


A GUIDE
TO PHYSICS
PROBLEMS

part 1
Mechanics, Relativity,

and Electrodynamics



This page intentionally left blank



part 1
Mechanics, Relativity,
and Electrodynamics

Sidney B. Cahn
Boris E. Nadgorny

State University of New York at Stony Brook
Stony Brook, New York

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 0-306-48400-5
Print ISBN: 0-306-44679-0

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©1994 Kluwer Academic/Plenum Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

New York



Foreword

For many graduate students of physics the written qualifying examina-
tion is the last and one of the most important of the hundreds of grueling
examinations that they have had to take in their career. I remember vividly
my own experience in 1947 at the University of Chicago. After the quali-
fying examination, I knew I was finally free from all future examinations,
and that generated a wonderful feeling of liberation and relief.

Be that as it may, the written qualifying examination does serve a useful
purpose, both for the faculty and for the students themselves. That is why
so many universities give these exams year after year in all parts of the
world.

Sidney Cahn and Boris Nadgorny have energetically collected and pre-
sented solutions to about 140 problems from the exams at many universities
in the United States and one university in Russia, the Moscow Institute
of Physics and Technology. Some of the problems are quite easy, others
quite tough; some are routine, others ingenious. Sampling them I am re-
minded of the tripos questions of Cambridge University that I had spent so
many hours on when I was an undergraduate student in China during the
years 1938–1942, studying such books as Whittaker’s Analytical Dynamics,
Whittaker and Watson’s Modern Analysis, Hardy’s Pure Mathematics, and
Jeans’ Electricity and Magnetism.

It is perhaps interesting to the readers of this volume to note that the
famous Stokes’ theorem, so important to modern differential geometry and
to physics, first appeared in public as problem No. 8 of the Smith Prize
Examination of 1854. Stokes was the examiner and Maxwell was one of the
takers of the examination. That Maxwell was impressed with this theorem,
and made extensive use of it in 1856 in the first of his epoch-making series
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of papers that led to Maxwell’s equations, is obvious from his papers and
from his A Treatise on Electricity and Magnetism (1873). Maybe a hundred
years from now somebody will remember one of the problems of the present
collection?

C.N. Yang

Stony Brook



Preface

The written qualifying examination, a little publicized requirement of
graduate physics programs in most universities, brings some excitement to
the generally dull life of the graduate student. While undergoing this ordeal
ourselves, we were reminded of the initiation ceremonies into certain strict
monastic orders, designed to cause the novices enough pain to make them
consider their vocation seriously. However, as the memory of the ghastly
experience grows dim, our attitudes are gradually changing, and we now
may agree that these exams help assure a minimal level of general physics
knowledge necessary for performing successful research. Still, the affair
is rather stressful, sometimes more a test of character than of knowledge
(see Figure P.1). Perhaps it is the veteran’s memory of this searing, yet
formative experience that preserves the Institution of the Qualifying Exam.

Some schools do not have written exams, for instance: Brown, Cal-
Tech, Cornell, Harvard, UT Austin, Univ. of Toronto, Yale. However, the
majority do administer them and do so in a more or less standard form,
though, the level of difficulty of the problems, their style, etc., may differ
substantially from school to school. Our main purpose in publishing this
book — apart from the obvious one to become rich and famous — is to
assemble, as far as possible, a universal set of problems that the graduate
student should be able to solve in order to feel comfortable and confident at
the exam. Some books containing exam problems from particular univer-
sities (Chicago, Berkeley, Princeton) have been published; however, this is
the first book to contain problems from different American schools, and for
comparison, problems from Moscow Phys-Tech, one of the leading Russian
universities.
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The other goal of the book is much more complicated and only partly
realized: to allow comparison of problems from different schools in terms of
breadth of material, style, difficulty, etc. This would have required analysis
of a greater number of problems than we were able to include, and the
use of approximately the same number of problems from each department
(we had only a few problems from some universities and hundreds from
others). We were much more concerned to present problems that would
cover as much material as possible. We should note in this regard that
the exams with the most difficult problems to solve are not necessarily the
most difficult to pass — that depends on the number of problems that have
to be solved, the amount of time given for each problem, and the way in
which the problems are graded. We have not attempted to present such
information, but we wish to point out that it is an important consideration
in the selection of a graduate school and well worth investigating.

Quite often the written exam consists of two parts: the first part, cover-
ing “fundamental” physics, usually includes classical mechanics, electrody-
namics, quantum mechanics, statistical physics and thermodynamics, and
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sometimes special relativity and optics; the second part, containing “mod-
ern” physics, includes nuclear, atomic, elementary particle, and solid state
physics, and sometimes general relativity and astrophysics. The scope and
difficulty of the second part vary too much from school to school to allow
generalization, and we will only deal with the first part. The problems will
appear in two volumes: Part 1 — Mechanics, Relativity, and Electrody-
namics, and Part 2 — Quantum Mechanics and Statistical Physics.

While reviewing the material submitted to us, we were not surprised to
find that often the same problems, maybe in slightly different formulations,
were part of the exams at several schools. For these problems, we have
noted the name of the school whose particular version we solved next to
the name we assigned to the problem, followed by the name or names of
schools whose exams contained variants of the problem. If only part of
the problem was used at a different school, we have indicated which one.
We have also tried to establish a balance between standard problems that
are popular with many physics departments and more original problems,
some of which we believe have never been published. Many of the standard
problems used in the exams have been published previously. In most cases,
though, it is difficult to determine when the problem was first presented;
almost as difficult as it is to track down the origin of a fairy tale. However,
when we could refer to a standard textbook where the problem may be
found, we have done so. Although it may be boring to solve a lot of the
standard problems, it is worthwhile – usually they comprise more than half
of all the problems given in the exams. We have to acknowledge grudgingly
that all errors in the formulation of the problems and solutions are the
sole responsibility of the authors. We have tried to provide solutions that
are as detailed as possible and not skip calculations even if they are not
difficult. We cannot claim that we have the best possible solutions and
inevitably there must be some errors, so we would welcome any comments
or alternative solutions from the reader.

We were encouraged by the response from most of the schools that we
approached, which furnished us with problems for inclusion in this book.
We would like to take this opportunity to thank the Physics Departments at
Boston University (Boston), University of Colorado at Boulder (Colorado),
Columbia University [Applied Physics] (Columbia), University of Mary-
land (Maryland), Massachusetts Institute of Technology (MIT), Univer-
sity of Michigan (Michigan), Michigan State University (Michigan State),
Michigan Technological University (Michigan Tech), Princeton University
(Princeton), Rutgers University (Rutgers), Stanford University (Stanford),
State University of New York at Stony Brook (Stony Brook), University of
Wisconsin (Wisconsin-Madison). The problems from Moscow Institute of
Physics and Technology (Moscow Phys-Tech) came from different sources
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— none from graduate qualifying exams, rather from undergraduate exams,
oral exams, and magazines (Kvant). A few were published before, in a book
containing a lot of interesting problems from Moscow Phys-Tech, but most
were compiled by the authors. We wish to thank Emmanuel I. Rashba, one
of the authors of that book, for his advice. We realize that there are many
schools which are not represented here, and we welcome any submissions
for Part 2 of this project.

It is our pleasure to thank many members of the Department of Physics
at Stony Brook for their encouragement during the writing of this book,
especially Andrew Jackson, Peter Kahn and Gene Sprouse, as well as Kirk
McDonald of Princeton. We are indebted to Chen Ning Yang, who agreed
to write the foreword for this book. We are grateful to: Dmitrii Averin,
Fabian Essler, Gerald Gwinner, Sergey Panitkin, Babak Razzaghe-Ashrafi,
Sergey Shokhor and Henry Silsbee for numerous discussions of problems
and many useful suggestions, and especially to Bas Peeters, who read most
of the manuscript; and to Michael Bershadsky, Claudio Corianò, and Sergey
Tolpygo for contributing some of the problems. One of the authors (B.N.)
wishes to thank the students at Oxford University and Oxford’s Student
Union for their invaluable help without which this book might not have been
written. Finally, we would like to thank Vladimir Gitt and Yair Minsky for
drawing the humorous pictures, and Susan Knapp for typing part of the
manuscript.

Sidney B. Cahn
Boris E. NadgornyStony Brook
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Mechanics

1.1 Falling Chain (MIT, Stanford)

A chain of mass M and length L is suspended vertically with its lower end
touching a scale. The chain is released and falls onto the scale. What is
the reading of the scale when a length of the chain has fallen? Neglect
the size of the individual links.

1.2 Cat and Mouse Tug of War (Moscow Phys-Tech,
MIT)

A rope is wrapped around a fixed cylinder as shown in Figure P. 1.2. There
is friction between the rope and the cylinder, with a coefficient of friction

3

1
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the angle defines the arc of the cylinder covered by the rope.
The rope is much thinner than the cylinder. A cat is pulling on one end
of the rope with a force F while 10 mice can just barely prevent it from
sliding by applying a total force

a)

b)

Does the minimum force necessary to prevent the rope from sliding
depend on the diameter of the cylinder?
Through what minimum angle about the cylinder should one mouse
wrap the rope in order to prevent the cat from winning the game of
tug of war?

1.3 Cube Bouncing off Wall (Moscow Phys-Tech)

An elastic cube sliding without friction along a horizontal floor hits a verti-
cal wall with one of its faces parallel to the wall. The coefficient of friction
between the wall and the cube is The angle between the direction of the
velocity v of the cube and the wall is What will this angle be after the
collision (see Figure P.1.3 for a bird's-eye view of the collision)?

1.4 Cue-Struck Billiard Ball (Rutgers, Moscow Phys-
Tech, Wisconsin-Madison (a))

Consider a homogeneous billiard ball of mass and radius R that moves
on a horizontal table. Gravity acts downward. The coefficient of kinetic
friction between the ball and the table is and you are to assume that
there is no work done by friction for pure rolling motion. At time
the ball is struck with a cue, which delivers a force pulse of short duration.
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Its impulse is

a)

b)

The point of contact between the cue and the ball is at the “equator”
and the direction of the force is toward the center of the ball. Calcu-
late the time at which pure rolling motion begins. What is the final
speed of the center of mass of the ball?
At what height above the center must the cue strike the ball so that
rolling motion starts immediately (see Figure P.1.4)?

1.5  Stability on Rotating Rollers (Princeton)

A uniform thin rigid rod of mass M is supported by two rotating rollers
whose axes are separated by a fixed distance The rod is initially placed
at rest asymmetrically, as shown in Figure P.1.5a.

a) Assume that the rollers rotate in opposite directions. The coefficient
of kinetic friction between the bar and the rollers is Write the
equation of motion of the bar and solve for the displacement
of the center C of the bar from roller 1, assuming and
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b) Now consider the case in which the directions of rotation of the rollers
are reversed, as shown in Figure P.1.5b. Calculate the displacement

again, assuming and

1.6 Swan and Crawfish (Moscow Phys-Tech)

Two movers, Swan and Crawfish, from Swan, Crawfish, and Pike, Inc.,
must move a long, low, and narrow dresser along a rough surface with a
coefficient of friction (see Figure P. 1.6). The mass M of the dresser
is 150 kg. Swan can apply a maximum force of 700 N, and Crawfish 350 N.

Obviously, together they can move the dresser; however, each of them in-
sists on his own way of moving the darn thing, and they cannot agree. Show
that by using his own method, each of them can move the dresser alone.
What are these methods?

Hint: The names in the problem are not quite coincidental, and the two
methods are natural for Swan and Crawfish.
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1.7 Mud from Tire (Stony Brook)

A car is stuck in the mud. In his efforts to move the car, the driver splashes
mud from the rim of a tire of radius R spinning at a speed where
Neglecting the resistance of the air, show that no mud can rise higher than
a height above the ground.

1.8 Car down Ramp up Loop (Stony Brook)

A car slides without friction down a ramp described by a height function
which is smooth and monotonically decreasing as increases from 0

to L. The ramp is followed by a loop of radius R. Gravitational acceleration
is a constant in the negative direction (see Figure P. 1.8).

a)

b)

c)

If the velocity is zero when what is the minimum height
such that the car goes around the loop, never leaving the

track?
Consider the motion in the interval before the loop. As-
suming that the car always stays on the track, show that the velocity
in the direction is related to the height as

In the particular case that show that the
time elapsed in going down the ramp from can be ex-
pressed as where and write as
a definite integral. Evaluate the integral in the limiting case
and discuss the meaning of your answer.
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1.9 Pulling Strings (MIT)

A mass is attached to the end of a string. The mass moves on a fric-
tionless table, and the string passes through a hole in the table (see Figure
P.1.9), under which someone is pulling on the string to make it taut at all
times. Initially, the mass moves in a circle, with kinetic energy The
string is then slowly pulled, until the radius of the circle is halved. How
much work was done?

1.10  Thru-Earth Train (Stony Brook, Boston (a),
Wisconsin-Madison (a))

A straight tunnel is dug from New York to San Francisco, a distance of
5000 kilometers measured along the surface. A car rolling on steel rails
is released from rest at New York, and rolls through the tunnel to San
Francisco (see Figure P. 1.10).
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a)

b)

c)

Neglecting friction and also the rotation of the Earth, how long does it
take to get there? Take the gravitational acceleration
and the radius of the Earth R = 6400 km.
Suppose there is now friction proportional to the square of the velocity
(but still ignoring the rotation of the Earth). What is the equation
for the phase space trajectory? Introduce suitable symbols for the
constant of proportionality and for the mass of the car, and also draw
a sketch.
We now consider the effects of rotation. Estimate the magnitude of
the centrifugal and Coriolis forces relative to the gravitational force
(ignore friction). Take New York and San Francisco to be of equal
latitude (approximately 40° North).

The frequency of oscillation of a string depends on its length L, the force
applied to its ends T, and the linear mass density Using dimensional
analysis, find this dependence.

1.12 Hovering Helicopter (Moscow Phys-Tech)

A helicopter needs a minimum of a 100 hp engine to hover (1 hp = 746 W).
Estimate the minimum power necessary to hover for the motor of a 10
times reduced model of this helicopter (assuming that it is made of the
same materials).

1.13 Astronaut Tether (Moscow Phys-Tech, Michigan)

An astronaut of total mass 110 kg was doing an EVA (spacewalk, see Fig-
ure P.1.13) when his jetpack failed. He realized that his only connection to

take to get there? Take the gravitational acceleration
and the radius of the Earth R = 6400 km.
Suppose there is now friction proportional to the square of the velocity
(but still ignoring the rotation of the Earth). What is the equation
for the phase space trajectory? Introduce suitable symbols for the
constant of proportionality and for the mass of the car, and also draw
a sketch.
We now consider the effects of rotation. Estimate the magnitude of
the centrifugal and Coriolis forces relative to the gravitational force
(ignore friction). Take New York and San Francisco to be of equal
latitude (approximately 40° North).

1.11 String Oscillations (Moscow Phys-Tech)

The frequency of oscillation of a string depends on its length L, the force
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the spaceship was by the communication wire of length L = 100 m. It can
support a tension of only 5 N before parting. Estimate if that is enough to
keep him from drifting away from the spaceship. Assume that the height of
the orbit is negligible compared to the Earth's radius (R = 6400 km). As-
sume also that the astronaut and the spaceship remain on a ray projecting
from the Earth’s center with the astronaut further away from the Earth.

1.14 Spiral Orbit (MIT)

A particle moves in two dimensions under the influence of a central force
determined by the potential Find the powers and
which make it possible to achieve a spiral orbit of the form with
a constant.

1.15 Central Force with Origin on Circle (MIT,
Michigan State)

A particle of mass m moves in a circular orbit of radius R under the influence
of a central force The center of force C lies at a point on the circle
(see Figure P.1.15). What is the force law?

1.16 Central Force Orbit (Princeton)

a) Find the central force which results in the following orbit for a particle:

b) A particle of mass is acted on by an attractive force whose potential
is given by Find the total cross section for capture of the
particle coming from infinity with an initial velocity
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1.17 Dumbbell Satellite (Maryland, MIT, Michigan
State)

Automatic stabilization of the orientation of orbiting satellites utilizes the
torque from the Earth’s gravitational pull on a non-spherical satellite in a
circular orbit of radius R. Consider a dumbbell-shaped satellite consisting
of two point masses of mass connected by a massless rod of length
much less than R where the rod lies in the plane of the orbit (see Figure
P.1.17). The orientation of the satellite relative to the direction toward the
Earth is measured by angle

a)
b)

Determine the value of for the stable orientation of the satellite.
Show that the angular frequency of small-angle oscillations of the
satellite about its stable orientation is times the orbital angular
velocity of the satellite.

1.18 Yukawa Force Orbit (Stony Brook)

A particle of mass moves in a circle of radius R under the influence of a
central attractive force

a)

b)

Determine the conditions on the constant such that the circular
motion will be stable.
Compute the frequency of small radial oscillations about this circular
motion.
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1.19 Particle Colliding with Reflecting Walls
(Stanford)

Consider a particle of mass moving in two dimensions between two per-
fectly reflecting walls which intersect at an angle at the origin (see Figure
P.1.19). Assume that when the particle is reflected, its speed is unchanged
and its angle of incidence equals its angle of reflection. The particle is at-
tracted to the origin by a potential where c is some constant.

Now start the particle at a distance R from the origin on the with a
velocity vector Assume

a)
b)
c)

Determine the equation for distance of closest approach to the origin.
Under what conditions will the particle reach the origin?
Under what circumstance will it escape to infinity?

1.20 Earth-Comet Encounter (Princeton)

Find the maximum time a comet (C) of mass      following a parabolic
trajectory around the Sun (S) can spend within the orbit of the Earth (E).
Assume that the Earth’s orbit is circular and in the same plane as that of
the comet (see Figure P. 1.20).
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1.21 Neutron Scattering (Moscow Phys-Tech)

Neutrons can easily penetrate thick lead partitions but are absorbed much
more efficiently in water or in other materials with high hydrogen content.
Employing only classical mechanical arguments, give an explanation of this
effect (see Figure P.1.21).

1.22 Collision of Mass–Spring System (MIT)

A mass with initial velocity strikes a mass-spring system ini-
tially at rest but able to recoil. The spring is massless with spring constant

(see Figure P. 1.22). There is no friction.

a)
b)

What is the maximum compression of the spring?
If, long after the collision, both objects travel in the same direction,
what are the final velocities and of and respectively?

1.23 Double Collision of Mass–Spring System (Moscow
Phys-Tech)

A ball of mass M moving with velocity on a frictionless plane strikes the
first of two identical balls, each of mass connected by a massless
spring with spring constant (see Figure P.1.23). Consider the
collision to be central and elastic and essentially instantaneous.
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a)

b)

Find the minimum value of the mass M for the incident ball to strike
the system of two balls again.
How much time will elapse between the two collisions?

1.24 Small Particle in Bowl (Stony Brook)

A small particle of mass   slides without friction on the inside of a hemi-
spherical bowl, of radius R, that has its axis parallel to the gravitational
field Use the polar angle (see Figure P.1.24) and the azimuthal angle

to describe the location of the particle (which is to be treated as a point
particle).

a)
b)
c)
d)
e)

f)

g)

Write the Lagrangian for the motion.
Determine formulas for the generalized momenta and
Write the Hamiltonian for the motion.
Develop Hamilton's equations for the motion.
Combine the equations so as to produce one second order differential
equation for as a function of time.
If and independent of time, calculate the velocity
(magnitude and direction).
If at and calculate the maximum speed
at later times.

1.25 Fast Particle in Bowl (Boston)

A particle constrained to move on a smooth spherical surface of radius R is
projected horizontally from a point at the level of the center so that its an-
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gular velocity relative to the axis is (see Figure P.1.25). If show
that its maximum depth below the level of the center is approximately

1.26 Mass Orbiting on Table (Stony Brook, Princeton,
Maryland, Michigan)

A particle of mass M is constrained to move on a horizontal plane. A second
particle, of mass is constrained to a vertical line. The two particles are
connected by a massless string which passes through a hole in the plane
(see Figure P.1.26). The motion is frictionless.
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a)
b)

Find the Lagrangian of the system and derive the equations of motion.
Show that the orbit is stable with respect to small changes in the
radius, and find the frequency of small oscillations.

1.27  Falling Chimney (Boston, Chicago)

A tall, slender, cylindrical brick chimney of height L is slightly perturbed
from its vertical equilibrium position so that it topples over, rotating rigidly
around its base B until it breaks at a point P. Show that the most likely
value for the distance of P from B is L/3. Assume that the chimney
breaks because the torque is too great and the chimney bends and snaps
(see Figure P.1.27).

1.28 Sliding Ladder (Princeton, Rutgers, Boston)

A ladder of mass and length stands against a frictionless wall with its
feet on a frictionless floor. If it is let go with initial angle what will be
the angle when the ladder loses contact with the wall (see Figure P. 1.28)?
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1.29  Unwinding String (MIT, Maryland (a,b),
Chicago (a,b))

A point mass is attached to a long, massless thin cord whose other end
is attached to a fixed cylinder of radius R. Initially, the cord is snugly and
completely wound up around a circular cross section of the cylinder, so
that the mass touches the cylinder. No external forces are acting, except
for an impulse at directed radially outward to give the mass an
initial velocity of magnitude This starts the mass unwinding (see Figure
P.1.29a). The point P is the initial position of the mass, and Q denotes the
instantaneous contact point between the cord and the cylinder.

a)

b)

c)

Find the Lagrangian and equation of motion in terms of the gener-
alized coordinate as a function of time, satisfying the initial condi-
tions.
Using the above solution, find the angular momentum of the mass
about the center of the cylinder. Is angular momentum conserved?
Why? Is the energy conserved? Why?
Now consider a new situation in which the cylinder, taken to be hol-
low and of mass M (same radius R), can spin freely as the mass
unwinds. The new angle measures the position of P (the place
where the mass was at rest) with respect to the vertical axis (see Fig-
ure P.1.29b). Write down the Lagrangian in terms of the generalized
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coordinates and Identify two conserved quantities and express
them as functions of and
Solve for Which way does the cylinder spin?d)

1.30 Six Uniform Rods (Stony Brook)

Six equal uniform rods, fastened at their ends by frictionless pivots, form a
regular hexagon and lie on a frictionless surface. A blow is given at a right
angle to the midpoint of one of them at point P in Figure P.1.30 so that it
begins to slide with velocity Show that the opposite rod begins to move
with velocity
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1.31 Period as Function of Energy (MIT)

A particle of mass moves in a one-dimensional potential
where A is a constant. Find the dependence of the period on the energy
E in terms of

1.32 Rotating Pendulum (Princeton, Moscow Phys-
Tech)

The bearing of a rigid pendulum of mass   is forced to rotate uniformly
with angular velocity (see Figure P. 1.32). The angle between the rotation

axis and the pendulum is called Neglect the inertia of the bearing and of
the rod connecting it to the mass. Neglect friction. Include the effects of
the uniform force of gravity.

a)
b)

c)
d)

Find the differential equation for
At what rotation rate does the stationary point at become
unstable?
For what is the stable equilibrium value of
What is the frequency of small oscillations about this point?

1.33 Flyball Governor (Boston, Princeton, MIT)

Consider the flyball governor for a steam engine shown in Figure P.1.33.
Two balls, each of mass are attached by means of four hinged arms,
each of length to sleeves on a vertical rod. The upper sleeve is fastened
to the rod; the lower sleeve has mass M and is free to slide up and down
the rod as the balls move out from or in toward the rod. The rod-and-ball
system rotates with constant angular velocity
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a)

b)

Set up the equation of motion, neglecting the weight of the arms and
rod. Use as variable the distance between the sleeves.
Show that, for steady rotation of the balls, and
the value of the height of the lower sleeve above its lowest point is

c) Show that the angular frequency of small oscillations of about
the steady value is

with

1.34 Double Pendulum (Stony Brook, Princeton, MIT)

The double pendulum consists of a mass suspended by a massless string
or rod of length from which is suspended another such rod and mass (see
Figure P. 1.34).
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a)

b)
c)

Write the Lagrangian of the system for
Derive the equations of motion.
Find the eigenfrequencies.

1.35 Triple Pendulum (Princeton)

A triple pendulum consists of masses and attached to a sin-
gle light string at distances and respectively from its point of
suspension (see Figure P.1.35).

a)

b)

Determine the value of such that one of the normal frequencies of
this system will equal the frequency of a simple pendulum of length

and mass You may assume the displacements of the masses
from equilibrium are small.
Find the mode corresponding to this frequency and sketch it.

1.36 Three Masses and Three Springs on Hoop
(Columbia, Stony Brook, MIT)

Three masses, each of mass are interconnected by identical massless
springs of spring constant and are placed on a smooth circular hoop as
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shown in Figure P. 1.36. The hoop is fixed in space. Neglect gravity and
friction. Determine the natural frequencies of the system, and the shape of
the associated modes of vibration.

1.37 Nonlinear Oscillator (Princeton)

a)

b)

A nonlinear oscillator has a potential given by

with a small parameter. Find the solution of the equations of motion
to first order in assuming at
Comment on the temperature dependence of the thermal expansion
coefficient, if the interaction of the atoms in a solid is described by

from (a).

1.38  Swing (MIT, Moscow Phys-Tech)

A child of mass on a swing raises her center of mass by a small distance
every time the swing passes the vertical position, and lowers her mass by

the same amount at each extremal position. Assuming small oscillations,
calculate the work done by the child per period of oscillation. Show that
the energy of the swing grows exponentially according to and
determine the constant

1.39 Rotating Door (Boston)

A uniform rectangular door of mass with sides and and
negligible thickness rotates with constant angular velocity about a di-



MECHANICS 23

agonal (see Figure P. 1.39). Ignore gravity. Show that the torque
must be applied to keep the axis of rota-

tion fixed.

1.40 Bug on Globe (Boston)

A toy globe rotates freely without friction with an initial angular velocity
A bug starting at one pole N travels to the other pole S along a

meridian with constant velocity The axis of rotation of the globe is held
fixed. Let M and R denote the mass and radius of the globe (a solid
sphere, moment of inertia the mass of the bug, and T
the duration of the bug's journey (see Figure P.1.40).

Show that, during the time the bug is traveling, the globe rotates through
an angle
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A useful integral is

1.41 Rolling Coin (Princeton, Stony Brook)

A coin idealized as a uniform disk of radius with negligible thickness and
mass rolls in a circle. The center of mass of the coin C moves in a circle
of radius and the axis of the coin is tilted at an angle with respect to
the vertical. Find the angular velocity of the center of mass of the coin
(see Figure P.1.41).

1.42 Unstable Top (Stony Brook)

A top of mass M is spinning about a fixed point under gravity, and its axis
is vertical but the angular velocity around its axis is
insufficient for stability in that position. The Lagrangian for a top is

where are the usual Euler angles, and are the moments of
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inertia about their respective axes, N is the line of nodes, and is the
distance from the point of the top O to the center of mass C (see Figure
P.1.42).

a)

b)

Derive all the first integrals of the motion and evaluate them in terms
of the given initial conditions.
Show that the head will descend to an angle given by

c) Show that the time dependence of this is given by the solution of

You do not need to solve for

1.43 Pendulum Clock in Noninertial Frame (Maryland)

An off-duty physicist designs a pendulum clock for use on a gravity-free
spacecraft. The mechanism is a simple pendulum (mass at the end of
a massless rod of length hung from a pivot, about which it can swing
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in a plane. To provide artificial gravity, the pivot is forced to rotate at
a frequency in a circle of radius R in the same plane as the pendulum
arm (see Figure P.1.43). Show that this succeeds, i.e., that the possible
motions of this pendulum are identical to the motions of a simple
pendulum in a uniform gravitational field of strength not just for
small oscillations, but for any amplitude, and for any length even

1.44 Beer Can (Princeton, Moscow Phys-Tech)

A space station is in a circular orbit about the Earth at a radius An
astronaut on a space walk happens to be a distance on the far side of
the station on the line joining the station to the center of the Earth. With
practice, the astronaut can throw a beer can so that it appears to orbit
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the space station in the plane of the motion of the space station about the
Earth according to an observer on the station (see Figure P. 1.44). You may
disregard the gravitational attraction between the beer can and the space
station.

a)

b)

In what direction and with what velocity relative to the station should
the beer can be thrown?
What is the period, size and shape of the beer can's orbit, relative to
the space station?

1.45 Space Habitat Baseball (Princeton)

On Earth a baseball player can hit a ball 120 m by giving it an initial angle of
45° to the horizontal. Take the acceleration due to gravity as
Suppose the batter repeats this exercise in a space 'habitat' that has the
form of a circular cylinder of radius R = 10 km and has an angular velocity
about the axis of the cylinder sufficient to give an apparent gravity of at
radius R. The batter stands on the inner surface of the habitat (at radius R)
and hits the ball in the same way as on Earth (i.e., at 45° to the surface), in
a plane perpendicular to the axis of the cylinder (see Figure P. 1.45). What
is the furthest distance the batter can hit the ball, as measured along the
surface of the habitat?

1.46 Vibrating String with Mass (Stony Brook)

A thin uniform string of length L and linear density is stretched between
two firm supports. The tension in the string is T (see Figure P.1.46).
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a)

b)

c)

Derive from first principles the wave equation for small transverse
disturbances in the string.
Determine the set of possible solutions for the given boundary condi-
tions and state the allowed frequencies.
A small mass is placed a distance from one end of the string.
Determine the first-order correction to the frequencies of the modes
found in (b).

1.47 Shallow Water Waves (Princeton (a,b))

Water waves travel on the surface of a large lake of depth The lake has
a perfectly smooth bottom and the waves are propagating purely in the

direction (The wave fronts are straight lines parallel to the axis. See
Figure P. 1.47).

a)
b)

Find an expression for the velocity of the water
Find the corresponding dispersion relation. You may assume that the
flow of the water is irrotational that the amplitude of the
waves is small (in practice, this means that where is the
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c)

height of the waves), that surface tension effects are not important,
and that water is incompressible.
Find the group velocity of the wavefront and consider two limiting
cases

1.48 Suspension Bridge (Stony Brook)

A flexible massless cable in a suspension bridge is subject to uniform loading
along the The weight of the load per unit length of the cable is
and the tension in the cable at the center of the bridge (at is (see
Figure P. 1.48).

a)
b)

Find the shape of the cable at equilibrium.
What is the tension in the cable at position at equilibrium?

1.49 Catenary (Stony Brook, MIT)

A flexible cord of uniform density and fixed length is suspended from two
points of equal height (see Figure P. 1.49). The gravitational acceleration is
taken to be a constant in the negative direction.

a)

b)

c)

Write the expressions for the potential energy U and the length for
a given curve
Formulate the Euler-Lagrange equations for the curve with minimal
potential energy, subject to the condition of fixed length.
Show that the solution of the previous equation is given by
A where A and B are constants. Calculate U and

for this solution.
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Formulae:

1.50 Rotating Hollow Hoop (Boston)

A thin hollow cylindrical pipe is bent to form a hollow circular ring of mass
and radius R. The ring is attached by means of massless spokes to a

vertical axis, around which it can rotate without friction in a horizontal
plane. Inside the ring, a point mass P of mass is free to move without
friction, but is connected to a point H of the ring by a massless spring
which exerts a force where is the length of the arc HP (see Figure
P.1.50). Take as variables the angles and of CH and CP with the
axis.
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a) Write the Lagrangian and the Hamiltonian, and rewrite them in terms
of the variables

b)

c)

Find an integral of motion other than the energy, and show that its
Poisson bracket with is zero.
Integrate the equations of motion with these initial conditions at
0:

1.51 Particle in Magnetic Field (Stony Brook)

a) Give a relationship between Hamilton’s equations under a canonical
transformation. Verify that the transformation

is canonical.

b) Find Hamilton’s equations of motion for a particle moving in a plane
in a magnetic field described by the vector potential

in terms of the new variables introduced above, using

1.52 Adiabatic Invariants (Boston (a)) and Dissolving
Spring (Princeton, MIT (b))

a) (Adiabatic Invariants) Consider a system with canonical variables

At the time let be an arbitrary closed path in phase space
and
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Assume that the point moves in phase space according to
Hamilton's equations. At a later time the curve will have become
another closed curve Show that

and, for a harmonic oscillator with Hamiltonian
show that

along a closed curve

b) (Dissolving Spring) A mass m slides on a horizontal frictionless track.
It is connected to a spring fastened to a wall. Initially, the amplitude
of the oscillations is and the spring constant of the spring is
The spring constant then decreases adiabatically at a constant rate
until the value is reached. (For instance, assume that the spring
is being dissolved in acid.) What is the new amplitude?

Hint: Use the result of (a).

1.53  Superball in Weakening Gravitational Field
(Michigan State)

A superball is bouncing vertically up and down. It has a velocity when
it strikes the ground. The acceleration due to gravity is slowly reduced by
10% during a very long period of time. Assuming that the collisions of the
ball with the ground are elastic, find the corresponding change in

of



2

Relativity

2.1 Marking Sticks (Stony Brook)

Observer is travelling with velocity in the direction relative
to observer O. Each observer has a meter stick with one end fixed at his
origin and the other end fixed at (see Figure P.2.1). Each
stick has a marking device (such as a spring-loaded pin) at the high (or

end, capable of marking the other stick if it overlaps that stick when
the marking devices are triggered. The two origins coincide at
Both marking devices are triggered at

a)

b)

According to O, who has the shorter stick? Which stick is marked
and where?
According to who has the shorter stick? Prove by explicit deriva-
tion that agrees on the result of the marking experiment, including
the position of the mark.

33
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2.2 Rockets in Collision (Stony Brook)

A person on Earth observes two rocket ships moving directly toward each
other and colliding as shown in Figure P.2.2a. At time in the Earth

frame, the Earth observer determines that rocket A, travelling to the right
at is at point and rocket B is at point travelling to the left
at They are separated by a distance (see Figure
P.2.2b).

a)

b)

c)

In the Earth frame, how much time will pass before the rockets col-
lide?
How fast is rocket B approaching in A’s frame? How fast is rocket A
approaching in B’s frame?
How much time will elapse in A’s frame from the time rocket A passes
point until collision? How much time will elapse in B’s frame from
the time rocket B passes point until collision?

2.3 Photon Box (Stony Brook)

An empty box of total mass M with perfectly reflecting walls is at rest in
the lab frame. Then electromagnetic standing waves are introduced along
the direction, consisting of N photons, each of frequency (see Figure
P.2.3).
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a)

b)

State what the rest mass of the system (box + photons) will be when
the photons are present.
Show that this answer can be obtained by considering the momentum
and/or energy of the box-plus-photon system in any inertial frame
moving along the axis.

2.4     Cube’s Apparent Rotation (Stanford, Moscow
Phys-Tech)

A cube with 1-meter edges in its rest frame moves along a straight line
at velocity An observer is located in the laboratory frame, and the
distance of closest approach is much greater than 1 m. Two faces of the
cube are perpendicular to the direction of motion and another two faces
are parallel to the plane formed by the trajectory and the observer. The
other two faces are approximately perpendicular to the line of sight of the
observer (see Figure P.2.4). In this problem, we need to take into account
the different travel times for light from different parts of the cube to the
observer. This effect causes distortions which make the cube appear to the
observer to be rotated. Find the expression for the apparent rotation and
indicate the sign of the rotation with respect to the direction of motion of
the cube and the line from the cube to the observer.
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2.5 Relativistic Rocket (Rutgers)

A rocket having initially a total mass ejects its fuel with constant ve-
locity relative to its instantaneous rest frame. According to
Newtonian mechanics, its velocity V , relative to the inertial frame in which
it was originally at rest, is related to its mass M(V) by the formula

a)
b)

Derive this result.
Suppose the velocity of the ejecta is limited only by and
derive the relativistic analogue of the above equation. Show that it
reduces to the Newtonian result at the appropriate limit.

2.6 Rapidity (Moscow Phys-Tech)

a) Consider two successive Lorentz transformations of the three frames
of reference moves parallel to the axis of with
velocity as does with respect to Given an object moving
in the direction with velocity in derive the formula for the
transformation of its velocity from to
Now consider frames moving with the same velocity v relative
to one another (see Figure P.2.6). Derive the formula for a Lorentz
transformation from to if the velocity of the object in is
also

b)

Hint: You may want to use the definition of rapidity or velocity parameter,
tanh where
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2.7 Charge in Uniform Electric Field (Stony Brook,
Maryland, Colorado)

Find the trajectory of a particle of mass charge in a uniform electric
field E, assuming zero velocity parallel to E at Sketch the trajectory
in the plane of motion.

2.8 Charge in Electric Field and Flashing Satellites
(Maryland)

a)

b)

c)

d)

e)

Write the relativistic equations of motion for a particle of charge
and mass in an electromagnetic field. Consider these equations
for the special case of motion in the direction only, in a Lorentz
frame that has a constant electric field E pointing in the positive
direction.
Show that a particular solution of the equations of motion is given by

and show explicitly that the parameter used to describe the world-
line of the charge in equation (P.2.8.1) is the proper time along this
worldline.
Define the acceleration 4-vector for this motion and show that it has
constant magnitude. Draw a space-time diagram showing the
worldline (P.2.8.1) and the direction of the acceleration vector at three
typical points on the worldline (with
Suppose an observer moves along the worldline (P.2.8.1), starting at

and Also, at she leaves behind a satellite
that remains at rest at The satellite emits flashes of
light at a rate that is constant in the satellite’s rest frame. Show
that only a finite number of flashes ever reach the observer.
Some time after the observer, always moving along the world-
line (P.2.8.1), decides to retrieve the satellite. Show that she cannot
wait longer than to decide
to do so.

Hint: To retrieve it at this limiting time, she must “reach down” to the
satellite with the speed of light, bring it back at the speed of light, and wait
indefinitely long for its return.
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2.9 Uniformly Accelerated Motion (Stony Brook)

Determine the relativistic uniformly accelerated motion (i.e., the rectilinear
motion) for which the acceleration in the proper reference frame (at each
instant of time) remains constant.

a)

b)

c)

d)

Show that the 4-velocity

Show that the condition for such a motion is

where is the usual three dimensional acceleration.
Show that in a fixed frame (b) reduces to

Show that

Do these expressions have the correct classical behavior as

2.10 Compton Scattering (Stony Brook, Michigan
State)

In the Compton effect, a photon of wavelength strikes a free, but
initially stationary, electron of mass The photon is scattered an angle

and its scattered wavelength is The electron recoils at an angle (see
Figure P.2.10).
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a)

b)

Write the relativistic equations for momentum and energy conserva-
tion.
Find an expression for the change in the photon wavelength for
the special case

2.11 Mössbauer Effect (Moscow Phys-Tech, MIT,
Colorado)

An atom in its ground state has mass It is initially at rest in an excited
state of excitation energy It then makes a transition to the ground
state by emitting one photon. Find the frequency of the photon, taking
into account the relativistic recoil of the atom. Express your answer also in
terms of the mass M of the excited atom. Discuss this result for the case
of a crystalline lattice (Mössbauer effect).

2.12 Positronium and Relativistic Doppler Effect
(Stony Brook)

An electron and a positron, each of mass bound with binding
energy in positronium, annihilate into two photons.

a)

b)

Calculate the energy, momentum, velocity, and frequency of the pho-
tons.
The positronium with velocity v moves away from the observer in the
lab and annihilates as shown in Figure P.2.12. Give the frequency of
the photon as measured by the observer and calculate its frequency
in terms of the frequency in the positronium rest system (Relativistic
Doppler Effect).

2.13 Transverse Relativistic Doppler Effect (Moscow
Phys-Tech)

A qualitative difference between classical mechanics and relativity is the
existence of the transverse Doppler effect in relativity (when light propa-
gates perpendicular to its source in the observer’s frame). Calculate the
frequency of the photon in the observer’s frame in terms of its frequency

in the rest frame.
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2.14 Particle Creation (MIT)

Consider a photon of energy incident on a stationary proton. For suffi-
ciently large meson can be produced in a reaction

What is the threshold photon energy for this reaction to occur?

2.15 Electron–Electron Collision (Stony Brook)

An electron of total energy 1.40 MeV collides with another electron which is
at rest in the laboratory frame. Let the electronic rest energy be 0.51 MeV.

a)

b)
c)

d)

e)

What are the total energy and momentum of the system in the labo-
ratory frame of reference (specify momentum in units)?
Find the velocity of the center of mass in the laboratory frame.
Determine the total energy of the pair of particles in the center of
mass frame of reference (CMF).
The target electron scatters at an angle of 45° in the CMF. What will
be the direction of scatter of the projectile in the CMF? What will
be the energy and momentum of the target electron after scatter in
the CMF?
What, in the laboratory frame, will be the target electron’s momen-
tum components perpendicular and parallel to the direction of the
incoming particle after the collision?

2.16  Inverse Compton Scattering (MIT, Maryland)

The HERA electron storage ring at Hamburg, Germany contains circulating
electrons with an energy of 27 GeV. Photons of wavelength 514 nm from
an argon-ion laser are directed so as to collide head-on with the stored
electrons. Calculate the maximum scattered photon energy.

2.17 Proton–Proton Collision (MIT)

A proton with collides elastically with a proton at
rest. If the two protons rebound with equal energies, what is the angle
between them?
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2.18 Pion Creation and Neutron Decay (Stony Brook)
a)

b)

Calculate the threshold energy in MeV for the creation of charged
pions by photons incident on stationary protons,

Neutrons via

2.19 Elastic Collision and Rotation Angle (MIT)

Consider an elastic collision (namely a collision where the particles involved
do not change their internal state) of an incident particle of mass
momentum and energy (see notation below), with a particle of mass

at rest. Let the final energies be and and the final momenta be
and (all of this in the laboratory frame).

a)

b)

c)

In the center of mass frame (CMF), denote by and the in-
coming momenta of the two particles and by their energies.
One has

where is a vector. In the center of mass frame the collision rotates
the direction of the momenta. Let the outgoing momenta and energies
be and the rotation angle be From conservation
of energy and momentum, what can you tell about About

and
From the energy and momentum conservation laws,

show that

Evaluate the first and third terms of the left-hand side of equation
(P.2.19.3) in the laboratory frame. Evaluate the second term in the
CMF in terms of and (and masses). Now use equation (P.2.19.3)
to find an expression for in terms of and (and masses).

If the neutron is at rest, what is the maximum possible velocity for the elec-
tron in units of (Note that

and
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d)

e)
f)

Find an expression for in terms of (and masses) by evaluating
both in the laboratory and CMF.

Give and in terms of and
Consider the case for maximal energy transfer. What is the value
of For this case find the ratio of the final kinetic energy to the
incident kinetic energy for the incoming particle (in the laboratory
frame).

Notation: Here we use
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Electrodynamics

3.1 Charge Distribution (Wisconsin-Madison)

An electric charge distribution produces an electric field

where and are constants. Find the net charge within the radius

3.2 Electrostatic Forces and Scaling (Moscow Phys-
Tech)

a)

b)

Consider two solid dielectric spheres of radius separated by a dis-
tance One of the spheres has a charge and the other is
neutral (see Figure P.3.2a). We scale up the linear dimensions of the
system by a factor of two. How much charge should reside on the first
sphere now so that the force between the spheres remains the same?
Now consider a conducting ring made of thin wire, where is the
diameter of the wire and D is the diameter of the ring (again,
A charge Q placed on the ring is just sufficient to cause the ring to

43
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break apart due to electrostatic repulsion (see Figure P.3.2b). As in
(a), the linear dimensions of the system are multiplied by two. At
what charge will the new ring break?

3.3 Dipole Energy (MIT, Moscow Phys-Tech)

An electric dipole of moment is placed at a height above a perfectly
conducting plane and makes an angle of with respect to the normal to
this plane (see Figure P.3.3).

a)

b)

Indicate the position and orientation of the image dipole and the
direction of the force felt by the dipole.
Calculate the work required to remove the dipole to infinity.

3.4 Charged Conducting Sphere in Constant Electric
Field (Stony Brook, MIT)

A conducting sphere of radius on whose surface resides a total charge Q is
placed in a uniform electric field (see Figure P.3.4). Find the potential
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at all points in space exterior to the sphere. What is the surface charge
density?

3.5 Charge and Conducting Sphere I (MIT)

A point charge is placed at a distance R from the center of a metallic
sphere of radius with (see Figure P.3.5). The sphere is insulated
and is electrically neutral.

a)
b)

Find the electrostatic potential on the surface of the sphere.
Find the force acting on the charge.

3.6 Charge and Conducting Sphere II (Boston)

A charge is placed at a distance R from the center of a grounded conduct-
ing sphere of radius (see Figure P.3.6). Show that the force acting
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on the charge is proportional to when and
when

3.7 Conducting Cylinder and Line Charge (Stony
Brook, Michigan State)

The axis of a long, thin-walled, conducting, uncharged cylindrical shell of
radius is oriented along the as shown in Figure P.3.7. A long,
thin wire carrying a uniform linear charge density runs parallel to the
cylinder, at a distance R from the center. Use the method of images to find
the electric potential in the plane.

a)

b)

State the conditions that have to be met by the image charge. Find
the potential on the surface of the shell relative to infinity.
Find the potential at any point in the plane outside the
cylinder.

Hint: It is possible to find an image charge such that the potential at in-
finity in the plane is zero.

3.8 Spherical Void in Dielectric (Princeton)

Suppose there is a spherical void of radius R in an otherwise homogeneous
material of dielectric constant (see Figure P.3.8). At the center of the
void is a point dipole Solve for the electric field everywhere.
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3.9 Charge and Dielectric (Boston)

A charge is situated at the point outside a
homogeneous dielectric which fills the region (see Figure P.3.9).

a)

b)

c)

Write the electric fields and just outside and
just inside the dielectric in terms of the charge and surface charge
density of bound charges on the surface of the dielectric.
Express in terms of Denote by the dielectric constant
of the dielectric.
By using the equations obtained in (a) and (b), show that

d)

e)

Calculate the electric field  due to at the position of the
charge Show that it can be interpreted as the field of an image
charge situated at the point
Show that the charge experiences the force

3.10 Dielectric Cylinder in Uniform Electric Field
(Princeton)

An infinitely long circular cylinder of radius dielectric constant is
placed with its axis along the and in an electric field which would be
uniform in the absence of the cylinder, (see Figure P.3.10). Find



the electric field at points outside and inside the cylinder and the bound
surface charge density.

3.11 Powder of Dielectric Spheres (Stony Brook)

A powder composed of small spherical particles (with and of radius
R = 100 nm) is dispersed in vacuum with a concentration of
particles per Find the effective dielectric constant of this medium.
Explain why the apparent answer,

(where is the volume of one particle) is wrong.

Hint: Make use of the fact that Exploit the spherical sym-
metry of the particles.

3.12 Concentric Spherical Capacitor (Stony Brook)

Consider two concentric metal spheres of finite thickness in a vacuum. The
inner sphere has radii The outer sphere has (see Figure
P.3.12).

48 PROBLEMS
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a)

b)

A charge is put on the inner sphere and a charge on the outer
sphere. Find the charge density on each of the four surfaces. If

what is the mutual capacitance of the system?
If the space between the spheres is filled with insulating material
of dielectric constant what are the surface charge densities and
polarization surface charge densities for arbitrary and and the
mutual capacitance for

3.13 Not-so-concentric Spherical Capacitor (Michigan
Tech)

An insulated metal sphere of radius with total charge is placed inside a
hollow grounded metal sphere of radius The center of the inner sphere is
slightly displaced from the center of the outer sphere so that the distance
between the two centers is (see Figure P.3.13).

a)

b)

Use the boundary conditions to determine the potential between the
spheres in the case
Find the charge distribution of the inner sphere and the force acting
on it.

Hint: Show that where R is the distance from the center
of the inner sphere to the surface of the outer sphere, and write down an
expansion for the potential between the spheres using spherical harmonics
to first order in

3.14 Parallel Plate Capacitor with Solid Dielectric
(Stony Brook, Michigan Tech, Michigan)

Two square metal plates of side L are separated by a distance A
dielectric slab of size just slides between the plates. It is inserted
a distance (parallel to one side of the squares) and held there (see Figure
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P.3.14). The metal plates are then charged to a potential difference V and
disconnected from the voltage source.

a)

b)

Find the force exerted electrically on the slab. Be careful and explicit
about its direction.
How does the situation change if the battery is left connected?

3.15 Parallel Plate Capacitor in Dielectric Bath (MIT)

A parallel plate capacitor with square plates of side L and plate separation
is charged to a potential V and disconnected from the battery. It is then

vertically inserted into a large reservoir of dielectric liquid with relative di-
electric constant and density until the liquid fills half the space between
the capacitor plates as shown in Figure P.3.15.

a)
b)
c)
d)

What is the capacitance of the system?
What is the electric field strength between the capacitor plates?
What is the distribution of charge density over the plates?
What is the difference in vertical height between the level of liquid
within the capacitor plates and that in the external reservoir?
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3.16 Not-so-parallel Plate Capacitor (Princeton (a),
Rutgers (b))

a) A capacitor is formed by two rectangular conducting plates having
edges and The plates are not parallel. One pair of edges of
length is separated by a distance everywhere, and the other
pair of edges of length is separated by everywhere;

(see Figure P.3.16). Neglecting edge effects, when a voltage difference
V is placed across the two conductors, find the potential everywhere
between the plates.

b) Determine the capacitance.

3.17 Cylindrical Capacitor in Dielectric Bath (Boston,
Maryland)

The electrostatic field energy of a capacitor can be expressed as a func-
tion of a parameter (e.g., the plate separation) and the fixed plate charge
(no charging battery present) or as a function of and of the electromotive
force of a battery to which the plates are connected.

a)

b)

c)

Show that the generalized force corresponding to the parameter
is given by

Verify these formulae for the case of a parallel plate capacitor.

A cylindrical capacitor is lowered vertically into a reservoir of liquid
dielectric of mass density If a voltage V is applied between the
inner cylinder (radius and the outer shell (radius the liquid
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rises to a height between them (see Figure P.3.17). Show that

3.18  Iterated Capacitance (Stony Brook)

a)

b)

c)

Given two point charges of opposite sign and unequal in magnitude,
show that the (nontrivial!) surface with is a sphere. Find
its radius and center. This is the basis of the “method of images” for
problems involving equipotential spheres.
Describe concisely but clearly an iterative method to find the capac-
itance of two conducting spheres of radius whose centers are
apart.
Calculate the capacitance to within 5%.

3.19 Resistance vs. Capacitance (Boston, Rutgers (a))

a) Consider two conductors of some shape. Use them in two alternative
ways, as a capacitor and as a resistor as shown in (a) and (b) of Figure
P.3.19, respectively. In case (a), the space between the conductors is
filled with a homogeneous material of permittivity while in case
(b), it is filled with a homogeneous material of finite conductivity
By considering separately these two cases, prove the relation
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between the capacitance C in case (a) and the resistance R in case
(b). If you cannot give a general proof, try at least some special
example, e.g., parallel plates.

b) Two conducting spheres have their centers a distance apart. Their
respective radii are and Show that when the capacitance
of this system will be given approximately by

c) Two small, spherical, perfectly conducting electrodes of radii and
are embedded in an infinite medium of conductivity Their centers
are separated by a distance Find the resistance between
them without using (a) and (b).

Hint: If two electrodes at potentials and are embedded in a medium
of finite conductivity, the currents and leaving each of them are related
to the potentials by the formulae
Determine the coefficients by considering cases with and

d) Check the results of (b) and (c) by using (a).

3.20 Charge Distribution in Inhomogeneous Medium
(Boston)

A stationary current distribution is established in a medium that is isotropic
but not necessarily homogeneous. Show that the medium will in general
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acquire a volume distribution of charge whose density is (in Gaussian units)

where and are the conductivity and the dielectric permittivity of the
medium and is the potential.

3.21 Green’s Reciprocation Theorem (Stony Brook)

a) Prove Green’s reciprocation theorem: If is the potential due to
a volume charge density within a volume V and a surface charge
density on the conducting surface S bounding the volume V, while

is the potential due to another charge distribution and then

b) A point charge is placed between two infinite grounded parallel
conducting plates. If is the distance between and the lower
plate, find the total charge induced on the upper plate in terms of

and where is the distance between the plates (see Figure
P.3.21). Show your method clearly.

