School students are asked to draw, on a round sheet (to avoid references), the mainmast 
of the boat: they have to concentrate on the perpendicular. Te activity continues with 
observations of the various drawings and with discussions of the various solutions. Tis 
activity should ground the discussion around the two concepts: (i) vertical (physical con-
cept linked to the gravitational feld); (ii) perpendicular (geometric concept linked to the 
right angle). 

https://goo.gl/
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FIGURE 18.1 Boat on round sheet. 

Te CMB embedded into Module 1 was the forum. In the forum, the trainers have 
inserted an assignment to stimulate discussion among the trainees: “Share your ideas and/ 
or teaching experiences related to the topics of the mainmast activity.” Te forum collected 
24 discussions, each containing from 0 to 62 response replicas, for 207 posts in total. Te 
forum also keeps track of the date and time each post was published. Let’s consider the 
following discussion: 

A.P.—27/10/15; 6:50 p.m.—Te idea is to play with the heights of the triangles and I half 
minded to propose it to my pupils :) Tis is a draf of text. 

3 male friends Antonio, Bruno and Carlo are at the top of the triangle in the fgure (Figure 
18.2). 3 female friends Antonella, Barbara and Carlotta are also at the top of the tri-
angle in the picture. Friends via whatsapp agree to fnd themselves in the orthocentre of 
the triangle while the friends will meet in the centroid of the triangle. Draw the meeting 
points of the two groups. 

PS: I used the map of Latina, my city. 

Didactic note: I deliberately chose an obtuse triangle and the position of the triangle is not 
that stereotyped by the boys. 

P.R.—27/10/15; 11:16 p.m.—Tis activity is beautiful: I will propose it next week (obvi-
ously using a map of a city closer to my boys, like Turin) to see how they have internal-
ized the concepts of orthocentre and centroid, since they have just discovered heights 
and medians […] 

M.L.—28/10/15; 10:40 a.m.—I really like the proposal and I hypothesize a variant of the 
text: in a treasure hunt the competitor Alberto of the team is in A, Bruno in B and so 
Caterina in C. Te next clue will be given only when all three competitors will meet in 
the orthocentre of the triangle and communicate the position to the director … etc … it 
could also be said that there is a tolerance of a certain amount of meters for the possible 
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FIGURE 18.2 Latina’s map created by A.P. 

presence of buildings on the geometrically found point. Other points of discussion could 
arise on the comparison between the mutual positions of center of gravity and ortho-
center. What do all of you think? 

A.P.—29/10/15; 4:45 p.m.—I really like the use of tolerance! […] Tanks for the idea :) 

A.P. opens the discussion with a proposal that is addressed directly to his colleagues in the 
course. Such is his involvement that, driven by the stimuli he has received by reading the 
materials and implementing a process of instrumentation/self-organization, he produces 
his own resource and shares it with others. A.P. is inspired, as suggested in the MOOC 
proposals, by a concrete situation: he took from Google Maps a map of his city, Latina, and 
joining three points, he drew a triangle (Figure 18.2). He would like to have some ideas 
on how to use this material didactically. P.R. congratulated A.P. and, in self-organizing 
herself, makes visible the fact that she has added a new node to her network of knowledge: 
“I will propose it,” but at a specifc time (“next week”)—to link it to mathematical concepts 
that she has already treated with her classroom—rather than at an indefnite future time. 
M.L. positively evaluated A.P.’s idea and, in making it her own, hypothesized a variant, 
to stimulate refection and argumentation in the students. A.P. replied to M.L., showing 
appreciation for the suggestion he received and indicating that A.P. had updated his net-
work of knowledge. 

Let’s point out that this production of A.P. is completely spontaneous and also surprises 
the trainers: MOOC had not asked for the production or sharing of materials. Te case of 
A.P. during the MOOC does not remain an isolated one: other trainees also spontaneously 
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begin to share with the MOOC-ecosystem their own materials, asking for opinions and 
suggestions on them. 

A.P. used the ideas he received from the MOOC to develop a new and original product. 
As such, the other trainees were provided with an additional source of learning: what they 
experienced in the MOOC and what they observed another trainee doing thanks to the 
MOOC. So, the trainees, other than A.P., are led to (i) trigger a process of instrumentation/ 
self-organization and (ii) embed that product in their network. Te process in which this 
mediation is inserted is that of the double learning process, and in this sense the object 
does not mediate knowledge, but enters into a genesis of usage schemes produced at that 
time. 

18.5.2 Difference between Arc and Angle 

Module 2 of MOOC Geometria opens with an activity called “Te clock” (for full version 
see: https://goo.gl/HWGY5g) that is for lower secondary school (grade 6) and is focused on 
the concept of angle. Te angle is one of the frst entities of geometry shown to the students. 
However, the difculty of reaching an adequate mastery of this concept is known. In fact, 
the students face an epistemological obstacle: understanding that the width of the angle 
does not change with the length of the sides. Starting from a problematic situation linked 
to the clock and enlarging it to the construction of a large clock (on the ground, maybe 
in the gym—Figures 18.3, 18.4, 18.5), we want the school students to obtain small angles 
(e.g., of a degree) on circumferences of diferent radii. In this way, they should associate 
the angle with the space between the two half-lines and not simply the arc used to indicate 
it. Tis experience has the purpose of helping students to avoid the widespread misunder-
standing, that the angle is identifed with the arc or with a fnite region of the plane. 

Te CMB embedded into Module 2 was the forum that collected 31 discussions, each 
containing from 0 to 21 response replicas, for 152 posts in total. In the following, some 

FIGURE 18.3 Division of the arc corresponding to the 90° angle in three equal parts to obtain the 
hour 1 corresponding to the 30° angle. 

https://goo.gl/
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FIGURE 18.4 6° angle, corresponding to 1 minute, ffh part of the 30° angle corresponding to the 
hour 1. 

FIGURE 18.5 Division into six equal parts of the arc corresponding to the 6° angle to obtain the 
1° angle. 

trainees’ frst comments on this activity are given. Tey show how the frst phase of the 
double learning process, the instrumentation/self-organization, takes place. 

E.S.—2/11/15, 5:33 p.m.—“Very interesting and very well documented.” 

M.A.—3/11/15, 8:15 a.m.—“I fnd the angle-clock association very interesting. Te con-
struction of the latter on the ground, I believe, allows us to ascertain directly the dis-
tinction between angle and arc.” 

F.G.—3/11/15, 11:27 p.m.—“Tomorrow I will try it with my frst classroom. Te activity is 
very well structured and I really like the stimulus questions proposed […].” 
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All those who have intervened in the forum have certainly experimented with an instru-
mentation phase, exactly when they clicked the link that directed them to the activity of 
the 1° angle. Te self-organization phase follows spontaneously: when the trainees read the 
information and consider it a beneft for their teaching practices, they are automatically 
expanding their network of knowledge. On the one hand, each one formulates her own 
judgment, putting in place an instrumentation phase. On the other hand, someone also 
begins to respond to comments from other trainees, putting in place an instrumentaliza-
tion phase, i.e., one begins to build new connections independently using the MOOC-
instrument, expanding the ecosystem network at the same time. 

Let us consider a forum discussion called “Radian” (from the frst trainee who started 
writing), which received 21 replies. Let us see the frst post and some other answers. 

N.C.—2/11/15, 09:49 a.m.—“Te proposed activities have made me think about (a) how 
the conceptual articulation ‘Angle vs. arc’ is delicate. When the guys study trigonometry 
at high secondary school (b), they know the Radian that […] allows you to no longer 
distinguish between (width of) angle and (length of) arc. I would like to know your 
thoughts (c), especially those who teach at lower secondary school.” 

In (a) there is an evident phase of instrumentalization: the trainee is creating new connec-
tions between his network of knowledge and that of the ecosystem. N.C. is a higher second-
ary school teacher. He was stimulated by the activities that he saw in this module, and he 
is connecting this thinking to his classroom (b). In particular, he invites other people to 
share their thoughts about this topic (c). 

D.L.—5/11/15, 6:19 p.m.—“Hi, I teach in a linguistic high school […]. When I introduce 
the radian, afer having defned what it is, I make everyone draw a circle in which they must 
identify the width of a radian. Sometimes [the students] engineer themselves with ribbons 
or wires to bring the true length of the radius back to the circumference. At this point, [the 
students] have to cut out the circumferences, which will be all or almost of diferent sizes. 
Overlapping them, [the students] understand that the radian does not depend on the radius 
and even less on the arc. Regarding the graph of the goniometric functions […] I have created 
a Geogebra fle that leaves the projection segment trace while a P point on the circumference 
describes the angle. If someone is interested I enclose it […].” 

D.L., in responding to N.C., follows the stages of the double learning process: he reads 
the comment of the colleague (instrumentation); he considers it interesting and inserts it 
into his network (self-organization); he connects the experience of the colleague with his 
own (instrumentalization), and he decides to share his didactical praxeology with N.C. in 
particular and more generally with the rest of the ecosystem (sharing). 

Shortly afer D.L. another trainee responds, 
E.G.—7/11/15, 4.16 pm—“I think the fle you are talking about is such as this … I fnd 

enlightening the students build it!” 
E.G. immediately attaches a GeoGebra fle. 
Terefore, D.L. and E.G. spontaneously discuss their didactical practices and have no 

qualms about sharing their materials. Tis practice does not generally happen in face-to-face 
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educational courses, and it was very surprising for the trainers because it happened in a 
completely natural way. In this way, we see how a trainee’s didactical praxeology becomes 
something that can potentially become part of the meta-didactical (and not didactic)* prax-
eologies of another trainee. 

18.6 EXAMPLES FROM MOOC NUMERI 
18.6.1 MERLO Methodology 

Module 2 of MOOC Numeri is dedicated to the MERLO methodology (Arzarello, Robutti 
& Carante, 2015). MERLO is a tool for teaching and learning, reusable in diferent circum-
stances or contexts, especially in mathematics. It is based on the commonality of mean-
ing of the diferent representations of a concept, which school students are called upon 
to recognize. A MERLO card is composed of a delivery and fve boxes, within which you 
have to insert the target statement (TS), one or more items sharing meaning with the TS, 
and the remaining boxes outside the boundary of meaning with the TS. Te items that are 
designed, in addition to the common meaning, can have the same representation used in 
the TS, i.e., they can both be an image, or a graph, or statements in natural and/or symbolic 
language. 

Te module is divided into two parts. In the frst part of the module, the trainees become 
familiar with the MERLO methodology. Two videos are presented: one that illustrates the 
theoretical foundations that frame the project and another that goes into the details of 
the design of the cards. Subsequently, the trainees try to solve the cards prepared by the 
trainers. In the second part of the module, the trainees have to try their hand at designing 
a MERLO card on a topic of their choice, linked to the Numbers core. Teir designs are 
reviewed by the trainer who curates the module, who leaves feedback on their produc-
tions. Let’s show some examples of the productions made by the trainees, which were then 
made available to all of them, on a repository outside the MOOC. We will not dwell on the 
detailed explanation of the cards, but rather on the quality of the result which the trainees 
have reached. 

S.L.C. has developed a MERLO card on direct proportionality (Figure 18.6). She chose 
as TS an expression in natural language and connected it with two items that share the 
same meaning with TS, but are expressed by images (B, E). Ten she chose an item (C) that 
does not share the same meaning, but has similarity in representation, and an item (D) 
that does not share the same meaning with TS and does not have similarity in representa-
tion with TS. Te trainer of the module suggests to S.L.C. to modify the item D, because 
the graph has some traits of direct proportionality and this could cause confusion in the 
resolution of the card. S.L.C. accepts the suggestion and reloads a new card with D replaced 
as in Figure 18.7. 

* Note that I say “meta” because if it came into the teaching practice, it means that the trainee who reads must incorporate 
and put into practice what he has read. We cannot have proof or certainty of this, unless he explicitly declares it on some 
CMB. In general, it is not said that any trainee has the opportunity or the interest to immediately implement a teaching 
practice proper to another trainee. 
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FIGURE 18.6 S.L.C.’s MERLO card. 

FIGURE 18.7 New D item chosen by S.L.C. 

E.F. has created a MERLO board on the height of the triangles (Figure 18.8). She does 
not explain what the TS is for her and in what relation the other items are with it. Te 
trainer points out to her, in particular: “Te distractor in B of the MERLO card is not very 
‘distracting’, in the sense that it is trivial. Modify with something that makes you think a little 
more.” E.F. does not modify the loaded card. 
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FIGURE 18.8 E.F.’s MERLO card. 

Analyzing these protocols, we note that the design of a MERLO card is a work that 
requires both a lot of knowledge of the discipline and the ability to predict the reasoning 
that may arise in students who solve the card. To insert a distractor is not simple, nor is it 
simple to identify items that share the meaning with the TS and do not have a similarity in 
the representation with the TS. 

Let’s consider some of the trainee interventions released in the forum, starting from the 
second part of the module. 

A.A.—21/11/2016, ore 10:39 p.m.—“In my opinion, MERLO certainly stimulates discus-
sion and argument and favors formative assessment, but […] I think that design a MERLO 
card is difcult […]” 

A.P.—19/11/2016, ore 4:46 p.m.—“[…] Surely [MERLO] implies for the teacher a greater 
efort in the predisposition than a standard verifcation, but such difculty could be lessened 
with the difusion of the method and the familiarization with it.” 

G.B.—22/11/2016, ore 3:20 p.m.—“It could be stimulating to have these cards built by 
the students themselves, asking them to identify objects that have a common element (but 
without indicating it) and propose the card to their classmates as a game, challenging their 
classmates to discover the conceptual node that acts as a link.” 

Faced with a totally new topic, the trainees implement the instrumentation/self-orga-
nization process. In fact, there are alternating comments that denote refections on the 
practices carried out during the training, but also propositions to integrate this new 
methodology in one’s own practices, while admitting that it will be neither immediate 
nor easy. It is certainly necessary to “maintain” the practice: it is not enough to know and 
understand, but it is necessary to practice exercises to refne the design skills of new cards, 
obtaining results that will then be visible in the long term. 
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18.6.2 Arithmetic and Algebra 

Module 5 of MOOC Numeri opens with an activity called “Arithmetic helps algebra and 
algebra helps arithmetic” (for full version see: https://goo.gl/83Q7Bf) that is for higher sec-
ondary school (grades 9–10). 

Games of mathematical “magic” and challenges of mental calculation abilities are at the 
heart of this activity for dealing with the conceptual nodes natural language and algebraic 
language. Te activity refers to the introduction of the rules of algebra and the difcul-
ties encountered when the student must translate a problem algebraically (“put it into a 
formula”). Concretely, the activity tries to give meaning to algebraic calculation, to ensure 
that school students do not interpret the algebraic formulas as pure sequences of signs. 
Several problems are proposed in which the language of algebra overcomes that of arith-
metic and becomes a tool for expressing relationships and generalities. Te following is one 
of the proposed problems: “think of a number.” 

Te teacher, addressing the entire class, proposes to each student to execute instruc-
tions in the notebook; the teacher does not know which number each student chose 
initially. 

• Tink of an integer. 

• Add 12 to it. 

• Multiply the result by 5. 

• Subtract 4 times the original number. 

• Add 40 to the result. 

Te teacher asks some students for the fnal result; then she subtracts 100 from this result 
and “guesses” the starting number. Te teacher then justifes her “foresight” with the sym-
bolic calculation. In particular, the teacher observes that the rules of calculation are none 
other than the application of the rules of arithmetic; in particular, she emphasizes the role 
of distributive property that allows us to “distribute” a product on a sum but also to “col-
lect” a common factor, depending on how we interpret the equivalence: 

a · (x + y) = a · x + a · y 

Finally, the teacher explains to the class how this calculation rule has a simple geometric 
interpretation. If we consider two rectangles, the frst of sides a and x, and the second of 
sides a and y, these can be arranged to form a single rectangle of sides a and (x + y). And 
the sum of the areas of the frst two rectangles is equal to the area of the third one: a · (x + 
y) = a · x + a · y 

Te CMB embedded into Module 5 was a forum that collected 35 discussions, each con-
taining from zero to seven response replicas, for 61 posts in total. In the following, we show 
some trainees’ comments on the forum dedicated to comment on this activity. Again, the 
phases of the double learning process are shown. 

https://goo.gl/
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A.B.—5/12/16, 10:33 p.m.—“I teach in a lower secondary school and, although it is clear 
that this is an activity [Arithmetic helps algebra and algebra help arithmetic] to be per-
formed in a higher secondary school, I fnd the frst two [stages] really stimulating. I 
like the problematic introduction and the enrichment with the geometric appearance, 
which I already use for the literal calculation in the third.” 

G.P.—6/12/16; 11:47 p.m.—“Indeed, the proposed activities are a bridge between lower 
and higher secondary school. However the stage 1 [think of a number] can also be pro-
posed in the grade 6 when, by treating the four operations and their properties, the 
mental calculation is dealt with. […] Even if you ‘lose’ a lesson maybe you give someone 
the chance to have an extra tool or it could be a way to enhance excellence.” 

S.B.—11/12/15; 6:32 p.m.—“Yes, I think it is essential not to wait for the third year [grade 
8] to do algebra and literal calculation. Already from the frst one [grade 6] (and from 
the primary) they are exposed to the letters, formulas of the perimeters and areas or 
simply when the properties of the operations are resumed and generalized. […] I advise 
you to sow already in the frst [grade 6] so then in the second [grade 7] they do not 
memorize all the inverse formulas of the areas, but get them … :-) 

P.S. beautiful games ‘think of a number’ […].” 

Te chosen trainees teach in a lower secondary school. Te activity “Arithmetic helps alge-
bra and algebra help arithmetic” is presented as an activity for grades 9–10. However, as 
was hoped, the trainees were not only positively afected, “I like …; beautiful games …”, but 
they also think they can adapt it for their classes. 

Tere is therefore an instrumentation/self-organization process on the part of these 
trainees, which is leading them to refect on a possible use of the activity in their own classes. 
In particular, G.P. shows a more organized network of knowledge than A.B., because he 
has already come to think about what to propose to which classes. He has already made 
estimations: “Even if you ‘lose’ a lesson maybe you give someone the chance to have an extra 
tool or it could be a way to enhance excellence.” He then put in place an instrumentalization 
phase when he completed his refections and a sharing phase in the moment in which he 
shared them with the rest of the MOOC-ecosystem. 

S.B. shares an own thought, that is, “do not wait the grade 8 to start to use letters or to 
talk about algebra.” He underlines that the students, even at primary school, are exposed 
to them. Terefore, he urges his colleagues not to be reticent, and he does so with a smile! 

18.7  RESULTS 
As mentioned, the trainers had made the methodological choice to intervene as little as 
possible on the CMBs to encourage interaction of the trainees-only community. Although 
we have shown only examples of posts made on the forum, it is characteristic of how 
the trainees interact with each other within the online environment. In the examples of 
MOOC Geometria, we have seen how participants spontaneously share their own teach-
ing practices and materials. In particular, the shared materials are both materials that the 
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trainees already possessed before attending the MOOC (think of the GeoGebra fle that 
E.G. shares) and materials that are created from the inspiration of the ideas that MOOC 
ofers (think of the image that A.P. shares). In the examples of MOOC Numeri, we have 
seen how trainees engaged in the production of new materials in response to the acquisi-
tion of a new methodology (MERLO) and how this seems to afect their teaching practices, 
generating refections. In addition, we have also seen how trainees confront each other by 
exchanging ideas, refections, and suggestions on how to make algebra accessible as early 
as grade 6. 

Terefore, without ever having had the opportunity to meet in person, in a spontaneous 
way, they exchange ideas, make their mathematics teaching experience available, and share 
their own materials, exactly as a community of practice (Wenger, 1998). Note that while 
the trainers did invite the trainees to exchange teaching experiences, the exchange of their 
materials is an entirely spontaneous act. 

Tis community of trainees is diferent from those that usually characterize the tradi-
tional face-to-face educational courses. It was born spontaneously since participation in 
the MOOC took place voluntarily. Moreover, the trainees freely express themselves: there 
is no institutional component that wants to restrict them. Te discussions proceed in a 
very free and spontaneous way, even with the use of emoticons (as seen previously in the 
comment by A.P. in MOOC Geometria and by S.B. in MOOC Numeri). Tis is a remote, 
voluntary, free, and collaborative community, not subject to institutional pressures. 

Even the trainees are aware that they have formed a community; in fact, in an open 
question of the fnal questionnaire of both MOOC Geometria and MOOC Numeri, we 
asked: “As a participant of MOOC, to what extent do you feel you are part of a community?” 
As noted in Table 18.2, 50% of the MOOC Numeri members were also MOOC Geometria 
trainees. Among the trainees who claim to feel quite and very much part of an online 
community, we distinguish the answers given as follows: 66% of the MOOC Geometria 
trainees; 67% of the trainees who were only enrolled in MOOC Numbers; and 78% of the 
trainees who were students of both MOOCs. Below are some of their testimonies: 

Geo: “Being part of something that brings together people from all over Italy has a certain 
efect.” 

Num: “I had the feeling of being part of a big family.” 
Geo&Num: “It is the second MOOC I participate in, this idea of remote sharing has, in 

both cases, really made me feel part of a community of teachers who are willing to improve 
their teaching practices.” 

Geo&Num: “I feel part of a community that learns at any time of day or night. It made 
me happy and made me smile.” 