3.22 Coaxial Cable and Surface Charge (Princeton)

A very long coaxial cable consists of an inner cylinder of radius and
isotropic conductivity and a concentric outer cylinder of radius The
outer shell has infinite conductivity. The space between the cylinders is
empty. A uniform, constant current density J, directed along the axial
coordinate is maintained in the inner cylinder. Return current flows
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uniformly in the outer shell (see Figure P.3.22). Compute the surface charge
density on the inner cylinder as a function of the axial coordinate with
the origin chosen to be the plane halfway between the two ends of
the cable.

3.23 Potential of Charged Rod (Stony Brook)

A thin nonconducting rod of length L carries a uniformly distributed charge
Q and is oriented as shown in Figure P.3.23.

a)

b)

Find the potential due to the charged rod for any point on the
with

Find for all  where are the usual spherical
coordinates.
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Hint: The general solution to Laplace’s equation in spherical coordinates
is

3.24 Principle of Conformal Mapping (Boston)

a)

b)

c)

Show that the real part and the imaginary part of a
differentiable function obey Laplace’s equation.
If and above are the potentials of two fields F and G
in two dimensions, show that at each point the fields F and G
are orthogonal.
Consider the function where A is a real constant. Find
the fields F and G and mention physical (Electrodynamics) problems
in which they might occur.

3.25 Potential above Half Planes (Princeton)

An infinite conducting plane (the plane in Figure P.3.25) is divided by
the line For the potential in the plane is while for
the potential is Evaluate the potential everywhere.

3.26    Potential of Halved Cylinder (Boston, Princeton,
Chicago)

Consider an infinitely long conducting cylinder of radius with its axis
coinciding with the One half of the cylinder (cut the long way)

is kept at a constant potential while the other half is



kept at a constant potential (see Figure P.3.26). Find the potential
for all points inside the cylinder and the field E along the

3.27    Resistance of a Washer (MIT)

A washer is made of a dielectric of resistivity It has a square cross section
of length on a side, and its outer radius is A small slit is made on one
side and wires of negligible resistance are connected to the faces exposed
by the slit (see Figure P.3.27). If the wires were connected into a circuit,
what would be the lumped resistance due to the washer?

3.28    Spherical Resistor (Michigan State)

A and B are opposite ends of a diameter AOB of a very thin spherical
shell of radius and thickness Current enters and leaves by two small

ELECTRODYNAMICS 57
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circular electrodes of radius whose centers are at A and B (see Figure
P.3.28). If I is the total current and P is a point on the shell such that the
angle show that the magnitude of the current density vector at P
is proportional to Hence find the resistance of the conductor.

You may find this integral useful:

3.29 Infinite Resistor Ladder (Moscow Phys-Tech)

Consider the ladder of resistors, each of resistance shown in Figure P.3.29.
What is the resistance seen between terminals A and C?
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3.30 Semi-infinite Plate (Moscow Phys-Tech)

Consider a thin semi-infinite plate of negligible thickness made of an isotropic
conductive material. A voltage V is applied across points A and
B of the plate (see Figure P.3.30). At a distance cm from the end
a voltage of 0.1 V is measured between points C and D. Find the voltage
difference between two analogous points an arbitrary distance from the
end of the plate.

3.31 Magnetic Field in Center of Cube (Moscow Phys-
Tech)

The current I flowing along the edges of one face of a cube (see Figure
P.3.31a) produces a magnetic field in the center of the cube of magnitude

Consider another cube where the current I flows along a path shown
in Figure P.3.31 b. What magnetic field will now exist at the center of the
cube?
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3.32 Magnetic Dipole and Permeable Medium
(Princeton)

A point magnetic dipole m in vacuum (medium 1) is pointing toward the
plane surface of a medium with permeability (medium 2). The distance
between the dipole and surface is (see Figure P.3.32).

a)
b)

Solve for the magnetic field B within the medium.
What is the force acting on the dipole?

3.33 Magnetic Shielding (Princeton)

A spherical shell of high permeability is placed in a uniform magnetic
field.

a)

b)

Compute the attenuation (shielding) produced by the sphere in terms
of and the inner and outer radii and respectively, of the shell.
Take the limit at and estimate the shielding for

3.34 Electromotive Force in Spiral (Moscow Phys-
Tech)

A flat metal spiral (with a constant distance between coils) and a total
number of coils N is placed in a uniform magnetic field
perpendicular to the plane of the spiral (see Figure P.3.34). Evaluate the
total electromotive force induced in the spiral (between points A and C).
Assume
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3.35 Sliding Copper Rod (Stony Brook, Moscow
Phys-Tech)

A copper rod slides on frictionless rails in the presence of a constant mag-
netic field At the rod is moving in the direction with
velocity (see Figure P.3.35).

a)

b)

c)

What is the subsequent velocity of the rod if is its conductivity and
the mass density of copper.

For copper, and If gauss,
estimate the time it takes the rod to stop.
Show that the rate of decrease of the kinetic energy of the rod per
unit volume is equal to the ohmic heating rate per unit volume.

3.36 Loop in Magnetic Field (Moscow Phys-Tech,
MIT)

A conducting circular loop made of wire of diameter resistivity and
mass density is falling from a great height in a magnetic field with
a component where is some constant. The loop of
diameter D is always parallel to the plane. Disregarding air resistance,
find the terminal velocity of the loop (see Figure P.3.36).
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3.37 Conducting Sphere in Constant Magnetic Field
(Boston)

A perfectly conducting sphere of radius R moves with constant velocity
through a uniform magnetic field (see Figure

P.3.37). Find the surface charge density induced on the sphere to lowest
order in

3.38  Mutual Inductance of Line and Circle (Michigan)

A circular wire of radius is insulated from an infinitely long straight wire
in a tangential direction (see Figure P.3.38). Find the mutual inductance.

3.39 Faraday’s Homopolar Generator (Stony Brook,
Michigan)

Consider a perfectly conducting disk of radius in a constant magnetic
field B perpendicular to the plane of the disk. Sliding contacts are provided
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at the edge of the disk (C1) and at its axle (C2) (see Figure P.3.39). This
system is Faraday’s “homopolar generator.” When turned at constant an-
gular velocity, it provides a large direct current with no ripple. A torque is
produced by a mass M hung on a long string wrapped around the perimeter
of the disk.

a)

b)

Explain how and why a current flows. Give a quantitative expression
for the current as a function of angular velocity.
Given a long enough string, this system will reach a constant angular
velocity Find this and the associated current.

3.40 Current in Wire and Poynting Vector (Stony
Brook, MIT)

A long straight wire of radius carries a current I in response to a voltage
V between the ends of the wire.

a)
b)

Calculate the Poynting vector S for this DC voltage.
Obtain the energy flux per unit length at the surface of the wire.
Compare this result with the Joule heating of the wire and comment
on the physical significance.

3.41  Box and Impulsive Magnetic Field (Boston)

Two opposite walls of a rigid box are uniformly charged with surface charge
densities and respectively. The positively charged wall occupies the
region of the plane while the negatively
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charged wall occupies the region of the plane.
Inside the box, there is a uniform magnetic field Assume
that is much smaller than both and and that the charged walls are
nonconducting (see Figure P.3.41).

a)

b)

Estimate the impulse experienced by the box when the magnetic field
is switched off.
Show that it is equal to the initial momentum of the electromagnetic
field.

3.42 Coaxial Cable and Poynting Vector (Rutgers)

The infinitely long coaxial line in Figure P.3.42 carries a steady current I
upwards in the inner conductor and a return current I downwards in the
outer conductor. Both conductors have a resistance per length (along the
axes) The space between the inner and outer conductors is occupied by
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a vacuum. The radius of the inner conductor is and that of the outer
conductor is In the following, use the cylindrical coordinates, In
these coordinates,

a)

b)
c)

Find the electrostatic potential and the electric field in the region
Assume that

Find the magnetic field in the region
Calculate the Poynting vector in the region and integrate
it over the surface of the volume bounded by and

Comment on the physical implications of your
result.

3.43 Angular Momentum of Electromagnetic Field
(Princeton)

Consider two spherical metal shells of radii and (see Figure P.3.43).
There is a magnetic dipole of moment M in the center of the inner sphere.
There is a charge on the inner sphere and on the outer sphere.
Find the angular momentum associated with the electromagnetic field of
the system.

3.44 Plane Wave in Dielectric (Stony Brook,
Michigan)

A monochromatic plane wave of frequency propagates through a nonper-
meable insulating medium with dielectric constant The wave is
normally incident upon an interface with a similar medium with dielectric
constant (see Figure P.3.44).
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a)

b)

Derive the boundary conditions for the electric and magnetic fields at
the interface.
Find the fraction of incident energy that is transmitted to the second
medium.

3.45 X-Ray Mirror (Princeton)

X-rays which strike a metal surface at an angle of incidence to the normal
greater than a critical angle are totally reflected. Assuming that a metal
contains free electrons per unit volume, calculate as a function of the
frequency of the X-rays. The metal occupies the region The
X-rays are propagating in the plane (the plane of the picture) and
their polarization vector is in the direction, coming out of the picture
(see Figure P.3.45).
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3.46 Plane Wave in Metal (Colorado, MIT)

Suppose that a plane electromagnetic wave of frequency and ampli-
tude is normally incident on the flat surface of a semi-infinite metal
of conductivity Assume the frequency is low so that the displacement
current inside the metal can be neglected. The magnetic permeability of
the metal

a)

b)

c)

Using Maxwell’s equations, derive expressions for the components of
the electric and magnetic fields inside the conductor which are parallel
to the surface. What is the characteristic penetration depth of the
field?
What is the ratio of the magnetic field amplitude to the electric field
amplitude inside the metal?
What is the power per unit area transmitted into the metal?

3.47 Wave Attenuation (Stony Brook)

Consider a medium with nonzero conductivity gives the current
density) and no net charge

a)
b)

Write the set of Maxwell’s equations appropriate for this medium.
Derive the wave equation for E ( or B) in this medium,

c) Consider a monochromatic wave moving in the direction with
(or or or ) given by

d)

Show that this wave has an amplitude which decreases exponentially;
find the attenuation length (skin depth).
For sea water in cgs units), and
using radio waves of long wavelength calculate the
attenuation length. (Why is it hard to communicate with submerged
submarines?) You can take for sea water

3.48 Electrons and Circularly Polarized Waves (Boston)

a) An electron (mass charge ) is subject to the elastic force F =
A static, uniform magnetic field B in the positive direction

is also present. The electron is set in forced motion by one of the
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circularly polarized electromagnetic waves

positive helicity, negative helicity). Find the coordi-
nates of the electron as functions of time.

Hints: Approximate E by its value for The use of the variables
and will simplify your calculations.

b) Consider circularly polarized electromagnetic waves propagating in
the direction of a static magnetic field B in a medium consisting
of elastically bound electrons (N per unit volume). The elementary
theory of dispersion leads to the formula

for the refractive indices of circularly polarized waves of
(positive, negative) helicity.
Without proving this formula, infer from it that the plane of polariza-
tion of a linearly polarized wave is rotated through the angle

after propagating through a length in the medium when a magnetic
field in the direction of propagation is present.

Hint: Represent a linearly polarized wave as a sum of circularly polarized
waves of opposite helicities.

3.49 Classical Atomic Spectral Line (Princeton,
Wisconsin-Madison)

Consider the classical theory of the width of an atomic spectral line. The
“atom” consists of an electron of mass and charge in a harmonic oscil-
lator potential. There is also a frictional damping force, so the equation of
motion for the electron is

a) Suppose at time and What is the subsequent
motion of the electron? A classical electron executing this motion
would emit electromagnetic radiation. Determine the intensity
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of this radiation as a function of frequency. (You need not calculate
the absolute normalization of only the form of the dependence
of In other words, it is enough to calculate up to a constant
of proportionality.) Assume
Now suppose the damping force is absent from (P.3.49.1) and that
the oscillation is damped only by the loss of energy to radiation (an
effect which has been ignored above). The energy U of the oscillator
decays as What, under the above assumptions, is (You
may assume that in any one oscillation the electron loses only a very
small fraction of its energy.)
For an atomic spectral line of 5000 Å, what is the width of the spectral
line, in angstroms, as determined from the calculation of (b)? About
how many oscillations does the electron make while losing half its
energy? Rough estimates are enough.

b)

c)

3.50 Lifetime of Classical Atom (MIT, Princeton,
Stony Brook)

At a time the electron orbits a classical hydrogen atom at a radius
equal to the first Bohr radius. Derive an expression for the time it takes

for the radius to decrease to zero due to radiation. Assume that the energy
loss per revolution is small compared to the total energy of the atom.

3.51 Lorentz Transformation of Fields (Stony Brook)

a)

b)

c)

Write down the Lorentz transformation equations relating the space–
time coordinates of frames K and where moves with velocity
relative to K. (Take v to point along a coordinate axis for simplicity.)
Explicitly define your 4-vector conventions.
Use the fact that the electromagnetic field components E and B form
an antisymmetric tensor to show that

where and the subscripts label directions parallel
and perpendicular to v.
Consider the particular case of a point charge and recover an ap-
propriate form of the law of Biot and Savart for small
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3.52 Field of a Moving Charge (Stony Brook)

A charged particle with charge moves with constant velocity along the
(see Figure P.3.52). Its potentials are

where and

a)

b)

c)

Show that and A satisfy the Lorentz condition

Calculate the fields E and B at point and time Show
first that and calculate E explicitly. Show that E is
parallel to
Assume at P a second particle with charge moving with the same
velocity as the first. Calculate the force on

3.53 Retarded Potential of Moving Line Charge (MIT)

An infinitely long insulating filament with linear charge density lies at
rest along the (see Figure P.3.53).

a)

b)

Find the electrostatic field at a point P a distance away from
the origin along the
At the wire suddenly starts to move with constant velocity
in the positive direction. Assuming the wire is infinitely thin, write
down an expression for the current density J arising from the motion.
Using the formula for the retarded potential

v



ELECTRODYNAMICS 71

c)
calculate Give its value for and for
Because of cylindrical symmetry, you really know with the
radial coordinate in cylindrical coordinates. Find as
Does your value agree with your intuitive expectation from Ampere’s
law?

Hint: A useful integral is

3.54 Orbiting Charges and Multipole Radiation
(Princeton, Michigan State, Maryland)

Charges and a distance apart orbit around each other in the
plane at frequency (see Figure P.3.54).
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a)

b)
c)
d)

The emitted radiation is primarily confined to one multipole. Which
one?
What is the angular distribution of the radiated power?
What is the total power radiated?
The plane is now filled with a perfect conductor
What multipole radiates now?

3.55 Electron and Radiation Reaction (Boston)

The equation of motion for a particle of mass and charge in electric
and magnetic fields E and B, including the radiation reaction force, is

a)

b)

c)

Assuming that the radiative reaction term is very small compared to
the Lorentz force and that  find an approximate expression for
the radiative reaction force in terms of E and B.
A plane electromagnetic wave propagates in the direction. A free
electron is initially at rest in this wave. Under the assumptions of
(a), calculate the time-averaged radiative reaction force on the elec-
tron (magnitude and direction). What result would you obtain for a
positron?
Rederive the reaction force by considering the momentum acquired
by the electron in the process of forced emission of radiation. Use the
Thomson cross section

3.56 Radiation of Accelerating Positron (Princeton,
Colorado)

A nonrelativistic positron of charge . and velocity impinges
head-on on a fixed nucleus of charge (see Figure P.3.56). The positron,
which is coming from far away is decelerated until it comes to rest
and then is accelerated again in the opposite direction until it reaches a
terminal velocity Taking radiation loss into account (but assuming it is
small), find as a function of and Z.
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3.57 Half-Wave Antenna (Boston)

Consider the half-wave antenna shown in Figure P.3.57. The current dis-
tribution shown as a broken line is

a)

b)

c)

Find the vector potential in the radiation zone due to the complex
current
Find the electric field E and the magnetic induction B in the radiation
zone.
Show that the time-averaged power radiated per unit solid angle is

Hint:

3.58                    Radiation (Stony Brook)

radiation is an electromagnetic shock wave caused by a charged
particle moving with a velocity which is faster than the velocity of light

in a medium with index of refraction

a) Show that the shock wave is emitted at an angle relative to the
particle direction, where

b)

c)

Show that a spherical mirror with radius of curvature R will focus
this shock wave onto a ring in the focal plane of the mirror.
Find the radius of the ring.
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3.59    Stability of Plasma (Boston)

Consider an idealized ion beam of radius R and length much longer than
R.

a) Show that an individual ion at the periphery of this beam is subject
to the net outward force

b)

where I is the beam current, Q is the charge of each ion, and v is the
velocity of the ions. Assume that the charge and current densities
have cylindrical symmetry.
The beam diverges because the electrostatic force prevails on the mag-
netic force that tends to concentrate the beam along its axis (“pinch”
effect). Show that the rate of increase of the beam radius

3.60    Charged Particle in Uniform Magnetic Field
(Princeton)

A nonrelativistic charged particle is orbiting in a uniform magnetic field of
strength at the center of a large solenoid. The radius of the orbit is
The field is changed slowly to What is the new radius of the orbit?
If the field is suddenly changed back to what is the final radius

3.61    Lowest Mode of Rectangular Wave Guide
(Princeton, MIT, Michigan State)

Consider a rectangular wave guide, infinitely long in the direction, with a
width direction) of and a height direction) of (see Figure
P.3.61). The walls are perfect conductors.
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a)

b)

What are the boundary conditions on the components of B and E at
the walls?
Write the wave equation which describes the E and B fields of the
lowest mode.

Hint: The lowest mode has the electric field in the direction only.
c)

d)

For the lowest mode that can propagate, find the phase velocity and
the group velocity.
The possible modes of propagation separate naturally into two classes.
What are these two classes and how do they differ physically?

3.62    TM Modes in Rectangular Wave Guide
(Princeton)

A rectangular wave guide of sides cm and cm is used
in the transverse magnetic (TM) mode (see Figure P.3.61). TM modes
are modes in which the magnetic field is perpendicular to the direction of
propagation, here Assume that the walls are perfect conductors.

a)

b)

c)

By calculating the lowest cutoff frequency, determine whether TM
radiation of angular frequency will propagate in
the wave guide.
What is the dispersion relation (i.e., the relationship between and
the wavevector for this guide.
Find the attenuation length, i.e., the distance over which the power
drops to of its starting value, for a frequency that is half the
cutoff frequency.

3.63    Betatron (Princeton, Moscow Phys-Tech,
Colorado, Stony Brook (a))

Consider the motion of electrons in an axially symmetric magnetic field.
Suppose that at (the “median plane”) the radial component of the
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magnetic field is 0, so Electrons at then follow a
circular path of radius R (see Figure P.3.63).

a) What is the relationship between the electron momentum and the
orbit radius R?

In a betatron, electrons are accelerated by a magnetic field which changes
with time. Let equal the average value of the magnetic field over the
plane of the orbit (within the orbit), i.e.,

where is the magnetic flux through the orbit. Let equal

b)

c)

Suppose is changed by an amount and is changed by
How must be related to if the electrons are to

remain at radius R as their momentum is increased?
Suppose the component of the magnetic field near and
varies with as Find the equations of motion
for small departures from the equilibrium orbit in the median plane.
There are two equations, one for small vertical changes and one for
small radial changes. Neglect any coupling between radial and vertical
motion.
For what range of is the orbit stable against both vertical and radial
perturbations?

d)

3.64    Superconducting Frame in Magnetic Field
(Moscow Phys-Tech)

A superconducting square rigid frame of mass inductance L, and side
is cooled down (in a magnetic field) to a temperature below the criti-

cal temperature. The frame is kept horizontal (parallel to the plane)
and constrained to move in the direction in a nonuniform but constant
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magnetic field described by a vector potential and a
uniform gravitational field given by the acceleration The thickness of
the frame is much smaller than (see Figure P.3.64). Initially, the frame
is at rest, with its center coinciding with the origin. Find the equations of
motion of the frame and solve for the position of the frame as a function of
time.

3.65    Superconducting Sphere in Magnetic Field
(Michigan State, Moscow Phys-Tech)

A superconducting (Type I) spherical shell of radius R is placed in a uniform
magnetic field the critical field). Find

a)
b)

the magnetic field everywhere outside the shell
the surface current density

Hint: Inside, B = 0.

3.66    London Penetration Depth (Moscow Phys-Tech)

The model used by the brothers F. and H. London suggests that free elec-
trons in a superconductor can be divided into two types: normal, with a
density and superconducting, with a density (where
the density of free electrons). On the surface of the superconductor flows a
current with density

a) Using classical arguments, obtain the equation for the electric field
E, where

where Here, and are the mass and charge of the
electron. Again using classical arguments, write the kinetic energy of
superconducting electrons in the form

Adding the magnetic field energy, find a minimum of the free energy
to obtain a second equation

where h is a microscopic magnetic field inside the superconductor and
is the London penetration depth.
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b) Solve (P.3.66.2) for the boundary between vacuum and a space half-
filled with superconductor, with an external field parallel to the
boundary, and estimate for a typical metal superconductor at
zero temperature, assuming

3.67    Thin Superconducting Plate in Magnetic Field
(Stony Brook)

A very long, thin plate of thickness is placed in a uniform magnetic field
parallel to the surface of the plate (see Figure P.3.67).

a)

b)

Find the distribution of the magnetic field and the current inside the
plate.
Consider two limiting cases and draw a picture of
the distributions in these two cases – London penetration depth).
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Mechanics

1.1 Falling Chain (MIT, Stanford)

The reading of the scale consists of two parts: the weight of the chain
accumulated and the impulse per unit time imparted by the chain colliding
with the scale. The first part is clearly The velocity of the
links at the instant of hitting the scale is found from The second
component of the force exerted on the scale equals

The total force on the scale during the fall of the chain is therefore

1.2 Cat and Mouse Tug of War (Moscow Phys-Tech,
MIT)

a) The straightforward solution is given in (b). However, to answer the
first part, we can use dimensional analysis. The force applied by the mice
may depend only on the dimensionless coefficient of friction the cylinder
diameter and the force F :

where is some function of It is obvious that it is impossible to
satisfy this equation unless so the force does not depend on the
diameter of the cylinder.

81
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b) Consider an element of rope between angles and The dif-
ference in tension between its ends equals where N
is the normal force (see Figure S.1.2). This equation has a solution:

At and at T = F, so

From equation (S.1.2.1) we obtain the same result as determined in part (a),
i.e., the force does not depend on the diameter of the cylinder. Similarly, if
we have just one mouse, the minimum angle of wrapping is found from

where is the force necessary for one mouse to keep the
rope from slipping. From equation (S.1.2.1), we can also find the coefficient
of friction

Then, from equation (S.1.2.2),

There are two forces acting on the cube. One is the normal reaction
perpendicular to the wall, and the other is the force of friction paral-
lel to the wall (see Figure S.1.3). We expect that, as a result of the collision,
the cube’s velocity will change to In the direction perpendicular to

1.3 Cube Bouncing off Wall (Moscow Phys-Tech)

v
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the wall, the collision is elastic, i.e., the velocity in the direction merely
changes sign: Therefore, the momentum changes by

in the direction. This change is due to the normal reaction
So, according to Newton’s second law:

where is the collision time. If there were no friction, the parallel veloc-
ity component would not change and the angle would remain the same.
However, in the actual case, the component changes and

Here is the time at which the velocity goes to zero. So, from (S.1.3.4)

First assume that i.e., is not zero. Then we have from (S.1.3.3)
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and

or

Therefore, the angle between the velocity and the wall is given by

If then and goes to infinity, which
corresponds to Now if goes to zero before the
collision ends; cannot become negative), then and the cube will
leave perpendicular to the wall. Therefore,

Cue-Struck Billiard Ball (Rutgers, Moscow Phys-
Tech, Wisconsin-Madison (a))

a) Introduce a frame of reference with the origin at the center of the ball
(see Figure S.1.4a). Since the direction of the force is toward the center
of the ball there is no torque at (We consider a very short pulse.)
So one can define the initial conditions of the ball’s movement from the

1.4
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equations

where and are the velocity and angular velocity at and I is
the moment of inertia of the ball So we have
and Subsequent motion of the ball will be given by

where is a friction force and In our geometry,
(S.1.4.2) may be rewritten in the form

The ball will roll without slipping when or Using
(S.1.4.3), we obtain the time when pure rolling motion begins:

The final speed of the center of mass of the ball is given by

b) Using (S.1.4.1) from part (a) for the initial conditions, we obtain

v(0)
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Again using the condition R for rolling without slipping, we
have (see Figure S. 1.4b)

and

1.5 Stability on Rotating Rollers (Princeton)
Hint: Consider a rod, e.g., a pencil, supported by one finger of each hand.
First put your fingers as far apart as possible and then move them until
they touch. Where do they meet? Now put your fingers together and place
the rod with its center of mass at this point and move your fingers apart.
What happens now?

a) Let us orient the positive to the right (see Figure S.1.5a).
Then we can write equations for forces and torques relative to the center
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of mass of the rod:

where and are normal forces and and are friction forces at the
first and second rollers, respectively.

From (S.1.5.1) and (S.l.5.2) we get

Substituting (S.1.5.5) and (S.1.5.4) into (S.1.5.3) results in the differential
equation

Letting , gives The solution of this equation is

where is an arbitrary phase. Taking into account the initial conditions
and leads to the solution

corresponding to simple harmonic motion.

b) Now consider another case (see Figure S.1.5b). The equations are quite
similar:
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Again from and we can get
The solution of this equation is

This means that the motion is not bound within the length of the rod.
Even if you place the rod in the middle of the rollers, the equilibrium will
not be stable.

1.6 Swan and Crawfish (Moscow Phys-Tech)

First consider the method most likely suggested by Swan. Ignorant of the
law of gravitational attraction, he does not have to apply a strictly hori-
zontal force, and although the horizontal projection of the force is smaller,
the friction is also smaller. Let us assume that he applies the force at the
center of mass of the dresser and at an angle α  to the horizontal (see Figure
S.1.6a). Then we can write, for the normal force N exerted by the floor on
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the dresser,

To move the dresser, Swan needs to apply a force F such that its horizontal
projection is larger than the friction force

or

It is easy to check that corresponds to the maximum of the
denominator in (S.1.6.1) and therefore to a minimum force F. Using

we have

Therefore, the force F should be

So Swan, who can apply a force of 700 N, will be able to move the dresser
alone.

Crawfish, being somewhat more earthbound, is likely to suggest another
method of moving the piece of furniture. He will apply a horizontal force,
but not to the center of mass of the dresser; rather, to one of its ends.
The dresser will start to rotate; however, the center of rotation R will not
coincide with the center of mass of the dresser (see Figure S.1.6b). So, after
one rotation of 180°, Crawfish will have moved the dresser by where
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is the total length of the dresser. The frictional forces on each of the two
parts are and They are proportional to the weight of the two parts:

Since the torque relative to the point R is zero, we have

Taking and from (S.1.6.2) and (S.1.6.3), we obtain the relation be-
tween F and

The minimum force F occurs when

So, Crawfish is also able to move the dresser by his method.

1.7 Mud from Tire (Stony Brook)

Mud flying from different points on the tire will rise to different heights,
depending on the initial height and angle of ejection. Introducing an angle

and the height of the point of ejection O above the equator of the tire
(see Figure S.1.7), we can write using energy conservation

where is the height to which the mud rises above O, and is the
speed of the rim of the wheel. The height H above the ground will be
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Now find the maximum height by setting the derivative of H with respect
to equal to 0:

There are two solutions of this equation. First,

This case yields a maximum only when and the highest point of
the wheel is the maximum height. But here so we will consider
the other case:

The height becomes

We can check that
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1.8 Car down Ramp up Loop (Stony Brook)

a) Since there is no friction, we have from energy conservation

where is the velocity of the car and is its mass (see Figure S.1.8). At
any point of the ramp, the normal force of the ramp on the car should

be nonzero; otherwise, the car will leave the ramp. Obviously, the critical
point is the top of the loop, where the velocity is minimal and
gravity and centrifugal forces are antiparallel. For this point,

The minimum height corresponds to a velocity at this point,
enough to provide a centrifugal acceleration equal to the gravitational ac-
celeration:

Substituting this into (S.1.8.1) yields

b) Consider a point on the ramp The velocity at this point is
defined by
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where may be written

where the slope of the curve is given by the derivative of the height
function Substituting (S.1.8.3) into (S.1.8.2) results in

c) Now consider Rewrite the solution to (b)
as

The time T to travel to can be expressed by the integral

Letting and we obtain

where

In the limiting case of or let us write the integral in the
form
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We can neglect 1 compared to for the region from 0 to
with Then we have

This corresponds to free fall from the height where

1.9 Pulling Strings (MIT)

In order to keep the mass traveling in a circular orbit of radius you must
apply a force F equal to the mass times its centripetal acceleration

(see Figure S.1.9). Pulling on the rope exerts no torque on the rotating
mass, so the angular momentum is conserved. Therefore

Then the work W necessary to move the mass from its initial orbit of radius
R to its final orbit of radius R/2 is
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Solving in terms of

1.10 Thru-Earth Train (Stony Brook, Boston (a),
Wisconsin-Madison (a))

a) The radial force acting on a particle at any given point inside the Earth
depends only on the mass of the sphere whose radius is at that point (see

Figure S.1.10a):

where is the mass of the car, so

The accelerating force will be
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so we have

On the surface of the Earth

resulting in

which describes oscillatory motion of frequency Half of the
period of this oscillation is the time for the train to get to San Francisco

where is the proportionality coefficient for the friction force. Using
we obtain

b) If there is friction proportional to the square of velocity we have an
additional term

(see Figure S.1.10b).

or
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c) The acceleration due to the centrifugal force is given by the formula

where is defined in Figure S.1.10a, and is the angular frequency
of the Earth’s rotation. So the maximum centrifugal acceleration is
on the surface of the Earth

For New York yielding

So the centrifugal force is only about 0.3% of the gravitational force. The
acceleration due to the Coriolis force is

From (a):

where rad. So,

and where is the frequency of oscillation found
in (a): and so Hence,
the Coriolis force is about 5% of the gravitational force.

1.11 String Oscillations (Moscow Phys-Tech)

We have assumed that the dependence is of the form

To find  we use dimensional analysis, i.e., assume that the dimen-
sions are equivalent on both sides of our proportion:
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In MKS units, we have

or

This is true if the following equations hold:

Hovering Helicopter (Moscow Phys-Tech)1.12

The simplest model for a helicopter rotor is a disk of area A inducing a
uniform flow of air with velocity close to the rotor and far downstream.
For an estimate, this model is adequate (see for instance Johnson, Helicopter
Theory). We disregard any energy loss due to turbulence and consider air
to be an incompressible fluid. The rate of mass flowing through the area A
of the rotor will be

The thrust T is equal to the momentum change per unit time of the air
from velocity 0 to

The power P is equal to the energy change of the same amount of air per
unit time (seconds):

From (S.1.12.2) and (S.1.12.3) we have and substituting and
from (S.1.12.1) into (S.1.12.3), we can get

So
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and therefore

If the helicopter is hovering, it means that its weight W is equal to the
thrust T in our ideal case. Then

The resulting power is

Since the weight W is proportional to the volume of the helicopter, and
the area A is, of course, proportional to we find

So, for a model of the helicopter

where and are the power and size of the model, respectively. For a
1/10th size model:

1.13 Astronaut Tether (Moscow Phys-Tech, Michigan)
The spaceship moves under the influence of the Earth’s gravity, given by

where M is the mass of the spaceship, is the Earth’s mass, is
the distance between the center of the Earth and the ship, and G is the
gravitational constant (see Figure S.1.13). We may write for the spaceship
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where is the angular velocity of the ship and T is the tension of the
communication cable. Similarly, for the astronaut,

where is the mass of the astronaut, is the radius of the orbit of the
astronaut, and is the angular velocity of his rotation about the Earth.
Obviously, we can write (S.1.13.2) and (S.1.13.3) with the same angular
velocity only for the specific case where the spaceship and the astronaut
fall on a ray from the Earth’s center. Equating from (S.1.13.2) and
(S.1.13.3), we obtain

From equation (S.1.13.4), we can easily find the tension T :

Using we
can rewrite T in the form:

where is the acceleration on the surface of the Earth. Also, since
we can write an even simpler formula as an estimate:

Hence, the wire would withstand the tension of holding the hapless astro-
naut in tow.

1.14 Spiral Orbit (MIT)

The solution may be obtained most quickly by employing the differential
equation for the orbit (see Goldstein, Classical Mechanics, §3-5 ), whereby
the time dependence is eliminated from the equation of motion. The deriva-
tion proceeds from the definition of angular momentum which is conserved
in central force motion, and consists of the substitution of
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for In its final form, the equation reads as follows:

We now substitute the proposed potential and orbit equation into (S.1.14.1):

yielding

Identifying powers of on the two sides of (S.1.14.2) gives

and therefore

1.15 Central Force with Origin on Circle (MIT,
Michigan State)

The differential equation of the orbit comes to the rescue here as in problem
1.14. From Figure S.1.15, we see that the orbit equation is
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so

and

Applying the differential equation of the orbit and substituting (S.1.15.2)
and (S.1.15.3) into it, we obtain

We are required to find

so

and finally

1.16 Central Force Orbit (Princeton)

a) We see that the orbit describes a cardioid as shown in Figure S.1.16.
Invoking the orbit equation yet again (see Problem 1.14), we may find the
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force:

where Calculating the derivatives of    :

and substituting into (S.1.16.1), we obtain

b) (see Landau and Lifshitz, Mechanics, §18). The initial impulse to solve
for the scattering angle as a function of the impact parameter leads one
astray into the realm of elliptic integrals. Instead, realize that the operative
word is “capture” and construct the effective potential of the particle, where

and A is a constant of proportionality, and is the angular momentum.
Those particles whose kinetic energy exceeds will be captured. At
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and

so we obtain

The condition for capture becomes

where and is the impact parameter. Rearranging, we find that
The cross section is given by so

1.17 Dumbbell Satellite (Maryland, MIT, Michigan
State)

Write the Lagrangian in the frame with the origin at the center of the
Earth. The potential energy of the satellite is

where M is the mass of the Earth, and and are the distances
from the center of the Earth to the two masses (see Figure S.1.17). Using
the formula (where we



MECHANICS 105

disregard the quadratic term we can rewrite the potential energy
in the form

Keeping two terms in the expansion of the square root, we obtain

We can find the minimum of the potential energy now by solving
which has two solutions:

and

For the first solution, and for the second, So,
at the potential energy has a minimum, and that determines the
orientation of the satellite.

b) For small oscillations

From (S.1.17.2) we obtain

The kinetic energy of the satellite can be written in the same approximation
as a sum of its center of mass energy (which is constant) plus the kinetic
energy relative to the center of mass:

So the Lagrangian is

The angular velocity of the satellite about the Earth may be obtained
from the equation for a circular orbit: From the
Lagrangian, we arrive at the angular velocity of small angle oscillations
of the satellite, where and so For
further details, see Barger and Olsson, Classical Mechanics: A Modern
Perspective, §7.3.
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1.18 Yukawa Force Orbit (Stony Brook)

The motion can be investigated in terms of the effective potential

where is the angular momentum of the particle about the origin and

The conditions for a stable orbit are

where is an equilibrium point for the particle in this now one-
dimensional problem. The requirement on the second derivative implies
that the effective potential is a minimum, i.e., the orbit is stable to small
perturbations. Substituting (S.1.18.1) into (S.1.18.2), we obtain

The second condition of (S.1.18.2) gives

(S.1.18.3) gives

which, substituted into (S.1.18.4), yields

which implies that, for stability,

b) The equation for small radial oscillations with  is
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The angular frequency for small oscillations given by (S.1.18.5) and (S.1.18.6)
is found from

1.19 Particle Colliding with Reflecting Walls
(Stanford)

a) The presence of the perfectly reflecting walls is a smokescreen, obscuring
the two-dimensional central force problem (see Figure S.1.10a). In
coordinates, each reflection merely changes into which does not affect
the energy or the magnitude of the angular momentum, so ignore the walls.

Write the energy as

where is the angular momentum of the particle about the origin. If the
particle does not actually hit the origin, at its closest approach to the
origin (see Figure S.1.19b). Equating the initial energy of
the particle with its energy here:

where Solving (S.1.19.2) for gives the distance of closest
approach.
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b) Considering the problem in one dimension, we write the effective po-
tential from (S.1.19.1)

It has a maximum when

Here

If the energy of the particle exceeds this value, the particle will greet the
origin and escape to infinity. In addition, if the energy is less than this
value, but the initial position is less than the value given by (S.1.19.4)

then the particle will also reach the origin.

c) If, as in (b), the energy exceeds (S.1.19.5), then the particle will es-
cape to infinity. If, on the other hand, the energy is too small, but the
particle starts with then the particle will turn around at and
escape also.
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1.20 Earth–Comet Encounter (Princeton)

The total energy of the comet is zero since its trajectory is parabolic. In
general,

where is the comet’s distance from the Sun, is its angular momentum,
and is its potential energy (see Figure S.1.20).

where G is the gravitational constant. Find the total angular momentum
defined at the perihelion, where

Therefore,

where From (S.1.20.1)

so the time the comet spends inside the Earth’s trajectory is
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But so from (S.1.20.2)

where is the radius of the Earth’s orbit. The expression
can be easily integrated by parts, yielding

Substituting this result back into (S.1.20.3) gives

We know that the period of the Earth’s revolution about the Sun equals
one year, and noting that we can rewrite (S.1.20.4) in
the form

Denoting we find the maximum of  given
that

Therefore

1.21 Neutron Scattering (Moscow Phys-Tech)

Consider a neutron colliding with atoms of a certain type. In each collision,
neutrons lose a fraction of their kinetic energy; let us calculate this fraction.
We will assume that the collision is elastic and central. From energy and
momentum conservation,

where and M are the masses of the neutron and the atom, respectively;
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and are the initial and final velocities of the neutron; V is the velocity
of the atom after the collision. These equations may be rewritten in the
form

Solving for V gives

letting The kinetic energy of the atom after collision is

where is the initial kinetic energy of the neutron. Obviously, as

minimum of So we have Here,
and the kinetic energy of the atom as a result of the collision will be a
maximum For hydrogen, is very close to 1 and
this explains why materials with high hydrogen content are so efficient in
blocking the neutrons.

1.22 Collision of Mass–Spring System (MIT)

a) The maximum compression of the spring occurs at the moment when the
velocities of the two masses and become equal (see Figure S.1.22).
For this moment we can write conservation of momentum and energy as

where A is the maximum compression of the spring; from (S.1.22.1)

or                     The maximum of       as a function of     corresponds to the
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and from (S.1.22.2)

where is the reduced mass.

b) If, long after the collision, both masses move in the same direction,
it means that and the spring will not be compressed. So we have

We can easily find and from these equations

where

1.23 Double Collision of Mass–Spring System (Moscow
Phys-Tech)

a) Let us call the ball of mass M ball 1, the first ball struck 2, and the
third ball 3 (see Figure S.1.23a). After the first collision, ball 1 will move
with constant velocity and balls 2 and 3 will oscillate. For another
collision to take place, the coordinates of balls 1 and 2 must coincide at
some later moment. First find    after the initial collision, considered to
be instantaneous. Then, this problem is no different from the collision
of just two balls of masses M and If the velocity of the first ball
before the collision is we can find and from energy and momentum



MECHANICS 113

conservation:

Again, as in Problem 1.22,

After the collision the first ball will move with constant velocity and
so its position coordinate The center of
mass of balls 2 and 3 will also move with constant velocity (since

Therefore from (S.1.23.4)

Now, in the center of mass frame of balls 2 and 3, the two balls are moving
toward one another each with speed and they will start to oscillate
relative to the center of mass with the following time dependence:

where and is the spring constant of half of the spring,
From energy conservation, the initial energy of mass 2 in the

center of mass frame goes into the energy of spring deformation with an
amplitude corresponding to the velocity change from to zero:

In the lab frame
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For the second collision to occur, we need or

So we have

The easiest way is to solve (S.1.23.6) graphically (see Figure S.1.23b). For
the solution to exist, we have the condition where

at The minimum value of the mass

b) The time between collisions is

1.24 Small Particle in Bowl (Stony Brook)

a) In spherical coordinates, the Lagrangian

Since we have the restriction (see Figure S.1.24),
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b) For the generalized momenta

c) Find the Hamiltonian of the motion

From (b)

The Hamiltonian then becomes

d) Let us write Hamilton’s equations
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e) Differentiate (S.1.24.3) and use (S.1.24.6) and (S.1.24.7)

f) If we have

Here, the particle slides in a circle at a fixed height in the bowl. The dif-
ferent signs correspond to clockwise or counterclockwise motion.

g) If at then we always have

and so

(the equation for a simple pendulum). The energy is conserved and there-
fore

Using (S.1.24.2), (S.1.24.5), and (S.1.24.12), we have

and

The maximum velocity corresponds to the maximum which occurs at
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Of course, this result can be obtained much more easily from (S.1.24.11)
using elementary methods.

1.25 Fast Particle in Bowl (Boston)

Introduce cylindrical coordinates where is positive down (see Fig-
ure S.1.25). We can write the Lagrangian

From (S.1.25.1), we can see that, as usual, the angular momentum is con-
served:

Using the constraint which follows from the fact that the
particle moves along the spherical surface, we have

From the same constraint,

Energy is of course also conserved:
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Substituting     and  from (S.1.25.2) and (S.1.25.3) into (S.1.25.4), we ob-
tain

The condition leads to Therefore we can approximately
write

or

Mass Orbiting on Table (Stony Brook, Princeton,
Maryland, Michigan)

1.26

a) We can write the Lagrangian in terms of the length of the string on
the table and the angle (see Figure S.1.26):

The equations of motion are
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From (S.1.26.9) we have angular momentum conservation:

b) The equilibrium position is defined by taking the derivative of where

so the orbit is stable with respect to a small perturbation
in the radius. The frequency of small oscillations is given by

1.27 Falling Chimney (Boston, Chicago)

First calculate the motion of the entire chimney of mass by considering
the torque about its base B (see Figure S.1.27)
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The moment of inertia about the base is The equation of
motion for is found from

The piece of the chimney above the point P rotates in response to the
torque produced by its center of mass about P given by

and the torque produced by the rest of the chimney attached below
P, “trying” to convince the piece to rotate at

Find by substituting for above:

Find the maximum torque by taking the derivative of with respect to
and setting it equal to zero:

Either where the torque is zero, or
as was to be demonstrated. This problem may also be found in Cronin,
Greenberg, Telegdi, University of Chicago Graduate Problems in Physics
and Routh, Dynamics of a System of Rigid Bodies.

1.28 Sliding Ladder (Princeton, Rutgers, Boston)

Let us watch the ladder until it leaves the wall. Forces and are
normal reactions of the wall and floor, respectively; is the weight
of the ladder; and are the coordinates of the center of mass (see
Figure S.1.28). First, find the Lagrangian of the system. The kinetic energy

is the moment of inertia relative to
the center of mass
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From Lagrange’s equations

In addition, from energy conservation

We will assume that the ladder loses contact with the wall before it does
so with the floor. (This has to be checked). Up until the ladder slides away
from the wall, there are constraints of the form

Since is the only force acting in the x direction, When the
ladder loses contact with the wall, Differentiating (S.1.28.4) twice
gives

From (S.1.28.6) and substituting it into (S.1.28.2), we have
for the angle the ladder leaves the wall
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From (S.1.28.3) and (S.1.28.7), we obtain

We have assumed that the ladder loses contact with the wall first. Let us
check this assumption. It implies that at all times before the ladder
leaves the wall

From (S.1.28.5) and (S.1.28.6), we have

Therefore

At the time the ladder leaves the wall

On the other hand, is monotonically decreasing while is decreasing (see

(S.1.28.3)). So, our assumption was right and indeed

1.29 Unwinding String (MIT, Maryland (a,b),
Chicago (a,b))

a) You can write a Lagrangian using Cartesian coordinates and express
it as a function of (see Figure S.1.29a). However, if you notice that the
length of the unwound string is and it unwinds with angular velocity

you can immediately write a Lagrangian, which is just a kinetic energy
in this case

The equation of motion will be
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or

or for

whose solution is From the initial condition and

i.e.,  we conclude that B = 0 and so

b) The angular momentum 1 about the center of the cylinder is given by

The angular momentum is not conserved, since there is a torque from the
cord connected to the cylinder; the energy, on the other hand, is conserved,
because the force on the mass is always perpendicular to its velocity:
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c) Again we can employ cartesian coordinates (see Figure S.1.29b), but if
we use the fact that the cord is always perpendicular to the radius of the
cylinder at the point of contact we can write the Lagrangian in the form

From this equation, we can immediately obtain the integrals of motion. An
angular momentum which is now conserved is

Initially, it is equal to zero, and since the initial impulse does not give the
system any angular momentum, it will be zero for all time. So, we have
from (S.1.29.1)

The energy is also conserved:

d) From equation (S.1.29.2) we can express in terms of and
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Substituting (S.1.29.4) into (S.1.29.3) we obtain

After some algebra, letting and we have

Integrating this equation results in

Therefore:

From the initial condition we find that so

Substituting back and we have

For (i.e., a fixed cylinder), this result reduces to that obtained
in (a). It is obvious from angular momentum conservation that the cylin-
der would spin in the opposite direction from that of the unwinding cord.
Indeed, from (S.1.29.4) we see that if then Parts (a) and (b)
of this problem were published in Cronin, Greenberg, Telegdi, University
of Chicago Graduate Problems in Physics.

1.30 Six Uniform Rods (Stony Brook)
This problem, in general (after some arbitrary time ) is rather difficult.
However we can use two important simplifications at First, there is
sixfold symmetry, which means that the positions of the center of mass of
each rod can be described by just one angle and, of course, the length of a
rod, which we will denote as The other consideration is that even after
the blow, the system will keep symmetry relative to the (because the
blow is at midpoint of the first rod). That means that not only at but
also at later times, there will be no rotation of the system, and its angular
momentum is zero. We choose the coordinate system as shown in Figure
S.1.30. Now the velocity of the center of mass (midpoint P) of the first
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rod is The velocity of the midpoint of the opposite one (rod 4) is
since the coordinates of its center of mass are

We may try to use the condition to find a relation between and
At for a regular hexagon and

where is the Lagrangian of the system, which in this case is equal to its
kinetic energy T

where are subsequent rods (see Figure S.1.30). The kinetic
energy of each rod consists of its energy relative to the center of mass
plus the energy of its center of mass. Let us say that the mass of the
rod is The energy relative to the center of mass will be the same for
rods and equal to where is the moment of
inertia relative to the center of mass. We have already used of a uniform
rod in Problem 1.28. To calculate it, we can either integrate (which is very
simple in this case) or use a more general approach, which can be applied
in other problems with bodies possessing certain symmetries. In this case,
we know that the moment of inertia of the rod is where L is the
length of the rod and is some numerical factor. Now move to the edge of
the rod. The moment of inertia is
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where L /2 is the distance between the edge and the center of mass. Here
we have applied the parallel axis theorem. On the other hand, this is
nothing but half of the moment of inertia relative to the center of mass of
a rod that is twice as long. So, we can write

The moment of inertia of the rod is then In our case,
so We then arrive at

Now calculate the center of mass energy of each rod

So the total kinetic energy is

Now we can calculate at
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So

Now recalling that we get for the velocity of rod 4

1.31 Period as Function of Energy (MIT)

Energy is conserved for a position dependent potential, so we may write
The time for a particle to travel between two

turning points of its motion and (where its kinetic energy is zero) is
given by

Let (S.1.31.1) then becomes

The period T is twice the time to go between points 1 and 2, So
for the energy dependence of the period, we have

For a harmonic oscillator and independent of E, as
(S.1.31.3) confirms (see Landau and Lifshitz, Mechanics, § 11).
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1.32 Rotating Pendulum (Princeton, Moscow Phys-
Tech)

We may compute the Lagrangian by picking two appropriate orthogonal
coordinates and where equals a constant (see Figure S.1.32).

where we consider

a) Employing the usual Lagrange equations

we have

b) (S.1.32.1) has stationary points where

To check these points for stability, take the second derivative
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At (S.1.32.2) becomes

So at angular velocities the potential energy has a minimum
and the equilibrium point is stable. However at this
point is no longer stable. At

This point is unstable for all values of

c) At (S.1.32.2) becomes

So, here at the equilibrium point is stable.

d) Consider the initial differential equation (S.1.32.1) and substitute for
where

For small oscillations, we will use the approximations
and leave only terms linear in

After substituting we will have for the frequency   of small
oscillations about this point
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1.33 Flyball Governor (Boston, Princeton, MIT)

a) Find the Lagrangian of the system. The kinetic energy

where is the distance of the sleeves from each other and is the angle of
the hinged rods to the fixed vertical rod (see Figure S.1.33). The potential
energy

Using the relation we obtain for

The equation of motion becomes

b) From (S.1.33.3), we may introduce the effective potential energy
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Its minimum gives the equilibrium position of the sleeve

The angle corresponding to (S.1.33.7) is defined by

The condition for stability of the equilibrium of (S.1.33.8) is equivalent to

which can clearly be seen if we write everything in terms of and not
(see Problem 1.32). On the other hand, if

(S.1.33.7) and (S.1.33.8) are no longer valid, and This corresponds
to the stable equilibrium at (again compare to Problem 1.32). So the
height of the lower sleeve above its lowest point is

c) Taking the time derivative in (S.1.33.4), we obtain

For small oscillations around the equilibrium point the quadratic
terms of may be neglected, and we rewrite (S.1.33.11), where is defined
in (S.1.33.10) under the conditions in (S.1.33.9)
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So

where is the angular frequency of a simple harmonic oscillator given by

Now, and using (S.1.33.9), we eliminate to arrive at

1.34 Double Pendulum (Stony Brook, Princeton, MIT)

a) For the first mass the Lagrangian is given by

ignoring the constant To find introduce the coordinates for the
second mass (see Figure S.1.34):

Now,  where
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So

For we can take Denoting the frequency of
a single pendulum by and eliminating superfluous constant
terms, we obtain the Lagrangian in the form

b) Using (S.1.34.1) we can write the equations of motion

c) We are looking for solutions of (S.1.34.2) of the form

After substituting (S.1.34.3) into (S.1.34.2), we get a pair of linear equations
in A and B

For nontrivial solutions of (S.1.34.4) to exist, we should have

The eigenfrequencies are defined from
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Finally,

1.35   Triple Pendulum (Princeton)
a) Write the Lagrangian of the system using coordinates (see
Figure S.1.35a).

Then in the small angle approximation,
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Here we used

So the Lagrangian is

where we let Therefore the equations of motion will be

Looking for the solution in the form and letting
we have as a condition for the existence of a nontrivial solution

We want a mode where So and the determinant becomes

Obviously           is the only solution of this equation (the first and third
rows are then proportional).
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b) The mode corresponding to this frequency can be found from the equa-
tion

which has a solution So the mode corresponding to
the frequency  is shown in Figure S.1.35b

1.36    Three Masses and Three Springs on Hoop
(Columbia, Stony Brook, MIT)

Introducing the displacement from equilibrium for respective masses
1,2,3 (see Figure S.1.36), we can write a Lagrangian in the form
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The resulting equations of motion are in the form

Again, looking for solutions of the form we obtain an equation
for the determinant:

where and The first root is which
corresponds to the movement of all three masses with the same velocity.
The two other roots are which are double degenerate,
corresponding to the mode or
where one mass is at rest and the two others move in opposite directions.
The result can be obtained even without solving (S.1.36.1), if one can guess
that this is the mode. Then
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So, again,

1.37    Nonlinear Oscillator (Princeton)

a) The Lagrangian for the potential is

Therefore, the equation of motion for the nonlinear harmonic oscillator is

where is the principal frequency of a harmonic oscillator. We
will look for a solution of the form

where is a solution of a harmonic oscillator equation

Since we are looking only for the first order corrections, we do not have
to consider a frequency shift in the principal frequency The solution
of equation (S.1.37.3) with initial condition is
Substituting this into (S.1.37.1) and using (S.1.37.2), we obtain an equation
for (leaving only the terms which are first order in

or

The solution for is a sum of the solutions of the linear homogeneous
and the linear inhomogeneous equations:
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where is the inhomogeneous solution of the form

Substituting (S.1.37.6) and (S.1.37.7) into (S.1.37.5), we obtain
So

Using the initial condition we obtain The
solution of the equation of motion (S.1.37.1) will be

where is defined from initial conditions.

b) The average of over a period is certainly nonzero for a
given amplitude of oscillation A. Inspection of (S.1.37.9) reveals that

To take into account the energy distribution of the amplitude, we have to
calculate the thermodynamical average of as a function of temperature

where is the temperature in energy units and is Boltzmann’s
constant.

The amplitude of the oscillator as a function of energy is given by

Substituting (S.1.37.13) into (S.1.37.12) gives
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This result can explain the nonzero thermal expansion coefficient of solids.
As increases, the equilibrium point shifts (see also the discussion in Kittel,
Introduction to Solid State Physics, p.142, where (S.1.37.14) is obtained by
a different method).

1.38 Swing (MIT, Moscow Phys-Tech)

Consider half a period of swinging motion between points
(see Figure S.1.38, where the dotted line indicates the position of

the center of mass). From 0 to 1, energy is conserved

where is the initial angle. For small angles,  and

From 1 to 2, angular momentum is conserved:
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From 2 to 3, again, energy is conserved so we can find the final angle

From (S.1.38.1) and (S.1.38.3) we can express and obtain the change
in the amplitude:

or using

and

The work done by the child is equal to the energy change per period :

We want to write (S.1.38.7) in the form

where

1.39 Rotating Door (Boston)

We will use the frame rotating with the door (body frame, axes see
Figure S.1.39), so that we can use the Euler equations
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where are the components of angular velocity in this frame and
are the principal moments of inertia. In this case and cor-

respond to the moments of inertia of rods of length and respectively,
which can be calculated easily (see the solution to Problem 1.30):

Since the problem is two-dimensional (we can disregard the thickness of the
door),

In our frame and and are constant.

Substituting (S.1.39.4) and (S.1.39.5) into (S.1.39.1)–(S.1.39.3) we obtain

1.40 Bug on Globe (Boston)
The angular velocity of the globe is always in the same direction (along the
fixed axis, see Figure S.1.40). Since the angular momentum 1 is constant
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and we may write

Initially is just the moment of inertia of the sphere (the bug is at the
pole), so Substituting this into (S.1.40.1) we obtain

where
so
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We used here and the integral given in the
problem:

If the bug had mass the angle would be

which corresponds to the free rotation of the globe with angular velocity

1.41 Rolling Coin (Princeton, Stony Brook)

We can use the standard method of Euler equations to solve this problem.
However, since the coin has a symmetry axis, it is easier to use a frame of
reference rotating with angular velocity corresponding to the rotation
of the center of mass of the coin. Rolling without slipping implies that the
velocity of the point of contact with the table should be zero, and therefore

where is the angular velocity of rotation of the coin around its axis (see
Figure S.1.41). We have in this frame
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where is the normal reaction, and w is the weight. From (S.1.41.2), we
can find the torque N relative to the center of mass of the coin:

In a noninertial frame rotating with an angular velocity we can write
(see for instance Goldstein, Classical Mechanics, §4.9)

In the rotating frame

Choose the moment of time when one axis is horizontal and in the same
direction as in Figure S.1.41). Since the axis of this frame coincides
with the principal axis, the tensor of inertia is diagonal

To calculate this tensor, we used for the moment of inertia
of the disk about its symmetry axis and also the fact that for a body of
negligible thickness On the other hand where

Taking N from (S.1.41.4) we have
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From (S.1.41.1)

Comparing (S.1.41.5) with (S.1.41.3) and using (S.1.41.6) we obtain

1.42   Unstable Top (Stony Brook)

a) There are two integrals of motion in the generalized momenta

where we used the fact that is the angular velocity of
the top around its axis. Applying the initial conditions to
(S.1.42.1) and (S.1.42.2), we obtain

Another integral of motion is, of course, the energy; again using the initial
conditions, we have

b) From (S.1.42.3) and using the condition that the head will descend to
a maximum angle where we have
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On the other hand, from (S.1.42.1),

By equating in (S.1.42.4) and (S.1.42.5) and using the half angle formulas

we get

c) Again using (S.1.42.3) and (S.1.42.5), we have

1.43   Pendulum Clock in Noninertial Frame (Maryland)

Calculate the Lagrangian of the mass and derive the equation of motion
for (see Figure S.1.43). Start with the equations for the and
positions of the mass

and compose
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Applying Lagrange’s equations gives

which, for corresponds, as required, to the equation of motion for
a pendulum in a uniform gravitational field.

1.44    Beer Can (Princeton, Moscow Phys-Tech)

a) It is possible to solve this problem in the rotating frame of the station.
However, then you have to take into account the Coriolis force. Instead,
consider the movement of the can in the Earth’s frame first and assume
that the trajectory of the can is only slightly perturbed compared to the
trajectory of the station (see, for instance, Arnold, Mathematical Methods
of Classical Mechanics, §2.8). Write Newton’s equations for the orbit

where is the frequency of revolution. Using polar coordinates we
can write for the trajectory of the can

where correspond to the trajectory of the station and are
small corrections to the trajectory. Writing

we have

Substituting (S.1.44.3) into (S.1.44.1) yields
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where we have chosen units of time and length so that

Substituting the variables for the perturbed orbit into (S.1.44.4) and (S.1.44.5)
from (S.1.44.2) gives

Using the units defined in (S.1.44.6) and assuming that and
simplifies (S.1.44.7) and (S.1.44.8):

where we expanded

Solving (S.1.44.9) by differentiating gives

where A and B are some constants, so

In the Earth’s frame, the orbit of the can is only slightly perturbed com-
pared to the orbit of the station. In order for the beer can to appear to be
rotating around the station it should have the same period T as that of the
station. The period only depends on the major axis of the ellipse which
was before the can was thrown and should become after. On the
other hand, the major axis only depends on the energy of the orbit.

To change the energy, we need only change the tangential velocity of the
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can. The initial conditions are

From (S.1.44.11) B = 0 and from (S.1.44.12)  so (S.1.44.10)
becomes

Integrating (S.1.44.14) with the initial condition

we obtain

In order for the can to orbit around the station should be periodic, i.e.,
the term

which gives for the initial angular velocity of the can

or for the velocity

In the usual units

The minus sign means that the can should be thrown in the direction op-
posite to the direction of rotation of the station.

b) The parameters of the orbit will be defined by the equations

From (S.1.44.9)
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From (S.1.44.17), we can find the equation of the trajectory of the can seen
by the observer in the station. The distance R from the station (S) to the
can (C) (in regular units)

where we assumed that is small and the angle (see Figure
S.1.44a). Substituting and from (S.1.44.17) into (S.1.44.18), we obtain

So in this approximation, the orbit of the can as seen from the station is
an ellipse of major axis and minor axis with the same period T as the
station. The position of the station and the can in the Earth’s frame is
shown in Figure S.1.44b.
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1.45    Space Habitat Baseball (Princeton)

On Earth, we can disregard the Coriolis force since it is only a second-order
correction. If the player hits the ball with an initial velocity v, the maxi-
mum distance will be for the angle (neglecting also the effects of air
resistance). Then, we calculate the range L by decomposing the trajectory
into its component motions, with initial velocities

resulting in an initial velocity off the bat of

On the surface of the habitat we can no longer disregard the Coriolis force
(see Figure S.1.45), so if we consider the problem in the rotating frame of the
cylinder, the equations of motion become rather complicated. Therefore,
let us view the exercise in the inertial frame. To provide the same apparent
gravitational acceleration the  cylinder has to rotate with an angular
velocity The instantaneous linear velocity of the point P
where the player stands will be
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When the ball leaves the surface, no forces act on it in the inertial frame.
Its velocity is either or where the velocities of the ball in the rotating
frame and the habitat V are parallel or antiparallel, respectively:

The angle of the line of length D to the tangent of the circle is found
using (S.1.45.1)–(S.1.45.3):

The distance along the surface of the cylinder PO will then be
During the time of the flight, the cylinder rotates by an angle

and the distance will be

The distance the player would hit the ball measured along the surface of
the habitat is

Substituting numerical values into (S.1.45.5) we obtain

Therefore, to hit the furthest, the player should hit in the direction opposite
to the direction of the habitat’s rotation.

1.46 Vibrating String with Mass (Stony Brook)
a) To derive the equation of motion of the string we assume that the
oscillations of the string are small, the tension T is a slowly varying function
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of and there is no damping of the motion. Consider a part of the string
between and where is the transverse displacement of the
string (see Figure S.1.46). The transverse force acting on this piece of mass

is

Using the initial assumptions, we can substitute a constant T for the tension
and write

where the substitution of for again follows from assumptions.
Using (S.1.46.2) in (S.l.46.1), we obtain

where is the wave velocity.

b) Now, we have boundary conditions. We choose a standing wave so-
lution. Another possible solution is a traveling wave

where and are some functions. In our case, we use the
method of separation of variables: which, substituted
into (S.1.46.3), gives
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where is a constant independent of and We arrive at two second-
order differential equations for and and their solutions:

Applying the boundary condition to the solution:

from which we get

For each mode and
with For each complete mode

and the transverse displacement is

c) To find the frequency change, use a perturbation method. Consider for
simplicity the mode of theform corresponding
to the initial conditions and We know from the
virial theorem that initially the average of potential energy of the string in
the mode is equal to the kinetic energy:

where we used Now examine the mode
of the string with mass to be of the same form as in (S.1.46.4):

with a slightly different frequency Find the kinetic
energy in this mode of the string and then add the kinetic energy of
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the additional mass:

where is the Dirac function. The average kinetic energy of the
string with mass from (S.1.46.5)

where again we used In this approximation,
if we ignore the change in tension T, the average potential energy of the
string with mass is the same as for the string alone, so Utilizing
this together with the virial theorem, which is also true for the modified
string, we may write

So from (S.1.46.5)–(S.1.46.7)

or

Therefore the new frequency

where we used

1.47   Shallow Water Waves (Princeton (a,b))

This problem is discussed in Landau & Lifshitz, Fluid Mechanics, Ch. 12.
We essentially follow their solution. In this problem, we consider an in-
compressible fluid (which implies that the density is constant (see Figure
S.1.47). We also consider irrotational flow and ignore the
surface tension and viscosity of the fluid. This is a very idealized case;
(Feynman calls it “dry” water in his Lectures on Physics). In this case,
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we have and since is constant, Combining this
equation with the condition allows us to introduce a potential

(the so-called potential flow). The velocity v may be written in the form
and for the potential we have

On the bottom, we have the boundary condition

Using Euler’s equation for an irrotational field

(Here is pressure, is the acceleration of gravity.) We substitute
and rewrite (S.1.47.3) as

Since (S.1.47.4) is the gradient of a function, the function itself will simply
be

where is some arbitrary function of time which may be chosen to be
zero. Also taking into account that we have

or
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Consider the surface of the unperturbed water at and introduce a
small vertical displacement Also, we assume that there is a
constant pressure on the surface of the water Then from (S.1.47.5) we
obtain

The constant can be eliminated by using another gauge for

We now obtain from (S.1.47.6)

Again using the fact that the amplitude of the waves is small, we can write
In the same approximation of small oscillations, we can take

the derivative at On the other hand, So, from (S.1.47.7)

Now look for a solution for in the form Substi-
tuting this into (S.l.47.1) gives

so

where A, B are arbitrary constants. From (S.1.47.2), we find that A = B
and where By differentiating the
potential we obtain the velocity components

b) From (S.1.47.8) we get the dispersion relation:
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c) The group velocity of the waves is

Consider two limiting cases:

1)

2)

—short wavelength waves. Then

—long wavelength waves. Then

1.48    Suspension Bridge (Stony Brook)

a) We use an elementary method to solve this problem. The conditions for
a static equilibrium are

(see Figure S.1.48). (S.1.48.1) and (S.1.48.2) can be rewritten in the form
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Integrating (S.1.48.3) and (S.1.48.4), we obtain

At so and dividing (S.1.48.5) by (S.1.48.6),
we have

From (S.1.48.7) we find the shape of the suspension bridge, which is parabolic

b) To find the tension at multiply (S.1.48.5) by
(S.1.48.6).

So

1.49 Catenary (Stony Brook, MIT)

a) Write the expressions for the length and potential energy U (see Figure
S.1.49) using
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b) Here, we are not reproducing the usual Euler–Lagrange equations where
we have minimized the action Instead, we look for the minimum
of U found in (a), subject to the constraint of constant length Utilizing the
method of undetermined Lagrange multipliers, (see Goldstein, Classical
Mechanics, Chapter 2), we may write

The coefficient preceding simplifies the calculation. From (S.1.49.3)

where

Before proceeding to (c), note that in this problem, we may immediately
extract a first integral of the motion since does not depend explicitly on

(see Goldstein, Classical Mechanics §2.6).

c) We may now substitute into (S.1.49.5), yielding
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is constant for Calculate from (S.1.49.1):

Using (S.1.49.2) and (S.l.49.7), find U:

Using  we see that

(S.1.49.8) becomes

From (S.l.49.7), we have

so

1.50 Rotating Hollow Hoop (Boston)

The Lagrangian for the system shown in Figure S.1.50 can be written in
the form

The generalized momenta are
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The Hamiltonian is

Changing the variables gives

Again, the generalized momenta are

The Hamiltonian is

b) Since we have

The Poisson bracket of with is
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So, is indeed the integral of motion since its Poisson bracket with is
equal to zero.

c) From (S.1.50.3), the equations of motion are

From (S.1.50.4) and (S.1.50.5) we obtain

Using the initial conditions for (S.1.50.1) and (S.1.50.2) we have

So

and finally

1.51 Particle in Magnetic Field (Stony Brook)

a) A canonical transformation preserves the form of Hamilton’s equations:

where is the transformed Hamiltonian. It can be shown that



166 SOLUTIONS

Poisson brackets are invariant under such a transformation. In other words,
for two functions

where  and  Q, P are the old and new variables, respectively. Since we
have the following equations for Poisson brackets:

(S.1.51.1) and (S.1.51.2) combined give equivalent conditions for a trans-
formation to be canonical:

Let us check for our transformation (we let

and

Similarly

and so on.
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b) For a particle in a magnetic field described by the vector potential
A = (–YH/2,XH/2,0), which corresponds to a constant magnetic field

we should use the generalized momentum P in the Hamiltonian

so the Hamiltonian

So the Hamiltonian does not depend on and

where is the initial phase. Also
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where and are defined by the initial conditions. We can write this
solution in terms of the variables

Similarly

so this is indeed the solution for a particle moving in one plane in a constant
magnetic field perpendicular to the plane.

1.52 Adiabatic Invariants (Boston (a)) and Dissolving
Spring (Princeton, MIT (b))

a)

For a harmonic oscillator

This trajectory in phase space is obviously an ellipse:

with
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The adiabatic invariant

where we transformed the first integral along the curve into phase area
integral which is simply where is the area of an ellipse

So, taking A and B from (S.1.52.1) gives

b) The fact that the spring constant decreases adiabatically implies that
although the energy is not conserved its rate of change will be proportional
to the rate of change in the spring constant: It can be shown (see for in-
stance §49, Landau and Lifshitz, Mechanics) that in this approximation the
quantity found in (a)—the so-called adiabatic invariant—remains constant.
Our spring is of course a harmonic oscillator with frequency
and energy So we have

or

So from (S.1.52.2), the new amplitude is

1.53    Superball in Weakening Gravitational Field
(Michigan State)

The slow change of the acceleration of gravity implies that we will have an
adiabatic invariant I as in Problem 1.52

We have from energy conservation that
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where is the height of the ball or

so

where we used

Therefore

and



2

Relativity

2.1    Marking Sticks (Stony Brook)

a)  According to observer O, the stick is Lorentz–contracted:

where is the length of the stick in its rest frame. So observer O believes
that the stick in is shorter. In this frame, the marking devices are trig-
gered simultaneously at when the origins of the two frames coincide
(see Figure S.2.1a). As shown, the O stick will be marked at (in
the O frame, the marking device of is at

b) According to observer the O stick is Lorentz–contracted:

171
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so that observer believes that the O stick is shorter. In frame the
triggering of the devices (happening at in frame O) is no longer
simultaneous. Actually, the device in frame is triggered first, and that
is why this observer agrees with the result found in (a) (see Figure S.2.1b).
Indeed, from the Lorentz transformation of time, we can obtain the time
in when his device is triggered:

So

The point in the O frame corresponding to the mark is

the same result as in (a).

2.2    Rockets in Collision (Stony Brook)

a) In the Earth frame

b) In A’s frame, the coordinates of B are given by the Lorentz transforma-
tion from the Earth frame
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So, in A ’s frame, B is approaching with velocity

The same result (with opposite sign) may be obtained in B’s frame for
rocket A.

c) In each of the two rocket frames, the time to collision is dilated with
respect to that in the Earth frame, and so

2.3    Photon Box (Stony Brook)

a) Consider the initial state of the system. Write the 4-momentum of the
box and photons as and respectively:

where we have used the fact that for a standing wave (which can be rep-
resented as the sum of traveling waves with opposite momenta) the total
momentum is zero. Therefore, from (S.2.3.1), the 4-momentum of the sys-
tem is given by

From (S.2.3.2), we can find the rest mass of the total system M (which is
defined by
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b) Transform the 4-momentum by going into a frame moving with velocity
along the axis. We have in this frame for energy and momentum

where and are the total energy and momentum in the rest frame,
respectively. So

Therefore in the moving frame

and

We expect this to be true, of course, since mass is a relativistic invariant
under a Lorentz transformation.

Another way to look at it is to consider a transformation of energy and
momentum of the photons and the box separately. The frequencies of these
photons will be Doppler shifted (see Problem 2.12):

The energy of the photons

The energy of the box The momentum of the photons
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The momentum of the box

So the 4-momentum is the same as found above

2.4    Cube’s Apparent Rotation (Stanford, Moscow
Phys-Tech)

At any given moment, the image of the cube is created by the photons
reaching the observer at this time. The light received from points A and B
of the near face of the cube is accompanied by light from point D emitted
a time (1/c) earlier (see Figure S.2.4a). The length of is Lorentz con-
tracted to while the distance from to A is (the distance the

cube has moved while the light from D travelled to the front face). The
apparent rotation is seen in Figure S.2.4b. The angle of rotation
should be equal to From the figure, we see that
and So and the cube does appear rotated by A
more detailed solution of this problem employs the Lorentz transformation
from frame to K of the velocities which leads to the light aberration
seen by the observer O [see Phys. Rev. 116, 1041 (1959)].
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2.5    Relativistic Rocket (Rutgers)

a) Let us consider the short interval in the center of mass frame moving
with velocity the fuel is ejected with velocity in this frame. At time

the velocity of the rocket increases by The mass of the
rocket decreases by and the mass of the ejected fuel
will have a velocity in this frame. Momentum conservation gives

where is the mass of the rocket at time Expanding
as

and neglecting second-order terms in the differentials yields

Transforming to the lab frame and using where V is the velocity
of the rocket in the lab frame, we obtain a solution for the initial condition

b) Write down momentum conservation in the rocket’s frame:

where M is the mass of the rocket, is the mass of the fuel, and
Energy conservation in the frame of the rocket gives

We ignored the relativistic corrections to the mass of the rocket in (S.2.5.5)
and terms such as in (S.2.5.4). Substituting from
(S.2.5.5) into (S.2.5.4), we have

which is the same result as obtained in the nonrelativistic calculation of
(a). Now we must transform from the instantaneous rocket frame to the
laboratory frame. Using the equation for the addition of velocities, we have

where is the new velocity of the rocket in the lab frame. Rearranging
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(S.2.5.7) gives

where Substituting (S.2.5.8) into (S.2.5.6), we obtain
or

Integrating (S.2.5.9), we have

where from which we find

If then (S.2.5.11) boils down to

the same result as that obtained in (a).

2.6   Rapidity (Moscow Phys-Tech)

a) The velocity of the particle moving in frame        with velocity      in the
frame is given by a standard formula:

Introducing we may rewrite this formula in the form

Now the same formula may be written for a transformation from to
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Now substituting (S.2.6.1) into (S.2.6.2), we obtain

b) If we need to make a transformation for it is difficult to obtain
a formula using the approach in (a). Instead, we use the idea of rapidity,

Indeed for one frame, we had in (S.2.6.1)

which is the formula for the tanh of a sum of arguments

where tanh This means that the consecutive Lorentz transforma-
tions are equivalent to adding rapidities. So the velocity in the frame
after transformations (if  ) will be given by

We can check that if then

2.7 Charge in Uniform Electric Field (Stony Brook,
Maryland, Colorado)

The plane of motion of a particle will be defined by its initial velocity v and
the direction of the electric field E. Let the initial velocity coincide with
the axis and E with the axis. We may write the equations of motion
for a charge in an electric field

where p is the momentum of the particle. Obviously, since there is no force
in the direction perpendicular to the plane, the particle will move in
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this plane at all later times. We can write (S.2.7.1) in the form

Integrating (S.2.7.2) and (S.2.7.3) yields

The energy of the particle (without the potential energy due to the field)
is given by

where is the initial energy of the particle. The work
done by the electric field changes the energy of the particle

or

Equations (S.2.7.6) and (S.2.7.8) result in

which yields

and

On the other hand
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Substituting and into (S.2.7.12) and using from
(S.2.7.11), we find

Integrating (S.2.7.13), we obtain

For the initial conditions

So the particle in a constant electric field moves along a catenary (see
Figure S.2.7, where we took If the velocity of the particle
then and expanding we obtain

which gives the classical result for a charged particle in an electric field.
Also note that (S.2.7.10) coincides with the result for uniformly accelerated
motion in the proper reference frame, where the acceleration
and (see Problem 2.9, (S.2.9.7)). Under Lorentz transformations
for frames moving with velocities parallel to the electric field E, the field
is unchanged (see Landau and Lifshitz, The Classical Theory of Fields,
Chapter 3).
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2.8 Charge in Electric Field and Flashing Satellites
(Maryland)

Starting from a 4-vector potential we can obtain equations of motion
for a charged particle in the electromagnetic field

By definition

Therefore (S.2.8.1) becomes

In this case of one-dimensional motion, where there is only an electric field
E and momentum in the direction, we obtain

where

b) To show that (P.2.8.1) is a solution to (S.2.8.3), we write

Now

so

Since we may rewrite (S.2.8.4)
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Differentiating,

verifying (S.2.8.3). To show that is the proper time for the particle, we
must demonstrate that

From (P.2.8.1)

So

as required.

c) Define the 4-momentum as where is the energy
and is the momentum The 4-acceleration is given by

From (P.2.8.1), which defines a hyperbola (see Fig-
ure S.2.8a).
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d) From Figure S.2.8b, we see that flashes emitted at a constant frequency
will cross the worldline of the particle until point A, where the trajectory

of the satellite is above To find the number of flashes, we find the
time of intersection of and i.e., The num-
ber of flashes is therefore

e) As shown in Figure S.2.8c, we need the intersection of

and
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where is found from

Thus,

Therefore,

and

2.9    Uniformly Accelerated Motion (Stony Brook)

a) The 4-velocity, by definition

where Therefore,

or
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b) For arbitrary velocity v, the 4-acceleration

For

For

Therefore, we find

In the proper frame of reference, where the velocity of the particle v = 0
at any given moment, and assuming

Using we have

c) from (S.2.9.1) may be written in the form

Using the identity we may rewrite (S.2.9.2)

In the fixed frame, since the acceleration is parallel to the velocity, (S.2.9.3)
reduces to
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So, given that is a relativistic invariant,  Now, differentiating

d) Integrating (S.2.9.4), we have

Taking at we obtain

and so

As Integrating (S.2.9.6) with yields

As (classical limit), (S.2.9.6) and (S.2.9.7) become

appropriate behavior for a uniformly accelerated classical particle.

2.10    Compton Scattering (Stony Brook, Michigan
State)

a) From momentum and energy conservation we can write

where are the momenta and energies of the photon before and after
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the scattering, respectively, are the final momentum and energies of
the electron, and is its initial energy. We have for the electron

and for the photon

So we can rewrite (S.2.10.1) in the form

b) To solve these equations we can express the momentum of the recoil
electron in two ways

from (S.2.10.2).

and for a special case We have

Dividing this equation by we get

Taking into account that we obtain the final result:

2.11    Mössbauer Effect (Moscow Phys-Tech, MIT,
Colorado)

Write the energy and momentum conservation equations:
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where is the momentum of the atom after emitting the photon,
the momentum of the photon, and is the photon’s frequency. Sub-

stituting from (S.2.11.1) into (S.2.11.2) and rewriting it in the
form we can find, after squaring both
sides,

Now taking into account that we can rewrite (S.2.11.3)
as

which is smaller by the amount of than it would have been
without relativistic effects. In the case of a crystalline lattice (Mössbauer
effect), the atoms are strongly coupled to the lattice and have an effective
mass From equation (S.2.11.4) we can see that in this case the
atom practically does not absorb energy, which all goes into the energy of
the photon, and therefore there is no frequency shift due to this effect.

2.12    Positronium and Relativistic Doppler Effect
(Stony Brook)

a) The two photons will have momenta of the same magnitude (but
opposite sign), so their energies are also the same:

where we have chosen their momenta to be along the axis. From these
formulas we can find

The frequency of the photons is

The velocity of the photon is, of course,
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b) To find the velocity and the frequency of the photon in the lab frame we
can use the Lorentz transformations for momentum and energy for the pho-
ton that is registered by the observer (with momentum from (S.2.12.2)):

where are the energy and momentum of the photon in the rest frame,
and are the energy and momentum of the photon in the observer’s
frame.

so the velocity of the photon in the observer’s frame is
which of course is what one would expect. The frequency of the photon
measured by the observer is

where we substitute from (S.2.12.3) of (a). So the original frequency
is redshifted to

2.13 Transverse Relativistic Doppler Effect (Moscow
Phys-Tech)

Intuitively it is clear that the effect is due to a time dilation so
More formally, we can use the energy and momentum

transformation as in Problem 2.12, but it is more convenient to introduce
a 4-vector is a wave vector)

and consider its transformation from the rest frame K to the observer’s
frame

where Substituting this into
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(S.2.13.1), we find

so

Note that the transverse Doppler effect gives only a second order correction
to the frequency

where whereas the longitudinal Doppler effect yields a first order
correction (see Problem 2.12).

2.14    Particle Creation (MIT)

In this problem and in most of the problems involving particle reactions, we
will use units where Compose the invariant quantity for the system

Before the reaction in the rest frame of the proton

where we used After the reaction, in the center of mass frame, the
lowest energy products will take away no momentum, so

Setting (S.2.14.2) equal to (S.2.14.3), we find

So the threshold for this reaction

2.15    Electron–Electron Collision (Stony Brook)

a) The total energy in the laboratory frame

where is the energy of the moving electron and is the energy
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of the electron at rest. The total momentum is simply the momentum
of the moving electron

b) The velocity of the center of mass in the lab frame is defined as

where P and are the total momentum and energy in the lab frame,
respectively.

c) The total energy in the CMF is given by

so

We may also calculate the total energy in the CMF by transforming the
energy of the target from the laboratory frame to the CMF:

Since the target and the projectile have the same energy in the CMF, the
total energy is given by

d) In the center of mass frame the total momentum P = 0, therefore,
and the angle of the scatter The momentum can be

found by considering the 4-momentum of the two particles. We will use
another method here. Before the collision the projectile had a momentum

in the lab frame; in the CMF it had a momentum

and are both along the axis
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As a result of the collision, the momentum of the projectile will only rotate,
and the momentum of the target

The energy of the target or from the same
transformation as that of the projectile

which is, of course, the same as above, where we used the fact that the
energy of the projectile is equal to the target energy, since the masses of
the two particles are the same.

e) In the direction perpendicular to the direction of the incoming particle

To find the component in the lab frame we can again use the Lorentz
transformation of momentum

2.16    Inverse Compton Scattering (MIT, Maryland)

Write the energy and momentum conservation laws in 4-notation, where
we use units in which

where and are the 4-momenta of the photon and electron
before and after the collision, respectively. After subtracting from both
sides of (S.2.16.1) and squaring, we obtain

Here we used and We may rewrite
(S.2.16.2) in the form
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Introducing the angle between the direction of the incident and scattered
photons, we have

From (S.2.16.4)

The maximum energy in (S.2.16.5) corresponds to the minimum of
the denominator which yields (backscattering). There-
fore

Using the fact that and expanding the denominator, we
can rewrite (S.2.16.6) in the form

We may now substitute values into (S.2.16.7):
and so

2.17    Proton–Proton Collision (MIT)

Since the energies of the protons after the collision are equal, they will
rebound at the same angle relative to the initial momentum of the
proton (see Figure S.2.17). Again we use In these units before the
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collision

Using momentum conservation, we have

or

where and stand for and after the collision. Energy conservation
yields

or

Now,

So, we obtain by using (S.2.17.4)

Substituting (S.2.17.6) into (S.2.17.2) and using (S.2.17.5) gives

For i.e., in the classical limit of low velocity, and we obtain
the familiar result that the angle between billiard balls rebounding with
equal energy is 90°. If (extremely relativistic case), then
and

2.18   Pion Creation and Neutron Decay (Stony Brook)

a) The threshold energy for the creation of a neutron and a pion in
the center of mass frame is simply the sum of their masses (in units where
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The 4-momentum of the neutron/pion system in the center of mass
frame is

We must also calculate the energy of the incident particles in the center of
mass frame. However, we may use the relativistic invariance of a product
of 4-vectors (which can be written for a complex system as well as for a
single particle). The 4-momentum in the lab (stationary proton) frame is

Taking the squares of (S.2.18.1) and (S.2.18.2) and equating them, we ob-
tain

Note that in these units Therefore, we have for the threshold
energy

Substituting the values given in the problem

b) Consider the neutron decay following the scheme

where we consider the proton and neutrino as one complex particle. From
energy and momentum conservation, we find
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Substituting (S.2.18.6) into (S.2.18.8), we have

We are looking for the maximum possible momentum of the electron.
It depends only on one variable, where so the maximum

corresponds to a minimum Using (S.2.18.5) and (S.2.18.7), we
obtain

Substituting from (S.2.18.9) into (S.2.18.10) yields

From this equation, the minimum of corresponds to a minimum of
Now,

The minimum of (S.2.18.12) corresponds to There-
fore

where we have substituted the masses in energy units. On the other hand
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From (S.2.18.14), we have

Therefore in regular units

2.19    Elastic Collision and Rotation Angle (MIT)

a) Express conservation of energy as

Conservation of momentum gives

From the information given and (S.2.19.2)

These equations may be rearranged to yield

Substituting (S.2.19.1) into (S.2.19.4) yields

Adding or subtracting (S.2.19.1) from (S.2.19.5) results in

and by (S.2.19.3),

b) Inspection of (P.2.19.3) seems to indicate the way to proceed, since
does not appear. Subtract from both sides of (P.2.19.2) and square:
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c) The instructions in (c) exploit the invariance of a product of 4-vectors
under a Lorentz transformation, here from the laboratory frame to the
CMF. In the laboratory frame

So we have

In the CMF

where

Substitution into (S.2.19.8) yields

Now, so
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d) From (c), in the laboratory frame equals and in the
CMF equals so

Rearrange and square (S.2.19.10):

yielding

If the incident mass has no kinetic energy, in the CMF it should have no
momentum, as seen in (S.2.19.12). If then the frame of parti-
cle 1 is the CMF, so again should equal 0.

e) From (S.2.19.9) and (S.2.19.12) we have

Conservation of energy gives

So
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f) We maximize by letting So

For the final kinetic energy of the incident particle equals 0.



3

Electrodynamics

3.1 Charge Distribution (Wisconsin-Madison)

We can use Gauss’s theorem in its integral form:

where Q is the net charge inside the surface

3.2 Electrostatic Forces and Scaling (Moscow Phys-
Tech)

a) The charged sphere will polarize the neutral one, which acquires a dipole
moment proportional to the electric field created by the charged sphere

The force between the dipole and the charged sphere is given by the product
of the dipole moment and the gradient of the electric field at the dipole:

201
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The condition that after increasing the distance by a factor of two
gives for the new charge

So

b) The charge Q will be distributed uniformly along the wire. So the
Coulomb force between some point on the ring and the rest of the ring will
be proportional to the square of Q and inversely proportional to the square
of the diameter D of the ring

When the ring breaks, the elastic force attempting to maintain the
integrity of the ring is given by

where is the ultimate strength, which depends only on the material of
the wire, and S is the cross section of the wire. At the point when the ring
parts, so equating (S.3.2.1) and (S.3.2.2), we obtain

Scaling up the linear dimensions by a factor of two gives

Therefore

3.3 Dipole Energy (MIT, Moscow Phys-Tech)

a) The dipole is attracted to the plane, as seen from the position of the
image charges (see Figure S.3.3).

b) The field at a point r due to a dipole at the origin is given by

The potential energy U of the dipole in the field of another dipole is given
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by – p . E. Therefore, for two dipoles and

where r is the vector from dipole 1 to dipole 2. Extra care must be exercised
here since this is an image problem and not one where a single dipole
remains fixed and the other is brought to infinity. The force F on the
dipole equals and we want to integrate F from to
where The work done

The work necessary to move the dipole to infinity from a real fixed dipole
is twice that found in (S.3.3.3).

3.4 Charged Conducting Sphere in Constant Electric
Field (Stony Brook, MIT)

Look for a solution of the form
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where · r is the potential due to the external field and is the
change in the potential due to the presence of the sphere. The constant
vector defines a preferred direction, and therefore the potential may
depend only on this vector. Then, the only solution of Laplace’s equation
which goes to zero at infinity is a dipole potential (see, for instance, Landau
and Lifshitz, Electrodynamics of Continuous Media, §3)

where A is some constant (alternatively, we may write the solution in terms
of Legendre polynomials and obtain the same answer from the boundary
conditions). So

On the surface of the sphere, is constant:

where is the angle between and r (see Figure S.3.4). From (S.3.4.3),
we find that and finally

The surface charge density

3.5 Charge and Conducting Sphere I (MIT)

a) First replace the sphere by an image charge that will create zero potential
on the surface of the sphere. We know that is possible to do so with only
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one image charge since we can always find a spherical surface of zero
potential for two charges (see Problem 3.18). In general, we must consider
the potential at arbitrary points on the surface. Consider, for simplicity,
two points A and B on opposite sides of a diameter (see Figure S.3.5a).
The potentials at points A and B due to the two charges and are,
respectively,

and

or

From (S.3.5.3) and (S.3.5.4), we can find and

For a neutral sphere, the total charge is constant (Q = 0), so we have to
add yet another charge and at the same time keep the potential
constant on the surface of the sphere (see Figure S.3.5b). Obviously, we
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must put this charge at the center of the sphere. The potential on the
surface of the sphere is therefore

(since the potential due to the other two charges is zero).
b) The force can be found from the interaction between the charge and
the two image charges and The force is attractive and directed along
the radius vector to

3.6 Charge and Conducting Sphere II (Boston)

at a distance

from the center of the sphere. The force on can be computed as the force
between it and the image charge

Now, if

If then

We may look at this case in a different way, for the sphere looks
like an infinite conducting plane. So the force should not differ much from

In Problem 3.5, we found the expression for the force acting on the charge
in the presence of an insulated conducting sphere. For the grounded sphere,
the potential on the surface of the sphere is zero, and therefore there is only
one image charge
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the force between the charge and the image charge (see Problem 3.9).

3.7    Conducting Cylinder and Line Charge (Stony
Brook, Michigan State)

a) The image line charge together with the wire should provide a constant
potential on the surface of the cylinder. The potential due to the image

line charge at a distance (point P in Figure S.3.7) is

where is the linear charge density and r is the distance from the axis of
the cylinder to the line charge (see Figure S.3.7). The potential due to the
charged wire, similarly, is

From the condition that

goes to 0 as we have
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Again taking for simplicity two opposite points A and B on the surface of
the cylinder, we find

Subtracting (S.3.7.4) from (S.3.7.3) and using (S.3.7.2), we obtain

which yields the position of the image charge

The potential on the surface

We can check (see (b)) that this is the potential for any two points on the
surface of the cylinder.

b) From (S.3.7.1) and (S.3.7.2), we have

In cylindrical coordinates, So

For as in (a).

3.8 Spherical Void in Dielectric (Princeton)

We expect the dipole to induce some charge in the dielectric which would
create a constant electric field inside the void, proportional to the dipole
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moment p. Therefore the field inside is due to the dipole field plus (pre-
sumably) a constant field. The field outside is the “screened” dipole field,
which goes to zero at infinity. We look for a solution in the form

where n is normal to the surface of the void (see Figure S.3.8). Use the

boundary conditions to find the coefficients and

and so

Write (S.3.8.1) and (S.3.8.2) at some point P on the surface of the void

where is the angle between p and the normal to the surface of the void,
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We solve for and in (S.3.8.5) and (S.3.8.6):

and find

3.9 Charge and Dielectric (Boston)

a) The electric fields just above and below the dielectric due to the charge
and the surface charge are, respectively,

b) From we have for the polarization P and its normal
component to the boundary

c) Using (S.3.9.2) in (S.3.9.3), we have

So

d) The field at the position of the charge due to the surface charge is
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where is the area. We can rewrite this integral in cylindrical coordinates:

This can be interpreted as an image charge

at a distance from the charge (see Figure S.3.9).

e) The force on the charge is

3.10 Dielectric Cylinder in Uniform Electric Field
(Princeton)

First solution: Introduce polar coordinates in the plane perpendicular to
the axis of the cylinder (see Figure S.3.10). In the same manner as in
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Problem 3.4, we will look for a potential outside the cylinder of the form

where and is a solution of the two-dimensional Laplace
equation, which may depend on one constant vector E

where A is some constant (see, for instance, Landau and Lifshitz, Electro-
dynamics of Continuous Media, §8). Inside the cylinder, the only solution
of Laplace’s equation that is bounded in the center of the cylinder and
depends on E is

Using the condition on the potential at we find

from which we find

We now have

Using the boundary condition we find
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So we obtain

The polarization is

So the dipole moment per unit length of the cylinder is

which corresponds to the potential

The surface charge density is

Second solution: Use the fact that for any dielectric ellipsoid with a dielec-
tric constant immersed in a uniform electric field in vacuum, a uniform
electric field inside is created (see, for instance, Landau and Lifshitz, Elec-
trodynamics of Continuous Media, §8). Therefore there must be a linear
dependence between where the applied field is along
the

where and are coefficients independent of the dielectric constant of the
ellipsoid and only depend on its shape. For the trivial case in which
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Therefore

For a conducting ellipsoid (which can be described by a dielectric constant

where is the depolarization factor. From (S.3.10.9), we have

Finally (S.3.10.8) takes the form

For a cylinder parallel to the applied field along the but
Equation (S.3.10.10) becomes

and

as in (S.3.10.6) above.

3.11 Powder of Dielectric Spheres (Stony Brook)

To find the effective dielectric constant, we must first find the polarization
of the spherical particles. Consider a dielectric sphere placed in a uniform
electric field Since the field at infinity is and the field
produced by the sphere must be a dipole field (see Problem 3.10), try a
solution outside the sphere:

Inside the sphere, try a field oriented in the direction of the original field
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The usual boundary conditions apply:

Taking (S.3.11.3) and (S.3.11.4) at points A and B, respectively (see Figure
S.3.11),

Solving (S.3.11.5) and (S.3.11.6) for yields

so

The dipole moment is found by substituting (S.3.11.7) back into (S.3.11.6):

Using the condition (low concentration of particles), we can dis-
regard the interaction between them. The polarization of the medium then
is given by the dipole moment per unit volume. Here, we have dipoles
per unit volume, so
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Now, so

The apparent but wrong answer comes about by ne-
glecting the shape of the particles and considering as the average of
the dielectric constant of free space, 1, and the dielectric constant of the
spheres,

3.12 Concentric Spherical Capacitor (Stony Brook)

a) By using Gauss’s theorem and the fact that charges rearrange themselves
so as to yield a zero electric field inside the conductors, we infer that all
of will reside on surface 2 of the inner sphere, on surface 3 of the
outer sphere (no field in the interior of the outer sphere), and
on surface 4 of the outer sphere (see Figure S.3.12). The surface charge

densities are straightforward to calculate as the charge divided by surface
area:

If there is no charge on the external shell, simply on surface
2 and on surface 3. The mutual capacitance may be calculated from

where is the difference in electric potential between the
spherical shells. Again using Gauss’s theorem to calculate the magnitude
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E of the electric field between the shells, we have

b) The D field behaves like the E field before:

so, between the spheres

The real and polarization surface charge densities on surface 1 are still zero,
and on surface 2, we find

Likewise, on the third and fourth surfaces,

Finally, the capacitance may be found:
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3.13 Not-so-concentric Spherical Capacitor (Michigan
Tech)

a) For we have the boundary conditions

which with Gauss’s law yield for the potential between and

b) Introduce spherical coordinates with the polar axis along the line
(see Figure S.3.13). Find the equation of the sphere in these coordinates.

From the triangle we have

We can expand as a sum of spherical harmonics using a general formula:

or simply by expanding the square root to first order in
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So

and we have

The term represents the deviation from concentricity and should
be zero at We look for a potential as an expansion of spherical
harmonics to first order in

With the boundary conditions in (S.3.13.1)

The first term in (S.3.13.4) should be the same as in (a)

We may find  and by checking the potential on the inner and outer
spheres. On the inner sphere and the potential is a constant, and so
must be independent of This yields

Substituting (S.3.13.5) back into (S.3.13.4), we now check the potential on
the outer sphere, where
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Neglecting terms of order we find

Finally,

The charge density on the inner sphere is

The force on the sphere may now be calculated by integrating the com-
ponent of the force on the differential areas of the surface

The only term which survives is the cross term

We can check this result in the limit of against the force between a
charge inside a neutral sphere and the sphere (see Problems 3.5, 3.6).

3.14  Parallel Plate Capacitor with Solid Dielectric
(Stony Brook, Michigan Tech, Michigan)

To solve this problem, the capacitance of a parallel plate capacitor must be
calculated with and without a dielectric inserted. We then recognize that
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the two capacitors are in parallel in order to infer the total capacitance,
and we then use the expression for the energy contained in the capacitor
to determine the force on the dielectric. The potential difference between
the plates is given by

where is the surface charge density Since Q = CV, we find

a) With a dielectric inserted, the capacitance is modified. E is replaced
by D in (S.3.14.1), where The potential V is still the integral of

so we find that the capacitance is multiplied by In this problem,
the dielectric is inserted only a distance between the plates (see Figure

S.3.14). As the total capacitance of two capacitors in parallel is simply the
sum of the individual capacitances, we find that the new capacitance is

The energy stored in a capacitor is given by

In (a), the battery has been disconnected from the capacitor. As the dielec-
tric moves either into or out of the capacitor, the potential V will change
while the charge Q is constant. So we use the first part of (S.3.14.4). The
force on the dielectric is found from

From (S.3.14.3) and (S.3.14.4) we have
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so

Expressing in terms of a potential difference V

we obtain

Since the dielectric slab will be drawn further between the plates
will increase).

b) In this case, V is constant, not Q, and we must now take into account
the electric potential energy of the battery. For some small change of the
system,

Since Q = CV, and the potential is held fixed  so

Note the minus sign. If the electric potential energy of the battery had
been ignored, the expression would be incorrect (see also Problem 3.17).
We now wish to find

as obtained in (a). Note that the force goes to zero when as expected.

3.15 Parallel Plate Capacitor in Dielectric Bath (MIT)

a) As in Problem 3.14, the capacitance of the parallel plate and dielectric
system is simply the sum of two capacitors in parallel:

b) The charge is constant as the plates are lowered into the dielectric bath,
but the potential between the plates is not. After charging,
Lowering the plates into the fluid to a height L/2 changes C from to
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The new potential may be found from

So

Since

c) From Maxwell’s equation we find that but

From (b), we obtain

where the fluid is between the plates. The surface charge density where
there is no fluid is

d) To determine the height difference between the liquid between the plates
and in the external reservoir, we consider the sum of the electrical and
gravitational potential energies of the capacitor and fluid. Let the height
difference be given by and a small change in the height be produced by

(see Figure S.3.15) . The gravitational potential energy is given by the
integral
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so that the total potential energy

Again we have written the electrical potential energy in terms of the charge
Q, since the potential changes as the fluid rises or falls. Writing out the
capacitance, we get

At equilibrium, the force on the liquid is zero, or the derivative of the
potential energy is zero

At equilibrium, i.e.,

Rewriting (S.3.15.4) in terms of V, we obtain

Alternatively, we can use the result of Problem 3.14 (S.3.14.6) and equate
the force

to the weight of the dielectric

From (S.3.15.5) and (S.3.15.6) we find

as in (S.3.15.4).
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3.16 Not-so-parallel Plate Capacitor (Princeton (a),
Rutgers (b))

a) Consider this problem in cylindrical coordinates, so that the plates are
along the radii (see Figure S.3.16). The Laplace equation, then

becomes

Writing we may separate (S.3.16.1) into two differential
equations

where R is the radial part of the potential, is the azimuthal part, and
is some constant. In the small-angle approximation (which can be assumed
since we are allowed to disregard the edge effects), we can say that R is
independent of and then

for which we have the solution From the boundary condition
we have B = 0, and using the other condition we

find that

where
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b) Using the result of and the expressions for the of the field energy U
contained in a capacitor, we may find the capacitance. We have

Here,

so (S.3.16.5) becomes

Hence, the capacitance

In the limit of (the case of a parallel plate capacitor), (S.3.16.6)
reduces to

which is equivalent to the result found in (S.3.14.2) of Problem 3.14.

3.17 Cylindrical Capacitor in Dielectric Bath (Boston,
Maryland)

a) For the first case (fixed charge), the generalized force can be calculated
as usual by considering the change in potential energy of the capacitor (field
source) written in terms of the charge of the capacitor (which is a closed
system). So, in this case,

If the capacitor is connected to the battery, it is no longer a closed system,
and we have to consider the energy of the battery also. The battery must
do some work to keep the potential of the plate constant. This work
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is

The energy change of the total system

Therefore, the force

b) The energy of the capacitor

where A is the area of the plates. From (S.3.17.1)

In the case of constant voltage

c) The capacitance of a cylindrical capacitor may be found by calculating
the potential outside a uniformly charged cylinder. Gauss’s theorem gives

where is the linear charge density of the cylinder, and is the radius of
the cylinder. The potential of the outer cylinder of the capacitor in the
problem is V. So

For a cylinder of length H, the capacitance may be found from (S.3.17.4)
by substituting
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For the capacitor of length H filled with dielectric up to a height (see
Figure S.3.17)

Here, we use (S.3.17.2) to obtain

The liquid is drawn into the capacitor. The weight of the liquid in the
capacitor

where is the volume of the liquid drawn up between the cylinders
and is the mass density of the liquid. Equating (S.3.17.7) and (S.3.17.8),
we get

3.18 Iterated Capacitance (Stony Brook)

a) We found in Problem 3.5 that a charge a distance R from a conducting
sphere of radius a produced an image charge a distance from the center
of the sphere, where

Using this result, we may verify that charges and a distance
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apart do indeed give a spherical equipotential surface. The problem is
cylindrically symmetric, so we establish a circular equipotential by writing
down the potential due to the two charges (see Figure S.3.18a). Given that

we find the sum of the potentials

for a circle of radius If we have

With

as required. Given that the separation of the two charges is some distance
we may find the radius of the sphere a and the location of the

center with respect to one of the charges R using (S.3.18.1):

b),c) In general, the charge and potentials of a number of conductors are
related by the linear equations

where and are called coefficients of capacity and induction, respec-
tively. In the case of two conductors carrying equal but opposite charges,
the capacitance is defined by the ratio of the charge on one conductor to
the potential difference between them. For our two-sphere capacitor, we
have
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The capacitance may be found by setting and calculating

If we choose the zero of potential at infinity, it is clear that so
we have for the capacitance

This is a specific case of a more general result (see, for instance, Landau
and Lifshiftz, Electrodynamics of Continuous Media, §2)

Now we may calculate and by placing a charge Q on the first
sphere, giving it a potential then placing an image charge inside
the other sphere to keep it at zero potential. In turn, we place an image
charge inside the first sphere to restore the potential to whereupon
we. ... Operationally, we have from (S.3.18.1) (see Figure S.3.18b)

c) For our problem, and so we find
and Since we maintain we have

from the first of (S.3.18.3)
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So

Since we find from the second of (S.3.18.3) by summing the first
two image charges in sphere 2

So

Finally, we have

See Smythe, Static and Dynamic Electricity §5.08 for further details.

3.19 Resistance vs. Capacitance (Boston, Rutgers (a))

a) Enclose one of the conductors in a surface and use Maxwell’s equation
(see Figures S.3.19a and S.3.19b)

So

Take the volume integral of (S.3.19.1) and transform into a surface integral:
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Using this result and the definition of C, we find

which yields

Now treat the resistor problem by starting with Finding the
current flux through the same surface,

So

Equating (S.3.19.3) and (S.3.19.4), we find

and finally

The parallel plate capacitor has the following capacitance and resistance:

Thus, we confirm the general result for RC.

b) Find the potential at the surface of each conductor:

So

c) Following the hint, consider the potential drop from each conductor to
infinity when first and then

so
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In the same fashion

Now, and where So
we obtain for R

d) Multiplying (S.3.19.7) by (S.3.19.8), we find the result in (S.3.19.5) with

3.20  Charge Distribution in Inhomogeneous Medium
(Boston)

From the Maxwell equation for

we have

Substituting for E in (S.3.20.1) (for an isotropic medium where J is
the current density), we find

From the condition that the current is stationary and substituting
back for J,

and so
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3.21 Green’s Reciprocation Theorem (Stony Brook)

(See Problems 1.12 and 1.13 of Jackson, Classical Electrodynamics)
a) We may prove the theorem by considering the volume integral of the
following expression:

Integrating by parts in two ways, we have

Now, (where n points opposite to the directed area of the
surface S) and so dividing (S.3.21.1) by yields the desired
result:

b) Let us introduce a second potential given by corresponding
to a surface charge density on the upper plate of and on the lower plate
of 0 (see Figure S.3.21). This introduced potential has no charge in the
volume, and the real potential is zero on the plates so that the right-hand
side of (S.3.21.2) is zero, yielding

where is the induced charge. So on the upper plate,
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3.22 Coaxial Cable and Surface Charge (Princeton)

Write down Laplace’s equation in the region between the cylinders in cylin-
drical coordinates:

By cylindrical symmetry, does not depend on (see Figure S.3.22), so

Laplace’s equation reduces to

As usual, we look for a solution in the form

and (S.3.22.1) becomes

From (S.3.22.2), we have
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where is a constant. By translational symmetry along the

so and

where and are constants. The radial part then becomes

So

Imposing the boundary condition that leads to and we
have

where is a constant We may write the potential differences
along the cable as

where we used the uniformity of the current density J and isotropic
electrical conductivity. We now have

From (S.3.22.8), we find
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For the potential is the same as on the surface, and from (S.3.22.7)
and (S.3.22.9)

The surface charge density is

where and correspond to the points outside and inside the inner
cylinder, respectively.

3.23 Potential of Charged Rod (Stony Brook)

a) The potential along the may be computed by integrating along
the rod:

where

b) Since the problem has azimuthal symmetry, we may use the Legen-
dre polynomials and rewrite the expansion in (P.3.23.1) (see §3.3
of Jackson, Classical Electrodynamics and Figure S.3.23)

Since we consider all the are zero, and
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We wish to equate (S.3.23.2) along the with (S.3.23.1) where
for all We must rewrite as a sum. Now,

So

Rewriting (S.3.23.1) using (S.3.23.3), we find

Replacing by

Using (S.3.23.2) and (S.3.23.4), we have

3.24 Principle of Conformal Mapping (Boston)

A differentiable function satisfies the Cauchy–
Riemann conditions
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To check that U and V satisfy Laplace’s equation, differentiate (S.3.24.1)

or

Similarly,

and

b) Orthogonality of the functions F and G also follows from (S.3.24.1):

c) The electric field of an infinitely long charged wire passing through the
origin is given by where and is the charge
per unit length, is the distance from the wire (see Figure S.3.24). The
complex potential



240 SOLUTIONS

So

The fields F and G are given by

Note how F and G satisfy the conditions of parts (a) and (b). The mag-
netic field of a similarly infinite line current can be described by the same
potential.