Tis sense of community is certainly a possible partial explanation for the high comple-
tion rates of our MOOCs, although we do not think it is the only reason for this. As shown 
in the introduction, the participant’s role is hotly contested across almost all literature and 
debate about MOOCs. Indeed, the key dilemmas in MOOCs center on what participation 
actually means, how it should be measured, and consequently, what metrics of success 
and quality are appropriate for these courses (Yang et al., 2013; Bayne & Ross, 2014; Onah, 
Sinclair & Boyatt, 2014). Part of this complexity seems to arise because there are simply so 



        

  

 

  

  

  

  

  
 

 
 

 
 
 
 
 

 
 
 

380 ◾ Teaching and Learning Mathematics Online 

many people, doing so many diferent sorts of things, in any given MOOC. Tis presents 
a challenge for researchers, educators, and institutions accustomed to using “completion” 
as a fairly stable measure of the success and quality of an educational ofering. As reported 
in the literature, it is probably not the right way to judge the quality of a MOOC or of par-
ticipants’ experiences, because this statistic is not taking sufcient account of those who 
may be engaging but “do not adhere to traditional expectations, centered around regular 
assessment and culminating in a certifcate of completion” (Kizilcec, Piech & Schneider, 
2013, p. 9). I will not go into these matters. However, I will only make some considerations 
about the completion rates of MOOCs Geometria and Numeri. Although the literature 
reports that they are not the most appropriate yardstick for assessing the success or quality 
of a MOOC, the completion rates of MOOCs Geometria and Numeri were anyway higher 
than those that generally relate to the completion of MOOCs for teacher education: 36% for 
MOOC Geometria and 42% for MOOC Numeri (Table 18.2). 

Te other trainers and I believe there are four reasons why we recorded this educational 
success: 

1. Te educational opportunity that each of our MOOCs ofered was valid both in terms 
of time and content. 

2. Te trainees have constituted more than just an online community; in fact, we have 
talked about communities of practice. 

3. Te vigilant presence of the trainers has certainly “reassured” the trainees who did 
not feel abandoned in an online environment. 

4. Last, but not least, teacher education is a right and a duty for Italian teachers. What 
better chance if you do not take advantage of a MOOC: online learning space (acces-
sible wherever and whenever) and free! 

18.8 DISCUSSION AND CONCLUSION 
In this chapter, I have analyzed how the Math MOOC UniTo project for teacher edu-
cation has actually had positive repercussions on the professional development of the 
teachers who took part in it. It was possible to observe how the interactions among the 
trainees have changed their meta-didactical praxeologies (remember footnote 4), gen-
erating the establishment of a community of practice among themselves. Tis complex 
process has been described by integrating and coordinating diferent theoretical models. 
In fact, I have considered the MDT, a typical model of face-to-face training programs, 
and I have enriched it with the Connectivism and the Instrumental Approach, allowing 
the defnition the MOOC-MDT. Te model of the double learning process, from the 
ecosystem to the individual and vice versa, was thus constructed. It efectively illus-
trates the dynamic framework that distinguishes a MOOC from a traditional course, 
and which explains how the initial inert course takes life in the ecosystem thanks to the 
contribution, mostly unpredictable, with which individuals interact with the MOOC 
environment. 
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Te double learning process that is generated can be schematically summarized in two 
basic steps: 

1. Te inert material, i.e., the MOOC-artifact: the educational and methodological pro-
posal ofered by the trainers, who work according to their professional praxeologies. 

2. Te ecosystem network, namely the MOOC-ecosystem/instrument: it develops 
according to the intertwined dynamics of instrumentation/self-organization and 
instrumentalization/sharing. 

Te starting situation ofers a variety of occasions where: 

a) A teacher, e.g., A, stimulated by some component of the starting situation, produces 
something: for example, she makes refections on CMBs, sharing her own ideas or 
any experiments conducted in class; possibly also shares her own materials. 

b) Another teacher, e.g., B, benefts from the observations/shares of A, integrates them 
into her network and in turn intervenes in the MOOC, exposing and sharing her 
ideas. 

Te ecosystem enriched by the As infuences the Bs, which in turn infuence the ecosys-
tem, and so on, in a process that feeds itself. Tanks to the CMBs present in the MOOC 
platform, the trainees begin a series of peer-to-peer communication processes (in fact the 
trainers generally abstain from intervening), which develop according to the methods and 
tools typical of social networks and produce an aggregation of interest groups that gradu-
ally grow and generate a real community of practice. 

Te meaning of these processes, still to be deepened in the research, can in the mean-
time be further clarifed by two observations on the dynamics of the MOOCs described 
above. In the frst place, collaborative participation and changing praxeologies are all 
practices that evolve on objects, that is, starting from the inert material that becomes an 
ecosystem. Tis process takes place in a “chaotic” way, in the sense that it is unpredictable 
and uncontrollable. Tis characteristic distinguishes in particular the MOOCs from tradi-
tional courses, in which everything happens in a generally predictable way. However, this 
“chaos” (in the sense of Siemens, 2005) guarantees the active and massive involvement of 
the participants (as described in the examples) that spontaneously intervene in a dialogue 
between peers. 

A second observation concerns teachers’ products (such as those produced by A in the 
example above). Te teacher A’s product is a meaning that she attributes to the interpre-
tation that the trainers give to that object and then she uses it in the classroom. For the 
teacher B the situation is diferent: A’s experience does not generally fall within her praxe-
ologies. B can instead be moved by a certain tension (in the sense of Goos, 2013) to improve 
(for any reason) and, also inspired by the experience of A (which was accomplished freely 
and not “imposed” by the trainers), has an extra source of learning (what she sees in the 
MOOC; what she sees another trainee is doing thanks to the MOOC). Prompted by this, 
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B triggers an instrumentalization phase and acquires that object, considering utilization 
schemes that are interesting for her. On the one hand, this object mediates a praxeology 
between A and B. On the other hand, the process in which this mediation is inserted is that 
of the double learning process, and in this sense the object does not mediate knowledge, 
but enters into a genesis of utilization schemes produced at that time. 

In conclusion, the chapter illustrates that MOOCs for mathematics teacher education 
can have high completion rates, if methodologies and strategies similar to those described 
here are followed: 

• Reducing to the minimum trainers’ interventions in CMBs, but being vigilant behind 
the scenes. 

• Inserting stimulus questions in the CMBs to trigger the discussions. 

• Proposing activities that are close to real contexts, but that ofer new teaching meth-
ods to deal with students’ misconceptions or difculties. 

Moreover, these MOOCs have ofered several benefts to teachers who attended them. In 
fact, they have allowed fruitful exchanges, an evolution of their praxeologies, and have 
generated communities of practice even at a distance. Terefore, for the positive infuence 
and impact they have on online mathematics professional learning, it is worth making 
more use of them. 

Finally, yet importantly, the MOOCs for mathematics teacher education ofer a prom-
ising ground for research as it seems necessary to develop a new theoretical framework 
compared to traditional ones. My contribution, here shown, goes in this direction, and 
hopefully much other research will be necessary to defne a complete one. 

18.9 LIMITATION OF THE STUDY AND FUTURE RESEARCH 
Te results of this study should be interpreted with caution. First of all, the MOOCs pre-
sented here are MOOCs for teachers and not for students. So, the conclusions we have 
reached cannot necessarily be extended to all MOOCs in general. We also point out that, 
although the number of participants in our courses is massive, it does not reach the thou-
sands of users, as ofen happens in American MOOCs (in Avineri et al., about 1,700 teach-
ers are enrolled in their MOOCs). Terefore, it is not said that the methodology adopted 
for the monitoring and also the involvement of the participants can be the same when the 
number of members is very large. 

Our analysis shows that a real involvement of trainees in collaborative work needs to 
be triggered and supported by suitable tools added to the platform. Te availability in the 
platform of tools consonant with the social networks used in everyday life increases the 
triggering of what Manlove et al. (2007) call co-regulated learning, in the sense that the 
trainees themselves regulate their tasks and collaboration. Our analysis leaves open the 
question of which devices are the best for improving active collaboration among the train-
ees: possibly further research and concrete experiments will be able to give a more defni-
tive contribution to this crucial issue. What is interesting here is that our analysis centered 
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on collaboration processes through the adaptation of the meta-didactical lens has made it 
possible to grasp this important problem in a clear way. Tis suggests that the method of 
research we have undertaken is promising and fruitful for further results along this stream. 
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19.1  INTRODUCTION 
Tere has been increasing attention paid to the need to improve the numeracy capabili-
ties of adults and children around the world. Te terminology used for numeracy varies 
internationally. Other terms commonly used include mathematical literacy and quantita-
tive literacy; for discussions of various defnitions adopted, see Vacher (2014) and Forgasz, 
Leder, and Hall (2017). 

Tere are two international testing regimes in which numeracy performance levels 
are measured. Every three years, 15-year-old students from many nations complete the 
Organisation for Economic Co-operation and Development’s (OECD) Programme for 
International Student Assessment (PISA). One of the tests that the students complete is 
the test of mathematical literacy—see OECD (2018a) for details. Adults around the world 
complete the OECD’s Survey of Adult Skills (known as Programme for the International 
Assessment of Adult Competencies [PIAAC])—see OECD (2018b) for details. 

In PISA, mathematical literacy is defned as: 

formulating, employing and interpreting mathematics in a variety of contexts. It 
includes reasoning mathematically and using mathematical concepts, procedures, 
facts and tools to describe, explain and predict phenomena. It assesses the capac-
ity of individuals to recognise the role that mathematics plays in the world and 
to make the well-founded judgements and decisions needed to be constructive, 
engaged and refective citizens. 

(OECD, 2017, p. 1) 

In PIAAC, numeracy is considered a skill parallel to literacy. Numeracy is defned as: 

the ability to use, apply, interpret, and communicate mathematical information 
and ideas. It is an essential skill in an age when individuals encounter an increas-
ing amount and wide range of quantitative and mathematical information in their 
daily lives. 

(OECD, n.d., p. 1) 

While many countries participate in PISA and PIACC, only in some countries has numer-
acy been embraced as a component of school curricula. We focus here on four English-
speaking countries: the U.K., U.S.A., Canada, and Australia. 

19.1.1 Numeracy and Schooling 

Te U.K. was one of the frst countries to recognize the importance of numeracy in edu-
cation—Crowther (1959) defned numeracy as the mirror image of literacy, and Cockcrof 
(1982) contended that it was “the responsibility of teachers of mathematics and other sub-
jects to equip children with the skills of numeracy” (p. ix). Although no clear defnition of 
numeracy is provided in the U.K. curriculum, the importance of numeracy development as 
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a responsibility of all teachers is discussed in the U.K. curriculum framework for Key Stages 
1 and 2 (Grades 1–6) in Section 5.2 as follows: 

Teachers should develop pupils’ numeracy and mathematical reasoning in all sub-
jects so that they understand and appreciate the importance of mathematics. 

(Department of Education, 2014c) 

Yet, no distinction is drawn between numeracy and mathematics in the current U.K. math-
ematics curriculum (Department of Education, 2014d). With the aim of numeracy for all in 
the U.K., an online resource has been established (National Numeracy, 2019a). Numeracy 
is defned as “the ability to use mathematics in everyday life” (National Numeracy, 2019b). 
Te resource is jointly funded by the U.K. Department of Education, corporate sponsors, 
and charitable organizations. 

In the U.S., the Common Core State Standards in Mathematics (CCSSM) provide a 
mathematics curriculum for kindergarten to Grade 12 students in 41 U.S. states and the 
District of Columbia (Common Core State Standards Initiative [CCSSI], 2018b). In the 
CCSSM (CCSSI, 2018a), the term “mathematical literacy” does not appear, while “numer-
acy” and “quantitative literacy” only appear in the reference list. Madison (2015) examined 
the CCSSM for links to quantitative literacy (QL), particularly six competencies used when 
applying mathematics in context: interpretation, representation, calculation, analysis/ 
synthesis, assumption, and communication. Madison suggested that the CCSSM are sup-
portive of calculation and somewhat supportive of representation and analysis/synthesis, 
with little evidence shown for support of the other competencies. Nevertheless, Madison 
claimed that “there are standards at every grade level that are very supportive of QL” (p. 7). 
His argument was based on mathematical content rather than other aspects of numeracy. 

In Canada, education is the responsibility of individual provinces and territories. Since 
Ontario is the province with the highest proportion of the country's population (approxi-
mately 40%; Statistics Canada, 2016), we discuss numeracy within that context. Making 
connections among mathematical topics, with other subject areas, and with students’ every-
day lives is a key focus of the Ontario mathematics curriculum at all grade levels (Ontario 
Ministry of Education [OME], 2005a, 2005b, 2007); this stance is clearly connected to con-
ceptions of numeracy. Te term “numeracy” is only found once in the Ontario mathematics 
curriculum, in the Grades 11 and 12 document (OME, 2007), but “mathematical literacy” 
is used in both the Grades 9 and 10, and the Grades 11 and 12 documents (OME, 2005b, 
2007) when referring to skills needed for the workforce. In a related publication, Leading 
Math Success: Mathematical Literacy Grades 7–12, the Expert Panel on Student Success in 
Ontario (2004) suggested that mathematical literacy involves both mathematical skills and 
“understanding the value of mathematics and having the inclination and the confdence to 
use it” (p. 24). It was also argued that mathematical literacy is comprised of various dimen-
sions (e.g., fnancial literacy, spatial literacy) and is the responsibility of all teachers. 

In Australia, although the state and territory governments oversee education, it was 
agreed by all state and territory education ministers that each state/territory curriculum 
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be consistent with the Australian Curriculum (AC). Te AC for Foundation to Grade 10* 
(Australian Curriculum, Assessment and Reporting Authority [ACARA], n.d.-a) has eight 
content domains (e.g., English, mathematics), seven general capabilities (e.g., numeracy, ethi-
cal understanding), and three cross-curricular priorities (e.g., Aboriginal and Torres Strait 
Islander histories and cultures). Teachers of all grade levels and across all content domains are 
expected to develop students’ competence in all the general capabilities and expose students 
to the cross-curricular priorities. In the AC, the numeracy general capability is defned as: 

Te knowledge, skills, behaviours and dispositions that students need to use math-
ematics in a wide range of situations. It involves students recognising and under-
standing the role of mathematics in the world and having the dispositions and 
capacities to use mathematical knowledge and skills purposefully. 

(ACARA, n.d.-c) 

ACARA (n.d.-c) has argued that: 

When teachers identify numeracy demands across the curriculum, students have 
opportunities to transfer their mathematical knowledge and skills to contexts out-
side the mathematics classroom. Tese opportunities help students recognise the 
interconnected nature of mathematical knowledge, other learning areas and the 
wider world, and encourage them to use their mathematical skills broadly. 

In summary, the working defnitions of numeracy/mathematical literacy are fairly similar 
in the U.K., Canada, and Australia, and are consistent with the OECD (n.d., 2017) defni-
tions. In the U.S., less attention is paid to numeracy, at least in the CCSSM. In Australia, 
there is greater emphasis on the development of students’ numeracy capabilities in cross-
curricular contexts. 

While numeracy and related concepts are mentioned in the U.S. and Canadian cur-
riculum documents examined, there is a paucity of information provided regarding how 
pre-service teachers in these countries will develop the needed numeracy skills for their 
profession. In contrast, in the U.K. and Australia, there is a substantial focus on pre-ser-
vice teachers’ numeracy skills. Tus, we focus on numeracy and teacher education in the 
U.K. and Australia, as both countries have similar mandated requirements for pre-service 
teachers regarding their personal numeracy capabilities. 

19.1.2 Numeracy and Teacher Education 

In the U.K., “all current and prospective trainee teachers must pass the skills tests in numer-
acy and literacy before they can be recommended for the award of qualifed teacher status” 
(Department of Education, 2018b). To ensure future teachers’ numeracy and literacy com-
petence, prospective teachers are tested on core skills that are needed “to fulfl their profes-
sional role in schools, rather than the subject knowledge needed for teaching” (Department 

* Foundation to Grade 10 is the equivalent of kindergarten to Grade 10 in North America. 
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of Education, 2018b). Te providers of pre-service teacher education are required to check 
that prospective students meet entry requirements for the skills tests before commencing 
their studies. For numeracy skills, there are two tests: an aurally administered mental arith-
metic test and a written test focusing on arithmetic and data interpretation (Department 
of Education, 2018a). Based on what is written on the website, the support materials pro-
vided (Department of Education, 2014a), a glossary of numeracy terms (Department of 
Education, 2014b), and the sample written tests (downloadable from Department of 
Education, 2018a), the focus is on basic arithmetic and statistics skills and the interpreta-
tion of data as might be found in the context of a teacher’s professional world. 

Similar to the requirements in the U.K., it is now mandated in Australia that, prior to 
graduation from a teacher education program, all pre-service teachers must pass tests of per-
sonal numeracy competence as well as of personal literacy skills (Australian Government 
Department of Education and Training, 2017), the Literacy and Numeracy Test for Initial 
Teacher Education students (LANTITE). In LANTITE, numeracy is defned as the capac-
ity for pre-service teachers “to apply mathematics to solve appropriate real-world problems” 
(Australian Council for Educational Research [ACER], 2017) and is focused on three numeracy 
processes: “identifying mathematical information and meaning in activities and texts,” “using 
and applying mathematical knowledge and problem solving processes,” and “interpreting, 
evaluating, communicating and representing mathematics” (ACER, 2017). Sample literacy 
and numeracy LANTITE questions are provided on the ACER website (n.d.). Te contextual 
settings of the items and mathematical processes required to solve them are consistent with 
the defnition of numeracy and the three mathematical processes described by ACER (2017). 

Prior to the introduction of LANTITE, the Australian Institute of Teaching and School 
Leadership (AITSL) developed professional standards for the teaching profession at three 
levels: graduate teachers, accomplished teachers, and leading teachers (AITSL, 2015). For 
accreditation as a tertiary teacher education program, it is necessary to demonstrate that 
all the professional standards for graduate teachers are being met. Tere are two standards 
directly related to numeracy skills—one related to teaching, the other to the work of a teacher: 

2.5: Literacy and numeracy strategies. Know and understand literacy and numer-
acy teaching strategies and their application in teaching areas. 

(AITSL, 2015, p. 21) 

5.4: Interpret student data. Demonstrate the capacity to interpret student assess-
ment data to evaluate student learning and modify teaching practice. 

(AITSL, 2015, p. 24) 

For accreditation as a provider of teacher education, changes were needed in the teacher 
education programs ofered at Monash University in line with the AITSL professional 
standards at the graduate teacher level. In this chapter, we provide an example of online 
resources, the Self-Help Kiosks, which were developed to support pre-service teachers to 
prepare for the numeracy demands of their profession. 
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19.2  SELF-HELP KIOSKS 
In this section, we begin by providing information about the context in which the Self-Help 
Kiosks (SHKs) were developed—the Master of Teaching program at Monash University. 
Ten, we describe the rationale behind the development of the SHKs and provide informa-
tion about their format and structure. We conclude by providing a detailed example of one 
SHK. 

19.2.1 The Monash University Master of Teaching Program 

For the two-year graduate level Master of Teaching (MTeach) program to be accred-
ited, as well as to prepare pre-service teachers to meet the expectations of the Australian 
Curriculum, a new subject was devised, entitled Numeracy for Learners and Teachers 
(NLT). Underpinning the content of NLT was the Model of 21st Century Numeracy 
described by Goos, Geiger, and Dole (2014). NLT is a compulsory subject for all MTeach 
students, except those preparing to be Early Years teachers (birth to age eight), and was 
frst taught in 2015. 

All elementary teachers in Australia are generalists who teach mathematics. Researchers 
(e.g., Ernest, 1988; Norton, 2017) have found that elementary pre-service teachers, particu-
larly those with weak mathematics backgrounds, are ofen anxious about mathematics, 
lack confdence with mathematics, and have low achievement in mathematics. Secondary 
pre-service teachers at Monash University focus on 2 of the 24 teaching specialisms ofered 
(See Monash University, 2018 for details). Terefore, secondary teachers have discipline-
specifc expertise, and not all secondary pre-service teachers will have strong mathematics 
backgrounds. 

To support the MTeach pre-service teachers studying NLT who may have had weaker 
mathematics backgrounds, we devised a series of online modules, named Self-Help Kiosks 
(SHKs), aligned with the numeracy expectations of the Australian Curriculum. We did 
not teach mathematics content in NLT, but students were encouraged to access the SHKs 
to review pertinent mathematics content. Tey were able to answer quizzes to check their 
understanding of the content presented. 

19.2.2  Rationale 

Te rationale for creating the SHKs was to provide pre-service teachers with easy access to 
a collection of resources in order to enable revision of the mathematical content and skills 
that underpin numeracy. Te SHKs were initially designed to support pre-service teachers 
enrolled in the compulsory MTeach subject, NLT, and were made available in Semester 
1, 2015, the frst year that the subject was taught. Feedback on the SHKs from pre-service 
teachers and those teaching the subject was very positive, and the SHKs were subsequently 
made available to other pre-service teachers enrolled in mathematics or numeracy units 
in the MTeach and BEd programs in Semester 1, 2016. Tis was achieved by copying the 
SHKs from the NLT Moodle site to the other units’ Moodle sites. Tis approach proved 
unsatisfactory, as changes made in the SHKs in the NLT Moodle site for 2016 did not copy 
over to the Moodle sites of the other subjects. Tus, in 2017, a separate Moodle site was 
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created in order to address this issue and to make the SHKs available to all pre-service 
teachers. 

19.2.3  Structure 

Te Faculty of Education provided funds to support the development of the SHKs. Budget 
constraints, however, dictated the scope of what could be included in the frst version. A 
research assistant was engaged to identify the key mathematical concepts, and realistic 
real-world applications of them, associated with each of the following four mathematics 
topics identifed by the NLT teaching staf: 

1. Proportional reasoning (fractions, decimals, percentages, ratios, and rates) 

2. Basic algebra 

3. Collecting and analyzing data 

4. Representing and interpreting data 

Since Monash University uses the Moodle online platform to support student learning and 
to communicate with students, Moodle was the logical environment in which to build the 
SHKs. For each key mathematical idea, the most appropriate resources were used to build 
the SHKs. Rather than re-inventing teaching materials, the research assistant was required 
to locate existing exemplary relevant online teaching resources. Te NLT teaching staf 
reviewed the SHKs and provided feedback and suggestions for modifcations before the 
SHKs were made available to the pre-service teachers enrolled in NLT. 