3.25 Potential above Half Planes (Princeton)

This problem is symmetric for displacements along the so we can
consider this a two-dimensional problem in the plane, a candidate for
the method of conformal mapping. It can be seen that the function

transforms the initial plane so that points at
for map into the line and the points at for map
into the line (see Figure S.3.25). In the plane

so that at and at Again using
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we obtain

so that

We then have

and

or using

we find

We can check that satisfies the boundary conditions.

3.26 Potential of Halved Cylinder (Boston, Princeton,
Chicago)

This problem can be solved by several methods. We will use conformal
mapping. Namely, we will try to find a function where to
transform the curves of equal potential (in the cross section of the three-
dimensional body) into parallel straight lines in the plane, where

with both and satisfying the Laplace’s
equation. We can easily find the solution for the potential problem in the
plane, and because of the properties of a conformal mapping (see Problem
3.24), the functions or will be a solution to the
initial potential problem. For this problem, we can use the transformation
(see, for instance, Spiegel, Schaum’s Outline, Complex Variables or Kober,
Dictionary of Conformal Representations for many useful conformal maps)

This will transform a circle into two straight lines (see Figure S.3.26).
The upper half of the cylinder will go into and the lower half will



242 SOLUTIONS

go into So we have

Denote the argument of the natural log as where and are real.
Then.

So On the other hand,

For a complex number we have

Using (S.3.26.5), we obtain from (S.3.26.3)

or

So the potential which satisfies is
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On the

A different solution to this problem may be found in Cronin, Greenberg,
Telegdi, University of Chicago Graduate Problems in Physics.

3.27 Resistance of a Washer (MIT)

From the cylindrical symmetry of the washer, there is no radial dependence
of the potential. We can therefore consider infinitesimal current rings flow-
ing through the washer and sum them to obtain the total current and
thereby the lumped resistance. Given that the potential difference between
the faces of the cut washer is V, we have

where r is the radius of one of the current rings. Integrating (S.3.27.1) from
the inner to the outer radius,

so the resistance

The resistance of the washer is bounded by the resistances of a bar
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in cross section and either or in length:

3.28 Spherical Resistor (Michigan State)

The current density at point P may be written down immediately because
of the cylindrical symmetry of the problem (see Figure S.3.28). The current

I is divided evenly through        so that the current density J at each point
in the spherical shell is

From the equation where is the conductivity of the shell, we
obtain

where V is the potential difference between the two electrodes. So

From the hint in the problem (which can by computed by using the substi-
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tution tan  we can take the integral in (S.3.28.2):

As the radius of the electrodes goes to zero, the resistance goes to infinity!

3.29 Infinite Resistor Ladder (Moscow Phys-Tech)

Define equivalent resistances R and as shown in Figure S.3.29a. By
symmetry, the equivalent resistances attached to points A and C are both
R. The total resistance between terminals A and C is the sum of the series
resistance

Now, rewrite the ladder one rung back, as in Figure S.3.29b. The new
resistance should equal the original given that an infinite ladder
of resistors has a finite resistance between the terminals in the first place.
Without calculating loops, it can be seen that does not contribute to
the resistance (Remove What would be the potential difference
between its terminals?). Ignoring we have the equivalent circuit in
Figure S.3.29c. The loop on the right may be replaced by
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so

But, from (S.3.29.1),

We arrive at the quadratic equation

whose positive solution,

gives a resistance of for Calculation of can be done
in the same manner as for

3.30 Semi-infinite Plate (Moscow Phys-Tech)

Consider the voltage difference between arbitrary points (E, F) a distance
from the end (see Figure S.3.30). We can write

Since the plate is semi-infinite, (P.3.30.1) is true for any other points (G, H)
of the plate. So
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Hence, for an arbitrary point a distance from the end, we have

or

From the condition we have

Therefore

For the values given in the problem, the voltage measured a distance
from the end gives the function

3.31 Magnetic Field in Center of Cube (Moscow Phys-
Tech)

The field can be calculated directly from the current flowing in each of the
edges of the cube and then expressed in terms of but it is easier to use
symmetry considerations. In Figure P.3.31a, the field is clearly parallel to
the is perpendicular to the face of the cube), so
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For the problem at hand, we can add several of these “current loops” in
order to produce the configuration given in Figure P.3.31b, noting that two
overlapping but opposite current legs produce no field (see Figure S.3 31).
From the figure, we see that there are now three faces of the cube with a cur-
rent I flowing about their edges: ABCD, AFGB, and ADEF, producing
the fields

So the total field  where the direction is along the diagonal
of the cube and the magnitude is

3.32 Magnetic Dipole and Permeable Medium
(Princeton)

a) Use the method of images. We place another dipole at the
point at the same distance on the other side of the plane separating
the vacuum from the permeable medium (see Figure S.3.32). Compute the
field in medium 1 as a superposition of the dipole fields from m and To
find the field in medium 2, we put yet another dipole at point
O. We can write this in the form

where n, are unit vectors in the directions r, respectively, and indices
1 and 2 correspond to media 1 and 2. As usual, we write the boundary
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conditions at some point P on the plane where

Substituting (S.3.32.1) and (S.3.32.2) into (S.3.32.3) and (S.3.32.4), we ob-
tain

From (S.3.32.5) and (S.3.32.6), we have

which yield

So the field in medium 2 is

b) The force acting on a dipole m is determined only by the field of
the image dipole in medium 2

The dipole is attracted to the medium. The result for the equivalent prob-
lem of an electric dipole near a halfspace filled with an ideal conductor can
be obtained from (S.3.32.8) by letting

where is the electric dipole moment.
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3.33 Magnetic Shielding (Princeton)

a) By analogy with electrostatics, we assume that the shell can be described
by a magnetic dipole placed in the center of the shell for and try to
satisfy boundary conditions for H and B. We can write

where (S.3.33.1), (S.3.33.2), and (S.3.33.3) are written for areas 1, 2, and
3 outside the shell, at and inside the shell, respectively (see
Figure S.3.33); and are numerical factors that we shall find from

the constitutive relation and n is a unit vector parallel to r. From
(S.3.33.1)–(S.3.33.3), we can impose conditions for the normal components
of B and the tangential components of H, taken at the same angle
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where (S.3.33.4) and (S.3.33.5) apply to interface 1–2, while (S.3.33.6) and
(S.3.33.7) apply to interface 2–3. Dividing out the and
appropriately, we obtain

This system of four equations for the four numerical coefficients may be
easily solved. Using (S.3.33.10) and (S.3.33.11), we find

and from (S.3.33.8) and (S.3.33.9), we obtain

Now we can calculate which is the attenuation factor we seek. Isolating
from (S.3.33.10) and (S.3.33.11) and substituting we have

b) In the limit of high permeability we arrive at

For and
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3.34 Electromotive Force in Spiral (Moscow Phys-
Tech)

The electromotive force is given by

where is the magnetic flux, and we used As another
solution, in the approximation of a large number of coils, we can consider
the coil to be a circle of radius Then,

where is the area of the coil. So we find for the
electromotive force between the ends of a single coil

Summing up over all the coils from (S.3.34.2), we obtain the total electro-
motive force (S.3.34.1)

where we have used the approximation

for

3.35 Sliding Copper Rod (Stony Brook, Moscow
Phys-Tech)

a) In this problem, so the magnetic flux through the surface
limited by the rod and the rails changes as a result of the change of
the surface area S (since the rod is moving). This gives rise to an
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electromotive force

where is the magnetic flux, so

In its turn, produces the current through the rod:

where R is the resistance of the rod, A is its cross section, and is
the conductivity of the rod. The force acting on the rod is

On the other hand, So we have

b) For an estimate we can take that the rod practically stopped when
(It is good enough for an estimate, since for the

final velocity is and for
So for

c) The kinetic energy of the rod is where
M is the total mass of the rod. We can simply take the derivative of
this kinetic energy per unit volume:

where V is the volume of the rod. On the other hand, the Joule
heating per unit volume

so
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3.36 Loop in Magnetic Field (Moscow Phys-Tech,
MIT)

The magnetic force acting on the loop is proportional to its magnetic mo-
ment, which is proportional to the current flowing through the loop. The
current I, in turn, is proportional to the rate of change of the magnetic flux
through the loop, since where is the electromotive force and
R is the resistance of the loop. We have

But is the velocity of the loop. So the electromotive force increases
with the velocity, and therefore the magnetic force acting on the loop
also increases with velocity, while the only other force, gravity, acting in the
opposite direction, is constant. Therefore, the velocity will increase until

From energy conservation, the work done by gravity during this
stationary motion goes into the Joule heating of the loop:

But, since the velocity is constant,

where we substituted from (S.3.36.3) again using From
(S.3.36.5), we can find

Now, substituting

and

The magnetic flux in (S.3.36.1) is given by

where S is the area of the loop. From (S.3.36.1),
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into (S.3.36.6), we obtain

3.37 Conducting Sphere in Constant Magnetic Field
(Boston)

In the frame moving with velocity v, we have, to lowest order in
(see Problem 3.51),

In the lab frame K, we have E = 0 and Using (S.3.37.1) for the
frame we have an electric field in this frame

where Now, we have a perfectly conducting sphere in a
constant electric field, so we may write the potential outside the sphere in
the form (see Problem 3.4)

where is the angle between r and or, in this case, between r and
(the origin of the spherical coordinates is at the center of the sphere). The
surface charge density a is given by

Finally, substituting from (S.3.37.2), we have
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3.38 Mutual Inductance of Line and Circle (Michigan)

Label the circular wire conductor 1 and the straight wire conductor 2 (see
Figure S.3.38). Recall that the mutual inductance of two conductors is
given by

where is the current flowing in conductor 2 and is the magnetic flux
from conductor 2 through the surface bounded by conductor 1 (In modi-

fied Gaussian units, See, for instance, Jackson, Classical
Electrodynamics, p.820).

where is the magnetic field produced by the straight wire and is the
element of area of the loop. The magnitude of the field due to a current in
an infinite wire

is perpendicular to the plane of the loop. So, from (S.3.38.1)–(S.3.38.3), we
have

Let be the center of the circle, and locate the infinite wire at
Then (S.3.38.4) becomes
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Using the substitution we obtain

3.39 Faraday’s Homopolar Generator (Stony Brook,
Michigan)

a) Consider an electron at a distance from the axle (see Figure S.3.39).
It experiences a Lorentz force

with so we have a radial force acting on the electron:

where is the electron charge. Therefore, the equivalent electric field E =
and the voltage between and is

The current through the resistor R is given by
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b) The power P dissipated in the resistance can be found from (S.3.39.3)

The kinetic energy of the disk

where I is the moment of inertia of the disk. From energy conservation, we
may write

For a constant angular velocity we have

So

and

3.40 Current in Wire and Poynting Vector (Stony
Brook, MIT)

a) Let us calculate the flux of the Poynting vector. Introduce cylindrical
coordinates with unit vectors and Current flows along the wire
in the direction and the electric field Using one of Maxwell’s
equations in vacuum, the fact that conditions are stationary, and Stokes’
theorem,

where J is the current density and A is the surface. At any given radius
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is constant, so we have

Using the relation between current density and total current

b) The Poynting flux per unit length is then So the flux
enters the wire, and we see that the dissipated power per unit length IE is
equal to the total incoming S-flux, in agreement with Poynting’s theorem:

where is the energy density. Under stationary conditions such as ours

and we have

3.41 Box and Impulsive Magnetic Field (Boston)

a) From the Maxwell equation

we can find the electric field induced in the box. We have for the and
components
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From these equations, we obtain

where is some constant. From the equation for the force

we obtain the impulse received by the box when the magnetic field goes to
zero

b) The initial momentum may be found from the Poynting vector

which is the same result as (S.3.41.3)

3.42 Coaxial Cable and Poynting Vector (Rutgers)

As in Problem 3.22, we have Laplace’s equation in cylindrical coordinates
whose solution is

From the boundary conditions,



ELECTRODYNAMICS 261

Integrating the voltage drop along the cable (see Figure S.3.42), we find

and so

resulting in

The electric field

b) The magnetic field in the region can be found from
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c) The Poynting vector is

Transforming E into Cartesian coordinates (see Appendix), we have

The same transformation applies to H, so we obtain

So

We now write the flux and into the inner and outer conductors,
respectively, from (S.3.42.10):

where R is the resistance of a length of each conductor. The total flux
going into the conductors which corresponds to the
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Joule heating of the conductors (see also Problem 3.40). Since there is
no current in the vacuum between the conductors and the conditions are
stationary, Poynting’s theorem (see (S.3.40.5)) gives

The total flux is zero. There must also be a corresponding negative flux
into the volume through the ends to satisfy Poynting’s theorem. Indeed

as expected.

3.43 Angular Momentum of Electromagnetic Field
(Princeton)

By analogy with the electric dipole, we can write the magnetic field from
the magnetic dipole M as

where is the distance from the center of the spheres (see Figure S.3.43).
The electric field is nonzero only between the spheres:

The electromagnetic angular momentum is given by the volume integral
of where is the electromagnetic momentum density (see, for in-
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stance, Jackson, Classical Electrodynamics, §6.13). The electromagnetic
momentum density is

where S is the Poynting vector and is the speed of light. Using the
definition of the Poynting vector

we obtain for our field configuration

(S.3.43.5) may be rewritten in the form

Choose spherical coordinates with the in the direction of the vector
M, taking into account that

We notice that the and components of the second integral vanish, and
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3.44 Plane Wave in Dielectric (Stony Brook,
Michigan)

a) We assume that the dielectric constant is essentially real (no dissi-
pation). For a monochromatic wave travelling in the direction with

we can write the sourceless Maxwell equations

Substituting the explicit form for E (and H) produces the following ex-
change:

So (S.3.44.1) and (S.3.44.2) become

Orient the axes so that and (see Figure S.3.44). Then,
the boundary conditions (which require continuity for the tangential com-
ponents of E and H) become

where the indices 1 and 2 correspond to dielectric media 1 and 2 (see Figure
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where we have substituted the indices of refraction of the
two media. Similarly, the fraction of the energy reflected back into the first
medium

SOLUTIONS

S.3.44). From (S.3.44.3),

The field in medium 1 is the sum of the incident wave and the reflected
wave whereasthe field in medium 2 is due only to the transmitted wave

Using the boundary conditions and (S.3.44.5), we obtain

Solving (S.3.44.6) for and

b) The energy flux in a monochromatic wave is given by the magnitude of
the Poynting vector,

(see, for instance, Landau and Lifshitz, Electrodynamics of Continuous Me-
dia, p. 285). So the incident and transmitted fluxes and respectively,
are, from (S.3.44.7)

The fraction of the energy transmitted into the second medium is

where is the magnitude of the Poynting vector for the reflected wave.
We can check that T + R = 1 by adding (S.3.44.9) and (S.3.44.10).
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3.45 X-Ray Mirror (Princeton)

Calculate the dielectric constant of the metal under the assumption that the
electrons in metals are free and disregarding any scattering on the atoms,
since they are much heavier than electrons Under the influence
of the X-rays, the electrons only move a small fraction of the distance
between atoms, so the field due to the atoms is nearly uniform over one
period of the X-ray. Thus, we may write

where or

The current density in the field is

where is the density of electrons in the metal. Using the Maxwell equa-
tion,

Substituting (S.3.45.2) into (S.3.45.3), we have

in which we used From (S.3.45.4)
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For two media with (see Figure S.3.45),

For the largest angle of refraction corresponds to the critical
angle for the incident wave:

So

3.46 Plane Wave in Metal (Colorado, MIT)

a) Starting with Maxwell’s equations, we may follow a standard procedure
to arrive at the wave equation for the fields and then the dispersion rela-
tions:

First take the curl of (S.3.46.4)

Using the identity

in (S.3.46.5), we obtain

First take the curl of (S.3.46.4)

Using the identity

in (S.3.46.5), we obtain



ELECTRODYNAMICS 269

Inside the conductor, we must use the relations and in
(S.3.46.6). Therefore (S.3.46.6) becomes

Using (S.3.46.2) and in (S.3.46.7), we obtain the wave equation
for H of the wave propagating in the direction (see Figure S.3.46):

Disregarding the displacement current (which is equivalent to the condition
we obtain from (S.3.46.8)

For our case so we have

Substituting the plane wave solution into (S.3.46.9)
results in

or

Assuming that the electric field in the incident wave is polarized in the
direction and the magnetic field in the direction, and the amplitude of
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the field outside the conductor is we can obtain the fields inside

where is the characteristic penetration depth of the field
(skin depth). From the boundary conditions we have

The electric field inside the conductor

Therefore

where the phase shift comes from the factor Equation
(S.3.46.14) is a special case of a more general formula

where n is a unit vector in the direction of the wave propagation, and

is the surface resistance.

b) The ratio of the amplitude of the magnetic field to that of the electric
field inside the metal from (S.3.46.13) and (S.3.46.15) is in this approxima-
tion

Therefore the energy of the field inside a good conductor is mostly the mag-
netic energy.
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c) The power per unit area P transmitted into the metal is given by the
flux of the Poynting vector:

Wave Attenuation (Stony Brook)

a,b) We obtain the equation for the electric (magnetic) field in the same
way as in Problem 3.46 (see (S.3.46.8))

c) Now, taking in the form and substituting into
(S.3.47.1) yields

We have

To solve for the square root of the complex expression in (S.3.47.3), write

where and are real, and

By squaring (S.3.47.4), we find

3.47
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Taking from (S.3.47.6) and substituting it into (S.3.47.5), we have for

where we have chosen the branch of the root with the plus sign to satisfy
(vacuum) (no dissipation). So

Therefore, the attenuation length for the amplitude

whereas for the intensity, the attenuation length is

d) For the frequency given in the problem,

and so we can disregard the 1’s in (S.3.47.8) and rewrite it as

At a depth of 10 m below the surface, the intensity attenuation at this
frequency will be

which implies that transmission of signals to submerged submarines will
require much lower frequencies, (see also Jackson, Classical
Electrodynamics
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3.48 Electrons and Circularly Polarized Waves
(Boston)

a) Find the equations of motion of the electron in the and directions at
for

Multiply (S.3.48.2) by and add to (S.3.48.1). Substituting the variable
from the hint in the problem, we obtain

(S.3.48.3) may be solved by finding a solution at the driving frequency

The analogous differential equation for is formed by multiplying (S.3.48.2)
by and adding to (S.3.48.1). We find that This gives
for the original variables

For we have

where

Here,

b) A linearly polarized wave may be viewed as the sum of two circularly
polarized waves of opposite helicity (see Figure S.3.48). After propagating
through the medium, the waves will be delayed by different phases, given



Classical Atomic Spectral Line (Princeton,
Wisconsin-Madison)

a) The equation

has a solution

with initial conditions and where we used
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The plane of polarization is now along the bisector of the circularly polar-
ized vectors and forms with the initial plane of polarization the angle

where Substituting (P.3.48.1) into (S.3.48.5), we obtain

3.49
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for In the same approximation, the acceleration

The total energy radiated by the atom

where is the spectral density of the radiation. On the other hand

where we used the formula

and the fact that           at We may write the Fourier transform of
the acceleration

Now, Parseval’s relation (see, for instance, Arfken, Mathematical Methods
for Physicists) gives

Comparing (S.3.49.3) and (S.3.49.6), we obtain for the spectral density
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b) The energy U of the oscillator may be written

The power loss is therefore

This may be equated to the power loss given by the average over one cycle
of (S.3.49.5)

c) We may rewrite (S.3.49.9) as

The linewidth in angstroms may be found from

Now find the time T for the atom to lose half its energy:

The number of oscillations is then
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Lifetime of Classical Atom (MIT, Princeton,
Stony Brook)

If the energy loss per revolution is small compared to the total energy of
the electron in the atom, we can write (see Problem 3.49)

where is the acceleration of the electron and is the total radiated
power. Using our assumption, we can approximate the orbit of the electron
(which is a spiral) by a circle for each revolution of radius The
acceleration is due to the Coulomb force

On the other hand, using (U is the potential energy of a particle
moving in a circle in a      field; see Problem P. 1.44) we have

Substituting (S.3.50.2) and (S.3.50.3) into (S.3.50.1) gives

or

Integrating (S.3.50.5) yields

So

3.50
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Lorentz Transformation of Fields (Stony Brook)

a) Using a 4-vector of the form

(contravariant form)

and recalling that for v pointing along the we have for the Lorentz
transformation of a 4-vector

For space–time coordinates,

and we have from (S.3.51.1)–(S.3.51.4)

b) Writing the explicitly antisymmetric field-strength tensor,

3.51
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where and do not change under the Lorentz transformation and
and transform as and respectively (see, for in-

stance, Landau and Lifshitz, Classical Theory of Fields, Chapter 1.6).

Substituting (S.3.51.9) into (S.3.51.10), we obtain

We can rewrite (S.3.51.11) is terms of the parallel and perpendicular com-
ponents of the fields:

c) In the case of a point charge we have to transform from
which is equivalent to changing the sign of the velocity in (S.3.51.12). For
a small velocity v, we may write

where we have changed the signs in (S.3.51.12) and taken For a point
charge in and

which is the magnetic field for a charge moving with velocity v.
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Field of a Moving Charge (Stony Brook)

a) Differentiating, we obtain

and, since v lies only in the direction (see Figure S.3.52)

b) To calculate B, we recall from the definition of A that

where we have used the fact that

Now,

3.52
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where is the vector from the charge to point P and
therefore is parallel to n. The same results can be obtained by calculating
E in the moving frame (with the charge ) and then taking the Lorentz
transformation.

c) The force acting on charge can be calculated as the force acting on
in the field of from (S.3.52.4):

where we used (S.3.52.3). Substituting E from (S.3.52.4), we find

We can express through the angle between R and (see Figure S.3.52):

where we used and so Now,
F may be written as a sum of the projections perpendicular and parallel to
the direction:

3.53 Retarded Potential of Moving Line Charge (MIT)

a) We may calculate the field of a line charge using Gauss’s law
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where is the distance from the line charge and is some length of wire.
So

b) The current density

where is the Dirac delta function and is defined by

We may then write

Now, is zero unless so

and the integral in (S.3.53.3) becomes

for For
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c) From (S.3.53.4), we have for

By definition, which in cylindrical coordinates gives (see Ap-
pendix)

for which is the value of the magnetic field that would result from
a calculation using Ampère’s law.

Orbiting Charges and Multipole Radiation
(Princeton, Michigan State, Maryland)

a,b) At the emitted radiation is confined to a dipole
where is the wavelength. The vector potential of the system with dipole
moment p at a distance is given by

The magnetic field of the system (see, for instance, Landau and Lifshitz,
Classical Theory of Fields)

where is the dipole moment of the system, n is the unit vector
in the direction of observation, and is the distance from the origin (see

3.54
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Figure S.3.54a). The energy flux is given by the Poynting vector S:

The radiated power in a solid angle is given by

Substituting (S.3.54.1) into (S.3.54.3), we obtain

Noting that

we have

where we took the average over the period of revolution and used
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c) The total power radiated is

d) When the plane is filled with a perfect conductor, we have
an image charge for each of the charges and and the total dipole
moment of the system becomes zero (see Figure S.3.54b). The next nonzero
multipole in this system must be quadrupole with quadrupole moment

3.55 Electron and Radiation Reaction (Boston)

a) By assuming that we may write
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Differentiating (S.3.55.1) with respect to time, we obtain

Substituting for in (S.3.55.2) results in

where we have disregarded terms first order in So

b) Let the E field of the plane wave be polarized in the direction, so that

The time averages of (S.3.55.3) are

so that

The radiation reaction force varies with the fourth power of the charge, so
a positron would yield the same result.

c) The average power scattered by the charge is

where is the total cross section. The average power is then

The average incident momentum per unit time is given by
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where we used the relation for radiation. Using the Thomson cross
section for in (S.3.55.7) gives the reaction force

This is the same result as in (S.3.55.4).

Radiation of Accelerating Positron (Princeton,
Colorado)

In first approximation, we disregard the radiation loss, i.e., we consider the
energy to be constant at any given moment:

From this equation, we may find   as a function of and then calculate

where is the acceleration of the positron. We should check at the end
that the energy change due to radiation is small compared to the initial
energy. From (S.3.56.1)

Substituting (S.3.56.4) into (S.3.56.2) and integrating, we have

We should integrate (S.3.56.5) from and then from
again only when In our approximation, we can say that the ra-
diation during the deceleration is the same as for the period of acceleration

3.56
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and simply write

where Substituting (S.3.56.6) becomes

Integrating by parts,

Therefore,

Check our initial assumption:

So

Half-Wave Antenna (Boston)

a) The vector potential may be found from the integral (see, for instance,
Marion and Heald, Classical Electromagnetic Radiation, Chapter 8):

3.57
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The current density may be written with a complex time dependence (tak-
ing the real part at the end of the calculation):

Substituting (S.3.57.2) into (S.3.57.1) and integrating over and we
obtain

where we have used the assumption that we are in the radiation zone, so
that

Expanding the square root in (S.3.57.3) to order we find

Letting and performing the integral in (S.3.57.4) (write cos as
sum of exponentials), we get

b) The electric field E in the radiation zone may be found directly from

using (S.3.57.5). The magnetic induction B in the radiation zone is given
by

So
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c) The power radiated is calculated using the hint in the problem:

Radiation (Stony Brook)

a) At each point in the passage of the charged particle through the medium,
a spherical wave is produced whose rate of travel is while the particle
is travelling at a velocity (see Figure S.3.58a). The lines perpendicular
to the wavefront give the direction of propagation of the radiation and the
angle as required:

b) The spherical mirror and the cone of radiation produced by the charged
particle are azimuthally symmetric, so we may solve the problem in two
dimensions. We now must show that the parallel rays striking the mirror

3.58
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will be focussed to a point on the “focal line” of the mirror. The focal
length of a spherical mirror with radius of curvature R is Consider
two rays incident on the mirror at an angle to the horizontal, one which
passes through the center of the circle and another on the opposite side of
the focus, which strikes the mirror a a distance away as measured along
the axis (see Figure S.3.58b). In the paraxial approximation, we may use
the standard relation between the image distance the object distance
and the focal length

Checking for the ray leaving the center of the circle (object at 2f), we have

Obviously, a ray along a radius of the circle will be reflected back on itself.
It passes through the point P along the focal line at a distance
from the axis. Now, a ray originating at the point E will strike the mirror
at the point B and form a virtual image at point A on the other side of the
mirror. Using (S.3.58.1) to find the image distance and thereby
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where the length of the segment is made positive (although the image
distance is negative). To find the point where the reflected ray crosses the
focal line, we will use similar triangles, So

First, we find that and then in the same paraxial ap-
proximation (see Figure S.3.58b)

so

c) Restoring the cylindrical symmetry to the problem, the point in the
focal line becomes a circle in the focal plane of radius

3.59 Stability of Plasma (Boston)

a) Calculate the force on the ion of charge at radius R in cylindrical
coordinates with unit vectors and The electrostatic force

where is the linear charge density. So

and the magnetic force

where could be found from



ELECTRODYNAMICS 293

So

Therefore, the total force acts outward

b) The force calculated in (a) does some work on an ion, which leads to an
increase of its kinetic energy (we take the initial radial velocity of the ion
to be zero)

Performing the integration in (S.3.59.6), we obtain

or

3.60 Charged Particle in Uniform Magnetic Field
(Princeton)

The solution to this problem is similar to that for Problem P. 1.52, where
we considered the adiabatic invariant for a mechanical system. Here, we
have for the motion in the plane perpendicular to the magnetic field

where

is the projection of the generalized momentum on this plane, and the in-
tegral is taken over one period of motion in this plane, whose shape is a
circle. (A is the vector potential and is the charge of the particle.)

Using Stokes’ theorem and substituting we obtain
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We used the fact that the absolute value of is constant. The minus
sign before the second term occurs since the line integral about the orbit is
opposite to the velocity of the charge. After substituting into
(S.3.60.2) (see Problem 3.63), we obtain

So, for a slow change of magnetic field from to we find

or

Now, if the field changes suddenly from back to then the energy
is conserved

where and are cyclotron frequencies, corresponding to magnetic fields
and respectively:

where is the mass of the particle. Therefore,m

Lowest Mode of Rectangular Wave Guide
(Princeton, MIT, Michigan State)

a) Because the walls are perfectly conducting, we have for E and B the
boundary conditions

where n is normal to the wall, or in terms o f ( is the direction of
wave propagation)

3.61
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b) Starting from the sourceless Maxwell equations in vacuum

and substituting (same for B), we obtain

The field dependence on may be written in the form
where is the wave vector for the wave transmitted in the direction. Us-
ing the fact that the electric field of the lowest mode is in the direction
only, we have, from (S.3.61.6)–(S.3.61.7),

From (S.3.61.12), and substituting (S.3.61.10) into
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(S.3.61.13), we obtain

where

Using from (S.3.61.14), we get a differential equation for

or

The solution of this equation satisfying the boundary conditions

is with So the field in the wave guide in this mode
from (S.3.61.14)– (S.3.61.15)

c) The dispersion relation for the lowest mode is found from (S.3.61.16):

The phase velocity is
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The group velocity is

d) The waves propagating in the wave guides can be divided into two classes:
TE (transverse electric, as is the case in this problem, and TM
(transverse magnetic,

3.62 TM Modes in Rectangular Wave Guide
(Princeton)

a) Again, as in Problem 3.61, we can express all the fields in terms of a
single longitudinal component. In this problem, we are considering TM
waves so and we use instead. We find for the field components

where again

The wave equation for the component is

where

The solution to (S.3.62.2) with the boundary condition is
given by

where and are integers. So
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The frequency is given by

The cutoff frequency corresponds to so

For TM waves, we cannot take any of the or modes because
that would make So the lowest cutoff frequency corresponds to

So the TM radiation with frequency will propagate in the guide.

b) The dispersion relation was given in (a):

c) The wave number as a function of the cutoff frequency can be written
in the form

The wave of frequency cannot propagate becomes imaginary),
and in fact the attenuation of the field will be given by In our case,

We may write in the form

The power dissipation will be proportional to



ELECTRODYNAMICS 299

We wish to find the point where Hence,

3.63 Betatron (Princeton, Moscow Phys-Tech,
Colorado, Stony Brook (a))

a) Assume we have a magnetic field that is constant along and perpendicular
to the plane of the orbit (see Figure S.3.63). The Lorentz
force gives

We can substitute the energy for the momentum by using

and since the energy does not change in the magnetic field we have

or, separating into components,

where
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Following a standard procedure, we multiply (S.3.63.4) by and
add it to (S.3.63.3), which yields

where or

where A and are real. Separating real and imaginary parts of (S.3.63.7),
we obtain

From (S.3.63.8) and (S.3.63.9), we can see that

where is the initial velocity of the particle, which as we assumed moves
only in the plane. Integrating again, we find

So the radius R is given by

and

b) From (S.3.63.12), the momentum

where Assuming that R does not change, we find from
(S.3.63.13) that

If the magnetic field through the orbit is increased, a tangential electric
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field will be produced at the position of the orbit:

Therefore the rate of increase of the momentum is

Integrating (S.3.63.16), we obtain

Equating (S.3.63.14) and (S.3.63.17), we have

indicating that the change in flux through the orbit must be twice that
which would have been obtained if the magnetic field were spatially uni-
form (Betatron rule 2:1).

c) Consider first the vertical displacement (we assume that the vertical
and radial motions are decoupled)

where Since is much smaller than the velocity in the
x–y plane, we disregard any change in due to changes in

where is the radial B field at a radius R. Neglecting the space charge
current and displacement current and using cylindrical coordinates, we may
write

So
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or, for small

Using the expression for given in the problem,

and substituting it into (S.3.63.21) and then (S.3.63.20), we obtain

So

Taking from (S.3.63.12), (S.3.63.23) becomes

Therefore (S.3.63.24) exhibits oscillatory behavior along the which
is stable if The period of oscillation is then

For the radial motion, the Lorentz force is

For small deviations from equilibrium we can write (S.3.63.26)
in the form

where we again used (S.3.63.12) for the cyclotron frequency. We must also
consider the centrifugal force
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where we used the conservation of canonical angular momentum

Now, for small

Combining (S.3.63.27) and (S.3.63.29), we obtain

Since at equilibrium, we can write

Again, as for the vertical motion, we have an oscillation of frequency

This oscillation is stable if

d) The condition for both radial and vertical stability will be the inter-
section of the two conditions for so

A more detailed discussion of this problem may be found in Phys. Rev. 60,
53 (1941).

3.64 Superconducting Frame in Magnetic Field
(Moscow Phys-Tech)

Find the magnetic field from the vector potential

The magnetic flux through the surface of the superconducting frame is
constant (see Figure S.3.64). is composed of the flux from the external
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magnetic field and the flux  produced by the current I flowing in the
frame:

At and At later times,

So for the current we have

The force on the frame due to the interaction with the magnetic field is
given by the general formula

In this problem, due to the physical constraint, we need only the component
in the direction

Therefore, the equation of motion becomes

or
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This equation describes oscillatory motion with and the
solution is

where

From the initial conditions and we find that
and The complete solution for the position of the frame along the

at time is

3.65 Superconducting Sphere in Magnetic Field
(Michigan State, Moscow Phys-Tech)

a) Prom symmetry considerations, it is clear that the current would flow
on the surface of the shell perpendicular to the applied magnetic field. As
for any ellipsoid in a uniform electric or magnetic field (see Problem 3.10),
we can assume that the field outside the shell produced by these currents
is equivalent to a magnetic dipole moment m placed in the center of the
shell. For

The total field outside is then The boundary condition on
the surface at an arbitrary point gives

The normal component of B is continuous and inside B = 0. From the
boundary conditions on the surface at an arbitrary angle between the
direction of and the normal n (see Figure S.3.65) we have
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Hence

At where R is the radius of the spherical shell, the
boundary conditions are satisfied on the surface of the shell. Therefore,

b) The surface current density can be found by using tangential H
component continuity:

and therefore This solution is only true while B <
and the whole sphere is superconducting. When the

field at the equator exceeds and the sphere goes into an intermediate
state.

3.66 London Penetration Depth (Moscow Phys-Tech)

a) Equation (P.3.66.1) can be obtained from a naive classical model with
a superconducting electron density This derivation is not quite rigor-
ous since we assume spatially uniform fields in the penetration depth (see,
for instance, M.Tinkham, Introduction to Superconductivity). For a unit
volume of superconducting electrons in an electric field E,

The superconducting current density may be written as Sub-
stituting into (S.3.66.1) gives (P.3.66.1):

To derive (P.3.66.2), write the kinetic energy density in the form

Using Maxwell’s equation

we obtain
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where

Now we can write the free energy in the form

where accounts for the energy of the magnetic field in the
superconductor. We want to find a function h(r) that will minimize the free
energy. Note that a more rigorous approach requires that we minimize the
Gibbs’ free energy, but the result is the same. Using a standard procedure
(see Goldstein, Classical Mechanics, Chapter 2) we take a variation of
We can write

The second term in (S.3.66.4) can be transformed using the identity

Now we can rewrite (S.3.66.4) in the form

The second integral in (S.3.66.5) can be transformed into a surface integral
using Gauss’s theorem

since everywhere on the surface and so So, from the first
integral in (S.3.66.5), we obtain (P.3.66.2)

b) Using (P.3.66.2) and the identity

we have
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Orient the direction normal to the boundary and the magnetic field par-
allel to it, From the symmetry of the problem, it is obvious that

Then (P.3.66.2) becomes

whose solution is

Invoking the boundary conditions and we arrive at

where is the London penetration depth introduced in (a) (S.3.66.2). For
a typical metal superconductor with one free electron per atom

where is Avogadro’snumber, is the mass density, and A is the atomic
mass in grams per mole. For a typical superconductor,

Assuming at T = 0, we have from (S.3.66.3)

Thin Superconducting Plate in Magnetic Field
(Stony Brook)

a) Choose at the center of the plate (see Figure S.3.67a). We know
(see, for instance, Problem 3.66) that the external field penetrates to a
depth into the superconductor; this can be described in our case by the

3.67
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equation:

Because of the symmetry of the problem, where the H field
inside the the superconductor will be in the direction and depend only
on So we have

The general solution of (S.3.67.1) is

Using the boundary conditions

we obtain

So

The supercurrent density can be found from Maxwell’s equation

Since we have

and

b) In the limiting case of a thin film,       we have
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since and
Both cases and are shown in Figure S.3.67b.
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Appendix 1

Approximate Values of Physical Constants

Constant

Speed of light

Planck's constant

Reduced Planck's constant

Avogadro's number

Boltzmann's constant

Electron charge

Electron mass

Electron charge to mass ratio

Neutron mass

Proton mass

Gravitational constant

Acceleration of gravity

Stefan-Boltzmann constant

Fine structure constant

Bohr radius

Classical electron radius

Electron Compton wavelength

Bohr magneton

Rydberg constant

Universal gas constant

Josephson constant

Permittivity of free space

Symbol

G

SI CGS

1

313



314 APPENDIXES

Some Astronomical Data

Mass of the Sun

Radius of the Sun

Average Distance between the Earth and the Sun

Average Radius of the Earth

Mass of the Earth

Average Velocity of the Earth in Orbit about the Sun

Average Distance between the Earth and the Moon

Other Commonly Used Units
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Appendix 2

Conversion Table from Rationalized MKSA to Gaussian Units

Physical Quantities

Charge

Charge Density

Current

Electric Field

Potential (Voltage)

Magnetic Flux

Magnetic Induction

Magnetic Field

Inductance

Capacitance

Resistance

Conductivity

Rationalized MKSA

coulomb

ampere

volt/m

volt

weber

tesla

ampere-turn/m

henry

farad

ohm

mho/m

Conversion Coefficients Gaussian

esu

esu/sec

statvolt/cm

statvolt

gauss

oersted

cm

sec/cm
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Appendix 3

Vector Identities
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Vector Formulas

in Spherical and Cylindrical Coordinates

Spherical Coordinates

Transformation of Coordinates

Transformation of Differentials

Square of the Element of Length

Transformation of the Coordinates of a Vector
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Divergence

Curl

Gradient

Laplacian
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Cylindrical Coordinates

Transformation of Coordinates

Transformation of Differentials

Square of the Element of Length

Transformation of the Coordinates of a Vector



Divergence

Curl

Gradient

Laplacian

Appendix 4

Legendre Polynomials
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Rodrigues’ Formula

Spherical Harmonics
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Foreword

It is only rarely realized how important the design of suitable, interesting
problems is in the educational process. This is true for the professor — who
periodically makes up exams and problem sets which test the effectiveness
of his teaching — and also for the student — who must match his skills
and acquired knowledge against these same problems. There is a great need
for challenging problems in all scientific fields, but especially so in physics.
Reading a physics paper requires familiarity and control of techniques which
can only be obtained by serious practice in solving problems. Confidence
in performing research demands a mastery of detailed technology which
requires training, concentration, and reflection — again, gained only by
working exercises.

In spite of the obvious need, there is very little systematic effort made
to provide balanced, doable problems that do more than gratify the ego of
the professor. Problems often are routine applications of procedures men-
tioned in lectures or in books. They do little to force students to reflect
seriously about new situations. Furthermore, the problems are often ex-
cruciatingly dull and test persistence and intellectual stamina more than
insight, technical skill, and originality. Another rather serious shortcoming
is that most exams and problems carry the unmistakable imprint of the
teacher. (In some excellent eastern U.S. universities, problems are cata-
logued by instructor, so that a good deal is known about an exam even
before it is written.)

In contrast, A Guide to Physics Problems, Part 2 not only serves an
important function, but is a pleasure to read. By selecting problems from
different universities and even different scientific cultures, the authors have
effectively avoided a one-sided approach to physics. All the problems are
good, some are very interesting, some positively intriguing, a few are crazy;
but all of them stimulate the reader to think about physics, not merely to
train you to pass an exam. I personally received considerable pleasure in
working the problems, and I would guess that anyone who wants to be a
professional physicist would experience similar enjoyment. I must confess

v
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with some embarrassment that some of the problems gave me more trouble
than I had expected. But, of course, this is progress. The coming generation
can do with ease what causes the elder one trouble. This book will be a
great help to students and professors, as well as a source of pleasure and
enjoyment.

Max Dresden
Stanford



Preface

Part 2 of A Guide to Physics Problems contains problems from written
graduate qualifying examinations at many universities in the United States
and, for comparison, problems from the Moscow Institute of Physics and
Technology, a leading Russian Physics Department. While Part 1 presented
problems and solutions in Mechanics, Relativity, and Electrodynamics, Part
2 offers problems and solutions in Thermodynamics, Statistical Physics, and
Quantum Mechanics.

The main purpose of the book is to help graduate students prepare for
this important and often very stressful exam (see Figure P.1). The difficulty
and scope of the qualifying exam varies from school to school, but not too
dramatically. Our goal was to present a more or less universal set of problems
that would allow students to feel confident at these exams, regardless of the
graduate school they attended. We also thought that physics majors who are
considering going on to graduate school may be able to test their knowledge
of physics by trying to solve some of the problems, most of which are not
above the undergraduate level. As in Part 1 we have tried to provide as many
details in our solutions as possible, without turning to a trade expression of
an exhausted author who, after struggling with the derivation for a couple of
hours writes, “As it can be easily shown....”

Most of the comments to Part 1 that we have received so far have come not
from the students but from the professors who have to give the exams. The
most typical comment was, “Gee, great, now I can use one of your problems
for our next comprehensive exam.” However, we still hope that this does not
make the book counterproductive and eventually it will help the students to
transform from the state shown in Figure P.1 into a much more comfortable
stationary state as in Figure P.2. This picture can be easily attributed to the
present state of mind of the authors as well, who sincerely hope that Part 3
will not be forthcoming any time soon.

Some of the schools do not have written qualifying exams as part of their
requirements: Brown, Cal-Tech, Cornell, Harvard, UT Austin, University
of Toronto, and Yale. Most of the schools that give such an exam were

vii
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happy to trust us with their problems. We wish to thank the Physics Depart-
ments of Boston University (Boston), University of Colorado at Boulder (Col-
orado), Columbia University (Columbia), University of Maryland (Mary-
land), Massachusetts Institute of Technology (MIT), University of Michi-
gan (Michigan), Michigan State University (Michigan State), Michigan Tech-
nological University (Michigan Tech), Princeton University (Princeton),
Rutgers University (Rutgers), Stanford University (Stanford), State Univer-
sity of New York at Stony Brook (Stony Brook), University of Tennessee at
Knoxville (Tennessee), and University of Wisconsin (Wisconsin-Madison).
The Moscow Institute ofPhysics and Technology (Moscow Phys-Tech) does
not give this type of qualifying exam in graduate school. Some of their prob-
lems came from the final written exam for the physics seniors, some of the
others, mostly introductory problems, are from their oral entrance exams or



Sidney Cahn
New York

Gerald Mahan
Oak Ridge

Boris Nadgorny
Washington,  D.C.

magazines such as Kvant. A few of the problems were compiled by the authors
and have never been published before.

We were happy to hear many encouraging comments about Part 1 from
our colleagues, and we are grateful to everybody who took their time to re-
view the book. We wish to thank many people who contributed some of the
problems to Part 2, or discussed solutions with us, in particular Dmitri Averin
(Stony Brook), Michael Bershadsky (Harvard), Alexander Korotkov (Stony
Brook), Henry Silsbee (Stony Brook), and Alexei Stuchebrukhov (UC Davis).
We thank Kirk McDonald (Princeton) and Liang Chen (British Columbia)
for their helpful comments to some problems in Part 1; we hope to include
them in the second edition of Part 1, coming out next year. We are indebted
to Max Dresden for writing the Foreword, to Tilo Wettig (Münich) who read
most, of the manuscript, and to Vladimir Gitt and Yair Minsky who drew the
humorous pictures.
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Chapter 4 — Thermodynamics and Statistical Physics

Landau, L. D., and Lifshitz, E. M., Statistical Physics, Volume 5,
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Introductory Thermodynamics

4.1 Why Bother? (Moscow Phys-Tech)

A physicist and an engineer find themselves in a mountain lodge where
the only heat is provided by a large woodstove. The physicist argues that

3

4
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they cannot increase the total energy of the molecules in the cabin, and
therefore it makes no sense to continue putting logs into the stove. The
engineer strongly disagrees (see Figure P.4.1), referring to the laws of ther-
modynamics and common sense. Who is right? Why do we heat the room?

Space Station Pressure (MIT)

A space station consists of a large cylinder of radius      filled with air. The
cylinder spins about its symmetry axis at an angular speed providing an
acceleration at the rim equal to If the temperature is constant inside
the station, what is the ratio of air pressure at the center of the station
to the pressure at the rim?

4.3 Baron von Münchausen and Intergalactic Travel
(Moscow Phys-Tech)

Recently found archives of the late Baron von Münchausen brought to light
some unpublished scientific papers. In one of them, his calculations indi-
cated that the Sun’s energy would some day be exhausted, with the sub-
sequent freezing of the Earth and its inhabitants. In order to avert this
inevitable outcome, he proposed the construction of a large, rigid balloon,
empty of all gases, 1 km in radius, and attached to the Earth by a long, light

4.2
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rope of extreme tensile strength. The Earth would be propelled through
space to the nearest star via the Archimedes’ force on the balloon, trans-
mitted through the rope to the large staple embedded in suitable bedrock
(see Figure P.4.3). Estimate the force on the rope (assuming a massless
balloon). Discuss the feasibility of the Baron’s idea (without using any
general statements).

4.4 Railway Tanker (Moscow Phys-Tech)

A long, cylindrical tank is placed on a carriage that can slide without
friction on rails (see Figure P.4.4). The mass of the empty tanker is

Initially, the tank is filled with an ideal gas of mass kg
at a pressure atm at an ambient temperature Then
one end of the tank is heated to 335 K while the other end is kept fixed at
300 K. Find the pressure in the tank and the new position of the center of
mass of the tanker when the system reaches equilibrium.

4.5 Magic Carpet (Moscow Phys-Tech)

Once sitting in heavy traffic, Baron von Münchausen thought of a new kind
of “magic carpet” type aircraft (see Figure P.4.5). The upper surface of the
large flat panel is held at a constant temperature and the lower surface
at a temperature He reasoned that, during collision with the
hot surface, air molecules acquire additional momentum and therefore will
transfer an equal momentum to the panel. The back of the handkerchief
estimates he was able to make quickly for of such a panel showed that
if and = 373 K (air temperature 293 K) this panel would be
able to levitate itself and a payload (the Baron) of about kg. How did
he arrive at this? Is it really possible?
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4.6 Teacup Engine (Princeton, Moscow Phys-Tech)

The astronaut from Problem 1.13 in Part I was peacefully drinking tea
at five o’clock galactic time, as was his wont, when he had an emergency
outside the shuttle, and he had to do an EVA to deal with it. Upon leaving
the ship, his jetpack failed, and nothing remained to connect him to the
shuttle. Fortunately, he had absentmindedly brought his teacup with him.
Since this was the only cup he had, he did not want to throw it away in
order to propel him back to the shuttle (besides, it was his favorite cup).
Instead, he used the sublimation of the frozen tea to propel him back to
the spaceship (see Figure P.4.6). Was it really possible? Estimate the time
it might take him to return if he is a distance m from the ship.
Assume that the sublimation occurs at a constant temperature
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The vapor pressure at this temperature is and the total mass
of the astronaut

4.7 Grand Lunar Canals (Moscow Phys-Tech)

In one of his novels, H. G. Wells describes an encounter of amateur earthling
astronauts with a lunar civilization living in very deep caverns beneath the
surface of the Moon. The caverns are connected to the surface by long
channels filled with air. The channel is dug between points A and B on
the surface of the Moon so that the angle (see Figure P.4.7).
Assume that the air pressure in the middle of a channel is atm.
Estimate the air pressure in the channel near the surface of the Moon. The
radius of the Moon The acceleration due to gravity on the
surface of the Moon where is the acceleration due to gravity
on the surface of the Earth.

4.8 Frozen Solid (Moscow Phys-Tech)

Estimate how long it will take for a small pond of average depth m
to freeze completely in a very cold winter, when the temperature is al-
ways below the freezing point of water (see Figure P.4.8). Take the ther-
mal conductivity of ice to be the latent heat of fusion
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and the density Take the outside
temperature to be a constant

4.9 Tea in Thermos (Moscow Phys-Tech)

One liter of tea at 90° C is poured into a vacuum-insulated container (ther-
mos). The surface area of the thermos walls The volume
between the walls is pumped down to atm pressure (at room
temperature). The emissivity of the walls and the thermal capacity
of water Disregarding the heat leakage through the
stopper, estimate the

a) Net power transfer
b)  Time for the tea to cool from 90°C to 70°C.

4.10 Heat Loss (Moscow Phys-Tech)

An immersion heater of power W is used to heat water in a
bowl. After 2 minutes, the temperature increases from to
90°C. The heater is then switched off for an additional minute, and the
temperature drops by Estimate the mass of the water in the
bowl. The thermal capacity of water c = 4.2 •
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4.11 Liquid-Solid-Liquid (Moscow Phys-Tech)

A small amount of water of mass in a container at temperature
K is placed inside a vacuum chamber which is evacuated rapidly.

As a result, part of the water freezes and becomes ice and the rest becomes
vapor.

What amount of water initially transforms into ice? The latent heat
of fusion (ice/water) and the latent heat of vaporization
(water/vapor)
A piece of heated metal alloy of mass g and original volume

is placed inside the calorimeter together with the ice
obtained as a result of the experiment in (a). The density of metal
at K is The thermal capacity is

and the coefficient oflinear expansion
How much ice will have melted when equilibrium is reached?

Hydrogen Rocket (Moscow Phys-Tech)4.12

The reaction chamber of a rocket engine is supplied with a mass flow rate
m of hydrogen and sufficient oxygen to allow complete burning of the fuel.
The cross section of the chamber is A, and the pressure at the cross section
is P with temperature T. Calculate the force that this chamber is able to
provide.

4.13 Maxwell-Boltzmann Averages (MIT)

Write the properly normalized Maxwell–Boltzmann distribution
for finding particles of mass with magnitude of velocity in the
interval at a temperature
What is the most likely speed at temperature
What is the average speed?
What is the average square speed?

a)

b)
c)
d)

b)

a)

4.14 Slowly Leaking Box (Moscow Phys-Tech, Stony
Brook (a,b))

An ideal gas of atoms of number density  at an absolute temperature  is
confined to a thermally isolated container that has a small hole of area A in
one of the walls (see Figure P.4.14). Assume a Maxwell velocity distribution



PROBLEMS10

for the atoms. The size of the hole is much smaller than the size of the
container and much smaller than the mean free path of the atoms.

Calculate the number of atoms striking the wall of the container per
unit area per unit time. (Express your answer in terms of the mean
velocity of the atoms.)
What is the ratio of the average kinetic energy of atoms leaving the
container to the average kinetic energy of atoms initially occupying
the container? Assume that there is no flow back to the container.
Give a qualitative argument and compute this ratio.
How much heat must you transfer to/from the container to keep the
temperature of the gas constant?

a)

b)

c)

Surface Contamination (Wisconsin-Madison)4.15

A surface scientist wishes to keep an exposed surface “clean” ad-
sorbed monolayer) for an experiment lasting for times h at a temper-
ature  Estimate the needed data and calculate a value for the
required background pressure in the apparatus if each incident molecule
sticks to the surface.

4.16 Bell Jar (Moscow Phys-Tech)

A vessel with a small hole of diameter in it is placed inside a high-vacuum
chamber (see Figure P.4.16). The pressure is so low that the mean free path

The temperature of the gas in the chamber is and the pressure
is The temperature in the vessel is kept at a constant What
is the pressure inside the vessel when steady state is reached?
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4.17 Hole in Wall (Princeton)

A container is divided into two parts, I and II, by a partition with a small
hole of diameter Helium gas in the two parts is held at temperatures

K and respectively, through heating of the walls (see
Figure P.4.17).

How does the diameter d determine the physical process by which the
gases come to steady state?
What is the ratio of the mean free paths between the two parts
when
What is the ratio when

a)

b)

c)

4.18 Ballast Volume Pressure (Moscow Phys-Tech)

Two containers, I and II, filled with an ideal gas are connected by two
small openings of the same area, A, through a ballast volume B (see Fig-



PROBLEMS12

ure P.4.18). The temperatures and pressures in the two containers are
kept constant and equal to P, and P, respectively. The volume B is
thermally isolated. Find the equilibrium pressure and temperature in the
ballast volume, assuming the gas is in the Knudsen regime.

Rocket in Drag (Princeton)

A rocket has an effective frontal area A and blasts off with a constant
acceleration a straight up from the surface of the Earth (see Figure P.4.19).

Use either dimensional analysis or an elementary derivation to find out
how the atmospheric drag on the rocket should vary as some power(s)
of the area A, the rocket velocity and the atmospheric density
(assuming that we are in the region of high Reynolds numbers).
Assume that the atmosphere is isothermal with temperature T. De-
rive the variation of the atmospheric density with height Assume
that the gravitational acceleration is a constant and that the density
at sea level is

a)

b)

4.19
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c) Find the height at which the drag on the rocket is at a maximum.

4.20 Adiabatic Atmosphere (Boston, Maryland)

The lower 10–15 km of the atmosphere, the troposphere, is often in a con-
vective steady state with constant entropy, not constant temperature
is independent of the altitude, where

Find the change of temperature in this model with altitude
Estimate in K/km. Consider the average diatomic molecule
of air with molar mass

4.21 Atmospheric Energy (Rutgers)

The density of the Earth’s atmosphere, varies with height above
the Earth’s surface. Assume that the “thickness” of the atmosphere is
sufficiently small so that it is in a uniform gravitational field of strength

Write an equation to determine the atmospheric pressure given
the function
In a static atmosphere, each parcel of air has an internal energy
and a gravitational potential energy To a very good approxima-
tion, the air in the atmosphere is an ideal gas with constant specific
heat. Using this assumption, the result of part (a), and classical
thermodynamics, show that the total energy in a vertical column of
atmosphere of cross-sectional area A is given by

and that the ratio of energies is

where T is the temperature,  is the pressure at the Earth’s surface,
is the molar mass, is the molar specific heat at constant pres-

sure, and is the ratio of specific heats.
Hint: The above results do not depend on the specific way in which

and vary as a function of (e.g., isothermal, adia-
batic, or something intermediate). They depend only on the fact that

is monotonically decreasing. At some step of the derivation, you
might find it useful to do an integration by parts.

a)

b)

a)
b)
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4.22 Puncture (Moscow Phys-Tech)

A compressed ideal gas flows out of a small hole in a tire which has a
pressure inside.

Find the velocity of gas outside the tire in the vicinity of the hole if
the flow is laminar and stationary and the pressure outside is
Estimate this velocity for a flow of molecular hydrogen into a vacuum
at a temperature Express this velocity in terms of the
velocity of sound inside the tire,

a)

b)

Heat and Work

4.23 Cylinder with Massive Piston (Rutgers, Moscow
Phys-Tech)

Consider moles of an ideal monatomic gas placed in a vertical cylinder.
The top of the cylinder is closed by a piston of mass M and cross section
A (see Figure P.4.23). Initially the piston is fixed, and the gas has volume

and temperature Next, the piston is released, and after several
oscillations comes to a stop. Disregarding friction and the heat capacity
of the piston and cylinder, find the temperature and volume of the gas at
equilibrium. The system is thermally isolated, and the pressure outside the
cylinder is
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4.24 Spring Cylinder (Moscow Phys-Tech)

One part of a cylinder is filled with one mole of a monatomic ideal gas at
a pressure of 1 atm and temperature of 300 K. A massless piston separates
the gas from the other section of the cylinder which is evacuated but has
a spring at equilibrium extension attached to it and to the opposite wall
of the cylinder. The cylinder is thermally insulated from the rest of the
world, and the piston is fixed to the cylinder initially and then released
(see Figure P.4.24). After reaching equilibrium, the volume occupied by
the gas is double the original. Neglecting the thermal capacities of the
cylinder, piston, and spring, find the temperature and pressure of the gas.

4.25 Isothermal Compression and Adiabatic
Expansion of Ideal Gas (Michigan)

An ideal gas is compressed at constant temperature from volume to
volume (see Figure P.4.25).

a) Find the work done on the gas and the heat absorbed by the gas.
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The gas now expands adiabatically to volume What is the final
temperature (derive this result from first principles)?
Estimate for K for air.

b)

c)

4.26 Isochoric Cooling and Isobaric Expansion
(Moscow Phys-Tech)

An ideal gas of total mass and molecular weight is isochorically (at con-
stant volume) cooled to a pressure times smaller than the initial pressure

The gas is then expanded at constant pressure so that in the final state
the temperature coincides with the initial temperature Calculate
the work done by the gas.

4.27 Venting (Moscow Phys-Tech)

A thermally insulated chamber is pumped down to a very low pressure.
At some point, the chamber is vented so that it is filled with air up to
atmospheric pressure, whereupon the valve is closed. The temperature of
the air surrounding the chamber is What is the temperature
T of the gas in the chamber immediately after venting?

4.28 Cylinder and Heat Bath (Stony Brook)

Consider a cylinder 1 m long with a thin, massless piston clamped in such
a way that it divides the cylinder into two equal parts. The cylinder is in
a large heat bath at The left side of the cylinder contains 1
mole of helium gas at 4 atm. The right contains helium gas at a pressure
of 1 atm. Let the piston be released.

What is its final equilibrium position?
How much heat will be transmitted to the bath in the process of
equilibration? (Note that

a)
b)

4.29 Heat Extraction (MIT, Wisconsin-Madison)

a) A body of mass M has a temperature-independent specific heat C. If
the body is heated reversibly from a temperature to a temperature

what is the change in its entropy?
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Two such bodies are initially at temperatures of 100 K and 400 K.
A reversible engine is used to extract heat with the hotter body as a
source and the cooler body as a sink. What is the maximum amount
of heat that can be extracted in units of MC?
The specific heat of water is and its density is
Calculate the maximum useful work that can be extracted, using as
a source of water at 100°C and a lake of temperature 10°C as
a sink.

c)

b)

4.30 Heat Capacity Ratio (Moscow Phys-Tech)

To find  of a gas, one sometimes uses the following method. A
certain amount of gas with initial temperature pressure and volume

is heated by a current flowing through a platinum wire for a time The
experiment is done twice: first at a constant volume with the pressure
changing from  to and then at a constant pressure with the volume
changing from The time t is the same in both experiments. Find
the ratio (the gas may be considered ideal).

4.31 Otto Cycle (Stony Brook)

The cycle of a highly idealized gasoline engine can be approximated by the
Otto cycle (see Figure P.4.31).          and are adiabatic compression
and expansion, respectively;           and are constant-volume pro-
cesses. Treat the working medium as an ideal gas with constant

a) Compute the efficiency of this cycle for and compression ratio
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Calculate the work done on the gas in the compression process
assuming initial volume and atm.

b)

4.32 Joule Cycle (Stony Brook)

Find the efficiency of the Joule cycle, consisting of two adiabats and two
isobars (see Figure P.4.32). Assume that the heat capacities of the gas
and are constant.

Diesel Cycle (Stony Brook)4.33

Calculate the efficiency of the Diesel cycle, consisting of two adiabats,
and one isobar and one constant-volume process (see
Figure P.4.33). Assume and are constant.
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4.34 Modified Joule–Thomson (Boston)

Figure P.4.34 shows container A of variable volume V controlled by a fric-
tionless piston, immersed in a bath at temperature This container is
connected by a pipe with a porous plug to another container, B, of fixed
volume Container A is initially occupied by an ideal gas at pressure P
while container B is initially evacuated. The gas is allowed to flow through
the plug, and the pressure on the piston is maintained at the constant value
P. When the pressure of the gas in B reaches P, the experiment is ter-
minated. Neglecting any heat conduction through the plug, show that the
final temperature of the gas in B is where and are
the molar heats at constant pressure and volume of the gas.

Ideal Gas and Classical Statistics

4.35 Poisson Distribution in Ideal Gas (Colorado)

Consider a monatomic ideal gas of total molecules in a volume Show
that the probability, for the number N of molecules contained in a
small element of V is given by the Poisson distribution
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where is the average number of molecules found in the volume
V.

4.36 Polarization of Ideal Gas (Moscow Phys-Tech)

Calculate the electric polarization of an ideal gas, consisting of molecules
having a constant electric dipole moment in a homogeneous external
electric field E at temperature What is the dielectric constant of this
gas at small fields?

4.37 Two-Dipole Interaction (Princeton)

Two classical dipoles with dipole moments and are separated by a
distance R so that only the orientation of the magnetic moments is free.
They are in thermal equilibrium at a temperature Compute the mean
force between the dipoles for the high-temperature limit
Hint: The potential energy of interaction of two dipoles is

4.38 Entropy of Ideal Gas (Princeton)

A vessel of volume contains N molecules of an ideal gas held at temper-
ature and pressure The energy of a molecule may be written in the
form

where denotes the energy levels corresponding to the internal states of
the molecules of the gas.

Evaluate the free energy F. Explicitly display the dependence on the
volume

a)

Now consider another vessel, also at temperature containing the same
number of molecules of the identical gas held at pressure

Give an expression for the total entropy of the two gases in terms of

The vessels are then connected to permit the gases to mix without
doing work. Evaluate explicitly the change in entropy of the system.
Check whether your answer makes sense by considering the special
case

c)

b)
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4.39 Chemical Potential of Ideal Gas (Stony Brook)

Derive the expression for the Gibbs free energy and chemical potential of
N molecules of an ideal gas at temperature pressure P, and volume
V. Assume that all the molecules are in the electronic ground state with
degeneracy At what temperature is this approximation valid?

4.40 Gas in Harmonic Well (Boston)

A classical system of N distinguishable noninteracting particles of mass
is placed in a three-dimensional harmonic well:

Find the partition function and the Helmholtz free energy.
Regarding V as an external parameter, find the thermodynamic force

conjugate to this parameter, exerted by the system; find the equa-
tion of state and compare it to that of a gas in a container with rigid
walls.
Find the entropy, internal energy, and total heat capacity at constant
volume.

Ideal Gas in One-Dimensional Potential
(Rutgers)

An ideal gas of particles, each of mass at temperature is sub-
jected to an external force whose potential energy has the form

with and Find the average potential
energy per particle.
What is the average potential energy per particle in a gas in a uniform
gravitational field?

Equipartition Theorem (Columbia, Boston)4.42

a) For a classical system with Hamiltonian

b)

a)

4.41

a)
b)

c)
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at a temperature show that

Using the above, derive the law of Dulong and Petit for the heat
capacity of a harmonic crystal.
For a more general Hamiltonian,

b)

c)

prove the generalized equipartition theorem:

where You will need
to use the fact that U is infinite at
Consider a system of a large number of classical particles and assume
a general dependence of the energy of each particle on the generalized
coordinate or momentum component given by where

Show that, in thermal equilibrium, the generalized equipartition the-
orem holds:

What conditions should be satisfied for to conform to the equipar-
tition theorem?

Diatomic Molecules in Two Dimensions
(Columbia)

4.43

You have been transported to a two-dimensional world by an evil wizard
who refuses to let you return to your beloved Columbia unless you can
determine the thermodynamic properties for a rotating heteronuclear di-
atomic molecule constrained to move only in a plane (two dimensions).
You may assume in what follows that the diatomic molecule does not un-
dergo translational motion. Indeed, it only has rotational kinetic energy

d)
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about its center of mass. The quantized energy levels of a diatomic in two
dimensions are

with degeneracies for J not equal to zero, and when J = 0.
As usual, where I is the moment of inertia.
Hint: For getting out of the wizard’s evil clutches, treat all levels as having
the same degeneracy and then... . Oh, no! He’s got me, too!

Assuming derive the partition function for an individ-
ual diatomic molecule in two dimensions.
Determine the thermodynamic energy E and heat capacity in the
limit, where for a set of indistinguishable, independent,
heteronuclear diatomic molecules constrained to rotate in a plane.
Compare these results to those for an ordinary diatomic rotor in three
dimensions. Comment on the differences and discuss briefly in terms
of the number of degrees of freedom required to describe the motion
of a diatomic rotor confined to a plane.

Diatomic Molecules in Three Dimensions (Stony
Brook, Michigan State)

4.44

Consider the free rotation of a diatomic molecule consisting of two atoms
of mass and respectively, separated by a distance Assume that
the molecule is rigid with center of mass fixed.

a) Starting from the kinetic energy where

derive the kinetic energy of this system in spherical coordinates and
show that

where I is the moment of inertia. Express I in terms of and

Derive the canonical conjugate momenta and Express the
Hamiltonian of this system in terms of and I.
The classical partition function is defined as

b)

c)

a)

b)
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Calculate Calculate the heat capacity for a system of N
molecules.
Assume now that the rotational motion of the molecule is described
by quantum mechanics. Write the partition function in this case,
taking into account the degeneracy of each state. Calculate the heat
capacity of a system of N molecules in the limit of low and high
temperatures and compare them to the classical result.

d)

4.45 Two-Level System (Princeton)

Consider a system composed of a very large number N of distinguishable
atoms at rest and mutually noninteracting, each of which has only two
(nondegenerate) energy levels: Let E / N be the mean energy per
atom in the limit

What is the maximum possible value of E / N if the system is not
necessarily in thermodynamic equilibrium? What is the maximum
attainable value of E / N if the system is in equilibrium (at positive
temperature)?
For thermodynamic equilibrium compute the entropy per atom S/N
as a function of E / N.

Zipper (Boston)4.46

A zipper has N links; each link has a state in which it is closed with energy
0 and a state in which it is open with energy We require that the zipper
only unzip from one side (say from the left) and that the link can only open
if all links to the left of it (1 ,2, . . . , are already open. (This model is
sometimes used for DNA molecules.)

Find the partition function.
Find the average number of open links and show that for low
temperatures  is independent of N.

a)
b)

4.47 Hanging Chain (Boston)

The upper end of a hanging chain is fixed while the lower end is attached
to a mass M. The (massless) links of the chain are ellipses with major axes

and minor axes and can place themselves only with either the
major axis or the minor axis vertical. Figure P.4.47 shows a four-link chain
in which the major axes of the first and fourth links and the minor axes of

a)

b)
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the second and third links are vertical. Assume that the chain has N links
and is in thermal equilibrium at temperature

Find the partition function.
Find the average length of the chain.

Molecular Chain (MIT, Princeton, Colorado)4.48

Consider a one-dimensional chain consisting of N molecules which exist in
two  configurations, with corresponding energies and lengths
and The chain is subject to a tensile force

a)
b)
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Write the partition function for the system.
Calculate the average length as a function of and the tempera-
ture
Assume that and Estimate the average length
in the absence of the tensile force as a function of tempera-
ture. What are the high- and low-temperature limits, and what is the
characteristic temperature at which the changeover between the two
limits occurs?
Calculate the linear response function

Produce a general argument to show that

Nonideal Gas

Heat Capacities (Princeton)

Consider a gas with arbitrary equation of state at a temper-
ature where is a critical temperature of this gas.

Calculate for this gas in terms of Does always
have the same sign?
Using the result of (a), calculate for one mole of a van der
Waals gas.

a)

b)

4.50 Return of Heat Capacities (Michigan)

In a certain range of temperature and pressure the specific volume
of a substance is described by the equation

where are positive constants. From this information, determine
(insofar as possible) as a function of temperature and pressure the following
quantities:

a)
b)

c)

d)

a)
b)
c)

4.49
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4.51 Nonideal Gas Expansion (Michigan State)

A gas obeys the equation of state

where is a function of the temperature only. The gas is initially at
temperature and volume and is expanded isothermally and reversibly
to volume

Find the work done in the expansion.
Find the heat absorbed in the expansion.

Some Maxwell relations:

van der Waals (MIT)4.52

A monatomic gas obeys the van der Waals equation

and has a heat capacity in the limit

Prove, using thermodynamic identities and the equation of state, that

Use the preceding result to determine the entropy of the van der Waals
gas, to within an additive constant.
Calculate the internal energy to within an additive constant.
What is the final temperature when the gas is adiabatically com-
pressed from to final volume
How much work is done in this compression?

a)
b)

b)

c)
d)

e)

a)



PROBLEMS28

4.53 Critical Parameters (Stony Brook)

Consider a system described by the Dietrici equation of state

where A, B, R are constants and P, V, and are the pressure, volume,
temperature, and number of moles. Calculate the critical parameters, i.e.,
the values of P, V, and at the critical point.

Mixtures and Phase Separation

Entropy of Mixing (Michigan, MIT)4.54

A 2-L container is divided in half: One half contains oxygen at 1
atm, the other nitrogen at the same pressure, and both gases may
be considered ideal. The system is in an adiabatic enclosure at a
temperature K. The gases are allowed to mix. Does the
temperature of the system change in this process? If so, by how
much? Does the entropy change? If so, by how much?
How would the result differ if both sides contained oxygen?
Now consider one half of the enclosure filled with diatomic molecules
of oxygen isotope and the other half with Will the answer
be different from parts (a) and (b)?

Leaky Balloon (Moscow Phys-Tech)4.55

Sometimes helium gas in a low-temperature physics lab is kept temporarily
in a large rubber bag at essentially atmospheric pressure. A physicist left a
40-L bag filled with He floating near the ceiling before leaving on vacation.
When she returned, all the helium was gone (diffused through the walls of
the bag). Find the entropy change of the gas. Assume that the atmospheric
helium concentration is approximately . What is the minimum
work needed to collect the helium back into the bag?

4.56 Osmotic Pressure (MIT)

Consider an ideal mixture of monatomic molecules of type A and
monatomic molecules of type B in a volume V.

b)
c)

a)
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a) Calculate the free energy Calculate the Gibbs poten-
tial G is the Legendre transform of F with respect
to V.

b)  If the molecules of type A are called the solvent, and those
of type B the solute. Consider two solutions with the same solvent
(type A) and different concentrations of solute (type B molecules)
separated by a partition through which solvent molecules can pass but
solute molecules cannot (see Figure P.4.56). There are particles in
volume V (or in volume 2V), and and particles in volume
V on the left and right of the membrane, respectively. Calculate the
pressure difference across the membrane at a given temperature and
volume. Assume that the concentrations of the solutions are small;
i.e.,

and

Clausius–Clapeyron (Stony Brook)4.57

Derive the Clausius–Clapeyron equation for the equilibrium of two
phases of a substance. Consider a liquid or solid phase in equilibrium
with its vapor.
Using part (a) and the ideal gas law for the vapor phase, show that the
vapor pressure follows the equation ln Make reasonable
assumptions as required. What is B?

a)

b)
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4.58 Phase Transition (MIT)

The curve separating the liquid and gas phases ends in the critical point
where Using arguments based on thermodynamic

stability, determine

at the critical point.

Hydrogen Sublimation in Intergalactic Space
(Princeton)

4.59

A lump of condensed molecular hydrogen in intergalactic space would tend
to sublimate (evaporate) because the ambient pressure of hydrogen is well
below the equilibrium vapor pressure. Find an order-of-magnitude estimate
of the rate of sublimation per unit area at The latent heat of
sublimation is and the vapor pressure at the triple point

is of Hg.

Gas Mixture Condensation (Moscow Phys-Tech)4.60

A mixture of of nitrogen and some oxygen is isothermally
compressed at The result of this experiment is plotted as the
pressure dependence of the mixture versus volume in arbitrary units (see
Figure P.4.60). Find the mass of oxygen and the oxygen saturation vapor
pressure at this temperature.



THERMODYNAMICS AND STATISTICAL PHYSICS 31

Hint: K is the boiling temperature of liquid nitrogen at
atmospheric pressure. Oxygen boils at a higher temperature.

4.61 Air Bubble Coalescence (Moscow Phys-Tech)

A tightly closed jar is completely filled with water. On the bottom of the
jar are two small air bubbles (see Figure P.4.61a) which sidle up to each
other and become one bubble (see Figure P.4.61b). The pressure at the top
of the jar is the radius of each original bubble is and the coefficient
of surface tension is Consider the process to be isothermal. Evaluate
the change of pressure inside the jar upon merging of the two bubbles.

4.62 Soap Bubble Coalescence (Moscow Phys-Tech)

Two soap bubbles and of radii and become one bubble of
radius Find the surface tension coefficient for the soap solution. The
ambient pressure is

4.63 Soap Bubbles in Equilibrium (Moscow
Phys-Tech)

Two soap bubbles of radius are connected by a thin “straw” of negli-
gible volume compared to the volume of the bubbles (see Figure P.4.63).
The ambient pressure is the temperature is and the surface tension
coefficient is

Is this system in stable equilibrium? What is the final state?
Calculate the entropy change between the final-state configuration
and the configuration in Figure P.4.63. Assume

a)
b)
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Quantum Statistics

4.64 Fermi Energy of a 1D Electron Gas
(Wisconsin-Madison)

Calculate the Fermi energy for a one-dimensional metal with one free elec-
tron per atom and an atomic spacing of 2.5 Å at T = 0.

4.65 Two-Dimensional Fermi Gas (MIT,
Wisconson-Madison)

Consider a noninteracting nonrelativistic gas of N spin-1/2 fermions at
T = 0 in a box of area A.

c) Qualitatively discuss the behavior of the heat capacity of this system
at low temperatures.

4.66 Nonrelativistic Electron Gas (Stony Brook,
Wisconsin-Madison, Michigan State)

Derive the relation between pressure and volume of a free nonrela-
tivistic electron gas at zero temperature.
The formula obtained in (a) is approximately correct for sufficiently
low temperatures (the so-called strongly degenerate gas). Discuss the
applicability of this formula to common metals.

Find the Fermi energy.
Show that the total energy is given by

a)
b)

a)

b)
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4.67 Ultrarelativistic Electron Gas (Stony Brook)

Derive the relation between pressure and volume of a free ultrarelativistic
electron gas at zero temperature.

4.68 Quantum Corrections to Equation of State
(MIT, Princeton, Stony Brook)

Consider a noninteracting, one-component quantum gas at temperature
with a chemical potential in a cubic volume V. Treat the separate cases
of bosons and fermions.

a)

b)

For a dilute system derive the equation of state in terms of tem-
perature pressure P, particle density and particle mass Do
this derivation approximately by keeping the leading and next-leading
powers of Interpret your results as an effective classical system.
At a given temperature, for which densities are your results valid?

4.69 Speed of Sound in Quantum Gases (MIT)

The sound velocity in a spin-1/2 Fermi gas is given at by

where is the mass of the gas particles, and is the number
density.

a) Show that

where is the chemical potential.
b) Calculate the sound velocity in the limit of zero temperature. Express

your answer in terms of
c) Show that

in a Bose gas below the Bose–Einstein temperature.
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4.70 Bose Condensation Critical Parameters (MIT)

Consider an ideal Bose gas of N particles of mass and spin zero in a
volume V and temperature above the condensation point.

a)  What is the critical volume below which Bose–Einstein condensa-
tion occurs? An answer up to a numerical constant will be sufficient.

b) What is the answer to (a) in two dimensions?

4.71 Bose Condensation (Princeton, Stony Brook)

Consider Bose condensation for an arbitrary dispersion law in D dimensions
(see Figure P.4.71). Assume a relation between energy and momentum of
the form Find a relation between D and for Bose condensation
to occur.

4.72 How Hot the Sun? (Stony Brook)

The total radiant energy flux at the Earth from the Sun, integrated over
all wavelengths, is observed to be approximately erg
The distance from the Earth to the Sun, is cm and the solar
radius, is Treating the Sun as a “blackbody,” make a
crude estimate of the surface temperature of the Sun (see Figure P.4.72).
To make the numerical estimate, you are encouraged to ignore all factors of
2’s and to express any integrals that you might have in dimensionless
form, and to take all dimensionless quantities to be unity.
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4.73 Radiation Force (Princeton, Moscow Phys-Tech,
MIT)

Consider an idealized Sun and Earth, both blackbodies, in otherwise empty
flat space. The Sun is at a temperature and heat transfer by
oceans and atmosphere on the Earth is so effective as to keep the Earth’s
surface temperature uniform. The radius of the Earth is
the radius of the Sun is and the Earth–Sun distance is

The mass of Sun

a)
b)
c)

d)

Find the temperature of the Earth.
Find the radiation force on the Earth.
Compare these results with those for an interplanetary “chondrule” in
the form of a spherical, perfectly conducting blackbody with a radius

cm, moving in a circular orbit around the Sun at a radius
equal to the Earth–Sun distance
At what distance from the Sun would a metallic particle melt (melting
temperature
For what size particle would the radiation force calculated in (c) be
equal to the gravitational force from the Sun at a distance  ?

4.74 Hot Box and Particle Creation (Boston, MIT)

The electromagnetic radiation in a box of volume V can be treated as a
noninteracting ideal Bose gas of photons. If the cavity also contains atoms
capable of absorbing and emitting photons, the number of photons in the
cavity is not definite. The box is composed of a special material that can
withstand extremely high temperatures of order

e)
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Derive the average number of photons in the box.a)
Hint:

b)
c)
d)

e)

What is the total energy of the radiation in the box for
What is the entropy of the radiation for
Assume that photons can create neutral particles of mass  and zero
spin and that these neutral particles can create photons by anni-
hilation or some other mechanism. The cavity now contains photons
and particles in thermal equilibrium at a temperature Find the
particle density Consider only the process where a single
photon is emitted or absorbed by making a single particle.
Hint: Minimize the free energy.

Now, instead of neutral particles, consider the creation of electron-positron
pairs.

What is the total concentration of electrons and positrons inside the
box when
What is the total concentration of electrons and positrons when

4.75 D-Dimensional Blackbody Cavity (MIT)

Consider a D-dimensional hypercube blackbody cavity. What is the energy
density as a function of temperature? It is not necessary to derive the
multiplicative constant. Assume that the radiation is in quanta of energy

4.76 Fermi and Bose Gas Pressure (Boston)

For a photon gas the entropy is

where is the angular frequency of the mode. Using (P.4.76.1):

Hint:

f)
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a) Show that the isothermal work done by the gas is

b)
where is the average number of photons in the  mode.
Show that the radiation pressure is equal to one third of the energy
density:

c) Show that for a nonrelativistic Fermi gas the pressure is

4.77 Blackbody Radiation and Early Universe (Stony
Brook)

The entropy of the blackbody radiation in the early universe does not
change if the expansion is so slow that the occupation of each photon mode
remains constant (or the other way around). To illustrate this consider the
following problem. A one-dimensional harmonic oscillator has an infinite
series of equally spaced energy states, with where is a positive
integer or zero and is the classical frequency of the oscillator.

a) Show that for a harmonic oscillator the free energy is

b) Find the entropy S. Establish the connection between entropy and
occupancy of the modes by showing that for one mode of frequency

the entropy is a function of photon occupancy only:

4.78 Photon Gas (Stony Brook)

Consider a photon gas at temperature T inside a container of volume V.
Derive the equation of state and compare it to that of the classical ideal
gas (which has the equation Also compute the energy of
the photon gas in terms of PV. You need not get all the numerical factors
in this derivation.
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4.79 Dark Matter (Rutgers)

From virial theorem arguments, the velocity dispersions of bright stars in
dwarf elliptical galaxies imply that most of the mass in these systems is in
the form of “dark” matter - possibly massive neutrinos (see Figure P.4.79).
The central parts of the Draco dwarf galaxy may be modeled as an isother-
mal gas sphere, with a phase-space distribution of mass of the form

Here,  is the local mass density in the galaxy, is the velocity disper-
sion, and is the mass of a typical “particle” in the galaxy. Measurements
on Draco yield and light years). is
the “core” radius, where the density has decreased by close to a factor of 2
from its value at

a)

b)

c)

Using the virial theorem, write a very rough (order of magnitude)
relation between and
Assume that most of the mass in Draco resides in one species of
massive neutrino. Show how, if the Pauli exclusion principle is not to
be violated, the distribution function above sets a lower limit on the
mass of this neutrino.
Using the observations and the result of part (a), estimate this lower
limit (in units of and comment on whether current measure-
ments of neutrino masses allow Draco to be held together in the man-
ner suggested.
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4.80 Einstein Coefficients (Stony Brook)

You have two-state atoms in a thermal radiation field at temperature T.
The following three processes take place:

1) Atoms can be promoted from state 1 to state 2 by absorption of a
photon according to

2) Atoms can decay from state 2 to state 1 by spontaneous emission
according to

3) Atoms can decay from state 2 to state 1 by stimulated emission ac-
cording to

The populations and are in thermal equilibrium, and the radiation
density is

a)
b)
c)

What is the ratio
Calculate the ratios of coefficients            and
From the ratio of stimulated to spontaneous emission, how does the
pump power scale with wavelength when you try to make short-
wavelength lasers?

4.81 Atomic Paramagnetism (Rutgers, Boston)

Consider a collection of N identical noninteracting atoms, each of which
has total angular momentum J. The system is in thermal equilibrium at
temperature and is in the presence of an applied magnetic field
The magnetic dipole moment associated with each atom is given by

where is the gyromagnetic ratio and is the Bohr magneton.
Assume the system is sufficiently dilute so that the local magnetic field at
each atom may be taken as the applied magnetic field.

a) For a typical atom in this system, list the possible values of the
magnetic moment along the magnetic field, and the corresponding
magnetic energy associated with each state.
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Determine the thermodynamic mean value of the magnetic moment
and the magnetization of the system M, and calculate it for
and
Find the magnetization of the system in the limits and

and discuss the physical meaning of the results.

4.82 Paramagnetism at High Temperature (Boston)

a) Show that for a system with a discrete, finite energy spectrum the
specific heat per particle at high temperatures           for all is

where is the spectrum variance

b)

c)

Use the result of (a) to derive the high-temperature specific heat for
a paramagnetic solid treated both classically and quantum mechani-
cally.
Compare your quantum mechanical result for with the exact
formula for

4.83 One-Dimensional Ising Model (Tennessee)

Consider N spins in a chain which can be modeled using the one-
dimensional Ising model

where the spin has the values

4.84 Three Ising Spins (Tennessee)

Assume three spins are arranged in an equilateral triangle with each spin in-
teracting with its two neighbors (see Figure P.4.84). The energy expression
for the Ising model in a magnetic field                    is

b)

c)

a)
b)

Find the partition function.
Find the heat capacity per spin.
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Derive expressions for the

Partition function
Average spin
Internal energy

4.85 N Independent Spins (Tennessee)

Consider a system of N independent spin-1/2 particles. In a magnetic field
H, in the direction, they can point either up or down with energy
where is the magnetic moment. Derive expressions for the

Partition function
Internal energy
Entropy

4.86 N Independent Spins, Revisited (Tennessee)

Consider a system of N independent spin-1/2 particles. In a magnetic field
H, in the direction, they can point either up or down with energy
where is the magnetic moment and Derive expressions for the
entropy in the case of a microcanonical ensemble, where the number
of particles N and the magnetization are fixed.

4.87 Ferromagnetism (Maryland, MIT)

The spins of a regular Ising lattice interact by the energy

a)
b)
c)

a)
b)
c)
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where B is an external field, is the magnetic moment, and the prime
indicates that the summation is only over the nearest neighbors. Each spin

has nearest neighbors. The spins are restricted to equal The
coupling constant J is positive. Following Weiss, represent the effect on
of the spin–spin interaction in (P.4.87.1) by the mean field set up by the
neighboring spins Calculate the linear spin susceptibility using
this mean field approximation. Your expression should diverge at some
temperature What is the physical significance of this divergence?
What is happening to the spin lattice at

4.88 Spin Waves in Ferromagnets (Princeton,
Colorado)

Consider the quantum mechanical spin-1/2 system with Hamiltonian

where the summation is over nearest-neighbor pairs in three dimensions.

a)
b)

c)

d)

Fluctuations

4.89 Magnetization Fluctuation (Stony Brook)

Consider N moments with two allowed orientations in an external
field H at temperature Calculate the fluctuation of magnetization M,
i.e.,

Derive the equation of motion for the spin at site of the lattice.
Convert the model to a classical microscopic model by inserting the
classical spin field into the equation of motion. Express
to lowest order in its gradients, considering a simple cubic lattice with
lattice constant
Consider the ferromagnetic case with uniform magnetization

Derive the frequency-versus-wave vector relation of a small spin-
wave fluctuation
Quantize the spin waves in terms of magnons which are bosons. De-
rive the temperature dependence of the heat capacity.
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4.90 Gas Fluctuations (Moscow Phys-Tech)

A high-vacuum chamber is evacuated to a pressure of atm. Inside
the chamber there is a thin-walled ballast volume filled with helium gas
at a pressure  atm and a temperature On one wall
of this ballast volume, there is a small hole of area A
detector counts the number of particles leaving the ballast volume during
time intervals

a)
b)
c)

Find the average number of molecules counted by the detector.
Find the mean square fluctuation of this number.
What is the probability of not counting any particles in one of the
measurements?

4.91 Quivering Mirror (MIT, Rutgers, Stony Brook)

a) A very small mirror is suspended from a quartz strand whose elas-
tic constant is D. (Hooke’s law for the torsional twist of the strand
is where is the angle of the twist.) In a real-life ex-
periment the mirror reflects a beam of light in such a way that the
angular fluctuations caused by the impact of surrounding molecules
(Brownian motion) can be read on a suitable scale. The position of

for a strand with dyn.cm, it was found
that You may also use the universal gas constant

Calculate Avogadro’s number.
Can the amplitude of these fluctuations be reduced by reducing gas
density? Explain your answer.

b)

4.92 Isothermal Compressibility and Mean Square
Fluctuation (Stony Brook)

a) Derive the relation

where is the isothermal compressibility:

the equilibrium is One observes the average value and
the goal is to find Avogadro’s number (or, what is the same thing,
determine the Boltzmann constant). The following are the data: At
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b) From (a), find the relation between and the mean square fluctua-
tion of N in the grand canonical ensemble. How does this fluctuation
depend on the number of particles?

4.93 Energy Fluctuation in Canonical Ensemble
(Colorado, Stony Brook)

Show that for a canonical ensemble the fluctuation of energy in a system
of constant volume is related to the specific heat and, hence, deduce that
the specific heat at constant volume is nonnegative.

4.94 Number Fluctuations (Colorado (a,b), Moscow
Phys-Tech (c))

Show that for a grand canonical ensemble the number of particles N and
occupational number in an ideal gas satisfy the conditions:

4.95 Wiggling Wire (Princeton)

A wire of length and mass per unit length is fixed at both ends and
tightened to a tension What is the rms fluctuation, in classical statistics,
of the midpoint of the wire when it is in equilibrium with a heat bath at
temperature A useful series is

4.96 LC Voltage Noise (MIT, Chicago)

The circuit in Figure P.4.96 consists of a coil of inductance and a ca-
pacitor of capacitance C. What is the rms noise voltage across AB at
temperature in the limit where

a) is very large?
b) is very small?

a) quantum statistics
b) classical statistics

For an electron spin Fermi gas at temperature

c) Find
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Applications to Solid State

4.97 Thermal Expansion and Heat Capacity
(Princeton)

a) Find the temperature dependence of the thermal expansion coefficient
if the interaction between atoms is described by a potential

b)
where is a small parameter.
Derive the anharmonic corrections to the Dulong–Petit law for a po-
tential

where is a small parameter.

4.98 Schottky Defects (Michigan State, MIT)

N atoms from a perfect crystal of total number of atoms are displaced to
the surface of the crystal. Let be the energy needed to displace one atom
from the bulk of the crystal to the surface. Find the equilibrium number
of defects N at low temperatures assuming

4.99 Frenkel Defects (Colorado, MIT)

N atoms are arranged regularly to form a perfect crystal. If one replaces
atoms among them from lattice sites to interstices of the lattice, this



PROBLEMS46

becomes an imperfect crystal with defects (of the Frenkel type). The
number of interstitial sites into which an atom can enter is of the same
order as N. Let be the energy necessary to remove an atom from a
lattice site to an interstitial site. Show that, in the equilibrium state at
temperature such that the following relation is valid:

4.100 Two-Dimensional Debye Solid (Columbia,
Boston)

An atom confined to a surface may be thought of as an object “living” in a
two-dimensional world. There are a variety of ways to look at such an atom.
Suppose that the atoms adsorbed on the surface are not independent but
undergo collective oscillations as do the atoms in a Debye crystal. Unlike
the atoms in a Debye crystal, however, there are only two dimensions in
which these collective vibrations can occur.

a)

b)

Derive an expression for the number of normal modes between
and and, by thinking carefully about the total number of
vibrational frequencies for N atoms confined to a surface, rewrite it
in terms of N and the maximum vibration frequency allowed due
to the discreteness of the atoms.
Obtain an integral expression for the energy E for the two-dimensional
Debye crystal. Use this to determine the limiting form of the tempera-
ture dependence of the heat capacity (analogous to the Debye law)
as for the two-dimensional Debye crystal up to dimensionless
integrals.

4.101 Einstein Specific Heat (Maryland, Boston)

Derive an expression for the average energy at a temperature of a
quantum harmonic oscillator having natural frequency
Assuming unrealistically (as Einstein did) that the normal-mode vi-
brations of a solid all have the same natural frequency (call it
find an expression for the heat capacity of an insulating solid.
Find the high-temperature limit for the heat capacity as calculated
in (b) and use it to obtain a numerical estimate for the heat capacity
of a piece of an insulating solid having a number density
of Would you expect this to be a poor or a
good estimate for the high-temperature heat capacity of the material?
Please give reasons.

a)

b)

c)
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d) Find the low-temperature limit of the heat capacity and explain why
it is reasonable in terms of the model.

4.102 Gas Adsorption (Princeton, MIT, Stanford)

Consider a vapor (dilute monatomic gas) in equilibrium with a submono-
layer (i.e., less than one atomic layer) of atoms adsorbed on a surface.
Model the binding of atoms to the surface by a potential energy
Assume there are possible sites for adsorption, and find the vapor pres-
sure as a function of surface concentration (N is the number of
adsorbed particles).

4.103 Thermionic Emission (Boston)

a) Assume that the evaporation of electrons from a hot wire (Richard-
son’s effect) is thermodynamically equivalent to the sublimation of a
solid. Find the pressure of the electron gas, provided that the elec-
trons outside the metal constitute an ideal classical monatomic gas
and that the chemical potential of the electrons in the metal (the
solid phase) is a constant.

b) Derive the same result by using the Clausius–Clapeyron equation

where L is the latent heat of electron evaporation. Neglect the volume
occupied by the electrons in the metal.

4.104 Electrons and Holes (Boston, Moscow
Phys-Tech)

a)

b)

c)

Derive a formula for the concentration of electrons in the conduction
band of a semiconductor with a fixed chemical potential (Fermi level)

assuming that in the conduction band (nondegenerate
electrons).
What is the relationship between hole and electron concentrations in
a semiconductor with arbitrary impurity concentration and band gap

Find the concentration of electrons and holes for an intrinsic semi-
conductor (no impurities), and calculate the chemical potential if the
electron mass is equal to the mass of the hole:
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4.105 Adiabatic Demagnetization (Maryland)

A paramagnetic sample is subjected to magnetic cooling.

a) Show that

Assume is independent of H. Show that

where is the magnetization, is the isothermal magnetic
susceptibility per unit volume, H is the magnetic field, and is the
heat capacity at constant H.
For an adiabatic process, show that

c) Assume that can be approximated by Curie’s law and that
the heat capacity at zero magnetic field is given by

where and are constants. Show that

b)
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For an adiabatic process, show that the ratio of final and initial tem-
peratures is given by

d) Explain and indicate in the diagram given in Figure P.4.105 a
possible route for the adiabatic demagnetization cooling process to
approach zero temperature.

4.106 Critical Field in Superconductor (Stony Brook,
Chicago)

Consider a massive cylinder of volume V made of a type I superconducting
material in a magnetic field parallel to its axis.

a) Using the fact that the superconducting state displays perfect diamag-
netism, whereas the normal state has negligible magnetic susceptibil-
ity, show that the entropy discontinuity across the phase boundary is
at zero field H:

where is the critical H field for suppressing superconductivity
at a temperature
What is the latent heat when the transition occurs in a field?
What is the specific heat discontinuity in zero field?

b)
c)
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Quantum
Mechanics

One-Dimensional Potentials

5.1 Shallow Square Well I (Columbia)

A particle of mass moving in one dimension has a potential which
is a shallow square well near the origin:

where is a positive constant. Derive the eigenvalue equation for the state
of lowest energy, which is a bound state (see Figure P.5.1).

51
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5.2 Shallow Square Well II (Stony Brook)

A particle of mass is confined to move in one dimension by a potential
(see Figure P.5.2):

Derive the equation for the bound state.
From the results of part (a), derive an expression for the minimum
value of which will have a bound state.
Give the expression for the eigenfunction of a state with positive en-
ergy
Show that the results of (c) define a phase shift for the potential, and
derive an expression for the phase shift.

5.3 Attractive Delta Function Potential I (Stony
Brook)

A particle of mass moves in one dimension under the influence of an
attractive delta function potential at the origin. The Schrödinger equation

a)
b)

c)

d)
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is

Find the eigenvalue and eigenfunction of the bound state.
If the system is in the bound state and the strength of the potential is
changed suddenly what is the probability that the particle
remains bound?

a)
b)

5.4 Attractive Delta Function Potential II (Stony
Brook)

A particle of mass is confined to the right half-space, in one dimension,
by an infinite potential at the origin. There is also an attractive delta
function potential where (see Figure P.5.4).

Find the expression for the energy of the bound state.
What is the minimum value of required for a bound state?

a)
b)

QUANTUM MECHANICS
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5.5 Two Delta Function Potentials (Rutgers)

A particle of mass moves in a one-dimensional potential of the form

where P is a positive dimensionless constant and has units of length.
Discuss the bound states of this potential as a function of P.

5.6 Transmission Through a Delta Function Potential
(Michigan State, MIT, Princeton)

A particle of mass   moves in one dimension where the only potential
is at the origin with A free particle of wave vector

approaches the origin from the left. Derive an expression for the amplitude
T of the transmitted wave as a function of C, and

5.7 Delta Function in a Box (MIT)

A particle of mass is confined to a box, in one dimension, between
and the box has walls of infinite potential. An attractive delta
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function is at the center of the box.

a)
b)
c)

What are the eigenvalues of odd-parity states?
Find the value of C for which the lowest eigenvalue is zero.
Find the ground state wave function for the case that the lowest
eigenvalue is less than zero energy.

5.8 Particle in Expanding Box (Michigan State, MIT,
Stony Brook)

A particle of mass m is contained in a one-dimensional impenetrable box
extending from The particle is in its ground state.

a)
b)

Find the eigenfunctions of the ground state and the first excited state.
The walls of the box are moved outward instantaneously to form a
box extending from Calculate the probability that the
particle will stay in the ground state during this sudden expansion.
Calculate the probability that the particle jumps from the initial
ground state to the first excited final state.

5.9 One-Dimensional Coulomb Potential (Princeton)

An electron moves in one dimension and is confined to the right half-space
where it has a potential energy

where e is the charge on an electron. This is the image potential of an
electron outside a perfect conductor.

Find the ground state energy.
Find the expectation value in the ground state

5.10 Two Electrons in a Box (MIT)

Two electrons are confined in one dimension to a box of length A clever
experimentalist has arranged that both electrons have the same spin state.
Ignore the Coulomb interaction between electrons.

a) Write the ground state wave function for the two-electron
system.

b) What is the probability that both electrons are found in the same
half of the box?

c)

a)
b)

QUANTUM MECHANICS
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5.11 Square Well (MIT)

A particle of mass is confined to a space in one dimension by
infinitely high walls at At the particle is initially in the left
half of the well with constant probability

a) Find the time-dependent wave function
b) What is the probability that the particle is in the nth eigenstate?
c) Write an expression for the average value of the particle energy.

5.12 Given the Eigenfunction (Boston, MIT)

A particle of mass moves in one dimension. It is remarked that the exact
eigenfunction for the ground state is

where is a constant and A is the normalization constant. Assuming that
the potential vanishes at infinity, derive the ground state eigenvalue
and

5.13    Combined Potential (Tennessee)

A particle of mass is confined to in one dimension by the potential

where and are constants. Assuming there is a bound state, derive the
exact ground state energy.

Harmonic Oscillator

5.14   Given a Gaussian (MIT)

A particle of mass is coupled to a simple harmonic oscillator in one di-
mension. The oscillator has frequency  and distance constant

PROBLEMS
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At time the particle’s wave function is given by

The constant is unrelated to any other parameters. What is the proba-
bility that a measurement of energy at  finds the value of

5.15    Harmonic Oscillator ABCs (Stony Brook)

Consider the harmonic oscillator given by

Define

Show that
Show that
Show that
Show that if is an eigenstate of with eigenvalue

then are also eigenstates of N with eigenvalues
and respectively.
Define such that What is the energy eigenvalue of
How can one construct other eigenstates of H starting from
What is the energy spectrum of H? Are negative eigenvalues possible?

5.16   Number States (Stony Brook)

Consider the quantum mechanical Hamiltonian for a harmonic oscillator
with frequency

a)
b)
c)
d)

e)
f)
g)

QUANTUM MECHANICS
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and define the operators

a) Suppose we define a state to obey

Show that the states

are eigenstates of the number  operator, with eigenvalue n:

Show that is also an eigenstate of the Hamiltonian and compute
its energy.
Hint: You may assume
Using the above operators, evaluate the expectation value
in terms of and

5.17 Coupled Oscillators (MIT)

Two identical harmonic oscillators in one dimension each have mass and
frequency Let the two oscillators be coupled by an interaction term

where C is a constant and and are the coordinates of the two
oscillators. Find the exact spectrum of eigenvalues for this coupled system.

5.18 Time-Dependent Harmonic Oscillator I
(Wisconsin-Madison)

Consider a simple harmonic oscillator in one dimension:

At the wave function is

b)

c)

PROBLEMS
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where is the exact eigenstate of the harmonic oscillator with eigen-
value

a) Give
b) What is the parity of this state? Does it change with time?
c) What is the average value of the energy for this state? Does it change

with time?

5.19 Time-Dependent Harmonic Oscillator II
(Michigan State)

Consider a simple harmonic oscillator in one dimension. Introduce the
raising and lowering operators, and respectively. The Hamiltonian H
and wave function at are

where denotes the eigenfunction of energy

What is wave function at positive times?
What is the expectation value for the energy?
The position can be represented in operators by
where is a constant. Derive an expression for the
expectation of the time-dependent position

5.20 Switched-on Field (MIT)

Consider a simple harmonic oscillator in one dimension with the usual
Hamiltonian

a) The eigenfunction of the ground state can be written as

Determine the constants N and

You may need operator expressions such as a and

a)
b)
c)
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b) What is the eigenvalue of the ground state?
c) At time an electric field is switched on, adding a perturba-

d) Assuming that the field is switched on in a time much faster than
what is the probability that the particle stays in the ground state?

5.21 Cut the Spring! (MIT)

A particle is allowed to move in one dimension. It is initially coupled to
two identical harmonic springs, each with spring constant K. The springs
are symmetrically fixed to the points so that when the particle is at

the classical force on it is zero.

a) What are the eigenvalues of the particle while it is connected to both
springs?

b) What is the wave function in the ground state?
c) One spring is suddenly cut, leaving the particle bound to only the

other one. If the particle is in the ground state before the spring is
cut, what is the probability it is still in the ground state after the
spring is cut?

Angular Momentum and Spin

5.22 Given Another Eigenfunction (Stony Brook)

A nonrelativistic particle of mass moves in a three-dimensional central
potential which vanishes at We are given that an exact
eigenstate is

where C and are constants.

a)
b)
c)

What is the angular momentum of this state?
What is the energy?
What is

5.23 Algebra of Angular Momentum (Stony Brook)

Given the commutator algebra

PROBLEMS

tion of the form What is the new ground state energy?
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5.24 Triplet Square Well (Stony Brook)

Consider a two-electron system in one dimension, where both electrons have
spins aligned in the same direction (say, up). They interact only through
the attractive square well in relative coordinates

What is the lowest energy of the two-electron state? Assume the total
momentum is zero.

5.25 Dipolar Interactions (Stony Brook)

Two spin-1/2 particles are separated by a distance and interact only
through the magnetic dipole energy

where is the magnetic moment of spin The system of two spins
consists of eigenstates of the total spin and total

a) Write the Hamiltonian in terms of spin operators.
b) Write the Hamiltonian in terms of and
c) Give the eigenvalues for all states.

5.26 Spin-Dependent            Potential (MIT)

Consider two identical particles of mass and spin 1/2. They interact only
through the potential

where and are Pauli spin matrices which operate on the spin of
particle

a) Construct the spin eigenfunctions for the two particle states. What
is the expectation value of V for each of these states?

b) Give the eigenvalues of all of the bound states.

Show that commutes with
Derive the spectrum of from the commutation relations.

a)
b)

QUANTUM MECHANICS
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5.27 Three Spins (Stony Brook)

Consider three particles of spin 1/2 which have no motion. The raising
and lowering operators of the individual

spins have the property

where the arrows indicate the spin orientation with regard to the
direction.

a) Write explicit wave functions for the four states:

b) Using the definition that construct the 4 × 4 matrices

which represent the and operators.
c) Construct the 4 × 4 matrices which represent and
d) Construct from the value of the matrix

5.28 Constant Matrix Perturbation (Stony Brook)

Consider a system described by a Hamiltonian

where and G are positive.

a) Find the eigenvalues and eigenvectors of this Hamiltonian.
b) Consider the two states

PROBLEMS
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At the system is in state  Derive the probability that at any
later time it is in state

5.29 Rotating Spin (Maryland, MIT)

A spin-1/2 particle interacts with a magnetic field through the
Pauli interaction where is the magnetic moment and

are the Pauli spin matrices. At a measurement determines
that the spin is pointing along the positive What is the probability
that it will be pointing along the negative  at a later time

5.30 Nuclear Magnetic Resonance (Princeton, Stony
Brook)

A spin-1/2 nucleus is placed in a large magnetic field in the
An oscillating field of radio frequency is applied in the
so the total magnetic field is

The Hamiltonian is where is the magnetic moment. Use the
notation

a) If the nucleus is initially pointing in the at what
is the probability that it points in the at later times?

b) Discuss why most NMR experiments adjust so that

Variational Calculations

5.31 Anharmonic Oscillator (Tennessee)

Use variational methods in one dimension to estimate the ground state
energy of a particle of mass in a potential

5.32 Linear Potential I (Tennessee)

A particle of mass is bound in one dimension by the potential
where F is a constant. Use variational methods to estimate the energy

of the ground state.

QUANTUM MECHANICS
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5.33 Linear Potential II (MIT, Tennessee)

A particle of mass moves in one dimension in the right half-space. It has
a potential energy given by

where F is a positive real constant. Use variational methods to obtain an
estimate for the ground state energy. How does the wave function behave
in the limits or

5.34 Return of Combined Potential (Tennessee)

A particle of mass moves in one dimension according to the potential

where and are both constants.

a) Show that the wave function must vanish at so that a particle
on the right of the origin never gets to the left.

b) Use variational methods to estimate the energy of the ground state.

5.35 Quartic in Three Dimensions (Tennessee)

A particle of mass is bound in three dimensions by the quartic potential
Use variational methods to estimate the energy of the ground

state.