At the end of each semester, all Monash University students complete university-man-
dated online evaluations of each subject they have studied. As well as a number of scorable 
items, students are asked to comment on what was best about the subject, how the subject 
might be improved, and anything else. In 2015, in response to the general open-ended 
question regarding positive aspects of the subject, several students commented on the 
SHKs. For example: 

I was initially a bit nervous about undertaking a unit on numeracy but the resources 
such as the self-help kiosks, the readings and the lectures made everything really clear. 
Inclusion of the online kiosks for extra help was very thoughtful and encouraging. 
I would like the self-help kiosks and resources to be available on Moodle beyond 
the course duration. Tere's so much to work through and it'd be a great resource 
to use once out on the job. 

In response to the positive feedback received from the subject evaluations about the exist-
ing SHKs, extra funding was sought and approved to develop four more: 

5. Space and location 

6. Chance and probability 
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FIGURE 19.1 Screen capture of the SHK homepage (welcome message). 

7. From VCE (Victorian Certifcate of Education) study scores to ATAR (Australian 
Tertiary Admission Rank)* 

8. Videos on the interpretation of national testing data and PowerPoint fles (Phillip 
Holmes-Smith, a visiting expert, conducted workshops in 2015. Te videos of the 
workshops and his PowerPoint presentations were made available as one SHK.) 

As noted earlier, in 2017, the eight SHKs were mounted on their own Moodle site and 
made available to all pre-service teachers. Te content of each SHK is reviewed regularly to 
ensure its currency, but the eight-SHK structure has remained consistent since 2017. Te 
design of the Moodle homepage for the SHKs is shown in Figure 19.1, and the tile design 
(to access each SHK) is shown in Figure 19.2. 

Each of the frst six SHKs focusing on mathematical topics was comprised of the follow-
ing sections: 

a. Introduction 

b. Key mathematical topics 

c. Issues and misconceptions 

d. Examples for teaching and learning 

e. Self-check quiz 

The purpose of the introduction was to provide a context for how the specific 
mathematical topic relates to numeracy by connecting it to citizenship, work, or 

* Each state and territory in Australia oversees its own school completion certifcation. Monash University is located in 
the state of Victoria, where Grade 11 and 12 students complete the two-year Victorian Certifcate of Education (VCE). 
For each subject studied at the Grade 12 level, students receive a study score. Each study score is standardized and scaled, 
and all study scores are then combined to produce an Australian Tertiary Admission Rank (ATAR). Te ATAR is used 
for university selection. It was considered important that pre-service teachers should understand the process and under-
lying mathematics used to determine ATARs. 
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FIGURE 19.2 Screen capture of the SHK homepage (tiles to access individual SHKs). 

personal/social life, the three dimensions of numeracy described by Goos et al. (2014). 
The introduction began with a quotation or video chosen to stimulate interest and 
motivate students to explore the topic further. For example, the introduction to the 
Basic Algebra SHK featured a link to Terry Moore’s TED talk: Why is 'x' the Unknown? 
(TED, 2012). 

Te key mathematical concepts and skills for each of these six SHKs were provided as 
website links and/or video links to cater for pre-service teachers who preferred to read 
or those who preferred to watch and listen. We limited the mathematical demands to 
Grade 9 or 10 mathematics (in line with the Australian Curriculum: Mathematics—see 
ACARA, n.d.-b) and the contextual demands to settings that were relevant to teachers 
as professionals and to common everyday life experiences. Te resources provided also 
depended on the most appropriate way to share the specifc information. For example, 
a video was included showing step-by-step how to create graphs and charts in Excel. A 
brief overview was also provided of the issues and possible misconceptions that school 
students might have related to the mathematical topic; these also served to alert the pre-
service teachers as to what to watch for in their own understanding. We also felt that 
it was important to provide examples of each mathematical topic that school students 
would encounter, as well as examples of pertinent teaching strategies/practices. Our aim 
was to raise the pre-service teachers’ awareness that numeracy pervades their everyday 
experiences and to provide them with examples that they might use or adapt in their 
own teaching. Last, a short self-check quiz of 5 to 15 questions was available to enable 
the pre-service teachers to check their understanding of the topic and to identify areas 
needing further work. 

Te last two SHKs (“From VCE study scores to ATAR” and “Videos: Holmes-Smith 
workshops (Numeracy for PSTs)”) focused on very context-specifc numeracy demands for 
Australian teachers, that is, how Grade 12 results are converted into scores used for uni-
versity entrance, and how to interpret national and international testing results. In some 
respects, the contents of these SHKs built on the mathematical skills included in the other 
six SHKS. 



        

 

  

 

 

 

 

 

 
 
 

394 ◾ Teaching and Learning Mathematics Online 

19.2.4 Details of One SHK: Representing and Interpreting Data 

In this section, we describe more fully what was included in one of the SHKs, Representing 
and Interpreting Data, as an example. 

19.2.4.1 Part A: Introduction 
Te introduction to the Representing and Interpreting Data SHK was utilized to remind 
pre-service teachers that statistics and data displays can be used and misused in communi-
cation. Developing skills for interpreting statistical analyses and data representations will 
help pre-service teachers to decide whether they agree with claims being made by others’ 
interpretations of the information. A short, animated graphic was included to provide an 
illustration of the evolution of data representations. A link to Hans Rosling’s video 200 
Countries, 200 Years, 4 Minutes – Te Joy of Statistics (BBC, 2010) was also provided, as an 
example of a powerful form of modern communication of statistics. 

19.2.4.2 Part B: Key Mathematical Topics 
As a starting point for pre-service teachers to revise what they should have learned in 
school and/or to refresh their understanding, websites were provided where key ideas were 
summarized or explained. A few website links were included to provide an overview of sta-
tistics and to clarify the diference between descriptive statistics and inferential statistics. 
(Details on data collection and statistical calculations had been included in the prior topic, 
Collecting and Analysing Data.) 

It was felt that videos would be the easiest way to demonstrate how to represent data, 
as well as how to read and interpret graphs, charts, and tables. Appropriate videos were 
located from publicly available sources such as university websites and the Khan Academy 
website. Te video links for the three dimensions of Representing and Interpreting Data 
are shown in Figure 19.3. Understanding how graphs can be used to mislead people was 
deemed to illustrate the critical orientation of numeracy, and an appropriate video link 
was included. 

19.2.4.3 Part C: Issues and Misconceptions 
Te list of potential issues and misconceptions related to statistical data and inferences 
drawn from them is lengthy. To avoid overwhelming the pre-service teachers, whilst also 
trying to encourage a critical orientation towards the consumption of “facts,” only a short 
list was provided, which included ideas such as: 

• Care must be taken when making inferences about the population from a small 
sample. 

• Correlation doesn’t always imply causation. 

19.2.4.4 Part D: Examples for Teaching and Learning 
As examples of school student learning, links were provided to potential sources of data 
that Australian school students might commonly encounter, such as sport websites, 
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FIGURE 19.3 Screen capture of the list of videos for the key aspects of the Representing and 
Interpreting Data SHK. 

newspaper websites, and opinion polls. A link to the Australian Bureau of Statistics (ABS) 
website was also included. Te ABS is the national statistics agency of the Australian 
government, and ABS data are ofen referenced in the media. We considered it important 
for pre-service teachers to learn where to locate reliable source data to enable informed 
critique. 

Examples related to the work of teachers were also provided. Website links were chosen 
to address important issues such as what teachers and parents know and believe about 
technology use in the classroom, as well as how teachers can interpret the results and 
reports from international and national testing regimes. 

19.2.4.5 Part E: Self-Check Quiz 
Te resources in each SHK provided an overview and starting point for pre-service teachers 
who felt that they needed to refresh their mathematics knowledge and skills. Te self-check 
quiz gave them an opportunity to assess their understanding of the concepts covered, and 
to identify any areas for further learning. In Figures 19.4 and 19.5, screen captures of self-
check quiz questions are provided as examples. 

For future development and/or refnements of the SHKs, we felt it important to fnd out 
which SHKs had been used, and what the pre-service teachers who had used them had 
gained. 
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FIGURE 19.4 Screen capture of Question #2 from the Representing and Interpreting Data self-
check quiz. 

FIGURE 19.5 Screen capture of Question #4 from the Representing and Interpreting Data self-
check quiz. 
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19.3 STUDENTS’ REACTIONS TO AND USE OF THE SHKS 
We gathered data on students’ reactions to and use of the SHKs from a variety of sources. 
We begin by discussing SHK-related fndings from questionnaires and interviews about the 
LANTITE that were conducted as part of a broader study within the Faculty of Education. 
Ten, we discuss fndings from an SHK-focused questionnaire, conducted in 2018, of students 
who had enrolled in the SHKs Moodle site. Finally, we discuss insights gained from our anal-
ysis of Moodle usage data from 2017 onwards, when the SHKs became a separate Moodle site. 

19.3.1 LANTITE Questionnaire and Interviews 

Monash University is a prestigious Australian university, and students accepted into the 
teacher education programs ofered by the Faculty of Education are generally very high-
achieving. Te majority of students passed the LANTITE on their frst attempt. However, 
there are some students who struggle with literacy (mainly international students) and 
some with weak mathematics backgrounds. A Moodle site was developed to assist all pre-
service education students to prepare for the literacy and the numeracy components of the 
LANTITE. A link to the SHKs was included on this site. 

A link to an anonymous online questionnaire about the LANTITE was included at the 
top of the LANTITE preparation Moodle site. Students were asked a variety of questions 
about their experiences preparing for and completing the LANTITE test. Tey were asked 
about the resources they had used to prepare for the numeracy component, and one of the 
listed resources was the SHKs. Of the 120 students who responded in 2017 to questions 
about their preparation for the numeracy component of LANTITE test, 80 provided feed-
back on their usage of the SHK resources. Te majority (61%) indicated that they had not 
used the SHKs in their test preparation, while 28% indicated that they had used the SHKs a 
little or a moderate amount, and 11% used the SHKs a lot. At the end of the questionnaire, 
students were invited to provide their contact details if they were willing to participate in 
a follow-up interview, and 12 interviews were subsequently conducted. In the interviews, 
students were asked about their experiences in preparing for the numeracy component of 
the LANTITE test. Only one student mentioned the SHKs: 

If I came across something that I was like, “Oh, I can’t quite remember the best method” 
[…] I would just go back and look at the video like, “Oh, that’s how you do it.” […] and 
when I got it, and I saw all those YouTube videos and like the maths helpdesk or kiosk, 
whatever it was called, and the actual practice tests, I was like, “Oh, this is great.” 

Because the interview protocol did not include a question about specifc resources used by 
the students in preparing for the numeracy component of the LANTITE test, it is likely 
that more of the interviewees did actually access the SHKs. 

19.3.2  SHKs Questionnaire 

In 2018, a questionnaire link was provided on the SHKs Moodle site, and students were 
made aware of it through an announcement on the site, as well as announcements about 
the SHKs on the Moodle sites of individual mathematics/numeracy subjects studied by 
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pre-service teachers. Te questionnaire was comprised of demographic questions (e.g., gen-
der, age, program of study), as well as open-ended and closed questions about the students’ 
experiences with the SHKs, such as how they learned about the site and which aspects they 
used and found useful. 