5.36 Halved Harmonic Oscillator (Stony Brook,
Chicago (b), Princeton (b))

Consider a particle of mass moving in one dimension (see Figure P.5.36)
in a potential
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a) Using the normalized trial function

find the value of which minimizes the ground state energy and
the resulting estimate of the ground state energy. How is this value
related to the true ground state energy?
What is the exact ground state wave function and energy for this
system (neglect the normalization of the wave function)? Do not
solve the Schrödinger equation directly. Rather, state the answer and
justify it.
Hint: You may need the integral

b)

5.37 Helium Atom (Tennessee)

Do a variational calculation to estimate the ground state energy of the
electrons in the helium atom. The Hamiltonian for two electrons, assuming
the nucleus is fixed, is

QUANTUM MECHANICS
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Assume a wave function of the form

where is the Bohr radius, is the variational parameter, and is the
spin state of the two electrons.

Perturbation Theory

5.38 Momentum Perturbation (Princeton)

A particle of mass moves in one dimension according to the Hamiltonian

All eigenfunctions and eigenvalues are known. Suppose we add
a term to the Hamiltonian, where and are constants and is the
momentum operator:

Derive an expression for the eigenvalues and eigenstates of the new Hamil-
tonian H.

5.39 Ramp in Square Well (Colorado)

b) A small perturbation is added, Use perturbation
theory to calculate the change in the ground state energy to

5.40 Circle with Field (Colorado, Michigan State)

A particle with charge e and mass is confined to move on the circumfer-
ence of a circle of radius The only term in the Hamiltonian is the kinetic
energy, so the eigenfunctions and eigenvalues are

PROBLEMS
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where is the angle around the circle. An electric field is imposed in the
plane of the circle. Find the perturbed energy levels up to

5.41 Rotator in Field (Stony Brook)

Consider a rigid body with moment of inertia I, which is constrained to
rotate in the    and whose motion is given by the Schrödinger equa-
tion

a) Find the eigenfunctions and eigenvalues.
b) Assume the rotator has a fixed dipole moment p in the plane. An

electric field     is applied to the plane. Find the changes in the energy
levels to first and second order in the field.

5.42 Finite Size of Nucleus (Maryland, Michigan
State, Princeton, Stony Brook)

Regard the nucleus of charge Z as a sphere of radius with a uniform
charge density. Assume that where is the Bohr radius of the
hydrogen atom.

Derive an expression for the electrostatic potential between the
nucleus and the electrons in the atom. If is the
potential from a point charge, find the difference
due to the size of the nucleus.
Assume one electron is bound to the nucleus in the lowest bound
state. What is its wave function when calculated using the potential

from a point nucleus?
Use first-order perturbation theory to derive an expression for the
change in the ground state energy of the electron due to the finite
size of the nucleus.

a)

b)

c)

5.43 U and       Perturbation (Princeton)

A particle is moving in the three-dimensional harmonic oscillator with po-
tential energy A weak perturbation is applied:

QUANTUM MECHANICS
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The same small constant U occurs in both terms of Use perturbation
theory to calculate the change in the ground state energy to order

5.44 Relativistic Oscillator (MIT, Moscow
Phys-Tech, Stony Brook (a))

Consider a spinless particle in a one-dimensional harmonic oscillator poten-
tial:

a) Calculate leading relativistic corrections to the ground state to first
order in perturbation theory.

b) Consider an anharmonic classical oscillator with

For what values of will the leading corrections be the same as in
(a)?

5.45 Spin Interaction (Princeton)

Consider a spin-1/2 particle which is bound in a three-dimensional har-
monic oscillator with frequency The ground state Hamiltonian and
spin interaction are

where is a constant and are the Pauli matrices. Neglect
the spin–orbit interaction. Use perturbation theory to calculate the change
in the ground state energy to order

5.46 Spin–Orbit Interaction (Princeton)

Consider in three dimensions an electron in a harmonic oscillator potential
which is perturbed by the spin–orbit interaction

PROBLEMS
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What are the eigenvalues of the ground state and the lowest excited
states of the three-dimensional harmonic oscillator?
Use perturbation theory to estimate how these eigenvalues are altered
by the spin–orbit interaction.

a)

b)

5.47 Interacting Electrons (MIT)

Consider two electrons bound to a proton by Coulomb interaction. Neglect
the Coulomb repulsion between the two electrons.

a) What are the ground state energy and wave function for this system?
b) Consider that a weak potential exists between the two electrons of

the form

where is a constant and is the spin operator for electron (ne-
glect the spin–orbit interaction). Use first-order perturbation theory
to estimate how this potential alters the ground state energy.

5.48 Stark Effect in Hydrogen (Tennessee)

Consider a single electron in the state of the hydrogen atom. We ig-
nore relativistic corrections, so the and states are initially degenerate.
Then we impose a small static electric field Use perturbation
theory to derive how the energy levels are changed to lowest order in
powers of

5.49 Hydrogen with Electric and Magnetic
Fields (MIT)

Consider an electron in the state of the hydrogen atom. We ignore
relativistic corrections, so the and states are initially degenerate.
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Then we impose two simultaneous perturbations: an electric field in
the and a magnetic field which is given by the
vector potential Ignore the magnetic moment of the
electron. Calculate how the states are altered by these simultaneous
perturbations.

5.50 Hydrogen in Capacitor (Maryland, Michigan
State)

A hydrogen atom in its ground state is placed between the parallel plates
of a capacitor. For times t < 0, no voltage is applied. Starting at an
electric field   is applied, where is a constant. Derive the
formula for the probability that the electron ends up in state due to this
perturbation. Evaluate the result for

a) a state
b) a state

5.51 Harmonic Oscillator in Field (Maryland,
Michigan State)

A particle of mass and charge moves in one dimension. It is attached
to a spring of constant and is initially in the ground state of the
harmonic oscillator. An electric field is switched on during the interval

where is a constant.

a) What is the probability of the particle ending up in the state?
b) What is the probability of the particle ending up in the state?

5.52 of Tritium (Michigan State)

Tritium is an isotope of hydrogen with one proton and two neutrons. A
hydrogen-like atom is formed with an electron bound to the tritium nucleus.
The tritium nucleus undergoes decay, and the nucleus changes its charge
state suddenly to and becomes an isotope of helium. If the electron is
initially in the ground state in the tritium atom, what is the probability
that the electron remains in the ground state after the sudden -decay?

PROBLEMS
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WKB

5.53 Bouncing Ball (Moscow Phys-Tech, Chicago)

A ball of mass acted on by uniform gravity (let be the acceleration
of gravity) bounces up and down elastically off a floor. Take the floor to
be at the zero of potential energy. Working in the WKB approximation,
compute the quantized energy levels of the bouncing ball system.

5.54 Truncated Harmonic Oscillator (Tennessee)

A truncated harmonic oscillator in one dimension has the potential

a) Use WKB to estimate the energies of the bound states.
b) Find the condition that there is only one bound state: it should de-

pend on and

5.55 Stretched Harmonic Oscillator (Tennessee)

Use WKB in one dimension to calculate the eigenvalues of a particle of
mass in the following potential (see Figure P.5.55):
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5.56 Ramp Potential (Tennessee)

Use WKB in one dimension to find the eigenvalues of a particle of mass
in the potential where

5.57 Charge and Plane (Stony Brook)

A particle moving in one dimension feels the potential

(This potential would be appropriate for an electron moving in the presence
of a uniformly charged sheet where C is the transparency of the sheet.)

Using the WKB approximation, find the energy spectrum, for
this one-dimensional problem for all for
Find the energy spectrum,
Derive an equation that describes the energies for even wave func-
tions for an arbitrary value of C. What can you say about the energies

for odd wave functions?

a)

b)
c)
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5.58 Ramp Phase Shift (Tennessee)

Use WKB to calculate the phase shift in one dimension of a particle of mass
confined by the ramp potential

5.59 Parabolic Phase Shift (Tennessee)

Use WKB to calculate the phase shift in one dimension of a particle of mass
confined by the parabolic potential

5.60 Phase Shift for Inverse Quadratic (Tennessee)

A particle ofmass moves in one dimension in the right half-space
with the potential

where thedimensionless constant determines the strength of the potential.
Use WKB to calculate the phase shift as a function of energy.

Scattering Theory

5.61 Step-Down Potential (Michigan State, MIT)

A particle of mass obeys a Schrödinger equation with a potential

Since the potential is higher on the left of zero than on the right.
Find the reflection coefficient for a particle coming in from the left
with momentum (see Figure P.5.61).
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5.62 Step-Up Potential (Wisconsin-Madison)

Consider a particle scattering in one dimension from a potential which
is a simple step at

where A particle with kinetic energy is incident from the
left (see Figure P.5.62).

a) Find the intensity of the reflected (R) and transmitted (T) waves.
b) Find the currents and the sum of the reflected and

transmitted waves.

PROBLEMS



75

5.63 Repulsive Square Well (Colorado)

Consider in three dimensions a repulsive square well at the origin
of width The potential is

A particle of energy is incident upon the square well
(see Figure P.5.63).

a) Derive the phase shift for 
b) How does the phase shift behave as
c) Derive the total cross section in the limit of zero energy.

5.64 3D Delta Function (Princeton)

Consider a particle of mass which scatters in three dimension from a
potential which is a shell at radius

Derive the exact expression for the scattering cross section in the
limit of very low particle energy.

QUANTUM MECHANICS
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5.65 Two-Delta-Function Scattering (Princeton)

A free particle of mass traveling with momentum parallel to the
scatters off the potential

Calculate the differential scattering cross section, in the Born ap-
proximation. Does this approximation provide a reasonable description for
scattering from this potential? In other words, is it valid to use unperturbed
wave functions in the scattering amplitude?

5.66 Scattering of Two Electrons (Princeton)

Two electrons scatter in a screened environment where the effective poten-
tial is

where is a constant. Consider both electrons in the center-of-mass frame,
where both electrons have energy This energy is much larger than a
Rydberg but much less than so use nonrelativistic kinematics. Derive
an approximate differential cross section for scattering through an angle
when the two electrons are

a) in a total spin state of S = 0,
b)  in a total spin state of S =1.

5.67 Spin-Dependent Potentials (Princeton)

Consider the nonrelativistic scattering of an electron of mass and mo-
mentum through an angle Calculate the differential cross section in
the Born approximation for the spin-dependent potential

where are the Pauli spin matrices and are con-
stants. Assume the initial spin is polarized along the incident direction, and
sum over all final spins. (Note: Ignore that the potential violates parity.)
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77

5.68 Rayleigh Scattering (Tennessee)

Rayleigh scattering is the elastic scattering of photons. Assume there is a
matrix element which describes the scattering from to It
has the dimensions of

Derive an expression for the differential cross section for
Rayleigh scattering. Ignore the photon polarization.
Assume the specific form for the matrix element

a)

b)

where is the polarizability tensor and are the polarization
vectors of the photons. What is the result if the initial photons are
unpolarized and the final photon polarizations are summed over? As-
sume the polarizability is isotropic: where is the unit tensor.

5.69 Scattering from Neutral Charge Distribution
(Princeton)

Consider the nonrelativistic scattering of a particle of mass m and charge e
from a fixed distribution of charge Assume that the charge distribu-
tion is neutral: it is spherically symmetric; and the second
moment, is defined as

Use the Born approximation to derive the differential cross section
for the scattering of a particle of wave vector k.

Derive the expression for forward scattering
Assume that is for a neutral hydrogen atom in its ground state.
Calculate A in this case. Neglect exchange effects and assume that
the target does not recoil.

a)

b)
c)

General

5.70 Spherical Box with Hole (Stony Brook)

A particle is confined to a spherical box of radius R. There is a barrier
in the center of the box, which excludes the particle from a radius So
the particle is confined to the region Assume that the wave
function vanishes at both and and derive an expression for the
eigenvalues and eigenfunctions of states with angular momentum
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5.71 Attractive Delta Function in 3D (Princeton)

A particle moves in three dimensions. The only potential is an attractive
delta function at of the form

where D is a parameter which determines the strength of the potential.

a)

b)

What are the matching conditions at for the wave function and
its derivative?
For what values of D do bound states exist for

5.72 Ionizing Deuterium (Wisconsin-Madison)

The hydrogen atom has an ionization energy of when an
electron is bound to a proton. Calculate the ionization energy of deuterium:
an electron bound to a deuteron. Give your answer as the difference between
the binding energy of deuterium and hydrogen The
deuteron has unit charge. The three masses are, in atomic mass units,

5.73 Collapsed Star (Stanford)

In a very simple model of a collapsed star a large number  of
nucleons (N neutrons and protons) and electrons (to ensure electric
neutrality) are placed in a one-dimensional box (i.e., an infinite square
well) of length The neutron and proton have equal mass and
the electron has mass Assume the nucleon number density is

neglect all interactions between the
particles in the well, and approximate

Which particle species are relativistic?
Calculate the ground state energy of the system as a function of
for all possible configurations with fixed A.
What value of (assumed small) minimizes the total energy of the
system?

a)
b)

c)
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5.74 Electron in Magnetic Field (Stony Brook,
Moscow Phys-Tech)

An electron is in free space except for a constant magnetic field B in the

a)

b)

Show that the magnetic field can be represented by the vector poten-
tial
Use this vector potential to derive the exact eigenfunctions and eigen-
values for the electron.

5.75 Electric and Magnetic Fields (Princeton)

Consider a particle of mass m and charge e which is in perpendicular electric
and  magnetic fields:

Write the Hamiltonian, using a convenient gauge for the vector po-
tential.
Find the eigenfunctions and eigenvalues.
Find the average velocity in the for any eigenstate.

a)

b)
c)

5.76 Josephson Junction (Boston)

Consider superconducting metals I and II separated by a very thin insulat-
ing layer, such that that electron wave functions can overlap between the
metals (Josephson junction). A battery V is connected across the junction
to ensure an average charge neutrality (see Figure P.5.76). This situation
can be described by means of the coupled Schrödinger equations:

Here and are the probability amplitudes for an electron in I and
II, and are  the electric potential energies in I and II, K is the cou-
pling constant due to the insulating layer, and and
describe the battery as a source of electrons.

a) Show that are constant in time.
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b) Assuming (same metals) and expressing the probability
amplitudes in the form

find the differential equations for and
Show that the battery currentc)

oscillates, and find the frequency of these oscillations.

PROBLEMS



SOLUTIONS



This page intentionally left blank 



4

Thermodynamics
and Statistical
Physics

Introductory Thermodynamics

4.1 Why Bother? (Moscow Phys-Tech)

The physicist is right in saying that the total energy of the molecules in the
room cannot be changed. Indeed, the total energy of an ideal gas is

where N is the number of molecules, is the heat capacity at constant
volume per particle, and is the absolute temperature in energy units. In
these units,

Since the pressure P in the room stays the same (as does the volume V)
and equal to the outside air pressure, we have

83
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So, the total energy of the gas does not change. However, the average
energy of each molecule does, of course, increase, and that is what defines
the temperature (and part of the comfort level of the occupants). At the
same time, the total number of molecules in the room decreases. In essence,
we burn wood to force some of the molecules to shiver outside the room
(this problem was first discussed in Nature 141, 908 (1938)).

4.2 Space Station Pressure (MIT)

The rotation of the station around its axis is equivalent to the appearance
of an energy where is the mass of an air particle and
R is the distance from the center. Therefore, the particle number density
satisfies the Boltzmann distribution (similar to the Boltzmann distribution
in a gravitational field):

where is the number density at the center and is the tem-
perature in energy units. The pressure is related to the number density
simply by So, at constant temperature,

Using the condition that the acceleration at the rim is we have

4.3 Baron von Münchausen and Intergalactic Travel
(Moscow Phys-Tech)

The general statement that a closed system cannot accelerate as a whole
in the absence of external forces is not usually persuasive to determined
inventors. In this case, he would make the point that the force on the rope
is real. To get an estimate of this force, assume that the balloon is just
above the surface of the Earth and that the density of air is approximately
constant to 2 km. Archimedes tells us that the force on the rope will equal
the weight of the air, mass excluded by the empty balloon (given a
massless balloon material). We then may use the ideal gas law

SOLUTIONS
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2 km; i.e., However, there will be no force acting on the
Earth. The system (Earth + surrounding air) is no longer symmetric (see
Figure S.4.3a). The symmetric system would be the one with no air on
the opposite side of the Earth (see Figure S.4.3b). Therefore, there will be
a force between this additional air, which can be treated as a “negative”
mass, and the Earth (see Figure S.4.3c):

where and are the mass and radius of the Earth, respectively, and
G is the gravitational constant. So, the Archimedes force is completely
canceled by the gravitational force from the air. Perhaps that is why the
Baron shelved his idea.

4.4 Railway Tanker (Moscow Phys-Tech)

The new equilibrium pressure of the gas will be the same throughout the
tanker, whereas the temperature across its length will vary: higher at the

THERMODYNAMICS AND STATISTICAL PHYSICS
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heated wall, and cooler at other end (see Problem 4.5). Expanding the
temperature T along the length of the tanker in a Taylor series and keeping
the first two terms (since the temperature difference between the walls is
small compared to we have

We may write the ideal gas law as a function of position in the tanker:

where is the gas concentration. Rearranging, we have

The total number N of molecules in the cylinder is given by

where A is the cross-sectional area of the tanker. Alternatively, we can
integrate (S.4.4.3) exactly and expand the resulting logarithm, which yields
the same result. The total number of molecules originally in the tank is

Since the total number of molecules in the gas before and after heating is
the same, (no phase transitions), we may equate (S.4.4.4) and
(S.4.4.5), yielding
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The center of mass (inertia) of the gas found with the same accuracy is
given by

As we have assumed that the tanker slides on frictionless rails, the center
of mass of the system will not move but the center of the tanker will move
by an amount such that

Substituting (S.4.4.7) into (S.4.4.8) and rearranging give

4.5 Magic Carpet (Moscow Phys-Tech)

First let us try to reproduce the line of reasoning the Baron was likely to
follow. He must have argued that in the z direction the average velocity of
a molecule of mass is

If we consider that during the collision the molecules thermalize, then the
average velocities after reflection from the upper and lower surfaces become

THERMODYNAMICS AND STATISTICAL PHYSICS
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The forces due to the striking of the molecules on the upper and lower
surfaces are, respectively, and (see Figure S.4.5):

where is the concentration of the air molecules, and we have used the
fact that the number of molecules colliding with 1 of the surface per
second is approximately (the exact number is see Problem
4.14). The net resulting force is

Substituting for we have

Unfortunately, this estimate is totally wrong since it assumes that the con-
centration of molecules is the same above and below the panel, whereas it
would be higher near the cold surface and lower near the hot surface (see
Problem 4.4) to ensure the same pressure above and below. That’s why
irons don’t fly.
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4.6 Teacup Engine (Princeton, Moscow Phys-Tech)

If the cup were vacuum tight, the number of molecules leaving the surface
would be the same as the number of molecules returning to the surface.
The mass flow rate of the molecules hitting the surface (see Problem 4.14)
is

where is the vapor density corresponding to the saturation, is the
average velocity of the molecules, and A is the surface area of the ice. The
mass flow rate of the molecules actually returning to the surface is

where is the sticking coefficient (the probability that the molecule hitting
the surface will stick to it). Let us assume for now that (we will
see later that this is not true, but that actually gives us the lower limit
of the distance). If the cup is open we can assume that the number of
molecules leaving the surface is the same as in the closed cup, but there
are few returning molecules. We then find that the time for complete
evaporation of the ice is

where we take               g as the mass of the ice,                    and

from Problem 4.13. Substituting (S.4.6.4) into (S.4.6.3), we obtain

Once again using the ideal gas law, we may obtain

Substituting (S.4.6.6) into (S.4.6.5) yields

THERMODYNAMICS AND STATISTICAL PHYSICS
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During the sublimation of the ice, the acceleration of the astronaut is

where corresponds to the momentum transferred by the molecules
leaving the surface. Using the time calculated above, he will cover a
distance

Note that this is the lower limit because we assumed and that all the
molecules that are leaving go to infinity. So, it seems that the astronaut
can cover the distance to the ship by using his cup as an engine. Moreover,
the stickingcoefficient which is often assumed to be close to unity, could
be much smaller (for water, at 0°C). That explains why the
water in a cup left in a room does not evaporate in a matter of minutes
but rather in a few hours. For a detailed discussion see E. Mortensen
and H. Eyring, J. Phys. Chem. 64, 846 (1960). The physical reason for
such a small sticking coefficient in water is based on the fact that in the
liquid phase the rotational degrees of freedom are hindered, leading to a
smaller rotational partition function. So, the molecules whose rotation
cannot pass adiabatically into the liquid will be rejected and reflect back
into the gaseous phase. These effects are especially strong in asymmetric
polar molecules (such as water). The actual time the teacup engine will
be working is significantly longer (about 30 times, if we assume that the
sticking coefficient for ice is about the same as for water at

4.7 Grand Lunar Canals (Moscow Phys-Tech)

Consider the atmosphere to be isothermal inside the channel. The pres-
sure depends only on the distance from the center of the moon (see
Figure S.4.7), and as in Problem 4.19 we have

So

SOLUTIONS
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The acceleration of gravity (see also Problem 1.10, Part I)

where M is the mass of the Moon and is the average density of the Moon
(which we consider to be uniform). Therefore,

where we have set Now, from (S.4.7.2) and (S.4.7.4), we have

where is the pressure on the surface of the Moon.

which implies that it is not impossible to have such cavities inside the Moon
filled with gas (to say nothing of the presence of lunars).
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4.8 Frozen Solid (Moscow Phys-Tech)

If the ice does not freeze too fast (which is usually the case with lakes),
we can assume that the temperature is distributed linearly across the ice.
Suppose that the thickness of the ice at a time is Then the heat balance
can be written in the form

where is the melting temperature of ice. The left side represents the
flow of heat through one square meter of ice surface due to the temperature
gradient, and the right side the amount of heat needed to melt (freeze) an
amount of ice Integrating (S.4.8.1), we obtain

where and are integration constants. If we assume that there is no ice
initially then and we find that the time to freeze

solid is

4.9 Tea in Thermos (Moscow Phys-Tech)

There are two main sources of power dissipation: radiation from the walls
of the thermos and thermal conductance of the air between the walls. Let
us first estimate the radiative loss. The power radiated from the hotter
inner wall minus the power absorbed from the outer wall is given by (see
Problem 4.73)

where T is the temperature of the tea, is room temperature, and the
Stefan–Boltzmann constant Initially,

So

The power dissipation due to the thermal conductivity of the air can be
estimated from the fact that, at that pressure, the mean free path of the

SOLUTIONS
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air molecules is about Therefore, there are very few collisions
between the molecules that travel from one wall of the thermos to the other.
We can assume that we are in the Knudsen regime of ( is the distance
between the walls). In this regime the thermal conductance is proportional
to the pressure (if it is independent of the pressure). Let us assume
that after a molecule strikes the wall, it acquires the temperature of the
wall. Initially after it hits the wall, a molecule will take away the energy

where we can take for air The number of molecules striking
the inner wall per time interval dt is

where is the concentration of molecules and is their average velocity
(see Problem 4.14). The power due to the thermal conductance is

We can substitute  and

Then (S.4.9.4) becomes

So, we can see that radiation loss has about the same order of magnitude as
thermal conductance at these parameters. Therefore the properties of the
thermos can only be improved significantly by decreasing both the emissiv-
ity and the residual pressure between the walls. The energy dissipated is
equal to the energy change of the mass of the tea:
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So

where we used for an estimate the fact that T does not change significantly
and Then the time for the tea to cool from the
initial temperature to the final temperature is given by

4.10 Heat Loss (Moscow Phys-Tech)

Let min be the time the heater is operating. The energy added to
the water and bowl will heat the water as well as the environment. We
will assume that the heat loss to the surroundings is proportional to the
elapsed time and that the changing temperature difference between
the water and room temperature During this phase, we may
write

The heat loss is actually a time integral of some proportionality constant
times the temperature difference as the water heats up. However, only

varies by out of an average so we will ignore the variation. The
heat loss during the second phase is given by

SOLUTIONS
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We may now eliminate from (S.4.10.1), yielding

4.11 Liquid–Solid–Liquid (Moscow Phys-Tech)

a) Since the evaporation is very rapid, the heat to vaporize can only be
obtained from the heat of fusion. Therefore, if of water becomes solid
and vaporizes, we may write

Since the total mass we have

If we continue pumping, the ice would, of course, gradually sublimate, but
this process takes much longer, so we can neglect it.

b) The metal cools from its initial temperature by transferring heat to
melt some ice:

where is the temperature change. This may be determined from the
sample’s density before it was placed in the calorimeter. Using the thermal
coefficient of volume expansion where we have

The temperature difference may be found from (S.4.11.4)
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Just as in the heating phase, the heat loss is proportional to the elapsed
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Equating the amount of heat required to melt a mass of ice with the
heat available in the metal, we have

This mass exceeds the amount of ice from part (a), so all of it would melt.

4.12 Hydrogen Rocket (Moscow Phys-Tech)

Find the amount of water vapor produced in the reaction

One mole of hydrogen yields one mole of water, or in mass

Since is the mass of fuel intake per second, is the mass of water
ejected from the engine per second. If the water vapor density is this
rate may be expressed as

where is the velocity of the gas ejected from the engine. Therefore,

Express the density as

From (S.4.12.4) and (S.4.12.5), we then have

The mass ejected per second from the engine provides the momentum per
second which will be equal to the force  supplied by the
engine. Apart from this reactive force, there is a static pressure from the
engine providing a force so the total force

In real life the second term is usually small (P is not very high), so the
force by an engine is determined by the reactive force.
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4.13 Maxwell–Boltzmann Averages (MIT)

a) We may write the unnormalized Maxwell–Boltzmann distribution imme-
diately as

We would like to write (S.4.13.1) as so we must integrate over all
velocities in order to find the proper normalization:

Rewriting (S.4.13.2) in spherical coordinates we have

A variety of problems contain the definite integral (S.4.13.3) and its varia-
tions. A particularly easy way to derive it is to start by writing the integral
as

Now multiply I by itself, replacing by yielding

Rewriting (S.4.13.5) in polar coordinates gives

where we have substituted in (S.4.13.6). So we have
Integrating instead from 0 to then gives
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The integral required here may be found by differentiating (S.4.13.7) once
with respect to

Using (S.4.13.8) in (S.4.13.3), where gives

so

b) The most likely speed occurs when (S.4.13.11) is a maximum. This
may be found by setting its derivative or, simply the derivative of In
equal to 0:

c) The average speed is given by

SOLUTIONS
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d) The mean square speed of the atoms may be found immediately by
recalling the equipartition theorem (see Problem 4.42) and using the fact
that there is energy per degree of freedom. So

For completeness, though, the integral may be shown:

4.14 Slowly Leaking Box (Moscow Phys-Tech, Stony
Brook (a,b))

a) The number of atoms per unit volume moving in the direction normal
to the wall (in spherical coordinates) is

where is the azimuth angle, is the polar angle, is the number density
of atoms, and is the speed distribution function (Maxwellian). To
determine the number of atoms striking the area of the hole A on the wall
per time dt, we have to multiply (S.4.14.1) by dt (only the atoms
within a distance dt reach the wall). To obtain the total atomic flow
rate R through the hole, we have to integrate the following expression:
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We integrate from 0 to since we only consider the atoms moving toward
the wall. On the other hand, by definition, the average velocity is given
by

Comparing (S.4.14.2) and (S.4.14.3), we see that

this energy For a Maxwellian distribution we have
where C is a normalizing constant:

The numerator is the total energy of the atoms leaving the container per
second, and the denominator is the total number of atoms leaving the con-
tainer per second. Define From part (a), we can express this
integral in terms of the average velocity Then we have

We know that (since it is a normalizing factor, see Problem
4.13), and

SOLUTIONS

This result applies for any type of distribution function We only con-
sider a flow from the inside to the outside of the container. Since the hole
is small, we can assume that the distribution function of the atoms inside
the container does not change appreciably.

b) The average kinetic energy of the atoms leaving the container should be
somewhat higher than the average kinetic energy in the container because
faster atoms strike the wall more often than the ones moving more slowly.
So, the faster atoms leave the container at a higher rate. Let us compute
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So is indeed higher than the average energy of the atoms:

c) From (b) we know that each atom leaving the container takes with it an
additional energy The flow rate of the atoms leaving
the container (from (a)) is

The energy flow rate from the container becomes

To keep the temperature of the atoms inside the container constant, we
have to transfer some heat to it at the same rate:

Equating the flow rate to the decrease of the number of atoms inside gives

Solving this differential equation, we can find the change in number density:

is the time constant and is the initial number density. Therefore, the
heat flow rate is

4.15 Surface Contamination (Wisconsin-Madison)

The number of molecules striking a unit area of the surface N during the
time of the experiment (see Problem 4.14) is given by

We then obtain
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For an estimate we can assume that the adsorbed molecules are closely
packed and that the number of adsorption sites on a surface of area A is

where d is the average diameter of the adsorbed atoms, and we take
The total number of adsorption sites may actually be smaller (these data
can be obtained from the time to create one monolayer at lower pressure).
We may write

or, for 1 of surface,

Using the average velocity from Problem 4.13 at K gives

and

Thus,

So, we will have to maintain a pressure better than Torr, which can
be quite a technical challenge. In fact, at such low pressures the resid-
ual gas composition is somewhat different from room air, since it may be
more difficult to pump gases such as and He. Therefore, (S.4.15.3) and
(S.4.15.5) are only order-of-magnitude estimates.

4.16 Bell Jar (Moscow Phys-Tech)

The pressure inside the vessel

just
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where is the concentration of the molecules inside the vessel and is the
concentration of the molecules in the chamber. Disregarding the thickness
of the walls of the vessel, we can write the condition that the number of
molecules entering the vessel per second is equal to the number of molecules

where A is the area of the hole, and we used the result of Problem 4.14 for
the number of molecules striking a unit area per second. Actually, the only
important point here is that this number is proportional to the product of
concentration and average velocity. Therefore,

The average velocity So, from (S.4.16.3), we have

Substituting (S.4.16.4) into (S.4.16.1), we obtain

4.17 Hole in Wall (Princeton)

a) If the diameter of the hole is large compared to the mean free path in
both gases, we have regular hydrodynamic flow of molecules in which the
pressures are the same in both parts. If the diameter of the hole (and
thickness of the partition) is small compared to the mean free path, there
are practically no collisions within the hole and the molecules thermalize
far from the hole (usually through collisions with the walls).

b) In case there are two independent effusive flows from I
to II and from II to I. The number of particles and going through
the hole from parts I and II are, respectively (see Problem 4.14),

leaving it:
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where is the area of the hole. At equilibrium, so we
have

The mean free path is related to the volume concentration of the molecules

where is the effective cross section of the molecule, which depends only
on the type of molecule, helium in both halves. Substituting (S.4.17.3) into

or

c) When we have to satisfy the condition

or

which gives for the ratio of the mean free paths:

4.18 Ballast Volume Pressure (Moscow Phys-Tech)

The number of molecules per second entering the volume B from the left
container I is proportional to the density of the molecules in I, the
average velocity, and the area of the opening, A. The constant of
proportionality (see Problem 4.14) is unimportant for this problem. So,
equating the rate of molecular flow in and out of volume B, we can write
for flow rates in equilibrium (see Figure S.4.18)

or

(S.4.17.2) gives

by the formula
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The factor 2 appears for the flow rate since there are two portals from
region B. On the other hand, for an ideal gas, and therefore

We can rewrite (S.4.18.1) as

yielding

For the state of equilibrium, the energy in the volume B is constant. This
means that the total rate of energy transfer out of volumes I and II should
be equal to the rate of energy transfer out of volume B :

The average energy per particle is proportional to the temperature, so
(S.4.18.6) becomes

We then have

Dividing (S.4.18.8) by (S.4.18.5), we can obtain

and



SOLUTIONS106

4.19 Rocket in Drag (Princeton)

Use dimensional analysis to derive the drag force F on the rocket:

We then have

So and

This formula is generally correct for high Reynolds numbers; for low
Reynolds numbers we have Stokes’ law:

where is the viscosity and is the radius.

b) For an isothermal atmosphere, take a column of air of height and area
A. The pressure difference between top and bottom should compensate the
weight of the column:

or

Using

where is the molar weight of the air, and substituting (S.4.19.6) into
(S.4.19.5), we obtain

a)
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Therefore,

c) At a height we have, from (S.4.19.3),

where we used for uniform acceleration. Now, the maximum force
is defined by

So, assuming that the average temperature for the isothermal atmosphere
we find

4.20 Adiabatic Atmosphere (Boston, Maryland)

a) Starting from the ideal gas law, we can express the temperature T as a
function of pressure P and the mass density

where P and are functions of the height above the surface of the Earth:
Taking the derivative of T with respect to we have

We need to express in terms of dP. The fact that is independent
of altitude allows us to write

where B is some constant. So
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Substituting (S.4.20.3) into (S.4.20.2), we obtain

Assuming that the acceleration of gravity is constant, using the hydrostatic
pressure formula

and substituting (S.4.20.5) into (S.4.20.4), we can write

b) For the atmosphere, using diatomic molecules with and
we have from (S.4.20.6),

This value of is about a factor of 2 larger than that for the actual
atmosphere.

4.21 Atmospheric Energy (Rutgers)

a) Again starting with the ideal gas law

we have

b) The gravitational energy of a slice of atmosphere of cross section A and
thickness at a height is simply

while the internal energy of the same slice is
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The total internal energy is given by the integral of (S.4.21.3):

Rearranging (S.4.21.5), we have

Substituting (S.4.21.6) into (S.4.21.4), we obtain

The total gravitational energy may be found by integrating (S.4.21.2):

Integrating by parts gives

The first term on the RHS of (S.4.21.9) is zero since at the limits of evalu-
ation either or so we have

We wish to change the integral over into an integral over P. To do so,
first consider the forces on the slice of atmosphere:
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The ratio of energies from (S.4.21.10) and (S.4.21.7) is

Finally,

4.22 Puncture (Moscow Phys-Tech)

a) Use Bernoulli’s equation (see, for instance, Landau and Lifshitz, Fluid
Mechanics, Chapter 5) for an arbitrary flow line with one point inside the
tire and another just outside it. We then have

where and are the enthalpy per unit mass inside and outside the
vessel, respectively, and and are the velocities of the gas. The velocity

is very small and can be disregarded. Then the velocity of the gas outside
is

For an ideal gas the heat capacity does not depend on temperature, so we
may write for the enthalpy

Therefore, the velocity is



111

The temperature may be found from the equation for adiabats and the
ideal gas law:

Rewriting gives

Substituting into (S.4.22.4) gives

The maximum velocity will be reached when flow into vacuum.

b) For one mole of an ideal gas

and, by definition,

From (S.4.22.9) and (S.4.22.10), we may express and through R
and

Then (S.4.22.8) becomes

For molecular hydrogen we have
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Note that this estimate implies that i.e., that the gas would cool to
absolute zero. This is, of course, not true; several assumptions would break
down long before that. The flow during expansion into vacuum is always
turbulent; the gas would condense and phase-separate and therefore would
cease to be ideal. The velocity of sound inside the vessel

or

Substituting (S.4.22.14) into (S.4.22.12) yields

Heat and Work

4.23 Cylinder with Massive Piston (Rutgers, Moscow
Phys-Tech)

When the piston is released, it will move in some, as yet unknown, direction.
The gas will obey the ideal gas law at equilibrium, so
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On the other hand, at equilibrium, there is no net force acting on the piston
(see Figure S.4.23), and we have

Substituting (S.4.23.2) into (S.4.23.1) gives

We can also use energy conservation in this thermally insulated system.
Then the work done to the gas equals its energy change For an ideal
gas

where is the heat capacity of one mole of the gas (for a monatomic gas,
The work done to the gas

where is the distance the piston moves, where downward
is positive. From (S.4.23.4) and (S.4.23.5), we have

Solving (S.4.23.3) and (S.4.23.6) yields

We may check that if i.e., that the piston was initially
balanced, (S.4.23.7) gives and

4.24 Spring Cylinder (Moscow Phys-Tech)

For a thermally insulated system (no heat transfer), the energy change
is given by
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where 0 and 1 correspond to the initial and final equilibrium states of the
system, with sets of parameters and respectively. In
this case, the gas is expanding, therefore some positive work is done by the
gas, which indicates that the energy change is negative, and the temperature
decreases. for an ideal gas depends only on the change in temperature:

where is the heat capacity of one mole of the gas at constant volume
(for a monatomic gas The work done by the gas goes into
compressing the spring:

where K is the spring constant and is the change of the piston position
(see Figure S.4.24). On the other hand, when equilibrium is reached, the
compression force of the spring

where A is the cross section of the piston. So

where we used the ideal gas law for one mole of gas. Substituting (S.4.24.5)
into (S.4.24.3), we have

Notice that is the volume change of the gas:
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Therefore,

Substituting (S.4.24.8) and (S.4.24.2) into (S.4.24.3), we obtain

and

The temperature indeed has decreased. As for the pressure, we have for
the initial state

Now so

and

4.25 Isothermal Compression and Adiabatic
Expansion of Ideal Gas (Michigan)

We can calculate the work as an integral, using the ideal gas law:a)

where is, as usual, the absolute temperature. Graphically, it is simply
the area under the curve (see Figure S.4.25). Alternatively, we can say that
the work done is equal to the change of free energy F of the system (see
Problem 4.38):
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The total energy of the ideal gas depends only on the temperature, which
is constant, so the heat absorbed by the gas is

i.e., heat is rejected from the gas into the reservoir. Alternatively, since

the same result as in (S.4.25.3).

For an adiabatic expansion the entropy is conserved, so

On the other hand,

where is the specific heat for an ideal gas at constant volume. From
(S.4.25.5) and (S.4.25.6), and using the ideal gas law, we obtain

b)
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where the specific heat per one molecule. Integrating (S.4.25.7)
yields

c) For air we may take (in regular units, it is mostly
diatomic). Therefore,

Isochoric Cooling and Isobaric Expansion
(Moscow Phys-Tech)

4.26

The process diagram is shown in Figure S.4.26. The work W done by the
gas occurs only during the leg since there is no work done during the

leg. The work is given by

Using the ideal gas law, we may relate and
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since the initial and final temperatures are the same. Substituting into
(S.4.26.1) we find

Venting (Moscow Phys-Tech)4.27

The air surrounding the chamber may be thought of as a very large reservoir
of gas at a constant pressure and temperature The process of venting
is adiabatic, so we can assume that there is no energy dissipation. We then
find that the energy of the gas admitted to the chamber equals the sum
of its energy in the reservoir plus the work done by the gas of the
reservoir at to expel the gas into the chamber. This may be calculated
by considering the process of filling a cylinder by pushing a piston back,
where the piston offers a resistant force of A being the cross section
of the cylinder. The total energy E is then given by

where is the volume of the gas needed to fill the volume of the chamber
V (note that V does not coincide with because the temperature of the
gas in the chamber T presumably is not the same as see Figure S.4.27).
On the other hand.

where is the heat capacity of the gas, is the heat capacity per
molecule, and is the number of molecules. From (S.4.27.1) and
(S.4.27.2), we have
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Using the ideal gas law

we have

So

The air is mostly nitrogen and oxygen (78% nitrogen and 21% oxygen
diatomic gases, so that

and therefore Thus, the temperature of the gas in the chamber
will increase. Note that the result does not depend on the outside pressure

the volume of the chamber V, or whether it is filled to

Cylinder and Heat Bath (Stony Brook)4.28

a) Since the process takes place at constant temperature, PV is constant
for each side of the piston. When the piston is released, we can write

where and are the initial pressures on the left and right sides of the
cylinder, respectively, P is the final pressure on both sides of the cylinder,
and and are the final volumes. From S.4.28.1 we have

or

Therefore,

So, the piston winds up 20 cm from the right wall of the cylinder.

b) The energy of the ideal gas does not change in the isothermal process,
so all the work done by the gas goes into heating the reservoir. Denoting
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by and the number of moles on the left and right sides of the cylinder,
respectively, and using we obtain the total work and, hence,
heat given by the integral

4.29 Heat Extraction (MIT, Wisconsin-Madison)

a) For a mass of fixed volume we have

So, by the definition of C,

Since C is independent of T, we may rewrite (S.4.29.2) and integrate:

The change in entropy is then

b) The maximum heat may be extracted when the entropy remains con-
stant. Equating the initial and final entropies yields the final temperature
of the two bodies:

SOLUTIONS
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The heat extracted, is then equal to the difference in initial and final
internal energies of the bodies:

c) Here we may calculate the maximum useful work by using the Carnot
efficiency of a reversible heat engine operating between two reservoirs, one
starting at a high temperature (100°C) and the other fixed (the lake) at
10°C. The efficiency may be written for a small heat transfer as

where the heat transferred from the hot reservoir equals its change in
internal energy –MC dT. We may then find the total work by integrating
dW as follows:

We may also use the method of part (b) and the fact that the entropy is
conserved. Denote the mass of the hot water M and the lake Equating
the initial and final entropies gives

Writing the final temperature T as where is small (it’s a big lake),
and expanding the logarithm, we obtain

Substituting (S.4.29.10) back into (S.4.29.9) gives
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As before, the work extracted equals the change in internal energy of the
bodies, so

which is the same as above.

4.30 Heat Capacity Ratio (Moscow Phys-Tech)

If the gas is heated at constant volume, then the amount of heat trans-
ferred to the gas is

where is the heat capacity by weight of the gas, is the mass, and T is
the temperature at pressure Using the ideal gas law at the beginning
and end of heating gives

where is the number of moles of the gas. From (S.4.30.1) and (S.4.30.2),

and

For heating at constant pressure,

Similarly,
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So

and

Since the time during which the current flows through the wire is the
same in both experiments, the amount of heat transferred to the gas is also
the same: Equating (S.4.30.4) and (S.4.30.8), we obtain

4.31 Otto Cycle (Stony Brook)

a) The efficiency of the cycle is where W is the work done by
the cycle and is the amount of heat absorbed by the gas. Because the
working medium returns to its initial state where is the
amount of heat transferred from the gas, therefore

Let us calculate and Since both processes are at constant volume
(see Figure S.4.31), we may write
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and

We know that for an adiabatic process

So

Using

we find

and therefore the efficiency is

For and  the efficiency is

b) The work done on the gas in the compression process is

For L and . atm,

or

and
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4.32 Joule Cycle (Stony Brook)

The efficiency  of the cycle is given by the work W during the cycle divided
by the heat absorbed in path (see Figure S.4.32). W is defined
by the area enclosed by the four paths of the P–V plot. The integral

P dV along the paths of constant pressure and is simply the

adiabats, where there is no heat transfer is given by the change in
internal energy

Substituting the ideal gas law into (S.4.32.1) and rearranging,
we find

What remains is to write W and in terms of P and form the quotient.
Using the equation for an adiabatic process in an alternative form,

where we used In the process the gas absorbs the
heat
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we have

Substituting for and by putting (S.4.32.4) into (S.4.32.1) yields

The efficiency is then

4.33 Diesel Cycle (Stony Brook)

We calculate the efficiency as in Problem 4.32. The work W in
the cycle (see Figure S.4.33) is

where we have again used the ideal gas law and
The heat absorbed by the gas during is

The efficiency  is

Using the equation for the adiabats gives
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The ideal gas law gives

Substituting (S.4.33.4) and (S.4.33.5) into (S.4.33.3) gives

4.34 Modified Joule–Thomson (Boston)

The work done by the piston goes into changing the internal energy of the
part of the gas of volume that enters the plug and into the work done
by the gas to enter container B occupying volume So we may write

where is the constant-volume heat capacity for one molecule and is
the number of molecules in the volume On the other hand, before and
after the plug, we have, respectively,
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Substituting dV from (S.4.34.2) and from (S.4.34.3) into (S.4.34.1), we

So,

When (S.4.34.5) becomes

Ideal Gas and Classical Statistics

4.35 Poisson Distribution in Ideal Gas (Colorado)

The probability of finding a particular molecule in a volume V is

The probability of finding N marked molecules in a volume V is

Similarly, the probability of finding one particular molecule outside of the
volume V is

and for particular molecules outside V,

Therefore, the probability of finding any molecules in a volume V is
the product of the two probabilities (S.4.35.1) and (S.4.35.2) weighted by
the number of combinations for such a configuration:

have
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The condition also implies that Then we may approximate

So, (S.4.35.3) becomes

where we used the average number of molecules in V:

Noticing that, for large .

we obtain

where we used

(S.4.35.6) can be applied to find the mean square fluctuation in an ideal gas
(see Problem 4.94) when the fluctuations are not necessarily small (i.e., it is
possible to have although N is always much smaller
than the total number of particles in the gas
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4.36 Polarization of Ideal Gas (Moscow Phys-Tech)

The potential energy of a dipole in an electric field E is

where the angle is between the direction of the electric field (which we
choose to be along the axis) and the direction of a the dipole moment.
The center of the spherical coordinate system is placed at the center of the
dipole. The probability that the direction of the dipole is within a solid
angle is

The total electric dipole moment per unit volume of the gas is

Introducing a new variable and denoting we obtain

SOLUTIONS
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where is the Langevin function. For we can
expand (S.4.36.3) to obtain

Since and

we have for the dielectric constant

4.37 Two-Dipole Interaction (Princeton)

Introduce spherical coordinates with the axis along the line of the sepa-
ration between the dipoles. Then the partition function reads

The potential energy of the interaction can be rewritten in the form

Since

(S.4.37.2) becomes
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We can expand the exponential at high temperatures so that

where The first-order terms are all zero upon integration,
and we have

where the cross term also vanishes, and we find

SOLUTIONS
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The average force is given by

where F is the free energy. So,

The minus sign indicates an average attraction between the dipoles.

Entropy of Ideal Gas (Princeton)

a) For an ideal gas the partition function factors; however, we must take
the sum of N identical molecules divided by the number of interchanges N!
to account for the fact that one microscopic quantum state corresponds to
a number of different points in phase space. So

Now, the Helmholtz free energy, F, is given by

Using the explicit expression for the molecular energy we can rewrite
(S.4.38.3) in the form

4.38

Using Stirling’s formula, ln we obtain
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Here we used the fact that the sum depends only on temperature, so we
can define

b) Now we can calculate the total entropy of the two gases (it is important
that the gases be identical so that is the same for both vessels):

We have for total entropy

c) After the vessels are connected their volume becomes the
number of particles becomes 2N, and the temperature remains the same
(no work is done in mixing the two gases). So now

where F is defined by (S.4.38.4).

SOLUTIONS



It can be easily seen that the pressure becomes so
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and

Let us show that is always nonnegative. This is equivalent to the
condition

Chemical Potential of Ideal Gas (Stony Brook)

The expression for the Helmholtz free energy was derived in Problem 4.38:

Since all the molecules are in the ground state, the sum only includes one
term, which we can take as an energy zero, Then (S.4.39.1) becomes

where we took into account a degeneracy of the ground state The Gibbs
free energy G is then

which is always true. At which makes perfect
sense.

4.39
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where we have expressed G as a function of P. The chemical potential
so we obtain, from (S.4.39.3),

This approximation is valid when the temperature is much lower than the
energy difference between the electronic ground state and the first
excited state; since this is comparable to the ionization energy
this condition is equivalent to However, even at temperatures

the gas is almost completely ionized (see Landau and Lifshitz,
Statistical Physics, Sect. 106). Therefore (S.4.39.4) is always valid for a
nonionized gas.

Gas in Harmonic Well (Boston)

a) The partition function is given by a standard integral (compare with
4.38, where the molecules are indistinguishable):

The Helmholtz free energy F follows directly from the partition function:

b) We may find the force from F:

4.40

SOLUTIONS
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The equation of state is therefore analogous to the gas in a container with
rigid walls, where

c) The entropy, energy, and heat capacity all follow in quick succession from
F:

Ideal Gas in One-Dimensional Potential
(Rutgers)

a) The coordinate- and momentum-dependent parts of the partition func-
tion can be separated. The coordinate-dependent part of the partition
function

For the potential in this case we have

where we substituted

and

4.41
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The free energy associated with the coordinate-dependent part of the par-
tition function is

The average potential energy is given by

For we have a harmonic oscillator, and in agreement with the equipar-
tition theorem (see Problem 4.42)

which also agrees with the generalized equipartition theorem.

Equipartition Theorem (Columbia, Boston)

a) For both of these averages the method is identical, since the Hamiltonian
depends on the same power of either or q. Compose the first average as
follows:

where the energy is broken into the term and the rest of
the sum. The second integrals in the numerator and denominator cancel,
so the remaining expression may be written

where, asusual, A change of variables produces a piece dependent
on  and an integral that is not:

b) For and the average potential energy per particle

4.42

SOLUTIONS
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The average proceeds in precisely the same way, yielding

b) The heat capacity, at constant volume is equal to From part
(a), we have

where we now sum over the 3-space and momentum degrees of freedom per
atom. The heat capacity,

is the law of Dulong and Petit.

c) Now take the average:

Integration by parts yields

where the prime on the product sign in the first term indicates that we
integrate over all except then the first term in the
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numerator equals zero. If is one of the then by the assumption of U
infinite, the term still equals zero. Finally, if then by l’Hôpital’s
rule the first term again gives zero. In the second term, so
the expression reduces to

Finally,

d) By definition,

Given a polynomial dependence of the energy on the generalized coordinate:

(S.4.42.11) yields

To satisfy the equipartition theorem:

Thus, we should have

SOLUTIONS
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4.43 Diatomic Molecules in Two Dimensions
(Columbia)

a) The partition function may be calculated in the usual way by multi-
plying the individual Boltzmann factors by their degeneracies and summing:

This is difficult to sum, but we may consider the integral instead, given the
assumption that

b) The energy and heat capacity of the set of diatomic molecules described
above may be determined from the partition function for the set:

where the N-fold product has been divided by the number of permutations
of the N indistinguishable molecules. Recall that

We then find that

Again, for the heat capacity is

A diatomic rotor in three dimensions would have contributions to the energy
of per degree of freedom. Three degrees of translation and two
degrees of rotation (assuming negligible inertia perpendicular to its length)
gives for one molecule
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A diatomic rotor confined to a plane would have three degrees of freedom,
two translational and one rotational. Hence,

The quantization of energy is not apparent since we have assumed

4.44 Diatomic Molecules in Three Dimensions (Stony
Brook, Michigan State)

a) We first transform the expression of the kinetic energy

where are the Cartesian coordinates of the molecule in the frame
with the c.m. at the origin to spherical coordinates:

For the rigid diatom,

We may substitute (S.4.44.2) into (S.4.44.1), obtaining

Using the definition of c.m., we may write

SOLUTIONS
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yielding

Then (S.4.44.3) becomes

with

b) In order to find the conjugate momenta we must compute the
Lagrangian

Expressing through

we may rewrite the Hamiltonian as

c) The single-diatom partition function may be computed as follows:
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Now the free energy F for N such classical molecules may be found from

The entropy is then

and the energy E and heat capacity C are

d) For the quantum case the Schrödinger equation for a rigid rotator

where each of the energy states is  The partition func-
tion is given by

For low temperatures we may neglect high-order terms and write

where we left only terms with and For N molecules we find
for the free energy that

admits the standard solution

SOLUTIONS



The energy E and heat capacity C are then

So, at low temperatures the heat capacity corresponding to the rotational
degrees of freedom is exponentially small. This implies that there would be
no difference, in this limit, between the heat capacity for monatomic and
diatomic molecules. In the opposite case, at high temperatures,
the sum may be replaced by an integral:

where Proceeding from (S.4.44.18), we have

Replacing the sum by an integral, we obtain

Therefore, in the classical limit (high temperatures),

The energy E and heat capacity C are given by
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We see that this is the same as found in (S.4.44.12). Since we expect a heat
capacity per degree of freedom of 1/2, we see that there are two degrees of
freedom for each molecule since

They correspond to the two rotational degrees of freedom of a classical rod.
(There are no spatial degrees of freedom since the molecule is considered
fixed.)

4.45 Two-Level System (Princeton)

a) There is nothing to prevent giving each atom its larger energy hence,
has a maximum of 1 with Clearly, the system would

not be in thermal equilibrium. To compute the problem in equilibrium,
we need to determine the partition function, Z. For distinguishable non-
interacting particles, the partition function factors, so for identical energy
spectra

The free energy would be

The energy is then

or

where Obviously, since both and are positive, cannot be
larger than 1. On the other hand, is a monotonic function which

SOLUTIONS



goes to 1/2 when goes to infinity; hence, at

b) The entropy  may be found from (S.4.45.2)–(S.4.45.4):

The entropy per particle, is given by

Writing

We can check that

as it should.

4.46 Zipper (Boston)

a) A partition function may be written as

where we have used the fact that a state with open links has an energy

where

So
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b) The average number of open links is given by

which does not depend on N. It is also zipped up tight!

Hanging Chain (Boston)

a) Let the number of links with major axis vertical be the number of
horizontal major axis links will then be The total length of the
chain is then

The energy of the system, is also a function of     since

where is the number of possible configurations with
major axis vertical links.

b) The average energy can be found from (S.4.47.3):

4.47

If then and

SOLUTIONS

where we let                          The partition function
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where Therefore,

The average length is

We can check that, if

Molecular Chain (MIT, Princeton, Colorado)

a) Consider one link of the chain in its two configurations: and The
energy of the link is

The partition function for the entire chain is given by

b) The average length of the chain may be found from the partition function:

4.48

c) If (S.4.48.3) becomes
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Therefore,

as it should, since (for the specified direction of the tensile force ) it
corresponds to a thermodynamic inequality for a system at equilibrium:

If high temperature,

If

where we let The changeover temperature is obviously

d) From (S.4.48.3),

At small , (S.4.48.7) becomes

SOLUTIONS
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Nonideal Gas

Heat Capacities (Princeton)

From the definition of for a gas,

151

Since we are interested in a relation between and it is useful to
transform to other variables than in (S.4.49.1), namely V instead of
We will use the Jacobian transformation (see Landau and Lifshitz, Statis-
tical Physics, Sect. 16):

A useful identity is obtained from

So

Since

and

4.49
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b) Let us write the van der Waals equation for one mole of the gas in the
form

from which we obtain

Substituting for P in (S.4.49.5) yields

We can see that (in regular units for an
ideal gas where

4.50 Return of Heat Capacities (Michigan)

a) We will again use the Jacobian transformation to find      as a function



THERMODYNAMICS AND STATISTICAL PHYSICS 153

where we used

So, we obtain

Substituting into (S.4.50.2) yields

b,c) We cannot determine the temperature dependence of but we
can find as follows:

Similarly,

where F is the Helmholtz free energy, and we used

From (S.4.50.4) and the equation of state, we have

and from (S.4.50.5),
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(since implies Integrating (S.4.50.6) and
(S.4.50.7), we obtain

where and are some functions of temperature. Since we know
from (a), we infer that and finally

Nonideal Gas Expansion (Michigan State)

a) The work done in the expansion

b) To find the heat absorbed in the expansion use the Maxwell relations
given in the problem:

where the prime indicates the derivative with respect to Integrating
(S.4.51.2), we obtain

where is some function of The heat absorbed in the expansion

and

4.51
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van der Waals (MIT)

a) The heat capacity is defined as

By using the Maxwell relation

we may write

Substituting the van der Waals equation of state

into (S.4.52.3) gives

b) The entropy may be computed from

We were given that at therefore, again using (S.4.52.2)
and (S.4.52.4), we obtain

c) The internal energy may be calculated in the same way from

4.52
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d) During adiabatic compression, the entropy is constant, so from (S.4.52.7)

and we have

e) The work done is given by the change in internal energy since the
entropy is constant:

From (S.4.52.11), we arrive at

Critical Parameters (Stony Brook)

At the critical point we have the conditions

Now, from we have

and using (S.4.52.4) and (S.4.52.7), we get

So, (S.4.52.8) becomes

4.53
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Substituting the Dietrici equation into (S.4.53.1) gives

Using the second criterion (S.4.53.2) gives

where

by (S.4.53.3), so

by (S.4.53.6). (S.4.53.7) then yields

which combined with (S.4.53.4) gives

Substituting this result in the RHS of (S.4.53.4) finally yields

Rearranging the original equation of state gives

so
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Mixtures and Phase Separation

Entropy of Mixing (Michigan, MIT)

a) The energy of the mixture of ideal gases is the sum of energies of the
two gases (since we assume no interaction between them). Therefore the
temperature will not change upon mixing. The pressure also remains un-
changed. The entropy of the mixture is simply the sum of the entropies of
each gas (as if there is no other gas) in the total volume. We may write the
total entropy S (see Problem 4.38) as

SOLUTIONS

where and are the number of molecules of each gas in the mixture.
V is the total volume of the mixture The entropy of the
gases before they are allowed to mix is

Therefore, the change in entropy, is given by

So, (S.4.54.3) becomes

In conventional units we find

The entropy increased as it should because the process is clearly irreversible.

In our case and

4.54

b) If the gases are the same, then the entropy after mixing is given by
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and so In the case of identical gases, reversing the process only
requires the reinsertion of the partition, whereas in the case where two
dissimilar gases are mixed, some additional work has to be done to separate
them again.

c) The same arguments as in (a) apply for a mixture of two isotopes,
and The Gibbs free energy can be written in the form

where and are the chemical potentials of pure isotopes. Therefore,
the potential (S.4.54.7) has the same form as in the mixture of two different
gases, and there is no correction to the result of (a). This is true as long
as (S.4.54.7) can be written in this form, and it holds even after including
quantum corrections to the order of (see, for further details, Landau and
Lifshitz, Statistical Physics, Sect. 94).

4.55 Leaky Balloon (Moscow Phys-Tech)

Let us consider the bag as part of a very large system (the atmosphere)
which initially has N molecules of air, which we consider as one gas, and

molecules of helium. The bag has volume and the number of helium
molecules is Using (S.4.38.7) from Problem 4.38 and omitting all the
temperature-dependent terms, we may write for the initial entropy of the

When the helium has diffused out, we have

We wish to find  in the limit where Then

We then obtain

system



where is the concentration ratio of helium molecules
in the bag to their concentration in the air. In regular units
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Osmotic Pressure (MIT)

a) The free energy for a one-component ideal gas is derived in Problem

The Gibbs free energy

But so (S.4.56.2) must be transformed:

If we have a mixture of two types of molecules with and particles
each, we find for the thermodynamic potential of the mixture:

4.38:

Substituting the standard pressure and temperature into (S.4.55.5) gives

The minimum work necessary to separate the helium at constant temper-
ature is (see Landau and Lifshitz, Statistical Physics, Sect. 20)

since after we separate the helium molecules from the rest of
the air, the total entropy of that system would decrease. So

4.56
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Therefore The Gibbs potential of the mixture

161

where are partial pressures corresponding to particles
A and B, respectively. So,

It can be seen that

namely

where (see also Problem 4.54).

b) To derive the pressure difference, we notice that for the system with
a semipermeable membrane, only the chemical potentials of the solvent
are equal, whereas the chemical potentials of the solute do not have to be
(since they cannot penetrate through the membrane). We will write first
the Gibbs free energy on the left and right of the membrane, and
respectively. will be defined by (S.4.56.6), with whereas

The chemical potentials of the solvent are given by

Equating we obtain
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or

SOLUTIONS

where we only take into account the first-order terms in the solute. If we
also assume, which is usually the case, that the osmotic pressure is also
small, i.e., we obtain, from (S.4.56.11),

where and are the concentrations of the solutes:
Therefore, with the same accuracy, we arrive at the final

A different derivation of this formula may be found in Landau and Lifshitz,
Statistical Physics, Sect. 88.

Clausius–Clapeyron (Stony Brook)

a) We know that, at equilibrium, the chemical potentials of two phases
should be equal:

Here we write to emphasize the fact that the pressure depends
on the temperature. By taking the derivative of (S.4.57.1) with respect to
temperature, we obtain

Taking into account that and where s and
are the entropy and volume per particle, and substituting into (S.4.57.2),

where subscripts 1 and 2 refer to the two phases. On the other hand,
where  is the latent heat per particle, so we can rewrite

(S.4.57.3) in the form

which is the Clausius–Clapeyron equation.

formula:

we have

4.57
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b) Consider the particular case of equilibrium between liquid and vapor.
The volume of the liquid is usually much smaller than that for the vapor

so we can disregard in (S.4.57.4) and write

Phase Transition (MIT)

where L is the latent heat per mole, is Avogadro’s number, and R is
the gas constant.

For a system at equilibrium with an external reservoir, the Gibbs free energy
is a minimum. Any deviation from equilibrium will raise G:

where is the pressure of the reservoir (see Landau and Lifshitz, Statistical
Physics, Sect. 21). Expanding in we have

Using the ideal gas law for vapor, we get

or

We can see that Rewriting (S.4.57.6) in usual units gives

4.58

Since we may rewrite (S.4.58.2) as
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At the critical point, so (S.4.58.3) becomes

For (S.4.58.4) to hold for arbitrary we have

See Landau and Lifshitz, Statistical Physics, Sect. 153 for further discus-
sion.

Hydrogen Sublimation in Intergalactic Space
(Princeton)

Using the Clausius–Clapeyron equation derived in Problem 4.57, we can
estimate the vapor pressure P at Namely,

where is the number density, is the average speed, and is a sticking
coefficient, which for this estimate we take equal to 1. Here we used the
result of Problem 4.14, where we calculated the rate of particles striking the
surface. Now if the density is not too high, the number of particles leaving
the surface does not depend on whether there is vapor outside, so this would

4.59

where is the pressure at the triple point and R is the gas constant. Here
we disregard the volume per molecule of solid hydrogen compared to the one
for its vapor. This formula is written under the assumption that the latent
heat does not depend on the temperature, but for an order-of-magnitude
estimate this is good enough.

Consider solid hydrogen at equilibrium with its vapor. Then the number
of particles evaporating from the surface equals the number of particles
striking the surface and sticking to it from the vapor. The rate of the
particles striking the surface is given by
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be the sublimation rate. Taking the average velocity from Problem 4.13,
we get

where is the mass of a hydrogen molecule, and substituting
we may rewrite (S.4.59.2) as

Gas Mixture Condensation (Moscow Phys-Tech)

Consider three parts of the plot (see Figure S.4.60). At there is a
regular gas mixture (no condensation). At one of the gases
is condensing; let us assume for now it is oxygen (it happens to be true).
At they are both condensing, and there is no pressure change. Let
us write

Here is the partial nitrogen pressure at _ is the saturation
vapor pressure of oxygen, and is the saturated vapor pressure of nitrogen
(1 atm) at Between and nitrogen is a gas, and since the

Using (S.4.60.3) and dividing (S.4.60.1) by (S.4.60.2), we have

yielding

temperature is constant,

4.60
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Had we assumed that oxygen is condensing at we would get
This contradicts the fact that oxygen boils at a higher temperature.

The saturated vapor pressure at K should be less than To
find the oxygen mass, we use the ideal gas law at where the oxygen
is just starting to condense (i.e., its pressure is and it is all gas). So

where is the oxygen molar mass. For nitrogen a similar equation can
be written for

where is the molar mass of nitrogen. Dividing (S.4.60.5) by (S.4.60.6),
we obtain

4.61 Air Bubble Coalescence (Moscow Phys-Tech)

Writing the equilibrium conditions for the bubbles to exist, we find for the
pressure inside each original bubble:
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where is the hydrostatic pressure ( is the height of the water). We
disregard any effects due to the finite size of the bubble since they are
small After merging, the pressure inside the new bubble will not
change. This is due to the fact that the temperature is constant, and since
the jar is closed and water is incompressible, the total volume also will not
change. The new radius is given by

Writing (S.4.61.1) for the new bubble, we obtain

where we disregard any small change in hydrostatic pressure. From
(S.4.61.1) and (S.4.61.3) we find that the change of pressure inside the
jar is

4.62 Soap Bubble Coalescence (Moscow Phys-Tech)

Assume that, during the coalescence, the total mass of air inside the bubbles
and the temperature do not change. So,

where are the masses of air inside bubbles respec-
tively. By the ideal gas law,

where is the mass, is the pressure, and is the volume in
the ith bubble, and is the molar mass of the trapped air. The equilibrium
condition for a bubble is
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The coefficient 2 in front of the second term results from the presence of
two surfaces of the soap film enclosing the air (compare with Problem 4.61).
From (S.4.62.2) and (S.4.62.3) we obtain

Substituting (S.4.62.4) into (S.4.62.1), we obtain

and so

Note that if  a is very small the volume of the new bubble is close to the
sum of the original volumes, whereas if it is very large the surface area of
the new bubble is roughly the sum of the original surface areas.

4.63 Soap Bubbles in Equilibrium (Moscow
Phys-Tech)

a) The equilibrium is unstable. It is obvious from purely mechanical consid-
erations that if the radius of one bubble decreases and the other increases,
the pressure in the first bubble (which is inversely proportional to will
increase and that in the second bubble will decrease, leading to further
changes in respective radii until the system becomes one bubble with ra-
dius (see Figure S.4.63). The same result can be obtained by considering
the free energy of the system.

b) The free energy of the bubble consists of two parts: a volume part, which
is just the free energy of a gas (see Problem 4.38), and a surface part, which
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is associated with the surface tension:

The Gibbs free energy

The entropy change

where is the potential of the system with one bubble and is the
potential of the initial configuration. We then find

where we used the fact that the number of particles did not change and q
is the heat necessary to produce a unit area of the film:

So

We can eliminate from the final result by using the following equations:

169
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where the last equation represents the ideal gas law at constant tempera-
ture. This yields the equation

Solving this cubic equation in the small limit gives

Substituting (S.4.63.9) into (S.4.63.4) yields (in the same approximation)

Quantum Statistics

4.64 Fermi Energy of a 1D Electron Gas
(Wisconsin-Madison)

For a one-dimensional gas the number of quantum states in the interval

where and L is the “length” of the metal. The total number
of electrons N (which in this case is equal to the number of atoms) is

Therefore,

where is the atomic spacing. The Fermi energy

where is the electron mass.

is
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4.65 Two-Dimensional Fermi Gas (MIT,
Wisconson-Madison)

a) At the noninteracting fermions will be distributed among the
available states so that the total energy is a minimum. The number of
quantum states available to a fermion confined to a box of area A with
momentum between and is given by

where the multiplicity and the spin The N fermions
at fill all the states of momentum from 0 to We can therefore
calculate this maximum momentum from

The Fermi energy for this nonrelativistic gas is simply

Using (S.4.65.2) and (S.4.65.3) we obtain

For and (S.4.65.5) becomes

b) The total energy of the gas

Substituting from (S.4.65.2) into (S.4.65.7) gives



becomes a step function. All the states above a certain energy,
are empty, and the states below, are filled (see Figure S.4.66). This
energy for an electron gas is called the Fermi energy. Physically, this results
from the simple fact that the total energy of the gas should be a minimum.
However, we have to reconcile this with the Pauli principle, which prohibits
more than one electron per quantum state (i.e., same momentum and spin).
This means that the states are filled gradually from zero energy to the
limiting energy, The number of states accessible to a free particle with
absolute value of momentum between and is

In each of these states, we can put two electrons with opposite spin (up
and down), so if we consider the total number of electrons, N, contained in
a box of volume V, then N is given by

Substituting we obtain

172

4.66 Nonrelativistic Electron Gas (Stony Brook,
Wisconsin-Madison, Michigan State)

SOLUTIONS

a) As the Fermi-Dirac distribution function
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and therefore

To calculate the total energy of the gas, we can write

and therefore

and we can check that

b) The condition for strong degeneracy is that the temperature should
be much smaller than the Fermi energy:

For typical metals, if we assume that there is one free electron per atom
and a typical interatomic distance we obtain an electron density

So, most of the metals are strongly degenerate, even at
room temperature.

4.67 Ultrarelativistic Electron Gas (Stony Brook)

The fact that the gas is ultrarelativistic implies that the energy of the
electron is large compared to its rest energy In this case, the dispersion

where again

N/V which indicates a Fermi energy of the order of
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law is linear: The number of quantum states is the same as for the
nonrelativistic case considered in Problem 4.66:

However, the Fermi energy now is different since and

Hence,

The total energy is

After substituting from (S.4.67.1), we obtain

So, the pressure is

Hence, for an ultrarelativistic gas we have the same as for mass-
less particles (e.g., photons), which is not surprising since the dispersion law
is the same.

4.68 Quantum Corrections to Equation of State
(MIT, Princeton, Stony Brook)

a) Start with the particle distribution over the absolute value of momentum:
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where the upper sign in (S.4.68.1) and below corresponds to Fermi statistics
and the lower to Bose Using we obtain

The total energy is given by

On the other hand, using the grand canonical potential where

and replacing the sum by an integral, using (S.4.68.2), we obtain

Integrating (S.4.68.5) by parts, we have

Comparing this expression with (S.4.68.3), we find that

However, Therefore, we obtain the equation
of state, which is valid both for Fermi and Bose gases (and is, of course,
also true for a classical Boltzmann gas):

Note that (S.4.68.8) was derived under the assumption of a particular dis-
persion law for relativistic particles or photons with
(S.4.68.8) becomes (see Problem 4.67). From (S.4.68.8) and
(S.4.68.3), we obtain



176 SOLUTIONS

where (S.4.68.9) defines the equation of state. To find quantum
corrections to the classical equation of state (which corresponds to the case

expand the integral in (S.4.68.9), using as a small
parameter:

The first term, which we may call corresponds to a Boltzmann gas with
(see Problem 4.39), and the second term gives the first correction

Using the fact that, for small corrections (see, for instance, Landau and
Lifshitz, Statistical Physics, Sect. 24),

we can write the first quantum correction to the free energy F. Using the
classical expression for in terms of and V gives the result to the same

Using

we obtain, from (S.4.68.13),

and

Using and substituting (S.4.68.10) into (S.4.68.9), we have

accuracy:

and
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where

b) The condition for validity of this approximation is that the first correc-
tion should be much less than unity:

This gives the condition on the density for which (S.4.68.15) is valid:

It is interesting to determine the de Broglie wavelength at this tem-
perature We find that

We see that this approximation is valid when the separation between par-
ticles is much larger than the de Broglie wavelength. (S.4.68.16) expresses
the same condition as for the applicability of Boltzmann statistics (which
implies Since the chemical potential may be written (see
Problem 4.39)

we see that

4.69 Speed of Sound in Quantum Gases (MIT)

a) The Gibbs free energy G is a function of which do not depend on
the number of particles; i.e.,

where is some function of On the other hand,
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Therefore, for a system consisting of identical particles, and we
may write for

where and From (S.4.69.3) we have

and we recover

b) The number of quantum states in the interval between and for
a Fermi gas is

where At electrons fill all the states with momentum
from 0 to so the total number of electrons N is given by

For and

or

The total energy of the gas

Substituting from (S.4.69.8), we obtain
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Using the equation of state for a Fermi gas (see Problem 4.66),

we have

Now, using (S.4.69.11), we can calculate

Alternatively, we can use the expression obtained in (a) and the fact that,
at the chemical potential From (S.4.69.8),

and we again recover (S.4.69.12) in

c) We can explicitly calculate the total energy of the Bose gas, which will be
defined by the particles that are outside the condensate (since the condensed
particles are in the ground state with At a temperature below the
Bose–Einstein condensation the particles outside the condensate
(with are distributed according to a regular Bose distribution with

(see Problem 4.70):

The total number of particles outside the condensate is therefore



180 SOLUTIONS

The energy of the Bose gas at is

The free energy F is

since and So the pressure

So we see that the pressure does not depend on the volume and

at We could have determined the result without the above calcu-
lations since at the particles which are inside the condensate
(with = 0) have no momentum and do not contribute to pressure.

4.70 Bose Condensation Critical Parameters (MIT)

a) The number of particles dN in an element of phase space is given by

where With the usual dispersion law for an ideal gas
and integrating over we find the particle distribution over energy:

Integrating (S.4.70.2), we obtain a formula for the total number N of par-
ticles in the gas:
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Letting we rewrite (S.4.70.3) as

(S.4.70.4) defines a parametric equation for the chemical potential The
decrease of volume (or temperature) will increase the value of the integral,
and therefore the value of (which is always negative in Bose statistics) will
increase. The critical parameters or correspond to the point where

(i.e., if you decrease the volume or temperature any further, should
increase even further to provide a solution to (S.4.70.4), whereas it cannot
become positive). So we can write at a certain temperature:

Therefore,

b) In two dimensions the integral (S.4.70.3) becomes

and there is no Bose condensation (see Problem 4.71).

4.71 Bose Condensation (Princeton, Stony Brook)

For Bose particles,

where is the temperature in energy units. The total number of particles
in a Bose distribution is

Substituting   into the
integral gives
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The condition for Bose condensation to occur is that, at some particular
temperature, the chemical potential goes to zero. Then the number of
particles outside the Bose condensate will be determined by the integral

This integral should converge since N is a given number. Expanding around
in order to determine conditions for convergence of the integral yields

So, this integral diverges at and there is no Bose condensation
for this region. (For instance, in two dimensions, particles with ordinary
dispersion law would not Bose-condense.) In three dimensions,

so that Bose condensation does occur.

4.72 How Hot the Sun? (Stony Brook)

(See Problem 2 of Chapter 4 in Kittel and Kroemer, Thermal Physics.) The
distribution of photons over the quantum states with energy
is given by Planck’s distribution (the Bose–Einstein distribution with
chemical potential

where is the temperature of the radiation which we consider equal to the
temperature of the surface of the Sun. To find the total energy, we can
replace the sum over modes by an integral over frequencies:

where the factor 2 accounts for the two transverse photon polarizations.
The energy of radiation in an interval and unit volume is therefore
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The total radiation energy density over all frequencies is

The integral with factor is just a number which we can take (in
fact it is So

The energy flux   per a unit solid angle is

The flux that illuminates the Earth is proportional to the solid angle
subtended by the Sun’s surface at the Earth:

The radiant energy flux at the Earth is therefore

where is the temperature of the Sun’s surface in K. Now we may estimate

(The actual temperature is about 6000 K; see Problem 4.73.)

4.73 Radiation Force (Princeton, Moscow Phys-Tech,
MIT)

a) The total radiation flux from the Sun is
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where is the Stefan–Boltzmann constant. Only a fraction of
this flux reaches the Earth. In equilibrium this fraction equals the total
flux radiated from the Earth at temperature So

From (S.4.73.2) we obtain

b) The radiation pressure on the Earth is given by

where is the ratio of the total flux from the Sun to the flux that
reaches the Earth. The radiation force on the Earth

where is the cross section of the Earth.

c) For the small “chondrule” the temperature will be the same because it
depends only on the angle at which the Sun is seen and the radiation force:

d) Using (S.4.73.3) and denoting the melting temperature of the metallic
particle and the distance from the Sun we obtain
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e) Let us estimate the radius of a particle for which the radiation force will
equal the gravitational force at the distance of the Earth’s orbit Using
(S.4.73.6), we have

4.74 Hot Box and Particle Creation (Boston, MIT)

a) The number of photons is

where the factor 2 comes from the two polarizations of photons;
So,

b) At low temperatures we can disregard any interaction between photons
due to the creation of electron–positron pairs. We can therefore use the
standard formula for energy flux:

where is the Stefan–Boltzmann constant. On the other hand, by analogy
with molecular flow,

where the particle mass and
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where   is the energy density. So,

c) Using the equation of state for a photon gas

and

we have

The entropy S is then

d) The energy E of the system of particles + photons is

The entropy of the system is the sum of the entropy of an ideal gas and
radiation. The free energy of a single-particle ideal gas with (see
Problem 4.38) of created particles and the radiation is then

Minimizing the free energy with respect to the number of particles, we have

From (S.4.74.12) we obtain
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This result can be immediately obtained if we consider the process as a
“chemical” reaction

or

For chemical equilibrium

Since, for photons, we have

where is the chemical potential of an ideal gas (see part (e)). This result
gives us (S.4.74.13).

e) Pair creation and annihilation can be written in the form

The chemical potential of the photon gas is zero (since the number of pho-
tons is not constant but is defined by equilibrium conditions). Therefore,
we have for process (S.4.74.14) in equilibrium:

where and are the chemical potentials of electrons and positrons,
respectively. If we disregard the walls of the box and assume that there are
no electrons inside the box initially, then the number of electrons equals
the number of positrons, and We then find for the number of
electrons (positrons)

where the factor 2 comes from the double degeneracy of the electron gas
and we set The energy may be written
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Disregarding the 1 in the denominator of (S.4.74.16) and expanding the
square root with respect to the small parameter                  for 
we obtain, from (S.4.74.16),

where we set We then find that the concentrations are

and so

Alternatively, we can take an approach similar to the one in (d). Using the
formula for the chemical potential of an ideal gas (see Problem 4.39) gives

We can immediately write

to obtain the same result in (S.4.74.18) and (S.4.74.19).

f) For the electrons are highly relativistic, and we can write
in (S.4.74.16). Then
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where we have used the integral given in the problem. Finally,

4.75 D-Dimensional Blackbody Cavity (MIT)

For a photon gas the average number of photons per mode is given by

The energy

where V  is the volume of the hypercube:

Substituting into (S.4.75.2), we obtain

The energy density is simply

For D = 3 we recover the Stefan–Boltzmann law:

4.76 Fermi and Bose Gas Pressure (Boston)

a) Using  and substituting the entropy from the problem, we
obtain
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But

Therefore,

We may then find the pressure P of the gas:

The isothermal work done by the gas

b) For a photon gas in a cuboid box

where is a constant.

So,

The same is true for a relativistic Fermi gas with dispersion law

c) For a nonrelativistic Fermi gas the energy is

where is a constant. So,

and

This result was already obtained directly in Problem 4.66 (see (S.4.66.8)).
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4.77 Blackbody Radiation and Early Universe (Stony
Brook)

By definition the free energy

The entropy is then

a)

b)

The energy of the system

Alternatively, the entropy can be found from

or

So,

where can be expressed from (S.4.77.3) as
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where we let Performing the integral gives

Substituting the energy for this mode we recover the entropy
in the form

4.78 Photon Gas (Stony Brook)

The photon gas is a Bose gas with zero chemical potential
leading to Planck’s distribution:

Replacing the sum over different modes by an integral in spherical coordi-
nates, we may write, for the number of quantum states in a volume V,

Substituting into (S.4.78.2) and taking into account the two
possible transverse polarizations of photons, we obtain
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Let us calculate the Helmholtz free energy F. For a Bose gas with
the grand thermodynamic potential is given by

The free energy F would coincide with Again
replacing the sum by an integral in (S.4.78.4) and substituting
yield

Integrating by parts gives

where

although we really do not need this, and so

with a positive constant. The pressure P of the photon gas is
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The entropy S of the gas is given by

The energy E may now be found from

Comparing (S.4.78.7) and (S.4.78.9) gives

Note that this result is the same as for an ultrarelativistic electron gas
(which has the same dispersion law see Problem 4.67). The total
number of photons is given by

where we let

Comparing (S.4.78.9)–(S.4.78.10) with (S.4.78.11), we can write

So, similar to the classical ideal gas, we have

4.79 Dark Matter (Rutgers)

a) The virial theorem may be written relating the average kinetic energy,
and the forces between particles (see Sect. 3.4 of Goldstein, Classical

Mechanics):
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For an inverse square law force (gravitation), the average kinetic energy
and potential energy are related as

For a very rough estimate of the gravitational potential energy of Draco,
consider the energy of a sphere of uniform density and radius

The average kinetic energy may be approximated by

Substituting (S.4.79.2) and (S.4.79.3) into (S.4.79.1), we find

b) If most of the mass of Draco is in massive neutrinos, we may estimate
the energy by considering the energy of a uniform distribution of fermions
in a box of volume V. The energy of such a fermionic gas has been found
in Problem 4.66:

Rewriting (S.4.79.5) in terms of density and volume gives

If the mass of the neutrino is too low, in order to maintain the observed
density, the number density would increase, and the Pauli principle would
require the kinetic energy to increase. So, in (S.4.79.6), the energy increases
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as the mass of the neutrino decreases. Equating the kinetic energy from
(a) with (S.4.79.6), we see

c) Substituting (S.4.79.4) into (S.4.79.7), we determine that

This value is at least an order of magnitude larger than any experimental
results for neutrino masses, implying that the model does not explain the
manner in which Draco is held together (see also D. W. Sciama, Modern
Cosmology and the Dark Matter Problem).

4.80 Einstein Coefficients (Stony Brook)

a) At equilibrium the rates of excitation out of and back to state 1 should
be equal, so

Substituting (P.4.80.1), (P.4.80.2), and (P.4.80.3) into (S.4.80.1) gives

We may find the ratio of the populations from (S.4.80.2) to be

b) At thermal equilibrium the population of the upper state should be
smaller than that of the lower state by the Boltzmann factor so
(S.4.80.3) gives
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Substituting the radiation density into (S.4.80.4) gives

or

The ratios of coefficients may be found by considering (S.4.80.6) for extreme
values of since it must be true for all values of For very large values of

we have

Substituting (S.4.80.7) back into (S.4.80.6) yields

or

which immediately yields

and so, from (S.4.80.7),

c) Inspection of (S.4.80.11) shows that the ratio of the spontaneous emission
rate to the stimulated emission rate grows as the cube of the frequency,
which makes it more difficult to create the population inversion necessary
for laser action. The pump power would therefore scale as

4.81 Atomic Paramagnetism (Rutgers, Boston)

a) The energy associated with the magnetic field is

where is an integer varying in the range
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b) From (S.4.81.1) we may find the partition function Z:

where we define The sum (S.4.81.2) may be easily calculated:

The mean magnetic moment per dipole is given by

Since the atoms do not interact,

For  J = 1/2,

This result can be obtained directly from (S.4.81.3) and (S.4.81.4):
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For J = 1,

c) For large H the magnetization saturates

It is convenient to define the so-called Brillouin function [Brillouin,
Journal de Physique 8, 74 (1927)] in such a way that

So,

For small H, we can expand coth

So,

The saturation value (S.4.81.10) corresponds to a classical dipole per
atom, where all the dipoles are aligned along the direction of H, whereas the
value at small magnetic field H (S.4.81.11) reflects a competition between
order (H) and disorder
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4.82 Paramagnetism at High Temperature (Boston)

a) The specific heat c of a system that has N energy states is given by

Using we may rewrite

where we have used In Note that, in general, the param-
eter is not small (since it is proportional to the number of particles),
but, subsequently, we obtain another parameter

b) For a classical paramagnetic solid:

so
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and we have

where is the probability density. Therefore,

For the quantum mechanical case, there is an equidistant energy
spectrum: (see Problem 4.81) and

To calculate we can use the following trick (assuming J integer):

From (S.4.82.6) we have

With the familiar sum

we arrive at
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We wish to perform the sum from –J to J, so

and (S.4.82.5) gives

c) For               ,

and

As in Problem 4.81 for

where We then find

For

which coincides with (S.4.82.11).
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4.83 One-Dimensional Ising Model (Tennessee)

a) The partition function is defined as

where the product is taken over the sites. Define where
Start by evaluating the sum at one end, say for The answer is
independent of the value of

Next we evaluate the sum over which is also independent of the value
of

So each summation over gives the identical factor and Z is
the product of N such factors.

b) The heat capacity per spin is obtained using thermodynamic identities.
The partition function is related to the free energy F:

The entropy is given by

Now, the heat capacity C is given by

The heat capacity per spin is
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4.84 Three Ising Spins (Tennessee)

a) Define and where The definition of the
partition function is

A direct calculation gives

b) The average value of spin is

c) The internal energy is

4.85 N Independent Spins (Tennessee)

a) The partition function is given by

where Each spin is independent, so one has the same result as
for one spin, but raised to the Nth power

b) The internal energy is the derivative of ln Z with respect to

c) The entropy is derivative of ln Z with respect to
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4.86 N Independent Spins, Revisited (Tennessee)

We use the expression where is the probability of the arrange-
ment of spins. For N spins we assume that are up and are down,
where The different arrangements are

Use Stirling’s approximation for the factorial to obtain

4.87 Ferromagnetism (Maryland, MIT)

Using the mean field approximation, we may write the magnetization M of
the lattice as (see Problem 4.81)

where is the density of the spins and is the sum of the imposed field
and the field at spin produced by the neighboring spins:

where is a constant. We may rewrite (S.4.87.1) as

The susceptibility is given by
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For B and M small we may rearrange (S.4.87.4), yielding

where The divergence of at indicates the onset of
ferromagnetism. The spins will align spontaneously in the absence of an
applied magnetic field at this temperature.

4.88 Spin Waves in Ferromagnets (Princeton,
Colorado)

Quantum spins have the commutation relations

a) The time dependences of the spins are given by the equations of motion:

b) The classical spin field at point is In the simple cubic lattice
the six neighboring lattice sites are at the points where is

or      We expand the sum in a Taylor series, assuming that  is a small
number, and find
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c) Given the form of the spin operator in part (c), one immediately derives
the equation by neglecting terms of order

The equations of motion have an eigenvalue which represents the fre-
quencies of the spin waves.

d) The internal energy per unit volume of the spin waves is given by

where the occupation number is suitable for bosons. At low temperature
we can evaluate this expression by defining the dimensionless variable

which gives for the integral

At low temperature the upper limit of the integral becomes large, and the
internal energy is proportional to         The heat capacity is the derivative
of with respect to temperature, so it goes as

Fluctuations

4.89 Magnetization Fluctuation (Stony Brook)

The energy of a dipole in a magnetic field      may be written

The partition function Z is simply
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Since the moments are all independent, we may express the average mag-
netization  as

On the other hand,

For the ensemble averages are independent, and

We are left with so (S.4.89.2) and (S.4.89.3) give

We then obtain
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4.90 Gas Fluctuations (Moscow Phys-Tech)

a) We can disregard any particles from the high-vacuum part of the setup
and consider the problem of molecular flow from the ballast volume into
the vacuum chamber. The number of particles was calculated in Problem

where is the particle concentration and is the average velocity. Ex-
pressing via the pressure P and using (see Problem 4.13)

we obtain

b) At the given pressure the molecules are in the Knudsen regime, the mean
free path Therefore, we can assume that the molecular distribu-
tion will not change and N can be obtained from the Poisson distribution.
The mean fluctuation (see Problem 4.94)

The mean relative fluctuation is given by

c) The probability of finding N particles as a result of one of the measure-
ments, according to the Poisson distribution (see Problem 4.35), is

Therefore, the probability of counting zero particles in 1 ms is

an exceedingly small number. This problem is published in Kozel, S. M.,
Rashba, E. I., and Slavatinskii, S. A., Problems of the Moscow Institute of
Physics and Technology.

4.14:
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4.91 Quivering Mirror (MIT, Rutgers, Stony Brook)

a) When the mirror is in thermal equilibrium with gas in the chamber, one
may again invoke the equipartition theorem and state that there is
of energy in the rotational degree of freedom of the torsional pendulum,
where the torque is given by The mean square fluctuation in the
angle would then be given by (see Chapter 13, Fluctuations, in Pathria)

So,

Now, Avogadro’s number and we obtain

b) Even if the gas density were reduced in the chamber, the mean square
fluctuation would not change. However, in order to determine whether
individual fluctuations might have larger amplitudes, we cannot rely on the
equipartition theorem. We instead will examine the fluctuations in the
frequency domain. may be written

where is the power spectral density of At high gas density,     is
broader and smaller in amplitude, while the integral remains constant. This
corresponds to more frequent collisions and smaller amplitudes, whereas,
at low density,       is more peaked around the natural frequency of the
torsional pendulum           where I is its moment of inertia, still keeping
the integral constant. It then appears that by reducing the density of the
gas we actually increase the amplitude of fluctuations!

4.92 Isothermal Compressibility and Mean Square
Fluctuation (Stony Brook)

a) Let us use the Jacobian transformation for thermodynamic variables:
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Since the chemical potential    is expressed in P,  and does not depend on
N, we can write

where                 and are reduced entropy and volume respectively.
Using the equation for the Gibbs free energy of a single-component system,

we can write

where we also used But from (S.4.92.1),

So finally

b) By definition the average number of particles in the grand canonical
ensemble is

where Now, from (a),

where N is an average number of particles:

where we have used
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From (S.4.92.3)

and

Since V is proportional to

The relative fluctuation is given by

4.93 Energy Fluctuation in Canonical Ensemble
(Colorado, Stony Brook)

First solution: For a canonical ensemble:

where On the other hand,

Differentiating (S.4.93.2), we obtain

By inspecting (S.4.93.1)–(S.4.93.3), we find that

Now, the heat capacity at constant volume,      is given by



THERMODYNAMICS AND STATISTICAL PHYSICS 213

Therefore, comparing (S.4.93.4) and (S.4.93.5), we deduce that, at constant
volume,

or in standard units

Since

then

Second solution: A more general approach may be followed which is appli-
cable to other problems. Because the probability of finding that the value
of a certain quantity X deviates from its average value is proportional
to and denoting we can write

Note that The entropy has a maximum at Expanding

where

so The probability distribution

If we have several variables,

If the fluctuations of two variables are statistically independent,

we obtain

so
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The converse is also true: If the variables and are statis-
tically independent. Now for a closed system we can write

where is the total entropy of the system and is the entropy change
due to the fluctuation. On the other hand,

where is the minimum work to change reversibly the thermodynamic
variables of a small part of a system (the rest of the system works as a heat
bath), and is the average temperature of the system (and therefore the
temperature of the heat bath). Hence,

However,

where and are changes of a small part of a system due to
fluctuations and P are the average temperature and pressure. So,

Expanding (for small fluctuations) gives

Substituting (S.4.93.16) into (S.4.93.14), we obtain
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where we used

So, finally

Using V and as independent variables we have

Substituting (S.4.93.19) into (S.4.93.18), we see that the cross terms with
cancel (which means that the fluctuations of volume and temper-

ature are statistically independent,

Comparing (S.4.93.20) with (S.4.93.10), we find that the fluctuations of
volume and temperature are given by

To find the energy fluctuation, we can expand
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where we used Substituting and from

(S.4.93.21), we obtain a more general formula for

At constant volume (S.4.93.23) becomes

the same as before.

4.94 Number Fluctuations (Colorado (a,b), Moscow
Phys-Tech (c))

a) Using the formula derived in Problem 4.92, we have

Consider an assortment of particles which are in the quantum state.
They are statistically independent of the other particles in the gas; therefore
we can apply (S.4.94.1) in the form

For a Fermi gas

So, by (S.4.94.2),
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Similarly, for a Bose gas

we have

b) First solution: Since a classical ideal gas is a limiting case of both Fermi
and Bose gases at we get, from (S.4.94.3) or (S.4.94.6),

Alternatively, we can take the distribution function for an ideal classical
gas,

and use (S.4.94.2) to get the same result. Since all the numbers of
particles in each state are statistically independent, we can write

Second solution: In Problem 4.93 we derived the volume fluctuation

This gives the fluctuation of a system containing N particles. If we divide
(S.4.94.9) by we find the fluctuation of the volume per particle:

This fluctuation should not depend on which is constant, the volume or
the number of particles. If we consider that the volume in (S.4.94.10) is
constant, then

Substituting (S.4.94.11) into (S.4.94.10) gives
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Using the equation for an ideal gas, in (S.4.94.12), we obtain

Third solution: Use the Poisson distribution, which does not require that
the fluctuations be small:

The average square number of particles is

Thus we recover (S.4.94.8) again:

c) Again we will use (S.4.94.1):

Since the gas is strongly degenerate, we can use and
(see Problem 4.66):

Then
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4.95 Wiggling Wire (Princeton)

First solution: Consider the midpoint of the wire P fixed at points A and B
(see Figure S.4.95). let  be the deviation of the wire from the line segment
AB. Then, in equilibrium, the wire will consist of segments and
To find         we will have to find the minimum work          to change the
shape of the wire from APB to

Using a standard formula for the probability of fluctuation (see Problem
4.93),

we obtain

So,

This answer can be easily generalized for an arbitrary point along the
wire (see Landau and Lifshitz, Statistical Physics, Sect. 112):
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Second solution: We solve the equation of motion for the wire (see deriva-
tion in Problem 1.46, Part I). For the boundary conditions

we have modes:

with for where is the phase velocity,
Taking for simplicity

we can find the average kinetic and potential energy in each mode:

The total energy in each mode is

The fluctuation of the wire is given by

where we have used For
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where we substituted from (S.4.95.9). Note that even modes do not
contribute to the fluctuation of the midpoint of the wire, as expected from
elementary considerations. We may then find the fluctuation:

where we have used the sum given in the problem

So,

as before.

4.96 LC Voltage Noise (MIT, Chicago)

Write the Hamiltonian H for the circuit:
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harmonic oscillator of frequency whose energy levels are

The average energy in the circuit is given by (with

The average energy is equally distributed between the capacitance and the
inductance:

where V is the voltage across the capacitor (between points A and B; see
Figure S.4.96). We then have

In the classical limit

We could equally well have derived the classical result by using the equipar-
tition theorem (see Problem 4.42). For the single degree of freedom, there
is an average energy which, as noted, is divided between the capacitor
and inductor, so

a)

where is the charge on the capacitor. This is the Hamiltonian of a
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as found in (S.4.96.6). The mean square noise voltage is

If then (S.4.96.6) becomesb)

Applications to Solid State

Thermal Expansion and Heat Capacity
(Princeton)

4.97

a) First solution: We can calculate the average displacement of an oscillator:

Since the anharmonic term is small, we can expand the
exponent in the integral:
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where we set So,

Note that, in this approximation, the next term in the potential
would not have introduced any additional shift (only antisymmetric terms
do).

Second solution: (see Problem 1.37, Part I) We can solve the equation of
motion for the nonlinear harmonic oscillator corresponding to the potential

where is the principal frequency. The solution (see
(S.1.37.10) of Part I) gives

where is defined from the initial conditions and A is the amplitude of
oscillations of the linear equation. The average over a period
is

We need to calculate the thermodynamic average of

Substituting we obtain

the same as before.
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The partition function of a single oscillator associated with this potential
energy is
b)

So, the free energy F per oscillator is given by

where we approximated ln                          The energy per oscillator may be
found from

The heat capacity is then

The anharmonic correction to the heat capacity is negative.
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4.98 Schottky Defects (Michigan State, MIT)

When N atoms are displaced to the surface, they leave the same number
of vacancies. Now there are N vacancies and atoms in lattice
points. The entropy as a function of N is

where we have used Stirling’s formula

The free energy may be written

The minimum of the free energy can be found to be

or

general, but since and the number of defects it can

Since we have

which is what one would expect.

4.99 Frenkel Defects (Colorado, MIT)

We assume that the number of defects created around one lattice site does
not affect the process of creating new defects. In other words, all configu-
rations of the system are independent (not a very realistic assumption in
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be used as an approximation). The vacancies and interstices then can be
distributed in and ways, respectively:

The total number of possible configurations of the system, is given by

The entropy, S, may be written

Using Stirling’s formula

we obtain, from (S.4.99.3),

Using (S.4.99.5) and the fact that the total energy of the system
we have

or
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and

The condition implies that and therefore

4.100 Two-Dimensional Debye Solid (Columbia,
Boston)

a) The number of normal modes in the 2D solid within the interval of a
wave vector may be written

In the 2D solid there are only two independent polarizations of the excita-
tions, one longitudinal and one transverse. Therefore,

where      is the average velocity of sound. To find the Debye frequency
we use the standard assumption that the integral of (S.4.100.2) from 0 to
a certain cut-off frequency     is equal to the total number of vibrational
modes; i.e.,

Therefore,

We can express through

Then (S.4.100.2) becomes
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The free energy (see Problem 4.77) then becomesb)

Defining and introducing a new variable we can
rewrite (S.4.100.7) in the form

Integrating (S.4.100.8) by parts, we obtain

where the 2D Debye function is

The energy is given by
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The specific heat at low temperatures) is

At low temperatures, we can extend the upper limit of integration
to infinity:

Therefore, at

where

and is the Riemann function. Note that the specific heat in 2D is

(see also Problem 4.75). Note also that you can solve a somewhat differ-
ent problem: When atoms are confined to the surface but still have three
degrees of freedom, the results will, of course, be different.

4.101 Einstein Specific Heat (Maryland, Boston)

a) For a harmonic oscillator with frequency the energy

where

So,
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b) If we assume that the N atoms of the solid each have three degrees of
freedom and the same frequency then the total energy

The specific heat

In the high-temperature limit of (S.4.101.4) we havec)

In regular units

which corresponds to the law of Dulong and Petit, does not depend on
the composition of the material but only on the total number of atoms
and should be a good approximation at high temperatures, especially for
one-component elements. Prom the numbers in the problem,

Therefore,

Note that, at high enough temperatures, anharmonic effects calculated in
Problem 4.97 may become noticeable. Anharmonic corrections are usually
negative and linearly proportional to temperature.

At low temperatures (S.4.101.4) becomes

The heat capacity goes to zero as exp whereas the
experimental results give (see Problem 4.42). The faster falloff of
the heat capacity is due to the “freezing out” of the oscillations at
given the single natural frequency

d)
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4.102 Gas Adsorption (Princeton, MIT, Stanford)

For two systems in equilibrium, the chemical potentials should be equal.
Consider one of the systems as an ideal gas (vapor) in a volume, and another
as a surface submonolayer film. For an ideal gas the free energy F (see
Problem 4.38) is given by

where and correspond to the energy states and statistical sum associ-
ated with the internal degrees of freedom. If the temperature is reasonably
small, where corresponds to the ionization energy of the
atoms, so that the atoms are not ionized and mostly in the ground state,
and this state is nondegenerate, we can take and then (S.4.102.1)
becomes

The Gibbs free energy G is given by

where we have expressed G as a function of P and using The
chemical potential so

Now, consider an adsorption site: we can apply a Gibbs distribution with
a variable number of particles to this site:
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where the possible occupational numbers of the site for a submonolayer
0,1 (site is empty, site is occupied), with energy Performing
the sums, we have

The average number of particles per site may be written

The total number of adsorbed particles N is given by

The surface concentration is simply

(S.4.102.9) can also be derived by considering the canonical ensemble. The
number of possible ways of distributing N atoms among sites is

where

and

Substituting for an ideal gas from (S.4.102.4) into (S.4.102.9), we have
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The partition function is then

and the average number of particles

the same as (S.4.102.8).

4.103 Thermionic Emission (Boston)

a) We can consider the electron gas outside the metal to be in equilibrium
with the electrons inside the metal. Then the number of electrons hitting
the surface from the outside should be equal to the number of electrons
leaving the metal. Using the formula for chemical potential of a monatomic
ideal gas (see Problem 4.39), we can write

where for an electron gas. Rewriting (S.4.103.1), we have

The state of equilibrium requires that this chemical potential be equal to
the potential inside the metal, which we can take as i.e., the
energy is required to take an electron from the Fermi level inside the
metal into vacuum. So, the pressure of the electron gas is given by

On the other hand, the number of particles of the ideal gas striking the
surface per unit area per unit time is
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The current

where    is the electron charge. Therefore, we can express P from (S.4.103.5):

Equating (S.4.103.6) with (S.4.103.3), we find the current

Alternatively, we can calculate the current by considering the electrons
leaving the metal as if they have a kinetic energy high enough to overcome
the potential barrier.

b) For one particle,

where and are the energies, and and the volumes per particle,
of the gas and solid, respectively. Since we can rewrite (S.4.103.8)
in the form

Substituting (S.4.103.9) into the Clausius-Clapeyron equation (see Problem

we obtain

We may rewrite (S.4.103.11) as

Integrating, we recover (S.4.103.2):

where A is some constant, or

4.57),
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4.104 Electrons and Holes (Boston, Moscow
Phys-Tech)

a) Let the zero of energy be the bottom of the conduction band, so
(see Figure S.4.104). The number of electrons may be found from

where                 for electrons, and the Fermi distribution formula has been
approximated by

The concentration of electrons is then

where

b) In an intrinsic semiconductor
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since a hole is defined as the absence of an electron. We may then write

where     is the energy of a hole and we have used the nondegeneracy con-
dition for holes                  The number of holes is

The energy of a hole (from the bottom of the conduction band) is

Therefore, similar to (a):

The product of the concentrations of electrons and holes does not de-
pend on the chemical potential as we see by multiplying (S.4.104.3)
and (S.4.104.8):

We did not use the fact that there are no impurities. The only important
assumption is that which implies that the chemical potential
is not too close to either the conduction or valence bands.

c) Since, in the case of an intrinsic semiconductor (every electron
in the conduction band leaves behind a hole in the valence band), we can
write, using (S.4.104.9),
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Therefore,

Equating (S.4.104.3) and (S.4.104.11), we can find the chemical potential
for an intrinsic semiconductor:

If then the chemical potential is in the middle of the band gap:

4.105 Adiabatic Demagnetization (Maryland)

We now want to produce a Maxwell relation whose independent variables
are T and H. Write an equation for the free energy F:

a) We start with the usual relation and substitute
M dH for P dV, since the work done in this problem is magnetic rather
than mechanical. So
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We then obtain, from (S.4.105.2),

The cross derivatives of (S.4.105.3) are equal so

The heat capacity at constant magnetic field is given by

from which we obtain

By again exchanging the order of differentiation in (S.4.105.6) and using
the result found in (S.4.105.4), we have

Replacing M by in (S.4.105.7) yields the desired

b) For an adiabatic process, the entropy S is constant. Writing
we compose the differential

and by (S.4.105.4) and (S.4.105.5),
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The heat capacity may be written as the integralc)

Substituting into (S.4.105.8), we have

Using the heat capacity at zero magnetic field, and
(S.4.105.12) in (S.4.105.11), we obtain

The temperature may be written so for our adiabatic process

The integrand in (S.4.105.14) is found by substituting into
(S.4.105.10):

So, for a process at constant entropy, we may write

Rearranging and integrating give

and

d) A possible route to zero temperature is illustrated in Figure S.4.105.
During leg 1 the paramagnetic sample is kept in contact with a reservoir
at a low temperature, and the magnetic field is raised from 0 to The
contact with the reservoir is then removed, and the field is reduced to zero
along leg 2. The sample is thereby cooled.
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4.106 Critical Field in Superconductor (Stony Brook,
Chicago)

a) If the external field is smaller than the critical field, then the
B-field inside the superconductor is zero, and the magnetization M
becomes

This means that the superconductor displays perfect diamagnetism (with
magnetic susceptibility The change in free energy of the
superconductor due to the increase of the external field H may be written
as Therefore, the free energy of the
superconductor in a field is given by

The transition to a normal state occurs when the free energy of the super-
conducting state is equal to that of the normal state:

Here we used the fact that, because of the negligible magnetic susceptibility,
the free energy of the normal state practically does not depend on the
applied field. So, we have

where Now, it is easy to calculate the entropy discontinuity
since

so

If we recall that the dependence of the critical field on the temperature can
be approximated by the formula where then
we can confirm that a superconducting state is a more ordered state, since

and hence
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b) The latent heat if the transition occurs at a constant temperature,
is given by If the transition is from superconducting to
normal, then

So, if we have a transition from the superconducting to normal states, then
heat is absorbed.

c) The specific heat is defined as Here we disregard any
volume and pressure changes due to the transition. Hence, from equation
(S.4.106.6), the specific heat per volume discontinuity is

At zero field the transition is of second order and so the specific
heat per unit volume discontinuity at from (S.4.106.8) is



5

Quantum
Mechanics

One-Dimensional Potentials

5.1 Shallow Square Well I (Columbia)

The ground state energy E must be less than zero and greater than the
bottom of the well, From the expression

one can deduce the form for the eigenfunction. Denote the ground state
energy where is to be determined. The eigenfunction
outside the well (V = 0) has the form Inside the well, define

where One can show that is positive since
Inside the well, the eigenfunction has the form so

Matching and its derivative at             gives two expressions:

243
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Dividing these two equations produces the eigenvalue equation

The equation given by the rightmost equals sign is an equation for the
unknown      Solving it gives the eigenvalue E.