Te SHKs questionnaire was completed by 21 participants, most of whom (71.4%) were 
preparing to be Primary or Primary/Secondary teachers. Interestingly, the majority (n 
= 14) of participants reported that they had studied university-level mathematics. Te 
most common way that the participants learned about the SHKs was from a lecturer 
(n = 9), followed by noticing the SHKs icon on another Moodle site (n = 7) and being 
informed about them through LANTITE resources/workshops (n = 5). Te participants 
reported learning about the SHKs as a consequence of being enrolled in one (or more) of 
fve diferent subjects, either in class or via the subject’s Moodle site; NLT was the modal 
response (n = 4). 

Eight of the 17 respondents who discussed why they enrolled in the SHKs Moodle site 
stated that they did so to help with their coursework, while four respondents said that they 
enrolled as a way to prepare for the numeracy component of the LANTITE test. Te SHKs 
that were reported to have been used the most ofen were Basic Algebra, Proportional 
Reasoning, and Representing and Interpreting Data, topics that all feature prominently 
in the pre-service teacher education mathematics/numeracy subjects, as well as on the 
numeracy component of the LANTITE test. Te participants reported that all aspects of 
the SHKs (e.g., videos, self-check quizzes) were helpful to their learning. 

19.3.3 Moodle Usage Data 

Since February of 2017, 181 students have enrolled in the SHKs Moodle site. Of these 
students, 126 completed a brief demographic questionnaire to be able to access all of the 
materials on the SHK’s Moodle site. Approximately two-thirds of these respondents were 
MTeach students (69.0%), with the rest (31.0%) being Bachelor of Education (BEd) stu-
dents. Other than a very small proportion of those studying to be teachers of students 
in the Early Years (birth to age eight; 1.6%), the respondents were fairly evenly spread 
across the other streams: 25.4% Early Years/Primary (birth to Grade 6), 20.6% Primary 
(Foundation to Grade 6), 32.5% Primary/Secondary (Foundation to Grade 12), and 19.8% 
Secondary (Grades 7–12). 

As described earlier, there were eight SHKs, each of which contained a range of resources. 
Questionnaire responses indicated that the self-check quizzes were the most commonly 
accessed resources. Tis popularity may be because they are interactive resources; another 
explanation might be that the students wanted to check their understanding frst, and then 
if they struggled with the quizzes, they would engage with the other resources for the 
particular SHK topic. Te numbers of students attempting and completing the self-check 
quizzes by SHK topic are shown in Table 19.1. 

As can be seen in Table 19.1, for each SHK, the vast majority of students who attempted 
the self-check quiz completed it. Te self-check quizzes for the frst two SHKs were accessed 
by far more students than the self-check quizzes for any of the other four. Te diference 
may be due to students’ perceived greater need to review these two topics, as they ofen are 
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TABLE 19.1 Users of SHK Self-Check Quizzes, by Topic 

SHK Mathematical Topic Number Attempting Quiz Percentage Completing Quiz 

Proportional reasoning 126 71.4% 
Basic algebra 108 86.1% 
Space and location 75 80.0% 
Collecting and analyzing data 53 83.0% 
Representing and interpreting data 45 100.0% 
Chance and probability 57 84.2% 

challenging for students, or it may simply be that students worked through the SHKs in 
order and ran out of time or energy to complete the others. 

Afer the self-check quizzes, the website links were the most commonly used resources 
in each mathematical SHK. Again, the frst two SHKs—Proportional Reasoning and Basic 
Algebra—were used by far more students than the other four mathematical SHKs, with 
25 and 20 students, respectively, accessing the website links for these SHKs (compared to 
between 4 and 11 students for the others). 

Te fles from the Phillip Holmes-Smith workshops were also widely accessed, possibly 
because there is an assignment in NLT that involves analyzing data from the Australian 
National Assessment Program – Literacy and Numeracy (NAPLAN; see National 
Assessment Program, 2016). For instance, between 128 and 135 students accessed the Part 
A and Part B videos and PowerPoint fles from the workshops. In fact, all of the resources 
in this section were accessed by at least 50 students, indicating a demand by students for 
resources about analyzing and understanding large-scale assessment data in the Australian 
context. 

19.4  CONCLUSIONS 
As shown by the fndings from the various data sources, the pre-service teachers at Monash 
University found the SHKs to be a useful resource to support their learning in mathemat-
ics/numeracy subjects, as well as in their preparation for the numeracy component of the 
LANTITE test. In particular, the self-check quizzes were used by many of the students 
enrolled in the SHKs Moodle site. Tis suggests that students are keen to test their knowl-
edge and understanding, possibly as a strategy to guide their preparation for the LANTITE 
test and their classes, as well as for reviewing class material. Another likely reason for the 
popularity of the self-check quizzes was their interactive nature; researchers (e.g., Phillips, 
2005) have suggested that online learners prefer active forms of learning such as quizzes 
to passive forms of learning such as reading information. Elementary pre-service teachers 
may have a particular need and/or desire to revise the fundamental mathematics topics 
encompassed by the SHKs. Interestingly, some pre-service teachers with secondary math-
ematics specialisms indicated that they had drawn on resources in the SHKs as support 
materials for students without strong foundations in elementary-level mathematics whom 
they had encountered during teaching placements in schools. 

Te SHKs are unique mathematics support resources in that they are specifcally tar-
geted to pre-service teachers, rather than to students enrolled in mathematics or statistics 
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subjects/degrees, or the general public. Since the SHKs go beyond simply providing mathe-
matical content to review, they have the potential to support pre-service teachers to review 
mathematics for their own understanding and build confdence to teach mathematics in 
future, as well as to foster the numeracy development of their future students across any 
curriculum discipline that they may be required to teach. Furthermore, building mathe-
matical understanding by using the SHK materials can help the Monash pre-service teach-
ers to succeed on the numeracy component of the LANTITE test, and to demonstrate 
their capacity to meet the Australian Professional Standards for Teachers, thus meeting the 
expectations of their profession. By using self-directed learning resources like the SHKs, 
pre-service teachers, particularly those with limited mathematical background or anxiety 
over their mathematical skills, can develop a richer understanding of, and appreciation 
for, mathematics and its relevance and place in all curricular disciplines. Tese pre-service 
teachers can also become more numerate members of society and the workforce, as well as 
potential mentors and advocates for others in their profession. 

Resources have been provided in Australian universities to students in mathematics 
and statistics (e.g., MacGillivray, 2008). See University of Melbourne (n.d.) for a specifc 
example of resources for frst-year mathematics students. Tere are also excellent pub-
licly available online mathematics learning resources (e.g., Khan Academy and Wootube). 
Instructors at other universities concerned about the background mathematics content 
knowledge of their students, whether pre-service teachers or students in other felds, may 
like to consider creating tailored online mathematics learning resources similar to the 
SHKs that would be available to their students. 
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20.1  INTRODUCTION 
In current education systems, types of classrooms vary widely. Traditional classrooms are 
giving way to web-facilitated, hybrid, and online courses as learning through technology is 
becoming a mainstream learning modality. Figure 20.1 shows Allen and Seaman’s (2016) 
course classifcations based on the percentage of content delivered in through online means. 

Allen and Seaman (2016) share the Integrated Postsecondary Education Data System 
(IPEDS) defnition of distance education, stating that distance education is: 

Education that uses one or more technologies to deliver instruction to students who 
are separated from the instructor and to support regular and substantive interac-
tion between the students and the instructor synchronously or asynchronously. 

(p. 41) 
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FIGURE 20.1 Course classifcations. 

Allen and Seaman (2016) have been tracking the growth and acceptance of online learning 
modalities at the higher education level since 2003. In their 2016 report on online learn-
ing in higher education in the United States, Allen and Seaman reported that 5.8 million 
students embarked on online courses during the fall 2014 semester. Of these 5.8 million 
students, 2.85 million were purely online students, meaning they were taking all of their 
coursework in an online format, while 2.97 million were taking some, but not all, of their 
courses online (Allen & Seaman, 2016). Additionally, Allen and Seaman (2016) reported 
that, in the fall 2014 semester, 69.2% of degree-granting institution ofered distance educa-
tion courses. 

Online learning presents unique opportunities, experiences, and challenges for teachers 
and students. When referencing online education, it is important to remember that merely 
being online does not constitute an education experience. Experienced online teachers 
are fnding diferent types of support and assistance are needed as students navigate vari-
ous issues and problems while learning in an online environment (Burden, 2008; Taylor 
& Galligan, 2006). Courses that are taught through an online platform provide diferent 
opportunities for students and are ofen organized diferently than traditional face-to-face 
courses (Moore & Kearsley, 2012). In an online environment, blending connectivity and 
personal learning freedom becomes a focal point as content delivery and access to infor-
mation concerns are built into many learning system designs (Garrison, 2011). 

Online learning requires a change in learning traditions for students as well. Successful 
online students are ofen self-disciplined, acutely focused on their coursework, self-start-
ers, and comfortable with online interaction. In online courses, students must learn to use 
technology to communicate and fully express their ideas, ofen using only written text. 
Students who possess these characteristics are more likely to complete their online course 
endeavors (Smith & Ferguson, 2005). From the teacher perspective, online courses neces-
sitate specifc teaching practices; online teachers must be willing to revise their teaching 
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techniques to adapt to online course properties and needs. While Allen and Seaman (2010, 
2011) report that faculty and administration support of online learning is growing, a reluc-
tance to revise teaching practices remains present among faculty members (Beaudoin, 
2002). 

As seen throughout the chapters of this book, teaching mathematics online presents 
a unique set of attributes. From course design (as seen in Chapters 3, 4, 16, 12, and 18) 
to upholding course integrity (as seen in Chapter 5), planning an online course requires 
focusing on attributes that ofen are not components of face-to-face course preparations. To 
explore the challenges that online course instructors face, a survey of practitioners was sent 
to online mathematics educators through a list serv, social media, and by word of mouth. 
Forty-six responses were received from online mathematics educators, and responses were 
tallied to provide substantiation for the themes explored in this chapter. All survey par-
ticipants were experienced online mathematics educators in middle school through post-
secondary settings. Experience levels ranged from less than one year of online teaching 
experience up to 15–20 years of online teaching experience with a mean between four and 
six years of online mathematics education experience. 

In the study of practitioners, participants were asked how they teach online mathemat-
ics courses diferently than face-to-face mathematics courses. One participant commented 
“I would argue that there is a need for a ‘diferent’ way to teach online math other than just 
recreating the F2F classroom in an online setting” while others commented that they uti-
lize diferent testing techniques, supply video lectures for students to watch, schedule times 
to talk one on one with students, rely more heavily on written communication, imple-
ment stronger structure and more detailed syllabi to ensure students are able to progress 
through their coursework independently and uninhibited, and redesign activities around 
available online engagement tools. Troughout the remainder of this chapter, additional 
struggles, benefts, and teaching modifcations will be explored. 

Troughout the chapters of this book, some unique online teaching techniques are 
explored. In Chapter 17, Sedaghatjou, Kaur, and Kagizmanli explore interactive embedded 
diagrams and pre-service teachers’ use of 2D and 3D modeling tools to enhance mathe-
matical understanding. Chapter 16 explores the use of Open Educational Resources (OER) 
to counteract the perceived challenges of teaching mathematics in an online environment. 
In Chapter 16, Mainali discusses the spectrum of OER available while also exploring their 
efectiveness and utilization styles. 

In Chapter 14, VanDieren, Moore-Russo, and Seeburger discuss the use of CalcPlot3D 
as a dynamic visualization activity that can be implemented into calculus courses from 
both the teacher and student perspectives. Continuing on the theme of student content 
mastery, in Chapter 15, Shahbazi discusses the unique learning modules the University 
of Toronto has implemented to assist students with improving both their foundational 
and advanced mathematics skills. Chapter 15 details the learning modules and the use 
of the Math In Action journal to disseminate students’ work. Like the modules discussed 
in Chapter 15, Chapter 19 focuses on “Self-Help Kiosks” that were developed by Monash 
University in Australia to support pre-service teachers in their quest to review, enhance, 
and reinforce their mathematics skills. To promote communication within the online 
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classroom. Chapters 8 and 12 detail the use of discussions in online mathematics courses. 
Chapter 8 explores Odysseys2Sense (O2S) as an online discussion forum with unique col-
laborative tools while Chapter 12 argues the positives and negatives regarding discussions 
and explores strategies for successfully implementing discussions in mathematics courses. 

20.2 BENEFITS OF TEACHING MATHEMATICS ONLINE 
Technology changes the role of teachers, the role of students, and the manner through 
which information is passed in educational settings (Kelly, 2003). Kelly (2003) states, “A 
characteristic of the information age is that knowledge is more widely held, openly shared, 
and easily accessed” (p. 1038). As online education opportunities become increasingly 
prevalent, desired, and promoted, the question is raised, “Do the benefts of online math-
ematics education opportunities outweigh the difculties?” Although there are struggles 
associated with teaching mathematics online, Chapters 9, 12, and 19 explore some of the 
benefts of online mathematics instruction. In the survey of practitioners, participants 
were asked “what benefts do you see of online mathematics courses?” Comments provided 
by the survey participants were reviewed and the key works were extrapolated. Figure 20.2 
shows a word cluster depicting the responses. 

Some participants listed multiple benefts in their survey response; of the 62 benefts 
listed, 48 mentioned pacing, accommodating student needs, or fexibility, suggesting the 
largest beneft on teaching mathematics online, from the instructor perspective, is the abil-
ity for students to progress through content at a pace aligned to their learning goals with 
structured fexibility to accommodate each student’s unique learning needs. Tis result is 
in keeping with Allen and Seaman’s (2010) argument that online instruction breaks down 
the barriers of time and place to allow students to work on their scholastic endeavors when 
they are able, while receiving the educational opportunities they desire, structured around 
other personal or professional needs. 

One survey participant commented that the most benefcial aspect of online mathemat-
ics courses is that “students are able to view multiple [procedural solution] ways in a lesson 
through videos and then worked examples,” while another participant commented “stu-
dents can re-watch instruction videos,” enabling a customized learning experience that 
ensures the pacing of instruction is appropriate for student learning. Other participants 

FIGURE 20.2 Benefts word cloud. 
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commented “students are able to re-read the math concepts multiple times” and “students 
can engage with their course work from anywhere under a multitude of diverse learning cir-
cumstances.” One participant, who teaches online mathematics courses at the high school 
level, praised the ability online mathematics education gives students in remote areas, or 
who attend smaller schools, to have access to mathematics courses their school does not 
ofer. A second online high school mathematics teacher commented that students can use 
mathematics course to “recover credit for the classes they failed but need to graduate, or 
students can take AP courses which are not ofered at their school,” signifying the bound-
less limits of information acquisition learning online enables. Tese participant comments 
are substantiated by Braude and Merrill’s (2013) research in which they suggested pausing 
online lectures, reviewing and replaying online material, and alleviation of peer pressure 
to determine pacing, are valuable components of online education opportunities. 

While pacing and locational fexibility are praised as benefts of online learning, 21st-
century skills and self-promoted learning were also cited as benefts of online mathematics 
courses by the study of practitioners’ participants. One participant commented that taking 
online mathematics courses “teaches students to be self-sufcient and encourages [stu-
dents to become] lifelong learners because they [learn they] can teach themselves through 
reading and research.” Another participant further commented: “Students learn how to be 
independent and experience self-discovery of content and time-management.” 

Unlike a traditional classroom setting in which teachers move forward at a dictated les-
son pace, online learning promotes individualized learning, content mastery, and provides 
students an opportunity to focus their attention on the content they need to more deeply 
examine and master (Kennedy, Ellis, & Oien, 2007). Encouraging student-led pacing can 
enhance student learning but can also be potentially detrimental to students who are not 
self-motivated to structure their time in their online course environment (Wadswroth, 
Husman, Duggan, & Pennington, 2007). In a qualitative study reviewing student learning 
strategies and motivation in an online developmental mathematics course, Wadsworth et 
al. (2007) found that time management was predictive of students’ course performance. 
Wadsworth et al. (2007) reviewed three question surveys from a set of 89 developmental 
mathematics students and concluded that success in an online developmental mathematics 
course is partially dependent on “the learning strategies and self-efcacy of the students” 
(p. 12). 

20.3 DIFFICULTIES OF TEACHING MATHEMATICS ONLINE 
Online learning has many benefts, but learning mathematics online also causes some 
difculties for teachers and students. Survey of practitioners’ participants were asked to 
identify areas where teaching mathematics online posed difculty. Initially, participants 
were provided a list of characteristics from which to select, as shown in Figure 20.3, and 
then, further into the survey, participants were asked to dictate what they considered to 
be the struggles they, as teachers, faced when teaching mathematics online. Two diferent 
styles of questions were asked to provide opportunities for cross referencing what prac-
titioners identifed as issues while also looking at what practitioners suggested as issues 
when unprompted from a list. 
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FIGURE 20.3 Areas of difculty. 

As shown in Figure 20.3, cheating and perceived student feelings of isolation were the 
most frequently reported difculties, with 28 votes each, and typing accurate mathematics 
received 27 votes. Online learning critics warn that education models centered upon tech-
nology place less emphasis on real-time decision making, stife real-time oral discourse, 
necessitate new forms of student-monitoring practices, and foster a digital divide amongst 
students (Anderson, 2008). When the survey of practitioners’ participants were asked 
about their least favorite aspect of teaching mathematics online, 23 participants noted the 
inability to or difculty with building relationships with students. Participants expressed 
discouragement in their inability to get to know their students personally, to be able to 
provide specifc and individual assistance when needed throughout the course content, 
feelings of depersonalization of the course experience, the inability to “look directly into 
students faces” and build a rapport with the students, and the inability to make personal 
connections to motivate and encourage students throughout their scholastic endeavors, 
not just through one select course. In addition to frustrations related to lacking personal 
engagement with students, three participants discussed items related to cheating as their 
least favorite aspects. One participant commented “you never really know who is doing 
the work” while another explained their dislike for “dealing with security and dishonesty 
issues” and another refected on the connectedness between students’ lack of interest and 
concern only for grades, rather than understanding, and subsequently encountered cheat-
ing by the students. 

20.3.1  Cheating 

As seen in Chapter 2 and Figure 20.3, cheating in an online mathematics course is an issue 
to be considered. Cheating is sometimes accidental and sometimes purposeful. Krause 
and Putnam (2016) report that students used online calculator applications to assist with 
correcting calculation errors, but also to avoid problem computations. Whether the use 
of a calculator is permitted in a course or not is school- and instructor-dependent, but 
Dorko commented in Chapter 2 that “when circumventing a problem, students would 
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type a question directly into the calculator before attempting it on their own.” Krause and 
Putnam (2016) also found that students looked at instructional websites and online forums 
when doing online homework, and the study explored diferent web-searching practices 
that students implemented when seeking assistance from online resources. In Chapter 2, 
Dorko described a scenario where one student searched “how do you fnd a second deriva-
tive?” to gain informational assistance to enable self-refection and question completion, 
while another student searched online by entering the exact question verbiage into the 
search engine and was able to retrieve a full pre-completed solution. With the full solution 
provided, the student was able to copy and paste the answer directly into their homework, 
claiming the work as their own. Dorko commented that students sometimes use online 
calculation or solution tools as learning aids to help overcome obstacles encountered with 
embarking upon specifc solution techniques, but iterate that without knowing the stu-
dents, instructors are not able to identify instances when online calculation tools are used 
to negate problem-solving endeavors or to assist in learning while overcoming problem-
solving obstacles. 

20.3.2  Isolation 

In addition to cheating, feelings of isolation are perceived as a hinderance to learning in 
an online environment. In Chapter 9, Kidd described feelings of isolation as a common 
difculty expressed by online students (Bambara, Harbour, Davies, & Athey, 2009). Like 
the survey of practitioners’ participants who commented on “missing face-to-face” inter-
actions with students or longing to look at their students’ faces to help build rapport or 
discern unspoken needs, students yearn for interactions with their teachers and peers. 
Kidd also comments on the efort that is necessary, by teachers and students, to facilitate 
interaction. In an online environment, instructors strive to create engagement opportuni-
ties and take leadership roles in facilitating both teacher-to-student and student-to-student 
engagement initiatives. One participant in the survey of practitioners commented: “Many 
students are scared of mathematics. When they start an online program and have to learn 
the system and learn the mathematics, this is difcult for them.” In addition to learning 
the learning management system used by the course, the mathematics, and the course 
expectations, students are also learning to engage with their teacher and their peers in a 
virtual setting. 

Teaching students to engage with their instructor and their peers is an important aspect 
of teaching online. In Chapter 12, communication in an online mathematics course was 
compared to communication in a face-to-face mathematics course with the conclusion 
that both course modalities relied on strong, successful communication, but clearly there 
are diferences in the communication formats. In an online course, instructors spend time 
learning how to model, facilitate, and promote benefcial virtual discussions. One sur-
vey of practitioners’ participant commented “I have to create ways for students to inter-
act which involves changing how activities are presented.” Tis participant went on to 
explain that they seek to use online tools and engagement strategies but are sometimes 
forced to “revert to process driven direct instruction due to an inability to create an online 
engagement.” 
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20.3.3 Typing Math Online 

While opportunities exist for students to use technology to write directly into documents 
on their computer or hand write and then scan or photograph their work before submit-
ting, these are not universally accepted practices, and writing mathematics accurately 
is an issue in online mathematics courses. In Chapter 2, Dorko explored the works of 
Ellis, Hanson, Nuñez, and Rasmussen, 2015; Hauk and Segalla, 2005; Gage, Pizer, and 
Roth, 2003; Heenehan and Khorami, 2016; Leong and Alexander, 2014; Roth, Ivanchenko, 
and Record, 2008; and Yushau and Khan, 2014, all of whom note students’ negative feed-
back related to difculties inputting answers into online homework programs. Inputting 
mathematical symbols or equations can be very difcult and is not an issue isolated to 
just homework applications. One survey of practitioners’ participant commented: “I 
think math is a more difcult course to take online, compared to other subjects. Students 
ofen get hung up with typing math symbols and graphing online.” Tis difculty of typ-
ing mathematics was showcased in the vignette explained in Chapter 9 related to the “e 
symbol.” 