5.2 Shallow Square Well II (Stony Brook)

a) For the bound state we can write the eigenvalue as
where is the decay constant of the eigenfunction outside the square well
(see Problem 5.1). Inside the square well we define a wave vector by

The infinite potential at the origin requires that all eigenfunctions vanish
at So the lowest eigenfunction must have the form

At the point we match the eigenfunctions and their derivatives:

We eliminate the constants A and B by dividing these two equations:

Earlier we established the relationship between and So the only un-
known variable is which is determined by this equation.

b) To find the minimum bound state, we take the limit as in
the eigenvalue equation. From (S.5.2.1) we see that goes to a nonzero
constant, and the eigenvalue equation only makes sense as if
tan which happens at Using (S.5.2.1) gives

Thus, we derive the minimum value of for a bound
state:
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c) For a positive energy state set                          where     is the wave vector
outside the square well. Inside the square well we again define a wave vector

according to

Again we have the requirement that the eigenfunction vanish at For
we have an eigenfunction with two unknown parameters B and

Alternatively, we may write it as

in terms of two unknowns C and D. The two forms are equivalent since
We prefer to write it with the phase shift

Again we match the two wave functions and their derivatives at

Dividing (S.5.2.10) by (S.5.2.11), we obtain

Since is a known function of the only unknown in this equation is
which is determined by this equation.

d) From (S.5.2.12) we derive an expression for the phase shift:

5.3 Attractive Delta Function Potential I (Stony
Brook)

a) The bound state is stationary in time: its eigenvalue is E (E < 0), and
the time dependence of the wave function is
The equation for the bound state is
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The bound state for has the form

We have already imposed the constraint that be continuous at
This form satisfies the requirement that is continuous at the origin
and vanishes at infinity. Away from the origin the potential is zero, and
the Schrödinger equation just gives A relation between C
and E is found by matching the derivatives of the wave functions at
Taking the integral of (S.5.3.1) between and gives

Applying (S.5.3.3) to (S.5.3.2) gives the relations

We have found the eigenvalue for the bound state. Note that the dimensions
of C are energy × distance, which makes the eigenvalue have units of energy.
Finally, we find the normalization coefficient A:

b) When the potential constant changes from the eigenfunction
changes from where the prime denotes the eigenfunction with
the potential strength In the sudden approximation the probability
that the particle remains in the bound state is given by

where
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Substituting (S.5.3.2) into (S.5.3.9) and using the result of (S.5.3.7), we
obtain

Finally, using (S.5.3.5) yields

It is easy to show that as required by particle conservation. If
then since there is no change, and the particle must stay

in the bound state.

5.4 Attractive Delta Function Potential II (Stony
Brook)

a) In order to construct the wave function for the bound state, we first
review its properties. It must vanish at the point At the point

it is continuous and its derivative obeys an equation similar to
(S.5.3.3):

Away from the points it has an energy and
wave functions that are combinations of and These constraints
dictate that the eigenfunction has the form

At the point we match the two eigenfunctions and their derivatives,
using (S.5.4.1). This yields two equations, which are solved to find an
equation for
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We use the first equation to eliminate A in the second equation. Then each
term has a factor of which is canceled:

Multiplying both sides of (S.5.4.5) by sinh gives

This last equation determines which determines the bound state energy.
There is only one solution for sufficiently large values of

b) The minimum value of for creating a bound state is called It is
found by assuming that the binding energy which means
We examine (S.5.4.7) for small values of and find that

5.5 Two Delta Function Potentials (Rutgers)

There are two delta function singularities, one at and one at
The potential can be written in an equivalent way as

At each delta function we match the amplitudes of the eigenfunctions as
well as the slopes, using a relation such as (S.5.3.3). A single, isolated,
attractive, professional, delta function potential has a single bound state.
We expect that a pair of delta function potentials will generally have one
or two bound states.

The lowest energy state, for symmetric potentials, is a symmetric eigen-
function. The eigenvalue has theform where is the decay
constant of the eigenfunction. The most general symmetric eigenfunction
for a bound state is
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Matching at either gives the pair of equations:

Eliminating the constants A and B gives the final equation for the unknown
constant

For large values of the hyperbolic tangent is unity, and we have the
approximate result that which gives for large P the eigenvalue

For small values of we see that and
This is always the lowest eigenvalue.

The other possible eigenstate is antisymmetric: it has odd parity. When
the separate bound states from the two delta functions overlap, they com-
bine into bonding and antibonding states. The bonding state is the sym-
metric state we calculated above. Now we calculate the antibonding state,
which is antisymmetric:

Using the same matching conditions, we find the two equations, which are
reduced to the final equation for

For large values of the hyperbolic cotangent function (coth) approaches
unity, and again we find                 and At small values
of the factor of coth Here we have so we find at small
values of that The antisymmetric mode only exists for
For the only bound state is the symmetric one. For there are
two bound states, symmetric and antisymmetric.
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5.6 Transmission Through a Delta Function Potential
(Michigan State, MIT, Princeton)

On the left the particle has an incident intensity, which we set equal to
unity, and a reflected amplitude R. On the right the transmitted amplitude
is denoted by T.

At the point we match the value of on both sides. We match
the derivative according to an expression such as (S.5.3.3) with
This yields two equations for T and R which can be solved for T:

5.7 Delta Function in a Box (MIT)

a) In the absence of the delta function potential, the states with odd parity
are

These states have zero amplitude at the site of the delta function
and are unaffected by it. So, the states with odd parity have the same
eigenfunction and eigenvalues as when the delta function is absent.

b), c) For a delta function potential without a box, the bound states have
a wave function of (see Problem 5.3). In the box we expect to
have similar exponentials, except that the wave function must vanish at
the edges of the box The states which do this are



QUANTUM MECHANICS 251

Using (S.5.4.1), we match the difference in the derivatives at with
the amplitude of the delta function potential. This leads to the eigenvalue
condition

The quantity on the left of (S.5.7.6) has a minimum value of 1, which it
obtains at This limit produces the eigenvalue So we must
have for the zero eigenvalue, which is the answer to part (b). The
above eigenfunction, for values of gives the bound state energy E < 0
when

5.8 Particle in Expanding Box (Michigan State, MIT,
Stony Brook)

a) For a particle confined to a box the ground state
and the first excited state are

After the sudden transition the final eigenfunctions are

b) In the sudden approximation let denote the probability that the
particle starts in the ground state 0 and ends in the final state
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where the amplitude of the transition is given by

The amplitude for the particle to remain in its ground state is then

The probability is given by

The same calculation for the transition between the initial ground state
and final excited state is as follows:

where

The integral is zero by parity, since the integrand is an odd function of
so
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5.9 One-Dimensional Coulomb Potential (Princeton)

a) Since the electron is confined to the right half-space, its wave function
must vanish at the origin. So, an eigenfunction such as exp is un-
suitable since it does not vanish at The ground state wave function
must be of the form where  needs to be determined.
The operator acting on this form gives

so that using this wave function in Schrödinger’s equation yields

For this equation to be satisfied, the first and third terms on the left must
be equal, and the second term on the left must equal the term on the right
of the equals sign:

The answer is one sixteenth of the Rydberg, where      is the ground state
energy of the hydrogen atom. The parameter where is the
Bohr radius.

b) Next we find the expectation value The first integral is done to find
the normalization coefficient:

The average value of is 6 Bohr radii.

5.10 Two Electrons in a Box (MIT)

a) If the box is in the region then the one-electron orbitals are
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If both electrons are in the spin state  (spin up), then the spin part of the
wave function is symmetric under exchange of coordinates. Therefore,
the orbital part has to be antisymmetric, and both particles cannot be in
the state. Instead, the lowest energy occurs when one electron is in
the state and the other is in the state:

b) The probability that both are in one half, say the left side, is

Three integrals must be evaluated:

The result is rather small. Naturally, it is much more favorable to have one
particle on each side of the box.
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5.11 Square Well (MIT)

255

a) The most general solution is

We evaluate the coefficients by using the initial condition at = 0:

The term cos is either 1, 0, or –1, depending on the value of The
answer to (a) is to use the above expression for in (S.5.11.3). The answer
to part (b) is that the probability of being in the eigenstate is
The answer to part (c) is that the average value of the energy is

This latter series does not converge. It takes an infinite amount of energy
to form the initial wave function.

5.12 Given the Eigenfunction (Boston, MIT)

We evaluate the second derivative of the eigenfunction, which gives the
kinetic energy:
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We take the limit that of the function on the left, and this must
equal – since we assumed that the potential vanishes at infinity. Thus,
we find that

The energy is negative, which signifies a bound state. The potential
can be deduced from (S.5.12.1) since everything else in this expression is
known:

This potential energy has a bound state which can be found analytically,
and the eigenfunction is the function given at the beginning of the problem.

5.13 Combined Potential (Tennessee)

Let the dimensionless distance be The kinetic energy has the scale
factor In terms of these variables we write Schrödinger’s
equation as

Our experience with the hydrogen atom, in one or three dimensions, is that
potentials which are combinations of and are solved by exponentials

times a polynomial in The polynomial is required to prevent the
particle from getting too close to the origin where there is a large repulsive
potential from the term. Since we do not yet know which power of
to use in a polynomial, we try

where  and need to be found, while A is a normalization constant.
This form is inserted into the Hamiltonian. First we present the second
derivative from the kinetic energy and then the entire Hamiltonian:
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We equate terms of like powers of

The last equation defines The middle equation defines once  is known.
The top equation gives the eigenvalue:

Harmonic Oscillator

5.14 Given a Gaussian (MIT)

Denote the eigenfunctions of the harmonic oscillator as with eigen-
value They are a complete set of states, and we can expand any
function in this set. In particular, we expand our function in terms
of coefficients

The expectation value of the energy is the integral of the Hamiltonian H
for the harmonic oscillator:
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where we used the fact that The probability of energy
So the probability of is given by

where

It is easy to show that this quantity is less than unity for any value of
and is unity if

5.15 Harmonic Oscillator ABCs (Stony Brook)

a) Here we took

since the commutator

b)

c)

and finally
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d) In order to demonstrate that            and are also eigenstates of
compose the commutator

by (S.5.15.1). Similarly,

Now,

Substituting (S.5.15.4) into (S.5.15.5) and replacing by we have

Rearranging (S.5.15.6) yields

as required. A similar calculation gives

We see from the above results that the application of the operator on
a state has the effect of “raising” the state by 1, and the operator
lowers the state by 1 (see (f) below).

e)

since, by assumption,

f) Since by (c), the number operator and the Hamiltonian
commute, they have simultaneous eigenstates. Starting with

we may generate a number state whose energy eigenvalue is 1 + 1/2
by applying the raising operator Applying again produces a state of
eigenvalue 2+1/2. What remains to be done is to see that these eigenstates
(number, energy) are properly normalized. If we assume that the state
is normalized, then we may compose the inner product
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Up to an arbitrary phase, we see that

Starting with the vacuum ket we can write an energy eigenket

g) The energy spectrum is where  takes all positive integer values
and zero. From (S.5.15.9) and the fact that the norm of the eigenvectors is
positive (actually, 1), we see that cannot be negative, and so no negative
eigenvalues are possible.

5.16 Number States (Stony Brook)

a) In this problem it is important to use only the information given. We
may write the Hamiltonian as

We may establish the following:

Apply the number operator to the state directly:

where (see Problem 5.15), so
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Since a we have

b) We see from (S.5.16.2) that the Hamiltonian is just

We demonstrated in (a) that is an eigenstate of the number operator
so is also an eigenstate of the Hamiltonian with eigenvalues

given by

where is the potential energy. The expectation values of the poten-
tial and kinetic energies are equal for the quantum oscillator, as for time
averages in the classical oscillator. Therefore, they are half of the total
energy:

In this problem, however, you are explicitly asked to use the operators
and to calculate so we have

c) The expectation value may be calculated indirectly. Note that



We proceed to find

Thus, the result is the same by both approaches.

5.17 Coupled Oscillators (MIT)

The Hamiltonian of the system is

The problem is easily solved in center-of-mass coordinates. So define

These new coordinates are used to rewrite the Hamiltonian. It now decou-
ples into separate and parts:
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The has a frequency and eigenvalues
where is an integer. The oscillator has a frequency of

and eigenvalues where is an integer.

5.18 Time-Dependent Harmonic Oscillator I
(Wisconsin-Madison)

a) At times the wave function is

b) The state has even parity: it remains the same if one replaces
by since This is true for all times.

c) The average value of the energy is

which is independent of time.

5.19 Time-Dependent Harmonic Oscillator II
(Michigan State)

a) The time dependence of the wave function is

b) The expectation value for the energy is

which is independent of time.
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c) To find the average value of the position operator, we first need to show
that

Then

The expectation value of the position operator oscillates in time.

5.20 Switched-on Field (MIT)

a) Operate on the eigenfunction by the kinetic energy term in the Hamil-
tonian:

Consider the factor the 1 must give the eigenvalue and must
cancel the potential energy. These two constraints give the identities

The normalization constant is determined by

b) The solution is given above:
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c) After the perturbation is added, the Hamiltonian can be solved
exactly by completing the square on the

where the displacement The new ground state energy and
eigenfunction are

The harmonic oscillator vibrates about the new equilibrium point with
the same frequency as before. The constants and are unchanged by

d) To find the probability that a particle, initially in the ground state,
remains in the ground state after switching on the potential, we employ the
sudden approximation. Here we just evaluate the overlap integral of the
two eigenfunctions, and the probability is the square of this overlap:

5.21 Cut the Spring! (MIT)

a) Below we give the Hamiltonian thefrequency and the eigenvalues
of the particle while coupled to two springs:
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The only change from the harmonic oscillator for a single spring is that,
with two identical springs, the effective spring constant is 2K.

b) The eigenfunction of the ground state is

c) When one spring is cut, the particle is now coupled to only a single
spring. So we must replace 2K in the above equations by K. The ground
state eigenfunction is now

Notice that The amplitude I for remaining in the ground state
is found, in the sudden approximation, by taking the overlap integral of the
two ground state wave functions. The probability of remaining in the
ground state is the square of this overlap integral:

where we have used in deriving the last line. The probability
of remaining in the ground state is close to unity.

Angular Momentum and Spin

5.22 Given Another Eigenfunction (Stony Brook)

a) The factor cos indicates that it is a state which has an angular
momentum of 1.
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b) In order to determine the energy and potential, we operate on the eigen-

The constant in the last term can be simplified to
In the limit the potential vanishes, and only the constant term in
the kinetic energy equals the eigenvalue. Thus, we find

c) To find the potential we subtract the kinetic energy from the eigenvalue

The potential has an attractive Coulomb term and a repulsive
term.

5.23 Algebra of Angular Momentum (Stony Brook)

a)

b) Since and commute, we will try to find eigenstates with eigenvalues

state with the kinetic energy operator. For this gives for the radial
part

and act on the eigenfunction:

of and denoted by where are real numbers:
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Since we know that Anticipating the result, let
Form the raising and lowering operators and

Find the commutators

From part (a) we know that We now ask what is the eigen-
value of for the states

So, these states have the same eigenvalue of Now, examine the eigen-
value of for these states:

In (S.5.23.3) we see that has the effect of raising or lowering the
of the states so that

where are the corresponding coefficients. As determined above, we
know that so cannot be applied indefinitely to the state

there must be an such that
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Expand and apply to (S.5.23.4):

Either the state is zero or So

Similarly,

For and since the only solution is

We knew that was real, but now we have
so

5.24 Triplet Square Well (Stony Brook)

Since the two spins are parallel, they are in a spin triplet state with
and The spin eigenfunction has even parity. The two-electron
wave function is written as an orbital part times the spin part.
The total wave function must have odd parity. Since the spin has even
parity, the orbital part must have odd parity: Since
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the interaction potential acts only between the electrons, it is natural to
write the orbital part in center-of-mass coordinates, where
and

The problem stated that the total momentum was zero, so set We
must now determine the form for the relative eigenfunction           It obeys
the Schrödinger equation with the reduced mass where is the
electron mass:

We have reduced the problem to solving the bound state of a “particle” in
a box. Here the “particle” is the relative motion of two electrons. However,
since the orbital part of the wave function must have odd parity, we need
to find the lowest energy state which is antisymmetric,

Bound states have where the binding energy Define
two wave vectors: for outside the box, and

when the particle is in the box, The lowest
antisymmetric wave function is

We match the wave function and its derivative at one edge, say
which gives two equations:

We divide these two equations, which eliminates the constants A and B.
The remaining equation is the eigenvalue equation for

Since and are both positive, the cotangent of must be negative,
which requires that This imposes a constraint for the existence
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of any antisymmetric bound state:

Any attractive square well has a bound state which is symmetric, but the
above condition is required for the antisymmetric bound state.

5.25 Dipolar Interactions (Stony Brook)

a) We assume the magnetic moment is a vector parallel to the spin with a
moment where is a constant. Then we write the Hamiltonian
as

The second term contains only components since the vector a is along
the

b) We write

For we have so we can write

c) The addition of two angular momenta with gives values of S
which are 0 or 1:
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For there are three possible eigenvalues of                            which
gives an energy of

For there is one eigenvalue of and this state has zero
energy.

5.26 Spin-Dependent      Potential (MIT)

a) The spin operator is For spin 1/2 the expression
becomes, for Pauli matrices, where is the

unit matrix. The total spin operator for the two-particle system is

For the spin singlet state then while for the spin
triplet state then

b) The potential is repulsive for the triplet state, and there are no bound
states. There are bound states for the singlet state since the potential is at-
tractive. For the hydrogen atom the potential is and the eigenvalues
are

Our two-particle bound state has instead of and the reduced mass
instead of the mass so we have the eigenvalues

5.27 Three Spins (Stony Brook)

a) We use the notation that the state with three spins up is This
is the state with We operate on this with the lowering operator

which shows that the states with lower values of M are
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b) From the definition of we deduce that

The matrix is the Hermitian conjugate of

c) Because and we can construct

d) To find the matrix we square each of the three
matrices and add them. This gives where is the 4 × 4 unit
matrix. This is what one expects, since the eigenvalue of is J(J + 1),
which is 15/4 when J = 3/2.
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5.28 Constant Matrix Perturbation (Stony Brook)

Define where is the eigenvalue. We wish to diagonalize
the matrix by finding the determinant of

When confronted by a cubic eigenvalue equation, it is best first to try to
guess an eigenvalue. The obvious guesses are The one that works
is so we factor this out to get

We call these eigenvalues respectively. When we construct the
eigenfunctions, only the one for is unique. Since the first two have degen-
erate eigenvalues, their eigenvectors can be constructed in many different
ways. One choice is

b) Since the three states     form a complete set over this space, we can
expand the initial state as

a)
the matrix by finding the determinant of
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To find the amplitude in state we operate on the above equation with
The probability P is found from the absolute-magnitude-squared of

this amplitude:

Let us quantize the spin states along the so that spin up and spin
down are denoted by

The eigenstates of are for pointing along the and       for the
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At time we start in state Later this state becomes

The amplitude for pointing in the negative is found by taking
the matrix element with The probability is the square of the absolute
magnitude of this amplitude:

5.30 Nuclear Magnetic Resonance (Princeton, Stony
Brook)

a) Let and denote the probability of spin up and spin down as a
function of time. The time-dependent Hamiltonian is

The equations for the individual components are

where the overdots denote time derivatives. We solve the first equation for
and substitute this into the second equation:
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We assume that

We determine the eigenvalue frequency by inserting the above form for
into (S.5.30.8), which gives a quadratic equation for that has two

roots:

We have introduced the constants They are not all inde-
pendent. Inserting these forms into the original differential equations, we
obtain two relations which can be used to give

This completes the most general solution. Now we apply the initial con-
ditions that the spin was pointing along the at This gives

which makes and which gives
These two conditions are sufficient to find
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The probability of spin up is and that of spin down is

b) In the usual NMR experiment, one chooses the field       so that
in which case                and                                and The
spin oscillates slowly between the up and down states.

Variational Calculations

5.31 Anharmonic Oscillator (Tennessee)

Many possible trial functions can be chosen for the variational calculation.
Choices such as exp are poor since they have an undesirable cusp
at the origin. Instead, the best choice is a Gaussian:

where the potential in the problem is

We evaluate the three integrals in (A.3.1)–(A.3.4).

We have used (A.3.1) to derive the last expression. Now we find the min-
imum energy for this choice of trial function by taking the derivative with
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respect to the variational parameter Denote by the value at this
minimum:

This result for is higher than the exact eigenvalue.

5.32 Linear Potential I (Tennessee)

The potential V is symmetric. The ground state eigenfunction must also
be symmetric and have no cusps. A simple choice is a Gaussian:

where the variational parameter is and A  is a normalization constant.
Again we must evaluate the three integrals in (A.3.1)–(A.3.4):

The minimum energy is found at the value where the energy derivative
with respect to is a minimum:
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5.33 Linear Potential II (MIT, Tennessee)

The wave function must vanish in either limit that            Two
acceptable variational trial functions are

where the prefactor   ensures that the trial function vanish at the origin.
In both cases the variational parameter is    We give the solution for the
first one, although either is acceptable. It turns out that (S.5.33.2) gives a
higher estimate for the ground state energy, so (S.5.33.1) is better, since the
estimate of the ground-state energy is always higher than the exact value.
The ground state energy is obtained by evaluating the three integrals in
(A.3.1)–(A.3.4):
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The optimal value of called is obtained by finding the minimum value
of

Note that this result is also the first asymmetric state of the potential in
Problem 5.32.

5.34 Return of Combined Potential (Tennessee)

a) The potential contains a term which diverges as              as
The only way integrals such as are well defined at the origin
is if this divergence is canceled by factors in In particular, we must have

at small This shows that the wave function must vanish at
This means that a particle on the right of the origin stays there.

b) The bound state must be in the region since only here is the
potential attractive. The trial wave function is

where the variational parameter is We evaluate the three integrals in
(A.3.1)–(A.3.4), where the variable
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The minimum energy is obtained by setting to zero the derivative of .
with respect to This gives the optimal value and the minimum energy

5.35 Quartic in Three Dimensions (Tennessee)

The potential is spherically symmetric. In this case we can
write the wave function as a radial part times angular functions. We
assume that the ground state is an and the angular functions are

which is a constant. So we minimize only the radial part of the wave
function and henceforth ignore angular integrals. In three dimensions the
integral in spherical coordinates is The factor     comes
from the angular integrals. It occurs in every integral and drops out when
we take the ratio in (A.3.1). So we just evaluate the part. Again we
choose the trial function to be a Gaussian:

The three integrals in (A.3.1)–(A.3.4) have a slightly different form in three
dimensions:
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Note the form of the kinetic energy integral K, which again is obtained
from by an integration by parts. Again set the derivative of
equal to zero. This determines the value which minimizes the energy:

5.36 Halved Harmonic Oscillator (Stony Brook,
Chicago (b), Princeton (b))

a) Using the Rayleigh–Ritz variation principle, calculate the expec-
tation value of the ground state energy as a function of

So our trial function is already normalized. Continuing with the numerator
of (S.5.36.1), we have

First calculate the denominator of (S.5.36.1):
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where we set and Evaluate the integral

So, we have

Finally,

To minimize this function, find     corresponding to

Now,
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Therefore,

We should have the inequality (see Problem 5.33)

where is the true ground state energy.

b) To find the exact ground state of the system, notice that odd wave
functions of a symmetric oscillator problem (from         to     ) will also be
solutions for these boundary conditions since they tend to zero at
Therefore, the ground state wave function of this halved oscillator will corre-
spond to the first excited state wave function of the symmetrical oscillator.
The wave function can easily be obtained if you take the ground state
and act on it by the creation operator (see Problem 5.16):

The ground state energy of our halved oscillator will in turn correspond to
the first excited state energy of the symmetrical oscillator:

Comparing this result with that of (a), we see that the inequality (S.5.36.13)
holds and that our trial function is a fairly good approximation, since it
gives the ground state energy to within 15% accuracy.
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5.37 Helium Atom (Tennessee)

In the ground state of the two-electron system, both orbitals are in 1s states.
So the spin state must be a singlet with The spin plays no role
in the minimization procedure, except for causing the orbital state to have
even parity under the interchange of spatial coordinates. The two-electron
wave function can be written as the product of the two orbital parts times
the spin part:

where is the Bohr radius and is the variational parameter. The orbitals
are normalized to unity. Each electron has kinetic (K) and potential

(U) energy terms which can be evaluated:

where is the Rydberg energy. The difficult integral is that
due to the electron–electron interaction, which we call V:

First we must do the angular integral over the denominator. If is the
larger of and then the integral over a solid angle gives

In the second integral we have set and                        which
makes the integrals dimensionless. Then we have split the into
two parts, depending on whether is smaller or greater than The first
has a factor from the angular integrals, and the second has a factor
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One can exchange the order of integration in one of the integrals and
demonstrate that it is identical to the other. We evaluate only one and
multiply the result by 2:

This completes the integrals. The total ground state energy in Ryd-
bergs is

We find the minimum energy by varying Denote by the value of
at which is a minimum. Setting to zero the derivative of           with
respect to yields the result The ground state energy is

Perturbation Theory

5.38 Momentum Perturbation (Princeton)

The first step is to rewrite the Hamiltonian by completing the square on
the momentum operator:

The constant just shifts the zero of the momentum operator. The rewrit-
ten Hamiltonian in (S.5.38.1) suggests the perturbed eigenstates:
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The action of the displaced momentum operator on the new eigenstates
is

so the Hamiltonian gives

and the eigenvalues are simply

5.39 Ramp in Square Well (Colorado)

a) For a particle bound in a square well that runs from
the eigenfunction and eigenvalue for the lowest energy state are

The eigenfunction is symmetric and vanishes at the walls of the well.

b) We use first-order perturbation theory to calculate the change in energy
from the perturbation:
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5.40 Circle with Field (Colorado, Michigan State)

The perturbation is if we assume the field is in the
The same result is obtained if we assume the perturbation is

in the In order to do perturbation theory,
we need to find the matrix element of the perturbation between different
eigenstates. For first-order perturbation theory we need

The eigenvalues are unchanged to first-order in the field E.
To do second-order perturbation theory, we need off-diagonal matrix

elements:

If we recall that then we see that can only
equal for the integral to be nonzero. In doing second-order perturbation
theory for the state the only permissible intermediate states are

This solution is valid for states For the ground state, with
the state does not exist, so the answer is
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5.41 Rotator in Field (Stony Brook)

 The eigenfunctions and eigenvalues are

b) The electric field interacts with the dipole moment to give an interaction

This problem is almost identical to the previous one. The quantity of
the previous problem is changed to the moment I in the present problem.
The perturbation results are similar. The first-order perturbation vanishes
since The second-order perturbation is given by (S.5.40.3)
and (S.5.40.4) after changing to I and to

5.42 Finite Size of Nucleus (Maryland, Michigan
State, Princeton, Stony Brook)

a) To find the potential near the nucleus, we note Gauss’s law, which
states that for an electron at a distance from the center of a spherical
charge distribution, the electric field is provided only by those electrons
inside a sphere of radius For this is the charge
whereas for it is just the charge Z . Thus, we find for the derivative
of the potential energy:

a)
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where is a constant of integration. We chose to make the
potential continuous at

b) For a single electron bound to a point nucleus, we can use hydrogen wave
functions:

c) The first-order change in the ground state wave energy is

For any physical value of Z , the parameter    is very much smaller than
unity. One can evaluate the above integral as an expansion in and show
that the first term is           so the answer is approximately
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The result from first-order perturbation theory is obtained by taking the
integral of the perturbation with the ground state wave function

The ground state energy is The first term in has odd
parity and integrates to zero in the above expression. The second term in

has even parity and gives a nonzero contribution. In this problem it is
easiest to keep the eigenfunctions in the separate basis of rather than
to combine them into In one dimension the average of so
we have

where This is probably the simplest way to leave the answer.
This completes the discussion of first-order perturbation theory.

The other term         in contributes an energy of in second-
order perturbation theory. The excited state must have the symmetry of

which means it is the state This has three
quanta excited, so it has an energy

Now we combine the results from first- and second-order perturbation the-
ory:

5.43 U and   Perturbation (Princeton)
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5.44 Relativistic Oscillator (MIT, Moscow
Phys-Tech, Stony Brook (a))

a) The classical Hamiltonian is given by whereas the
relativistic Hamiltonian may be expanded as follows:

The perturbation to the classical Hamiltonian is therefore

First solution: For the nonrelativistic quantum harmonic oscillator, we have

where are operators. Defining new operators Q, P,

and noting the commutation relations

we may rewrite (S.5.44.2) as
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Introducing the standard creation and annihilation operators (see Problems
5.15 and 5.16):

we find that

Using these results, we may express the first-order energy shift as

The expansion of is simplified by the fact that so

Finally, we obtain

where
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Second solution: Instead of using operator algebra, we can find a wave
function in the momentum representation, where

The Hamiltonian then is

The Schrödinger equation for becomes

This equation has exactly the same form as the standard oscillator
Schrödinger equation:

We then obtain for the momentum probability distribution for the ground
state:

Therefore

where Using the old “differentiate with respect to an
innocent parameter method” of simplifying an integral, we may rewrite
as

where we substituted (S.5.44.10) into (S.5.44.11) and let Fi-
nally,
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as found in the first solution.

b) The first-order energy shift from would be zero (no diagonal elements
in the matrix). The leading correction would be the second-order shift
as defined by the formula

where        means sum over                     From (S.5.44.3) and (S.5.44.4), we
have

As for any second-order correction to the ground state, it is negative. To
make this expression equal to the one in part (a), we require that

So,
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5.45 Spin Interaction (Princeton)

In first-order perturbation theory the change in energy is

since and the matrix element of is zero for the ground state
The first excited state is three-fold degenerate: denote these states as

In this notation the matrix elements are

In second-order perturbation theory

where where the unit matrix is Each spin state has the same
energy, to second order.

5.46 Spin–Orbit Interaction (Princeton)

a) In three dimensions the lowest eigenvalue of the harmonic oscillator is
which can be viewed as from each of the three dimensions.

The ground state has s-wave symmetry. The lowest excited states have
eigenvalue There are three of them. They have symmetry
and are the states and

where
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b) In the spin–orbit interaction we take the derivative and find

The matrix element is a constant, which simplifies the calculation. We
evaluate the factor  by defining the total angular momentum J as

For the ground state of the harmonic oscillator, and
The above expectation value of is zero. The ground state is unaf-
fected by the spin–orbit interaction, although it is affected by relativistic
corrections (see Problem 5.44) as well as by other states (see Problem 5.45).

The first excited states have  so that For
we find that

5.47 Interacting Electrons (MIT)

a) The wave function for a single electron bound to a proton is that of the
hydrogen atom, which is

where is the Bohr radius. When one can neglect the Coulomb repulsion
between the two electrons, the ground state energy and eigenfunctions are

For we find that
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The last factor in (S.5.47.3) is the spin-wave function for the singlet
in terms of up and down spin states. Since the spin state has odd parity,
the orbital state has even parity, and a simple product function
is correct. The eigenvalue is twice the Rydberg energy

b) The change in energy in first-order perturbation theory is
The orbital part of the matrix element is

where the final integration variable is
Next we evaluate the spin part of the matrix element. The easiest way

is to use the definition of the total spin to derive

where for spin-1/2 particles, such as electrons, Since
the two spins are in an state, the expectation value
Combining this with the orbital contribution, we estimate the perturbed
ground state energy  to be

5.48 Stark Effect in Hydrogen (Tennessee)

We use the notation to describe the four orbital states: the s-state
is and the three are Spin is not affected
by this perturbation and plays no role in the calculation. For degener-
ate perturbation theory we must evaluate the 10 different matrix elements

which occur in the symmetric 4 × 4 matrix. The interac-
tion potential is                  One can use parity and other group theory
arguments to show that only one matrix element is nonzero, and we call it
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Since the two states have no matrix elements with the other two
states, we can omit them from the remaining steps in the calculation. Thus
we must find the eigenvalues of a 2 × 2 matrix for the states       and

This matrix has eigenvalues The perturbation splits the fourfold
degenerate state into states with eigenvalues

Since is proportional to the electric field, the energies split linearly with
.
The matrix element can be evaluated by using the explicit represen-

tation for the eigenstates of the hydrogen atom:

yielding

The angular integral gives 2/3, and

5.49 Hydrogen with Electric and Magnetic
Fields (MIT)

We use the same notation as in Problem 5.48 to describe the four orbital
states: the s-state is and the three are
Here again, spin is not affected by this perturbation. As in Problem 5.48,
we must evaluate the 10 different matrix elements which
occur in the symmetric 4 × 4 matrix.
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One interaction potential is One can use parity and other
group theory arguments to show that the only nonzero matrix elements are

One can show that and are equal to within a phase factor. We ig-
nore this phase factor and call them equal. The evaluation of this integral
was demonstrated in the previous solution. The result here is
compared to the one in the previous problem.

To first order in the magnetic field, the interaction is given by

In spherical coordinates the three unit vectors for direction are

In these units the vector potential can be written as Similarly,
the momentum operator in this direction is

where the cyclotron frequency is The magnetic field is a
diagonal perturbation in the basis          .

Now the state has no matrix elements for these interactions and is
unchanged by these interactions to lowest order. So we must diagonalize
the 3 × 3 interaction matrix for the three states

The states are initially fourfold degenerate. The double perturbation
leaves two states with the same eigenvalue while the other two are
shifted by where and Note that

so that, in the absence of the magnetic field, the result is the same as in
Problem 5.48.
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5.50 Hydrogen in Capacitor (Maryland, Michigan
State)

For time-dependent perturbations a general wave function is

where the satisfy

For the time-dependent perturbation

From Schrödinger’s equation we can derive an equation for the time devel-
opment of the amplitudes

If the system is initially in the ground state, we have and the
other values of are zero. For small perturbations it is sufficient to
solve the equation for

The general probability that a transition is made to state is given by

This probability is dimensionless. It should be less than unity for this
theory to be valid.
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a) For the state the probability is zero. It vanishes because the
matrix element of is zero: because of parity. Both S-
states have even parity, and has odd parity.

b) For the state the transition is allowed to the
orbital state, which is called The matrix element is similar to the
earlier problem for the Stark effect. The 2P eigenstate for , is
in (S.5.48.5) and that for the 1S state is exp The integral
is

where is the Bohr radius of the hydrogen atom.

5.51 Harmonic Oscillator in Field (Maryland,
Michigan State)

We adopt (S.5.50.4) and (S.5.50.5) for the time-dependent perturbation
theory. Now we label the eigenstates with the index for the harmonic
oscillator state of energy and write the equation satisfied
by the time-dependent amplitudes

We need to evaluate the matrix element of between the states
and of the harmonic oscillator. It is only nonzero if In

terms of raising and lowering operators,
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a) If the initial state is at then the amplitude of the
state for is given by

The last equation is the probability of ending in the state if the
initial state is This expression is valid as long as it is less than 1 or
if

b) The state cannot be reached by a single transition from
since the matrix element However, can be reached by a
two-step process. It can be reached from and is excited from

The matrix element is so we have that

Note that Similarly, one can show that However,
the total probability, when summed over all transitions, cannot exceed 1.
Therefore, we define a normalized probability
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5.52 Decay of Tritium (Michigan State)

We use the sudden approximation to calculate the probability that the
electron remains in the ground state. One calculates the overlap integral

of the initial and final wave functions, and its square is the probability.
The ground states in the initial and final states are called and

is the Bohr radius:

WKB

5.53 Bouncing Ball (Moscow Phys-Tech, Chicago)

The potential energy here is We can apply the quasi-classical
(WKB) approximation between points where                       with the
quasi-classical function applicable all the way to The wave function
is given by

On the other hand, for
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Imposing the condition yields

We know that in this approximation

5.54 Truncated Harmonic Oscillator (Tennessee)

a) If C is the turning point, to be found later, then the WKB formula in
one dimension for bound states is

where we have used the truncated harmonic oscillator potential for
The constant C is the value of where the argument of the square root
changes sign, which is

so

for
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The integral on the left equals The easiest way to see this result
is to use the change of variables and the integrand becomes

between 0 and (Actually, just note that this is the area of
a quadrant of a disk of radius C). We get

b) The constraint that there be only one bound state is that and
This gives the following constraints on the last constant in the

energy expression:

5.55 Stretched Harmonic Oscillator (Tennessee)

We use (S.5.54.1) and (S.5.54.2) as the basic equations. The turning point
C is where the argument of For the present potential the turning
point is

The integral in (S.5.54.1) has three regions. In the interval then
is a constant, and the integral is just The potential

is nonzero in the two intervals and Since
the WKB integral is symmetric, we get

To evaluate the second integral, change variables to
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The last integral equals Writing we find

We have to determine E. Equation (S.5.55.5) is a quadratic equation for
the variable Solving the quadratic by the usual formula gives the final
result:

5.56 Ramp Potential (Tennessee)

We use (S.5.54.1) and (S.5.54.2) as the starting point. In the present prob-
lem, and so

Since the integral is symmetric, we can write it as

Remembering that we obtain the final result:
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5.57 Charge and Plane (Stony Brook)

In the WKB approximation

or, between turning points,

Substituting (S.5.57.1) into (S.5.57.2) and using the symmetry of the motion
about we obtain

Thus,

b) For the potential where

the quantization condition gives

a) Since we may write
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c) Using the boundary conditions at we obtain

It implies that the odd states, for which are not affected by
while even states should satisfy the condition

Since

where

this condition takes the following form:

5.58 Ramp Phase Shift (Tennessee)

The following formula is for the phase shift in one dimension where the
particle is free on the right as and encounters an
impenetrable barrier near the origin:
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The factor is the phase change when the particle goes through the
turning point where

For the present problem we have that for and this part
of the integral exactly cancels the term For the potential is

assuming that The turning point is so we
have

5.59 Parabolic Phase Shift (Tennessee)

Again we use (S.5.58.1) for the phase shift. The potential in the
present problem is zero for  The integral in this region cancels the
term To the left of the origin, the turning point is

The integral over again equals The phase shift is linear with
energy and has a constant term.

5.60 Phase Shift for Inverse Quadratic (Tennessee)

Again we use (S.5.58.1) for the phase shift. The turning point is
The phase integral is
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The last integral is found in standard tables. To evaluate the phase shift, we
need to evaluate this expression in the limit which gives
So the final expression for the phase shift is

The phase shift is independent of energy.

Scattering Theory

5.61 Step-Down Potential (Michigan State, MIT)

Denote by the momentum of the particle to the right of the origin, and
is momentum on the left. Since energy is conserved, we have

Now we set up the most general form for the wave function, assuming the
incoming wave has unit amplitude:

Matching the wave function and its derivative at the origin gives two equa-
tions for the unknowns R and T which are solved to find R:

5.62 Step-Up Potential (Wisconsin-Madison)

Write the energy as where is the wave vector on the
left of zero. Since define a wave vector on the right as
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a) The wave functions on the left and right of the origin are

where and are the amplitudes of the reflected and transmitted waves.
Matching the wave function and its slope at gives two equations:

These two equations are solved to obtain   and :

b) The particle currents are the velocities times the intensities. The veloc-
ities are on the left and on the right:

The last expression equals the current of the incoming particle.

5.63 Repulsive Square Well (Colorado)

a) If the radial part of the wave function is then define
Since R is well behaved at in this limit. The function
obeys the following equation for
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where

and the theta function is 1 if and 0 if For the
solutions are in the form of or Instead, write it as
where the phase shift is For define a constant according to

Then the eigenfunction is

For the constraint that forces the choice of the hyberbolic
sine function. Matching the eigenfunction and slope at gives

Dividing these equations eliminates the constants A and B. The remaining
equation defines the phase shift.

b) In the limit that the argument of the arctangent vanishes, since
the hyperbolic tangent goes to unity, and

c) In the limit of zero energy, we can define

To find the             part of the cross section at low energy, we start with

where the total cross section is



315QUANTUM MECHANICS

5.64 3D Delta Function (Princeton)

For a particle of wave vector Schrödinger’s equation for the radial part
of the wave function is

Only            scattering is important at very low energies, so solve for
Also define and get

At is well behaved, so Thus we choose our wave
functions to be

The quantity is the phase shift. We match the wave functions at
The formula for matching the slopes is derived from (S.5.64.2):

Matching the function and slope produces the equations

which are solved to eliminate A and B and get

In the limit of low energy, we want We assume there are no bound
states so that where is a constant. We find in this limit:

We also give the formula for the cross section in terms of the scattering
length The assumption of no bound state is that
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5.65 Two-Delta-Function Scattering (Princeton)

Let us take an unperturbed wave function of the particle of the form

Suppose that, after scattering, the wave vector becomes In the Born
approximation, the scattering amplitude is

(see, for instance, Landau and Lifshitz, Quantum Mechanics, Sect. 126),
where and (see Figure S.5.65). Substituting the
potential into (S.5.65.2), we obtain

where is the projection of the vector
on the z axis. The scattering cross section

In order to apply the Born approximation, i.e., to use perturbation theory,
we must satisfy at least one of two conditions:
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where is the range of the potential. The first condition derives
from the requirement that the perturbed wave function be very close to the
unperturbed wave function. Inequality (S.5.65.5) may also be considered
the requirement that the potential be small compared to the kinetic energy
of the particle localized at the source of the perturbation. Even if the first
condition is not satisfied, particles with large enough will also justify the
Born approximation.

5.66 Scattering of Two Electrons (Princeton)

We evaluate the scattering in the Born approximation, which is valid when
the kinetic energies are much larger than the binding energy. The Fourier
transform of the potential is

and the formula for the total cross section of electrons with initial wave
vector is

This cross section is suitable for classical particles, without regard to spin.
The specification to the spin states S = 0, 1 is made below. Write

where is the solid angle of the scattering. The differential cross
section is found by taking the functional derivative of the cross section with
respect to this solid angle:

where we have used the fact that and is defined by
The magnitudes of the vectors and are the same,

so (see Problem 5.65 and Figure S.5.65). All
of the dimensional factors are combined into the Bohr radius Now we
consider how this formula is altered by the spin of the electrons. Spin is
conserved in the scattering, so the pair of electrons has the same spin state
before and after the collision.
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a) For S = 0 the two electrons are in a spin singlet which has odd parity.
Hence, the orbital state must have even parity. The initial and final orbital
wave functions are given below, along with the form of the matrix element.
The relative coordinate is r:

The matrix element has two factors.

b) For S = 1 the spins are in a triplet state which has even parity. The
orbital part of the wave function has odd parity. There is a minus sign
between the two terms in (S.5.66.4) instead of a plus sign, and ditto for the
final wave function. Now the differential cross section is

There is a relative minus sign between the two term in the matrix element.

5.67 Spin-Dependent Potentials (Princeton)

In the first Born approximation the scattering is proportional to the square
of the matrix element between initial and final states. If the initial wave
vector is  and the final one is set and evaluate



319QUANTUM MECHANICS

where we have written the transverse components of momentum in terms
of spin raising and lowering operators. The initial spin is pointing along the
direction of the initial wave vector which we define as the
Let us quantize the final spins along the same axis. Now consider how the
three factors scatter the spins:

a)

b)

c)

d)

The term A is spin independent. It puts the final spin in the same
state as the initial spin.

is a diagonal operator, so the final spin is also along the initial
direction, and this term has a value of

flips the spin from         to and contributes a matrix element
of to the final state with the spin reversed.

gives a matrix element of zero since the initial spin cannot be
raised.

When we take the magnitude squared of each transition and sum over final
states, we get the factors for spins of

The differential cross section is written as

We have used the fact that energy is conserved, so to set
(see Problem 5.65 and Figure S.5.65).
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5.68 Rayleigh Scattering (Tennessee)

a) The formula for the total cross section  is

We write where is the solid angle. The differential
cross section is obtained by taking a functional derivative with respect to

There remains only the integral, which is eliminated by the delta
function for energy conservation:

where the vector differs from only in direction.

b) With the assigned choice of the matrix element we write our differential
cross section as

where the factor S is the average over initial polarizations and the sum
over final polarizations. There are two possible polarizations, and both are
perpendicular to the direction of the photon. These averages take the form

The factor 1/2 is from the average over initial polarization. The angle is
between the directions of and
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5.69 Scattering from Neutral Charge Distribution
(Princeton)

a) The particle scatters from the potential energy which is related to
the charge distribution

where is the Fourier transform of and is the Fourier trans-
form of The differential cross section in the Born approximation is

b) In forward scattering we take In order that the cross section have
a nondivergent result in this limit, we need to find

To obtain this result, we examine the behavior of at small values of

Consider the three terms in brackets: (i) the 1 vanishes since the dis-
tribution is neutral; (ii) the second term vanishes since the distribution
is spherically symmetric; (iii) the last term gives an angular average

and the integral of is A. The cross section in forward
scattering is

c) The charges in a hydrogen atom are the nucleus, which is taken as a
delta function at the origin, and the electron, which is given by the square



SOLUTIONS322

of the ground state wave function

where is the Bohr radius.

General

5.70 Spherical Box with Hole (Stony Brook)

In spherical coordinates the eigenfunctions for noninteracting particles of
wave vector are of the form

where and are spherical Bessel functions. The constants A and B
are determined by the boundary conditions. Since we were only asked for
the states with we only need and
We can take a linear combination of these functions, which is a particular
choice of the ratio B/A, to make the wave function vanish at

This satisfies the boundary condition at Requiring that this function
vanish at gives
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5.71 Attractive Delta Function in 3D (Princeton)

a) The amplitude of the wave function is continuous at the point of
the delta function. For the derivative we first note that the eigenfunctions
are written in terms of a radial function and angular functions:

Since the delta function is only for the radial variable only the function
has a discontinuous slope. From the radial part of the kinetic energy

operator we integrate from to

This formula is used to match the slopes at

b) In order to find bound states, we assume that the particle has an energy
given by where needs to be determined by an eigenvalue
equation. The eigenfunctions are combinations of exp In order to
be zero at and to vanish at infinity, we must choose the form

We match the values of at We match the derivative, using the
results of part (a):

We eliminate the constants A and B and obtain the eigenvalue equation
for which we proceed to simplify:
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This is the eigenvalue equation which determines as a function of param-
eters such as D, etc. In order to find the range of allowed values of
D for bound states, we examine The right-hand side of (S.5.71.9)
goes to 1, which is its largest value. So, the constraint for the existence of
bound states is

5.72 Ionizing Deuterium (Wisconsin-Madison)

The ionization energy of hydrogen is just the binding energy of the electron
which is given in terms of the reduced mass of the electron–proton
system. The same expression for deuterium contains the reduced mass
of the electron–deuteron system:

The difference is easily evaluated. The ratio is a small number and
can be used as an expansion parameter:

The ratio of masses gives and

5.73 Collapsed Star (Stanford)

a) Using the 1D Schrödinger equation
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with the boundary conditions gives

where Protons, neutrons, and electrons are fermions,
so 2 may occupy each energy level, and we have

The kinetic energy of a particle

where

To determine which species are relativistic, we wish to find whether
We may extract from S.5.73.2. For neutrons:

Similarly for protons:

Since N, Z < A, both neutrons and protons are non-relativistic. For elec-
trons:

The equilibrium value of Z/A obtained in (c) for relativistic electrons gives
which still leaves 1 in S.5.73.7. Moreover, if we assume

that the electrons are non-relativistic and minimize S.5.73.14 below with
electron energy (see S.5.73.9)
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we will get and which contradicts the assumption.
So the electrons are relativistic. Alternatively, we can use the result of
Problem 4.64,

the same as S.5.73.5.

b) The ground state energy of the system is given by the sum of energies of
all levels, which we may approximate by an integral. We calculate the total
energies of non-relativistic particles (neutrons and protons) and relativistic
ones (electrons) separately:

For 1-D electrons (see Problem 4.64)

The total electron energy is
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where we used for an estimate an electron energy of the form since
we have already established that they are relativistic. We can obtain a
correct value of for them:

where we have used the result of (c), The total energy of the
star is

c) Let We need to find the minimum of the expression

where

Setting the derivative of S.5.73.15 equal to zero gives

Finally,

So the minimum energy corresponds to a star consisting mostly
of neutrons.
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5.74 Electron in Magnetic Field (Stony Brook,
Moscow Phys-Tech)

a) The relationship between the vector potential and magnetic field is
Using does give So this vector

potential produces the right field.

The vector potential enters the Hamiltonian in the formb)

One can show easily that and each commute with the Hamiltonian
and are constants of motion. Thus, we can write the eigenfunction as
plane waves for these two variables, with only the yet to be
determined:

The Hamiltonian operating on gives

where We may write the energy E as

and find

The energy is given by the component along the magnetic field and the
energy for motion in the plane. The latter contribution is identical
to the simple harmonic oscillator in the The frequency is the
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cyclotron frequency and the harmonic motion is centered at the point
which depends upon The eigenvalues and eigenfunctions are

where are the eigenfunctions for the one-dimensional harmonic oscil-
lator.

5.75 Electric and Magnetic Fields (Princeton)

a) Many vector potentials A(r) can be chosen so that For
the present problem the most convenient choice is Thus the
Hamiltonian is

The above choice is convenient since only fails to commute with H, so
and are constants of motion. Both potentials have been made to depend
on

b) Since and are constants of motion, we can write the eigenstates
and energies as

The last equation determines the eigenvalue and eigenfunctions
The potential is a combination of linear and quadratic terms in So the
motion behaves as a simple harmonic oscillator, where the terms linear in

determine the center of vibration. After some algebra we can write the



330 SOLUTIONS

above expression as

So, we obtain

The total energy is plus the kinetic energy along the The
of the eigenfunction is a harmonic oscillator

c) In order to find the average velocity, we take a derivative with respect
to the wave vector

This is the drift velocity in the It agrees with the classical
answer.

5.76 Josephson Junction (Boston)

a) Take the first of equations (P.5.76.1),

and its complex conjugate and multiply them by      and respectively:

Subtracting (S.5.76.3) from (S.5.76.2) yields
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Similarly, from the second of (P.5.76.1),

b) Substituting the solutions and into
(S.5.76.1), we obtain the expression for

Taking (S.5.76.6), the analogous expression for gives

Subtracting (S.5.76.7) from (S.5.76.8), we obtain

where So

where

c) The battery current
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Appendix 1:

Approximate Values of Physical Constants



336 APPENDIXES

Some Astronomical Data

Mass of the Sun

Radius of the Sun

Average Distance between the Earth and the Sun

Average Radius of the Earth

Mass of the Earth

Average Velocity of the Earth in Orbit about the Sun

Average Distance between the Earth and the Moon

Other Commonly Used Units

Angstrom (Å)

Fermi

Barn

Year

Astronomical Year

Parsec

Room Temperature

Horsepower

Calorie

Atmosphere
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Appendix 2:

337

Conversion Table from Rationalized MKSA to Gaussian Units

Appendix 3:

Vector Identities
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Vector Formulas in Spherical and Cylindrical Coordinates

Spherical Coordinates

Transformation of Coordinates

Transformation of Differentials

Square of the Element of Length
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Transformation of the Coordinates of a Vector

Divergence

Curl

Gradient



APPENDIXES340

Laplacian

Cylindrical Coordinates

Transformation of Coordinates

Transformation of Differentials

Square of the Element of Length

Transformation of the Coordinates of a Vector
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Divergence

Curl

Gradient

Laplacian

Appendix 4:

Legendre Polynomials
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Rodrigues’ Formula

Spherical Harmonics

The first three eigenfunctions of the harmonic oscillator in one dimension
are

Appendix 5:

Harmonic Oscillator
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where is the oscillator frequency.

Appendix 6:

Angular Momentum and Spin

The (Pauli) matrices are

while the vector
The spin 1 matrices are
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Appendix 7:

Variational Calculations

The general procedure for solving variational problems in one dimension
is to first evaluate three integrals which are functions of the variational
parameter

The two expressions for the kinetic energy K can be shown to be equal
by an integration by parts. The second expression is usually easier to use,
since one has to take a single derivative of the trial function and then
square it.

Appendix 8:

Normalized Eigenstates of Hydrogen Atom
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Appendix 9:

Conversion Table for Pressure Units

Appendix 10:

Useful Constants

Resistivity of copper (T = 300 K)

Linear expansion coefficient of copper

Surface tension of water (at 293 K)

Viscosity of water

Heat of vaporization of water (at 373 K, 1 atm)

Velocity of sound in air (at 293 K)

Si band gap

Ge band gap
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