Smith and Ferguson (2005) found that “online environments are not well adapted to 
mathematics” (p. 331). In their research, Smith and Ferguson (2005) found that learn-
ing management systems do not support complex mathematics diagrams or notations. 
Students ofen try to replace mathematical symbols with keyboard-enabled characters, 
resulting in online instructors and students seemingly communicating in code (Smith 
& Ferguson, 2005). In addition to mathematics symbols and equation structures, online 
mathematics curriculums must accommodate graphing. As seen in Chapter 2, research-
ers have found that students become frustrated with online platforms that are cumber-
some to use or do not have a margin for error (Leong & Alexander, 2014). In Leong and 
Alexander’s (2014) example, students became particularly frustrated when attempting to 
graph coordinate points, with non-fuid online systems, and ensuing incorrect responses 
due to small variations in point placement. Graphing tends to be a problematic concept 
for many students and is a pivotal component of many mathematics courses. Involving 
strategic competence, conceptual understanding, and relational observations, graph-
ing is a representation activity which requires students to make meaning from abstract 
concepts through the use of anticipatory thinking (Cavanaugh, Gillan, Bosnick, Hess, 
& Scott, 2008). Diferentiating between procedural understanding errors and online 
navigation issues, as described by Leong and Alexander (2014), compounds student and 
instructor frustrations when typing mathematics or utilizing some online mathematics 
tools. 

20.4 FAVORITE ASPECT OF TEACHING MATH ONLINE 
In addition to sharing their thoughts regarding the beneft and difculties of teaching 
math online, in a survey of practitioners, participants were asked to explain their favorite 
aspects of teaching mathematics online; some participants listed multiple favorite aspects. 
From their perspective as instructors of online mathematics courses, learning fexibility 
and meeting individual student needs are their favorite aspects. Figure 20.4 shows a pie 
chart depicting the frequency of responses by survey participants. 
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Favorite Aspects of Teaching Math Online 

flexibility 
interactive tools 
meeting students’ needs 
Other 
Student Diversity 
teaching resources 

FIGURE 20.4 Practitioners’ favorite aspects of teaching math online. 

Flexibility was the most commented favorite attribute response and made up 42% of 
responses. Te ability to meet unique student learning needs made up 26% of responses, 
and the availability of interactive online learning tools, such as discussion boards, online 
assessments, and multimedia capabilities, accounted for 12% of responses. Teachers 
appreciated the ability to work at times conducive to their personal schedules and the 
convenience of meeting students online. One survey participant commented “I can sit 
comfortably at my desk, eating a sandwich, drinking a soda, and wearing my workout 
clothing. I can also choose my hours.” A second survey participant commented “I can 
work pretty much at my convenience” while multiple others wrote “fexibility of sched-
ule” and “it allows me to be able to work from home.” Additional survey participants 
mention that they have “more time to fnd resources to help students” and “time to focus 
on improving content.” Participants commented on their enjoyment of meeting diverse 
student populations and interacting with students who they otherwise would not have 
in face-to-face settings. Participants commented on their enjoyment of “helping stu-
dents succeed in mathematics who have struggled to do so otherwise” and that online 
teaching enables them to “do all my favorite parts of teaching-explaining mathemat-
ics and helping students.” Related to meeting students’ needs, other participants com-
mented on their appreciation of being able to provide “immediate feedback on student 
learning” and the “the ability to give specifc and detailed feedback to each student.” 

20.5 LEAST FAVORITE ASPECT OF TEACHING MATH ONLINE 
While fexibility and meeting student needs were instructors’ favorite aspects of teach-
ing mathematics online, not having direct contact with students to build teacher-to-stu-
dent interactions and build rapport and to actually see the students accounted for 51% of 
responses when survey participants were asked about their least favorite aspect of teach-
ing math online. Figure 20.5 shows a word cloud of survey of practitioners’ participant 
responses relative to their least favorite aspects of teaching math online. 

In Chapter 9, Kidd discusses strategies to engage students you likely will not meet face-
to-face. Kidd comments “the face-to-face interaction was [the students’] preferred method” 
and indicates that commonly students only take mathematics courses online because they 
are not able to always attend face-to-face class meetings. From the survey of practitioners’ 
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FIGURE 20.5 Word cluster of practitioners’ least favorite aspects. 

responses, it can be concluded that teachers also value face-to-face interaction with stu-
dents. In their survey responses, practitioners commented “I don’t like not being able to 
contact all my students,” expressed dislike of “not seeing the actual students,” and high-
lighted the difculties online platforms present related to “building relationships and 
getting to know my students well.” Survey participants also commented that they “miss 
looking directly into students faces, [and] the rapport that develops”; online teachers miss 
the “human interaction” aspect of teaching. Additional survey participants commented 
that it is more difcult them, as online instructors, to bond to “bond” with students and 
explain that “not knowing students personally” makes it hard to “help more specifcally 
and individually when they don’t initiate.” 

20.6 MATHEMATICS COURSES BEST AND POOREST 
SUITED FOR ONLINE STUDY 

Recognizing the unique benefts and difculties associated with teaching and learning 
mathematics online, the survey participants were asked to share their opinions related to 
which math courses they felt were best suited for online study. When looking at actual 
mathematics content and its adaptability to online study, survey participants had varying 
opinions. Developmental through advanced-level courses, such as middle school math, 
algebra 1, honors courses, pre-calculus, geometry, calculus, and statistics, were all listed 
as well-suited for online study. When asked which mathematics courses are not well-
suited for online study, this same list of developmental through advanced-level courses 
appeared. 

With no consensus regarding the best-suited and poorest-suited courses for online 
study, other factors, such as student characteristics, should be considered. Interestingly, 
comments ofen strayed from content themes to student attributes and course design 
attributes. For example, nine survey participants commented along the lines of the con-
tent is not the deciding factor but rather “it depends on how hard the student wants 
to work.” Participants commented “I think any mathematics content can be presented 
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[online]; success is more dependent on student study skills and computer literacy rather 
than content,” “I think all math content is suitable for online study as long as the student 
is motivated,” and “I am not sure it is content that matters but students motivation.” One 
survey participant explained: “I think it depends on the student. If you have a motivated 
student, any course is doable. If you have a student who doesn’t want to put in the efort 
required to learn independently, any course will be challenging.” Following this same 
theme of student dependence, another survey participant commented: “I don’t feel that 
one content is more suited for online studying than another. I feel it depends on the 
level of independence and maturity of the learner.” Similar to participant responses, in 
a qualitative study of over 3,000 asynchronous online courses ofered through the State 
University of New York (SUNY) system, Smith and Ferguson (2005) found that charac-
teristics of successful online students are self-discipline, ability to focus on their course-
work, self-starters, and comfort with online interaction. Smith and Ferguson argued 
that students who possess these characteristics are more likely to complete their online 
course endeavors 

In addition to student characteristics, survey participants also highlighted course 
attributes as generating positive or negative course experiences. Participants commented 
“with properly created and maintained material, any mathematics content is suitable for 
online study,” and “I feel that if a mathematics course has the right resources built in for 
the students and the students understand how to use them, any Algebra or Geometry 
based content can be studied online.” Similarly, from the least suited responses, partici-
pants suggested: “I think highly technical mathematics may be difcult to study online, 
but a large piece of this puzzle relates to quality of instruction and how the course is put 
together.” 

When discussing mathematics courses least suited for online study, themes explored 
related to the difculties of teaching mathematics online resurfaced. For example, one 
practitioner commented: “I think highly technical mathematics may be difcult to study 
online, but a large piece of this puzzle relates to quality of instruction and how the course 
is put together.” Related to the graphing typing mathematics content themes explored pre-
viously, another practitioner commented: “Courses that involve a lot of graphing are hard 
for students to do the work online, also when showing a lot of work is required but must 
be typed.” Another common theme related to mathematics courses least suited for online 
study centered around the lack of direct teacher-to-student interaction. Tree practitioners 
commented that foundational level courses are difcult to implement online because of 
the scafolding nature of mathematics content. One practitioner cautioned: “a great deal of 
important concepts are taught in [foundational] classes and students will struggle later if 
they don’t get it.” Similarly, another practitioner commented “I think foundational courses 
like Algebra 1 (and even MS math) can be difcult to do online. It’s so, so important that 
students have a mastery in Algebra 1 in order to be successful in upper level math courses.” 
A third comment along this theme was: “foundations need guidance and most students 
need someone present to help motivate.” 
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Te theme of teacher guidance did not end with foundational courses. In the practitio-
ner’s comment below, the need for positive teacher–student relationships in upper-level 
courses is iterated. 

Once you get into PreCalc and Calculus it becomes more challenging for students 
who do not have confdence their math skills as they ofen miss the basic concepts 
that layer in but without the daily teacher guidance they can get lost quickly. 

Further responses highlighted the need for well-designed courses and quality content 
resources. Comments highlighting these needs include: “I feel that if a mathematics course 
does not have the right resources built in to help the students learn the mathematics con-
tent will not be suitable” and “I think highly technical mathematics may be difcult to 
study online, but a large piece of this puzzle relates to quality of instruction and how the 
course is put together.” 

20.7  CONCLUSION 
Online learning presents a unique set of challenges for teachers and students. To utilize 
online learning to its fullest potential, it is necessary that both students and teachers take 
advantage of the unique opportunities available in an online classroom such as collabora-
tion tools, internet-housed resources, and simulations. Merely being online does not con-
stitute an education experience. Teachers are fnding that students need diferent types 
of support and assistance with various issues or circumstances in an online environment 
(Burden, 2008; Taylor & Galligan, 2006). Courses that are taught through an online plat-
form are organized diferently than traditional face-to-face courses and provide diferent 
opportunities for students (Moore & Kearsley, 2012). In an online environment, content 
delivery and access to information concerns give way to blending connectivity and per-
sonal learning freedom (Garrison, 2011). From the students’ perspective, online learning 
requires a change in learning traditions. In online courses, students must learn to use 
technology to communicate and fully express their ideas, ofen using only written text. 

Troughout the chapters of this book, case studies, exploratory research, teaching tech-
niques, benefts, and struggles related to teaching mathematics online have been explored. 
From MOOCs that are typically ofered free of charge and cater to large groups of students 
seeking to work independently through course content (Chapters 6, 13 and 18) to focused 
assets which assist online mathematics learners (Chapters 12, 14, 15, 16, 17, and 19), online 
learning techniques are being implemented in K-12, collegiate, and graduate level envi-
ronments to bring learning experience to individuals desiring to advance their cognitive 
mathematics understanding. 

Te way in which society functions and the manners in which people work, learn, live, 
and play are being increasingly impacted by technology. Smartphones, tablets, laptops, and 
the multitude of devices through which the internet can be accessed and communication 
promoted are enhancing the rate at which knowledge can be retrieved and transferred. 
Allen and Seaman (2014) report that over 7.1 million students are turning to online means 
for educational opportunities and Garrison (2011) comments “we are just beginning to 



          

 

 
 

   
 

          

 
 

  

 

  

The Good, the Bad, and the General Overview ◾ 417 

discover and understand the extent to which these technologies will transform expecta-
tions for, and approaches to, learning” (p. 5). As students increasingly embark on online 
learning experiences, the benefts, struggles, and unique attributes of teaching and learn-
ing mathematics online will continue to evolve. 
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